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Inland waterways infrastructure such as miter gates are subject to damage like

cracking and corrosion due to long (∼50 years) service lives with extensive water exposure.

With the advancement of modern sensing technologies, there’s a vast potential for Structural

Health Monitoring (SHM) to transition into a more intelligent and efficient technology that

can integrate multiple data sources for enhanced damage diagnostics and inform predictive

inspection and maintenance strategies. This research presents a comprehensive optimization

framework for the diagnosis and prognosis of such infrastructure. The framework first

proposes a novel iterative global-local method for efficient and accurate forward modeling of
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structural damage in miter gates. It then develops an innovative diagnostic and prognostic

framework that not only integrates multiple data sources for structures with multi-failure

modes but also analyzes the environmental factors influencing SHM, offering insights

into the challenges and solutions for real-world inspections. Furthermore, it introduces a

physics-informed inspection planning framework, underpinned by model-based diagnostics

and prognostics, leveraging the benefits of digital twin and deep learning technologies.

This work represents a significant advancement for a certain class of SHM, providing a

robust methodology for improving the lifespan and ensuring the safety of critical waterway

infrastructure, marking a crucial step toward the future of infrastructure inspection and

maintenance.
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Chapter 1

Introduction

1.1 Overview of Structural Health Monitoring

Systems

Structural Health Monitoring (SHM) refers to the process of implementing a damage

detection strategy for built structures. Such a process involves the integration of sensors

that collect data from structures over time, the extraction of damage-sensitive features from

the collected data, and the statistical analysis of those features to derive actionable insights

about structural health conditions. For long-term SHM, the objectives are twofold: 1) to

ensure the structure’s safety and functionality considering degradation from operational

environments, and 2) to optimize inspection and maintenance strategies for timeliness and

cost-effectiveness (Brownjohn, 2007; Farrar and Worden, 2007; Sohn and Farrar, 2001).

Inland waterways infrastructure presents unique challenges for SHM due to their

expansive dimensions, complex geometry, and unique operating conditions. To illustrate,

the United States Army Corps of Engineers (USACE) operates and maintains 236 lock

chambers at 191 lock sites on 41 US waterways (Eick, Treece, Spencer Jr, Smith, Sweeney,

Alexander and Foltz, 2018). These structures require a well-designed monitoring strategy

that can effectively detect damage both on a global and local scale. Given their mul-

tifunctional roles, unexpected failure can result in severe consequences. The closure of

a lock could cost the US economy up to $3 million per day (Eick, Treece, Spencer Jr,
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Smith, Sweeney, Alexander and Foltz, 2018). As a crucial component of inland waterway

systems, miter gates facilitate essential tasks including waterway transportation, flood

control, and water supply. A significant portion of miter gates remain underwater, which

gives rise to varied damage degradation patterns, such as support structure material loss

(leading to loss of proper load transfer), pitting corrosion, and fatigue cracks. Presently,

maintenance relies on periodic inspections that require fully dewatering the chamber for

manual examination, a process that is time-intensive, costly, and inefficient. Furthermore,

the underwater context complicates inspection and maintenance due to factors such as

water turbidity, restricted accessibility, and limited visibility. Given these challenges, there

is an increasing need for a specialized SHM framework tailored for inland waterways

infrastructure.

1.2 SHM-Informed Asset Life-Cycle Management

SHM systems are a central component in the life-cycle management (i.e., operation,

inspection, and maintenance) of inland waterways infrastructure. The overall goal is to

maximize the remaining useful life (RUL) of these structures while minimizing the total

life-cycle costs, which typically can be characterized by three phases: early detection and

diagnosis, predictive analysis and prognostics, and life-cycle management.

1.2.1 Early detection and diagnosis

As a fundamental component of SHM, diagnosis refers to the process of identifying

and characterizing damage in a structure based on measured data. Diagnosis offers insights

into the current health state of a structure, where the primary goal is to detect, locate,

and quantify damage or deterioration in the structure (Farrar and Worden, 2012; Sohn,

Farrar, Hemez, Shunk, Stinemates, Nadler and Czarnecki, 2003). Numerous methodologies

have been developed for damage diagnosis in SHM. The following are some of the widely

used diagnostic techniques.

2



Model-based diagnosis

Model-based diagnosis relies on a computational model or mathematical model

representing the structure’s behavior. The potential damage locations and severities can

be identified from the discrepancies between the model’s predictions and the measurements

from the actual assets. In recent years, the “digital twin” concept has drawn intensive

attention to model-based diagnosis. A Digital Twin (DT) is a digital counterpart of a

physical object or system, which in SHM, serves as an advanced computational model that

“mirrors” the current state of the structure, providing a platform for real-time monitoring,

diagnostics, and prognostics. The integration of DT in SHM has enabled more detailed and

accurate damage detection, owing to their ability to incorporate and process vast amounts

of data from various sources (Glaessgen and Stargel, 2012; Li, Mahadevan, Ling, Choze

and Wang, 2017a; Tao, Cheng, Qi, Zhang, Zhang and Sui, 2018). Finite Element (FE)

analysis, a numerical technique used for finding approximate solutions to boundary value

problems for differential equations, serves as the backbone for many DT representations of

structures. These FE models can capture intricate details about a structure’s geometry,

material properties, boundary conditions, and loading scenarios, providing more accurate

insights into potential damage mechanisms (Moravej, Jamali, Chan and Nguyen, 2017;

Tao, Xiao, Qi, Cheng and Ji, 2022).

Data-driven diagnosis

The rise of computational capacities and smart sensing technologies have quickly

advanced the evolution of data-driven approaches in SHM. These methods, as opposed

to traditional model-based techniques, rely on the features and patterns present in the

collected observations to identify and diagnose damage in structures. Among them, Machine

Learning (ML) has become an indispensable tool, which can be trained to automatically

learn from data, to recognize patterns corresponding to damage, and to improve the model

performance as more data becomes available (Bishop, 2006). The data-driven approaches
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Figure 1.1. Digital twin concept.

can be broadly categorized into supervised and unsupervised learning, each serving unique

roles in SHM.

Unsupervised learning techniques do not require labeled data and are primarily used

for dimensionality reduction and clustering. For instance, Singular Value Decomposition

(SVD) and Principal Component Analysis (PCA) are some dimensionality reduction

techniques widely used in SHM to transform measurement data into lower-dimensional

subspaces without significant losses in data variance. Such techniques can be crucial

for identifying anomalies in structural behavior, enhancing computational efficiency, and

highlighting the most dominant modes of the data (Garćıa-Maćıas and Ubertini, 2021).

Besides, K-Means Clustering partitions the dataset into K non-overlapping clusters to

minimize the within-cluster sum of squares. In the context of SHM, K-means clustering

can be applied to digital signals to categorize different material properties or structural

conditions, aiding in the identification of damage-related anomalies (Liu, Malinowski,

Paw lowski, Wu and Todd, 2023a). In unsupervised approaches, data is only available from

nominal (baseline) conditions, and comparisons are made between test data patterns and

these reference patterns. They may sometimes only indicate the presence of an anomaly,

struggling to provide detailed diagnostics or prognostics information.
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In supervised learning, the model is trained on a labeled dataset, from all the

targeted classes of health. This approach is particularly powerful for tasks such as

damage classification and quantification. For example, Gaussian Processes (GP) is a

type of non-parametric Bayesian method used for regression and classification tasks. In

SHM, they can model the uncertainty in structural responses, making them suitable for

structures with complex interactions and noise in the measurements (Worden and Manson,

2007). GP models have been employed for predicting structural responses, modeling

the evolution of damage, and uncertainty quantification in SHM (Avendano-Valencia,

Chatzi and Tcherniak, 2020). Convolutional Neural Networks (CNN), a deep learning

model primarily used for image processing, have a specific architecture designed to learn

pixel-level features automatically and adaptively from data. With the increasing use of

visual inspections via drones or other imaging systems, CNNs have been employed to

detect and localize damage such as cracks, corrosion, and other defects in various structural

elements (Azimi, Eslamlou and Pekcan, 2020; Cha, Choi and Büyüköztürk, 2017).

In conclusion, the applicability of data-driven diagnosis in SHM depends on the

availability of data and the specific monitoring objectives. While supervised methods offer

detailed insights when sufficient labeled data is available, unsupervised methods provide

capabilities for anomaly detection with the scarcity of damaged data.

1.2.2 Predictive analysis and prognostics

Prognosis, or predictive modeling of future structural state, is crucial in SHM

for informed decision-making and long-term structural reliability by using the gathered

damage information to simulate the evolution of the damage and predict useful limit states

that inform RUL. Such a process helps to avoid unexpected failures and downtime and

has been particularly critical in inland waterways infrastructure such as miter gates, dams,

and other such large-scale structures.

RUL estimation refers to the process of predicting the time remaining until a
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structural component reaches its end of life (EOL) or a predefined failure threshold. Figure

1.2 shows an illustration of how to perform RUL estimation based on failure prognosis. The

EOL is defined as the time when the damage state of the structure reaches a predefined

failure threshold. The RUL is determined as the difference between the predicted EOL

and the current time step.

Figure 1.2. Illustration of RUL prediction in prognosis.

While RUL estimation stands as a crucial component in predictive maintenance,

the challenge lies in the uncertainties in modeling the underlying deterioration processes,

which arise primarily from the selected methodology and the quality of the data (Farrar

and Lieven, 2007).

Similarly, prognosis can be categorized into two main types: model-based and

data-driven prognosis. Model-based methods rely on mathematical models that describe

the deterioration or damage evolution over time in a structure. An illustrative example of

this is the use of Paris’s Law to estimate the evolution of fatigue cracks (Suresh, 1998).

These methods often require accurate model parameters and loading conditions, which
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highly depend on the estimation accuracy during the diagnostic phase (Farrar and Worden,

2012). Model-based prognosis is particularly prevalent in the domain of inland waterways

infrastructure, where accurate modeling of material degradation under environmental

loading is crucial (Brownjohn, 2007).

On the other hand, data-driven prognosis leverages ML and statistical methods to

predict future states of the structure based on historical and real-time data. Techniques

such as Bayesian approaches, time series analysis, and neural networks have gained

popularity in this domain, driven by advances in sensing technologies and data acquisition

capabilities. These methods have shown promise in inland waterway applications, providing

valuable insights for maintenance and decision-making processes (Negi, Kromanis, Dorée

and Wijnberg, 2024; Vega, Hu, Yang, Chadha and Todd, 2022).

In practice, a hybrid approach combining both model-based and data-driven meth-

ods is often adopted to enhance the accuracy and robustness of predictions, particularly

in the presence of uncertainties and limited data (Azimi, Eslamlou and Pekcan, 2020).

This integration allows for the compensation of potential shortcomings in each individual

approach, ensuring a more comprehensive and reliable prognosis.

1.2.3 Life-cycle management

Once damage is diagnosed and its future progression is predicted, the next challenge

is to determine an appropriate response to the structure’s life-cycle span, i.e., life-cycle

management. Generally, life-cycle management refers to the systematic process of managing

the entire life cycle of a structure to maximize its value and performance while minimizing

costs and risks (Frangopol, Saydam and Kim, 2012). It involves the integration of various

processes including inspection, maintenance, and repair. With accurate diagnosis and

prognosis, inspection and maintenance activities can be optimized to ensure the longevity

and performance of a structure.

Various inspection techniques such as ultrasonic testing, radiography, and thermog-
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raphy have been widely used in various industries to identify and characterize structural

deficiencies. However, in the context of large-scale structures like inland waterway sys-

tems, emerging technologies such as drone inspections and sensor networks are usually

more popular. These technologies enable more frequent and comprehensive monitoring

of structures, providing richer datasets for diagnosis and prognosis. The integration of

machine learning and computer vision techniques further enhances the capability of these

systems, automating the detection and analysis of structural issues.

With the advancement of various inspection techniques, predictive maintenance is

gradually being intensively adopted instead of periodic maintenance (Kim, Frangopol and

Soliman, 2013; Carvalho, Soares, Vita, Francisco, Basto and Alcalá, 2019). By continuously

monitoring the condition of the structure and predicting the onset of failure, maintenance

activities can be scheduled adaptively based on the risk profile of the structure, thereby

preventing unexpected failures and minimizing downtime. This approach not only ensures

the optimal performance of the structure but also contributes to cost savings by reducing

the need for emergency repairs and extending the service life of the structure.

In essence, SHM serves as the integrated decision-making architecture for structural

asset life-cycle management. It provides continuous feedback on the health status of

structures, predicts their future states, and suggests optimal strategies based on continuous

observation and interpretation.

1.3 Critical Concerns in Modern SHM Techniques

Despite the indispensable role of SHM for inland waterways infrastructure, con-

temporary SHM systems face a myriad challenges. Addressing these challenges forms the

core of this thesis and corresponds to the content of subsequent chapters. The primary

challenges can be defined into four themes.
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1.3.1 Multi-scale modeling

Inland waterways infrastructure, such as miter gates, display a variety of damage

features across different scales, ranging from global deformations that impact the entire

structure to local cracks and corrosion. Thus, multi-scale modeling has become increasingly

important in SHM for accurately understanding and simulating the behavior of large

structures. However, the discrepancy in length scales between the overall structure and

the localized damage features poses significant challenges in terms of numerical modeling

and computational demand (Allix and Gosselet, 2020; Oden, Vemaganti and Moës, 1999).

The challenge primarily arises from the need for fine discretization to accurately

capture the small-scale damage features (e.g., cracks), while also modeling the global

structure. This results in unaffordably large increases in the computable degrees of freedom

in the simulations, leading to extremely high computational costs and time-consuming

calculations.

To address this computational challenge, there is a growing need for surrogate

models. Surrogates serve as approximate models that can significantly reduce the required

computational time and resources, while still providing sufficiently accurate predictions

of structural behavior. To bridge the gap between the different scales without sacrificing

accuracy, a surrogate-based multi-scale modeling method is desired to capture the critical

features and behaviors of the structure at both the global and local levels, ensuring that

the physics of small-scale damage are adequately represented in the overall structural

response.

A surrogate model to accelerate non-intrusive global–local simulations of cracked

steel structures is discussed in depth in Chapter 2.
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1.3.2 Diagnostics and prognostics with diverse data sources

In the rapidly advancing field of SHM, the integration of diverse data sources

has become an indispensable element. One prominent advance has been the adoption of

Unmanned Aerial Vehicles (UAVs) equipped with vision cameras, which have transformed

the traditional observational data from strain measurements and manual visual inspections

into high-resolution digital images, opening the doors to a new realm of data acquisition.

Each of these data types offers a unique lens through which the structural state can

be observed. For instance, while strain gauges provide a measure of stress and strain

distribution, vision-based inspection is capable of capturing surface abnormalities and

degradation patterns in the early stage.

However, with the diversity in data acquisition comes a crucial challenge: how to

synergistically leverage these varied data sources for a robust SHM framework, considering

different types of observational data inherently have unique sensitivities and detectability

to different damage features. In the particular application of large-scale structures such as

miter gates, which are subject to complex degradation and multi-mode failure scenarios,

a SHM system that overcomes the limitations of individual data sources and performs

diagnosis and prognosis with multiple data sources to enhance the accuracy and reliability

of damage detection, localization, and characterization is eventually desired.

Chapter 3 will detail the diagnostics and prognostics of multi-mode failure scenarios

in miter gates using multiple data sources and a dynamic Bayesian network.

1.3.3 Data challenges in ML-based SHM

The integration of Machine Learning (ML) and Deep Learning (DL) in SHM

has created new avenues for advanced damage detection and assessment. For example,

the application of image processing techniques and CNNs has shown great potential in

enhancing the performance of image-based damage identification.
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Transitioning from the capabilities of unsupervised learning, which excels in anomaly

and outlier detection within structures as we just described, we encounter the necessity for

supervised learning to achieve more detailed and informative SHM tasks, such as diagnostics

and predictive prognostics. However, one of the primary issues in ML/DL-based SHM is

the scarcity of damaged data for training these sophisticated models. For example, the

most difficult task in constructing a deep CNN model is to collect a large training dataset

that covers different aspects and states of the target structures (Tsai, Tsai, Hsu and

Wu, 2017). In fact, most structures fortunately do not experience damage at a frequency

sufficient for training, resulting in an imbalanced dataset that is predominantly composed

of healthy state data. This imbalance can lead to models that are not well-trained to

recognize and diagnose damaged states, which is the critical function of SHM.

Moreover, the quality of the available data is often compromised, especially in the

context of underwater infrastructure. Environmental variables such as water turbidity,

light scattering, and inconsistencies in-camera focus can severely degrade the probability

of detection of image-based damage detection methods.

To address the lack of damaged data, one promising solution is the use of synthetic

data generated through tools like Blender (Mayershofer, Ge and Fottner, 2021). Blender

enables the creation of realistic images of structures with control of various damage

scenarios and parameters, augmenting the limited real-world datasets. This synthetic data

can be used to train CNN models, ensuring that they are trained by a wide variety of

damage cases and learn to identify subtle signs of deterioration.

In summary, ML/DL-based SHM introduces a set of challenges related to data avail-

ability and quality. Addressing these challenges requires a combination of synthetic data

generation, advanced image processing techniques, and appropriate deep learning models,

ensuring accurate damage detection even in complex environments such as underwater

infrastructure.

Chapter 4 is dedicated to understanding the environmental complexities inherent
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in underwater SHM.

1.3.4 Bridging predictive analytics and decision-making in
SHM

Translating predictive analytics from diagnosis and prognosis into feasible and

strategic inspection and maintenance actions is a vital aspect that ensures the practical

application of SHM insights. However, this translation process, especially when enabled

by model-based diagnostics and prognostics, is rarely studied compared with conventional

data-driven lifecycle management frameworks.

The challenge is brought by the dilemma of the trade-off between inspection and

maintenance. On one hand, there’s the question of inspection frequency: how often should

a structure be inspected to ensure its integrity? On the other hand, there’s the question

of action protocols: at what point does the damage state require repair or maintenance?

Answering these questions requires the integration of diagnostics, prognostics, and

strategic optimization. Frequent inspections, while ensuring higher detection probabilities

and reduced uncertainties, come with much higher costs. Conversely, simply increasing the

interval between inspections may lower costs but at the potential expense of reliability (e.g.,

failure consequence costs can dramatically increase) and possibly increase maintenance

expenses in the long run.

Addressing this challenge calls for statistical approaches like Bayes risk analysis,

which offers a quantitative framework to evaluate the trade-offs between inspection, main-

tenance, and associated risks. Optimization techniques, such as Bayesian optimization,

offer a powerful tool for identifying optimal strategies that balance cost, risk, and relia-

bility. Thus, actionable decision-making in SHM that integrates diagnostics, prognostics,

and optimization is highly desired for model-informed, time-efficient, and cost-effective

inspection/maintenance decisions.

Chapter 5 will explain the optimization of unmanned aerial vehicle inspection
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strategy for infrastructure based on model-enabled diagnostics and prognostics. Through

the lens of the UAV inspection scenario, the chapter will explore how SHM predictions

can be actualized into optimal strategies for asset maintenance.

1.4 Research Objectives, Organizations of the The-

sis, and Contributions

The high-level aim of this research is to address the challenges particularly focusing

on inland waterways infrastructure as identified in Section 1.3. To achieve this, the research

was structured with four specific objectives: 1. Integrate multiscale modeling, 2. Data

fusion for multi-failure structure, 3. Automatic crack detection, and 4. Optimize inspection

strategies.

The remainder of the dissertation has been organized as follows: Chapter 2 delves

into the development of the global-local iterative process, focusing on addressing the

forward problem in SHM. Chapter 3 introduces the integration of diverse data sets for

diagnostics and prognostics, explaining the novel methodology of merging sensor data

and image data. Chapter 4 explores the optimization of UAV-based inspection strategies,

focusing on the balance between inspection frequency, associated costs, and the quality of

data obtained. Chapter 5 dives deep into the impact of environmental variables on SHM,

particularly through the lens of underwater imaging and deep learning models. Chapter 6

presents a comprehensive conclusion, drawing from all the findings and highlighting the

practical implications and potential future research directions.

The main contributions presented in the following chapters can be summarized:

• This work proposes a novel iterative global-local method for efficient and accurate

structural health monitoring. The challenge of computational efficiency for scale

separation has been addressed by a GP-based surrogate model, enhancing the

simulation speed of fine-discretized modeling.
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Figure 1.3. The optimized SHM framework.

• This work develops an innovative diagnostic and prognostic framework that integrates

multiple data sources for structures with multi-failure mode. Sensor data and image

data are merged using a dynamic Bayesian network, to achieve accurate damage

diagnostics and prognostics for multiple damage features at different scales.

• This work analyzes the environmental factors influencing SHM, providing insights

into the challenges and solutions for real-world inspections. Synthetic underwater

images of miter gates are generated to study the effects of various factors on deep
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learning-based crack detection accuracy.

• This work presents a physics-informed inspection planning framework based on

model-based diagnostics and prognostics. Such a framework facilitates a bidirec-

tional information exchange between UAV inspection planning and structural health

assessment. A comprehensive analysis of how key UAV inspection parameters affect

the overall structural life-cycle cost is performed.
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Chapter 2

A Surrogate Model to Accelerate
Non-intrusive Global-Local Simula-
tions of Cracked Steel Structures

2.1 Abstract

Physics-based digital twins often require many computations to diagnose current

and predict future damage states in structures. This research proposes a novel iterative

global-local method, where the local numerical model is replaced with a surrogate to

simulate cracking quickly on large steel structures. The iterative global-local method

bridges the scales from the operational level of a large steel structure to that of a cracked

component. The linear global domain is efficiently simulated using static condensation,

and the cracked local domain is quickly simulated using the adaptive surrogate modeling

method proposed herein. This work compares the solution time and accuracy of the

proposed surrogate iterative global-local method with a reference model, a submodeling

model, and an iterative global-local method with no surrogate model for the local domain.

It is found that the surrogate iterative global-local method gives the fastest solution time

with comparatively accurate results.

16



2.2 Introduction

With current computational mechanics technology, physics-based digital twins can

diagnose and predict crack damage in structures. However, techniques to infer such infor-

mation require the exploration of many crack state possibilities, which is computationally

expensive. This research proposes a surrogate iterative global-local method to quickly

simulate many instances of a stationary crack on a large steel structure.

This research uses a miter gate problem as its case study, as shown in Fig. 2.1,

although the developed approach is easily applicable to other structures. Miter gates are

critical components of river navigation that swing open and shut to allow boat passage

through a navigation lock chamber. When closed, miter gates act as damming surfaces,

allowing the water in the lock chamber to rise or fall. These two processes combined

allow the lock chamber to act as a boat elevator, allowing boats to bypass dams and their

accompanying water level differences. Some of the most important structural parts of the

gates are submerged during operation, making visual inspection difficult, and leaving an

information gap that digital twin technology aims to fill. This chapter describes the miter

gate example problem more fully in Section 2.4.

The main problem in simulating large steel structural performance (e.g. miter

gate in Fig. 2.1) with component-scale cracks is the separation in length scales. Miter

gate structures may be tens of meters tall and wide, but their (possibly stable) cracks

may be as long as a few cm. Thus the structure and crack features are two orders of

magnitude different in scale, complicating numerical model discretization and increasing

computational cost. In the miter gate numerical model, a small solid cracked part (local

region) is tied to a pristine shell structure (global region) in Abaqus. A fully coupled

at-scale simulation must include the global region’s behavior to find crack effects, greatly

adding to the computational burden of the digital twin.

Zooming or submodeling can be used to separate the cracked portion of the
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Figure 2.1. An open miter gate.

structure from the pristine portion for reduced computational cost. The submodeling

method transfers the global region solution to the shared boundary with the local region.

This is computationally cheap and built into several commercial software including Ansys

and Abaqus, but it fundamentally relies on Saint-Venant’s principle, which states the

difference between the effects of two different but statically equivalent loads becomes very

small at sufficiently large distances from load. It will be shown that this principle does

not hold for the miter gate example.

A generalization of the submodeling method is the iterative global-local (IGL)

method (Allix and Gosselet, 2020). The IGL method provides a mechanism to obtain

much more accurate solutions than submodeling via a similar numerical strategy: the

global gate’s displacements are imposed on the local model boundary. Then a feedback

loop finds the local boundary reaction, compares it to the global boundary traction, and
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applies the calculated immersed surface force to a new global computational job. Iterations

can be performed until the solution is sufficiently accurate. The basic process is shown in

Fig. 2.2. The IGL method converges to the reference combined problem given enough

iterations. Thus the IGL method can be viewed as a bridge between the submodeling and

tying methods, providing increased accuracy over submodeling at the expense of increased

computational cost over submodeling.

Solve global model

Solve local model

Update 
residual

Meets residual 
threshold?

No

Update traction

Yes

Extract SIF values from local 
solutionPost-Analysis

Model setup

• Define feature of interest
• Create global/local models
• Global static condensation

• Map global/local boundaries

Figure 2.2. Iterative global local overview.

Previous IGL method work has looked at non-intrusively enhancing solid domains

with XFEM cracks using XFEM/GFEM (Duarte, Hamzeh, Liszka and Tworzydlo, 2001a)

(Moes, Dolbow and Belytschko, 1999) (Fillmore and Duarte, 2018a) (Gupta, Pereira, Kim,

Duarte and Eason, 2012a). However, those methods each encountered limitations not

affecting the IGL method. XFEM/GFEM crack modeling requires less particular local
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mesh refinement than quarter node elements (Duarte, Hamzeh, Liszka and Tworzydlo,

2001a) (Moes, Dolbow and Belytschko, 1999) (Henshell and Shaw, 1975a) (Barsoum,

1976a), and therefore it is used in this work. Additionally, the IGL method has been used

successfully to simulate nonlinearities in the local domain with a linear global domain

(Gendre, Allix, Gosselet and Comte, 2009a).

The IGL method can be described as non-intrusive because of the ease with which

research software may be combined with commercial software. This allows synergy between

the robustness and broad applicability of the commercial software and the specificity of

the research software. Also, the nonlinear case clearly lends itself to speed increases

since Newton-Raphson iterations may be performed locally, reducing the problem size

dramatically. Within the context of large structures typically modeled as shells, the IGL

method has been successfully used to connect shell global domains to solid local domains

with welds (Li, O’Hara and Duarte, 2021a). The IGL method has also been used to

tie a shell aircraft geometry to a shell local domain with a sub-local solid domain tied

into the local domain (Guinard, Bouclier, Toniolli and Passieux, 2018). This chapter

describes the IGL methodology in Section 2.3. Finally, an alternative method to IGL for

crack representation (i.e. a multigrid XFEM method) is proposed in (Passieux, Réthoré,

Gravouil and Baietto, 2013).

The local cracked region in the miter gate will be modeled linearly using XFEM/GFEM,

so the speed advantages of quarantining nonlinear regions to the local domain cannot be

exploited. Therefore, the IGL method cannot be assumed to be faster than the reference

tying method. To accelerate the local domain solution, this research proposes the novel

modeling the IGL local domain using a surrogate model rather than a physics-based model.

The surrogate model is trained on the local physics-based (crack) numerical results (not

necessarily from a linear analysis). This surrogate model may then be used within the IGL

framework to dramatically reduce local domain solution time. In fact, the non-intrusive

nature of the IGL method (Allix and Gosselet, 2020) (Gendre, Allix, Gosselet and Comte,
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Figure 2.3. Surrogate iterative global local overview

2009a) (Gendre, Allix and Gosselet, 2011) (Gosselet, Blanchard, Allix and Guguin, 2018)

(Li, O’Hara and Duarte, 2021a) facilitates easy implementation of the surrogate model.

