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Abstract

Background: Amyloid-β positivity (Aβ+) based on PET imaging is part of the enrollment 

criteria for many of the clinical trials of Alzheimer’s disease (AD), particularly in trials for 

amyloid-targeted therapy. Predicting Aβ positivity prior to PET imaging can decrease unnecessary 

patient burden and costs of running these trials.

Objective: The aim of this study was to evaluate the performance of a machine learning model in 

estimating the individual risk of Aβ+ based on gold-standard of PET imaging.

Methods: We used data from an amnestic mild cognitive impairment (aMCI) subset of the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to develop and validate the models. 

The predictors of Aβ status included demographic and ApoE4 status in all models plus a 

combination of neuropsychological tests (NP), MRI volumetrics, and cerebrospinal fluid (CSF) 

biomarkers.

Results: The models that included NP and MRI measures separately showed an area under the 

receiver operating characteristics (AUC) of 0.74 and 0.72, respectively. However, using NP and 
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MRI measures jointly in the model did not improve prediction. The models including CSF 

biomarkers significantly outperformed other models with AUCs between 0.89 to 0.92.

Conclusions: Predictive models can be effectively used to identify persons with aMCI likely to 

be amyloid positive on a subsequent PET scan.

Keywords

Alzheimer’s disease; amyloid imaging; machine learning; mild cognitive impairment; predictive 
analytics

INTRODUCTION

Cerebral amyloid-– (Aβ) deposition is a hallmark pathologic change in Alzheimer’s disease 

(AD) and is believed to precede dementia by many years [1]. In the last decade, many 

clinical trials have tried to use targeted therapies to lower brain Aβ, but all these trials have 

failed to achieve significant effects on clinical endpoints [2-4]. Major proposed reasons for 

failure include clinical heterogeneity of participants, selection of an inappropriate biological 

target (i.e., merely reducing amyloid production or aggregation cannot modify disease 

progression) [5], enrollment of individuals based on unreliable criteria, and inclusion of 

individuals who did not have increased cerebral Aβ and were unlikely to have had AD 

pathology [6].

To address some of these limitations, the new NIA-AA Research Framework has proposed 

to use biomarkers of Aβ deposition, pathologic tau, and neurodegeneration [AT(N)] to 

diagnose AD and decrease heterogeneity in research study samples. Similarly, more recent 

clinical trials have used biomarkers of amyloid status measured in cerebrospinal fluid (CSF) 

or in the brain using positron emission tomography (PET) [7]. While amyloid PET is 

considered non-invasive, and may be more reliable than CSF biomarkers [8], its utility in 

both research and clinical practice has been limited. Factors that have prevented widespread 

use of PET imaging in research and practice include availability, economic factors (high 

costs, not being covered by insurance), and patient or caregiver’s concerns (safety, burden, 

tolerance, and radiation exposure) [9].

Recruitment of eligible amnestic mild cognitive impairment (aMCI) patients is a major 

bottleneck in conducting secondary prevention trials; as few as 10–20% of potential MCI 

patients are actually trial-eligible [10]. In addition, only 40–60% of aMCI patients are likely 

to be Aβ positive based on the current gold standard of amyloid PET, which further limits 

the number of trial-eligible individuals [11]. Without using any predictive models, to 

establish Aβ positivity, all enrolled participants (based on initial clinical diagnostic criteria) 

require amyloid PET imaging at the time of screening. Therefore, predicting Aβ positivity 

prior to PET imaging can decrease unnecessary patient burden and costs of running the 

trials.

In addition, were a treatment to become available for the prevention of AD in persons with 

aMCI, implementation in clinical practice might be difficult. Amyloid PET would be an 

expensive option for identifying individuals eligible for treatment. One option might be to 
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develop and use risk prediction models and screening algorithms similar to what has been 

used in cardiovascular disease [12] or various types of cancer [13, 14]. Using this approach, 

data gathered at lower cost (e.g., neurocognitive tests and MRIs) could be used to predict Aβ 
positivity. Amyloid PET would be performed in a selected subgroup of individuals predicted 

to have a positive amyloid scan. Machine learning (ML) techniques provide a promising 

method for predicting amyloid positivity. These approaches are specifically designed to 

predict outcomes and provide a feasible approach for exploiting and managing complex and 

high-dimensional data [15, 16]. Developing practical predictive models can drive a major 

shift in clinical care and for both primary and secondary prevention purposes [17-21].

