
UCLA
UCLA Electronic Theses and Dissertations

Title
Distance-oriented Space-filling Design Constructions for Gaussian Process Modeling

Permalink
https://escholarship.org/uc/item/54n4r04h

Author
YIN, Yuhao

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/54n4r04h
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Distance-oriented Space-filling Design Constructions

for Gaussian Process Modeling

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Yuhao Yin

2022

© Copyright by

Yuhao Yin

2022

ABSTRACT OF THE DISSERTATION

Distance-oriented Space-filling Design Constructions

for Gaussian Process Modeling

by

Yuhao Yin

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2022

Professor Hongquan Xu, Chair

Computer experiments are increasingly being used to build high-quality surrogate models for com-

plex emulation systems. Space-filling designs, frequently employed for planning computer ex-

periments, help explore the design space uniformly and thus effectively. Among those, maximin

distance designs are heavily investigated for its intuitive meaning and asymptoticD-optimality for

the Gaussian process modeling when observations are nearly independent. In this thesis, we pro-

pose two deterministic approaches to constructing maximin distance designs with flexible sizes and

extra favorable structures efficiently, including one-dimensional projection uniformity and mirror-

symmetry among design rows. Besides, both classes of designs are nearly column-orthogonal,

which guarantees low correlation between factors and improves the identification of linear trend

of factorial effects. Meanwhile, we propose a new Bayesian-inspired space-filling criterion for the

Gaussian Process modeling by meticulously planning the prior imposed on the correlation parame-

ters, which ensures a better quantification of the significance of different design factors. A system-

atic procedure is introduced to rigorously select the hyperparameter within and two metaheuristic

algorithms together with our novel implementations are presented to search for the corresponding

ii

optimal design in a timely fashion. Furthermore, we illustrate the merits of this newly-introduced

criterion in terms of its space-filling properties against other existing measures and Gaussian Pro-

cess model-fitting performances against extensive simulation functions potentially with many inert

factors.

iii

The dissertation of Yuhao Yin is approved.

Arash A. Amini

Weng Kee Wong

Yingnian Wu

Hongquan Xu, Committee Chair

University of California, Los Angeles

2022

iv

This work is completely dedicated to my beloved parents and grandparents.

For their profound and everlasting love

v

TABLE OF CONTENTS

1 Introduction . 1

2 Construction of Maximin L1-Distance Latin Hypercube Designs 5

2.1 Notation and Preliminaries . 5

2.2 Construction Method . 6

2.3 Theoretical Results and Comparisons . 11

2.3.1 N = p and 2p . 12

2.3.2 N = 2t and 2tp . 15

2.3.3 Numerical studies . 19

2.4 Concluding Remarks . 21

2.5 Appendix: Proofs . 22

3 Construction of Mirror-Symmetric Maximin L1-Distance Designs 29

3.1 Notation, Background and Preliminary Results 29

3.2 Main Construction Methods . 31

3.2.1 Balanced designs . 33

3.2.2 Mirror-symmetric LHDs . 37

3.2.3 Leave-one-out extension . 38

3.2.4 Another class of mirror-symmetric LHDs 39

3.2.5 Further extension of the leave-one-out procedure 41

3.3 Numerical Comparisons . 44

3.3.1 Distance efficiency and average pairwise correlations 44

vi

3.3.2 Space-filling properties under projections 45

3.3.3 Correlation among higher order terms . 46

3.4 Concluding Remarks . 50

3.5 Appendix: Proofs . 50

4 Bayesian-Inspired Distance Designs . 60

4.1 Bayesian-Inspired Distance Criterion . 61

4.2 Connection to Optimal Moments Criterion . 63

4.3 Influence of Different λ’s on Design Properties 66

4.4 Optimization Algorithms for Design Construction 69

4.4.1 Simulated Annealing Algorithm . 70

4.4.2 Genetic Algorithm . 72

4.5 Numerical Results . 73

4.5.1 Optimization Algorithms . 73

4.5.2 Optimal Design Criteria . 76

4.6 Concluding Remarks . 81

5 Conclusion . 84

vii

LIST OF FIGURES

2.1 Maximum number of different values of the pairwise L1-distances (dashed line) in the

LHD(n, n)’s constructed by Algorithm 2.1, and the corresponding ⌊n/2⌋ (solid line). . 10

2.2 Minimum efficiencies of LHD(n, n)’s (solid line) generated by Algorithm 2.1 for gen-

eral N ’s, n = ϕ(N)/2. 12

2.3 Efficiencies of LHD(n, n)’s generated by the proposed method for N = 23p (solid

line) and 24p (dashed line). 18

2.4 Efficiencies of LHD(p−1, (p−1)/2)’s generated by differentmethods: the newmethod

(solid line), LP-GLP (twodash line) and SLHD (dotted line). 19

2.5 Efficiencies of LHD(n, n)’s generated by the proposed method forN = 5p (solid line),

7p (dashed line), 11p (twodash line) and 13p (dotted line). 20

2.6 Efficiencies of LHD(n, n)’s generated by the proposed method forN = p2 (solid line)

and p3 (dashed line). 21

3.1 The permutation φ(x) in (3.1) for p = 7 and 9. 32

3.2 Comparison of the values of deff (left) and ρave (right) of the leave-one-out LHDs con-

structed in Section 3.2.3 and the LHDs obtained via the SLHD package. 45

3.3 Comparisons of projection space-filling properties for 25×12 designs under minimum

Euclidean distance (the larger the better), maximum ψ(D) (the smaller the better), rel-

ative maximum CD2 (the smaller the better), and maximum ρave (the smaller the better)

criteria. 47

3.4 Comparisons of projection space-filling properties for 49×24 designs under minimum

Euclidean distance (the larger the better), maximum ψ(D) (the smaller the better), rel-

ative maximum CD2 (the smaller the better), and maximum ρave (the smaller the better)

criteria. 48

viii

4.1 Visualization of two-dimensional Latin hypercube Bayesian-inspired distance designs

with 80 runs against different λ’s. 67

4.2 Visualization of two-dimensional multi-level balanced Bayesian-inspired distance de-

signs with 32 runs and 8 levels against varying λ’s. 68

4.3 Comparisons of relative log-determinant of the correlation matrix among BID designs

and other space-filling designs with two factors. bid1e-5 and bid1e-2 represent the

BID designs with λ = 1e−5 and 0.01 respectively. Each subplot considers a different

true Gaussian correlation function, where the correlation parameter αk ∼ Exp(λ) with

λ = 0.01, 0.1 and 1. 69

4.4 Comparisons of relative log-determinant of the correlation matrix among BID designs

and other space-filling designs with eight factors. bid1e-2, bid1e-1 and bid1 cor-

respond to the BID designs with λ = 0.01, 0.1 and 1 respectively. Each subplot con-

siders a different true Gaussian correlation function, where the correlation parameter

αk ∼ Exp(λ) with λ = 0.1, 0.5 and 1. 70

4.5 Comparisons of metaheuristic genetic algorithms in constructing Bayesian-inspired

distance Latin hypercube designs (λ = 1) with disparate numbers of runs and factors. . 76

4.6 Comparisons of simulated annealing algorithms in constructing Bayesian-inspired dis-

tance Latin hypercube designs (λ = 1) with disparate numbers of runs and factors. . . 77

4.7 Comparisons of our proposed optimization algorithms in constructingBayesian-inspired

distance Latin hypercube designs (λ = 1) with disparate numbers of runs and factors. . 78

4.8 Comparisons of projection design properties under minimum Euclidean distance (the

larger the better), maximum ψ(D) (the smaller the better), relative maximum CD2 (the

smaller the better), maximum ρave (the smaller the better), and maximum ψ1(D) (the

smaller the better) criteria. 79

ix

4.9 Extensive comparisons of GPmodel-fitting performances on various physical and sim-

ulation functions. The Bayesian-inspired distance design is constructed with rate pa-

rameter λ = 0.1, following the footsteps of tuning procedures proposed in Section

4.3. 82

x

LIST OF TABLES

2.1 Latin squares constructed by (2.2) for N = 11 and 22. 7

2.2 Pairwise L1-distances of the LHD(n, n)’s generated by Algorithm 2.1. 11

2.3 Two LHD(6, 6)’s D1 and D2 generated by Algorithm 2.1 for N = 13 and 26. 13

2.4 LHD(n, n)’s constructed by Algorithm 2.1 for double even integers N = 28 and 32. . . 16

3.1 Comparison of the L1-distances of (p − 1) × (p − 1)/2 LHDs. Our Method, first

half columns of F generated using Algorithm 3.2; LP-GLP, linearly permuted good

lattice point set;WP-GLP, random half column sub-sampling from the Williams trans-

formation of linearly permuted good lattice point set with 10,000 repetitions; SLHD, R

function call maximinSLHD(t=1) with 100 repetitions. 42

3.2 Comparisons of L1-distance (d(D)), bias on interactions (E(|t|) and max |t|) and bias

on quadratic terms (E(|q|) and max |q|) between our constructed LHDs and those from

Georgiou and Efthimiou (2014) (GE). 50

xi

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Professor Hongquan Xu, for his relent-

less support and mentorship throughout the course of my Ph.D. study. His respect and tolerance

have granted me the most precious opportunity for self-reflection at every stage of the research

project, and his knowledge and enthusiasm have encouraged me in any challenging moment of the

academic research. This dissertation would have never been possible without his great patience

and expertise.

My appreciation also extends to the whole doctoral committee, including Professors Arash A.

Amini, Weng Kee Wong and Yingnian Wu. Their graduate courses have considerably broadened

my horizons and revealed the beauty of statistics from various perspectives. Moreover, they are

truly inspiring in shaping my research methodology and proactive in critiquing my results.

Lastly, I would like to thank my girlfriend and families for their enduring understanding and

encouragement along the journey. Theymakeme restore faith in despair and aremy eternal spiritual

support.

xii

VITA

2013–2017 B.S. in Mathematics, Nankai University, Tianjin, China.

2017–2018 Reader/Graduate Reader, Department of Statistics, UCLA.

2018–2022 Teaching Assistant/Associate/Fellow, Department of Statistics, UCLA.

2020.6–9 Data Scientist Intern, Blizzard Entertainment, Inc., Irvine, CA.

2021.6–9 Machine Learning Engineer Intern, Meta Platforms, Inc., Menlo Park, CA.

xiii

CHAPTER 1

Introduction

Computer experiments are increasingly being used to build high-quality surrogate models for intri-

cate emulation systems. A general experimental design for planning computer experiments is the

space-filling design, which evenly spreads design points over the design region and thus explores

the region efficiently. Representative space-filling designs include the Latin hypercube designs

(LHDs) (McKay et al., 1979), minimax and maximin distance designs (Johnson et al., 1990), and

uniform designs (Fang et al., 2006; Fang et al., 2018). Orthogonality between factors is another im-

portant criterion when designing computer experiments, which guarantees low correlation between

factors and improves the identification of linear trend of factorial effects (Ye, 1998). Meanwhile,

mirror-symmetry of design points is also deemed as a good merit of a design because it guarantees

that main and interaction effects are uncorrelated and can be accurately identified (Ye et al., 2000).

Recently, hybrid designs, such as maximin LHDs (Wang, Xiao, et al., 2018; W. Zhou et al., 2020),

orthogonal-maximin LHDs (Joseph & Hung, 2008), orthogonal symmetric LHDs (Wang, Sun, et

al., 2018), and orthogonal uniform designs (X.-R. Zhang et al., 2020), are also being extensively

investigated and constructed to integrate merits of different design criteria.

Santner et al. (2018) comprehensively surveyed many space-filling measures and found that

the maximin distance criterion which maximizes the minimal distance among all pairs of points,

is preferable to the other criteria. Its corresponding optimal design, maximin distance designs,

is asymptotically D-optimal for Gaussian process modeling when observations are nearly inde-

pendent (Johnson et al., 1990). Metaheuristic algorithms, such as simulated annealing (Joseph &

Hung, 2008; Morris & Mitchell, 1995), particle swarm optimization (Chen et al., 2013; Moon et

1

al., 2011), and the threshold-accepting method (Xiao & Xu, 2018), have been adopted to search for

good maximin LHDs. Ba et al. (2015) developed the SLHDR package to generate maximin distance

sliced LHDs with great efficiency. Moreover, many other algorithms have been proposed to con-

struct maximin LHDs, see Lin and Tang (2015) for a review. However, aforementioned stochastic

algorithms are not competent for constructing large designs due to their computational complex-

ity, yet large designs are commonly needed in computer experiments. Consequently, sophisticated

systematic construction methods are highly valuable for being able to generate optimal maximin

LHDs with large sizes efficiently. Y. Zhou and Xu (2015) proposed to construct maximin LHDs by

linear level permutation based on good lattice point sets. Xiao and Xu (2017) proposed methods to

construct LHDs with large L1-distances via Costas’ arrays. Wang, Xiao, et al. (2018) constructed

a series of maximin LHDs via Williams transformations of good lattice point designs, some of the

constructed designs are optimal under the maximin L1-distance criterion and have small pairwise

correlations between columns. He (2019) proposed a new method to construct maximin distance

designs from interleaved lattices. W. Zhou et al. (2020) used the rotation method to construct max-

iminL2-distance LHDs based on a 22 full factorial design and a series of saturated two-level regular

designs. Li et al. (2021) proposed an easy-to-use method for constructing maximin distance designs

based on some carefully selected small designs.

The maximin distance criterion, however, tends to place a large portion of points at the corners

and on the boundaries of the domain, severely undermining its space-filling characteristic on low-

dimensional projections and thus making it undesirable in the case when only a few design factors

are active. To fill the gap, Joseph et al. (2015) proposed maximum projection designs, which

claims to maximize space-filling properties on projections to all subsets of factors. By focusing on

two-dimensional projection uniformity, Sun et al. (2019) proposed a new design criterion, called

uniform projection criterion. They pointed out that uniform projection designs generated under this

criterion scatter points uniformly in all dimensions and have good space-filling properties in terms

of distance, uniformity and orthogonality. Moreover, they showed that maximin L1-equidistant

designs are uniform projection designs, and provided a method to construct uniform projection

2

designs based on good lattice point sets when the number of rows is an odd prime.

In Chapter 2, we will propose a general and easy-to-implement method for generating maximin

L1-distance LHDs. The resulting designs are also Latin squares, which are widely used in designs

of experiments and other fields, see for example, Hedayat et al. (1999) and Keedwell and Dénes

(2015). Theoretical results show that some of the constructed designs are bothmaximinL1-distance

and equidistant designs, which means that their pairwise L1-distances are all equal, and they are

also uniform projection designs; while others are asymptotically optimal under the maximin L1-

distance criterion.

In Chapter 3, we will propose a systematic approach to constructing mirror-symmetric maximin

L1-distance designs. The proposed method first constructs a class of maximin balanced designs

via a piece-wise linear transformation, akin to the Williams transformation used in Wang, Xiao,

et al. (2018) but modified for our purpose. We then rotate the generated balanced designs to obtain

LHDs. It is well-known that rotation keeps orthogonality and therefore has been extensively used to

construct orthogonal LHDs from regular designs (Pang et al., 2009; Steinberg & Lin, 2006; Wang,

Sun, et al., 2018). We will show that rotation can also keep the maximin distance optimality of the

generated balanced designs, providing a class of maximin LHDs. In addition, when the design size

is relatively big (say, 100), we typically do not need as many levels as in an LHD to learn about the

simulation system. In this case, the generated maximin balanced designs (without rotation) can be

directly used for designing the experiment.