Surrogate models, such as a Kriging method (Hu and Mahadevan, 2016; Li, Shen,

Barzegar, Sadoughi, Hu and Laflamme, 2021c), neural networks (Li, Gao, Gu, Gong,

Jing and Su, 2017b), and deep learning approaches (Chen, Chen, Zhou, Zhang and Yao,

2020), have been extensively studied in structural analysis and design optimization to

reduce the required computational effort, especially in the presence of uncertainty (Hu and

Mahadevan, 2017; Zhang, J. and Taflanidis , A.A., 2019). Various approaches have been

proposed in the past decade to build an efficient yet accurate surrogate model (Sadoughi,

Hu, MacKenzie, Eshghi and Lee, 2018; Li, O’Hara and Duarte, 2021a; Viana, Gogu and
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Goel, 2021). Some multiscale frameworks simulate material-scale damage by using a

surrogate model handle material properties and damage information (Yan, Zou, Ilkhani

and Jones, 2020)(El Said and Hallett, 2018). To the best of our knowledge, however,

surrogate modeling in an IGL framework has not been reported. This chapter describes a

surrogate-based IGL methodology in Section 2.5 to fill this void.

Accelerating global domain linear solutions is somewhat easier using static conden-

sation. Interactions between sub-regions to solve the aggregate problem can be accelerated

using static condensation (Bjorstad and Widlund, 1986) (Gendre, Allix, Gosselet and

Comte, 2009a) (Wyart, Duflot, Coulon, Martiny, Pardoen, Remacle and Lani, 2008).

Within the IGL framework, this research utilizes static condensation to accelerate solution

of the linear global problem, as discussed in Section 2.3.4. The use of a surrogate model

for the local domain and static condensation for the global domain results will be referred

to as the surrogate iterative global-local (SIGL) method for the rest of this chapter. SIGL

has trivial computational time for each IGL method iteration, making the IGL method

extremely fast, relatively speaking. The basic SIGL process is shown in Fig. 2.3

Four possible techniques have been mentioned to solve a problem in the class posed

within this work: 1) reference tying method, 2) submodeling method, 3) IGL method, and

4) a proposed surrogate IGL method. The accuracy and speed of each of these approaches

are shown and discussed in Section 2.6.

The remainder of this chapter is organized as follows: Section 2.3 presents the

reference tying, submodeling method, and the IGL algorithm. Using the miter gate problem

given in Section 2.4 as an example, Section 2.5 presents the proposed surrogate model-

based IGL framework. Results comparing the different modeling methods is presented

and discussed in Section 2.6. Section 2.7 gives the conclusions.
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2.3 Modeling methodologies

2.3.1 Reference problem (shell-solid tying)

The reference problem to be solved is a shell geometry tied to a small solid geometry

with a feature of interest and boundary conditions, as shown in Fig. 2.4. Large steel

structures will have much larger shell domain ΩSH compared to the solid domain ΩS.

Also, body loads may be included although they are not shown in the figure. Commercial

software such as Abaqus provide the tools to solve this problem for many different features

of interest, including cracks. The tying method couples a solid surface to a shell edge

where the shell normal is perpendicular to the solid surface normal. The constraints couple

the displacement and rotation of each shell node to the average displacement and rotation

of the solid surface near the shell node (Abaqus, 2021).

ΩSH

ΩS

Feature
of interest

ΓSH

ΓD

ΓN

Figure 2.4. Reference problem with shell domain ΩSH , solid domain ΩS, shell-to-solid
tied boundary ΓSH , feature of interest, Neumann boundary condition ΓN , and Dirichlet

boundary condition ΓD
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2.3.2 Submodeling methodology

The submodeling method has a coarsely discretized global domain ΩG and a finely

discretized local domain ΩLSH ∪ ΩLS = ΩL containing the feature of interest within ΩLS

as shown in Fig. 2.5. The displacements and rotations are solved for in the global domain

and then the displacements and rotations along ΓGL−G are applied to the local domain

along ΓGL−L. The solution of the local domain reflects the effects of the feature of interest.

Due to the lack of any feedback mechanism to the global domain, this solution tends to

underestimate the effects of the feature of interest and may not be sufficiently accurate.

However, the numerical solution time is likely faster than the reference problem. If it is

assumed that the number of flops is on the order of the number of degrees of freedom

cubed fref = O(n3) due to factorization, then dividing n into n ≈ nG + nL, gives the

submodeling number of flops as fsub = O(n3
G) + O(n3

L). Therefore fref > fsub.

ΩG

ΩG

ΓGL−G

ΩLS
Feature

of
interest

ΩLSH

ΓSH

ΓD

ΓN

ΓGL−L

Displacements and rotations

Figure 2.5. Submodeling problem with global domain ΩG, local shell domain ΩSH , local
solid domain ΩS, and feature of interest.

As shown in Figure 2.5, the local domain ΩL is subdivided into a solid local domain

ΩLS with the feature of interest and a shell local domain ΩLSH to act as a buffer zone

between the global discretization and local discretization. The two subdomains are tied

along their shared boundary ΓSH using built-in Abaqus shell-to-solid tie constraints.
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2.3.3 Iterative global-local methodology

The IGL method is a generalization of the zooming/submodeling method which

incorporates a feedback loop into the global domain. This feedback loop improves accuracy

but increases computational cost. The IGL method utilizes a local domain with local

features of interest and fine discretization along with a global domain with a coarse

discretization. The corresponding problem to Fig. 2.5 is shown in Fig. 2.6. The boundary

between the global and local domains ΓGL facilitates exchange of displacement and reaction

forces between the global and local problems. Note that the local domain utilizes the

technique in (Guinard, Bouclier, Toniolli and Passieux, 2018) to facilitate shells in the

global region and solids in the local region near the feature of interest.

ΩG
ΓGL−G

ΩGL used
for ΩGA

ΩLS

ΩLSH

ΓGL−L

Displacements and rotations

rj along ΓGL
added to pj−1

Figure 2.6. Iterative global-local algorithm illustrated using ΩG, ΩLSH , ΩLS, feature of
interest, ΓN , Dirichlet boundary condition ΓD, ΓGL−G, ΓGL−L, and ΓSH .

The IGL algorithm is given in Algorithm 1 where pj is immersed surface force at

ΓGL−G, ωj is relaxation parameter that accelerates convergence, uG
j is global displacement

at ΓGL−G, λL
j is local reaction at ΓGL−L, and λL

j is the auxiliary reaction at ΓGL−A shown

in Fig. 2.7. Algorithm 1 expounds upon the values exchanged between ΩG and ΩL. It is

generally accepted that Aitken’s Delta-Squared method provides robust convergence for this

algorithm (Allix and Gosselet, 2020)(Duval, Passieux, Salaun and Guinard, 2016)(Gosselet,

Blanchard, Allix and Guguin, 2018)(Liu, Sun and Fan, 2014).

This algorithm shows that part of the first iteration of IGL constitutes the zoom-
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Algorithm 1. Iterative global-local fixed point iteration algorithm with Aitken’s delta-
squared method (Gosselet, Blanchard, Allix and Guguin, 2018)

1: procedure IGL(tolerance,m,fG,fL) ▷ fG and fL are glob. and loc. load vectors
2: Arbitrary initialization p0

3: Arbitrary initialization ω0 ≈ 1.0
4: for j ∈ [0, ...,m] do
5: uG

j = SolveGlobal(pj; f
G)

6: λL
j = SolveLocal(uG

j ; fL)

7: λGA
j = SolveAux(uG

j ; fGA)

8: rj = −
(
λL

j + pj − λGA
j

)
9: ej = ||rj||∞

10: if ej < tolerance then
11: exit for loop
12: end if
13: pj+1 = pj + rj

14: Ait. ∆2: ωj+1 = −ωj
rj−1·(rj−rj−1)

(rj−rj−1)·(rj−rj−1)

15: pj+1 = ωj+1pj+1 + (1 − ωj+1)pj

16: end for
17: end procedure

ing/submodeling method. To compare accuracy between the two and the reference solution,

values specific to the feature of interest will be used, specifically for cracks stress intensity

factors (SIF).

For a linear problem IGL may be faster than the reference problem under ideal

conditions, e.g. the commercial software can save the factorized matrix. The speed increase

depends on the number of iterations i and nG, nL, and n. Considering factorization and

forward and backward substitution since it may be significant for iterations within IGL,

fIGL = O(n3
L + n3

G + i × (n2
L + n2

G). Directly comparing this with the tying method

fref = O((nL +nG)3 +(nL +nG)2) one can see the rather precarious situations under which

IGL may be faster than the tying method. Now, assume that these estimates on the order

of solution perfectly represent solution time. We take that IGL solution time must be less

than the tying, n3
L + n3

G + i× (n2
L + n2

G) < n3
L + 3n2

LnG + 3nLn
2
G + n3

G + n2
L + 2nLnG + n2

G.
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Solving this for i gives

i <
3n2

LnG + 3nLn
2
G

n2
L + n2

G

+ 1. (2.1)

If either nL or nG is much greater than the other, i < 4 for faster IGL solution

of the system of equations. If nL approaches 0 (local problem disappears) i < 1. This

motivates the numerical context within which IGL is useful: the global domain is so large

that the local domain likely requires immense detail for the feature of interest. Now, the

global maximum for m is along the line nL = nG which gives i < 6nL + 1 iterations. Now

this is not exact arithmetic on the time to solution of the system, but demonstrates the

likely speed advantage of IGL for linear problems. In this research such ideal conditions

are achieved using static condensation, which has the added benefit of reducing the degrees

of freedom in the solve for the global system of equations.

ΩG
ΓGL−G

ΩGL used
for ΩGA

ΓGL−A

ΩGA

Displacements and rotations

Figure 2.7. Iterative global-local algorithm auxiliary domain ΩGA used for the
calculation of global traction

2.3.4 Static condensation of global domain in IGL method

The IGL algorithm provides clear computational benefits with localized nonlinearity,

since Newton-Raphson iterations need to be performed on only the much smaller local

domain. However, this research shows that the IGL method may be much slower than the

tying method in a linear local problem. In this research the XFEM crack local problem is

linear and computationally expensive, which makes IGL possibly slower than the tying
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method. In an attempt to accelerate the IGL method, static condensation can be applied

to both the global and local stiffness matrices since both are linear. Statically condensing

ΩG requires leaving the degrees of freedom at the nodes along ΓGL uncondensed. Then

global Neumann boundary conditions can be applied at those degrees of freedom as well

as the immersed surface force at each iteration pj. Then, the global displacement along

ΓGL (uG
j ) is obtained directly from the condensed matrix.

In the example problem presented in this research, there may be damage in one

boundary condition region. When damage is not present, a pin boundary condition

is applied; when damage is present, the pin boundary condition is removed. This is

compatible with static condensation by leaving all nodes along the boundary condition

uncondensed and applying the pins on the static condensation system of equations.

While static condensation demands a large upfront cost, the speed improvement

comes with the many IGL iterations performed over the many permutations of a Monte

Carlo analysis or training process. However, applying static condensation to the local

domain stiffness matrix has some caveats. First, the used commercial software does not

support static condensation with XFEM, although it is theoretically possible. Second, a

unique static condensation must be computed for each crack length, which may be faster

than the reference solution.

Since the static condensation of a global stiffness matrix can consider different

load cases and levels of damage along the boundary condition, only one global static

condensation step is necessary per local domain. Then the same reduced stiffness matrix

can be used over the permutations of load cases, damaged boundary conditions, and IGL

iterations. Thereby the static condensation of the FEM discretization of the global domain

saves computational cost. However, it is shown in Section 2.6 that the IGL solution of a

problem with only one permutation of the load cases and damaged boundary conditions

saves computational effort.
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2.4 Problem definition: application to a miter gate

2.4.1 Miter gate operation, load state, and feature of interest

Miter gates are navigational hydraulic steel structures critical to river traffic. They

function as boat “elevators” that allow boats to bypass dams and navigate up or down

river. Figure 2.8 shows how miter gates open and close. The gudgeon and pintle (seen in

Fig. 2.9) form a hinge about which the gate rotates. More detailed information about

pintle behavior can be found in (Fillmore and Smith, 2021a). When open, boats can enter

or leave the lock chamber. When closed, the lock chamber can be filled or emptied (on the

upstream side) while the miter gate acts as a damming surface. The resulting hydrostatic

pressure pushes the two leaves together along their miter and pushes each leaf into the

wall along the quoin. More detailed information about quoin behavior can be found in

(Eick, Fillmore and Smith, 2019a).

O
p

en

Closed

Gudgeon

Miter

Miter

Downstream

Upstream

Figure 2.8. Miter gate top view with swinging motion

Miter gates’ largest cyclic loads are from the filling and emptying of lock chambers

as boats are lifted or lowered. The resulting cyclic stresses contribute to fatigue cracking.

Miter gates are welded structures, so the heat-affected zones greatly accentuate the cyclic

stresses. However, in this example, a region of the leaf is selected that naturally experiences

tension to reduce complexity resulting from weld residual stresses. This portion of the leaf

is near the bottom center. If each leaf is viewed as a beam (Fig. 2.8) with distributed load,
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the greatest tension in the leaf will occur on the downstream side at the middle of the leaf.
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Figure 2.9. Miter gate downstream side view. Photograph courtesy of John Cheek,
USACE.

A finite element model representing the Greenup downstream miter gate is shown

in Fig. 2.10. The boundary conditions of the miter gate are set up to simulate the in-situ

environment of a hanging gate. The miter gate rotates around the axis created by the

anchorage pin and pintle as shown in Fig. 2.8. The pintle, a ball and socket joint, takes all

of the vertical gravity load. The pintle is represented by applying a multi-point constrant

(MPC) from the center of the ball to the portions of the horizontal girder with which the

socket connects. Then, the center of the ball is restrained from translating in the x, y,

and z-directions. The anchorage links are embedded in concrete at the top of the gate.

This is represented by restraining translation in the x, y, and z-directions.

The strut pin is attached to a strut arm that opens and closes the gate. The strut

pin can rotate around the z-axis. When the gate is closed, the strut arm applies resistance

at −43o from the negative x-direction on the gate. The strut pin is modeled by applying

an MPC from the top of the strut pin to the enveloping top lug and a separate MPC from

the bottom of the strut pin to the enveloping bottom lug., Then the center of the strut
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Figure 2.10. Miter gate boundary conditions

pin is restrained from translating −43o from the negative x-direction.

Hydrostatic pressure is applied on the upstream plate of the gate, called the skin

plate as shown in Fig. 2.11. The upstream hydrostatic pressure is denoted hup and the

downstream hydrostatic pressure is denoted hdown. When the gate holds enough water in

the lock chamber, the miter contact block of both gate leaves come into contact and a

symmetric pin is assumed preventing translational movement −18o from the x-direction.

The two gate leaves act as an arch, experiencing more axial compression under more

hydraulic head. This compression causes the gate to thrust in the lock wall contact block.

The wall resists horizontal movement in the x and y-directions, which is represented in

the model with pins that resist translation in the x and y-directions.

The contact of the quoin contact block with the wall is idealized using pin boundary

conditions as shown in Fig. 2.12. Often, the bottom portion of the quoin becomes damaged

so that it cannot properly contact the wall. This lack of contact is idealized by not applying

the pin boundary conditions. The length of this damaged region is denoted ldmg.

Figure 2.13 shows the reference discretization with a zoom-in of the crack region.
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Figure 2.11. Miter gate hydrostatic pressure from upstream and downstream water
levels
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Figure 2.12. Damage in the quoin contact block

The shell elements used over much of the gate are reduced-integration quadrilaterals with

element size six inches. Where the crack is defined linear hexahedral elements are used

with element size 0.0625 in. The mesh discretization has 201, 463 elements and 211, 372

32



nodes. The IGL discretization is effectively identical to the reference, with an identical

mesh discretization in ΩG and ΩL.

Figure 2.13 also shows the location of the crack used for this example. The crack

occurs along the bottom web edge of the second from bottom girder as shown in Fig. 2.13.

The crack has a straight front, extending through the entire 3/4 in thickness of the plate.

The crack length is variable, but the largest possible length through the web bottom is 4

in.

Miter gates are fabricated by welding mild steel plates together. The local weld

geometries are ignored in this research. A linear material model is used with the Young’s

modulus as E = 29, 000 ksi and the Poisson ratio as 0.3.

Figure 2.14, Figure 2.15, Figure 2.16, and Figure 2.17 help clarify how IGL is used

in this example. Figure 2.14 shows the global domain along with the immersed surface

force pj resulting from the IGL algorithm. The global domain does not contain the crack

and is only coarsely discretized in the crack’s coordinates ΩGA. Outside of ΩGA, the global

domain’s geometry and discretization matches up exactly with the reference model.

The feature of interest is the crack, which is only explicitly represented in the local

model in Fig. 2.15. The geometry and discretization of the shell domain ΩLSH and the

solid domain ΩS line up exactly with the reference model in the corresponding region.

Also, the nodes of the FEM global mesh along ΓGL line up with the nodes of the FEM local

mesh along ΓGL−L exactly. Because shell elements are used, such matching meshes along

the 1-dimensional interface are easy to produce in Abaqus. Displacements and rotations

from the global model at the IGL step are applied along ΓGL−L.

Figure 2.16 shows the global auxiliary domain. This domain matches the ΩGA in

Fig. 2.16 exactly, i.e. there is no crack and has the same mesh discretization. When

the displacements and rotations from the global solution are applied along ΓGL, this

domain helps to calculate the reaction forces of ΩGA easily, particularly when sophisticated

post-processing capabilities are not available.
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Crack

Figure 2.13. Mesh discretization of reference miter gate model
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ΩGA

�
�

�	

pi applied along ΓGL

ΩG

Figure 2.14. IGL global miter gate model with zoom-in of area of interest. No crack is
included in the area of interest, but the shown purple arrows along boundary ΓGL are the

pj forces that relay the effects to the global model.
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Figure 2.15. Local miter gate model with contour integral crack representation. The
crack is located in the solid subdomain ΩS. The global displacement solution uG

j is
applied along the global-local boundary ΓGL.
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Figure 2.16. Global auxiliary miter gate model. The global displacement solution uG
j is

applied along the global-local boundary ΓGL.
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Figure 2.17. Illustrated IGL fixed point iteration algorithm with Aitken’s Delta-Squared
method for miter gate with global, local, and global auxiliary mesh discretizations. The
global domain has ldmg, hup, and hdown parameters. The local domain has parameter a.

The IGL fixed point iteration algorithm with Aitken’s Delta-Squared method is

shown in the context of the cracked miter gate in Fig. 2.17. The boundary conditions for

the global domain include damaged gap length ldmg, and upstream hup and downstream

hdown water heights that result in fG. The local domain has a certain crack length a. For

the first iteration of IGL or the submodeling method, pj = 0. The resulting displacements

and rotations along ΓGL are applied to the local and auxiliary global models. These models

give the local reactions and global reactions respectively. The residual between them is

found. The local model and global auxiliary model also have the displacements from the

global model solution uG
j applied along ΓGL.

2.4.2 Calculating the stress intensity factor

The stress intensity factor is calculated using built-in Abaqus technology. There are

13 nodes through the thickness of the cracked plate, and through the rest of this chapter

the middle node will be considered. Four contours are generated per node, and the first

SIF mode, K1, is recorded. The Abaqus default contour integral method, the line integral

method is used. In order to measure error of the methods considered in this research, the

SIF relative error with the reference solution is calculated as eK =
∥K1−ref−K1−IGL∥

K1−ref
, where
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K1−ref is the SIF value extracted from the reference model and K1−IGL is from IGL.

2.5 Surrogate iterative global-local methodology

The aforementioned IGL algorithm is computationally expensive for probabilistic

analysis (e.g. reliability analysis, uncertainty quantification, model updating), since the

model needs to be executed thousands of times. A straightforward way to overcome the

computational challenge of the IGL method is to directly build a surrogate model for

the IGL model as a whole by treating the model as a black box. The direct surrogate

modeling method, however, has the following three major drawbacks:

1. Whenever there is a change in the global model, the original surrogate model will

become inapplicable and needs to to be retrained;

2. As a purely data-driven approach, the direct surrogate modeling method does not

preserve the physical information in the global model;

3. The training time is much longer. Generating training samples for the direct surrogate

modeling method requires full runs of the IGL, which itself requires a number of

iterations to converge.

This section proposes a hybrid surrogate modeling method to tackle the computa-

tional challenge in the IGL method and overcome the limitations of the direct surrogate

modeling method. In the proposed method, the FE process of global domain is kept to

capture the physical response of the global domain under several boundary conditions,

while the non-linear behavior of the local domain is modeled using Gaussian Process

Regression (GPR)(Santner, Williams, Notz and Williams, 2003)(Williams and Rasmussen,

2006). As for this chapter, the GP package from scikit-learn is used to build the surrogate

models (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer,

Weiss and Dubourg, 2011). Because that the local FEM process was used repeated in IGL
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iterations, the performance of the surrogate model must be carefully calibrated without

introducing additional system error. The proposed method consists of two main steps,

namely (1) surrogate modeling and refinement in the local domain; and (2) integration of

physics-based global model and data-driven local model for IGL implementation. In what

follows, more details are provided about the proposed surrogate-based iterative global-local

methodology.

2.5.1 Surrogate modeling in the local domain

As shown in Fig. 2.17, the input of the local-domain FE model consists of the

displacements uG from the global model solution and given crack length a imposed to the

local domain. The output, correspondingly, is composed of the reaction forces λL from the

local model solution. The goal of surrogate modeling in the local domain is to efficiently

map uG and a to λL using surrogates without solving the computationally expensive local

FE model repeatedly.

Training data collection

The local boundary condition solved from the global model is dominated by the

hydrostatic pressure and the quoin block damage. Meanwhile, the crack length determines

the corresponding response from the local model. Overall, the physics of the whole

structural system in this case is affected by four parameters, i.e., hup, hdown, ldmg, and

a. Different combinations of such parameters induce different physical behaviors of local

model, leading to input-output (IO) relations for the surrogate models. Directly building

and training surrogate models can be time-intensive as such high-dimensional space is

hard to be sufficiently sampled. To overcome this challenge, we first generate N samples

in the 4-D space constructed by hup, hdown, ldmg, and a using the Latin hyper-cube

sampling method. In this study, 400 samples are firstly generated with As shown in Fig.

2.18, assume that the IGL algorithm needs ni iterations to converge for the i-th sample,
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∀i = 1, 2, · · · , N . The intermediate training data can be denoted as uG
i ∈ R(ni×MDOF )

and λL
i ∈ R(ni×MDOF ), where MDOF is the total DOFs of the local boundary ΓGL. In this

example, 200 samples are generated with the parameter ranges as: hup ∼ [432, 720]in,

hdown ∼ [120, 360]in, ldmg ∼ [0, 150]in, and a ∼ [0.5, 4]in, where [lb, ub] represents variation

lower bound lb and upper bound ub.

Converged?

Global solve with 
ℎ𝑢𝑢𝑝𝑝𝑖𝑖 ,ℎ𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 , 𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖

Local solve with 𝑎𝑎𝑖𝑖

𝑖𝑖 = 𝑖𝑖 + 1
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IGL Algorithm
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Update 𝝀𝝀𝑖𝑖,𝑗𝑗𝐿𝐿
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ℎ𝑢𝑢𝑝𝑝1…
ℎ𝑢𝑢𝑝𝑝𝑁𝑁
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ℎ𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜1

…
ℎ𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁

,
𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑1…
𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑁𝑁
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Figure 2.18. Collecting uG, λL, and SIF training data from the physics model.

Let the total number of data collected for uG and λL be NT (i.e. NT =
N∑
i=1

ni), we

then have training data from the N simulations as
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X = (uG, a)

= [(uG
1 , a1), (u

G
2 , a2), ..., (u

G
NT

, aNT
)]

∈ R(NT×(MDOF+1)),

Y = λL = [λL
1 ,λ

L
2 , ...λ

L
NT

] ∈ R(NT×MDOF ),

(2.2)

where MDOF is the total DOFs of the local boundary ΓGL. Note that the data are organized

in rows, i.e., the total number of rows represents the length of the data and the total

number of columns represents the dimension of the data.

Data compression and latent space representation

In general, as the input dimension of the surrogate model increases, the training

data required to fully characterize the IO relationship grows exponentially. According

to the collected training data in the case of miter gate, the local boundary ΓGL contains

120 × 6 DOFs (MDOF = 720) resulting in a 721-dimensional input and a 720-dimensional

output. The high-dimensional input and output make the construction of accurate

surrogate models in the local domain very challenging. Thus, instead of directly building

surrogate models for uG and λL, dimension reduction method is necessary to map the IO

relationship into a low-dimensional latent space. Numerous contributions have been made

to compress dataset from higher dimensional matrix to lower dimensional matrix with

various dimension reduction techniques, such as singular value decomposition, independent

component analysis, auto-encoder, etc. (Fodor, 2002; Vega, Hu, Yang, Chadha and Todd,

2021a). Considering its computational cost as well as stability, SVD is adopted in this

chapter. However, compression in the developed approach is not limited to SVD, but can

be accomplished with other dimension reduction techniques as well.

In SVD, the data collected in Eq. (2.2) is decomposed as
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uG = WuEuV
T
u ,

λL = WλEλV
T
λ ,

(2.3)

where Wu,Wλ ∈ R(NT×NT ) and V T
u ,V T

λ ∈ R(MDOF×MDOF )are orthogonal matrices, and

Eu,Eλ ∈ R(NT×MDOF ) are rectangular diagonal matrices. Note that the crack length in

the input data is not compressed with the whole matrix due to its significance.
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Figure 2.19. Dimension reduction strategy of the proposed method compared with IO of
FEM local model.

After the decomposition given in Eq. (2.3), a low-rank matrix approximation can

be further determined, namely

ũ′G = WuẼuV
T
u ,

λ̃
′L

= WλẼλV
T
λ ,

(2.4)
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where Ẽu ∈ R(NT×N ′
u) and Ẽλ ∈ R(NT×N ′

λ) are the same matrices as Eu,Eλ except that

they contain only N ′
u and N ′

λ largest singular values, respectively (the other singular values

are replaced by zero). Figure 2.20 illustrates how the important features of the data can

be represented by a low-rank matrix from the SVD.

Figure 2.20. Illustration of the importance values of different features in the matrix
represented by the singular values.

As shown in Fig. 2.19, the corresponding reduced-order the displacement and

reaction force, denoted u′G and λ′L, can be represented by truncating the orthogonal

matrices Wu,Wλ based on their ranks,

Wu ∈ R(NT×NT ) → W ′
u ∈ R(NT×N ′

u) → u′G,

Wλ ∈ R(NT×NT ) → W ′
λ ∈ R(NT×N ′

λ) → λ′L,

(2.5)

where Nu′ and Nλ′ are the dimensions of u′G and λ′L after reduction. The decoders

and encoders are defined as the matrices that allows the data to transform between
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low-dimensional and high-dimensional spaces through matrix multiplication. Written

explicitly,

Decoderλ = E′
λV

′T
λ ,

Encoderu = (E′
uV

′T
u )†,

uG = u′G × Decoderu,

λL = λ′L × Decoderλ,

u′G = uG × Encoderu,

λ′L = λL × Encoderλ,

(2.6)

where (E′
uV

′T
u )† is the (Moore-Penrose) pseudo inverse (Moore, 1920) of E′

uV
′T
u , which

extends matrices inversion to non-square matrices (the decoders are non-square matrices

in most cases).

The latent space of the surrogate model now can be presented as

X′ = u′G

= [(u′G
1 , a1), (u

′G
2 , a2), ..., (u

′G
NT

, aNT
)]

∈ R(NT×(N ′
u+1)),

Y′ = λ′L = [λ′L
1 ,λ′L

2 , ...,λ′L
NT

] ∈ R(NT×N ′
λ).

(2.7)

In this example, the 720-DOF displacement vector uG is compressed into a 4-

dimensional vector (Nu′ = 4), which forms a 5-dimensional input combining with crack

length parameter in the latent space. Similarly, the 720-DOF reaction force λ′L is

compressed into a 4-dimensional output (Nλ′ = 4) in latent space. The GPR-based

surrogate models are then built and trained in the designed latent space with training
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samples X′ and Y′. Since Y′ ∈ R(NT×N ′
λ), GPR surrogate models are constructed for each

dimension of Y′ as follows

Y ′
i = Ĝi(X

′), i = 1, . . . , N ′
λ, (2.8)

where Ĝi(·),∀i = 1, . . . , N ′
λ is the i-th GPR surrogate model. Note that the surrogate

modeling in this chapter is not limited to GPR. Because GPR can be computationally

inefficient when handling high-dimensional data, the GPR can be replaced by a neural

network architecture or other deep learning methods in a case that low-dimensional data

can not be accurately generated.