The primary goal of this study was to compare the relative sensitivity, specificity, positive 

predictive value (PPV), and negative predictive value (NPV) of different combinations of 

features (demographics, APOE ε4 status, neuropsychological tests, MRI volumetrics, and 

CSF biomarkers) used in a ML model to predict PET Aβ positivity. The model was 

developed in a subsample of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

aMCI population and was subsequently validated using an independent sample from the 

same cohort. Considering that availability and associated burden and costs of each of these 

measures is different (e.g., MRIs require staying still for long periods and lumbar puncture is 

an invasive procedure), we evaluated the predictive value of each of the multimodal features 

separately and jointly.

METHODS

Study design and participants

The data used for this analysis were downloaded from the ADNI database (http://

www.adni.loni.usc.edu) in March 2019. The ADNI is an ongoing cohort, which was 

launched in 2003 as a public–private partnership. The individuals included in the current 

study were initially recruited as part of ADNI-GO, and ADNI-2 between 2009 and 2013. 

This study was approved by the Institutional Review Boards (IRB) of all participating 

institutions. Informed written consent was obtained from all participants at each site.

A total of 369 participants diagnosed with MCI who were enrolled in ADNI-GO, and 

ADNI-2 were eligible for this study. Eligible individuals completed baseline visit and had 

MRIs and amyloid PET imaging in the same wave of study. All ADNI participants with the 

diagnosis of MCI, were diagnosed as having amnestic MCI; this diagnostic classification 

required Mini-Mental State Examination (MMSE) scores between 24 and 30 (inclusive), a 

memory complaint, objective memory loss measured by education-adjusted scores on the 

Wechsler Memory Scale Logical Memory II, a Clinical Dementia Rating (CDR) of 0.5, 

absence of significant impairment in other cognitive domains, essentially preserved activities 

of daily living, and absence of dementia. Participants whose scans failed to meet quality 

control or had unsuccessful image analysis were excluded from this study.

Study measures

Neuropsychological data—Neuropsychological (NP) tests included the MMSE, the 11-

item Alzheimer’s Disease Assessment Scale cognitive subscale (ADAS-cog), and Logical 
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Memory II [22-24]. These tests were available for all participants in ADNI studies from the 

beginning of cohort and therefore, they were not a limiting factor for inclusion of 

participants in this study. All NP measures were entered into models as continuous variables.

APOE gene status—APOE ε4 allele (ApoE4) frequency was available for all participants 

included in this study. ApoE4 status was defined as ApoE4-negative (−) if they carried no 

ApoE4 allele or ApoE4-positive (+) if they carried at least one ApoE4 allele.

MRI acquisition and preprocessing—MRIs were obtained across different sites of the 

ADNI study with a unified protocol (For more information, please see http://

adni.loni.usc.edu/). MRI data were automatically processed using the FreeSurfer software 

package (available at http://surfer.nmr.mgh.harvard.edu/) by the Schuff and Tosun laboratory 

at the University of California-San Francisco as part of the ADNI shared data-set. FreeSurfer 

methods for identifying and calculation of regional brain volume are previously described in 

detail [25]. Volumes of 47 regions of interests (ROIs), derived from FreeSurfer software, 

were used as MRI indicators. For the purpose of this study, volume of all regions of interest 

(ROIs) were normalized for total intracranial volume (TICV) and the ratio of ROIs’ volume 

(ROIv) to TBV [i.e., (ROIv/TICV) x mean whole population ROIv] was used in the analyses 

and reported throughout the manuscript unless otherwise specified.

PET imaging acquisition and preprocessing—Florbetapir PET images were 

obtained across different sites of ADNI study with a unified protocol (For more information, 

please see http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/) Data were 

processed at the Jagust lab at University of California, Berkeley. Details of the methods used 

to process PET images have been previously described [26]. In brief, a native-space MRI 

scan for each subject was segmented and parcellated with FreeSurfer to define cortical grey 

matter regions of interest (frontal, anterior/posterior cingulate, lateral parietal, lateral 

temporal) that make up a summary cortical ROI. In addition, five reference regions were 

created (cerebellar grey matter, whole cerebellum, brainstem/pons, eroded subcortical white 

matter, and a composite reference region). Subsequently each PET scan was coregistered to 

the corresponding MRI and the mean Florbetapir uptake within the cortical and reference 

regions were computed. A Florbetapir SUVR was calculated by averaging across the four 

cortical regions and dividing this summary ROI by the uptake in the whole cerebellum. To 

establish Amyloid positivity or negativity, a Florbetapir SUVR cutoff of 1.11 was used as 

recommended by previous studies [27]. For the purpose of this study, we only used the first 

Florbetapir PET scan obtained from each participant.