In Chapter 4, we will introduce a new optimal design criterion, so-called the Bayesian-inspired

distance criterion, for the Gaussian Process modeling, following the footsteps of the maximum pro-

jection criterion. We meticulously impose a more reasonable (exponential) prior on the correlation

parameters and discuss systematic approaches to optimally selecting the hyperparameter within.

Intrinsic connections are revealed between this new Bayesian-inspired distance criterion and other

existing space-filling ones. Moreover, we present two classes of metaheuristic algorithms, along

with our novel implementations, to efficiently search for the corresponding optimal design once the

hyperparameter is fully determined. Extensive numerical results are demonstrated for comparing

3

speed and quality of solutions of different optimization algorithms, as well as illustrating merits of

our proposed criterion in a comprehensive manner.

Chapter 5 summarizes the whole dissertation, detailing the contribution of our work within each

chapter respectively.

4

CHAPTER 2

Construction of Maximin L1-Distance Latin Hypercube Designs

Amaximin distance design maximizes the separation distance between design points and is asymp-

toticallyD-optimal for Gaussian processmodelingwhen observations are nearly independent (John-

son et al., 1990). A Latin hypercube design (LHD) accommodates as many levels as the design

size and therefore allows the study of complex systems. Maximin LHDs that integrate the mer-

its of maximin distance designs and LHDs are commonly used for designing intricate computer

experiments.

This chapter proposes a general and systematic method for generating maximin L1-distance

LHDs with large row and column sizes. The resulting designs are also Latin squares, which are

widely used in designs of experiments and other fields, see Hedayat et al. (1999) and Keedwell

and Dénes (2015) for examples of their applications. The generated Latin squares can be further

expanded or pruned to cater to different experimentation demands. Theoretical results show that

some of the constructed designs are bothmaximinL1-distance and equidistant designs; while others

are asymptotically optimal under the maximin L1-distance criterion. Besides, we provide lower

bounds of the L1-distances of the constructed LHDs for more general cases through numerical

computations.

2.1 Notation and Preliminaries

For a positive integer b, let Zb denote the set {1, . . . , b}. Given any two integers a and b, gcd(a, b)

denotes the greatest common divisor of a and b. If gcd(a, b) = 1, then a is coprime to b. For any

5

real number r, ⌊r⌋ is the integer part of r.

A Latin square of order n is an n×n square matrix with n2 entries of n different elements, none

of them occurring twice within any row or column of the matrix. An isotopism of a Latin square

L permutes the rows, the columns and the elements of L, resulting in another Latin square which

is said to be isotopic to L; these two Latin squares belong to the same isotopy class (an isotopy

class of Latin squares is an equivalence class for the isotopy relation). A Latin hypercube design,

denoted by LHD(N, s), is anN × smatrix, in which each column is a uniform permutation on ZN

and all the columns are obtained independently. A Latin square of order n is a special LHD(n, n)

when its n different elements are taken from Zn.

For an integer q ≥ 1, define dq(x,y) =
(s∑

i=1

|xi − yi|q
)1/q

as the Lq-distance of any two

row vectors x = (x1, . . . , xs) and y = (y1, . . . , ys). In this paper, we take q = 1. Define the

L1-distance of design D to be

d1(D) = min{d1(x,y) : x ̸= y,x,y ∈ D}.

A maximin L1-distance design D∗ is defined to be the design that satisfies

d1(D
∗) = max

D
d1(D)

among all possible candidate designs.

2.2 Construction Method

For a positive integer N , the number of positive integers that are less than and coprime to N is

ϕ(N), where ϕ(·) is the Euler function. It is easy to see that ϕ(N) is even for any integer N > 2.

Define a generator vector h as

h = (h1, . . . , hn), (2.1)

6

with 1 = h1 < · · · < hn ≤ ⌊N/2⌋, and gcd(hi, N) = 1 for i = 1, . . . , n, n = ϕ(N)/2. The vector

h consists of the first ϕ(N)/2 elements of the generator vector for theN ×ϕ(N) good lattice point

sets. Taking h given in (2.1) as the generator vector, we obtain an n × n square matrix L = (rij)

with its (i, j)th element rij defined by

rij = min{hi ∗ hj(mod N), N − hi ∗ hj(mod N)}, i, j = 1, . . . , n. (2.2)

Lemma 2.1. The n× n matrix L constructed in (2.2) is a Latin square of order n with n different

elements {h1, . . . , hn}.

Table 2.1: Latin squares constructed by (2.2) for N = 11 and 22.

N = 11 N = 22

1 2 3 4 5 1 3 5 7 9
2 4 5 3 1 3 9 7 1 5
3 5 2 1 4 5 7 3 9 1
4 3 1 5 2 7 1 9 5 3
5 1 4 2 3 9 5 1 3 7

Example 2.1. Let N = 11 and 22, then n = ϕ(N)/2 = 5, h = (1, 2, 3, 4, 5) for N = 11 and

h = (1, 3, 5, 7, 9) for N = 22. The Latin squares constructed by (2.2) are listed in Table 2.1.

For the Latin squareL constructed by (2.2), replace each of its elementhiwith i for i = 1, . . . , n,

and denote the obtained matrix as D, then D is both an LHD(n, n) and a Latin square of order n

with n different elements in Zn. The following example shows that designD performs well under

the maximin L1-distance criterion.

Example 2.2. Take the Latin square for N = 22 in Table 2.1 as an example. Replace each of its

7

element hi with i for i = 1, . . . , n, i.e., 1→ 1, 3→ 2, 5→ 3, 7→ 4, 9→ 5, then we have

1 3 5 7 9

3 9 7 1 5

5 7 3 9 1

7 1 9 5 3

9 5 1 3 7

−→

1 2 3 4 5

2 5 4 1 3

3 4 2 5 1

4 1 5 3 2

5 3 1 2 4

.

It is easy to see that the generated matrix is both an LHD(5, 5) and a Latin square of order 5.

Furthermore, it can be calculated that the L1-distances of these two LHD(5, 5)’s obtained when

N = 11 and 22 are both equal to 10 = (5 + 1)5/3.

For an LHD(N, s), its average pairwise L1-distance is (N + 1)s/3 (Y. Zhou & Xu, 2015).

While the minimum pairwise L1-distance cannot exceed the integer part of the average, hence the

upper bound of L1-distance of any LHD(N, s) is dupper = ⌊(N + 1)s/3⌋. It can be verified that

the LHDs obtained in Example 2.2 are maximin L1-distance designs. Inspired by this, we propose

the following method for constructing maximin distance LHDs.

Algorithm 2.1 (Construction of maximin L1-distance LHD(n, n)).

Step 1. For a given integer N , obtain the generator vector h = (h1, . . . , hn) by (2.1), where

n = ϕ(N)/2.

Step 2. Generate the n×n Latin square L by (2.2), each of its rows and columns is a permutation

on {h1, . . . , hn}.

Step 3. Replace each element hi in L with i for i = 1, . . . , n, denote the obtained LHD(n, n) by

D.

In fact, N −h can also be used as the generator vector in Algorithm 2.1. It can be verified that

the obtained design are the same as the one constructed with generator vector h .

8

For the LHD(n, n) D constructed by Algorithm 2.1, the following result shows that it has

significantly restricted number of distinct pairwise L1-distances.

Lemma 2.2. The pairwise L1-distances of the LHD(n, n) D generated by Algorithm 2.1 take at

most ⌊n/2⌋ different values.

Example 2.3. For N = 21, consider the LHD(6, 6) D constructed by Algorithm 2.1, where

D =

1 2 3 4 5 6

2 3 5 6 4 1

3 5 4 1 6 2

4 6 1 3 2 5

5 4 6 2 1 3

6 1 2 5 3 4

.

Let li be its ith row. It is easy to check that

d1(l1, l2) = d1(l1, l6) = d1(l2, l3) = d1(l3, l5) = d1(l4, l5) = d1(l4, l6) = 12,

d1(l1, l3) = d1(l1, l4) = d1(l2, l5) = d1(l2, l6) = d1(l3, l4) = d1(l5, l6) = 14,

d1(l1, l5) = d1(l2, l4) = d1(l3, l6) = 18.

The pairwise L1-distances between rows in D take 3 different values.

In fact, for the LHD(n, n) D constructed by Algorithm 2.1, the number of different values

of the pairwise L1-distances between its rows is far less than ⌊n/2⌋ in most cases. For a given

positive integer n, as there may be more than one LHD(n, n) that can be constructed by Algorithm

2.1, Figure 2.1 plots the maximum number of distinct values of the pairwise L1-distances between

different rows among all possible designs for each n (n ≤ 800). From Figure 2.1, it is easy to see

that there are few designs with ⌊n/2⌋ different values of the pairwise L1-distances; while in most

cases, the number of distinct values of the pairwise L1-distances is far less than ⌊n/2⌋.

9

0

100

200

300

400

0 200 400 600 800
n

N
um

be
r

of
 D

is
tin

ct
 P

ai
rw

is
e

L 1
−

di
st

an
ce

s

Figure 2.1: Maximum number of different values of the pairwise L1-distances (dashed line) in the
LHD(n, n)’s constructed by Algorithm 2.1, and the corresponding ⌊n/2⌋ (solid line).

For further clarification, consider 11 ≤ N ≤ 118, Table 2.2 lists the possible LHD(n, n)’s

generated by Algorithm 2.1 with different n values. Define the efficiency of an LHD(N, s)D under

the maximin L1-distance criterion as d1(D)/dupper with dupper = ⌊(N + 1)s/3⌋ (Y. Zhou & Xu,

2015). It is obvious that d1(D)/dupper ≤ 1, and a design with larger efficiency is preferable. For

situations where d1(D)/dupper < 1, we select the largest d1(D)/dupper, and give the corresponding

two smallest N ’s (if exist) with different #{d1(li, lj)}(number of different pairwise L1-distances

for the same n). From Table 2.2, we can also see that the number of different values of the pairwise

L1-distances is far less than ⌊n/2⌋. And the LHD(n, n)’s constructed by the proposed method

perform well under the maximin L1-distance criterion.

Since there is more than one positive integer N that has the same value of the Euler function

ϕ(·), for a given positive integer n, there is more than one possible LHD(n, n) constructed by

Algorithm 2.1. For further exploring the overall performance of the proposed method under the

maximin L1-distance criterion, Figure 2.2 plots the minimum efficiency for each n (n ≤ 800). It is

straightforward to see that the minimum efficiency of the constructed LHD(n, n) converges to 1,

as its number of rows (and columns), i.e. n, becomes larger. That is, the proposed method can be

10

Table 2.2: Pairwise L1-distances of the LHD(n, n)’s generated by Algorithm 2.1.

N n #{d1(li, lj)} d1(D) d1(D)/dupper

11, 22 5 1 10 1
13, 26 6 1 14 1
17, 34 8 1 24 1
19, 38 9 1 30 1
25, 33 10 2, 3 34 0.94
23, 46 11 1 44 1
39 12 4 48 0.92

29, 58 14 1 70 1
31, 62 15 1 80 1
51 16 4 86 0.96

37, 74 18 1 114 1
41, 82 20 1 140 1
43, 86 21 1 154 1
69 22 5 162 0.96

47, 94 23 1 184 1
65 24 8 186 0.93

53, 106 26 1 234 1
81 27 3 244 0.97

87, 116 28 5, 6 262 0.97
59, 118 29 1 290 1

used to generate LHDs with more flexible sizes that have large L1-distances.

2.3 Theoretical Results and Comparisons

The proposed method generates optimal LHDs under the maximin L1-distance criterion for differ-

ent values ofN . Next, we will further explore the properties of the LHDs constructed by Algorithm

2.1 in different cases. Throughout the paper, we assume that p is an odd prime.

11

0.7

0.8

0.9

1.0

0 200 400 600 800
n

M
in

im
um

 L
1−

di
st

an
ce

 E
ffi

ci
en

cy

Figure 2.2: Minimum efficiencies of LHD(n, n)’s (solid line) generated by Algorithm 2.1 for gen-
eral N ’s, n = ϕ(N)/2.

2.3.1 N = p and 2p

When N = p and 2p, the generator vectors in (2.1) are h = (1, 2, . . . , n) and (1, 3, . . . , 2n − 1),

respectively, where n = ϕ(N)/2 = (p − 1)/2; and it is easy to verify that integer 3 divides n or

n+ 1 for p ≥ 5. The following result holds for design D generated by Algorithm 2.1.

Theorem 2.1. For N = p or 2p, n = ϕ(N)/2 = (p − 1)/2, the LHD(n, n) D generated by

Algorithm 2.1 is a maximin L1-distance LHD, with its pairwise L1-distances between rows all

equal to n(n+ 1)/3.

Remark 1. (i) Theorem 2.1 suggests that when N is an odd prime or twice an odd prime, the

pairwise L1-distances of D are all equal to a constant. We name such a design as an equidistant

LHD, which is obviously a maximin L1-distance LHD. (ii) Hence, by Theorem 3 in Sun et al.

(2019), the constructed designs when N = p and 2p are also uniform projection designs, which

have good space-filling properties not only in two, but also in all dimensions. (iii) When N = p,

the LHD(n, n) D is the same as the design H constructed in Wang, Xiao, et al. (2018); then by

Theorem 7 in Wang, Xiao, et al. (2018), we have that the average pairwise correlation between

12

columns of D, denoted by ρave(D), satisfies: ρave(D) < 2/(n− 1).

Example 2.4. For both N = 13 and 26, n = ϕ(N)/2 = 6, the generator vectors are h =

(1, 2, 3, 4, 5, 6) and h = (1, 3, 5, 7, 9, 11), respectively. Table 2.3 lists the two LHD(6, 6)’s gen-

erated by Algorithm 2.1.

Table 2.3: Two LHD(6, 6)’s D1 and D2 generated by Algorithm 2.1 for N = 13 and 26.

D1 D2

1 2 3 4 5 6 1 2 3 4 5 6
2 4 6 5 3 1 2 5 6 3 1 4
3 6 4 1 2 5 3 6 1 5 4 2
4 5 1 3 6 2 4 3 5 2 6 1
5 3 2 6 1 4 5 1 4 6 2 3
6 1 5 2 4 3 6 4 2 1 3 5

It can be calculated that the pairwise L1-distances between rows of each design are all equal to

14, which implies that bothD1 andD2 are equidistant and maximinL1-distance LHDs. In addition,

if we permute the rows, columns and elements of D1 respectively according to the permutation

given in (2.3): 1 2 3 4 5 6

1 4 5 2 3 6

 , (2.3)

the obtained design is D2, that is, D1 and D2 are equivalent (i.e., they belong to the same isotopy

class). This may not be true in general; see Table 2.2.

Consider the two equidistant LHDs D1 and D2 for N = p and 2p constructed by Algorithm

2.1, let

D∗ = [D1, D2], (2.4)

we have the following result.