For any given value of X′, we have the prediction from the i-th GPR surrogate

model as follows

Ĝi(X
′) ∼ N(µYi

, σ2
Yi

), ∀i = 1, . . . , N ′
λ (2.9)

in which N(·) is Gaussian distribution, µYi
and σYi

are respectively the mean and standard

deviation of the prediction.

Due to the imbalance of the initial training data collected in Sec. 2.5.1, the GPR

surrogate models given in Eq. (2.8) may not accurately represent the original local-

domain FE model. Using the GPR surrogate models to replace the original local-domain

model in the global-local iterative scheme will lead to large prediction errors due to

error accumulation over iterations. To overcome this issue in surrogate model-based IGL

algorithm, we present a framework to refine the local-domain surrogate models in the

subsequent section.

2.5.2 Refinement of local-domain surrogate models

An important issue in surrogate modeling is how to achieve a good accuracy with

a reasonable number of sample points in the latent space. Due to the error accumulation

over iterations as mentioned above, the performance of the surrogate model that replaces
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the FE process must be carefully calibrated in order to avoid additional system error. As

an example shown in Fig. 2.21, an input that locates in the area with sufficient training

points (i.e., well-trained area) will result a low model error when passing the GPR model,

while poor-trained area will result a high model error.

Figure 2.21. Model error from differently trained regions.

Three sequential sampling approaches, i.e., the Maximin approach, Variance Min-

imization (VM) method, and the Voronoi method are proposed to identify the sample

points that need to be trained in the latent space. The goal of this section is to adaptively

identify new training points x∗ in the input space, utilizing the information obtained from

the existing input space XC.

Global refinement

The global refinement is defined as a strategy which adds essential points based on

current well-trained region to extend the cover range of the latent space. In this case, the

Maxmin approach (Jin, Chen and Sudjianto, 2002) is adopted which adaptively determines

new training points by maximizing the minimum distance between the new point and all

current available training points

dnew = max{min[∥d− dt∥2]}, (2.10)
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where dnew is the identified location of the new training point x∗, dt denotes all current

available training points, and ∥ · ∥2 is the l2-norm of a vector. By using this method, a

larger training space of the design domain can be evenly sampled with training points.

Local refinement

The local refinement is defined as a strategy which optimizes the training space

by further sampling the regions with the largest prediction error. Given the different

definitions of “prediction error”, two local refine strategies are developed. In VM method,

the new training point in each iteration is selected by minimizing the maximum mean

square error (MSE) or prediction variance as

dnew = max{MSE(d)}, (2.11)

where MSE(·) is the prediction variance of the surrogate model. The VM methods can

effectively construct a global surrogate model when the variation of the response is similar

across the design domain. However, VM is limited to the GP-based surrogate modeling

method because it requires additional information from model outputs. Besides, when the

underlying black box function is highly nonlinear in only certain design regions, the VM

methods become inefficient (Hu and Mourelatos, 2018).

We then further proposed Voronoi method, serving as an alternative to the VM

method. The Voronoi method finds the most sensitive Voronoi cell to sample more points

in this region. Such sensitive region when removed, the predicted response constructed by

the rest of existing points will be far away from the actual response (Xu, Liu, Wang and

Jiang, 2014).

As shown in Fig. 2.22, the design space is partitioned into NC Voronoi cells in each
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iteration, where NC is the number of training data at current iteration, as follows

Ω = ∪
i=1,...,NC

Ri (2.12)

where Ri is the domain of the i− th cell defined as below

Ri = ∩
dj∈D/di

{
x ∈ X, ∥x− di∥2 ≤ ∥x− dj∥2

}
, (2.13)

in which D/di represents the training data excluding di.

From the NC Voronoi cells, the most important cell is identified in each iteration

as follows

i∗ = max
i∈{1,,···NC}

{eiLOO}, (2.14)

where eiLOO is the leave-one-out (LOO) prediction bias given by

eiLOO =
∥∥∥f(di) − ĜD/di

(di)
∥∥∥ , (2.15)

in which f(di) represent the true response of the training data di and ĜD/di
(di) is the

prediction of a GPR model trained using training data D excluding di.

After the important cell (i.e. i∗) is determined, the new training input is identified

in that cell by maximizing the distance between the new training data and the current

training data (i.e. di∗) as follows

x∗ = arg max
x∈Ri∗

{∥x− di∗∥}, (2.16)

where Ri is the Voronoi cell defined in Eq. (2.13).

Once the new training point is added, the design space is then re-partitioned into

NC + 1 Voronoi cells in the next iteration as illustrated in Fig. 2.22. Voronoi method

takes use of the information from the existing surrogate models and are not limited to the
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GP-based surrogate modeling method.

Figure 2.22. Iteratively adding new training points by the Voronoi method.

Figure 2.23. Flowchart of the overall procedure from initial surrogate modeling to
well-trained model.

The overall process of combining global refine and local refine from initial surrogate

modeling to well-trained model is shown in Fig. 2.23. The input space of the GPR is
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sufficiently sampled by adaptively identifying new training points in the poor-trained

region, which improves the surrogate performance without filling the training space blindly.

Denoting all the identified new sample point in the input space as xnew, to form a complete

training dataset for GPR, the corresponding training points in the output space ynew have

to be obtained. Firstly, the displacement in physical domain uG
new is reconstructed from

the compressed displacement u′G
new determined in xnew. By imposing uG

new into the local

ABAQUS FE model, the local reaction λL
new can be solved. The new training point in the

output space of GPR model λ′G
new is then obtained by compressing the full-dimensional

data into latent space using output encoder as follows

Decoderu = E′
uV

′T
u ,

Encoderλ = pseudoinverse(E′
λV

′T
λ ),

uG
new = u′G

new × Decoderu,

λ′L
new = λL

new × Encoderλ,

(2.17)

The updated training dataset in the latent space of GPR after after refinement is

now obtained as follows,

X′
updated = [(u′G

1 , a1), (u
′G
2 , a2), ...

, (u′G
N , aN), (u′G

new, anew)]

∈ R((NT+Nnew)×(N ′
u+1)),

Y′
updated = [λ′L

1 ,λ′L
2 , ...,λ′L

N ,λ′L
new]

∈ R((NT+Nnew)×N ′
λ),

(2.18)

where Nnew is the total number of added training points in the refinement. The GPR

model is then considered as fine-developed as it covers a larger well-trained training region.
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Figure 2.24. Illustrated IGL algorithm for miter gate with 1) global and global auxiliary
static condensation uncondensed nodes and 2) local domain mesh discretization.

2.5.3 Surrogate IGL method combining statically condensed
physics-based model in global domain and data-driven
surrogate model in local domain

For the miter gate example, solution of the global domain reduced system of

equations (in this example the matrix is 720 × 720) takes less than a second. This is

particularly attractive when considering the IGL iterations of a nonlinear problem. For

example, say a crack-propagation is discretized to c crack lengths and each crack length

takes 5 IGL iterations. The static condensation reduced matrix can be used 5c times with

only one front-end cost, resulting in dramatic time savings.

No special handling is required for the inputs and outputs of the statically condensed

global model, making it a plug-in replacement for the FEM global model in IGL as shown

in Fig. 2.24. With these improvements, the bottleneck for IGL solution time is now the

local problem. However, while calculating pj the reaction forces of ΩGA cannot be pulled

directly from the FEM model without element information around the boundary, so the

statically condensed global auxiliary domain is used instead.

The proposed surrogate local model in Section 2.5 removes the local solution

bottleneck. The GPR surrogate local model receives uG
i and outputs λL

i , making it a

plug-in replacement for the FEM local model. The surrogate iterative global-local method
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Figure 2.25. Illustrated surrogate IGL algorithm for miter gate with 1) global and global
auxiliary static condensation uncondensed nodes and 2) local domain GPR surrogate.

is illustrated in Fig. 2.25.

2.5.4 Extracting SIF Values After Convergence

After the IGL reaches its convergence, the local FE model after the last iteration is

considered to preserve a true physics. As mentioned above, the SIF value at the middle

node through the thickness of the is extracted from the local model after post-processing.

In SIGL, however, due to the physics is replaced by surrogate modeling, it is important to

fill the gap between local reaction forces λL
convergence and SIF. Given that, another surrogate

model is built and trained to increase the running efficiency.

In this case, the 720-DOF reaction force vector λL
j is compressed into a 4-dimensional

vector, which forms a 5-dimensional input combining with crack length parameter in the

latent space. The output is then defined as the desired SIF value K1−SIGL. The GPR-based

surrogate models are then built and trained in the designed latent space with training

samples X and K1−SIGL.

K1−SIGL = GSIF (X), (2.19)

where GSFIF (·) is the GPR surrogate model connecting local reaction forces with SIF.
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For any given value of local reaction forces X, we have the prediction of SIF from

the GPR surrogate model as follows

GSIF (X) ∼ N(µK , σ
2
K), (2.20)

in which N(·) is Gaussian distribution, µK and σK are respectively the mean and standard

deviation of the SIF prediction.

Next, we will use the miter gate example presented in Section 2.4 to compare the

different approaches including submodeling, IGL, and surrogate-based IGL (SIGL).

2.6 Results and Discussion

Several solution methods have been covered: 1) Reference tying method, 2) sub-

modeling, 3) IGL, 4) IGL with static condensation for global and auxiliary domains, and

4) SIGL. The methods for which accuracy is considered in this research are the IGL and

SIGL methods. An example of their accuracy with a miter gate and a = 1 in, hup = 50 ft,

hdown = 16 ft, and ldmg = 0.5 in is shown in Fig. 2.26. The IGL method with and without

static condensation gives the same solution, so it is not shown in the figure.

For the IGL method the error drops below 10−5 after only three iterations. The

SIGL method takes more iterations, but reaches an error below 10−4. While the error

definition in Algorithm 1 is convenient for defining the IGL method convergence, the

example problem proposed depends on the accuracy of the stress intensity factors along the

crack front as compared with the reference tying method. Figure 2.27 shows the relative

stress intensity factor error eK evaluated at each IGL method and SIGL method iteration.

The IGL method quickly converges to below 10−3 while the SIGL method lags

somewhat, but still achieves an eK near 2%. Since the residual convergence e showed

better convergence, it seems likely that this is due to lack of accuracy in the SIF surrogate

model. As for the higher eK than e, it can be helpful to look at the physical quantities each
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Figure 2.26. Error convergence of IGL and SIGL methods for a = 1 in, hup = 50 ft,
hdown = 16 ft, and ldmg = 0.5 in.
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Figure 2.27. SIF error eK convergence of IGL and SIGL methods for a = 1 in, hup = 50
ft, hdown = 16 ft, and ldmg = 0.5 in.
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Figure 2.28. SIF error eK accuracy of submodeling, IGL and SIGL methods for a = 1
in, hup = 50 ft, hdown = 16 ft, and ldmg = 0.5 in.

deal with. The error e deals with residual forces at nodes, quantities solved for directly in

the system of equations. However, eK depends on contour integrals involving evaluation of

stress, a derived quantity from the displacements. Therefore, the error will be higher for

SIF outputs than for residual forces. However, the SIF error stagnates at around 4 × 10−4.

This may be due to computer precision error between the reference tied model definition

and IGL model definition, e.g. the geometry in Abaqus seems to only have single precision.

Figure 2.28 shows the SIF error eK accuracy of the converged IGL and SIGL compared

with the submodeling solution.

It can be seen that while eK is similar for submodeling and the SIGL method,

e is much smaller for the SIGL method. Since the IGL method is much more accurate

than the submodeling model, this points to room for improvement in the surrogate SIF

model. Also, the crack length is very small (a = 1), helping the submodeling St. Venant’s

assumption hold. As the crack length grows, the submodeling solution will become much

less accurate. The SIGL method accuracy for varying a and ldmg will be explored later in

this section. For now, Fig. 2.29 shows the time to solution for several methods on the
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Figure 2.29. Solution time for reference tying model, submodeling, IGL, IGL with
global and auxiliary static condensation, and SIGL methods for a = 1 in, hup = 50 ft,

hdown = 16 ft, and ldmg = 0.5 in.

same desktop computer using 2 processors (CPUs) with a RAM of 32 GB.

The reference solution takes about 150 seconds. Interestingly the submodeling

solution takes longer than the reference solution, which bodes ill for the IGL method. A

possible explanation for this may be inefficiencies in multiple Abaqus calls versus one

in input file analysis, assembly, solution, and post-processing. The IGL method takes

three iterations and about three times the time of the reference solution. Using static

condensation on the global and auxiliary problems cuts the IGL solution time in half, but

IGL with static condensation is still slower than the reference solution. This is surprising

given some of the discussion in Section 2.3.2 claiming a potential speed advantage for IGL.

However, this can be explained by the limitations of performing analysis with Abaqus.

Abaqus does not store the factorized stiffness matrix between jobs, so every job called

after the first IGL iteration requires an (unnecessary to IGL) stiffness matrix assembly

and factorization. However, The SIGL method has such a small time to solution 1.06 s

that the bar is not visible.

Figure 2.30 shows the reference SIF results over cracks from 0.5 in to 4.0 in and
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Figure 2.30. Heatmap of SIFs for reference solution in ksi
√

in.

damage gap height from 10 in to 150 in. The SIF values get higher for longer cracks, but

the behavior for higher damage gaps is more complicated. In the range of 60 in to 120 in

the SIF values are actually smaller, showing the importance of the location of the crack on

the miter gate. Since the damage gap is at the bottom of the gate, the load path travels

up and around it, and coincidentally the crack as well. However, the pintle (bottom hinge

support) can take load, so as the damage gap grows higher the load paths somewhat divert

back down through the crack.

Figure 2.31 shows the ability of the surrogate iterative global local method to

model the miter gate. Interestingly, globally refining the surrogate local model leads to

overestimation of the SIF value for large damage gaps. Considering that local refinement

improves the solution drastically, the solution must be very sensitive for large damage gap

heights. In fact, looking at the residual map for global refine, the error clearly depends on

damage gap height more than crack length, peaking at the extremes. Higher error near

the edges. Both local refine methods manage to control the prediction error based the
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Figure 2.31. SIF heatmaps showing S-IGL performance in ksi
√

in.

global refine improvement.

2.7 Conclusion

A surrogate iterative global-local methodology has been proposed to reduce com-

putation time for problems with cracked large steel structures. This research novelly

represents the local domain in an IGL problem using a surrogate model rather than a

physics-based model. It was shown that for the example problem (with a linear local

domain) IGL was extremely accurate, while the required computational cost is high which

is not suitable for probabilistic analysis such as failure diagnostics under the Bayesian
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framework. However, SIGL achieves acceptable accuracy and is extremely fast. This

makes SIGL well-suited for diagnosis and prognostic tasks in digital twins.

Future research will look at handling nonlinear global problems and utilization of

SIGL to probabilistically infer crack length given sensor readings.

2.8 Remarks

This chapter is composed of a second-authored publication: Fillmore, T. B., Wu, Z.,

Vega, M. A., Hu, Z., & Todd, M. D. (2022). A surrogate model to accelerate non-intrusive

global–local simulations of cracked steel structures. Structural and Multidisciplinary

Optimization, 65(7), 208.
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Chapter 3

Diagnostics and Prognostics of Multi-
Mode Failure Scenarios in Miter
Gates Using Multiple Data Sources
and a Dynamic Bayesian Network

3.1 Abstract

Current health monitoring approaches for large structures mostly rely on a combi-

nation of distributed sensor networks and in-situ inspection. This chapter presents a novel

online diagnostics and prognostics framework for structures subject to multiple failure

modes and demonstrates the proposed method with a high-fidelity finite element model

using multiple data sources (i.e., strain gauges and images). The approach aims at an

accurate simulation of the interaction between different failure features, and subsequently

at the effective estimation and prediction of the damage states based on the generated

structural physics. A dynamic Bayesian network is used which incorporates different

data sources to evaluate the structures under different kinds of deterioration mechanisms.

In diagnosis, the dynamic Bayesian network is used to approximate the damage-related

parameters and estimate the time-dependent variables. In prognosis, the dynamic Bayesian

network gives a probabilistic prediction of the remaining useful life of the structure based

on the evolution of the failures. It is found that the proposed framework is highly effective
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in performing online diagnosis and prognosis using combined data sources.

3.2 Introduction

The United States inland waterway system contributed $33.8 billion to GDP in

2014 (PricewaterhouseCoopers, 2017). Locks and navigation dams play an important role

in inland waterway systems by providing a consistent navigable channel in a series of pools

along the entire waterway. Locks open a gate to give boats entry and allow boats to travel

between pools. If a lock gate cannot perform this function, barge traffic shuts down in

that portion of the waterway. The most common type of lock gate within the United

States Army Corps of Engineers is the miter gate, more than half of which have exceeded

their economic design life of 50 years (Foltz, 2017), increasing the risk of major impacts to

barge traffic.

The long life of many miter gates presents difficult life-cycle management decisions.

To proactively schedule the maintenance of structures and thus reduce the overall life-cycle

costs, numerous structural health monitoring (SHM) and damage prognosis (DP) strategies

have been developed (Sabatino and Frangopol, 2017; Leser, Hochhalter, Warner, Newman,

Leser, Wawrzynek and Yuan, 2017; Yang, Madarshahian and Todd, 2020; Vega and Todd,

2020; Su, Wan, Dong, Frangopol and Ling, 2021). In SHM, damage diagnosis aims to

detect and quantify the potential damage, which provides essential information about

the current health state. Failure prognosis, in the meanwhile, uses the gathered damage

information to simulate the evolution of the damage, and further predicts the remaining

useful life (RUL) of the structures. In recent years, the “digital twin” concept has drawn

intensive attention because of its ability to inform damage diagnostic and failure prognostic

strategies by simulating life cycle scenarios (Tuegel, Ingraffea, Eason and Spottswood,

2011; Li, Mahadevan, Ling, Choze and Wang, 2017a; Ye, Butler, Calka, Iangurazov, Lu,

Gregory, Girolami and Middleton, 2019).
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For the digital twin concept, one of the most commonly used physics-based ap-

proaches in digital twin execution is high-fidelity finite element (FE) analysis, which

computationally reflects the evolving physical system. For instance, Zhang, Song, Lim,

Akiyama and Frangopol (2019) presented a reliability estimation procedure for RC struc-

tures at different corrosion levels which used X-ray and digital image processing technique

to infer the spatial variability of steel corrosion. With a focus on the seismic cracking

identification, Pirboudaghi, Tarinejad and Alami (2018) developed a damage detection

procedure for concrete gravity dam by integrating the FE numerical model with the

wavelet transform system identification. Jiang, Vega, Todd and Hu (2022) proposed a

model correction and updating scheme to improve the accuracy of failure prognostics

by recovering the missing physics in the boundary condition degradation of miter gates.

Eick, Levine, Smith and Spencer Jr (2021) suggested a fatigue life updating method for

embedded miter gate anchorages. Commonly, in a digital twin framework as shown in Fig.

3.1, a physical asset (i.e. the miter gate) is connected to its digital counterpart core (i.e.,

the FE model) through Bayesian updating methods and real-time SHM monitoring data.

Bayesian updating methods infer the damage state based on monitoring data and thereby

allow the digital twin to not only estimate the current damage level but also to forecast

potential failure before it happens.

Even though current efforts have shown the promising potential of the digital

twin in optimizing the maintenance activity of large-scale assets, they mainly focus on a

single-mode failure scenario (e.g., boundary condition degradation of miter gates). For

steel structures such as miter gates, fatigue cracks are another very common structural

deterioration mechanism. As fatigue cracks propagate, they may interact with other failure

modes. Cracks may be computationally modeled using XFEM/GFEM (Moës, Dolbow and

Belytschko, 1999; Duarte, Hamzeh, Liszka and Tworzydlo, 2001b), which is much more

mesh independent than quarter node element crack representation (Henshell and Shaw,

1975b; Barsoum, 1976b). Therefore, practitioners widely use XFEM/GFEM for crack
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Figure 3.1. Digital twin concept of miter gates.

modeling/analysis. Although FE analysis offers high interpretability (Moës, Gravouil and

Belytschko, 2002; Gravouil, Moës and Belytschko, 2002; Shi, Chopp, Lua, Sukumar and

Belytschko, 2010; Xie, Bott, Sutton, Nemeth and Tian, 2018), the separation in length

scales between structural scale (e.g., at the scale of miter gates) and damage scale (e.g. at

the scale of cracks) may increase numerical model discretization and add computational

cost. Moreover, the existing methods rely upon strain measurements for model updating

(Parno, O’Connor and Smith, 2018; Hoskere, Eick, Spencer Jr, Smith and Foltz, 2020).

With novel measurement techniques, such as cameras, and drones, developed for the

monitoring of miter gates in recent years, there is an urgent need to develop an integrated

diagnostic/prognostic capability that uses multiple data sources (including strain gauges)

to simultaneously account for multiple failure modes.

In this chapter, we focus on two failure scenarios at different scales, including the

boundary condition degradation at a global scale and the crack growth of a cruciform at a

very localized scale. Two types of measurements are considered: strain measurement data

from strain gauges and displacement observations extracted from digital images. In order

to develop the framework for multiple failure modes and data sources, two main challenges

need to be addressed, namely: (1) how to properly model different failure modes of miter
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gates; and (2) how to fuse multiple data sources for the model updating of the digital

model.

The iterative global-local (IGL) method is employed to address the first challenge.

Dealing with separation of scales is a broad field of research in crack modeling. Of particular

interest are methods bridging scales non-intrusively with XFEM cracking represented in

the local domain (Gupta, Pereira, Kim, Duarte and Eason, 2012b; Fillmore and Duarte,

2018b). The IGL method offers particularly good non-intrusive characteristics (Allix

and Gosselet, 2020), requiring only the exchange of reaction and displacement related

quantities along the local boundary. Despite the relatively simple coupling of global and

local models, the IGL method can simulate nonlinearities in the local model with a linear

global model (Gendre, Allix, Gosselet and Comte, 2009b). Within the context of large

structures modeled as shells, such as a miter gate, the IGL method has been successfully

used to connect shell global domains to solid local domains with welds (Li, O’Hara and

Duarte, 2021b).

To address the second challenge of fusing multiple data and uncertainty sources for

model updating of miter gates with multiple failure modes, a dynamic Bayesian network

(DBN) model is developed in this chapter. DBNs have been widely used for studies where

the topology structure represents causal relationships, and for building digital twins of

complex engineering systems such as aircraft structures (Li, Mahadevan, Ling, Choze

and Wang, 2017a) and nuclear power plants (Agarwal, Neal, Mahadevan and Adams,

2017). For example, Li et al. (2017a) suggested a digital twin framework for diagnosis and

prognosis of an aircraft wing using a DBN as a versatile probabilistic model. A detailed

discussion on using DBN as a unifying mathematical tool for digital twins at scale is

available in Kapteyn, Pretorius and Willcox (2021). As a probabilistic graphic model,

DBN allows for information fusion of various data and uncertainty sources (both aleatory

and epistemic uncertainty sources) using Bayesian inference and conditional probabilistic

models. The recursive updating scheme supports the digital twin’s need for real-time
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updating and prediction over time, which plays an essential role in fully realizing the

promising potential of digital twin of miter gates.

The main objective of this chapter is to develop a framework that utilizes image-

based observations and strain sensor data to diagnose and predict failure features in

large-scale structures. The physics of two types of failure modes is represented in an FE

model of the miter gate: the boundary condition loss represents the large-scale damage;

the fatigue crack growth represents the small-scale local damage. For illustration purposes,

this chapter takes the crack growth on the bottom flange edge of a horizontal girder on a

miter gate as an example. The underlying concepts, however, can be extended and applied

to other locations and different types of structures. The proposed framework includes two

main steps, as shown in Figure 3.2: (1) effective simulation of failure modes in different

length scales using a global-local modeling method with surrogate modeling to increase

computational efficiency, and (2) online diagnostics and prognostics based on the two

types of observations.

The rest of the chapter is arranged as follows. Section 3.3 presents the modeling of

miter gate failure scenarios based on an FE model. The proposed diagnostic and prognostic

framework using multiple data sources and a DBN is described in Sec. 3.4. Section 3.5

gives the key results and discussion, followed by Sec. 3.6 which draws the conclusions.

3.3 Modeling of Miter Gate Failures

3.3.1 Boundary condition degradation

Figure 3.3 shows the downstream side view of a miter gate in a dewatered state.

The gudgeon and pintle function as pivots for the miter gate’s rotation. Normally, the

bottom of the miter gates are submerged below water, resulting in hydrostatic pressure

pushing the two leaves of the gate together. Hydrostatic pressures are applied on the

upstream plate of the gate as shown in Fig. 3.4, where the upstream water level is denoted
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Figure 3.2. Overview of the proposed framework.

hup and the downstream water level is denoted hdown. Since the hydrostatic pressures

is considered to be fully described by the water levels, the loading condition resulted

by hydrostatic pressure will be symbolized by parameter h = [hup, hdown] for the rest of

the chapter. When the gate holds enough water in the lock chamber, the miter contact

block of both gate leaves come into contact and a symmetric pin is assumed preventing

translational movement. The two gate leaves act as an arch, experiencing more axial

compression under more hydraulic head. This compression causes the miter gate’s quoin

contact block to thrust into the lock wall contact block. The quoin often experiences

damage so that only part of it comes into contact with the lock wall. When the miter

gate is open, boats can enter or leave the lock chamber. When the miter gate is closed,

the lock chamber can be filled or emptied while the miter gate acts as a damming surface.

More detailed information about miter gates may be found in (Daniel and Paulus, 2019;
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Eick, Smith and Fillmore, 2019b; Fillmore and Smith, 2021b).

Figure 3.3. Miter gate downstream side view. Photograph courtesy of John Cheek,
USACE.

The aging of the gate is manifested by multiple forms of damage. Often, the bottom

portion of the quoin becomes damaged so that it cannot properly contact the wall. To

account for the effects of quoin block damage, a simplified gap degradation model (Vega,

Hu, Fillmore, Smith and Todd, 2021b) is generalized below,

dl

dt
= exp(σU(t))Q(l(t))w, (3.1)

where U(t) is a random variable with a standard normal distribution; σ, Q, and w are

empirical parameters based on previous research (Yang and Manning, 1996; Jiang, Vega,

Todd and Hu, 2022).

The discrete-time form of Eq. (3.1) can be written as

li = li−1 + exp(σUi)Q(li−1)
w, (3.2)
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Figure 3.4. Miter gate hydrostatic pressure from upstream and downstream water levels.

where li and li−1 are the state variable (gap length) at time steps ti and ti−1 respectively,

and Ui is a standard normal random variable at ti.

An FE model was generated using Abaqus 2021 as shown in Fig. 3.5. The model

represents the Greenup downstream miter gate, which has been previously validated with

the field data to provide accurate physics (Eick, Treece, Spencer Jr, Smith, Sweeney,

Alexander and Foltz, 2018). This model is employed in this chapter in order to capture the

global behavior and predict the strain responses of the gate. The quoin block contact loss

is modelled by not applying the pinned boundary conditions along a certain length. For a

more detailed description on the quoin block mechanism, refer to Fig. 8.37b in Daniel

and Paulus (2019). For the rest of the chapter, the length of the contact loss interface

is referred to as the gap length denoted li. The lengthening of this gap leads to a global

re-distribution of the stress, which escalates crack evolution of the miter gates at different

local regions. The gap damage state is connected with the strain responses as follows
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Figure 3.5. Finite element model of Greenup miter gate, showing global strain
distribution.

State : li = li−1 + exp(σUi)Q(li−1)
w,

Measurement : si = g(li, hi) + εi,

(3.3)

where h is the loading condition at a given time step ti, g(li, hi) is the response of

the FE model, εi ∼ N(0, σ2
obsI) are the uncorrelated measurement noise contributions

characterized by standard deviation σ2
obs, and I is an identity matrix.

3.3.2 Crack growth modeling using an iterative global-local
algorithm

Besides the quoin block damage discussed above, fatigue cracks are a common form

of miter gate damage due to the cyclic loads when the lock chambers are filled and emptied.