CSF biomarkers—CSF samples were batch processed by the ADNI Biomarker Core at 

the University of Pennsylvania School of Medicine and CSF tau, p-tau181p, and Aβ1-42 were 

measured for all participants with CSF sample [28]. These data were available for 335 

participants (90.5% of the whole sample) and sections of data analysis that required CSF 

measures were limited to these participants. CSF measures were included as continuous 

variables in ML models. However, for the purpose of simplicity, in Table 1 individuals were 

classified according to CSF concentration thresholds (tau: >93 pg/mL; p-tau181p: >23 
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pg/mL; Aβ1-42<192 pg/mL) previously established to maximize sensitivity and specificity of 

autopsy confirmed AD [29].

Data analysis

Training and validation samples—The training and validation of the ML model was 

performed by using the split half method. For this purpose, participants were randomly split 

into two independent samples with approximately equal number of Aβ− and Aβ+ based on 

PET imaging. One sample was used as training data-set and the other sample was used for 

validation of models. This validation method enables the generalization of the trained ML 

model to data that have never been presented to the ML algorithms previously.

Selection of feature-sets (indicators)—Demographics (age, sex, and education), 

ApoE4 status, NP tests, all available volumetric MRI measures (FreeSurfer outputs), and all 

CSF biomarkers mentioned above were used as features in the predictive models. We chose 

7 different feature-sets and compared the performance of ML models which used these 

feature-sets for classification. In addition to demographics and ApoE4, models include the 

following features: Model 1) NP tests; Model 2) MRI volumetrics; Model 3) CSF 

biomarkers; Model 4) NP tests plus MRI volumetric; Model 5) NP tests plus CSF 

biomarkers; Model 6) MRI volumetric plus CSF biomarkers; Model 7) NP tests, MRI 

volumetric plus CSF biomarkers.

Machine learning model—Analysis and computation of ML methods were conducted 

using MATLAB ©(version 2018b). We used Ensemble Linear Discriminant (ELD) ML 

models for the purpose of classification and pattern recognition. EDL is among the family of 

classification methods known as ensemble learning, in which the output of an ensemble of 

simple and low-accuracy classifiers trained on subsets of features are combined (e.g., by 

weighted average of the individual decisions), so that the resulting ensemble decision rule 

has a higher accuracy than that obtained by each of the individual classifiers [30, 31]. In this 

work, we combined linear discriminant functions (i.e., hyperplanes that dichotomize the 

samples based on subsets of features) in order to construct the ensemble classifier. To avoid 

overfitting, we trained the models for a maximum of 100 cycles. We monitored the learning 

curve and picked the cycle with the lowest misclassification rate for termination of the 

training. The parameters for the models were optimized automatically through the 

hyperparameter optimization process in MATLAB.

Training the classification model—Data from the training sample (N = 185) were used 

for training of the classifier (Fig. 1). Models were trained to recognize Aβ− versus Aβ+ 

individuals using all sets of the features as described above. A 10-fold cross-validation 

procedure was used in all models for testing validity of the models. Cross-validation is an 

established statistical method for validating a predictive model, which involves training 

several parallel models, each based on a subset of the training data. Subsequently, the model 

performance is evaluated based on the average accuracy in predicting the labels of the 

omitted portion of the training data [32]. The performance of each model was calculated 

based on the total percentage of correct classification (accuracy), sensitivity, specificity, 

PPV, NPV, and area under the curve (AUC).
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Prediction of amyloid status in the validation sample—Following training of the 

models, they were applied to the validation sample to predict amyloid positivity of each 

person (Fig. 1). Using the same feature-sets used for training of models, each individual was 

assigned to “predicted Aβ−” or “predicted Aβ+” groups. The performance of the predicted 

outcome was evaluated using the results obtained from PET imaging. Accuracy, sensitivity, 

specificity, PPV, and NPV for each model were estimated.

Inverse cross-validation—To further validate the models, we performed an inverse 

cross-validation by training the ML model using the half-sample that was used for prediction 

previously and using the half-sample that was used for training as the prediction subset. 

Considering that results for this analysis was very similar to the initial model (see 

Supplementary Tables 1 and 2) and to avoid confusion, we primarily focus on the results of 

the first model for the rest of this article.