Theorem 2.2. The LHD(n, 2n) D∗ defined in (2.4) is also equidistant and thus a maximin L1-

distance LHD, with its pairwise L1-distances between rows all equal to 2n(n + 1)/3, where n =

(p− 1)/2.

13

Remark 2. The 1st and (n+1)th columns inD∗ constructed by (2.4) are the same, denote the design

obtained by deleting its (n + 1)th column as D∗
−1. Because when we delete one column from an

LHD with n rows, its L1-distance will reduce at most by n− 1, thus we have that the L1-distance

of the LHD(n, 2n− 1) D∗
−1 satisfies d1(D∗

−1) ≥ (2n2 − n+ 3)/3. In addition, it is easy to obtain

that d1(D∗
−1)/dupper > 1− 1/(n+1), which meansD∗

−1 is an asymptotically optimal LHD, where

dupper = ⌊(n+ 1)(2n− 1)/3⌋.

Theorem 2.2 is obvious from the equidistant property of the LHDs constructed by Algorithms

2.1 when N = p and 2p. Furthermore, if there are more than two equidistant LHDs with the same

number of rows, larger maximin distance LHD can be generated by concatenating columns in a

similar way, which is also equidistant.

Example 2.5 (Example 2.4 continued). Consider p = 13, the two LHD(6, 6)’sD1 andD2 generated

by Algorithm 2.1 for N = p and 2p are listed in Table 2.3. From Theorem 2.1, it is easy to know

that they are both equidistant LHDs with d1(D1) = d1(D2) = 14. The corresponding LHD(6, 12)

D∗ constructed in (2.4) is also equidistant with d1(D∗) = 28, which attains the upper bound of

L1-distance. As the first columns in each of the two designs listed in Table 2.3 are the same, we

can obtain an LHD(6, 11) D∗
−1 by deleting one of the repeated columns, it can be calculated that

d1(D
∗
−1) = 23, which is very close to the corresponding upper bound dupper = 25.

For any LHD(n, n) constructed by Algorithm 2.1, by adding a row with n elements all being

n + 1, the obtained design has the same L1-distance as the original LHD(n, n), and the following

result holds.

Lemma 2.3. Let D be an equidistant LHD(n, n) constructed by Algorithm 2.1 for N = p or 2p,

andD′ be the LHD(n+1, n) obtained by adding a row of (n+1)’s toD. Then d1(D′) = d1(D) =

(n+ 1)n/3, and

d1(D
′)/dupper ≥ 1− 1/(n+ 2)→ 1 as n→∞,

where dupper = ⌊(n+ 2)n/3⌋.

14

Lemma 2.3 is obvious and it shows thatD′ is an asymptotically optimal design under the max-

imin L1-distance criterion. In addition, when we delete any column from an equidistant LHD(n, n)

D, itsL1-distance will reduce at most by n−1. Repeat this deleting one column at a time procedure

multiple times, we have the following result.

Lemma 2.4. LetD be an equidistant LHD(n, n) constructed by Algorithm 2.1. Deleting its any kc

columns yields an LHD(n, n− kc), denoted by D′. Then

d1(D
′)/dupper ≥ 1− 2kc/(n− kc).

If kc is a fixed constant not increasing with n, then d1(D′)/dupper → 1 as n → ∞; that is,

designs obtained by deleting columns from an equidistant LHD are asymptotically optimal LHDs

with different sizes under the maximin L1-distance criterion. Similar results also hold for deleting

columns from any (asymptotically) optimal design under the maximin L1-distance criterion.

2.3.2 N = 2t and 2tp

WhenN(≥ 16) is double even, i.e.,N/2 is an even integer, according to Lemma 1 in Elsawah et al.

(2021), we have n = ϕ(N)/2 = ϕ(N/2) and n is even. For designD generated by Algorithm 2.1,

denoteD′ as the submatrix ofD that consists of its first n/2 columns, then the following result can

be obtained from Theorem 5 in Elsawah et al., 2021. We omit the proof.

Theorem 2.3. For any double even integer N(≥ 16), let D = (lij) be the LHD(n, n) generated

by Algorithm 2.1, n = ϕ(N)/2. We have the following results:

(i) the elements in D satisfy lij + li(n+1−j) = n + 1 and lij + l(n+1−i)j = n + 1 for any i, j =

1, . . . , n, which implies

D =

 A1 n+ 1− A2

n+ 1− A3 A4

 ,

15

where A1 is the n/2 × n/2 leading principal submatrix of D, and A2, A3 and A4 can be

obtained from A1 by reversing the orders of columns, rows and both, respectively;

(ii) denote D′ as the n × n/2 submatrix of D that consists of its first n/2 columns, i.e. D′ = A1

n+ 1− A3

, then D′ is an LHD(n, n/2), and

d1(D
′) = d1(D)/2.

Theorem 2.3 (i) shows that, when N(≥ 16) is double even, the corresponding LHD(n, n) gen-

erated by Algorithm 2.1 has a fold-over or mirror-symmetric structure with respect to both rows

and columns.

Example 2.6. Consider double even integers N = 28 and 32, the corresponding LHD(6, 6) and

LHD(8, 8) constructed by Algorithm 2.1 are listed in Table 2.4. Divide each of the two LHDs into

four blocks as shown in Table 2.4, then it is easy to verify that property (i) in Theorem 2.3 holds.

Table 2.4: LHD(n, n)’s constructed by Algorithm 2.1 for double even integers N = 28 and 32.

D1: LHD(6, 6) for N = 28 D2: LHD(8, 8) for N = 32

1 2 3 4 5 6 1 2 3 4 5 6 7 8
2 4 6 1 3 5 2 5 8 6 3 1 4 7
3 6 2 5 1 4 3 8 4 2 7 5 1 6

4 6 2 8 1 7 3 5
4 1 5 2 6 3
5 3 1 6 4 2 5 3 7 1 8 2 6 4
6 5 4 3 2 1 6 1 5 7 2 4 8 3

7 4 1 3 6 8 5 2
8 7 6 5 4 3 2 1

Let D′
1 and D′

2 be the 6 × 3 and 8 × 4 submatrices consisting of the first-half columns of D1

andD2 respectively, it can be calculated that d1(D′
1) = d1(D1)/2 = 6, d1(D

′
2) = d1(D2)/2 = 11.

When N = 4p, n = ϕ(N)/2 = p − 1, the corresponding generator vector h consists of p − 1

16

elements {2j − 1, j = 1, . . . , p}\{p}. When N = 2t, n = ϕ(N)/2 = 2t−2, the corresponding

generator vector h = (1, 3, . . . , 2n− 1). We have the following results for N = 2t and 4p.

Theorem 2.4. Let D be the LHD(n, n) generated by Algorithm 2.1, n = ϕ(N)/2. The following

results hold:

(i) if N = 4p, p ≥ 5, then n = ϕ(N)/2 = p− 1, and

d1(D) =

 n2/3, if p (mod 3) = 1,

(n2 + 2)/3, if p (mod 3) = 2;

(ii) if N = 2t, t ≥ 3, then n = 2t−2, and

d1(D) = (n2 + 2)/3.

In addition, for both cases, we have d1(D)/dupper ≥ 1− 1/(n+1), where dupper = ⌊(n+1)n/3⌋.

It is possible to establish similar theoretical results for the constructed LHD(n, n)’s whenN =

2tp (t > 2)withmore elaborate arguments, details are omitted here. Figure 2.3 plots the efficiencies

of the LHD(n, n)’s generated by Algorithm 2.1 when N = 2tp (t = 3, 4 and 16 < p < 200). It is

easy to see that the constructed designs perform well under the maximin L1-distance criterion.

Corollary 2.1. From Theorems 2.3 and 2.4, the following results hold for the LHD(n, n/2) D′:

(i) if N = 4p, p ≥ 5, then n = ϕ(N)/2 = p− 1, and

d1(D
′) =

 n2/6, if p (mod 3) = 1,

(n2 + 2)/6, if p (mod 3) = 2;

(ii) if N = 2t, t ≥ 4, then n = 2t−2, and

d1(D
′) = (n2 + 2)/6.

17

0.94

0.96

0.98

1.00

50 100 150 200
p

L 1
−

di
st

an
ce

 E
ffi

ci
en

cy

N=23p

N=24p

Figure 2.3: Efficiencies of LHD(n, n)’s generated by the proposed method forN = 23p (solid line)
and 24p (dashed line).

As the upper bound of d1(D′) is dupper = ⌊(n+1)n/6⌋, it is easy to verify that d1(D′)/dupper→

1 as n→∞ for each case listed in Corollary 2.1; that is, the LHD(n, n/2)D′ is an asymptotically

optimal design under the maximin L1-distance criterion. More generally, when N is double even,

for each LHD(n, n) constructed by the proposed method, the corresponding submatrix that consists

of its first n/2 columns is asymptotically optimal under the maximin L1-distance criterion, as long

as the LHD(n, n) itself is asymptotically optimal.

In Figure 2.4, we compare the efficiencies of LHD(p− 1, (p− 1)/2)’s generated by the linear

permutation good lattice point sets (“LP-GLP”, Y. Zhou & Xu, 2015), R package SLHD (“SLHD”,

Ba et al., 2015), and the proposed method (“OurMethod”) in Algorithm 2.1 for 5 ≤ p < 200. Since

the last row of a p × (p − 1) good lattice point set D is (0, . . . , 0), then the last row of the linear

permutation good lattice point setDb is (b, . . . , b) for b = 0, 1, . . . , p− 1. We utilize the leave-one-

out method given in Wang, Xiao, et al. (2018) to generate an LHD(p− 1, p− 1) based on eachDb,

then p LHD(p − 1, (p − 1)/2)’s can be constructed by taking the first (p − 1)/2 columns of each

design. Among these p designs, we choose the one with the largest L1-distance for comparison.

18

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200
p

L 1
−

di
st

an
ce

 E
ffi

ci
en

cy

Our Method

LP−GLP

SLHD

Figure 2.4: Efficiencies of LHD(p−1, (p−1)/2)’s generated by different methods: the newmethod
(solid line), LP-GLP (twodash line) and SLHD (dotted line).

The SLHD package generates optimal designs under the maximin L2-distance criterion, so we run

the command maximinSLHD() with option t = 1 and default settings for 100 times, and choose

the design with the largest L1-distance. From the LHD(p − 1, p − 1) generated by Algorithm 2.1

when N = 4p, we choose its first (p − 1)/2 columns to obtain an LHD(p − 1, (p − 1)/2), as

stated in Theorem 2.3, for comparison. It can be seen from Figure 2.4 that the proposed method

outperforms the other two methods as p becomes larger. Moreover, the proposed method generates

LHD(p− 1, (p− 1)/2)’s without computer search for any given p.

2.3.3 Numerical studies

In this subsection, we further explore the properties of the LHD(n, n) D obtained from Algorithm

2.1 for more general N with n = ϕ(N)/2 through simulations.

Figure 2.5 shows efficiencies of the LHD(n, n)’s generated byAlgorithm 2.1 forN = 5p, 7p, 11p

and 13p (13 < p < 200), with n = 2(p− 1), 3(p− 1), 5(p− 1) and 6(p− 1), respectively.

19

0.94

0.96

0.98

1.00

50 100 150 200
p

L 1
−

di
st

an
ce

 E
ffi

ci
en

cy

N=5p

N=7p

N=11p

N=13p

Figure 2.5: Efficiencies of LHD(n, n)’s generated by the proposed method forN = 5p (solid line),
7p (dashed line), 11p (twodash line) and 13p (dotted line).

Figure 2.6 shows efficiencies of the LHD(n, n)’s generated by the proposed method forN = p2

and p3 (5 ≤ p < 50), with n = p(p− 1)/2 and p2(p− 1)/2, respectively. It is easy to see that the

generated LHDs are all asymptotically maximin L1-distance designs, and d1(D) approaches dupper

as p becomes larger. In general, more simulations can show that when N = p1p2 or pm1 (p1, p2 are

odd primes, m ≥ 2), the LHD(n, n)’s generated by Algorithm 2.1 are all asymptotically optimal

designs under the maximin L1-distance criterion. In addition, more asymptotically optimal LHDs

with different sizes can be obtained by deleting columns (see Lemma 2.4) or deleting rows (see

Theorem 9 in Wang, Xiao, et al. (2018)) from the constructed LHDs.

Furthermore, we give the following results on the L1-distance of the constructed LHD(n, n)D

for different N values, and we have verified the results up to p = 1000.

d1(D) ≥

 ⌊(4p2 − 10p)/3⌋+ 2, when N = 5p, n = 2(p− 1),

3p2 − 7p+ 6, when N = 7p, n = 3(p− 1).

Through simulations we find that the lower bound is achieved by some N ’s for either of the two

20

0.94

0.96

0.98

1.00

10 20 30 40
p

L 1
−

di
st

an
ce

 E
ffi

ci
en

cy

N=p2

N=p3

Figure 2.6: Efficiencies of LHD(n, n)’s generated by the proposed method for N = p2 (solid line)
and p3 (dashed line).

cases. Moreover, it can be calculated that the corresponding upper bounds for N = 5p and 7p are

dupper = ⌊(4p2−6p+2)/3⌋ and 3p2−5p+2 respectively. Thus, the efficiencies of the LHD(n, n)’s

generated by Algorithm 2.1 for N = 5p and 7p satisfy

d1(D)/dupper >

 1− 2p/(2p2 − 3p+ 1), when N = 5p, n = 2(p− 1),

1− 2p/(3p2 − 5p+ 2), when N = 7p, n = 3(p− 1),

which implies that d1(D)/dupper → 1 as n → ∞ for design D generated by Algorithm 2.1 when

N = 5p or 7p.

2.4 Concluding Remarks

In this chapter, we propose a general and easy-to-implement method for constructing maximin L1-

distance LHDs. Theoretical results and numerical studies show that the proposed method can be

used to generate (asymptotically) optimal LHDs that perform well under the maximin L1-distance

21

criterion. When N = p and 2p, the constructed LHDs are all equidistant LHDs, thus maximin

L1-distance LHDs and uniform projection designs. Moreover, larger equidistant LHDs can be

constructed by two ormore equidistant LHDswith the same number of rows. Section 2.3.3 provides

some lower bounds of the L1-distances of the constructed LHDs for more general N ’s through

numerical computations, further theoretical supports are possible with more elaborate arguments.

2.5 Appendix: Proofs

Proof of Lemma 2.1. Denote L as L = (rT
1 , . . . , r

T
n)

T , where ri is the ith row of L and T is the

notation for transpose. It is obvious that r1 = h and LT = L. Therefore, to prove L is a Latin

square, it is sufficient to verify that each ri (i = 1, . . . , n) is a permutation on the set {h1, . . . , hn}.

Let ri = (ri1, . . . , rin). For k = 1, . . . , n, we have rik = min{hi ∗ hk(mod N), N − hi ∗

hk(mod N)}. It is easy to check that rik ≤ ⌊N/2⌋ and gcd(rik, N) = 1, thus rik is an element of

the set {h1, . . . , hn}. As gcd(hi, N) = 1 (1 ≤ i ≤ n), for any two entries rik and riw (k ̸= w), it is

easy to obtain that rik ̸= riw, otherwise, at least one of the following conditions holds: (1)N divides

hi, (2) N divides hk − hw, (3) N divides hk + hw, which leads to a contradiction. Consequently,

each ri is a permutation on the set {h1, . . . , hn}, which completes the proof.