Since the sparsely distributed strain gauge sensor network is fairly insensitive to crack

69



presence at an initial stage, conventional crack detection methods are mostly operated by

in-situ inspectors, which makes the inspection somewhat subjective and labor-dependent.

Besides, much of the gate is always submerged under water which increases the difficulty

and accessibility of in-situ inspections. Thus, an accurate crack analysis using the miter

gate FE model is necessary to understand the behavior of such localized effect. First,

Paris’ law–one of the most commonly used crack growth models–is adopted to generate

the physics of the model, or

da

dN
= c(∆K)m (3.4)

where a is the crack length and da/dN is the fatigue crack growth for a load cycle N , c

and m are the empirical parameters of Paris’ law, and ∆K is maximum stress intensity

factor (SIF) difference in a loading cycle at the crack front, as shown in Fig. 3.6. The

discrete-time form of Eq. (3.4) can be written as

ai = ai−1 + c(∆Ki)
m, (3.5)

in which ∆Ki stands for the SIF range at time step ti.

Three main assumptions are made here to the FE model simplify the problem:

1. The crack can only propagate in one direction with a fixed crack front shape;

2. The 13 nodes (12 elements) through the 0.625 in. thickness of the cracked plate

(solid geometry with linear hexahedral elements with XFEM enrichment functions

shown in Fig. 3.6(b)) are sufficient to represent the crack physics, where only the

first cracking mode of the middle node, K1, is considered;

3. The geometry, boundary conditions, and discretization represent the Greenup gate

leaf well enough for the diagnosis and prognosis in this research;
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Figure 3.6. FE representation of the simulated crack front: (a) cruciform where crack
initiates, and (b) a close view of crack front

With all the above assumptions, the crack geometry can be described by one single

parameter, a. This chapter aims to provide a general framework for multi-mode failures of

large-scale structures, the explicit form of crack representation is beyond the scope of this

chapter. Thus, the crack problem is simplified in this study.

The maximum SIF difference in a loading cycle, ∆K, is a variable that is affected

by gap length, crack length, and load conditions, where gap length is a global-scale damage

and crack is a local-scale damage. The fatigue crack modeling requires the calculation of

accurate SIF values at each time step to indicate the crack growth pattern. The SIF at ti

is a function of multiple factors,

∆Ki = g∆K(li, ai, ∆si), (3.6)

in which ∆si is the loading condition caused by the cyclic fluctuation of the hydrostatic

pressure h, and g∆K(li, ai, ∆si) is an FE model to predict the SIF range ∆Ki for given gap

length, crack length, and loading cycle. Although the built-in Abaqus technology calculates

SIF values through the contour integral method, crack analysis for the complicated and
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large-scale miter gate model is computationally expensive due to the fact that the crack

can only be simulated with finely-discretized solid elements in Abaqus. Given that, a

coupled global-local FE model was generated using Abaqus 2021 as shown in Fig. 3.7.

The IGL-based model is developed in order to address the challenge in estimating SIF

caused by the two damage features in different length scales.

fG

Global displacement

Residual

Local reaction

Global reaction

Figure 3.7. Illustrated IGL algorithm for miter gate with global, and local mesh
discretizations. The global domain has parameters as l and h, with boundary condition

described by parameter fG. The local domain has parameter a.

All the elements of the global model are 3D linear reduced-integration shell elements

which lowers the computational cost. The local model is defined as a cruciform whose

local boundary is shared with the global model. The local model takes the displacements

from the global model as its boundary condition. The local model is divided into two

parts: One is the crack affected zone with Abaqus XFEM 3D solid geometry which allows

for crack analysis; the second part of the local model is the rest of the cruciform which

uses the 3D linear reduced-integration shell elements. The feature of interest is the crack,

which is only explicitly represented in the solid area of the local model. More detailed

IGL implementation information may be found in Fillmore et al. (2022). For any given li,

∆si, and ai, the SIF value may be obtained. It is assumed that since a surrogate model

trained on an identical FE model showed acceptable error (less than 10%), the surrogate

model in this research also has acceptable accuracy.
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3.4 Diagnosis and Prognosis of Miter Gates Using

Multiple Data Sources and DBN

3.4.1 Structural health monitoring (SHM) data sources

The physics of the miter gate in this study is parameterized by three factors: the

loading condition h, the quoin block damage li that is imposed on the global domain, and

the crack length ai that is assigned to the local domain. Different combinations of such

parameters induce different physical behaviors that are reflected in different observations.

Image-based observations enable computer vision techniques to capture the cracks in the

early stage while the strain sensor network detects the quoin block damage, resulting in

load re-distribution within the whole structure. In this chapter, two types of surrogate

models are built in order to efficiently perform probabilistic analysis based on the different

measurements.

Strain sensor network data

To generate synthetic strain measurements, four sensor locations are selected in

this chapter, which are close to the location that quoin block damage most likely will

happen, as shown in Fig. 3.8. The sensors are located in compression regions, and thus

negative strain values are recorded.

At any time step ti, the strain measurements from the four strain gauge sensors

are related to the FE model shown in Sec. 3.3.1 as follows

[si1, si2, si3, si4] = g(li, hi) + εi, (3.7)

where si1 represents the response of the first selected strain gauge at time step ti, and

g(li, hi) is the strain output of the FE model for a given gap length and loading cycle.

The measurement noise εi is considered statistically independent and identical distributed

Gaussian random variables.
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Figure 3.8. Sensor locations: (a) Individual sensor location and corresponding value,
and (b) locations of the selected four sensors.

Since the original FE model g(li, hi) is computationally expensive for damage

diagnostics and failure prognostics, Gaussian process regression (GPR)-based surrogate

models are constructed to replace the original model. Considering that there are only four

strain gauges, we construct a GPR model for each sensor response separately. After that,

Eq. (3.7) is rewritten as

sij = Ĝj(li, hi) + εi, ∀j = 1, · · · , 4, (3.8)

where Ĝj(li, hi) is the GPR model for the FEA response of the i-th strain gauge and is

given by

Ĝj(li, hi) ∼ N(µij, σ
2
ij), (3.9)

in which N(·, ·) is Gaussian distribution, µij and σij are respectively the mean and standard

deviation of the prediction of the j-th surrogate model at time step ti.

Based on Eq. (3.8), the likelihood of observing si = [si1, si2, si3, si4] at ti for given
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li and hi is then given by

f(si|li, hi) =
4∏

j=1

ϕ

 sij − µij√
σ2
ij + σ2

εi

 , (3.10)

where ϕ (·) is the PDF of a standard normal random variable.

Image monitoring data

The digital image is the key data source for crack detection. The evolution of the

crack results in a displacement redistribution of the surface which may be captured by

cameras or drones. Note that the cruciform on which the crack initiates is located at the

center of the second-from-bottom horizontal girder, which is always underwater during lock

chamber filling and emptying. In reality, photos obtained underwater usually have lower

contrast and may be blurred out by the water reflection. The optical flow method (Alvarez,

Weickert and Sánchez, 2000) and digital image correlation (DIC) (Pan, 2011) methods can

obtain the measured dense displacement field assumed in this research. Correspondingly,

a simplified digital image model is developed to represent the process of obtaining the

displacement measurements from images (a “measurement model”) using the optical

flow method. Given the fact that Drews, Nascimento, Xavier and Campos (2014) found

turbidity increases the error of optical flow fields and Madjidi and Negahdaripour (2006)

proved that the low-contrast photo underestimates the magnitude of the optical flow field,

the model down-sizes the displacement measurements and assigns a noise that represents

the noise level of photos taken underwater. This noise also accounts for environmental

factors such as camera vibration and light source movement over a lock filling event. The

process of getting the displacement field can be expressed as follows

[ux,uz] = GOP (li, ai,hi), (3.11)
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where ux and uz are the localized displacements related to h, li, and ai, and GOP (li, ai,hi)

is the displacement field prediction from optical flow model. The transformation GOP

depends on camera location, focal length, and other camera parameters. For simplicity

here, the camera angle is normal to the crack location on the gate and the transformation

from 3D to pixel coordinates is a linear scaling. Since the IGL algorithm developed in Sec.

3.3.2 offers an accurate way of measuring loading condition and the two different-scale

damage states, the process of using optical flow model to generate synthetic displacements

is represented by IGL model developed in Sec. 3.3.2.

[ux,uz] = GIGL(li, ai,hi) + ϵi, (3.12)

in which GIGL(li, ai,hi) is the IGL algorithm.

First, a surface of interest around the crack in the cruciform Abaqus model is

determined with a dimension of 10 × 12 inches. The built-in Abaqus post-processing

provides the nodal displacements of all the nodes within the area, shown in Fig. 3.9.

The irregular quadrilateral meshing elements generate nodal displacements at scattered

locations. To simulate the uniformly distributed displacement field obtained from camera

images, the scattered nodal displacements are interpolated onto a uniformly gridded surface

as vectors (x, z, v) using the “nearest” method, where the point of interpolation specified

by location (x, z) is assigned by the value of closest nodal displacement v.

Fig. 3.10 shows an example of the displacements in two directions obtained from

IGL and linear interpolation with a pixel length of 0.1 inches when h = [hup, hdown] =

[506.8, 339.8], l = 27.2, and a = 2.16.

Since the IGL algorithm requires global-local model analysis, which is computa-

tionally expensive, we construct surrogate models for the localized displacements, similar

to the surrogate models for the strain response. Since the high-dimensional displacement

field is computationally impractical for surrogate modeling, singular value decomposition
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Figure 3.9. Area of Interest: a) Cruciform where the crack is evolving, and b) the area
in which all the nodal displacements are extracted.

Figure 3.10. Displacement-based observation: a) displacement in x−direction, and b)
displacement in z−direction.

(SVD) is employed to construct the GPR models by following the procedure suggested in

Vega, Hu and Todd (2020). The surrogate modeling gives ux and uz as

ux =
Nx∑
j=1

Ĝx,j(li, ai, hi)ηj + εx,i,

uz =
Nz∑
k=1

Ĝz,k(li, ai, hi)ηk + εz,i,

(3.13)
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where Ĝx,j(li, ai, hi) ∼ N(µx,j, σ
2
x,j) is the j-th GPR surrogate model in the latent space,

η is the vector that transforms the latent space prediction back into full-dimensional

displacement, and εx,i is the corresponding noise assigned to the observation model.

Based on the surrogate modeling and following the derivations given in Eq. (3.13),

the likelihood of observing ux is computed by

f(ux|li, ai, hi) =

exp
(
−0.5(ux − µx)TΣ−1

x (ux − µx)
)

√
(2π)NP |Σx|,

(3.14)

where µx and Σx are given by

µx =
Nx∑
j=1

µx,j(li, ai, hi)ηj, (3.15)

and Σx is a co-variance matrix with the (i, j)-th, ∀i, j = 1, · · · , NP element given by

Σq,r =
Nx∑
j=1

σ2
j,x(li, ai, hi)ηjqηjr, (3.16)

in which ηjq and ηjr are respectively the q-th and r-th element of the j-th basis ηj. The

likelihood function f(uz|li, ai, hi) of observing uz is computed similarly to ux,

f(uz|li, ai, hi) =

exp
(
−0.5(uz − µz)

TΣ−1
z (uz − µz)

)
√

(2π)NP |Σz|
.

(3.17)

The focus of this research with regard to image monitoring data is its utilization

for diagnosis and prognosis. Therefore, a simplified transformation from 3D to image

coordinates is presented and synthetic camera measurements are generated. The accurate
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collection of camera displacement measurements to achieve the research’s diagnosis and

prognosis results is left to future work. In particular, future work would define the correct

transformation from the FE displacement results into image displacements. Then, a

fatigue experiment on a cruciform similar to Figure 3.9 here could be observed using high

resolution cameras. The diagnosis and prognosis proposed in this research could be applied

to estimate the crack length and parameters. Then this research could be validated against

other experimental techniques.

The two types of the observations based on the miter gate physics are now fully

described. We next consider the integration of multi-mode damage diagnosis and failure

prognosis using a DBN framework.

3.4.2 SHM Using DBN

DBN for miter gates with multiple failure modes

We assume that there is uncertainty from noise in the two data sources, i.e., sensor

noise and camera image quality; thus, a dynamic Bayesian network (DBN) is constructed

which accommodates measurement uncertainty of observations along with probabilistic

transitions of damage modes over time. Fig. 3.11 shows the feature of interest represented

by different types of DBN nodes and their connections at two consecutive time steps

(ti−1 and ti). The continuous nodes represents the two state variables that quantify the

two failure modes of miter gate at time step ti, referred to as li and ai. The observed

nodes described the measurements associated with the unknown nodes. Besides the strain

reading Sobs and digital images Iobs, the upstream and downstream water levels can be

also measured at any time step. Thus, the hydrostatic pressure condition h is assumed

to be observable and static at each time step without measuring error (The staff gauge

measurement error is so low that it is ignored in this study). The arrows, meanwhile,

indicate the probabilistic connection and interaction between different variables, i.e., the

dashed lines represent the connection between continuous nodes in two consecutive time
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steps and the solid lines represent the interaction between nodes in individual time step.

For example, the crack length ai is dependent on not only the crack length at previous

time step, i.e., ai−1, but also the crack increment that dominated by Paris’ law, i.e., c, m,

∆Ki. Table 3.1 summarizes the variables of the DBN.

Figure 3.11. Dynamic Bayesian network for miter gate with multi-failure modes.

Surrogate-based IGL in DBN

As mentioned above, the physics of the crack is simulated by the IGL algorithm,

which provides the SIF value at any time step for the Paris’ law. However, a single run of

getting the SIF result from the IGL global and local analysis takes up to 10 minutes due to

the complex local XFEM model. Generally, probabilistic analysis for damage diagnostics

and failure prognostics, such as Bayesian updating and uncertainty propagation, requires

the model to be executed thousands of times. Thus, for a fast yet accurate calculation

of SIF given the parameters h, li and ai, a surrogate-based IGL (SIGL) algorithm is
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Table 3.1. Nomenclature for the DBN.

Symbol Parameter explanation
ai Crack length at time step ti
li Gap length at time step ti
∆K Stress intensity factor range
hobs Load observation
c, m Paris’ law parameter
sobs Strain measurement
uobs
x Displacement measurement in x direction

uobs
z Displacement measurement in z direction

θ Interested parameters
y Jointed observations
α, β coefficients for the likelihood functions
Np Total number of particles
wj Weight of j-th particle

used for the purpose of computational efficiency. Algorithm 1 presents a pseudocode of

surrogate-based IGL method. Details of the SIGL method are available in Fillmore et al.

(2022).

As shown in Fig 3.12, the global FE analysis is accelerated by using static conden-

sation (denote FastGlobal Algorithm 2) where the global displacement along global-local

boundary is obtained directly from a static-condensed matrix; while the local FE analysis

is replaced by GP-based surrogate model (denote SurrogateLocal in Algorithm 2). Such

setup shortens the computational time for one global-local simulation from 10 minutes to

less than 0.1 seconds, enabling damage diagnostics and failure prognostics.

∆Ki = GSIGL(li, ai, ∆si), (3.18)

where GSIGL(li, ai, ∆si) is the SIGL algorithm that enables a fast calculation of SIF

range ∆Ki.

With the capability of acquiring SIFs via SIGL model in affordable amounts of time,

the process of using a dynamic Bayesian network (DBN) with two synthetic observations
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Algorithm 2. Surrogate-Based Iterative global-local (SIGL) algorithm

1: procedure SIGL(tolerance,m,fG,fL) ▷ fG and fL are glob. and loc. load vectors
2: Arbitrary initialization p0

3: Arbitrary initialization ω0 ≈ 1.0
4: for j ∈ [0, ...,m] do
5: uG

j = FastGlobal(pj; f
G)

6: λL
j = SurrogateLocal(uG

j ; fL)

7: λG
j = FastGlobal(uG

j ; fG)

8: rj = −
(
λL

j + pj − λG
j

)
9: ej = ||rj||∞
10: if ej < tolerance then
11: exit for loop
12: end if
13: pj+1 = pj + rj
14: end for
15: ∆K = SurrogateSIF(uG

m; fL)
16: end procedure

Global displacement

Residual
Local reaction

Global reaction

Figure 3.12. Surrogate-based IGL with global static condensation.

is represented in the following section.

Diagnostics and prognostics of multiple failure modes with DBN and
maintenance optimization

Based on the surrogate modeling, functional representation, and probabilistic

modeling of different nodes in the DBN, we now present the diagnostics and prognostics

of miter gates with multiple failure modes using the DBN and multiple data sources (i.e.
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strain measurements and image monitoring data).

(a) Damage diagnostics with DBN

Under the Bayesian updating framework, the damage states including gap degra-

dation li and crack length ai at ti are estimated along with the uncertain crack growth

model parameters as follows

f(ci, mi, li, ai|yobs
1:i , h

obs
1:i )

=
f(yobs

i |hobs
i , θi)f

′(θi)∫
· · ·

∫∫
f(yobs

i |hobs
i , θi)f ′(θi)dθi

∝ f(yobs
i |hobs

i , θi)f
′(θi),

(3.19)

where

θi
.
= [ci, mi, li, ai]

yobs
1:i

.
= [ sobs1:i , u

obs
x,1:i, u

obs
z,1:i]

yobs
i

.
= [ sobsi , uobs

x,i , u
obs
z,i ]

(3.20)

f(yobs
i |hobs

i , θi) is the likelihood function of observing the two types of data sources (i.e.

strain measurements and displacement images), and f ′(θi) is the prior distribution at time

ti given by

f ′(θi) = f(ci, mi, li, ai|yobs
1:i−1, h

obs
1:i−1),

=

∫
· · ·

∫∫
f(θi|θi−1)f(θi−1|yobs

1:i−1, h
obs
1:i−1)dθi−1,

(3.21)

in which f(θi|θi−1) represents the state transition between two time steps.

Considering the two different types of data sources and according to the graphic

model given in Fig. 3.11, the likelihood function f(yobs
i |hobs

i , θi) is computed based on the
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chain rule of Bayesian networks as follows

L(sobsi , uobs
x,i , u

obs
z,i |hobs

i , ci, mi, li, ai)

= f(sobsi |hobs
i , li)f(ai|hobs

i , li, ci, mi)

× f(uobs
x,i |hobs

i , li, ai)f(uobs
z,i |hobs

i , li, ai),

(3.22)

where f(sobsi |hobs
i , li) is given in Eq. (3.10), f(uobs

x,i |hobs
i , li, ai) and f(uobs

z,i |hobs
i , li, ai)

are given in Eq. (3.14), and f(ai|hobs
i , li) is obtained through uncertainty propagation

using the surrogate-based IGL method, which first propagates the uncertainty of li to the

uncertainty of SIF range ∆Ki using Eq. (3.18) and then to crack length ai using Eq. (3.5).

In this chapter, the particle filter (PF) is used as the Bayesian inference algorithm

which enables a quantitative way to track and evaluate the evolution of the state variables

in the DBN. The PF is designed to achieve an optimum estimate of the posterior probability

density functions f(li|Sobs
1:i , hobs

1:i ) and f(ai|Sobs
1:i , Iobs1:i , hobs

1:i ) based on observations Sobs
1:i ,

Iobs1:i , and hobs
1:i . It starts with prior samples of state variables in the network. For the

first time step, the prior samples are generated according to empirical research and prior

knowledge of the physics. For the other time steps, the prior samples are obtained through

uncertainty propagation from the previous time step (i.e. Eq. (3.21)).

Assuming that Np particles are generated at each time step, we have the particles

of the state variables at ti as

θpi
.
= [lpi , a

p
i , c

p
i , m

p
i ],

lpi
.
= [lpi1, · · · , l

p
iNp

]; ap
i
.
= [api1, · · · , a

p
iNp

];

cpi
.
= [cpi1, · · · , c

p
iNp

]; mp
i
.
= [mp

i1, · · · , m
p
iNp

];

(3.23)

in which apij, a
p
ij, c

p
ij, andmp

ij,∀j = 1, · · · , Np is the j-th particle at ti.
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The likelihood function of each particle is then computed using Eq. (3.22) as

logL(sobsi , uobs
x,i , u

obs
z,i |hobs

i , θij)

= α · log(f(sobsi |hobs
i , lij))

+ β · [log(f(uobs
x,i |hobs

i , θij))

+ log(f(uobs
z,i |hobs

i , θij))],

(3.24)

where α and β are the coefficients for two likelihood functions. When the importance

of two measurements are equally considered, α = 1 and β = 1, respectively. When only

image data is considered, α = 0 and β = 1.

Based on the above likelihood function, the weight of each particle is computed by

wj =
L(sobsi , uobs

x,i , u
obs
z,i |hobs

i , θij)
Np∑
j=1

L(sobsi , uobs
x,i , u

obs
z,i |hobs

i , θij)

,

∀j = 1, · · · , Np.

(3.25)

The joint posterior distribution given in Eq. (3.19) is then approximated based on

the particles based on re-sampling using the weights given in Eq. (3.25) as

f(ci, mi, li, ai|yobs
1:i , h

obs
1:i ) ≈

Np∑
j=1

wjδθi , (3.26)

where δθi is a delta function at θi = [ci,mi, li, ai].

Let the posterior particles of l, a, c, and m at ti after re-sampling be l′′i =

[l′′i1, · · · , l′′iNp
], a′′

i = [a′′i1, · · · , a′′iNp
], c′′i = [c′′i1, · · · , c′′iNp

], and m′′
i = [m′′

i1, · · · , m′′
iNp

].

These particles are then used to obtain the prior samples for ti+1 based on state transition

probability f(θi|θi−1). For unknown constant parameter such as c and m, a very small

noise amount is added to prevent particle degeneration during PF implementation. The

85



transition equations are defined as below:

cp(i+1)j = c′′ij + εc,i+1,

mp
(i+1)j = m′′

ij + εm,i+1,

(3.27)

in which c(i+1)j and m(i+1)j are respectively the j-th prior sample of c and m at ti+1, εc,i+1

and εm,i+1 are very small noises to avoid sample degeneration as mentioned above.

For the gap length state variable, the posterior samples of li is used to obtain the

prior samples at ti+1 as

lp(i+1)j = l′′ij + exp(σuj)Q(l′′ij)
w,

∀j = 1, · · · , Np

(3.28)

where uj is a random sample of a standard normal random variable.

For state variable ai, as shown in Fig. 3.11, the posterior samples are first passed

through Eq. (3.18) (i.e. a functional node) to obtain samples of ∆Ki. The prior samples

ap(i+1)j are then obtained through Eq. (3.5) given in Sec. 3.3. The above process (i.e. Eqs.

(3.19) through (3.28)) is implemented recursively over time to perform damage diagnostics

of miter gate with multiple failure modes.

(b) Failure prognostics with DBN

Failure prognostics is a process of predicting the remaining useful life (RUL) of

structural assets based on all the information available at the current time step. The RUL

information gives the engineers insight into life-cycle maintenance. Figure 3.13 shows an

illustration of how to perform RUL prediction based on failure prognostics.

Based on the state estimation from failure diagnostics at time step ti, the end of

life (EOL) can be determined which is defined as the intersection point between feature

limit state and predicted curve of damage growth path.

Through particles obtained at time step ti, a family of degradation curves can be
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Figure 3.13. Illustration of EOL to obtain RUL prediction based on failure prognostics

obtained as illustrated in Fig. 3.13. Based on that, a distribution of EOL of the structures

can be approximated by collecting all the intersection points. The RUL is determined as

the difference between EOL and the current time step. The probability that the RUL at

ti is less than p conditioned on current observations is given by

Pr{RULl,i ≤ p|yobs
1:i , h

obs
1:i }

=

∫
Pr{li+p ≥ le|li}f(li|yobs

1:i , h
obs
1:i )dli,

(3.29)

where RULl,i is the RUL at time step ti for failure mode of gap degradation, le is the

failure threshold of gap length and f(li|yobs
1:i , h

obs
1:i ) is the posterior distribution of gap

length at time step ti.

Eq. (3.29) is approximated using the Monte Carlo simulation method based on the
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posterior particles from DBN as follows

Pr{RULl,i ≤ p|yobs
1:i , h

obs
1:i }

≈ 1

Np

Np∑
k=1

Λ(l(i+p)k ≥ le|l′′ik),
(3.30)

in which Np is the number of particles in the inference using DBN, l′′ik is the k-th posterior

particle of gap length at ti, and Λ(l(i+p)k ≥ le|l′′ik) = 1 if l(i+p)k ≥ le|l′′ik is true, otherwise

Λ(l(i+p)k ≥ le|l′′ik) = 0, and l(i+p)k ≥ le|l′′ik stands for a trajectory of random gap growth

curve conditioned on initial state l′′ik as indicated in Fig. 3.13.

Similarly, the RUL at ti corresponding to failure mode of fatigue crack is estimated

by

Pr{RULa,i ≤ p|yobs
1:i , h

obs
1:i }

≈ 1

Np

Np∑
k=1

Λ(a(i+p)k ≥ ae|l′′ik, a′′ik, c′′ik, m′′
ik),

(3.31)

where RULa,i is the RUL corresponding to crack at ti, ae is the failure threshold for fatigue

crack, and a′′ik, c
′′
ik, m

′′
ik are the k-th posterior particle.

The overall system RUL is then obtained based on Eq. (3.29) through (3.31) as

Pr{RUL ≤ p|yobs
1:i , h

obs
1:i }

=

∫
Fi|yobs

1:i , h
obs
1:i

(p)]

≈ 1

Np

Np∑
k=1

Λ(l(i+p)k ≥ le|l′′ik

∪ a(i+p)k ≥ ae|l′′ik, a′′ik, c′′ik, m′′
ik),

(3.32)

where Fi|yobs
1:i , h

obs
1:i

(p)] is the failure probability in the future p time steps conditioned on

observations yobs
1:i and hobs

1:i , and “∪” indicates “union” of two events which means that
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the gate fails if either one of the two failure modes occurs.

(c) Optimal maintenance planning based on failure prognostics

The RUL estimation in failure prognostics provides an informative way of under-

standing how damage progresses in time. Consequently, maintenance decisions may be

optimized and updated based on the structural condition assessment. In this chapter,

the cost per unit of time (CPUT) is employed for maintenance optimization based on

failure prognostics. CPUT is a cost function proposed by Barlow and Hunter (1960), which

defines the cost of performing preventive maintenance at time t as

CPUT (t) =
Cp[1 − Fi(t)] + Cu[Fi(t)]

[
∫ t

0
[1 − Fi(τ)] dτ ]

, (3.33)

where Cp is the preventative action cost, Cu is the unplanned action cost, and Fi(t) is

the failure probability given in Eq. (3.32) (i.e., Fi|yobs
1:i , h

obs
1:i

(p)). Note that Eq. (3.33) is

meaningful only if the cost ratio, Cu/Cp, is greater than 1, otherwise no maintenance

operation is needed. It is suggested in Vega et al. (2020) that the corresponding cost

ratio for some miter gates is close to 5. A larger cost ratio would represent the case that

unplanned failure may have a much more severe consequence cost compared to preventative

action. The optimal time for maintenance planning is then defined as the time when

CPUT is minimized, given the different values of Cp and Cu. In addition, the optimal

maintenance time is decreasing over time as suggested in Vega et al. (2020).

Next, we will use a case study to illustrate the proposed framework for damage

diagnostics and failure prognostics of multi-mode failure using multiple data sources.
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3.5 Case Study

3.5.1 Prior Information and Measurements

With the above formulated training process, the test case is carried below. In this

chapter, the physical value of one time step is set to be one month. The true values of

parameters c and m are set as c = 3 × 10−4 and m = 2.2, respectively. The number of

particles in the PF is set as Np = 50, 000. Based on our best engineering assumptions, the

truncated uniform prior distributions of c and m are set as c ∼ U [1 × 10−4, 1 × 10−3] and

m ∼ U [1, 3], where U [lb, ub] represents uniform distribution with lower bound lb and upper

bound ub. The initial gap length and crack length are set as l0 = 50 inches and a0 = 1 inch,

respectively. Fig. 3.14 shows the gap and crack growth curves used to generate synthetic

data. The failure thresholds of gap length and crack length are set to le = 100 inches and

ae = 3 inches. Correspondingly, the true EOLs are determined as 82.7 months and 87.7

months, respectively. Note that the true EOLs for the two damage features are selected on

purpose to have similar values, in order to show the performance of damage prognostics

using jointed observations.