Data availability—Data from ADNI cohort is publicly available. Programming codes used 

for this paper are available upon request.

RESULTS

Sample characteristics

Participants with aMCI had an average age of 71.2 years (SD = 7.2) and 54.5% were men. In 

both subsamples (training and validation), in comparison with Aβ− subgroup, the Aβ+ 

subgroup was older and had less favorable performance on NP tests, had smaller 

hippocampal volumes and had a CSF profile that was more similar to AD. Table 1 

summarizes participants’ demographics and clinical characteristics.

Developing the amyloid prediction models in the training subsample

Performance of ELD models using 7 different feature-sets for classification of training 

sample to Aββ or Aβ+ on PET is summarized in Table 2. In the training set, the area under 

the curve (AUC) of models including demographics, ApoE4, and NP tests or MRI 

volumetrics (models 1 and 2) were 0.74 and 0.72, respectively. The combination of NP with 

MRI (model 4, AUC = 0.70) did not improve the prediction. AUC of the models including 

demographics, ApoE4, and CSF markers alone was substantially higher (model 3, AUC = 

0.86), however neither addition of NP (model 5, AUC = 0.89) or MRI (model 6, AUC = 

0.90) improve the models. The combination of all measures yielded an AUC of 0.90 (model 

7).

Performance of the amyloid prediction models in the validation subsample

After development of ELD models, they were applied to the data from validation sample to 

assign participants to Aβ− or Aβ+ (Table 3). The AUC of models including demographics, 

ApoE4, and NP tests or MRI volumetrics (models 1 and 2) were 0.72 and 0.71, respectively. 

AUC of the model including demographics, ApoE4, and CSF markers as features was higher 

(model 3, AUC = 0.86). Inclusion of both MRI volumetric and NP tests as features in the 

same model did not make a substantial change in the performance of model in comparison 
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with models including them separately (model 4, AUC = 0.73). Models that included CSF 

measures (models 3, 5, 6, 7) had substantially better performance in comparison with 

models that did not include them (see Table 3 for details).

DISCUSSION

In this study, we evaluated the value of machine learning models in predicting amyloid 

positivity based on florbetapir PET scans. We showed that the positive predictive values of 

models, which used NP tests, MRI volumetrics, or CSF biomarkers were 0.72, 0.71, and 

0.86, respectively. Addition of MRI measures to NP tests in the models did not lead to 

improvement in the prediction performance. As expected, addition of CSF measures 

noticeably improved performance of models.

A few studies have previously proposed different types predictive models for detecting 

cerebral amyloid positivity based on demographics, NP tests, MRI measures, and blood or 

CSF-based biomarkers [33-38]. For example, Kander et al. [34] reported AUCs of 0.59–0.67 

for individual NP tests, AUC of 0.64 using all NP tests, and AUC of 0.64 for hippocampal 

volume. Similar to our findings, they showed that adding imaging biomarkers to NP tests in 

the multivariate analysis does not improve the AUC. Palmqvist et al. [36] applied a forward 

selection logistic regression model to demographics, ApoE4, NP tests, and white matter 

lesions for prediction of amyloid positivity and achieved AUCs of 0.80–0.82 in ADNI. Kim 

et al. [35] used similar variables and using logistic regressions, developed a nomogram that 

achieved predictive AUCs of 0.74–0.77.

A common limitation in the previous studies is that in many cases they have used scores of 

individual tests or they have relied on data from one or two modalities, which limited 

investigating the incremental value of combining various modalities. Understanding the joint 

and separate value of different feature sets are of interest to new clinical trials as it could 

affect recruitment strategies due to associated cost and burden of each modality. Obtaining 

demographic info, NP tests and ApoE4 status is relatively easy and inexpensive; however, 

obtaining and processing MRIs are more burdensome (to both the patient and researcher/

clinician) and obtaining CSF biomarkers is difficult considering the invasive nature of 

lumbar punctures. On the other hand, MRI is routinely obtained both in trials and in practice 

to identify or exclude structural factors that could contribute to MCI, such as mass lesions or 

vascular disease. Given that the MRI is part of the evaluation, the incremental cost usually 

arises from image processing and not image acquisition.

It is important to note that interpretation of the performance of the prediction models (and 

therefore their effectiveness) should be evaluated based on the clinical or research question 

and the clinical setting. One setting in which such models could be of use is in a primary 

care setting for screening, especially when an effective treatment for Aβ+ patients becomes 

available. In such settings, using models with the highest sensitivity are more suitable. 