To prove Lemma 2.2, we need the following results first. For the LHD(n, n)D constructed by

Algorithm 2.1, let l1, . . . , ln be its 1st to nth rows, and αi be the bijection from l1 = (1, . . . , n)

to li = (li1, . . . , lin) with αi(k) = lik for k = 1, . . . , n, i = 1, . . . , n. α1 is obviously an identity

mapping. Further,

Lemma 2.5. The transformation set {α1, α2, . . . , αn} is a commutative group.

Proof. Let G = {α1, . . . , αn}, G is a commutative group if the following conditions hold:

(C1) if α, β ∈ G, then αβ ∈ G;

(C2) the identity mapping is in G;

22

(C3) if α ∈ G, then its inverse mapping α−1 is in G;

(C4) for any α, β ∈ G, the equality αβ = βα holds.

Item (C2) holds obviously as α1(∈ G) is an identity mapping, so only (C1), (C3) and (C4) need to

be verified.

It is easy to see that the elements of Latin squareL in (2.2) satisfy rik = min{±hi∗hk(modN)}.

Suppose p is an odd prime, we can prove the lemma in two cases.

(i) When N = p (p ≥ 5), n = (p − 1)/2. The generator vector is h = (1, . . . , n), thus the

design D = (lij)n×n constructed by Algorithm 2.1 is the same as L. For i = 1, . . . , n, we have

αi(k) = lik = rik = min{±i ∗ k(mod N)}, k = 1, . . . , n.

Choose another transformation αj (j ̸= i) from G, then αj(k) = min{±j ∗ k(mod N)} for k =

1, . . . , n. The resultant of αi and αj can then be expressed as

αjαi(k) = αj(min{±i ∗ k(mod N)})

= min{±j ∗ i ∗ k(mod N)}

= αiαj(k),

where k = 1, . . . , n, item (C4) holds. Since

min{±j ∗ i ∗ k(mod N)} = min{±(j ∗ i(mod N)) ∗ k(mod N)}

= min{±min{±j ∗ i(mod N)} ∗ k(mod N)}

= min{±w ∗ k(mod N)},

where w = min{±j ∗ i (mod N)} ∈ Zn; it is easy to verify that αjαi(k) = αiαj(k) = αw(k), i.e.,

αjαi ∈ G, item (C1) holds.

For each αi, there exists a unique integer j0 (1 ≤ j0 ≤ n) such that min{±j0 ∗ i(modN)} = 1,

23

αj0 and αi satisfy the following equality:

αj0αi(k) = αiαj0(k) = min{±j0 ∗ i ∗ k(mod N)}

= min{±min{±j0 ∗ i(mod N)} ∗ k(mod N)}

= k,

where k = 1, . . . , n. Then αj0 is the inverse mapping of αi, and for each αi in G, its inverse

mapping is also in G, item (C3) holds.

(ii) WhenN ̸= p, n = ϕ(N)/2. From Lemma 2.1, for any two integers i and k (1 ≤ i, k ≤ n),

there exists a unique integer t (1 ≤ t ≤ n) satisfying

ht = min{±hi ∗ hk(mod N)},

which means αi(k) = t. In addition, for each hi, there exists a unique integer i′ (1 ≤ i′ ≤ n) such

that

min{±hi ∗ hi′(mod N)} = h1 = 1.

Then similar to the discussions in case (i), it easy to verify that items (C1), (C3) and (C4) hold.

In conclusion, G is a commutative group. This completes the proof.

For any two distinct rows li and lj(i < j) from D, reorder the elements of li such that its

elements are in the increasing order, i.e., li is transformed to l1, correspondingly take the same

permutation on the elements of row lj , denote the newly obtained row by l′j . From Lemma 2.5 and

the definition of L1-distance criterion, it is easy to verify that l′j is still a row ofD, and d1(li, lj) =

d1(l1, l
′
j). Hence, the pairwise L1-distances between rows inD take at most n− 1 different values.

Lemma 2.5 also implies that each transformation in the set {α1, α2, . . . , αn} has an inverse

mapping. Suppose αi = α−1
j , then d1(l1, li) = d1(l1, lj). Therefore, the pairwise L1-distances

of the LHD(n, n) D generated by Algorithm 2.1 take at most ⌊n/2⌋ different values, which are

24

included in the set {d1(l1, li), 2 ≤ i ≤ n}. This concludes the proof of Lemma 2.2.

Proof of Theorem 2.1. For a given integer N , define w(x) as the modified Williams’ transforma-

tion in Wang, Xiao, et al. (2018), that is

w(x) =

 2x, if x < N/2;

2(N − x), if x ≥ N/2.

WhenN = p, the generator vector in (2.1) is h = (1, . . . , n), where n = ϕ(N)/2 = (p− 1)/2.

Hence the LHD(n, n)D generated by Algorithm 2.1 is the same as L in (2.2), and it can be verified

that D is also the same as the design H constructed in Wang, Xiao, et al. (2018) by modified

Williams’ transformation. Then the result follows from Theorem 4 of Wang, Xiao, et al. (2018).

For N = 2p, n = ϕ(N)/2 = (p − 1)/2, let U = (xij) be the N × ϕ(N) good lattice point

design with generator vector (1, 3, . . . , p − 2, p + 2, . . . , N − 1). With proper row and column

permutations, U is equivalent to 2C + p

2C

 (mod N)

where C is the p× (p− 1) good lattice point design.

Then w(U) is equivalent to w(2C ⊕ p)

w(2C)

 ,

where 2C ⊕ p = 2C + p (mod N). According to Theorem 1 and proof of Theorem 8 in Wang,

Xiao, et al. (2018), the following result holds for the ith and kth rows, denoted by ri and rk, in

w(2C),

d1(ri, rk) =
2(p2 − 1)

3
, for i ̸= k, i ̸= p, k ̸= p, and i+ k ̸= p. (2.5)

Moreover, it can be verified that (2.5) also holds for w(2C ⊕ p).

In addition, whenN = 2p, it can be verified that for the n×n Latin square L generated in (2.2),

25

the following results hold: (i) its n elements are {1, 3, . . . , p − 2}; thus (ii) the L1-distance of any

two distinct rows in L is two times that of the corresponding rows in LHD(n, n)D constructed by

Algorithm 2.1; (iii) under column permutations, L is equivalent to the submatrix of w(2C ⊕ p)/2

that consists of its ((p + 1)/2)th to (p − 1)th columns and 1st, 3rd, . . . , (p − 2)th rows. Hence,

according to (2.5) and properties of good lattice point design U , for any two distinct rows in D,

their L1-distance equals
p2 − 1

12
=

(n+ 1)n

3
,

which means that d1(D) = (n+ 1)n/3, thus the theorem holds.

Proof of Theorem 2.4. (i) For N = 4p, n = ϕ(N)/2 = p − 1, and the corresponding generator

vector defined in (2.1) is h = (1, 3, . . . , p−2, p+2, . . . , 2p−1). Denote rows of the LHD(n, n)D

constructed by Algorithm 2.1 as l1, . . . , ln. It is easy to see that the p− 1 elements of l1 are l1j = j

for j = 1, . . . , p− 1. For l2, its p− 1 elements are

l2j =

2 + 3(j − 1), for j = 1, . . . , (p− 1)/6;

(p+ 1)/2 + 3[j − (p+ 5)/6], for j = (p+ 5)/6, . . . , (p− 1)/3;

(p+ 5)/2 + 3[(p− 1)/2− j], for j = (p+ 2)/3, . . . , (p− 1)/2;

p− 3[j − (p− 1)/3], for j = (p+ 1)/2, . . . , 2(p− 1)/3;

3 + 3[j − (2p+ 1)/3], for j = (2p+ 1)/3, . . . , 5(p− 1)/6;

3[j − 2(p− 1)/3]− 1, for j = (5p+ 1)/6, . . . , p− 1,

26

when p (mod 3) = 1, or

l2j =

2 + 3(j − 1), for j = 1, . . . , (p+ 1)/6;

(p+ 3)/2 + 3[j − (p+ 7)/6], for j = (p+ 7)/6, . . . , (p+ 1)/3;

(p+ 5)/2 + 3[(p− 1)/2− j], for j = (p+ 4)/3, . . . , (p− 1)/2;

3 + 3[2(p− 2)/3− j], for j = (p+ 1)/2, . . . , 2(p− 2)/3;

1 + 3[j − (2p− 1)/3], for j = (2p− 1)/3, . . . , (5p− 7)/6;

(p+ 1)/2 + 3[j − (5p− 1)/6], for j = (5p− 1)/6, . . . , p− 1,

when p (mod 3) = 2. It can be calculated that d1(l1, l2) = n2/3 (if p (mod 3) = 1) or d1(l1, l2) =

(n2 + 2)/3 (if p (mod 3) = 2).

For l3, it can be verified that its p− 1 elements are

l3j =

3 + 5(j − 1), for j = 1, . . . , n/10;

2 + 5(j − 1), for j = n/10 + 1, . . . , n/5;

4 + 5(2n/5− j), for j = n/5 + 1, . . . , 3n/10;

5 + 5(2n/5− j), for j = 3n/10 + 1, . . . , 2n/5;

1 + 5(j − 2n/5− 1), for j = 2n/5 + 1, . . . , n/2;

n+ 1− l3(n+1−j), for j = n/2 + 1, . . . , n,

when p (mod 5) = 1, and the corresponding L1-distance d1(l1, l3) = n2/3 + 4n/15 > d1(l1, l2).

Similarly, for pwith other values or other rows inD, it can be verified that d1(l1, li) ≥ d1(l1, l2) (i =

3, . . . , n) via some tedious calculations (details are omitted here). Therefore, the L1-distance of de-

signD equals the L1-distance between its first two rows, i.e., d1(D) = d1(l1, l2) = n2/3 (if p (mod

3) = 1) or d1(D) = d1(l1, l2) = (n2 + 2)/3 (if p (mod 3) = 2).

(ii) ForN = 2t, n = ϕ(N)/2 = 2t−2, the corresponding generator vector ish = (1, 3, . . . , 2n−

1). Results on d1(D) can be proved similarly via some tedious calculations, so we omit the details.

In addition, for the constructed LHD(n, n) D in both cases, the upper bound of its L1-distance

27

is dupper = ⌊(n + 1)n/3⌋, it is easy to verify that d1(D)/dupper ≥ 1 − 1/(n + 1). This completes

the proof.

28

CHAPTER 3

Construction of Mirror-Symmetric Maximin L1-Distance

Designs

Mirror-symmetry of design points is a good merit of a design because it guarantees that main and

interaction effects are uncorrelated and can be accurately identified (Ye et al., 2000). This chap-

ter proposes a systematic approach to constructing mirror-symmetric maximin L1-distance LHDs.

The proposed method first constructs a class of maximin balanced designs via a piece-wise linear

transformation, akin to the Williams transformation used in Wang, Xiao, et al. (2018) but modified

for our purpose. We then rotate the generated balanced designs to obtain LHDs. It is well-known

that rotation keeps orthogonality and therefore has been extensively used to construct orthogonal

LHDs from regular designs (Pang et al., 2009; Steinberg & Lin, 2006; Wang, Sun, et al., 2018). We

will show that rotation can also retain the maximin distance optimality of the generated balanced

designs, providing a class of maximin LHDs. In addition, when the design size is relatively big

(say, 100), we typically do not need as many levels as in an LHD to learn about the simulation

system. In this case, the generated maximin balanced designs (without rotation) can be directly

used for designing the experiment.

3.1 Notation, Background and Preliminary Results

For an N × n design matrix D = (xij)1≤i≤N,1≤j≤n, the L1-distance between the ith and kth rows

is defined as dik(D) =
∑n

j=1 |xij − xkj|. The L1-distance of design D, denoted by d(D), is the

minimum L1-distance between any two distinct rows of D, that is, d(D) = min{dik(D) : i ̸=

29

k, i, k = 1, · · · , N}. The maximin distance criterion (Johnson et al., 1990) is to maximize d(D)

among all possible designs.

An N × n design with s levels is balanced if all levels appear equally often, that is, each

level appears exactly N/s times. In this paper, the levels of the generated designs are denoted by

−(s − 1)/2,−(s − 3)/2, . . . , (s − 3)/2, (s − 1)/2. An LHD is a special balanced design with

s = N . A design D is mirror-symmetric if for any row x in D, its mirror-symmetric point, −x, is

also a row of D.

To define the distance efficiency, we need an upper bound ofL1-distance. For anN×n balanced

design, the average pairwise L1-distance between rows isN(s2−1)n/[3s(N −1)] (Y. Zhou & Xu,

2015). Because the minimum pairwise L1-distance cannot exceed the integer part of the average,

we have the following lemma.

Lemma 3.1. For any N × n balanced design D with s levels,

d(D) ≤ dupper =

⌊
N(s2 − 1)n

3s(N − 1)

⌋
,

where ⌊x⌋ is the integer part of x.

For an evenN , the dupper in Lemma 3.1 is achievable with a balanced mirror-symmetric design,

yet for an odd N , this dupper is not achievable. This is because when N is odd, a mirror-symmetric

design must include the center (0, . . . , 0) so that its L1-distance is restricted. We derive a tight

upper bound when N is odd in the following.

Theorem 3.1. For any N × n mirror-symmetric balanced design D with s levels, where N is an

odd number,

d(D) ≤ d∗upper =

⌊
N(s2 − 1)n

4s(N − 1)

⌋
.

Clearly, the d∗upper in Theorem 3.1 is smaller than the dupper in Lemma 3.1. Specifically, for an

N × n LHD, dupper = ⌊(N + 1)n/3⌋ in Lemma 3.1, and d∗upper = ⌊(N + 1)n/4⌋ in Theorem 3.1.

Theorem 3.1 implies that maximin distance designs cannot be mirror-symmetric when N is odd.

30

On the other hand, we will show that maximin distance designs can be constructed from mirror-

symmetric designs when N is even.

For clarity, we define two types of distance efficiencies, based on Lemma 3.1 and Theorem 3.1,

as follows:

deff(D) = d(D)/dupper and d∗eff(D) = d(D)/d∗upper.

WhenN is odd, deff(D) is about 3/4 or less for any mirror-symmetric designD, so we use d∗eff(D)

to assess the distance efficiency among mirror-symmetric designs.

With these results, our goal is to construct balanced designs and LHDs with deff(D) and/or

d∗eff(D) close or equal to 1.

3.2 Main Construction Methods

We first introduce a transformation that will be used in the construction. Let p be an odd prime

throughout the paper. For x ∈ {0, 1, . . . , p− 1}, define

φ(x) =

2x, for 0 ≤ x < p/4;

−2x+ p, for p/4 < x < 3p/4;

2x− 2p, for 3p/4 < x < p.