Figure 3.14. True gap and crack growth curves for synthetic data generation.
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The true states of the two failure modes are assumed to be unknown during the

diagnosis and prognosis. To validate the proposed DBN framework, two sets of synthetic

measurements are firstly generated based on the structure under crack and quoin block

degradation. Figure 3.15 presents 1000 readings of the four strain gauges obtained based

on the synthetic gap data given in Fig. 3.14 and water level data where hup ∼ N(550, 20),

hdown ∼ N(150, 20). Figure 3.16 depicts the displacement measurements at each time

step with a pixel size of 0.5 inches where the crack grows from 0.5 inches to 4 inches. As

indicated in this figure, the displacement in the z direction increases with the growth

of crack length, which is manifested in the displacement images as more red colors in

the upper part and more blue colors in the lower part (surface fractures into opposite

directions).

Figure 3.15. Synthetic strain measurements from the four sensor locations.
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Figure 3.16. Displacement measurement with pixel size 0.5 in. and Gaussian noise.

3.5.2 Results and Discussion

Based on the synthetic data presented in Sec.3.5.1, the DBN model takes in the

two measurements to calculate corresponding likelihood functions base on their weights

of importance. By setting the coefficients for the two likelihood functions, α and β, the

distributions of the state variables are updated at each time step. Figure 3.17 presents

the diagnostic result of the two damage features, crack length a and quoin damage length

l, when different measurement inputs of DBN are defined. In Fig. 3.17 a) and b), two
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types of observations are used, i.e., α = 1 and β = 1. The mean prediction and the

95% confidence intervals suggest that both two variables a and l are estimated with high

accuracy. For the case when only displacement data are available ( α = 1 and β = 1)

as shown in Fig. 3.17 c) and d), the proposed damage estimation method is still able

to accurately estimate the crack length length. However, the accuracy of the gap length

estimation significantly drops, reflected by the error of mean prediction and increased

confidence intervals. While the images taken far from the bottom quoin are not sensitive

enough to detect the quoin block deterioration compared to the strain measurements,

incorporating multiple data sources with different sensitivities to damages features are

essentially required to obtain accurate prediction.

The failure prognosis depends upon the target damage feature and the definition

of failure. The following prognostic results are carried out based on considering crack

and quoin block damage individually and considering two damage features jointly. Figure

3.18 shows the prognostic result when considering the crack only. The true RUL of the

structure is 82.7 months. Four cases are shown here which represent the four stages of

the structural life cycle: Figure 3.18 a) is an early stage of the crack initiation, where

the prognostic result overestimates the RUL of the structures by 10 months. The error

between mean prediction and true value is improved to around 1 month after 20 months,

shown in 3.18 b). At the 60th month and 80th month, the prediction becomes more and

more accurate.

The prognostic result when considering gap length only is shown in Fig. 3.19. The

true RUL of the structure is 87.5 months based on quoin block damage. In this case, the

prediction is consistently accurate, as the prediction of the gap length follows the true

RUL in all life stages.

Figure 3.20 shows the prognostic result when the joint failure threshold is determined

as the smaller of the crack and gap length damage limits. The predicted RUL outperformed

both results of using a single failure threshold. In the first stage (before 35 months), the
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Figure 3.17. Diagnostic results with different inputs: a) Posterior distribution of a using
both Sobs and Iobs, b) posterior distribution of l using both Sobs and Iobs, c) posterior

distribution of a using Iobs only, and d) posterior distribution of l using Iobs only.

prediction slightly overestimates the RUL of the structure; in the second stage (after 35

months), the model tends to be more conservative about the prediction as the predicted

RULs are smaller than the true values. Such a pattern will lead to different risk-based

life-cycle managements during the optimal maintenance planning process, considering the

different combinations of preventative action cost and unplanned action cost.

Figure 3.21 shows the overall RUL estimation at each time step and its confidence

limits when considering the crack as the only damage feature. Although the prediction

of the crack is very inaccurate in the early months, the model manages to converge the
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Figure 3.18. RUL results based on crack prognostics only.

prediction to the true value after around 30 months with a high confidence level.

Figure 3.22 shows the RUL estimation at each time step and its confidence limits

when considering gap as the only damage feature. The gap prediction fluctuates around

the true gap RUL, and both prediction error and confidence limit converge to at the final

time step.

Considering both the crack and the gap as damage features, Fig. 3.23 shows the

RUL estimation at each time step and its confidence limits. Similarly, the prediction

outperformed both results of using single failure threshold when the EOL is jointly

determined from the two damage features.
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Figure 3.19. RUL results based on gap prognostics only.

The RUL prediction from failure prognostics is actually related to the reliability.

Based on the reliability function obtained from predicted RULs at each time step, the

CPUT can be calculated and updated as time evolves. Figure 3.24 shows CPUT at time

step 50th month with different cost ratios. It can be seen that as the unplanned action cost

grows, i.e., Cu increases, the optimal maintenance time decreases, and the corresponding

CPUT becomes stable at a large value.

To understand the impact of different monitoring techniques (e.g., strain gauges and

camera images) on decisions related to maintenance planning, the optimal maintenance time

and minimum CPUT are calculated based on the prognostics results using measurements
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Figure 3.20. RUL results based on jointed failure threshold.

from both monitoring techniques and from camera images only. Figure 3.25 shows how

the optimal maintenance time (i.e., the time when CPUT is minimized) are updated from

the measurements over time, when Cu = 1 and Cp = 50. The vertical line in the figure

represents the true end of life, which is the time that one of the two competing damage

features first reaches its failure threshold. As noted, the two curves of optimal maintenance

time are very similar, which is due to the high accuracy of the failure prognostics results.

Figure 3.26 a) shows the minimum CPUT when Cu = 1 and Cp = 50. By zooming into

the curve after 65 months, the result clearly proves that the uncertainty in Fig. 3.17

d) consequently leads to a higher minimum CPUT compared to that of Fig. 3.17 b).
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Figure 3.21. RUL estimation at all time steps based on crack prognostics only.

Figure 3.22. RUL estimation at all time steps based on gap prognostics only.

It implies that including multiple monitoring techniques can help reduce the minimum

CPUT, which will result in a minimized overall maintenance cost. This demonstrates

the value of adopting an additional monitoring technique. It is worth noting that the

amount of cost savings by adding an additional monitoring technique should be compared
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Figure 3.23. RUL estimation at all time steps based on jointed failure threshold.

Figure 3.24. CPUT at 50 months corresponding to different values of Cu and Cp.

against the cost of installing the system to justify the adoption of the technique. It is

an interesting topic that worth investigating in future work, using a value-of-information

analysis.
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Figure 3.25. Optimal maintenance time corresponding to Cu = 1 and Cp = 50.

Figure 3.26. a) Minimum CPUT corresponding to Cu = 1 and Cp = 50, b) minimum
CPUT approaching end of life.

3.6 Conclusions

In this chapter, an online diagnostic and prognostic framework that efficiently used

multi-source data was proposed for structures with multiple failure modes. A high-fidelity

100



FE model was used as a physics-based emulator of two different kinds of deterioration

mechanisms, the loss of contact “gap” and fatigue crack growth. The separation of damage

scales has been carefully studied through global-local analysis. Two surrogate models were

created and trained to generate synthetic observations (digital images and sensor data),

which replaced the time-consuming FE model and enables the extensive model-based

analysis of miter gates. The multi-source observations were passed through a dynamic

Bayesian network for online diagnostics and prognostics. In diagnostics, the framework

successfully determined the damage-related parameters as well as estimated damage

conditions. In prognostics, the RUL of both failure modes was accurately predicted as time

evolved. Based on the RUL results, the impact of the optimal maintenance planning of

the miter gate was studied. It is found that including multiple monitoring techniques can

help reduce the maintenance cost. The contributions of this chapter can be summarized

as: (1) Implementation of a digital twin concept for a practical engineering problem

with complicated degradation behaviors, which requires extensive model-based analysis

to capture the interactions between multiple damages; (2) The extension of the widely

DBN framework to fuse information from strain gauges and camera for damage diagnostics

and failure prognostics of miter gates; and (3) The investigation of the impact of using

multiple structural health monitoring data sources (i.e. strain sensor and camera) on the

final maintenance decision making process.

To conclude, the proposed framework provides a new approach of using DBN to

incorporate multiple data sources for structures under different scales of failure modes.

Although the synthetic failure mechanisms and measurement data were simplified for

illustration purposes, such DBN framework can be extended to more complicated structures

for more informative life-cycle management and risk-based decision analysis. Future

research will look at a more thorough study at the impact of digital image quality and

more accurate failure representation.
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3.7 Remarks

This chapter is composed of a first-authored publication: Wu, Z., Fillmore, T. B.,

Vega, M. A., Hu, Z., & Todd, M. D. (2022). Diagnostics and prognostics of multi-mode

failure scenarios in miter gates using multiple data sources and a dynamic Bayesian network.

Structural and Multidisciplinary Optimization, 65(9), 270.
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Chapter 4

Deep Learning-Based Automatic
Crack Detection in the Underwater
Environment of Miter Gates

4.1 Abstract

Detecting damage for large-scale infrastructure has been shifting from traditional

human visual inspection to methods benefiting from advanced deep learning and computer

vision techniques in recent years. However, such a transition poses unique challenges

for underwater structures due to the complexity and uncertainty existing in underwater

environments and a scarcity of quality training data. To overcome the limited availability

of underwater imagery, this study develops a graphics-based digital twin model based

on a high-fidelity finite element model that generates synthetic underwater images under

diverse conditions. Coupled with data augmentation strategies, this approach enriches

the dataset for the fine-tuning of current deep learning models to specifically target the

underwater environment. In addition, the chapter quantitatively assesses how various

environmental factors affect the performance of deep learning-based crack detection in

terms of the probability of crack detection, paving the way for more effective inspection

strategies for large underwater structures. The efficacy of the proposed framework is

demonstrated through a case study on a miter gate. The results highlight the potential of
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this approach in enhancing the reliability and detectability of image-based underwater

crack detection using a limited amount of synthetic datasets.

4.2 Introduction

Structural inspection of large-scale infrastructure has evolved significantly over

recent years, transitioning from traditional human visual inspection methods to more

sophisticated image-based damage identification, facilitated by the advent of drones and

advanced camera technology. Consequently, the field of structural health monitoring has

increasingly come to rely on deep learning models considering their exceptional abilities in

image recognition and analysis. These models can learn and identify intricate patterns

in visual data, enabling the detection of subtle damage indicators that might be missed

by traditional methods. For example, Cha et al. employed a 4-layer convolutional neural

network trained with 277 4K images to detect cracks on concrete images with 98% accuracy

(Cha et al., 2017). Furthermore, advanced models such as ResNet and Unet, known for

their deep and complex architectures, have been successfully applied to detect concrete

cracks and corrosion in various structures. For instance, Tan et al. utilized a ResNet

model to identify multiple types of damage on bridge surfaces (Tan and Yang, 2021). Nash

et al. explored the use of a High-Resolution Network (HRNetV2) with Bayesian variants

for corrosion classification with uncertainty quantification, using metallic surface images

taken from an industrial site (Nash, Zheng and Birbilis, 2022).

Although the above studies underscore the versatility and robustness of deep

learning models in identifying structural damage under diverse conditions, inspecting

underwater structures like miter gates and dams introduces a unique set of challenges.

The complexities of the underwater environment, including the scattering and turbulence

of water and variable lighting conditions, hinder the task of obtaining high-quality images

for accurate damage detection. Besides, the complex geometries of underwater structures
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and potential obstructions, further increase the difficulty of thorough scanning of all areas

with adequate resolution. In addressing these specific challenges, Chen et al. proposed a

CNN model with a Näıve Bayes data fusion scheme for crack detection on the underwater

metallic surfaces of nuclear power plant reactors (Chen and Jahanshahi, 2017), proving its

ability to detect even low-contrast tiny cracks. Nevertheless, a notable limitation of such

advanced models is their reliance on extensive volumes of labeled training data. Deep

learning models, particularly those with a large number of parameters, require extensive

datasets to learn effectively. It is stated in Chen’s paper that the model requires over

100,000 images to train the model, which makes the industrial application impractical

most of the time. This requirement poses a challenge where acquiring a substantial amount

of labeled data is difficult due to the uniqueness of the underwater environment conditions

for each large-scale structure.

To mitigate these challenges, this chapter introduces the concept of transfer learning

in machine learning, which involves adapting a pre-trained model to a new but related

problem. This approach is particularly beneficial in scenarios with scarce labeled data

or where training a model from scratch is computationally expensive. Leveraging the

knowledge gained from a previous task, transfer learning enables rapid progress and

improved performance in the new task, even with smaller datasets. In the context of

underwater structural damage detection, transfer learning significantly narrows the gap

between the limited availability of data and the need for robust, accurate models. In this

chapter, a GBDT model is first developed to generate synthetic underwater images for

training purposes. A pre-trained CNN model is then trained on the generated images for

fine-tuning. The performance of the model is assessed using a testing dataset generated

for this purpose.

While the deep learning-based crack detection model offers significant promise for

automating damage identification from image data, its performance could be considerably

affected by environmental conditions such as lighting intensity and water turbidity. These
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factors can compromise the accuracy of damage detection, underscoring the necessity of

analyzing how these uncertainty sources will affect the performance of the deep learning

model. Performing global sensitivity analysis is crucial for understanding the robustness

and reliability of deep learning-based crack detection models, especially given the impact of

image quality on model performance. Global sensitivity analysis allows us to systematically

quantify and rank the impact of these factors, identifying the most influential parameters

that degrade image quality. By understanding these parameters, we can improve data

preprocessing, model training strategies, and ultimately, the model’s ability to generalize

across different environmental conditions. This analysis not only enhances the model’s

practical applicability but also guides the development of more resilient deep learning

algorithms for structural health monitoring.

The main contributions of this chapter are outlined as follows:

• First, the chapter introduces a graphic-based digital twin (GBDT) model that is

capable of generating synthetic images under various scenarios. This model serves

as a valuable source of specific training data for pre-trained models, effectively

addressing the challenge of data scarcity in underwater environments.

• Second, the chapter presents an exhaustive analysis of different parameters affecting

underwater unmanned vehicle (UUV) inspections. It provides a quantitative study

of the impact of these parameters, enhancing the understanding of their effects on

image quality and damage detection probabilities. A detailed sensitivity analysis is

conducted for each parameter, offering insights into their respective influences on

the structural damage detection process.

• Third, the practical applicability of the proposed framework is demonstrated through

a case study of a miter gate. This real-world example highlights the framework’s

effectiveness and the significant improvements it brings to detection probability
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and accuracy. Valuable insights are driven that could shape future strategies and

technologies for underwater structural inspection.

The remainder of this chapter is structured as follows: Section 4.3 details the

development of the graphics-based digital twin model, providing the foundation for synthetic

data generation. Section 4.4 elaborates on the adopted pre-trained deep learning models

and the transfer learning strategies employed. Section 4.5 introduces the methodology

for uncertainty quantification and conducts a sensitivity analysis for each environmental

parameter. Section 4.6 presents the results and discussions. Finally, Section 4.7 concludes

the chapter, summarizing the findings and suggesting directions for future research.

4.3 Graphics-Based Digital Twin Development

This section outlines the development of a Graphics-Based Digital Twin (GBDT)

model, employing Blender to create a synthetic underwater image generation framework. A

schematic representation of the framework is presented in Fig.4.1, detailing the sequential

steps and components involved.

4.3.1 Finite element model introduction

In the pursuit of simulating and understanding the complex behaviors of underwater

structural components, this work chooses the Greenup miter gate located on the Ohio River.

Miter gates, serving as crucial navigational hydraulic structures, facilitate the transition of

cargo ships across varying water levels, enabling them to bypass dams and navigate rivers.

Figure 4.2 (a) shows a field image of the miter gate, where a substantial portion of the

miter gate remains submerged, making it susceptible to damage such as fatigue cracking

and pitting corrosion. To comprehensively understand the physics behaviors of the gate,

a finite element (FE) model of the Greenup downstream miter gate was developed, as

shown in Figure 4.2 (b). The FE model is constructed from the design drawings of the
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Blender Setup

Create geometric object in Blender
Import FE model 

geometrical information

i.e., mesh, nodal coordinates, 

and element connectivity

Introduce texture, lighting, shading, 

water effect, etc. to the Blender model

Real-world images for 

calibration

i.e., underwater images, exterior 

structural details

Crack simulation with different geometry 

drawing techniques in Blender

Virtual camera setup 

Import UUV camera 

parameters and UUV 

inspection trajectory

Render synthetic images
Parameter control

Figure 4.1. Synthetic underwater image generation framework with Blender.

miter gate, incorporating all relevant geometric details and material properties. It has

been previously validated with the field data proving its ability to accurately predict the

strain response of the structure under various loading conditions (Eick et al., 2018).

(a) (b)

Figure 4.2. Miter gate structure and finite element representation.

The FE model of the Greenup miter gate serves as the cornerstone for the devel-
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opment of the Graphics-Based Digital Twin (GBDT) model. After solving the physics

simulation in Abaqus, the “.obj” file that contains all the geometric data — meshing, nodal

coordinates, element connectivity, and material properties — is exported from Abaqus and

subsequently imported into the Blender software. This process is not a mere geometric

duplication but involves the dynamic state of the miter gate under time-dependent loading

and damage conditions. In essence, this subsection not only introduces the FE model

but also establishes its role as a critical component in the subsequent development of the

GBDT model.

4.3.2 Blender GBDT model construction

The imported geometry from Abauqs serves as the foundational “skeleton” for

constructing the Graphics-Based Digital Twin (GBDT) model in Blender. This subsection

outlines the process of simulating real-world underwater conditions where multiple layers

of effects are added.

Texturing as the first layer imparts a realistic appearance to structural surfaces. This

process involves not just assigning color and material properties but also the integration of

real field images for enhanced calibration. Following texturing, lighting, and water effects

are integrated into the model. These effects are realized by basic brightness and shadow

considerations, incorporating diverse light sources such as sunbeams and UUV-mounted

torches. The model simulates the complex interactions between light and water, influenced

by factors like turbidity and scattering, to accurately reflect the underwater environment.

To authentically replicate underwater images captured by UUV inspection equip-

ment, the GBDT model also incorporates precise camera specifications, including focal

distance, resolution, and aperture, sourced from literature and commercial product data.

This ensures the synthetic images generated are as close to real inspection images as

possible. The model also simulates the UUV’s trajectory and movement, offering a variety

of angles and distances for comprehensive visualization.
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Throughout the chapter, five environmental variables in this section are considered

to have a nontrivial impact on crack detection as follows,

θ = [wt, ws, ps, pc, f ] (4.1)

where wt and ws stand for the coefficients of water turbidity and scattering, correspondingly.

ps and pc stand for the power of sunlight and lighting source of the UUV. f represents the

focus distance of the camera. The process of constructing the GBDT model is exemplified

in Figure 4.3.

Lighting and 
water effect

Underwater area

Texturing

Field image calibration

…

Figure 4.3. Blender GBDT model construction.

4.3.3 Rendering synthetic images

With the GBDT model established, this subsection focuses on the process of

rendering synthetic images. The rendering process in Blender is a complex outcome from
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mixing the factors of camera, lighting, and environmental parameters, each contributing to

the final image’s quality and uncertainty. The objective is to determine a practical range

for the parameter vector θ, and systematically manipulate θ within its range to produce a

wide range of synthetic images for efficiently training the deep learning model.

The surface coverage of the miter gate is determined on the inspection route of the

UUV. By aligning the virtual camera’s movement in Blender based on the USACE-provided

route data, a series of viewpoints are established. Images are rendered at each viewpoint,

considering the camera’s specifications and how it’s positioned and moved within the

model to simulate various inspection scenarios. The lighting and environmental settings

are then adjusted, reflecting different underwater conditions — from clear to murky waters,

still to turbulent conditions. Additionally, synthetic cracks of different sizes and shapes

are created on the surface of the structure along the camera’s path to introduce “damage

features” into the images.

The rendering process is not just about producing images but also generating

samples useful in training and evaluating deep learning models. The rendering process

transcends mere image production, focusing on generating visuals that are instrumental

in training and evaluating deep learning models. Figure 4.4 showcases examples of these

rendered images with changing variable vector θ and different surface areas of the miter

gate, illustrating the GBDT model’s flexibility in creating a wide spectrum of synthetic

images.

4.3.4 Impact of environmental variables on synthetic images

Environmental factors such as lighting intensity and water turbidity significantly

impact the quality of images used for crack detection. As shown in Figure 4.5, altering

lighting intensity can greatly affect the visibility of structural damage, with insufficient

lighting masking critical details. Conversely, increased water turbidity diminishes image

clarity and contrast, complicating the identification of subtle damages.
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Figure 4.4. Blender GBDT model construction.

Moreover, the influence of these parameters on image quality is not always straight-

forward; it often results from the interplay between multiple factors. For instance, while

high water scattering combined with strong sunlight might introduce noise and uncertainty

into images, the same sunlight intensity under low scattering conditions could enhance

image quality, facilitating better crack detection. This complexity underscores the necessity

of a nuanced understanding of environmental impacts on image acquisition and analysis.

4.4 Crack Detection with Transfer Learning

This section presents a robust framework for crack detection using synthetic data

augmentation and transfer learning with a fully convolutional U-Net CNN. The section is

structured to guide through the process of employing a pre-trained U-Net model, preparing

data, and leveraging transfer learning to enhance the model’s performance for underwater

112



Base image

Higher focus distance

Lower focus distance

Higher lighting strength

Lower lighting strength

Higher turbidity

Lower turbidity

Figure 4.5. Environmental factor impact demonstration.

crack detection.

4.4.1 Introducing the Pre-trained U-Net CNN Model

U-Net is a convolutional neural network (CNN) model originally designed for

biomedical image segmentation. Its architecture is characterized by a symmetric expanding

path that enables precise localization, making it suitable for tasks like crack detection

where capturing the objective feature is crucial. As shown in Figure 4.6, the architecture

consists of a contracting path to capture context and a symmetric expanding path that

enables precise localization. The network uses a series of convolutions, each followed by a

rectified linear unit (ReLU) and a max-pooling operation to reduce the spatial dimensions.
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In the expansive path, transposed convolutions are used to increase the spatial dimensions.

Skip connections from the contracting path are concatenated with the feature map in the

expansive path to provide local information while upsampling. This design allows the

network to predict at a pixel level, making it particularly effective for segmenting images

into crack and non-crack regions.

Input image

conv 3×3, ReLU

skip connection

Output mask

up-conv

conv 1×1

max pooling

… …

Figure 4.6. Blender GBDT model construction.

4.4.2 Data Collection and Preparation

To effectively train the U-Net model for underwater crack detection, the creation

and preparation of a comprehensive dataset is crucial. Utilizing the GBDT framework

developed in Section 4.3, synthetic images replicating a variety of underwater conditions

are generated. As shown in Figure 4.7, these images simulate various crack sizes, shapes,

and environmental settings.

It is important to note that while real-world conditions seldom present multiple

cracks within a single vicinity, the simulation intentionally disperses cracks randomly
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Synthetic 
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…

…

Figure 4.7. Images (first row), with corresponding ground truth label maps (second
row), white = crack, black = background.

.

across the structure’s surface. This strategy ensures a thorough representation of potential

crack configurations and backgrounds. Besides, data augmentation techniques such as

rotation, scaling, and brightness adjustments are employed to further increase the diversity

and quantity of the training data. Corresponding ground truths for each image are

simultaneously created using Blender, followed by post-processing to label cracks in white

and the background in black. This prepares the data for direct integration into the deep

learning model. The resulting dataset equips the U-Net model with the necessary variety

and detail to accurately identify features of underwater cracks.

4.4.3 Transfer Learning Implementation

Transfer learning is a machine learning technique where a model developed for “task

1” is reused as the starting point for a model on “task 2”. This approach is particularly

preferred in scenarios when the domain gap between two tasks is small and there’s limited

labeled data for “task 2”. In the context of this chapter, “task 1” can be considered as

general crack detection for which plenty of deep learning models are already trained with

abundant training data.“Task 2” is mainly to detect cracks in underwater environments.

While both tasks aim to identify similar features (crack patterns), “task 2” (underwater

crack detection) faces challenges such as limited data availability and greater levels of
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noise and uncertainty. Here, a U-Net model initially trained on crack segmentation issues

is employed, demonstrating the application of transfer learning to bridge the gap between

these tasks. A detailed introduction of the U-net model can be found here (Liu, Yao, Lu,

Xie and Li, 2019). Figure 4.8 shows the strategy employed in this chapter to train the

model to be adapted to underwater images with the least amount of training data.

Pre-trained CNN model

Transfer Learning

Pre-trained model 

information

CNN model for underwater images

Training set

Figure 4.8. Transfer learning with U-net model
.

The model is fine-tuned using the synthetic underwater crack images. This approach

allows for leveraging the learned features and knowledge from the pre-trained model and

adapting it to the underwater domain.

4.5 Uncertainty quantification and Global Sen-

sitivity Analysis of the DL model for crack

detection

Once the U-net model is trained for automatic crack detection for underwater images,

the results of the identification will be evaluated. In this section, the chapter delves into

methodologies for evaluating and understanding the influence of various parameters and

their uncertainties on the performance of the deep learning model for crack detection in
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underwater structures.

4.5.1 Uncertainty quantification of the DL model performance

The Monte Carlo Simulation (MCS) process is one of the most common and efficient

ways to assess how environmental variables influence crack detection accuracy and for

uncertainty quantification of the DL model performance. The MCS is conducted by first

identifying the environmental variables. As introduced in Section 4.3.2, the parameter of

interest in this chapter is defined as θ = [wt, ws, ps, pc, f ], where wt and ws stand for

the coefficients of water turbidity and scattering, correspondingly. ps and pc stand for the

power of sunlight and lighting source of the UUV. f represents the focus distance of the

camera. While fixing the camera, the images are rendered by systematically varying the five

environmental variables given the range of interest. 2,000 synthetic images are generated

using the Blender-based GBDT model, and each image is tagged with its combination of

environmental variables to simulate a wide range of underwater conditions. These images

serve as input to the deep learning crack detection model, and the accuracy metric will be

calculated based on ground truth for performance evaluation. The data matrix for input

variables can be constructed as follows

X =



w1
t w1

s p1s p1c f 1

w2
t w2

s p2s p2c f 2

...
...

...
...

...

wn
t wn

s pns pnc fn


(4.2)

In the context of underwater crack detection, traditional accuracy metrics may

not fully capture the model’s performance and the detectability of each image due to

class imbalances in the images (e.g., many non-crack pixels versus fewer crack pixels).

Therefore, recall is used instead of accuracy as a more suitable metric for comparing model

predictions with ground truth. Recall emphasizes the model’s ability to correctly identify
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positive instances (crack pixels) among all actual positive instances, which is crucial for

ensuring no damage goes undetected. The recall for the image generated from each input

variable vector can be denoted as

Y = [y1, y2, · · · , yn]T (4.3)

This comprehensive dataset enables a thorough investigation into the sensitivity of

the deep learning model to changes in environmental factors, laying the groundwork for

subsequent global sensitivity analysis. A detailed flowchart of the MCS is shown in Figure

4.9, from parameter specification to synthetic image generation and analysis preparation,

ensuring a methodical approach to understanding the model’s performance under diverse

conditions.

Monte Carlo Simulation

Parameter specification

Sample image generation
Range of interest and 

step for each parameter

Detectability given the sample imagesTrained DL model

Calculate the metric for 

global sensitivity analysis

Figure 4.9. Monte Carlo simulation (MCS) flowchart
.

By analyzing the model’s performance across this diverse dataset and calculating

the first-order Sobol’ index, we can quantitatively assess the impact of each uncertainty

source on the model’s ability to detect cracks. This comprehensive sensitivity analysis
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provides insights into the robustness of the model and guides further refinements to enhance

its accuracy and reliability in real-world underwater inspection scenarios.