Another setting that these models could be used is for enrichment of AD clinical trials in 

which Aβ positivity on PET scan is an enrollment criterion. In such cases, amyloid risk 

models with high PPV are the most desirable models for reducing the number of 

unnecessary PET scans and decreasing costs and burden of trial. For example, let’s assume a 
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trial design that requires 1000 Aβ+ aMCI participants to be enrolled and Aβ status verified 

using amyloid PET. Assuming that the aMCI population that participants are selected from 

are similar to the ADNI cohort, prevalence of Aβ+ individuals with aMCI would be 61.0%. 

Therefore, without use of any predictive models, 1639 individuals who have passed the 

initial clinical prescreening should undergo amyloid PET screening to identify 1000 Aβ+ 

individuals. Using a predictive model incorporating demographics, ApoE4 status, andNP 

(model 1 in Table 3), can decrease the number of participants to undergo PET scan to 1263 

individuals (approximately 23% decrease in number of screening PET scans), and reduce the 

costs by >2.5 million USD (with an approximate cost of 5000 USD for acquisition and 

analysis of each PET scan), while concurrently decreasing the number of people undergoing 

this invasive and time-consuming procedure. This cost-saving calculation is in line with 

reports of previous studies that have suggested using predictive models to enrich clinical 

trials [36, 38]. It should be noted that in these studies and in our example above, the costs 

associated with clinical prescreening and NP testing is either ignored or it is assumed that 

they are obtained through an online platform at no cost. However, in practice, most clinical 

trials still require a clinic visit for clinical prescreening and NP testing, which costs 

approximately $1000 per person in USA (considerably less in Europe [39]). The number 

needed to screen in a design using amyloid PET predictive models is substantially higher: in 

the example above, clinical data and NP tests should be obtained from a total of 2193 

participants to identify 1263 individuals who are predicted to be amyloid positive based on 

Model 1. Therefore, the costs of in-person clinical visit can potentially offset the costs of 

obtaining fewer PET scans. Considering that AD therapy is moving toward using drugs 

targeting tau or combination therapies (e.g., tau and amyloid), in the long run, such 

predictive models along with online prescreening tools can substantially decrease the costs 

of trial while decreasing the number of people undergoing invasive and time-consuming 

procedures. Additionally, considering the high PPV of models that include CSFbiomarkers 

(>90%), and lower costs of obtaining and analyzing CSF (approximately $1000 in 2019), it 

might be a reasonable choice to replace amyloid PET data with CSF data when obtaining 

PET scans is not an option.

A few limitations for this study should be mentioned. First, ADNI is not a population-based 

study and there are strict inclusion and exclusion criteria for selection of participants, which 

can affect generalizability of our findings. Therefore, validating these models in other 

population-based studies and clinical trials’ data is an essential next step. Moreover, the 

inclusion criteria in ADNI study may further limit the applicability of the findings presented 

here to a broader range of patients. This study focused on aMCI subjects and it is possible 

that in a broader selection of MCI population or in individuals with subjective cognitive 

complaints who do not meet MCI criteria, the models might show different capabilities in 

prediction of amyloid status. Although we showed that using our models can reduce costs of 

conducting research trials or clinical practice, it is difficult to estimate the imposed burden of 

obtaining additional tests (e.g., MRIs, lumbar punctures, etc.) on patients, caregivers, or 

researchers and clinicians. Ultimately, efficiency of clinical trials depends not just on 

reducing the cost of amyloid PET scanning but on the identification of persons who will 

progress in the absence of treatment and who are more likely to respond to treatment. 

Similar approaches have been used extensively for conducting research in other 
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neurodegenerative disease such as Parkinson’s disease and have shown substantial potential 

for use. In a subsequent study, we plan to investigate the rate of progression in various 

groups as identified by predictive models.

To conclude, our results indicate that predictive models can be effectively used to decrease 

the number of participants who need to undergo amyloid PET scans. This approach can 

potentially decrease the costs of the trial and also decrease the burden on patients and 

caregivers who are participating in the trial. By implementing a step-by-step screening 

(adaptable design) procedure to enroll participants in trials and using validated predictive 

models, we can reduce the number of screen failures due to biomarker inclusion criteria and 

associated costs. A similar approach can be used to improve clinical decision-making with 

the least associated cost and burden for treatment of patients in AD continuum when 

effective treatments targeted at AD pathology becomes available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Study design diagram. aMCI, amnestic mild cognitive impairment; ML, machine learning.
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