(3.1)

Then φ defines a one-to-one map from x = 0, . . . , p − 1 to −(p − 1)/2, . . . , (p − 1)/2. For

example, for p = 3, φ maps (0, 1, 2) to (0, 1,−1); for p = 5, φ permute the levels (0, 1, 2, 3, 4) to

(0, 2, 1,−1,−2). Figure 3.1 shows the cases for p = 7 and 9. The permutation is well defined and

for any pair of x1 ̸= x2, φ(x1) ̸= φ(x2). In fact, for instance, if 0 ≤ x1 < p/4, p/4 < x2 < 3p/4

and φ(x1) = φ(x2), then p = 2(x1 + x2), which contradicts with the fact that p is odd. It is easy to

see that the permutation has the property

φ(p− x) = −φ(x). (3.2)

31

0 1 2 3 4 5 6 7

−
4

−
2

0
2

4

p = 7

x

ϕ(
x
)

0 2 4 6 8

−
4

−
2

0
2

4

p = 9

x

ϕ(
x
)

Figure 3.1: The permutation φ(x) in (3.1) for p = 7 and 9.

It is worth noting that φ is, in fact, a piece-wise linear transformation, similar to the Williams

transformation applied to the construction of LHDs in Butler (2001) and Wang, Xiao, et al. (2018).

Aside from it, φ is ready to be deployed in our methods directly for constructing mirror-symmetric

maximin distance designs. Now we present the main algorithm for constructing mirror-symmetric

balanced designs and LHDs via the φ transformation.

Algorithm 3.1 (Construction of balanced designs and LHDs).

Step 1. Let X be a p-level full factorial design with 2 columns:

X =

0 1 · · · p− 1 0 1 · · · p− 1 · · · · · · 0 1 · · · p− 1

0 0 · · · 0 1 1 · · · 1 · · · · · · p− 1 p− 1 · · · p− 1

⊤

.

Step 2. Let D = (xij) be the design obtained by deleting the first column of XX⊤ (mod p) and

E = φ(D) = φ(xij). (3.3)

32

Step 3. Define a rotation matrix

T2 =

 p −1

1 p

 ,
and let T = diag{T2, · · · , T2} with T2 repeating (p2 − 1)/2 times. Let

L = ET. (3.4)

The design E and L generated in Steps 2 and 3 of Algorithm 3.1 both have N = p2 rows and

n = p2 − 1 columns. We next show that E is a mirror-symmetric maximin balanced design and L

is a mirror-symmetric maximin LHD.

3.2.1 Balanced designs

The designE in (3.3) is balanced and mirror-symmetric. First,E is balanced becauseD is balanced

and φ is a one-to-one map. To see that E is mirror-symmetric, rearrange the order of rows inX as

X = [02, G, p−G]⊤ (mod p),

where G = [G2, 2G2, · · · , ((p− 1)/2)G2] and

G2 =

1 0 1 1 · · · 1

0 1 1 2 · · · p− 1

 .
Then

XX⊤ =

0 0 0

0 G⊤G p−G⊤G

0 p−G⊤G G⊤G

 (mod p),

33

and

E =

φ(0) φ(0)

φ(G⊤G) φ(p−G⊤G)

φ(p−G⊤G) φ(G⊤G)

 =

0 0

φ(G⊤G) −φ(G⊤G)

−φ(G⊤G) φ(G⊤G)

 (3.5)

where the second equation in (3.5) holds due to the property (3.2). It is clear that the ith and

(i+(N−1)/2)th rows ofE in (3.5) are mirror-symmetric, for i = 2, . . . , (N +1)/2, and therefore

E is mirror-symmetric. The following theorem summarizes these results and the property of E in

terms of the L1-distance and efficiency.

Theorem 3.2. Let p be an odd prime. The design E constructed in (3.3) is a p2× (p2− 1) mirror-

symmetric balanced design with p levels. For i ̸= k,

dik(E) =

(p− 1)p(p+ 1)/4 if i = 1 or k = 1,

(p− 1)p(p+ 1)/2 if the ith and kth rows are mirror-symmetric,

(p− 1)p(p+ 1)/3 otherwise.

Then d(E) = (p− 1)p(p+ 1)/4, deff(E) = 0.75 and d∗eff(E) = 1.

Example 3.1. Let p = 3 and X be a 3-level full factorial:

X = [02, G, 3−G]⊤ (mod 3), where G =

1 0 1 1

0 1 1 2

 .

34

The design E generated by Algorithm 3.1 is given by

E =

0 0 0 0 0 0 0 0

1 0 1 1 −1 0 −1 −1

0 1 1 −1 0 −1 −1 1

1 1 −1 0 −1 −1 1 0

1 −1 0 −1 −1 1 0 1

−1 0 −1 −1 1 0 1 1

0 −1 −1 1 0 1 1 −1

−1 −1 1 0 1 1 −1 0

−1 1 0 1 1 −1 0 −1

.

It can be verified thatE is balanced andmirror-symmetric. Furthermore, d1k(E) = 6, dik(E) =

12 for |i− k| = 4 and i, k > 1, that is, for each mirror-symmetric pair of rows, and dik(E) = 8 for

all other pairs of rows. Therefore, d(E) = 6. By Theorem 3.1, an upper bound of the L1-distance

for a 9× 8mirror-symmetric design with 3 levels is 9× (32− 1)× 8/[4× 3× (9− 1)] = 6. Hence,

d∗eff(E) = 1.

Example 3.1 is a toy example to illustrate the use of Algorithm 3.1. In real application, using

a bigger prime p, we can obtain a larger design with many more levels. For example, with p = 23,

we obtain a 529× 528 balanced design with 23 levels each repeating 23 times. These many levels

are typically adequate to study the complexity of perturbations within an intricate system.

We can further study the orthogonality of the constructed designE. Define the average pairwise

correlation between columns by

ρave(E) =

∑
i ̸=k |ρik(E)|
n(n− 1)

, (3.6)

where ρik(E) is the correlation coefficient between the ith and kth columns of E. A low ρave value

indicates small correlation between design factors, and hence reduces the variance of coefficient

35

estimates for the linear trend of factorial effects.

Theorem 3.3. For the p2 × (p2 − 1) design E constructed in Algorithm 3.1,

ρave(E) <
2

p2 − 2
→ 0, as p→∞.

Although the average absolute column-wise correlation of design E converges to 0 as prime

number p approaches infinity, there actually exists highly-correlated columns in it. Specifically,

ρi(i+(N−1)/2)(E) = −1 for any 1 ≤ i < N/2, where N = p2.

A straightforward solution for this is to keep the first half columns of E, denoted as Ehalf , and

randomly permute rows of the second half columns, −Ehalf . Furthermore, in order to retain the

mirror-symmetry property, we propose first to shuffle rows 2 to (N + 1)/2 and apply the same

permutation to rows (N + 3)/2 to N . This process will help reduce the maximum correlation of

the twisted design without detriment to its distance. For instance, the design E in Example 3.1 has

d(E) = 6, ρave(E) = 0.1429, and maxi ̸=k |ρik(E)| = 1. By permuting row indices of columns 5 to

8 from (1, 2, 3, 4, 5, 6, 7, 8, 9) to (1, 3, 5, 4, 2, 7, 9, 8, 6) and concatenating with columns 1 to 4, we

get a new balanced mirror-symmetric design

E ′ =

0 0 0 0 0 0 0 0

1 0 1 1 −1 1 0 1

0 1 1 −1 −1 0 −1 −1

1 1 −1 0 −1 −1 1 0

1 −1 0 −1 0 −1 −1 1

−1 0 −1 −1 1 −1 0 −1

0 −1 −1 1 1 0 1 1

−1 −1 1 0 −1 1 −1 0

−1 1 0 1 0 1 1 −1

,

with d(E ′) = 6, ρave(E
′) = 0.2381 and maxi ̸=k |ρik(E ′)| = 0.6667. In general, the new balanced

36

design E ′ will have significantly smaller maximum absolute correlation, yet resembling average

correlation compared to the original designE. This procedure can be analogously applied tomirror-

symmetric LHDs generated in the following sections as well to further decorrelate design columns.

3.2.2 Mirror-symmetric LHDs

The following theorem summarizes the properties of L constructed in (3.4).

Theorem 3.4. The design L constructed in (3.4) is a p2 × (p2 − 1) mirror-symmetric LHD with

d∗eff(L) =
d(L)

d∗upper
≥ 1− p+ 1

p2 + 1
, and ρave(L) <

(
1 +

2

p

)
2

p2 − 2
.

As p→∞, d∗eff(L)→ 1 and ρave(L)→ 0.

Example 3.2. Consider generating an LHD based on the designE constructed in Example 3.1. Let

T = diag{T2, T2, T2, T2} where

T2 =

 3 −1

1 3

 .
Then

L = ET =

0 0 0 0 0 0 0 0

1 −3 4 −2 −1 3 −4 2

3 1 −2 −4 −3 −1 2 4

4 −2 −1 3 −4 2 1 −3

−2 −4 −3 −1 2 4 3 1

−1 3 −4 2 1 −3 4 −2

−3 −1 2 4 3 1 −2 −4

−4 2 1 −3 4 −2 −1 3

2 4 3 1 −2 −4 −3 −1

.

It can be verified that L is a mirror-symmetric LHD with d(L) = 20, d∗eff(L) = 1, and ρave(L) =

0.1429.

37

3.2.3 Leave-one-out extension

Considering that the first row of L in (3.4) is a zero vector, we can delete it and rearrange levels

of L to obtain a new LHD. For example, deleting the first row of the constructed L in Example

3.2 and changing the levels (−4, . . . ,−1, 1, . . . , 4) to (−3.5, . . . ,−0.5, 0.5, . . . , 3.5), we obtain

another LHD L−1 given by

L−1 =

0.5 −2.5 3.5 −1.5 −0.5 2.5 −3.5 1.5

2.5 0.5 −1.5 −3.5 −2.5 −0.5 1.5 3.5

3.5 −1.5 −0.5 2.5 −3.5 1.5 0.5 −2.5

−1.5 −3.5 −2.5 −0.5 1.5 3.5 2.5 0.5

−0.5 2.5 −3.5 1.5 0.5 −2.5 3.5 −1.5

−2.5 −0.5 1.5 3.5 2.5 0.5 −1.5 −3.5

−3.5 1.5 0.5 −2.5 3.5 −1.5 −0.5 2.5

1.5 3.5 2.5 0.5 −1.5 −3.5 −2.5 −0.5

with d(L−1) = 20, which is close to the upper bound given in Lemma 3.1: dupper = ⌊32(32 − 1)/3⌋ =

24. In general, deleting the first row of L in (3.4) and changing its levels x to x − sign(x)/2, we

obtain a new (p2− 1)× (p2− 1) LHD, denoted by L−1. The following result studies deff(L−1) and

ρave(L−1).

Theorem 3.5. The design L−1 is a (p2 − 1)× (p2 − 1) mirror-symmetric LHD with

deff(L−1) =
d(L−1)

dupper
≥ 1− 1

p
− 3

p2
, and ρave(L−1) <

(
10 +

8

p

)
1

p2 − 2
.

As p→∞, deff(L−1)→ 1 and ρave(L−1)→ 0.

38

3.2.4 Another class of mirror-symmetric LHDs

For any positive integer N , the number of positive integers that are less than and coprime to N

is ϕ(N), where ϕ(·) is the Euler function. Define a generate vector h = (h1, h2, · · · , hϕ(N)) with

1 = h1 < · · · < hϕ(N) = N − 1 and gcd(hi, N) = 1 for i = 1, · · · , ϕ(N). The N × ϕ(N) good

lattice point (GLP) sets D is given by,

D =Mh = (Mh1,Mh2, · · · ,Mhϕ(N)) (mod N), (3.7)

where M = (1, 2, · · · , N)⊤ is a column vector. Combining with the piece-wise linear transfor-

mation φ introduced before, we now present the construction method for another class of mirror-

symmetric LHDs.

Algorithm 3.2 (Construction of mirror-symmetric LHDs based on GLP sets).

Step 1. Let X be a p× (p− 1) GLP design, where its kth row is given by,

kh = (k, 2k, · · · , (p− 1)k) (mod p).

Step 2. Let D be the design obtained by deleting the last constant row of X and

F = φ(D)− sign(φ(D))/2. (3.8)

The (p− 1)× (p− 1) design F detailed in (3.8) of Algorithm 3.2 is a mirror-symmetric LHD,

according to property (3.2) of transformation φ. For example, when p = 7, the 6 × 6 mirror-

39

symmetric LHD constructed using Algorithm 3.2 is

F =

1.5 2.5 0.5 −0.5 −2.5 −1.5

2.5 −0.5 −1.5 1.5 0.5 −2.5

0.5 −1.5 2.5 −2.5 1.5 −0.5

−0.5 1.5 −2.5 2.5 −1.5 0.5

−2.5 0.5 1.5 −1.5 −0.5 2.5

−1.5 −2.5 −0.5 0.5 2.5 1.5

with d(F) = 12. We have the following theorem.

Theorem 3.6. The design F is a (p− 1)× (p− 1) mirror-symmetric LHD with

d(F) ≥ p2 − 1

3
− (p− 1) and deff(F) =

d(F)

dupper
≥ 1− 2

p
.

Theorem 3.6 can be proved using Theorem 1 of Wang, Xiao, et al. (2018) and the fact that

the decrease of the L1-distance between any two distinct rows cannot exceed p − 1 after the level

rearrangement.

Wang, Xiao, et al. (2018) provided a construction method for LHDs with p− 1 runs and p− 1

factors as well. A lower bound of L1-distance efficiency of their design E∗
b is 1 − 2.43/p for

primes p ≥ 7, which is slightly worse than ours. For example, when p = 89, deff(F) = 0.9890 >

deff(E
∗
b) = 0.9852 and when p = 103, deff(F) = 0.9903 > d(E∗

b) = 0.9886, etc.

Notice that our design F is also mirror-symmetric among columns, i.e., x·j = −x·(p−j) for any

1 ≤ j ≤ p − 1, where x·j is the jth column of design F . Consequently, we can simply take the

first half columns and the resulting (p−1)× (p−1)/2 design Fhalf remains as a mirror-symmetric

maximin L1-distance LHD. However, for the (p− 1)× (p− 1) LHD E∗
b proposed by Wang, Xiao,

et al. (2018), which subset of columns to select to maximize the resulting design distance is a non-

trivial problem. To further illustrate the merits of Fhalf , we constructed a variety of LHDs with

p− 1 runs and (p− 1)/2 factors using different algorithms, including the linearly permuted good

40

lattice point sets (“LP-GLP”, Y. Zhou and Xu, 2015), Williams transformation of linearly permuted

good lattice point sets (“WP-GLP”, Wang, Xiao, et al., 2018), R package SLHD (Ba, 2015) and our

proposed method. For the “LP-GLP” method, we apply the linear permutation x→ x+ (p− 1)/2

(mod p) to the p × (p − 1) good lattice point design following Tang and Xu (2014) and use the

leave-one-out method to obtain a (p− 1)× (p− 1) LHD, which is mirror-symmetric among both

rows and columns, and then we take the first half columns. The (p− 1)× (p− 1) LHD generated

by the “WP-GLP” method is not mirror-symmetric among columns, and the design consisting of

the first half columns has small distance. To make a meaningful comparison we randomly select

half of its columns with 10,000 repetitions. The SLHD package targets at generating maximin L2-

distance designs, therefore we run the command maximinSLHD() with option t = 1 and other

default settings 100 times for fair comparisons. Both median and maximum L1-distances of LHDs

constructed from these two methods are reported in Table 3.1.