4.5.2 Global Sensitivity Analysis from Monte Carlo Samples

Global sensitivity analysis plays an integral role in unraveling the relationship

between input variables and the output in computational models. Among various methods,

the Sobol’ indices are widely recognized for their capability to decompose the output

variance into contributions from individual input variables and their interactions.

Defining Y ∈ R as the quantity of interest (QoI), its underlying physics with input

variables X is given by Y = g(X). The variance V ar(Y ) of Y then can be decomposed as

follows (Sudret, 2008; Sobol, 2001)

Var(Y ) =
n∑

i=1

Vi +
n∑

1≤i<j

Vij + · · · + V12...n, (4.4)

where Vi represents the variance of Y cased by Xi, excluding the its interaction with other

input variables.

Because the number of indices grows dramatically with higher-order Sobol’ indices,

the first-order Sobol’ index for an input Xi is commonly used which is defined as follows

Si =
VarXi

[EX∼i
(Y |Xi)]

Var(Y )
, (4.5)

where Si is the first-order Sobol’ index of Xi and VarXi
denotes the variance over Xi, EX∼i

represents the expected value over all input variables except Xi, and Var(Y ) is the total

variance of the model output. A more detailed variance decomposition literature review

can be found in (Sudret, 2008; Sobol, 2001; Hu and Mahadevan, 2019).

A novel approach of sensitivity analysis using Monte Carlo samples for Global

Sensitivity Analysis (GSA) is used in this study for estimating the first-order Sobol’ index

(Li and Mahadevan, 2016). This method is particularly effective for understanding the
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influence of individual input variables on the variability of the output in models, a crucial

aspect when dealing with the complexity of underwater crack detection.

The algorithm works as follows:

1. Input transformation: Input samples are converted into cumulative distribution

function (CDF) domains to deal with their stochastic nature. For each input dimension

i, the algorithm sorts the samples and assigns them CDF values, ensuring that the

transformed inputs are uniformly distributed.

2. Local variance computation: The function divides the range of each input

variable into pre-defined sub-domains. For each sub-domain in input dimension i, it

computes the variance of the output, considering only the samples where the input lies

within the current sub-domain. This step results in a local variance matrix, Var(X), with

dimensions corresponding to the number of sub-domains and input variables.

3. Sobol’ index estimation: The first-order Sobol’ index for each input variable

is estimated by comparing the mean of the local variances for each input with the total

output variance. The indices represent the normalized effect of each input variable on the

output variance, with higher values indicating a stronger influence.

The above procedure efficiently estimates the first-order Sobol’ indices, enabling

analysts to identify and rank the most significant variables affecting the output. The

results of these evaluations will be detailed in the following section.

4.6 Results and Discussion

Figure 4.10 presents three scatter plots illustrating how recall values correlate with

camera focus distance, turbidity, and illumination strength. Among them, the camera

focus distance has a significant impact. Specifically, shorter focus distances, where the

camera is not properly aimed at the structure’s surface, are associated with lower recall

values. This suggests that achieving high recall values is almost impossible with a low
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focus distance. As the focus distance increases, which means the camera is better aligned

with the structure’s surface, recall values tend to improve. Although turbidity’s effect on

predictions is not as pronounced as that of focus distance, it still offers valuable insights.

At low turbidity levels, recalls cluster more densely on high values, indicating higher

detection probabilities. However, as turbidity rises, the frequency of high recalls decreases.

Unlike the focus distance case, high recalls are still attainable with a lower likelihood. In

contrast, illumination strength has the opposite effect of turbidity. Enhanced illumination,

leading to clearer images, fosters an increase in detection probability.

Figure 4.10. Selected Monte Carlo simulation (MCS) results
.

The sensitivity analysis, informed by the recall data, reinforces these findings. Table

4.1 shows that the focus distance has a dominant Sobol’ index of 0.89, which is significantly

higher than the indices for the other two variables. The Sobol’ index is a quantitative tool

used to measure how much each environmental variable contributes to the overall outcome.

This method further confirms the insights derived from the recall figure.

Table 4.1. Selected first-order Sobol’ index.

Input variable Focus distance
(f)

turbidity
(wt)

light power
(pc)

First-order Sobol’ index 0.89 0.005 0.0004
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4.7 Conclusions

Detecting fatigue cracks in underwater structures requires a robust inspection

framework under environmental variables like turbidity, lighting, and focus discrepancies.

This research employed a novel approach, integrating a graphics-based digital twin model

with deep learning techniques, to enhance inspection accuracy. Blender 3.4 was used

to generate synthetic underwater images, simulating diverse conditions. Subsequently,

the U-net model, adapted for underwater environments through transfer learning and

data augmentation, was trained using these images. Comprehensive results revealed the

camera’s focus distance as the most influential factor in crack detection. While turbidity and

illumination strength also played roles, their impacts were less pronounced. This study’s

findings offer a foundation for understanding underwater environmental conditions for

damage detection, providing valuable insights for optimizing future underwater inspections.

4.8 Remarks

This chapter is currently in preparation for publication, the dissertation author

was the primary investigator and author of this paper: Wu, Z., Hu, Z., & Todd, M. D.

Deep Learning-Based Automatic Crack Detection in the Underwater Environment of Miter

Gates. Structural Health Monitoring.
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Chapter 5

Optimization of Unmanned Aerial
Vehicle Inspection Strategy for In-
frastructure Based on Model-Enabled
Diagnostics and Prognostics

5.1 Abstract

The use of unmanned aerial vehicles (UAVs) for structural health inspection has

become a promising technique to perform labor-intensive, accessibility-challenged, and

sometimes dangerous inspection tasks. This chapter presents a novel physics-informed

UAV inspection planning framework for infrastructure structural health assessment based

on model-based diagnostics and prognostics enabled by physics-based probabilistic analysis.

It bridges the gap between UAV mission planning and inspection with model-based

probabilistic analysis, by allowing bidirectional information exchange, namely (1) structural

damage state diagnostics using UAV inspection data and (2) UAV inspection optimization

through model-based failure prognostics. Based on the bidirectional communication, the

impacts of the three key UAV inspection parameters (i.e., inspection distance, inspection

interval, and critical maintenance threshold) on structural life-cycle cost are analyzed. The

optimization of key UAV inspection parameters is achieved by minimizing the cost per

unit time (CPUT) through model-based pre-posterior analysis. In this analysis, synthetic
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observations are generated using predictive models according to the prior distributions

of various uncertainty sources (e.g., detection rate, damage state evolution, etc.). The

generated synthetic observations are then used to obtain the posterior distributions of

uncertain parameters, enabling the integration of prior information and Bayesian model

updating into inspection optimization through a cost function. The proposed model

offers a robust method to accommodate the inherent uncertainties in failure prognostics,

leading to a more effective optimization of the UAV inspection parameters. The practical

application of the framework is demonstrated through a miter gate example. The results

show that the proposed method is able to efficiently determine the optimal UAV inspection

parameters and continuously update the information model.
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Nomenclature

CF (·) Structural failure cost model

CI(·) Inspection cost model

CR(·) Maintenance cost model

Gc(·) Overall objective function

GK(·) Surrogate model for stress intensity factor

α Uncertain coefficient in the observation model

h Loading condition vector

ϵ Environmental noises in image processing

θ Unknown damage degradation parameters

ω Vector of UAV inspection parameters

∆Ki Stress intensity factor at time step ti

ê Random variable of the estimated damage state

ĝ(·) Surrogate model for objective function

X (·) UAV image model

Z Detectability indicator
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Ψ(·) Computer vision algorithm

d UAV inspection distance

e True damage state

e
(k)
d kth damage sample generated through uncertainty propagation

eh Local failure limit state

em Critical maintenance threshold

eo Observed damage state

eo,j+1 Observed damage state at jth inspection

GUP The process of uncertainty propagation by executing the state-transition equation

i Continuous time index

j UAV inspection time index

pZ(·) Probability of detection model

TI Next inspection interval

w(k) Weight of kth particle

5.2 Introduction

Periodic inspection and regular maintenance play a vital role in guaranteeing the

integrity of civil infrastructure (Spencer Jr, Hoskere and Narazaki (2019); Gibb, La, Le,

Nguyen, Schmid and Pham (2018)). For larger-scale structures such as bridges, dams,

and miter gates, these tasks can be especially time-consuming, accessibility-challenged,

and labor-intensive due to their complicated geometries, extensive inspection areas, and
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the presence of multiple degradation mechanisms at multiple locations. In recent years,

the increased use and accessibility of unmanned aerial vehicle (UAV) platforms, coupled

with the development of user-friendly image processing software, has led to a growing

adoption of UAV-based inspection techniques for structural health monitoring (SHM).

Such techniques enable the efficient and effective assessment of structural integrity, as

well as the detection of potential damage, through the use of images and subsequent data

analysis (Freimuth and König (2018)) provided by UAV imaging payloads. It provides a

promising way to alleviate labor-intensive and/or dangerous inspection tasks.

UAV payloads span various sensing mechanisms, e.g., high-speed cameras or Light

Detection and Ranging (LiDAR), enabling rapid and cost-effective scanning of the structure

resulting in diverse, information-rich images from multiple angles and perspectives. Such

images can be analyzed to capture damage-correlated features that can inform proactive

measures for maintenance and repair (Zhao, Kang and Li (2022)). Depending on the specific

sensing payload, UAVs can detect damage on the surface (camera/videography, LiDAR,

etc.) or those hidden beneath the surface (ultrasonics or magnetometry, etc.). For example,

Zhao, Kang, Li and Ma (2021) developed a high-precision 3D dam monitoring model

using overlapped images from UAVs with cameras to perform surface damage detection

for emergency situations. Zhang, Zuo, Xu, Wu, Zhu, Zhang, Wang and Tian (2022)

introduced a multi-level attention mechanism-based UAV inspection network for pavement

damage detection with various crack types. In addition, Zhang, Watson, Dobie, MacLeod

and Pierce (2018) implemented thickness measurement on an aluminum plate with an

ultrasonic probe payload on a UAV carried, allowing it to detect invisible discontinuities

and defects beneath the outer facade. Mu, Zhang, Xie and Zheng (2020) presented a

workflow of large-scale UAV-borne magnetic survey where magnetic sensors were mounted

on UAV to inspect the subsurface of metallic targets by removing the UAV interference

field.

In many applications, UAV inspection systems are designed to enable autonomous
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damage detection and consistent data acquisition. However, the efficiency of detection is

often compromised (or sub-optimized, at best) when UAVs are given a fixed flying route

designed to cover an entire structure. In the case of large-scale structures such as miter

gates, dams, and bridges, the inspection efficiency of each UAV mission becomes a crucial

factor that must be carefully considered. Motivated by improving the efficacy of UAV

inspection of civil infrastructure, extensive research has been conducted in recent years

to optimize UAV inspection strategies (Chung, Maharjan, Zhang, Eliassen and Strunz

(2020); Yan, Zhang, Zhang, Wang, Liao and Liang (2018); Tan, Li, Liu, Chen and Zhou

(2021); Li, Han, Ge, Xu and Liu (2020)). For instance, Bolourian and Hammad (2020)

proposed a bridge inspection framework for surface defects based on LiDAR-equipped

UAVs, in which the shortest obstacle-free UAV flight path is determined by considering

different regions of risk levels. Ellenberg, Kontsos, Bartoli and Pradhan (2014) considered

the appropriate distance to be maintained between the camera and the target surface as a

key factor in achieving minimum acceptable detection sensitivity during a UAV inspection

mission. Zeng, Wu, Todd and Hu (2023) developed a UAV path planning algorithm

by formulating it as a multi-objective optimization problem informed by physics-based

risk analysis. Even though these UAV inspection optimization strategies are able to

optimize the inspection from certain perspectives, they are largely dedicated to using

physics-based analysis to guide the minimization of flight path length or the maximization

of the inspection coverage. The incorporation of model-based probabilistic analysis and

structural life-cycle optimization into UAV mission planning has been rarely studied; this

chapter seeks to address this by fully incorporating the UAV inspection process into an

optimal life-cycle monitoring strategy.

The most common goal in life cycle monitoring of large-scale civil infrastructure

is to minimize the life-cycle cost; as such, risk-based inspection and maintenance plan-

ning have been extensively studied in the risk and reliability research community (Liu,

Gao, Jiang and Zeng (2023b); Shafiee and Sørensen (2019); Yeter, Garbatov and Soares
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(2020)). For example, Okasha and Frangopol (2010) proposed an automated maintenance

optimization approach that considers multiple preventive maintenance types and time

intervals while incorporating criteria such as redundancy and life-cycle cost. Onoufriou

and Frangopol (2002) discussed the application of reliability-based assessment in the

inspection optimization of complex structures. Dong and Frangopol (2015) presented

a risk-informed methodology that combines multi-objective optimization and life-cycle

probabilistic risk assessment to optimize inspection and repair planning for ship structures,

resulting in decisions that balance risk and cost factors. Luque and Straub (2019) suggested

a dynamic Bayesian network-based approach to enable risk-based optimal inspection. By

continuously tracking damage and triggering maintenance based on the health state of the

aircraft, Yiwei, Christian, Binaud, Christian, Haftka and Kim (2017) designed a cost-driven

maintenance policy that balances aircraft safety and maintenance costs by leveraging the

benefit from both scheduled and unscheduled maintenance. Recently, Vega et al. (2020)

incorporated failure prognosis and a cost function that considered both preventive and

reactive (emergency) costs associated with the reliability of the structural components

to determine the optimal time for maintenance planning based on both monitoring data

and historical condition assessments. Hughes, Barthorpe, Dervilis, Farrar and Worden

(2021) provided a framework for maximizing expected utility in engineering applications

by utilizing probabilistic risk assessment, specifically fault tree modeling, which enables

risk-based decision-making that facilitates the comparison of actions and the development

of strategies. While these risk-informed inspection optimization frameworks have been

applied to various civil infrastructure, most of them did not consider model-based diag-

nostics and prognostics in the optimization. The integration of these frameworks with

the aforementioned emerging UAV-based inspection planning techniques has not been yet

substantially studied in the literature.

This chapter aims to bridge the gap between UAV inspection planning and risk-

informed inspection optimization by making the following major contributions.
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• First, it presents a novel physics-informed framework for planning UAV inspections

of deteriorating infrastructure. This framework leverages model-based diagnostics

and prognostics enabled by physics-based probabilistic analysis, connecting UAV

mission planning to structural inspection goals.

• Second, the chapter accounts for the impact of UAV inspection results on subsequent

model-based damage diagnostics and failure prognostics. This approach optimizes

mission planning for UAV inspections by considering the physics of the inspection

objectives and the risk-based damage profile of the structure being inspected. The

resulting model-informed inspection optimization framework provides a more infor-

mative and effective approach to UAV inspection planning over the structural life

cycle.

• Third, Bayesian optimization is incorporated to accelerate the process of UAV

inspection optimization, greatly enhancing computational efficiency and practical

viability.

• Fourth, the practical applicability of the proposed framework is demonstrated using

a miter gate example, highlighting its real-world effectiveness.

Fig. 5.1 shows an overview of the proposed framework. As illustrated in this

figure, the proposed framework consists of a bi-directional information flow. In Direction 1

(i.e., Sec. 3), to simulate the process of damage evolution, a high-fidelity finite element

(FE) model is developed. It emulates the structure of interest (in this case, a miter gate

hydraulic structure) that experiences multiple fatigue cracking locations for demonstration

purposes. Based on the FE model, a Bayesian model updating framework is proposed to

perform model-based diagnostics and prognostics using UAV inspections. Building upon

the framework in Sec. 3, in Direction 2 (i.e., Sec. 4), an objective function is constructed

as the cost per unit time (CPUT) where several factors that relate to UAV inspection are

130



considered: the inspection distance, inspection interval, and critical maintenance threshold.

Based on the cost analysis, Bayesian optimization is then performed to find the optimal

inspection parameters for the UAV based on model-based diagnostics and prognostics.

Even though the miter gate is employed for demonstration in this chapter, the underlying

concepts can be extended and applied to other locations and different types of structures.

The remainder of this chapter is arranged as follows. Section 5.3 presents the

background of UAV-based damage inspection for large-scale structures. The approach

of coupling UAV inspections with model-based failure prognostics is then described in

Sec. 5.4. Section 5.5 introduces the objective function and the optimization of the UAV

inspection program, followed by Sec. 5.6 which demonstrates the proposed framework

through a miter gate. The results are shown and discussed in Sec. 5.7, and Sec. 5.8 draws

the conclusions.
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Figure 5.1. Overview of the proposed framework.
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5.3 UAV-Based Damage Inspection of Large Civil

Infrastructure

There is little doubt that using UAV systems to enable labor-extensive, inaccessible,

and/or tedious structural inspection duties has substantially increased, as UAVs have

undergone radical transformations in efficiency, size, and controllability (Zeng et al. (2023);

Phung, Quach, Dinh and Ha (2017); Bolourian and Hammad (2020)). Even though the

current UAV mission planning methods for damage inspection differ from each other, the

procedure generally consists of three main steps, namely three-dimensional structural

modeling, physics-based structural analysis, and UAV mission planning based on structural

analysis. Fig. 5.2 illustrates the three steps for UAV-based damage inspection planning for

a miter gate structure, which is also the focus of this chapter. Among the three steps, UAV

mission planning is the primary research focus in the literature. The goal is to optimize the

UAV inspection parameters to minimize or maximize a certain quantity of interest such

as flight time, path length, or view area coverage. For instance, Bolourian and Hammad

(2020) optimized the flight path of a UAV to increase the coverage of UAV inspection

using LiDAR. Phung et al. (2017) formulated the UAV inspection problem as an extended

traveling salesman problem that accounts for both the coverage and obstacle avoidance of

UAVs. In our previous work (Zeng et al. (2023)), we proposed a Bayes risk-based UAV

path planning algorithm for damage detection by accounting for not only the probability

of detection (PoD), but also the impact of the flight path on decision-making costs related

to SHM.

As an intelligent and potentially autonomous inspection technique, the performance

of UAV damage assessment is affected by various inspection parameters, including the

length of the flight path, inspection distance, view angle(s), and inspection frequency:

• Length of flight path: The length of the flight path is mainly correlated to the cost

of inspection and coverage. A long flight path could lead to an increased inspection
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cost, while it can potentially help increase the coverage and effectiveness of UAV

inspection if the path is properly designed. Most current UAV inspection research,

therefore, focuses on minimizing the flight path and at the same time accounting for

other quantities of interest to achieve a trade-off between the inspection cost and

inspection accuracy.

• Inspection distance: As a non-contact inspection method, UAV inspection collects

information from a structure of interest. The quality of the data usually depends upon

the UAV inspection distance. Due to safety and the length of flight path concerns, a

UAV cannot fly too close to the structure, even though flying closer to the structure’s

surface typically allows for collecting higher-resolution data. An appropriate flying

distance could help reduce the inspection cost and increase inspection accuracy.

• View angle of UAV inspection: Structural damage manifestation usually has compli-

cated and irregular presentation. Inspecting the damage from different view angles

could increase the probability of detection. The optimization of the viewpoints of

interest (VPIs) as illustrated in Fig. 5.2 is also an important research topic that has

been extensively studied in the literature.

• Inspection frequency: Structural damage inspection needs to be performed periodically

to detect the target damage at a stage that is early enough to inform corrective actions

and avoid catastrophic failures. However, inspections that are too frequent may

significantly increase the inspection costs, while inspections that are too infrequent

may increase the risk to an unacceptable level. Determining an optimal inspection

frequency is vital to the research topic that needs to be considered in UAV inspection

planning.

The authors acknowledge that the above list is not exhaustive, and most of the

current methods use one, two, or part of these parameters to optimize the mission of a
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Figure 5.2. Model-informed UAV Damage Inspection of a Miter Gate.

UAV inspection. While this chapter concentrates on optimizing UAV inspection distance

and inspection frequency, the proposed framework presented in this chapter could be

extended to include other UAV inspection parameters. In addition, existing methods in the

literature are mainly dedicated to using physics-based analysis to guide the minimization of

flight path length or the maximization of the inspection coverage, but they fail to consider

the impact of UAV inspection results on subsequent model-based damage diagnostics

and failure prognostics; we would argue this is the ultimate goal of inspections over

the life cycle. The following section aims to fill this void by developing a novel UAV

inspection optimization framework that integrates inspection optimization with model-

based diagnostics and prognostics to minimize the overall life-cycle cost. To the best of our

knowledge, this is the first attempt to incorporate post-inspection decision-making guided

by physics-based analysis into the UAV inspection planning of large civil infrastructure.

5.4 Coupling UAV Inspections with Model-Based

Failure Prognostics

5.4.1 Overview

UAV inspection enables the effective acquisition of high-resolution images of struc-

tural damage. Such high-resolution images obtained from UAVs are typically utilized
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to train machine-learning or computer vision algorithms for automated damage detec-

tion/assessment. Although the UAV inspection system provides a reliable way to acquire

image observations, inevitable noise and other sources of uncertainty challenge accurate

SHM assessment that informs prognostics. The focus of this section is to build a relation-

ship between UAV inspection and model-based diagnostics/prognostics under uncertainty.

In particular, detection theory is first implemented to identify damage features while

taking into account the sources of uncertainty present in UAV observations. Next, we

discuss how the prior information about the damage and damage-related parameters

are updated using UAV observations, which further inform physics-based simulations.

Based on that, we investigate the impact of the uncertainty sources in UAV inspections

on model-enabled failure prognostics, which eventually allows for the prediction of the

remaining useful life (RUL). This paves the way to providing essential information for life

cycle cost optimization. We provide detailed explanations of each step in the following

sections.

5.4.2 UAV inspection distance impact on damage detection

Significant research has been devoted to automating the feature extraction and

damage identification process from UAV images. With the ability to generate high-quality

labeled training image datasets through both field data and high-fidelity simulation models

(e.g., the graphics-based digital twin model (Wang, Rodgers, Zhai, Matiki, Welsh, Najafi,

Wang, Narazaki, Hoskere and Spencer Jr (2022))), machine-learning algorithms offer a

promising solution to capture and learn different damage patterns hidden in the data

and make corresponding damage assessments (Xu, Tian and Li (2022); Ji, Xue, Wang,

Luo and Wang (2021); Chen and Jahanshahi (2017)). However, the effectiveness of such

algorithms often highly depends on the image quality obtained from the UAV. In the

presence of environmental noise and the limitation of computer vision techniques, the true

damage state e may not be accurately estimated. Denote the inspection distance, d, as
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the distance between the UAV camera and the surface of the scanning region, a larger

inspection distance normally increases the uncertainty and noise in the observations. As

illustrated in Fig. 5.3, the images become increasingly blurred as the inspection distance

increases.

For any given flying distance d and a true damage state e, we denote the collected

image from UAV as X (d, e). Denoting environmental noise as ϵ, we represent the rela-

tionship between the true damage state e and the observed damage level from the UAV

as

ê = Ψ(X (d, e),ϵ), (5.1)

where ê is the estimated damage state based on the image, Ψ(·) stands for a machine

learning (ML)-based computer vision algorithm (e.g., a deep convolutional neural network),

and X (d, e) is an image taken by a UAV at a distance d, given true damage state e. The

variable ê is an uncertain quantity, due to the uncertainty in ML-based computer vision

algorithms and environmental noises ϵ, such as contamination on the structural surface

(see Fig. 5.3), light conditions, and weather conditions.

The various uncertainty sources make it difficult to precisely detect and evaluate the

damage. The damage estimated from observations eo may be considered as one realization

of a random variable (i.e., ê) that is characterized by various uncertainty sources in the

detection process for any given true damage state e. For the sake of explanation in this

chapter, we assume that the difference between observations eo obtained from the UAV

and the true damage state e follows a normal distribution

fê(eo, d) =
exp(−0.5((eo − µe)/σe(e, d))2)

σe(e, d)
√

2π
=

1

σe(e, d)
ϕ

(
eo − e

σe(e, d)

)
, (5.2)

where ϕ(·) is the probability density function (PDF) of a standard normal random variable,

the mean value µe and standard deviation σe(e, d) are assumed to be a function of the
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Figure 5.3. Illustration of impact of UAV flying distance on damage detection (a crack
is used as an example).

damage state and the UAV flying distance as

µe(e) = e;σe(e, d) = α
d

e
, (5.3)

where α is the coefficient that defines the contribution of the two variables d and e, which

should be given before the inspection mission. The contribution coefficient α depends on

the resolution of the UAV-mounted camera which can be estimated by capturing a series of

repeated images. An assumption is made here for the standard deviation that more severe

damage with a smaller inspection distance can relate to more reliable detection of damage.

By adjusting the coefficient α, the assumption naturally accounts for the joint effect of

the current damage state and inspection distance on the uncertainty level of acquired

observation. In practice, obtaining the distribution given by Eq. (5.2) requires considering

uncertainty sources in the computer vision algorithms, machine learning models, and

137



UAV inspection environments. Accurately calculating the distribution of observations

will be a focus of our future work, as this chapter is primarily concerned with optimizing

UAV inspections based on model-based analysis rather than uncertainty quantification of

computer vision algorithms. The assumption in Eq. (5.2) is made solely for the purpose

of explanation in this chapter, and any suitable density model form may be substituted.

To statistically quantify the damage-detection capability of observations from differ-

ent UAV inspection distances, the probability of detection (PoD) is introduced that links

inspection distance with observation uncertainty. Among a number of statistical models

that were experimentally carried out to fit the PoD curve, the log-logistic distribution is

one of the most widely used (Kwon and Frangopol (2011)). The PoD function can be

expressed as follows (Georgiou (2007)),

pZ(e, d) = Pr{Z = 1|(e, d)} =
exp(γ(e, d) + δ(e, d) ln(e))

1 + exp(γ(e, d) + δ(e, d) ln(e))
, (5.4)

where Z is the detectability indicator, i.e., {Z = 1} denotes that a damage is detected, while

{Z = 0} denotes that a damage is not detected. γ(e, d) and δ(e, d) are statistical parameters

estimated according to Eq. (5.2), γ(e, d) = −δ(e, d) ·µe(e) and δ(e, d) = −π/(
√

3 ·σe(e, d)).

5.4.3 Damage diagnostics and failure prognostics of miter
gates based on UAV inspections

The observation model presented above provides observations of structural damage

states from UAV inspections with uncertainty. This model can be used in conjunction

with physics-based probabilistic analysis for damage diagnostics and failure prognostics of

the miter gates. Fig. 5.4 illustrates how UAV observations can be integrated with physics-

based analysis to update simulation models and compute the RUL. This computation

necessitates a physics degradation model for future damage growth simulation based on

current data.
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Figure 5.4. Main steps for damage diagnostics and failure prognostics using UAV
observations.

While there are various structural degradation mechanisms that can be modeled

using both empirical and analytical/physics-based approaches, the research scope for this

chapter focuses on problems with self-accelerating degradation patterns, such as fatigue

crack growth. Therefore, the degradation model is expressed in the form of Paris’ Law as

a reference to probe the performance of the proposed framework. The discrete-time form

of the model is given by

ei = ei−1 + ∆ei,

∆ei = f(∆Ki,θ) = c(∆Ki)
m,

(5.5)

where θ = {c, m}, c and m are unknown degradation model parameters, ∆Ki is the stress

intensity factor (SIF) range at time step ti, which indicates the trend of the growth of the

damage based on the loading condition and current damage level. We represent ∆Ki as

∆Ki = GK(ei−1, ∆si(hi)), (5.6)
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where ∆si(hi) is the loading cycle range obtained using physics-based simulation as

illustrated in Fig. 5.4, and hi is the observed load vector at time step ti. More details

about this are available in Ref. (Wu, Fillmore, Vega, Hu and Todd (2022)). It is

worth noting that the finite element used to compute ∆Ki as illustrated in Fig. 5.4 is

computationally expensive to be directly used for diagnostics and prognostics. In our

previous research (Wu et al. (2022)), we have constructed a surrogate model to reduce the

required computational effort in predicting SIF. We direct interested readers to Wu et al.