Table 3.1 fully displays that our proposed method dominates all the other existing construction

algorithms. For all primes 7 ≤ p < 100 investigated, our constructed design Fhalf consistently

possesses the greatest L1-distance, even compared to the maximum L1-distances of “WP-GLP”

and “SLHD” methods. Moreover, this result also holds for larger p, considering the asymptotic

maximin L1-distance optimality of Fhalf .

3.2.5 Further extension of the leave-one-out procedure

Mirror-symmetric LHDs constructed in previous sections have restricted structures, i.e., the number

of design runsN = p2−1 or p−1 and the number of design factors n = N orN/2. Nowwe present

a more flexible method to generate many asymptotic maximinL1-distance mirror-symmetric LHDs

with different N and n’s.

Algorithm 3.3 (Construction of flexible mirror-symmetric LHDs).

Step 1. Let D be an N × n mirror-symmetric LHD.

Step 2. Randomly delete one row x, as well as its mirror-symmetric row −x from D. Rearrange

41

N n Our Method LP-GLP WP-GLP SLHD
Median Max Median Max

6 3 6 5 4 4 6 6
10 5 17 14 10 12 14 15
12 6 24 20 15 20 20 22
16 8 43 37 26 36 34.5 37
18 9 54 45 34 43 43 48
22 11 81 69 51 65 64 69
28 14 131 115 86 103 105 111
30 15 150 125 100 118 121 127
36 18 216 180 146 173 174 183
40 20 267 231 183 211 218 228
42 21 294 245 203 239 241 250
46 23 353 304 246 284 289 303
52 26 451 387 320 362 370.5 385
58 29 561 480 403 446 465 483
60 30 600 500 432 479 497 515
66 33 726 605 529 590 607.5 625
70 35 817 696 599 656 685 706
72 36 864 720 636 698 725 753
78 39 1014 845 752 824 857 877
82 41 1121 952 837 912 946 986
88 44 1291 1095 971 1047 1096.5 1127
96 48 1536 1280 1164 1255 1310 1352

Table 3.1: Comparison of the L1-distances of (p − 1) × (p − 1)/2 LHDs. Our Method, first half
columns of F generated using Algorithm 3.2; LP-GLP, linearly permuted good lattice point set;
WP-GLP, random half column sub-sampling from theWilliams transformation of linearly permuted
good lattice point set with 10,000 repetitions; SLHD, R function call maximinSLHD(t=1) with 100
repetitions.

42

levels of the remainingN − 2 rows in the following way, such that the resulting (N − 2)×n

design D∗ is still a mirror-symmetric LHD.

Denote x = (x1, x2, · · · , xn). For any of the remaining N − 2 rows y = (y1, y2, · · · , yn) ̸∈

{x,−x}, set

y∗i =

yi − sign(yi) if |yi| > |xi|,

yi otherwise.
(3.9)

where y∗ = (y∗1, y
∗
2, · · · , y∗n) is the corresponding row after level rearrangement in D∗.

Step 3. Repeat Step 2 kr times, where kr is a fixed constant, to generate a (N − 2kr)× n mirror-

symmetric LHD.

Step 4. Randomly throw away kc columns, where kc is a fixed constant. The remaining (N −

2kr)× (n− kc) design is still a mirror-symmetric LHD with high L1-distance efficiency.

Step 2 of Algorithm 3.3 can be regarded as a generalization of the leave-one-out method intro-

duced by Wang, Xiao, et al. (2018). The difference is that we leave out a pair of mirror-symmetric

rows to keep the mirror-symmetric structure. Whenever two mirror-symmetric rows are deleted

from the original N × n design, the distance will decrease at most by 2n after the level rearrange-

ment detailed in (3.9), and whenever a column gets deleted, theL1-distance of the remaining design

will reduce at most by N − 1. Hence, we have the following result.

Theorem 3.7. Let D be an N × n mirror-symmetric LHD and D∗ be the (N − 2kr) × (n − kc)

mirror-symmetric LHD generated using Algorithm 3.3. Then deff(D∗) ≥ deff(D)−6kr/(N−2kr)−

3kc/(n− kc).

Set the initial N × n mirror-symmetric LHD to be the first half columns of L−1, denoted as

L−1,half , constructed in Section 3.2.3, or the first half columns of F , denoted as Fhalf , constructed

in Section 3.2.4. According to the asymptotic maximin L1-distance optimality of L−1,half and

Fhalf and Theorem 3.7, for any constant kr ≪ N and kc ≪ n, the resulting (N − 2kr)× (n− kc)

mirror-symmetric LHD generated by Algorithm 3.3 is still asymptotically optimal with respect

43

to the maximin L1-distance criterion. Hence, Algorithm 3.3 is capable of constructing a series

of asymptotically optimal mirror-symmetric LHDs with considerably more flexible design sizes.

For example, when p = 17, kr = 5 and kc = 4, by deleting the first 5 rows, together with their

correspondingmirror-symmetric rows and first 4 columns ofL−1,half , we obtain a 278×140mirror-

symmetric LHD with deff = 0.9637 after proper level rearrangement; when p = 499, kr = 8 and

kc = 9, start from Fhalf , we obtain a 482 × 240 mirror-symmetric LHD with deff = 0.9658 by

following the same procedure.

3.3 Numerical Comparisons

3.3.1 Distance efficiency and average pairwise correlations

We compare the distance efficiencies deff and average pairwise correlations ρave of the LHDs con-

structed in Section 3.2 and the LHDs generated via an existing method, the R package SLHD pro-

vided by Ba et al. (2015). For fair comparisons, given each required size of design, we call the

function maximinSLHD() 100 times with option t = 1 and default settings, and examine the box-

plots of the values of deff and ρave for the obtained LHDs.

For each odd prime p, Figure 3.2 compares the values of deff (left) and ρave (right) of the (p2 −

1) × (p2 − 1) leave-one-out LHD constructed in Section 3.2.3 and the LHDs obtained via the

SLHD package. All leave-one-out LHDs outperform the LHDs generated via the SLHD package in

the sense of maximizing the deff and minimizing the ρave. Specifically, the values of deff for all

leave-one-out LHDs are above 95% and converges to 1 quickly as p increases, while values for the

LHDs from the SLHD package are all below 95% and usually fluctuate around 90%. In addition,

the values of ρave for the leave-one-out LHDs are always smaller than those of the LHDs from the

SLHD package and vanish quickly as p increases.

44

0.85

0.90

0.95

1.00

10 20 30 40
p

L1
−

D
is

ta
nc

e
E

ffi
ci

en
cy

 d
ef

f

0.00

0.01

0.02

0.03

0.04

10 20 30 40
p

A
ve

ra
ge

 C
ol

um
nw

is
e

C
or

re
la

tio
n

ρ a
ve

Our Method SLHD

Figure 3.2: Comparison of the values of deff (left) and ρave (right) of the leave-one-out LHDs con-
structed in Section 3.2.3 and the LHDs obtained via the SLHD package.

3.3.2 Space-filling properties under projections

Besides, we also compare the space-filling properties of the LHD L constructed in Section 3.2,

under projection, with other designs constructed by existing methods. Note that mirror-symmetric

columns inL are perfectly correlated, to further reduce the correlation, we take the first half columns

of LHD L, and denote the resulting p× (p− 1)/2 LHD as Lhalf.

Some of the space-filling criteria considered here include Euclidean distance (the larger the bet-

ter), maximum projection criterion ψ(D) proposed by Joseph et al. (2015) (the smaller the better),

relative centered L2-discrepancy CD2 (the smaller the better), and the average column-wise corre-

lation ρave defined in (3.6) (the smaller the better). The relative CD2 is defined as the difference

of CD2 values between the design currently under investigation versus the baseline one. Here, we

assign Lhalf as our baseline. For each projection dimension k ≤ n, we evaluate all
(
n
k

)
projected

designs and determine the worst case scenarios for different space-filling criteria respectively.

Existing space-filling designs under comparison include uniform designs (Fang et al., 2006)

45

(ud), maximin distance designs (maximin), and maximum projection designs (maxpro). They are

constructed using R packages UniDOE (A. Zhang et al., 2018) with discrepancy measure CD2, SLHD

(Ba, 2015) and MaxPro (Ba & Joseph, 2018), respectively.

Figure 3.3 and 3.4 present the final results for 25 × 12 (p = 5) and 49 × 24 (p = 7)

space-filling designs under projection. When calculating the CD2 value, we rescale the N lev-

els−(N − 1)/2, . . . , (N − 1)/2 to [0, 1] using the transformation x→ x/N +0.5, whereN = p2.

Both figures exhibit the robustness of our proposed mirror-symmetric LHD against different space-

filling criteria: first of all, Lhalf has the smallest average column-wise correlation among all opti-

mal LHDs under all dimension projections, especially when p = 5, Lhalf is strictly orthogonal with

ρave(Lhalf) = 0; besides, for other criteria likeL2-distance, ψ(D) or CD2, Lhalf performs compara-

tively well and even outperforms the corresponding optimal LHDs (e.g., maximin distance designs

for L2-distance, maximum projection designs for ϕ(D), etc.) in low dimensions. This property can

be super beneficial for conducting early-stage experiments with many inert factors.

3.3.3 Correlation among higher order terms

We now evaluate correlations among the higher order terms on LHD L and L−1 constructed in Sec-

tion 3.2. Suppose design X has N runs and n factors. Following Georgiou (2009), we calculate

the alias matrices for the first-order model associated with the two-factor interactions and pure

quadratic terms, defined by
T = (X⊤

1 X1)
−1X⊤

1 Xint,

Q = (X⊤
1 X1)

−1X⊤
1 Xquad,

(3.10)

where X1 is the N × (n + 1) regression matrix for the first-order model (including a column of

ones for the intercept), Xint corresponds to the N × (n(n − 1)/2) matrix containing all possible

two-factor interactions and theN×nmatrixXquad includes all pure quadratic terms. Furthermore,

46

10

20

30

3 4 5 6 7 8 9 10 11 12
Projection dimension(k)

M
in

im
um

 E
uc

lid
ea

n
di

st
an

ce

0.05

0.10

0.15

0.20

0.25

3 4 5 6 7 8 9 10 11 12
Projection dimension(k)

M
ax

im
um

 ψ
(D

)

−0.02

−0.01

0.00

0.01

3 4 5 6 7 8 9 10 11 12
Projection dimension(k)

R
el

at
iv

e
m

ax
im

um
 C

D
2

0.00

0.05

0.10

0.15

0.20

0.25

3 4 5 6 7 8 9 10 11 12
Projection dimension(k)

M
ax

im
um

 ρ
av

e

ud maximin maxpro Lhalf

Figure 3.3: Comparisons of projection space-filling properties for 25×12 designs under minimum
Euclidean distance (the larger the better), maximum ψ(D) (the smaller the better), relative maxi-
mum CD2 (the smaller the better), and maximum ρave (the smaller the better) criteria.

47

0

25

50

75

3 5 7 9 11 13 15 17 19 21 23
Projection dimension(k)

M
in

im
um

 E
uc

lid
ea

n
di

st
an

ce

0.0

0.1

0.2

0.3

3 5 7 9 11 13 15 17 19 21 23
Projection dimension(k)

M
ax

im
um

 ψ
(D

)

−0.2

−0.1

0.0

0.1

0.2

3 5 7 9 11 13 15 17 19 21 23
Projection dimension(k)

R
el

at
iv

e
m

ax
im

um
 C

D
2

0.00

0.05

0.10

0.15

0.20

3 5 7 9 11 13 15 17 19 21 23
Projection dimension(k)

M
ax

im
um

 ρ
av

e

ud maximin maxpro Lhalf

Figure 3.4: Comparisons of projection space-filling properties for 49×24 designs under minimum
Euclidean distance (the larger the better), maximum ψ(D) (the smaller the better), relative maxi-
mum CD2 (the smaller the better), and maximum ρave (the smaller the better) criteria.

48

define measures

E(|t|) =
∑n+1

i=1

∑n(n−1)/2
j=1 |tij|

n(n2 − 1)/2
, max |t| = max

i,j
|tij|;

E(|q|) =
∑n+1

i=1

∑n
j=1 |qij|

n(n+ 1)
, max |q| = max

i,j
|qij|.

(3.11)

Designs with relatively small absolute values in bias matrices T and Q are suitable for screening

tasks. Consequently, designs with smaller E(|t|),max |t|, E(|q|) and max |q| values are deemed

better in this regards.

For the LHD L constructed by (3.4) of Algorithm 3.1 and its leave-one-out extension L−1, we

delete the second half of the columns to further decrease the column-wise correlation and compute

their bias on interactions and quadratic terms. Denote the resulting p2×(p2−1)/2LHD asLhalf and

its leave-one-out version as L−1,half . When p = 5 and 7, orthogonal LHDs with the same design

size are constructed by Georgiou and Efthimiou (2014) using the Goethal-Seidel and Kharaghani

arrays. A detailed comparison shall bemade in terms of their design distance, as well as correlations

among higher order terms. Notice that we rescale both classes of LHDs to range [−1, 1] using the

same transformation proposed by Georgiou and Efthimiou (2014) for convenience of measurement

computations.

Table 3.2 summaries the numerical results. The LHDs from Georgiou and Efthimiou (2014)

with different design sizes are given by Example 6, Example 1, Corollary 7 and Example 5 in their

paper, respectively. It is worth noting that for all cases, our constructed LHDs Lhalf and L−1,half

managed to achieve the lower bound of E|q| and max |q|, which are derived by Georgiou (2009)

among orthgonal LHDs, yet LHDs Lhalf and L−1,half are not necessarily orthogonal in general.

Furthermore, LHDs generated by our construction method tend to possess larger L1-distances, as

the increase of p.

49

N n LHD d(D) E(|t|) max |t| E(|q|) max |q|

25 12 Lhalf 6.1667 0 0 0.0278 0.3611
GE 6.5000 0 0 0.0278 0.3611

24 12 L−1,half 7.8261 0 0 0.0279 0.3623
GE 7.1304 0 0 0.0279 0.3623

49 24 Lhalf 12.3333 0 0 0.0139 0.3472
GE 11.3333 0 0 0.0139 0.3472

48 24 L−1,half 15.8298 0 0 0.0139 0.3475
GE 11.2340 0 0 0.0139 0.3475

Table 3.2: Comparisons of L1-distance (d(D)), bias on interactions (E(|t|) and max |t|) and bias
on quadratic terms (E(|q|) and max |q|) between our constructed LHDs and those from Georgiou
and Efthimiou (2014) (GE).

3.4 Concluding Remarks

In this chapter, we have proposed a series of deterministic construction methods for generating both

mirror-symmetric maximin L1-distance balanced designs and LHDs with a flexible number of runs

and factors. The average correlation between columns of the constructed designs rapidly converge

to zero with the increase of design sizes. Furthermore, first half columns of all constructed designs

share the same distance efficiency as the full design, owing to the mirror-symmetry among design

columns. The halved designs, coming with the extra mirror-symmetric property, have much greater

L1-distance efficiency than existingmaximin designs found by state-of-art methods and algorithms.

Furthermore, our constructed designs exhibit robust performance against many other space-filling

criteria and under various dimension projections.

3.5 Appendix: Proofs

Proof of Theorem 3.1. Given the fact that the run sizeN is odd, the mirror-symmetric designD =

(xij)1≤i≤N, 1≤j≤n can always be represented in the form of (0Tn , XT ,−XT)T , where 0n is a row

vector of n zeros, after proper row rearrangement.

50

As design D is balanced, all levels
{
− s−1

2
,− s−3

2
, · · · ,−1, 0, 1, · · · , s−3

2
, s−1

2

}
appear exactly

N/s times in each design column. The total L1-distance between the first row (center point) and

all other rows is

N∑
i=2

d1i(D) =
N∑
i=2

n∑
j=1

|x1j − xij| =
n∑

j=1

N∑
i=2

|xij|

= n · 2
(
|1|+ · · ·+

∣∣∣∣s− 3

2

∣∣∣∣+ ∣∣∣∣s− 1

2

∣∣∣∣) · Ns =
N(s2 − 1)n

4s
.

It is obvious that d(D) does not exceed the average distance between the center point (first row)

and any other row, so

d(D) ≤ min{d1i(D) : i = 2, . . . , N} ≤ N(s2 − 1)n

4s(N − 1)
.

This completes the proof.

Proof of Theorem 3.2. For the simplicity of description and derivation of theoretical properties of

balanced designE in (3.3), we add the deleted constant zero column back to the designD in Step 2

of Algorithm 3.1, so that the resultingE ′ = φ(XX⊤) becomes a p2×p2 squarematrix with the same

L1-distance distribution as E in (3.3). We will use same notations D and E for designs retaining

or deleting the first column in the following proofs, in order to simplify the notation slightly.

Denote E = (φ(xij))1≤i≤N, 1≤j≤n, where N = n = p2, and xij corresponds to the ith row and

jth column element in design D of Algorithm 3.1.

• For the first case, note that φ(xi) = (φ(xi1), · · · , φ(xin)) for any i ̸= 1 is a balanced row

vector, with every level of {−(p − 1)/2, · · · , (p − 1)/2} appearing p times, and φ(x1) =

(φ(x11), · · · , φ(x1n)) is a constant row vector with each component equal to φ(0) = 0.

Therefore,

dik(E) = p

p−1∑
t=0

|t− (p− 1)/2| = (p− 1)p(p+ 1)/4, when i = 1 or k = 1;

51

• For the second case, when the ith and kth rows are mirror-symmetric, similarly according to

the balance property of any design row φ(xi),

dik(E) = p

p−1∑
t=0

|t− (p− 1− t)| = p

p−1∑
t=0

|2t− (p− 1)| = (p− 1)p(p+ 1)/2;

• For the last case, let’s first discuss another property of the symmetric design D. Denote

X = (A,B), where A and B respectively are two design factors of the p-level 2-factor full

factorial design X . Then all rows in D can be viewed as a linear space over finite field Zp

spanned byA⊤ andB⊤. The first row inD is the zero vector of this linear space, and any row

inD can be represented as c1A⊤ + c2B
⊤ (mod p), where c1, c2 ∈ Zp = {0, 1, 2, . . . , p− 1}.

Consequently, we can divide all rows in D but the zero vector into p + 1 groups, denoted

as {R1, · · · , Rp+1}, such that row vectors within the same group are linearly dependent, and

those between different groups are linearly independent. It is easy to show that the number

of elements in every group Rt is p− 1. We need to consider two cases.

(i) For any two linearly independent row vectors, xi ∈ Rt and xk ∈ Rs, t ̸= s, (x⊤i , x⊤k) form

an orthogonal array of strength two and thus all level combinations appear exactly once.

Furthermore, corresponding rows φ(xi) and φ(xk) in design E also share the same property,

since the transformation (3.1) defines a one-to-one mapping over Zp. Therefore,

dik(E) =

p−1∑
s=0

p−1∑
t=0

|s− t| =
p−1∑
s=0

(
s∑

t=0

(s− t) +
p−1∑

t=s+1

(t− s)

)

=

p−1∑
s=0

[
(s+ 1)s

2
+

(p− s)(p− s− 1)

2

]

=

p−1∑
s=0

s2 + (1− p)
p−1∑
s=0

s+
p2(p− 1)

2

= (p− 1)p(p+ 1)/3.

(ii) For L1-distance between any two linearly dependent rows, note that every group Rt to-

52

gether with the zero vector is equivalent, up to column permutations, as p identical p × p

good lattice point (GLP) designs concatenated by columns, where its generator vector h =

(0, 1, · · · , p−1). On the other hand, the transformation (3.1) can be regarded as a special case

of the linearly permutedWilliams transformation, sinceφ(x) = W (x⊕(p−1)/4)−(p−1)/2

if p = 1 (mod 4) and φ(x) = W (x ⊕ (3p − 1)/4) − (p − 1)/2 if p = 3 (mod 4), where

x⊕ y = x+ y (mod p). Then, according to Theorem 1 of Wang, Xiao, et al. (2018), for any

two linear dependent row vector xi, xk ∈ Rt that are not mirror-symmetric to each other, we

have

dik(E) = (p2 − 1)/3× p = (p− 1)p(p+ 1)/3.

The proof is complete.

Proof of Theorem 3.3. Note design D = XX⊤ is symmetric. Thus following the same logic as

the proof of Theorem 3.2, we can similarly show that all columns of D also form a linear space

over finite field Zp spanned by A and B, where X = (A,B). The first column in D is the zero

vector of this linear space, and any column in D can be represented as c1A+ c2B (mod p), where

c1, c2 ∈ Zp.

Consequently, we can divide all columns, except for the first, inD into p+1 groups, denoted as

{C1, · · · , Cp+1}, such that column vectors within the same group are linearly dependent, and those

between different groups are linearly independent. It is easy to show that the number of elements

in every group Ct is p − 1. Moreover, we perform the same grouping on corresponding columns

of E and consider two cases.

(i) For any two linearly independent column vectors in design D, xi ∈ Ct and xk ∈ Cs, where

t ̸= s, (xi, xk) form an orthogonal array of strength 2 and thus all level combinations appear

exactly once. Furthermore, corresponding columns φ(xi) and φ(xk) in design E also share the

same property, since the transformation (3.1) defines a one-to-one mapping over Zp. Therefore,

ρik(E) = 0, given the fact that columns φ(xi) and φ(xk) are combinatorially orthogonal.

(ii) For correlation between two linearly dependent column vectors, note that every group Ct in

53

designD is equivalent, up to row permutations, to p identical p× (p− 1) good lattice point (GLP)

designs concatenated by rows, where its generator vector h = (1, · · · , p − 1). Denote the GLP

design as Dglp, and for any column index i ∈ Ct of design D, denote its corresponding column

index in Dglp as i′. We can easily proof that

ρik(D) = ρi′k′(Dglp), where i ̸= k ∈ Ct.

Furthermore, as we have pointed out before, the transformation (3.1) is a special case of the linearly

permuted Williams transformation. Then by applying Theorem 5 of Wang et al. (2018), we can

derive, for any two non-identical column indices i, k within the same group Ct,

∑
i ̸=k∈Ct

|ρik(E)| =
∑

i ̸=k∈Ct

|ρik(φ(D))| =
∑
i′ ̸=k′

|ρi′k′(φ(Dglp))| < 2(p− 1).

In summary,

ρave(E) =

∑
i ̸=k |ρik(E)|

(p2 − 1)(p2 − 2)
=

∑p+1
t=1

∑
i ̸=k∈Ct

|ρik(E)|
(p2 − 1)(p2 − 2)

<
2(p− 1)(p+ 1)

(p2 − 1)(p2 − 2)
=

2

p2 − 2
.

Proof of Theorem 3.4. First of all, the designL in (3.4) is a Latin hypercube, since any two adjacent

columns of design E in (3.3) forms an orthogonal array of strength two and T2 is a rotation matrix.

Apart from it, this LHD L is also mirror-symmetric, due to the fact that the balanced design E in

(3.3) is mirror-symmetric and T is block-diagonal. As L is a p2 × (p2 − 1) mirror-symmetrical

LHD, by Theorem 3.1,

d(L) ≤ d∗upper = (p4 − 1)/4.

Denote L = (lij) and E = (eij). Since L = ET and the rotation matrix T is block diagonal, for

54

any row index i ̸= k, we have

dik(L) =

p2−1∑
j=1

|lij − lkj|

=

(p2−1)/2∑
t=1

{
|(pei(2t−1) + ei(2t))− (pek(2t−1) + ek(2t))|+ |(−ei(2t−1) + pei(2t))− (−ek(2t−1) + pek(2t))|

}
=

(p2−1)/2∑
t=1

{
|p(ei(2t−1) − ek(2t−1)) + (ei(2t) − ek(2t))|+ |p(ei(2t) − ek(2t))− (ei(2t−1) − ek(2t−1))|

}
≥

(p2−1)/2∑
t=1

{
p|ei(2t−1) − ek(2t−1)| − |ei(2t) − ek(2t)|

}
+
{
p|ei(2t) − ek(2t)| − |ei(2t−1) − ek(2t−1)|

}
=

p2−1∑
j=1

{p|eij − ekj| − |eij − ekj|} = (p− 1)dik(E).

(3.12)

Furthermore, as a direct result from Theorem 3.2,

d(L) = min
i ̸=k

dik(L) ≥ (p− 1)d(E) = (p− 1)2p(p− 1)/4.

Consequently,

d∗eff(L) =
d(L)

d∗upper
≥ (p− 1)2p(p− 1)/4

(p4 − 1)/4
= 1− p+ 1

p2 + 1
→ 1, as p→∞.

In terms of the average pairwise correlation between columns of LHD L, we need to first prove the

following result: ∑
i ̸=k

|ρik(L)| ≤
(p+ 1)2

p2 + 1

∑
i ̸=k

|ρik(E)|. (3.13)

55

We regroup the summation of column-wise correlations on the left hand side of (3.13) as

∑
i ̸=k

|ρik(L)| =
∑
t ̸=s

{|ρ(2t−1)(2s−1)(L)|+ |ρ(2t)(2s−1)(L)|+ |ρ(2t−1)(2s)(L)|+ |ρ(2t)(2s)(L)|}

+ 2

(p2−1)/2∑
w=1

|ρ(2w−1)(2w)(L)|,

where column indices i ̸= k ∈ {1, 2, · · · , p2− 1}, and t ̸= s ∈ {1, 2, · · · , (p2− 1)/2}. Since E =

(eij) is a balanced design and L = (lij) is an LHD,
∑p2

j=1 ejk =
∑p2

j=1 ljk = 0, and
∑p2

j=1 e
2
jk = c0

hold for every column k, where c0 is a constant. For any t, columns 2t − 1 and 2t of design E

are always combinatorially orthogonal; therefore, after rotation, they are still orthogonal and have

correlation of 0. Besides,

|ρ(2t−1)(2s−1)(L)| =

∣∣∣∑j(pej(2t−1) + ej(2t))(pej(2s−1) + ej(2s))
∣∣∣√∑

j(pej(2t−1) + ej(2t))2
∑

j(pej(2s−1) + ej(2s))2

=
1

(p2 + 1)c0

∣∣∣∣∣∑
j

{
p2ej(2t−1)ej(2s−1) + pej(2t−1)ej(2s) + pej(2t)ej(2s−1) + ej(2t)ej(2s)

}∣∣∣∣∣
≤ 1

(p2 + 1)c0

{
p2
∣∣∣∣∑

j

ej(2t−1)ej(2s−1)

∣∣∣∣+ p

∣∣∣∣∑
j

ej(2t−1)ej(2s)

∣∣∣∣
+p

∣∣∣∣∑
j

ej(2t)ej(2s−1)

∣∣∣∣+ ∣∣∣∣∑
j

ej(2t)ej(2s)

∣∣∣∣
}

=
1

p2 + 1

{
p2|ρ(2t−1)(2s−1)(E)|+ p|ρ(2t−1)(2s)(E)|+ p|ρ(2t)(2s−1)(E)|+ |ρ(2t)(2s)(E)|

}
.

Similarly,

|ρ(2t)(2s−1)(L)| ≤
1

p2 + 1

{
p|ρ(2t−1)(2s−1)(E)|+ |ρ(2t−1)(2s)(E)|+ p2|ρ(2t)(2s−1)(E)|+ p|ρ(2t)(2s)(E)|

}
,

|ρ(2t−1)(2s)(L)| ≤
1

p2 + 1

{
p|ρ(2t−1)(2s−1)(E)|+ p2|ρ(2t−1)(2s)(E)|+ |ρ(2t)(2s−1)(E)|+ p|ρ(2t)(2s)(E)|

}
,

|ρ(2t)(2s)(L)| ≤
1

p2 + 1

{
|ρ(2t−1)(2s−1)(E)|+ p|ρ(2t−1)(2s)(E)|+ p|ρ(2t)(2s−1)(E)|+ p2|ρ(2t)(2s)(E)|

}
.

56

Hence,

∑
i ̸=k

|ρik(L)| =
∑
t ̸=s

{|ρ(2t−1)(2s−1)(L)|+ |ρ(2t)(2s−1)(L)|+ |ρ(2t−1)(2s)(L)|+ |ρ(2t)(2s)(L)|}

≤ (p+ 1)2

p2 + 1

∑
t ̸=s

{|ρ(2t−1)(2s−1)(E)|+ |ρ(2t)(2s−1)(E)|+ |ρ(2t−1)(2s)(E)|+ |ρ(2t)(2s)(E)|}

=
(p+ 1)2

p2 + 1

∑
i ̸=k

|ρik(E)|,

which completes the proof of (3.13). Then, together with the result from Theorem 3.3, we have

ρave(L) ≤
(p+ 1)2

p2 + 1
ρave(E) ≤

(p+ 1)2

p2 + 1

2

p2 − 2
<

(
1 +

2

p

)
2

p2 − 2
.

Proof of Theorem 3.5. First, we can establish the following relationship of pairwise L1-distances

between balanced design E = (eij) and LHD L = (lij):

dik(L−1) + (p2 − 1) ≥ d(i+1)(k+1)(L) ≥ (p− 1)d(i+1)(k+1)(E), ∀ i ̸= k.

The intermediate inequality d(i+1)(k+1)(L) ≥ (p− 1)d(i+1)(k+1)(E) holds according to (3.12) in the

proof of Theorem 3.4. Assuming the minimal distance of L−1 is achieved between the i0 and k0

rows,

d(L−1) = di0k0(L−1) ≥ (p− 1)d(i0+1)(k0+1)(E)− (p2 − 1) ≥ (p− 1)2p(p+ 1)

3
− (p2 − 1).

By applying Lemma 3.1, we get dupper(L−1) = ⌊p2(p2 − 1)/3⌋. Therefore,

deff(L−1) =
d(L−1)

dupper(L−1)
≥ d(L−1)

p2(p2 − 1)/3
≥ p(p− 1)2(p+ 1)/3− (p2 − 1)

p2(p2 − 1)/3

= 1− 1

p
− 3

p2
→ 1, as p→∞.

57

Besides, denote the leave-one-out LHD L−1 = (l′ij), where l′ij corresponds to the element at the

ith row and jth column of design L−1. Then
∑p2−1

j=1 l′jk =
∑p2

j=1 ljk = 0 hold for any column k.