(2022) and Fillmore et al. (2022) for details of the surrogate modeling. In this chapter, the

focus is given to explaining Bayesian model updating and failure prognostics using UAV

inspections.

Degradation model updating using UAV observations

In order to update the aforementioned degradation model using UAV observations,

a state-space model is first formulated that connects the UAV observation model with the

degradation state-transition model as follows:

State transition : θi = θi−1 + ri, θi = [ci,mi],

ei = ei−1 + ci(∆Ki)
mi ,

Measurement : êi = Ψ(X(d, ei),ϵi),

(5.7)

where ri denotes the process noise, which is modeled as a Gaussian distribution with zero

mean and a known standard deviation. Note that the state and parameter estimations are

performed together in the above equation, following the method discussed in Ref. Thelen,

Zhang, Fink, Lu, Ghosh, Youn, Todd, Mahadevan, Hu and Hu (2022).

The loading condition h is measured at every time step, while observations eo are

considered as not continuously available for all time steps because the UAV inspection

may not be performed at every time step, and/or the time intervals between different
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UAV inspections may be different. Define the inspection interval between the (j + 1)th

inspection and its previous inspection as Tj, we can represent the state-space equation

given in Eq. (5.7) as Fig. 5.5.

Figure 5.5. Connection between UAV inspection and physics-based degradation model
(“Triangle node” represents deterministic function relationship; “Elliptical node”
represents probabilistic relationship; and “Rectangle node” denotes observations.)

Assume that the jth UAV inspection is performed at ti (as illustrated in Fig. 5.5),

we denote the observations from the previous inspections as eo,1:j
.
= {eo,1, eo,2, · · · , eo,j}. If

a damage is detected from the observation at (j + 1)th inspection as eo,j+1, according to

the probabilistic connection given in Fig. 5.5, we can then use eo,j+1 at time step ti+Tj

(i.e., the time when the (j + 1)th inspection is performed) to update θ as follows

f((θi+Tj
, ei+Tj

)|eo,1:j+1, h
o
1:(i+Tj)

) ∝ f(eo,j+1| ei+Tj
)f((θi+Tj

, ei+Tj
)|eo,1:j, ho

1:(i+Tj)
), (5.8)

in which f(eo,j+1| ei+Tj
) is obtained by some computer vision techniques as in Eq. (5.1).
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By assuming the relationship between the true damage state and observed damage as a

Gaussian distribution in this chapter, f(eo,j+1| ei+Tj
) is then computed using Eq. (5.2).

f((θi+Tj
, ei+Tj

)|eo,1:j, ho
1:(i+Tj)

) is given by

f((θi+Tj
, ei+Tj

)|eo,1:j, ho
1:(i+Tj)

)

=

∫ ∫
f((ei+Tj

,θi+Tj
)| θi, ei,h

o
(i+1):(i+Tj)

)f(θi, ei|eo,1:j, ho
1:i)deidθi.

(5.9)

Eqs. (5.8) and (5.9) are analytically intractable. In this chapter, the particle filter

method is employed to solve the above two equations to obtain the posteriors of θ and e

at time step ti+Tj
(i.e., (j + 1)th inspection). Denote the posterior particles of θ and e at

time step ti (i.e., after the jth inspection) as θi
(k), ei

(k), k = 1, · · · , Np, where Np is the

number of particles, the prior particles of θ at time step ti+Tj
(i.e., (j + 1)th inspection)

can be first obtained through uncertainty propagation based on the following equation

θ(k)
q = θ

(k)
q−1 + rq, ∀q = (i + 1), · · · , (i + Tj); k = 1, · · · , Np. (5.10)

After that, we obtain the prior particles of ei+Tj
through uncertainty propagation

based on the state-transition equation given in Eq. (5.7) and Fig. 5.5 as

e(k)q = e
(k)
q−1 + c(k)q (∆K(k)

q )m
(k)
q , ∀q = (i + 1), · · · , (i + Tj); k = 1, · · · , Np, (5.11)

where ∆K
(k)
q = GK(e

(k)
q−1, ∆sq(h

o
q)), ∀q = (i + 1), · · · , (i + Tj); k = 1, · · · , Np, as given in

Eq. (5.6)

From the above two equations, we have the prior particles of θ and e at time ti+Tj

as θ
(k)
i+Tj

, e
(k)
i+Tj

, k = 1, · · · , Np, and denote the corresponding marginal prior distribution

for the (j + 1)th inspection as f ′
θi+Tj

|eo,1:j (θ) and f ′
ei+Tj

|eo,1:j (e). Based on the prior particles

e
(k)
i+Tj

, k = 1, · · · , Np, we have L(k) = f(eo,j+1|e(k)i+Tj
) and the particle weights can be
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computed by

w(k) =
L(k)

Np∑
r=1

L(r)

=

ϕ

(
eo,j+1−e

(k)
i+Tj

σe(e
(k)
i+Tj

,d)

)
Np∑
r=1

ϕ

(
eo,j+1−e

(r)
i+Tj

σe(e
(r)
i+Tj

,d)

) ,∀k = 1, · · · , Np. (5.12)

Using {w(k)}Np

k=1 as particle weights, all the particles can then be re-sampled using

the particle filter method. Thus, the posterior particles of θ and e at time step ti+Tj
can

be obtained using the (j + 1)th UAV inspection. Denoting the posterior particles after

the (j + 1)th UAV inspection as θ
(k)
po, i+Tj

, e
(k)
po, i+Tj

, k = 1, · · · , Np and the corresponding

marginal posterior distributions as f ′′
θi+Tj |eo,1:(j+1)

(θ|eo,j+1) and f ′′
ei+Tj

|eo,1:(j+1)
(e|eo,j+1).

Please note that in Fig. 5.5, for the sake of simplicity, we only demonstrated a

one-time diagnostic process based on two consecutive inspections. This one-time updating

involves the inspection distance and the subsequent inspection time. In practice, the

process of online diagnostics involves continuous iterations while each subsequent iteration

follows the same pattern: using observations from the current inspection to update prior

information, which further informs model-based failure prognostics.

The next section explains the procedure of performing failure prognostics accounting

for UAV detectability and maintenance protocols.

Failure prognostics accounting for UAV detectability and maintenance
protocols

Model-based failure prognostics predict the RUL of the structure, providing essential

information for the system reliability and safety. To optimize the entire integrated

workflow for minimal risk/cost, both the UAV detectability and maintenance protocols

are incorporated through the prognostic process. The UAV detectability is introduced to

include the uncertainties existing in the observations based on detection theory. Considering

the impact of maintenance protocols during the failure prognostics enables the reduction
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of maintenance costs and eventually maximizes operational availability.

(a) Generalized failure prognostics using a model-based method

We assume those Np particles are simulated based on the current priors of the

damage degradation model parameters θ and damage state e. By numerically collecting

the intersection points, i.e., end of life (EOL), between simulated damage growth curves

and damage limit state, a distribution of RUL can be obtained by subtracting the current

time step from EOL. The probability of failure is then defined as follows

FRUL(t; d) = Pr{RUL ≤ t| d} ≈ Nt,d

Np

, (5.13)

where Nt,d is the number of samples with a damage level greater than the limit state

(denote as eh) at time step t, and Np is the total number of samples. Please note that d in

the subscript of Nt,d is employed to imply that the estimated number of failure samples is

affected by the inspection distance d. Nt,d is given by

Nt,d =

Np∑
k=1

(I(e
(k)
d (t) > eh)), (5.14)

where I(E) is an indicator function given by

I(E) =


1, E is true

0, otherwise

(5.15)

and e
(k)
d (t) is the kth sample generated through uncertainty propagation (UP) using the

following equation

e
(k)
d (t) = GUP(e

(k)
0,d, θ

(k)
0,d, t), ∀k = 1, · · · , Np (5.16)
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in which GUP(·) represents uncertainty propagation by executing the state-transition

equation in Eq.(5.7) and accounting for uncertainty in the load conditions (i.e., h) for

a time duration of t with an initial damage state e
(k)
0,d and initial model parameters θ

(k)
0,d.

During the uncertainty propagation, there is no model updating performed since no

observations are collected during this time period.

Due to the impact of damage detectability in the UAV inspection and maintenance

protocols, the PDFs used to generate e
(k)
0,d and θ

(k)
0,d, k = 1, · · · , Np will be different for

different scenarios. The difference in the initial damage state and model parameters

ultimately leads to different failure prognostic results. In what follows, we discuss how

to select appropriate PDFs to generate {e(k)0,d}
Np

k=1 and {θ(k)
0,d}

Np

k=1 for failure prognostics

by accounting for the impact of damage detectability and maintenance protocols on

prognostics.

(b) Impact of damage detectability on failure prognostics after the jth

inspection

If an observation eo,j+1 is collected during the (j + 1)th UAV inspection, it means

that damage diagnostics have been performed by following the procedure presented in Sec.

5.4.3 and we have e
(k)
0,d and θ

(k)
0,d as

e
(k)
0,d = e

(k)
po,i+Tj

and θ
(k)
0,d = θ

(k)
po,i+Tj

, ∀k = 1, · · · , Np. (5.17)

In other words, the posterior distributions f ′′
θi+Tj

|eo,1:(j+1)
(θ|eo,j+1) and

f ′′
ei+Tj

|eo,1:(j+1)
(e|eo,j+1) after model updating using observation eo,j+1 from the (j + 1)th

inspection are used to generate samples of {e(k)0,d}
Np

k=1 and {θ(k)
0,d}

Np

k=1 for failure prognostics

using Eqs. (5.13) through (5.16).

If no damage is detected in the (j + 1)th inspection (i.e., eo,j+1 = ∅ or Pr{Z = 0}),

e
(k)
0,d, ∀k = 1, · · · , Np should be generated based on both the prior distribution (i.e.,
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f ′
ei+Tj

|eo,1:j (e)) of the damage state at the (j + 1)th inspection and the fact that no damage

is detected.

To this end, the PDF of the initial damage state used for failure prognostics is

derived as follows

fe|Z=0(e|Z = 0, d) =
f(Z = 0|e)f ′

ei+Tj
|eo,1:j(e)∫

f(Z = 0|e)f ′
ei+Tj

|eo,1:j(e)de
,

=
(1 − pZ(e, d))f ′

ei+Tj
|eo,1:j(e)∫

(1 − pZ(e, d))f ′
ei+Tj

|eo,1:j(e)de
,

(5.18)

where f ′
ei+Tj

|eo,1:j (e) is a prior distribution of ei+Tj
obtained through uncertainty propagation

in Sec. 5.4.3, and pZ(e, d) is given in Eq. (5.4).

Since during the planning of the (j + 1)th UAV inspection, we do not have any

observation of eo,j+1 yet. Thus, the detectability is uncertain and depends on the underlying

true damage state ei+Tj
. For given true damage state ei+Tj

, after considering the uncertainty

in the observation (i.e., Eq. (5.2)), we have the PDF of the initial damage state (i.e., e
(k)
0,d)

for failure prognostics as

fe0(e|(d, ei+Tj
)) =


∫
f ′′
ei+Tj

|eo,1:(j+1)
(e|eo,j+1)ϕ

(
eo,j+1−ei+Tj

σe(ei+Tj
,d)

)
deo,j+1, Z = 1

fe|Z=0(e|Z = 0, d), Z = 0

= pZ(ei+Tj
, d)

∫
f ′′
ei+Tj

|eo,1:(j+1)
(e|eo,j+1)ϕ

(
eo,j+1 − ei+Tj

σe(ei+Tj
, d)

)
deo,j+1

+ (1 − pZ(ei+Tj
, d))fe|Z=0(e|Z = 0, d),

(5.19)

where fe|Z=0(e|Z = 0, d) is given in Eq. (5.18) and f ′′
ei+Tj

|eo,1:(j+1)
(e|eo,j+1) is the

posterior distribution of ei+Tj
if there is an observation eo,j+1.

Figure 5.6 summarizes the procedure of determining an appropriate PDF of e0,d for

failure prognostics by accounting for UAV detectability. Note that the cumulative density
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function (CDF) of the RUL becomes a function of d and ei+Tj
as shown in this figure

because there is no observation available yet during the planning of the (j + 1)th UAV

inspection.

𝑒𝑗+1

Given true 

damage state

Detectable

Non-

Detectable

Observation, 

𝑒𝑜,𝑗+1

Degradation 

model updating 

(Sec. 3.3.1) 

𝑓𝑒𝑗+1|𝑒𝑜,1:(𝑗+1)
′′ (𝑒|𝑒𝑜,𝑗+1)

𝐹𝑅𝑈𝐿(𝑡; 𝑑, 𝑒𝑗+1)

Eq. (18)
𝑓𝑒| 𝒵=0(𝑒|𝒵 = 0, 𝑑)

𝑝𝒵(𝑒𝑗+1, 𝑑)

1 − 𝑝𝒵(𝑒𝑗+1, 𝑑)

Figure 5.6. Flowchart of determining an appropriate PDF of e0,d for failure prognostics
by accounting for UAV detectability.

Similarly, we determine the PDF used to generate samples of {θ(k)
0,d}

Np

k=1 as

fθ0(θ|(d, ei+Tj
))

= pZ(ei+Tj
, d)

∫
f ′′
θi+Tj

|eo,1:(j+1)
(θ|eo,j+1)ϕ

(
eo,j+1 − ei+Tj

σe(ei+Tj
, d)

)
deo,j+1

+ (1 − pZ(ei+Tj
, d))f ′

θi+Tj
|eo,1:j(θ).

(5.20)

(c) Impact of maintenance protocols on failure prognostics after the (j + 1)th

inspection

Let the maintenance threshold be em, which means if observed damage is greater

than em, a repair action will be performed. Otherwise, no repair is needed. Thus, if eo,j+1 >

em, a repair will be performed. Generally, the damaged area will be considered “sufficiently

healthy” after a repair action. Such a sufficiently healthy state can be represented by

assigning a very small initial damage state e0,d (instead of zero), without ruling out the

possibility of failure re-generation. e0,d follows a normal distribution with a standard

deviation of σini. Thus, the samples of the initial damage state (i.e., e
(k)
0,d) for failure
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prognostics are generated through the following PDF

fe0(e|d, eo,j+1) =
1

σini

ϕ

(
e− eini
σini

)
, (5.21)

where eini and σini are the mean and standard deviation of the initial damage state after

repair.

If eo,j+1 ≤ em, no repair action is taken, e
(k)
0 and θ

(k)
d are generated from the

posterior distributions f ′′
θj |eo,1:(j+1)

(θ|eo,j+1) and f ′′
ei+Tj

|eo,1:(j+1)
(e|eo,j+1) after degradation

model updating using observation from the (j + 1)th inspection. This is the same as that

in Eq. (5.17). Therefore, for given observation eo,j+1, the PDF of the initial damage state

(i.e., e
(k)
0,d) for failure prognostics after accounting for maintenance protocols is given by

fe0(e|eo,j+1, em) =

f ′′
ei+Tj

|eo,1:(j+1)
(e|eo,j+1),Z = 1, eo,j+1 ≤ em

1
σini

ϕ
(

e−eini

σini

)
,Z = 1, eo,j+1 > em

. (5.22)

Similar to what we discussed above, there is no observation available yet during the

planning of the (j + 1)th UAV inspection. eo,j+1 will be an uncertain quantity conditioned

on the true damage state. For given true damage state ei+Tj
, after accounting for both

damage detectability and maintenance protocols, the PDF of the initial damage state (i.e.,

e
(k)
0,d, k = 1, · · · , Np) for failure prognostics given in Eq. (5.19) is written as

fe0(e|(d, ei+Tj
, em)) = pZ(ei+Tj

, d)


em∫
0

f ′′
ei+Tj

|eo,1:(j+1)
(e|eo,j+1)ϕ

(
eo,j+1 − ei+Tj

σe(ei+Tj
, d)

)
deo,j+1

+
1

σini

ϕ

(
e− eini
σini

)(
1 − Φ

(
em − ej

σe(ei+Tj
, d)

))}
+ (1 − pZ(ei+Tj

, d))fe|Z=0(e|Z = 0, d),

(5.23)

where Φ(·) is the CDF of a standard Gaussian random variable.

148



The procedure of determining an appropriate PDF for the initial damage state

for failure prognostics given in Fig. 5.6 is revised accordingly as shown in Fig. 5.7. As

indicated in this figure, the CDF function of RUL becomes a function of d, ei+Tj
, and em

after considering both damage detectability and maintenance protocols.

𝑒𝑗+1
Given true 

damage state

Detectable

Non-

Detectable

Observation, 

𝑒𝑜,𝑗+1

Degradation 

model updating 

(Sec. 3.3.1)

𝑓𝑒𝑗+1|𝑒𝑜,1:(𝑗+1)
′′ (𝑒|𝑒𝑜,𝑗+1)

𝐹𝑅𝑈𝐿(𝑡; 𝑑, 𝑒𝑗+1, 𝑒𝑚)

Eq. (18)
𝑓𝑒| 𝒵=0(𝑒|𝒵 = 0, 𝑑)

𝑝𝒵(𝑒𝑗+1, 𝑑)

1 − 𝑝𝒵(𝑒𝑗+1, 𝑑)

Maintenance 

decision, 

𝑒𝑜,𝑗+1 > 𝑒𝑚?

Repair

𝜙
𝑒 − 𝑒𝑖𝑛𝑖
𝜎𝑖𝑛𝑖

Figure 5.7. Flowchart of model-based prognostics accounting for both damage
detectability and maintenance protocols.

The PDF used to generate samples of {θ(k)
0,d}

Np

k=1 is derived similarly as

fθ0(θ|(d, ei+Tj
, em)) = pZ(ei+Tj

, d)


em∫
0

f ′′
θi+Tj

|eo,1:(j+1)
(θ|eo,j+1)ϕ

(
eo,j+1 − ei+Tj

σe(ei+Tj
, d)

)
deo,j+1

+
1

σθ,ini

ϕ

(
θ− θini

σθ,ini

)(
1 − Φ

(
em − ei+Tj

σe(ei+Tj
, d)

))}
+ (1 − pZ(ei+Tj

, d))f ′
θi+Tj

|eo,1:j(θ),

(5.24)

where θini and σθ,ini are respectively the mean and standard deviation of θ after performing

a repair.

5.4.4 Failure prognostics under multi-mode failure based on
UAV inspection

During the jth inspection, the UAV may detect multiple damage modes (as illus-

trated in Fig. 5.8). Note that damage modes here refer to different types of damage
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mechanisms that can occur at the same or different sites, or the same damage mechanism

presented at different locations. In this section, we denote the damage state of the c-th

damage mode at the jth inspection as ej,c, c = 1, · · · , Nc, where Nc is the total number

of damage modes. The structure will fail if any of the damage states reaches its damage

threshold eh,c, as described in Sec. 5.4.3. For each of the damage modes, the degradation

model updating procedure will be the same as what we discussed in Sec. 5.4.3. Again, the

observations of the (j + 1)th inspection for these damaged modes are uncertain since the

inspection has not been performed yet.

For given inspection distance d, maintenance protocols em, and true damage states

ei+Tj ,c, c = 1, · · · , Nc, the probability of failure in the presence of multiple failure modes

can be computed by

Fsys(t; d, em, {ei+Tj ,c}Nc
c=1)

≈

Np∑
k=1

I
(

((e
(k)
d,1(t)|em, ei+Tj ,1) > eh,1) ∪ · · · ∪ ((e

(k)
d,Nc

(t)|em, ei+Tj ,Nc) > eh,Nc)
)

Np

,

(5.25)

where “∪” stands for “union” of events, and (e
(k)
d,c(t)|em, ei+Tj ,c), ∀c = 1, · · · , Nc is the

damage state of the c-th damage mode forecast after t time steps conditioned on em and

the true damage state ei+Tj ,c, is

(e
(k)
d,c(t)|em, ei+Tj ,c)

= Gc,UP((e
(k)
0,d,c|em, ei+Tj ,c), (θ

(k)
0,d,c|em, ei+Tj ,c), t), ∀k = 1, · · · , Np; c = 1, · · · , Nc;

(5.26)

where Gc,UP(·) represents uncertainty propagation using the state-transition equation of

the c-th damage mode (see the explanation in Eq. (5.16)) and the PDFs used to generate

the samples of the initial damage state e
(k)
0,d,c and degradation model parameters θ

(k)
0,d,c

are determined similarly using the methods discussed in Sec. 5.4.3 (i.e., Eqs. (5.23) and

(5.24)).
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Figure 5.8. Illustration of multiple damage modes identified during an inspection.

In addition, it is worth noting that due to the shared load conditions (e.g., h(t)

in Eq. (5.6)) among different damage modes (as illustrated in Fig. 5.8), samples of

e
(k)
d,c(t),∀k = 1, · · · , Np; c = 1, · · · , Nc have complicated correlations over time. This

correlation is automatically accounted for during the sampling process by using the same

group of samples of h(t) during failure prognostics. In the presence of multiple damage

modes (e.g., cracking, corrosion, or cracking at different locations), the damage levels

may have different physical meanings with different magnitudes. To address this issue in

making maintenance protocols, a non-dimensional maintenance threshold em can be used.

This universal maintenance threshold can be converted to an individualized maintenance

threshold (er,c, c = 1, · · · , Nc) for each damage type as follows

er,c = em(ec,U − ec,L) + ec,L, c = 1, · · · , Nc, (5.27)

where ec,L and ec,U are respectively the lower and upper bounds of the damage level of the

c-th damage type.

After the conversion of the universal maintenance threshold to individualized

maintenance thresholds, er,c can be applied in Sec. 5.4.3 for failure prognostics (i.e.,
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replacing em with er,c for each damage mode in Eqs. (5.23) and (5.24)). For example, Eq.

(5.23) can be rewritten for the c-th damage type as

fe0,c(e|(d, ei+Tj ,c, em))

= pZ(ei+Tj ,c, d)


er,c∫
0

f ′′
ei+Tj,c

|eo,1:(j+1),c
(e|eo,j+1,c)ϕ

(
eo,j+1,c − ei+Tj ,c

σe(ei+Tj ,c, d)

)
deo,j+1,c

+ϕ

(
e− eini,c
σini,c

)(
1 − Φ

(
er,c − ei+Tj ,c

σe(ei+Tj ,c, d)

))}
+ (1 − pZ(ei+Tj ,c, d))fe|Z=0(e|Z = 0, d),

(5.28)

where er,c is a function of em given in Eq. (5.27), eini,c and σini,c are respectively the mean

and standard deviation of the initial damage state of the cth damage mode after repair,

and eo,j+1,c is the observation of the cth damage mode at the (j + 1)th inspection.

For the scenario that all the damage mechanisms are the same (i.e., cracks), the

above transformation given in Eq. (5.27) is not necessary and em can be directly used

as a variable to determine maintenance decision. As shown in the above discussions, the

probability of failure of the structure of interest will be affected by the UAV flying distance

d, the critical maintenance threshold em, and the next inspection interval TI . Next, we

discuss how to optimize these parameters to minimize the expected life-cycle cost.

5.5 Optimization of the UAV Inspection Program

5.5.1 Overview of the optimization model

The above process of damage diagnostics and prognostics of the miter gate indicates

that selecting a smaller inspection distance and repair action limit may result in a

more reliable observation and lower failure probability. However, such a strategy may

come at a high cost in terms of inspection and maintenance expenses. In order to

quantitatively evaluate the impact of each decision, an optimization model is introduced
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that comprehensively takes into account both the expected risk and cost. The primary

purpose of the optimization model is to minimize the cost per unit time (CPUT) by

optimizing the values of the inspection distance d, the critical maintenance threshold em,

and the next inspection interval TI . The optimization model can be expressed as follows

d∗, e∗m, T
∗
I = argmin

{
EC(d, em, TI)

ET (d, em, TI)

}
, (5.29)

where EC(d, em, TI) is the expected operational cost, and ET (d, em, TI) is the expected

operational time.

5.5.2 Cost model

In this chapter, the cost model incorporates the cost of UAV inspections, repair

actions, and potential structural failure consequence costs prior to the next inspection.

These costs are affected by the UAV inspection parameters, i.e., the inspection distance d,

the inspection interval TI , and the repair damage limit em. In what follows, we provide a

detailed explanation of each term in the cost model.

Inspection cost

The inspection cost is assumed to be a parameter solely related to distance. As

illustrated in Fig. 5.2 and discussed in Ref. Zeng et al. (2023), a smaller inspection distance

results in a smaller inspection view range and therefore a smaller number of viewpoints

of interest. This indicates that a larger inspection distance will lead to a smaller flying

distance of the UAV to cover the structure of interest, while a smaller inspection distance

increases the inspection cost CI due to an increase in the flight path. In theory, the UAV

flying distance is a function of the inspection distance, and consequently, the inspection

cost is also a function of the inspection distance (Zeng et al. (2023)). For the purposes of
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illustration in this chapter, we assume that CI is a function of UAV inspection distance as

CI(d) = αCI

1

d
, (5.30)

where αIC is the coefficient of the inspection distance.

Repair action cost

The repair action cost is defined as the expected cost of repairing all components

that have damage ei+Tj ,c exceeding the repair threshold er,c during (j+1)th UAV inspection

mission. As mentioned above, er,c is a function of em as shown in Eq. (5.27). The expected

repair cost CR can be calculated as follows

CR((d, cm)| {ei+Tj ,c}Nc
c=1) =

Nc∑
c=1

CR,c((d, cm)|ei+Tj ,c), (5.31)

where CR,c((d, cm)|ei+Tj ,c) is the expected repair cost of the c-th damage mode and is

computed by

CR,c((d, cm)|ei+Tj ,c)

= Pr{Z = 1}
{(

1 − Φ

(
er,c − ei+Tj ,c

σe(ei+Tj ,c, d)

))
Cr + Φ

(
er,c − ei+Tj ,c

σe(ei+Tj ,c, d)

)
× 0

}
+ Pr{Z = 0} × 0,

= pZ(ei+Tj ,c, d)

(
1 − Φ

(
er,c − ei+Tj ,c

σe(ei+Tj ,c, d)

))
Cr, c = 1, · · · , Nc,

(5.32)

where Cr is the repair cost of the corresponding region/ component, er,c = em if the studied

damages belong to the same damage mechanism, otherwise, er,c is computed based on em

using Eq. (5.27).
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Structural failure cost

The expected structural failure cost CF is defined as the potential cost of failure if

the subsequent inspection is performed after a period of TI following the current inspection.

CF is computed by

CF ((d, cm, TI)| {ei+Tj ,c}Nc
c=1) = CsysFsys(TI ; d, em, {ei+Tj ,c}Nc

c=1), (5.33)

where Csys is the failure cost (Csys >> Cr) and Fsys(TI ; d, em, {ei+Tj ,c}Nc
c=1) is computed

using the method discussed in Sec. 5.4.4. The cost value Csys could include replacement

costs, liability, life safety costs, or whatever other consequence losses exist.

Total cost conditioned on possible true damage state vector

Eventually, the total expected cost conditioned on the possible true damage state

vector is expressed as

EC((d, em, TI)|{ei+Tj ,c}Nc
c=1) = αCI

1

d2
+

Nc∑
c=1

pZ(ei+Tj ,c, d)

(
1 − Φ

(
er,c − ei+Tj ,c

σe(ei+Tj ,c, d)

))
Cr

+ CsysFsys(TI ; d, em, {ei+Tj ,c}Nc
c=1).

(5.34)

5.5.3 Operational time model

UAV inspections for large-scale structures are usually conducted at discrete intervals,

spanning several months to years. The actual operational time, TO, in such a long

duration, is subject to uncertainty, represented by two scenarios illustrated in Fig. 5.9.

The operational time TO of the structure depends on the time sequences of two events,

namely structural failure and the subsequent inspection. Based on Fig. 5.9, we have the
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operational time as

TO =


TF , TF ≤ TI

TI , TF > TI

, (5.35)

where TF is the duration from the current inspection time to the time that failure occurs.

Figure 5.9. Operation time model: (a) Failure occurs before the next inspection, and (b)
failure does not occur before the next inspection.

The expected operational time is therefore derived as

ET (d, em, TI |{ei+Tj ,c}Nc
c=1) = E(TO|d, em, TI , {ei+Tj ,c}Nc

c=1),

=TIPr{(TF |(d, em, {ei+Tj ,c}Nc
c=1)) > TI} +

∫ TI

0

tfsys(t|d, em, {ei+Tj ,c}Nc
c=1) dt,

=TI(1 − Fsys(TI |d, em, {ei+Tj ,c}Nc
c=1)) +

∫ TI

0

(1 − Fsys(t|d, em, {ei+Tj ,c}Nc
c=1)) dt

− TI(1 − Fsys(TI |d, em, {ei+Tj ,c}Nc
c=1)),

=

∫ TI

0

(1 − Fsys(t|d, em, {ei+Tj ,c}Nc
c=1)) dt,

=TI −
∫ TI

0

Fsys(t|d, em, {ei+Tj ,c}Nc
c=1) dt.

(5.36)
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To consider the uncertainty in the true damage states ei+Tj ,c, c = 1, · · · , Nc, i.e.,

{ei+Tj ,c}Nc
c=1, the optimization model given in Eq. (5.29) is rewritten based on the prior

information as

d∗, e∗m, T
∗
I = arg min

d,em,T
{Gc(d, em, TI)},

= argmin

{∫
· · ·

∫
EC(d, em, TI |{ei+Tj ,c}Nc

c=1)

ET (d, em, TI |{ei+Tj ,c}Nc
c=1)

f ′
{eo,1:j,c}Nc

c=1
(e1,i+Tj

, · · · , eNc,i+Tj
) de1,i+Tj

. . . deNc,i+Tj

}
,

(5.37)

where Gc(d, em, TI) is the objective function for UAV inspection optimization,

f ′
{eo,1:j,c}Nc

c=1

(e1,i+Tj
, · · · , eNc,i+Tj

) is the joint prior PDF of e1,i+Tj
, · · · , eNc,i+Tj

.

In this chapter, the objective function in the above equation is approximated based

on the prior samples from the j-th inspection as follows

Gc(d, em, TI) ≈
1

Np

Np∑
k=1

EC(d, em, TI |{e(k)c,i+Tj
}Nc
c=1)

ET (d, em, TI |{e(k)c,i+Tj
}Nc
c=1)

, (5.38)

in which {e(k)c,i+Tj
}Nc
c=1,∀k = 1, · · · , Np are prior samples of damage state for the (j + 1)th

inspection, generated using the method discussed in Sec. 5.4.3 and illustrated in Fig. 5.5.

5.5.4 Surrogate Modeling

The multi-layered integral composition of the objective function results in a sub-

stantial computational demand in calculating the objective function. To optimize the

UAV inspection parameters d, em, TI effectively, Bayesian optimization is employed here to

enhance the efficiency of the process without consuming excessive computing power. This

synergistic approach allows us to devise optimal strategies for subsequent UAV inspections

without being impeded by computational constraints.

For simplicity, the vector symbol ω = [d, em, TI ] will be used to denote the three

UAV inspection parameters. Since directly evaluating the objective function, Gc(ω), is
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computationally extensive, a Gaussian process regression (GPR)-based surrogate model is

constructed as a more computational-efficient alternative to study the non-linear behavior,

which can be expressed as follows

Gc(ω) ≈ ŷ = ĝ(ω), (5.39)

where ŷ is the predicted objective function outcome and ĝ(ω) is the GPR model that

represents the objective function which is given by

ĝ(ω) ∼ N(µ(ω), σ(ω)2), (5.40)

in which N(·, ·) is Gaussian distribution, µ(ω) and σ(ω) are respectively the mean and

standard deviation of the prediction of ŷ.

To find the global minimum of Gc(ω), the improvement is defined by I = max(y∗−

y, 0), where y∗ is the current best solution (the current minimum CPUT) obtained by all

the sampled training space. The expectation value or expected improvement (EI) is then

computed by (Jones, Schonlau and Welch (1998); Hu and Du (2015))

EI(ω) = (y∗ − µ(ω)) Φ

(
y∗ − µ(ω)

σ(ω)

)
+ σ(ω)ϕ

(
y∗ − µ(ω)

σ(ω)

)
, (5.41)

where y∗ is defined as

y∗ = min
i=1,2,...,k

{ĝ(ω(i))}, (5.42)

in which k is the number of current training data points.

The new training point (also the possible minimum cost) is identified by maximizing

the EI function as

ω(k+1) = arg max
ω∈Ω

EI(ω). (5.43)

The procedure outlined above performs a comprehensive search across the entire
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input space, which sequentially identifies the UAV inspection parameters that minimize the

output of the objective function until a pre-defined stopping criterion is met. Algorithm 1

summarizes the major steps of the proposed UAV inspection optimization framework.

Next, we present a practical case study of a miter gate to demonstrate the proposed

UAV inspection optimization framework. The miter gate is part of the Greenup lock

system located on the Ohio River in the Commonwealth of Kentucky, USA.

5.6 Case Study

In this section, we begin by presenting the degradation modeling of the miter gate

using physics-based simulation. Following that, we show how the proposed framework can

be used to optimize the UAV inspection based on the physics-based simulation.

5.6.1 Multi-location degradation model and loading condition

As a crucial component of the digital twin paradigm, a high-fidelity FE model

was developed using Abaqus 2021 to enable physics-based simulation, as illustrated in

Fig. 5.10. The model has been previously validated with the field data which is able to

accurately predict the strain response of the structure under various load conditions (Eick

et al. (2018)).

Fig. 5.11 shows the hydrostatic pressures applied to both surfaces of the gate, which

present a major component of the loading conditions. The upstream and downstream

hydrostatic pressures are denoted respectively as hup and hdown. We therefore have

h = [hup, hdown]. Through the daily watering and dewatering process, the cyclic hydrostatic

pressure leads to multiple forms of damage along with the aging of the gates. For the

sake of illustration, in this chapter, both hup and hdown are assumed to follow a Gaussian

distribution with different mean values (µup = 550 and µdown = 150) and the same standard

deviation (σup = σdown = 20) (Vega et al. (2021b)).

Fatigue cracks are among the most concerning damage mechanisms encountered
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Figure 5.10. Finite element analysis model of a miter gate and its connection with the
actual gate.

Figure 5.11. Hydrostatic pressure: (a) loading condition profile, and (b) synthetic cyclic
hydrostatic pressure data in 100 months.

during miter gate inspections, making them a suitable focus for illustration purposes.

Explicit crack modeling with finely-discretized meshing has been successfully implemented

in the FE model using a surrogate iterative global-local (SIGL) method in Ref. (Fillmore

et al. (2022)). Specifically, this approach simulated the local cracked region using XFEM

and accelerates the process using static condensation and surrogate modeling. In this
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chapter, three cracks were introduced to the FE model at the welding area of the cruciform

components of the gate. The SIGL method developed in our previous work (as illustrated

in Fig. 5.12) was employed for modeling the cracks.

Figure 5.12. Implementation of multi-location cracking using IGL: (a) crack simulation
using XFEM, and (b) apply to multiple locations with fast and accurate computational

cycle using SIGL. (Fillmore et al. (2022))

Fig. 5.13(a) presents the locations of the three cracks, identified as high-risk or

low-risk regions based on the global strain distribution during the operational stage of

the miter gate. It is worth noting that a small crack detected in a high-risk region may

sometimes result in more severe failure than a large crack detected in a low-risk region. In

this study, three locations are selected to represent three different scenarios:

1. A large crack in a high-risk region;

2. A small crack in a high-risk region;

3. A small crack in a low-risk region.

The initial length for the three cracks was set to e0 = [2.5, 1, 1] inches. Fig.

5.13(b) shows the three synthetically generated crack growth curves without maintenance

interference. Define the failure threshold of the structure for the crack damage as eh = 4 in.,

the three regions will reach local failure at 9.25, 28.90, and 91.74 months, respectively.

161



Figure 5.13. Synthetic crack growth modeling: (a) the locations of the three cracks, and
(b) corresponding crack growth curves without maintenance interference.

5.6.2 Inspection and maintenance protocols, and correspond-
ing SHM associated costs

To numerically evaluate the performance of the proposed framework, Table 5.1

presents the design intervals of the inspection parameters and the maintenance protocols.

The contribution coefficient α was assigned a value of 0.2 to generally represent the

uncertainty level in observation mode. Following that, Fig. 5.14 shows the log-logistic

PoD curves obtained using Eq. (5.4). It can be observed that the PoD level increases as

the crack size evolves, and a smaller inspection distance leads to a higher PoD level for a

given crack size. Additionally, if the crack size is large enough (e.g., for crack sizes of 4

inches or greater), the PoD level will reach 1 for all three scenarios illustrated in Fig. 5.14.

Table 5.1. Inspection and maintenance protocols.

Inspection parameter Design range
Inspection distance (d) 1 ft. ∼ 10 ft.
Maintenance threshold (em) 0 in. ∼ 4 in.
Inspection interval (TI) 1 month ∼ 40 months
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Figure 5.14. PoD curves under different inspection distances.

5.7 Results and Discussion

The initial priors for the crack-related parameters are set to fe0(e) and fθ0(θ) for

the three damage sites and are updated based on the latest inspection observation eo,j.

Before we perform UAV inspection optimization using the proposed method, the impact

of various inspection parameters on life-cycle costs and failure prognostics is investigated.

Fig. 5.15 demonstrates the effect of detectability on the prognostic results. As described

in Sec. 5.4.3, the sample e
(k)
0,d is generated through UP based on the prior distribution

(i.e., f ′
ei+Tj

|eo,1:j(e)) of the damage state. For Crack 1 and Crack 2 in the “Non-detectable”

case, the predicted EOLs are close to the true EOLs. However, the prediction still has

significant uncertainty, as seen by the dispersion of the sample curves. In the “Detectable”

case, both predicted EOLs of Crack 1 and Crack 2 are more accurate, and the prediction

has higher confidence, as indicated by the convergence of the generated samples. Note that

obtaining new observations after each inspection does not always lead to better results.

As shown in the EOL prediction for Crack 3 in Fig. 5.15, the prediction uncertainty

decreases because of the diagnosis process based on the new observations, but the mean
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value deviates further from the true value. This deviation occurs because the prognostic

accuracy depends on the estimated damage level from the observation, which is a single

realization from the observation model fê(eo, d) with randomness. In other words, the

obtained observation may not always contribute to the prognostic process, as the image

quality taken by UAVs may vary from time to time. However, continuous inspections will

eventually rule out the uncertainty and improve the accuracy of the predictions. In the

case that a repair is performed after the damage is detected, the EOL of the structure

will be extended significantly, as the maintenance action guarantees the reliability of the

structure, allowing the system to operate for a longer time.

Figure 5.15. Effect of detectability on prognostics results.
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5.7.1 Parametric study of the developed framework

To numerically show the impacts of different inspection and maintenance strategies

on CPUT using the proposed framework, we randomly generated ten samples in the 3-D

input space constructed by d, em, and TI , using the Latin hyper-cube sampling method.

The 10 samples are presented in Table 5.2. We then identified the designs corresponding

to the highest and lowest CPUTs for three different cost scenarios. Finally, we analyzed

the reasons why these designs resulted in high or low CPUTs.

Table 5.2. 10 samples of different inspection and maintenance strategies

Inspection
distance d
(ft.)

Maintenance
threshold
em (in.)

Inspection
interval TI

(month)

5.50 2 6
3.25 3 10
7.75 1 2
4.38 1.5 6
8.88 3.5 7
2.13 2.5 13
6.63 0.5 13
3.81 0.75 14
8.31 2.75 21
1.56 3.75 29

Case 1: Csys/Cr = 100, average CI = 55

The cost ratio between repairing and system failure is 100. The inspection cost

coefficient is 10, which means the cost of performing a UAV inspection varies from 1/10 to

1 of the repair cost of a single region. The extreme results for the two lowest CPUTs and

two highest CPUTs are shown in Table 5.3.

As mentioned previously in Section 5.6, region 1 (where Crack 1 exists) will fail at

month 9, which is 5 months later after the current inspection. Both strategies correspond

to a low CPUT (i.e., designs labeled with an “L” for Case 1 in Table 5.3) set a damage

165



repair level lower than the length of crack 1. It means that region 1 will get repaired

once the crack is detected. By repairing the region with a high failure possibility, both

strategies (i.e., [d, em, TI ] = [4.38, 1.5, 6] and [d, em, TI ] = [5.50, 2, 6]) reduce the potential

of system failure, thus minimizing the CPUT.

The extremely high CPUTs from the strategies labeled with an “H” for Case 1

in Table 5.3 (i.e., [d, em, TI ] = [1.56, 3.75, 29] and [d, em, TI ] = [8.88, 3.5, 7]) are caused by

setting a relatively large damage repair level, which means most of the regions will not get

repaired even if a crack is detected. By leaving the region with a high failure possibility

unrepaired, both strategies expose the whole system to a high risk of system-level failure,

thus “maximizing” the CPUT.

Case 2: Csys/Cr = 2, average CI = 55

The cost ratio between repairing and system failure is 2. The inspection cost

coefficient is 10, which means the cost of performing a UAV inspection now varies from

only 1/500 to 1/50 of the repair cost of a single region. The extreme results for the two

lowest CPUTs and two highest CPUTs are shown as Case 2 in Table 5.3.

As shown in Case 2 of Table 5.3, due to the high cost of a repair action, a higher

damage repair limit is now saving more money compared to Case 1. More specifically, a

repair limit of em = 2 or em = 1.5 leads to the lowest CPUTs amongst the studied 10

designs for Case 1, while em = 2.5 or em = 2.75 results in the lowest CPUTs amongst the

same 10 designs for Case 2.

Unlike Case 1, the two extremely high CPUTs observed in Case 2 now can be

attributed to two distinct strategies. One strategy (i.e., [d, em, TI ] = [1.56, 3.75, 29]) again,

sets a large damage repair level and an extremely long inspection interval, leaving regions

remaining unrepaired without timely inspection. The other strategy (i.e., [d, em, TI ] =

[7.75, 1, 2]), however, causes an outstanding CPUT by setting a very small damage repair

level and a short inspection interval. Some regions get repaired even if the cracks are
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not dangerous, and another inspection is carried out shortly after such conservative

maintenance. As a result, when the repair cost increases, performing excessive and

unnecessary maintenance would significantly elevate the CPUTs.

Case 3: Csys/Cr = 2, average CI = 275

In this case, the cost ratio between repairing and system failure is 100, while the

inspection cost coefficient is 50, making the UAV inspection cost range from 1/2 to 5 times

the local repair cost. As presented in Table 5.3, the same four inspection/maintenance

parameters result in the two lowest and two highest CPUTs, as in Case 1. However, the

increasing inspection cost impacts the order of the two lowest CPUTs. In Case 1, a smaller

inspection distance with a more conservative damage repair limit is more economically

viable, whereas in Case 3, a larger inspection distance with a riskier damage repair limit

now leads to a lower CPUT. To conclude, this case highlights the trade-off between

allocating resources for thorough UAV inspections and investing in consistent maintenance

efforts.

Table 5.3. Parametric study of the impact of costs and design variables on CPUT

Case Description d
(ft.)

em
(in.)

TI

(Months)
CPUT High

/Low

4.38 1.5 6 19.05 L
5.50 2 6 26.73 L
1.56 3.75 29 1049.93 H

1 Csys/Cr = 100, average CI = 55

8.88 3.5 7 584.26 H
2.13 2.5 13 427.69 L
8.31 2.75 21 604.88 L
7.75 1 2 5710.72 H

2 Csys/Cr = 2, average CI = 55

1.56 3.75 29 1250.96 H
5.50 2 6 34.90 L
4.38 1.5 6 47.28 L
1.56 3.75 29 1286.88 H

3 Csys/Cr = 100, average CI = 275

8.88 3.5 7 705.33 H
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5.7.2 Bayesian optimization for optimal inspection and mainte-
nance planning

Using Case 1 from Table 5.3 as an example, it’s important to note that the lowest

CPUT out of the 10 generated samples is not necessarily the optimal solution. With

infinite inspection and maintenance strategies that can be implemented for the system,

exhaustively calculating all possible combinations for optimal solutions is extremely time-

consuming and impractical. Therefore, Bayesian optimization is employed to sequentially

find the optimal inspection and maintenance strategies, namely the best d, em, and TI

for the system. Fig. 5.16 shows the convergence history of the optimization results over

iterations.

Figure 5.16. The obtained minimal CPUT at each iteration using Bayesian optimization.

The results presented in Figure 5.16 demonstrate the effectiveness of the proposed

Bayesian optimization framework in identifying optimal inspection and maintenance

strategies. Prior to optimization, the currently known “optimal” strategy for Case 1 was

identified as using parameters resulting in the lowest CPUT: {d, em, TI} = (4.38, 1.5, 6).
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However, after only 15 iterations, a new optimal solution was found as {d, em, TI} =

(2.96, 2.96, 9), which reduced the CPUT from 19.05 to 13.96. The iterative updating

process sequentially led to the identification of better strategies, as detailed in Table 5.4.

Notably, the first two improvements indicate that a longer operational time after proper

maintenance can lead to reduced CPUT. However, the benefits of increasing the operational

time should be weighed against the risks of prolonged operation without inspection and

maintenance.

Table 5.4. The optimal CPUT found at each stage during Bayesian optimization.

Iteration d (ft.) em (in.) TI

(months)
CPUT

Initial 2.13 2.5 7 19.05
4 3.15 2.77 8 16.95
8 3.36 2.82 13 16.01
11 2.96 2.96 9 13.96

The subsequent evaluation section will elaborate on the economic performance

implications of optimally determined UAV inspection parameters.

5.7.3 Performance evaluation

With the determination of the optimal UAV inspection parameters, the proposed

optimization framework guides future UAV inspections optimally. This section reuses

Case 1 to exhibit the economic enhancements compared to the traditional fixed-period

inspection approach. For demonstration purposes, we use a fixed inspection period of

TI = 10 months, a constant UAV inspection distance d = 5, and a constant maintenance

threshold em = 2. In contrast, the proposed framework dynamically adjusts all inspection

parameters after each inspection. The performance comparison of our framework and

the fixed-period inspection method is displayed in Fig. 5.17. Fig. 5.17(a) shows that the

optimized inspection strategy keeps the structure’s failure probability low, offering a clear

improvement over the fixed-period method. Fig. 5.17(b) presents the expected cost due to
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repair actions, UAV inspection, and potential failure probabilities. Here, the economic

benefits of our optimized framework are more significant in terms of expected cost by

reducing the potential failure probability. Although the strategy incurs slightly higher

costs in some periods due to choosing a smaller inspection distance, this approach ensures

observation reliability at the expense of inspection cost.

Figure 5.17. Comparison between optimized inspection and fix-period inspection in 40
months: (a) the structural failure probability, and (b) the overall inspection and

maintenance cost.

Note that the performance shown in Fig. 5.17 is obtained from only a single

realization from the Monte Carlo simulation, which can not capture all uncertainties. As

such, it may not fully reflect the traditional fixed-period inspection’s negative impact. For

instance, a longer inspection distance may lead to a low probability of detection, potentially

leading to structural failure due to undetected dangerous cracks. Overall, the proposed

framework manifests its potential to exploit model-based diagnostics and prognostics for

the efficient optimization of UAV inspection and maintenance protocols for large-scale

structures.
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5.8 Conclusions

The proposed framework offers a promising approach to optimizing UAV inspection

and maintenance protocols for large-scale structures under complex deteriorating conditions.

By leveraging model-informed diagnostics and prognostics, this framework allows for the

identification of optimal inspection and maintenance strategies that can significantly

reduce the cost of unscheduled maintenance and system failure. Through numerical

simulations, we have demonstrated the effectiveness of this framework in identifying the

best combination of inspection distance, damage repair limit, and inspection interval

to minimize the cost of unscheduled maintenance, system failure, and inspection. The

incorporated Bayesian optimization successfully improves the computational efficiency

of finding the optimal solution for UAV missions. The results of this study underscore

the importance of using model-based diagnostics and prognostics to inform the design of

inspection and maintenance protocols, as well as the value of optimizing these protocols

to minimize life-cycle costs and improve system reliability.

Further development of this framework could follow one of two primary ways:

1. Integration with data-driven methods: Data-driven methods enable predicting

the system’s behavior based on additional data sources, such as sensor data. The integration

of physics-based and data-driven methods can improve the accuracy and reliability of the

health state prediction and inspection and maintenance optimization.

2. Realization of complex environmental conditions: Real-world structures operate

under more complex environmental conditions. Environmental factors such as wind turbu-

lence, light/shadow variations, and even underwater conditions (if, for example, underwater

unmanned vehicles are used) can significantly affect the accuracy and effectiveness of

the proposed framework. To improve the framework’s robustness and applicability to

real-world scenarios, it is necessary to incorporate more realistic environmental conditions

into the model.
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5.9 Remarks

This chapter is composed of a first-authored publication: Wu, Z., Zeng, J., Hu, Z.,

& Todd, M. D. (2023). Optimization of unmanned aerial vehicle inspection strategy for

infrastructure based on model-enabled diagnostics and prognostics. Mechanical Systems

and Signal Processing, 204, 110841.
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Algorithm 3. Pseudo-code of Model-Based Inspection Optimization Framework

1: procedure Model Updating and failure prognostics(eo,j+1, eo,1:j, θi, d, em,
Tj)

▷ Update θi for given eo,j+1 and eo,1:j, and analyze impacts of d, em and Tj on
subsequent failure prognostics.

2: if a damage is detected from observations eo,1:j+1 then
3: Calculate the posterior f ′′

θi+Tj
|eo,1:(j+1)

and f ′′
ei+Tj

|eo,1:(j+1)
using Eqs. (5.13) - (5.16)

4: else
5: Calculate fe|Z=0(e|Z = 0, d) using Eq. (5.18)
6: end if
7: Calculate the PDF of e0,d for failure prognostics using Eq. (5.19)
8: if repair action is taken: eo,j+1 ≤ em then
9: Calculate fe0(e|eo,j+1, em) using Eq. (5.22)
10: else
11: Calculate fe0(e|eo,j+1, em) using Eq. (5.21)
12: end if
13: Calculate the PDF of e0,d considering damage detectability using Eq. (5.23)
14: Calculate Fsys(t; d, em, {ei+Tj ,c}Nc

c=1) using Eq. (5.25)
15: end procedure
16: procedure Inspection cost function evaluation(d, em, TI)

▷ Evaluate the CPUT for any given d, em, and Tj based on MODEL UPDATING
AND FAILURE PROGNOSTICS.

17: Calculate the inspection cost CI(d) using Eq. (5.30)
18: Calculate the repair action cost CR(d, cm) using Eq. (5.31)
19: Calculate the structural failure cost CF (d, cm, TI) using Eq. (5.33)
20: Calculate the total expected cost EC((d, em, TI)|{ei+Tj ,c}Nc

c=1) using Eq. (5.34)

21: Calculate the expected operational time ET ((d, em, TI)|{ei+Tj ,c}Nc
c=1) using Eq.

(5.36) based on model-based failure prognostics.
22: Determine the objective function Gc(d, em, TI) using Eqs. (5.37) - (5.38)
23: end procedure
24: procedure Inspection Parameter Optimization(tolerance, d, em, TI)

▷ Optimize d, em, and Tj, based on INSPECTION COST FUNCTION
EVALUATION.

25: Train a GPR-based surrogate model ĝ(ω) to represent the objective/cost function
26: for i ∈ [0, ..., N ] do
27: Generate EI(ω) according to Eq. (5.41)
28: Find new training point ωnew according to Eq. (5.43)
29: if EI(ω) < tolerance then
30: exit for loop
31: end if
32: end for
33: Return the optimized inspection parameters
34: end procedure
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Chapter 6

Conclusions and Future Research

Inland waterways infrastructures like miter gates have served beyond their antic-

ipated lifespans. The challenges these structures face – primarily cracks and corrosion

induced by prolonged water exposure – underscore the critical need for an evolved SHM

system. This thesis proposes a comprehensive optimization framework that not only en-

hances damage diagnostics and prognostics but also paves the way for predictive inspection

and maintenance strategies.

As shown in Figure 6.1, the key contributions of this research can be summarized

as 1) Enhancing the efficiency of solving forward problems through a surrogate-based

global-local model, bypassing the need for computationally intensive finely-discretized

physics modeling; 2) Developing a model-based diagnostic and prognostic framework with

a dynamic Bayesian network that accounts for the uncertainty in multiple observations;

3) Integrating diverse data sources to estimate structure damage state with various fail-

ure modes, given that each data type has varying sensitivities to different damages; 4)

Fine-tuning a deep learning model for underwater crack detection with a limited dataset

by employing a graphics-based digital twin model and transfer learning; 5) Constructing

a model-enabled optimized inspection and maintenance framework that facilitates bidi-

rectional information exchange between UAV inspection planning and structural health

assessment.
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Figure 6.1. Key contribution areas of this research.

Chapter 2 addresses the computational challenges of fine-discretized modeling

in forward problem-solving. An iterative global-local modeling approach is designed to

manage the difference in scale between the coarse global model and the finely-discretized

local model. The interaction between the global and local models is accurately calculated by

iteratively solving the displacement and reaction force along their shared local boundary.

Gaussian Process Regression (GPR) is used to accelerate these repetitive simulation

processes. Additionally, to maintain the surrogate model’s accuracy, a sequential sampling

training strategy is proposed which incrementally gathers training samples based on the

current model’s performance, enhancing the training space’s coverage without over-relying

on excessive training samples.

Chapter 3 presents an online diagnostic and prognostic framework that integrates

various data sources for structures subject to multiple types of failures. By employing a

dynamic Bayesian network, it effectively combines sensor and image data across continuous

time steps, facilitating precise damage detection and forecasting across a range of damage

magnitudes. This approach also considers the uncertainty inherent in various data types.

By updating the digital twin model and tracking the damage state of the structure with
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continuous observation, the framework enables a robust damage assessment and the overall

reliability of structural health evaluations.

Chapter 4 addresses the challenges faced by existing vision-based damage detection

methods in underwater environments. It introduces a graphics-based digital twin model

designed to create synthetic underwater images of miter gates. Utilizing transfer learning,

these synthetic images allow for the fine-tuning of deep learning models for specific under-

water scenarios, bypassing the need for extensive initial training data and computational

resources. Additionally, the impact of different environmental factors on the detectability

of the deep learning model is studied through a global sensitivity analysis. This analysis

provides valuable insights into potential solutions for conducting inspections in real-world

underwater settings.

Chapter 5 introduces a physics-informed inspection planning framework based

on model-based diagnostics and prognostics. This framework facilitates a bidirectional

information exchange between UAV inspection planning and structural reliability. This

includes a comprehensive analysis of how key UAV inspection parameters affect the overall

cost over the structure’s life cycle. It is noted that using Monte Carlo simulations to

quantitatively assess every potential inspection and maintenance strategy combination

could demand considerable time and computational resources. This chapter applied

Bayesian optimization to effectively minimize the time and effort needed to optimize the

inspection and maintenance strategy.

The inherent flexibility of this framework, while designed to tackle the complex

requirements of miter gate SHM, can be simplified and adapted to address more straightfor-

ward, practical problems across different fields. This adaptability underscores the potential

of the proposed high-level SHM framework to not only revolutionize the maintenance and

inspection of miter gates but also to serve as a foundational model for solving diverse

engineering problems.

While this thesis marks a significant advancement in SHM, it also opens several
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avenues for future research:

• Advanced machine learning models: The exploration of more sophisticated machine

learning models, particularly those capable of handling sparse and imbalanced

datasets, could enhance the accuracy of damage detection and classification.

• Real-world validation: Extending the application of the proposed SHM framework

to more real-world scenarios would provide valuable insights into its adaptability

and scalability.

• Longitudinal studies on SHM performance: Conducting long-term studies on the

performance and reliability of SHM systems in varying environmental conditions

could help in improving the models and algorithms for better durability.

This research lays the groundwork for an integrated and optimized SHM framework

for infrastructure operation, inspection, and maintenance. The future of SHM is bright,

with the potential to significantly impact the maintenance, safety, and longevity of critical

infrastructure worldwide, contributing to the stage for an era of more intelligent and

resilient infrastructure systems.
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