Moreover,

p2−1∑
j=1

(l′jk)
2 = 2

[(
1

2

)2

+

(
3

2

)2

+ · · ·+
(
p2 − 2

2

)2
]
=
p2(p2 − 1)(p2 − 2)

12
,

p2∑
j=1

(ljk)
2 = 2

[
12 + 22 + · · ·+

(
p2 − 1

2

)2
]
=
p2(p2 − 1)(p2 + 1)

12
,

also hold for any column k. Then for the absolute correlation between any two columns i and k of

design L−1,

|ρik(L−1)| =
∣∣∑

j l
′
jil

′
jk

∣∣√∑
j(l

′
ji)

2
∑

j(l
′
jk)

2
=

∣∣∣∣∑
j

l′jil
′
jk

∣∣∣∣/(
p2(p2 − 1)(p2 − 2)

12

)
.

The numerator

∣∣∑
j

l′jil
′
jk

∣∣ =
∣∣∣∣∣∣

∑
j: lji>0, ljk>0

(
lji −

1

2

)(
ljk −

1

2

)
+

∑
j: lji>0, ljk<0

(
lji −

1

2

)(
ljk +

1

2

)

+
∑

j: lji<0, ljk>0

(
lji +

1

2

)(
ljk −

1

2

)
+

∑
j: lji<0, ljk<0

(
lji +

1

2

)(
ljk +

1

2

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j

ljiljk −
1

2

∑
j: lji>0, ljk>0

(lji + ljk) +
1

2

∑
j: lji<0, ljk<0

(lji + ljk)

+
1

2

∑
j: lji>0, ljk<0

(lji − ljk)−
1

2

∑
j: lji<0, ljk>0

(lji − ljk) +
∑

j: ljiljk>0

1

4
−

∑
j: ljiljk<0

1

4

∣∣∣∣∣∣
≤
∣∣∑

j

ljiljk
∣∣+ 1

2

∑
j

{|lji|+ |ljk|}+
∑
j

1

4

=
∣∣∑

j

ljiljk
∣∣+ (p2 − 1)(p2 + 1)

4
+
p2 − 1

4
.

58

Therefore,

|ρik(L−1)| =
∣∣∑

j l
′
jil

′
jk

∣∣√∑
j(l

′
ji)

2
∑

j(l
′
jk)

2
≤ p2 + 1

p2 − 2
|ρik(L)|+

3(p2 + 2)

p2(p2 − 2)
< 2|ρik(L)|+

6

p2 − 2
,

and

ρave(L−1) =

∑
i ̸=k |ρik(L−1)|

(p2 − 1)(p2 − 2)
<

∑
i ̸=k

{
2|ρik(L)|+ 6

p2−2

}
(p2 − 1)(p2 − 2)

= 2ρave(L) +
6

p2 − 2
.

By applying Theorem 3.4, we get

ρave(L−1) < 2ρave(L) +
6

p2 − 2
< 2

(
1 +

2

p

)
2

p2 − 2
+

6

p2 − 2
=

(
10 +

8

p

)
1

p2 − 2
.

59

CHAPTER 4

Bayesian-Inspired Distance Designs

One major drawback of the maximin distance criterion is that it tends to place a large portion of

points at the corners and on the boundaries of the domain, severely undermining its space-filling

characteristic on low-dimensional projections and thus making it undesirable in the case when only

a few design factors are active.

To fill the gap, Joseph et al. (2015) proposed maximum projection designs, which claims to

maximize space-filling properties on projections to all subsets of factors. Denote any design with

n runs and m factors as D = (xik)1≤i≤n,1≤k≤m, and any row or design point within as xi, for

1 ≤ i ≤ n. A maximum projection design aims to minimize the following criterion,

ψ(D) =

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1∏m
k=1(xik − xjk)2

}1/m

. (4.1)

Note that the denominator of Eq. (4.1) consists of products of Euclidean distances among all factors.

Consequently, any two points, even if projected into low-dimensional subspaces, of a maximum

projection design are guaranteed to be well-separated from each other.

Apart from it, the validity of maximum projection designs is further justified from the Gaussian

process, or krigingmodeling perspective, which is frequently used as a surrogatemodel for approxi-

mating sophisticated computer programs or physical processes. Specifically, we assume that the re-

sponse surface can be fully depicted by a shifted stationaryGaussian process, i.e., Y (x) = µ+Z(x),

60

where Z(x) ∼ N (0, σ2R(α)), with Gaussian correlation function,

R(xi, xj;α) = exp

{
−

m∑
k=1

αk(xik − xjk)2
}
, αk ∈ (0,∞). (4.2)

A popular optimal design criterion is the maximum entropy measure (Shewry & Wynn, 1987),

which aims at finding a design that maximizes the determinant of the correlation matrix, |R(α)|.

Joseph et al. (2015) showed that with a noninformative prior, p(αk) ∝ 1, imposed on every weight

parameter αk, the maximum projection design tends to minimize the expected sum of off-diagonal

elements of the correlation matrix,
∑

i ̸=j R(xi, xj;α). By applying Hadamard’s inequality and

Gershgorin’s theorem, we get the following lower and upper bounds on the determinant of R(α),

n∏
s=1

{
1−

∑
j ̸=is

R(xis , xj;α)

}
+

≤ |R(α)| ≤ 1, (4.3)

where i1, · · · , in ∈ {1, · · · , n} are not necessarily distinctive and {x}+ = max{x, 0}. Thus,

a maximum projection design will be guaranteed with decently large |R(α)| and perform well

under the maximum entropy criterion as well. Besides, the maximum projection criterion ψ(D)

overcomes a major drawback of the maximum entropy criterion, i.e., being model-dependent on

the unknown correlation parameter α, by adopting a Bayesian approach, and thus can be efficiently

computed given any design alone.

4.1 Bayesian-Inspired Distance Criterion

The choice of noninformative prior, p(αk) ∝ 1, is seemingly right, especially when there is no pre-

existing domain knowledge to determine the importance of design factors. However, on second

thought, assigning equal prior probability to αk for being close to infinity versus moderately small

appears a bit questionable. Indeed, this becomes more of an issue with the observation that each αk

quantifies the significance of factor, or dimension k, and thus cannot be extremely large. Numerous

61

Gaussian process model fitting results have delivered support for this argument, where most of

maximum likelihood estimators of correlation parameters are small, with only a few exceptions.

In consequence, we deem it more appropriate to replace the noninformative prior with certain

distribution that tends to allocate higher probability towards small values. The exponential prior,

denoted as Exp(λk), is one of those qualified candidates, with the rate parameter λk determining

the curvature of its density,

p(αk) ∝ λke
−λkαk , λk > 0. (4.4)

Thenceforth, the expected sum of off-diagonal elements of the correlation matrix now becomes,

Eα

[
n∑

i=1

∑
j ̸=i

Rij(α)

]
=

n∑
i=1

∑
j ̸=i

Eα

{
m∏
k=1

exp
[
−αk(xik − xjk)2

]}

=
n∑

i=1

∑
j ̸=i

{
m∏
k=1

∫
exp

[
−αk(xik − xjk)2

]
· λke−λkαk dαk

}

=
n∑

i=1

∑
j ̸=i

m∏
k=1

λk
(xik − xjk)2 + λk

,

(4.5)

where Rij(α) stands for the correlation between ith and jth design point, R(xi, xj;α). Likewise,

our objective here is to minimize the expected summation (4.5), so as to approximately increase

the lower bound on |R(α)|.

When domain knowledge is absent or could be potentially misleading before any actual experi-

mentation, all αk’s share an identical prior distribution, Exp(λ), in which situation, minimizing Eq.

(4.5) is equivalent to minimizing

ψλ(D) =

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1∏m
k=1[λ+ (xik − xjk)2]

}1/m

, (4.6)

for any fixed value of λ. This newly proposed design criterion ψλ(D) can be viewed as a general

version of the maximum projection criterion, with λ = 0 deteriorating into the original maximum

projection criterion ψ(D). Motivated by a Bayesian framework, we name ψλ(D) detailed in (4.6)

62

as the Bayesian-inspired distance criterion, and the corresponding optimal design constructed by

minimizing ψλ(D) as the Bayesian-inspired distance design.

One advantage of our proposed criterion is being capable of constructing multi-level optimal

designs, which is deemed cost-effective for conducting experiments with large run sizes. In con-

trast, the original maximum projection criterion defined in (4.1) fails to do so due to the intrinsic

flaw of its objective definition.

4.2 Connection to Optimal Moments Criterion

On the other hand, another Gaussian process model optimal design criterion, known as the opti-

mal moments criterion, also strives for the minimization of the sum of off-diagonal elements of a

correlation matrix. It stems from the assumption that correlation between any pair of points can be

written as a function of distance between the two. Mathematically,

Rij(α) := R(xi, xj;α) = exp (−α · d(xi, xj)) . (4.7)

When d(xi, xj) is the squared Euclidean distance, Rij(α) will correspond to the Gaussian corre-

lation function illustrated in Eq. (4.2) with one sole parameter α. Meanwhile, d(xi, xj) being

Manhattan, or L1-distance renders an exponential correlation. It is worth noting that all design fac-

tors are presumed to be equally significant in the optimal moments criterion derivation. In contrast,

for the Bayesian-inspired distance criterion, although all αk’s share an identical prior, they can still

vary, indicating different importance measures of design factors.

Starting from (4.7), we can rewrite Rij(α) using its Taylor series expanded at point α = 0,

Rij(α) = exp(−d(xi, xj) · α) =
∞∑
t=0

(−d(xi, xj) · α)t

t!
. (4.8)

For any positive integer t, denoteMt =
∑n

i=1

∑
j ̸=i d(xi, xj)t. The sum of off-diagonal elements

63

of the correlation matrix, for any given design D = (xij), now becomes

n∑
i=1

∑
j ̸=i

Rij(α) =
n∑

i=1

∑
j ̸=i

∞∑
t=0

(−α · d(xi, xj))t

t!
=

∞∑
t=0

(−α)tMt

t!
. (4.9)

When α → 0, i.e., all design points are nearly dependent, minimization of (4.9) can be achieved

by sequentially minimizing,

−M1,M2,−M3, · · ·

Since for any integer t > 0,Mt corresponds to the t-th moment of vector d(xi, xj), this optimization

objective is named as the optimal moments criterion.

Meanwhile, for the Bayesian-inspired distance criterion derived from (4.5), when all αk’s share

the same exponential prior with rate parameter λ, it is equivalently minimizing

n∑
i=1

∑
j ̸=i

m∏
k=1

λ

λ+ (xik − xjk)2
=

n∑
i=1

∑
j ̸=i

m∏
k=1

1

1 + (xik − xjk)2/λ
. (4.10)

Denote y = (xik − xjk)2/λ. According to the Taylor series of 1/(1 + y) at y = 0, objective (4.10)

can be further expanded as,

n∑
i=1

∑
j ̸=i

m∏
k=1

λ

λ+ (xik − xjk)2
=

n∑
i=1

∑
j ̸=i

m∏
k=1

∞∑
s=0

[
−(xik − xjk)2

λ

]s
=

n∑
i=1

∑
j ̸=i

m∏
k=1

∞∑
s=0

(−1)s(xik − xjk)2sλ−s. (4.11)

Notice that for any finite positive integer S,
∏m

k=1

∑S
s=0(−1)s(xik − xjk)

2sλ−s is a product of

m polynomials. In consequence, by expanding the product and collecting terms with the same

polynomial degree, Equation (4.11) is simplified to,

n∑
i=1

∑
j ̸=i

m∏
k=1

∞∑
s=0

(−1)s(xik−xjk)2sλ−s =
n∑

i=1

∑
j ̸=i

∞∑
t=0

 ∑
(s1,··· ,sm)∈St

m∏
k=1

(−1)sk(xik − xjk)2skλ−sk

 ,

64

where St = {(s1, · · · , sm) : s1 + · · ·+ sm = t, 0 ≤ s1, · · · , sm ≤ t}. Thus,

n∑
i=1

∑
j ̸=i

m∏
k=1

λ

λ+ (xik − xjk)2
=

n∑
i=1

∑
j ̸=i

∞∑
t=0

 ∑
(s1,··· ,sm)∈St

m∏
k=1

(−1)sk(xik − xjk)2skλ−sk

=

n∑
i=1

∑
j ̸=i

∞∑
t=0

(−1)tλ−t

 ∑
(s1,··· ,sm)∈St

m∏
k=1

(xik − xjk)2sk

=

∞∑
t=0

(−1)tλ−t

n∑
i=1

∑
j ̸=i

 ∑
(s1,··· ,sm)∈St

m∏
k=1

(xik − xjk)2sk

 .

Let

Mt =
n∑

i=1

∑
j ̸=i

d(xi, xj)t and Nt =
n∑

i=1

∑
j ̸=i

m∑
k=1

(xik − xjk)2t,

where d(xi, xj) =
∑m

k=1(xik − xjk)
2 is the squared Euclidean distance. Clearly M1 = N1. For

level-balanced designs, Nt are constant for t = 1, 2, Let

∆t =
n∑

i=1

∑
j ̸=i

∑
(s1,··· ,sm)∈St

m∏
k=1

(xik − xjk)2sk .

It is clear that ∆0 = n(n− 1) and ∆1 =M1 = N1. Next, we can express ∆2 as follows:

∆2 =
n∑

i=1

∑
j ̸=i

1
2

(
m∑
k=1

(xik − xjk)2
)2

+
1

2

m∑
k=1

(xik − xjk)4
 =

1

2
M2 +

1

2
N2.

Combining these results, we have

n∑
i=1

∑
j ̸=i

m∏
k=1

λ

λ+ (xik − xjk)2
= n(n− 1)− λ−1M1 + λ−2(M2 +N2)/2 + o(λ−3).

When λ is large, minimizing the Bayesian-inspired distance criterion is the equivalent of mini-

mizing M2 among level-balanced designs. In other words, the optimal moments criterion can be

viewed as another asymptotic case of our proposed Bayesian-inspired distance criterion when the

65

rate parameter λ is substantially large.

4.3 Influence of Different λ’s on Design Properties

The Bayesian-inspired distance criterion, ψλ(D), introduces a new unknown hyperparameter λ,

which characterizes the shape of our exponential prior and needs to be determined ahead of con-

structing the optimal design. As the same predicament encountered in directly estimating the cor-

relation parameter αk, measurement of λ remains infeasible until the implementation of the actual

experiment. Hence, this section is meant to study the varying Bayesian-inspired distance (BID)

design properties corresponding to different λ’s.

To start, we investigate the space-filling property of Latin hypercube BID designs with two

factors. Each 80-run optimal design is constructed using optimization algorithms detailed in the

next section. According to Figure 4.1, when two factors of interest exist, a Bayesian-inspired

distance design with λ = 0.01 turns out to be the most space-filling. The shape of all 80 design

points then gradually evolves into concentric circles and finally a perfect diamond as λ increases.

Similar patterns are also observed in multi-level BID designs, according to Figure 4.2, under which

circumstances the original maximum projection criterion fails to distinguish any design. Notice that

when λ = 0.05, duplicated points start to appear in the optimal design. This coincides with the

fact that a two-level design is optimal for continuous regions. For both cases, the M1 values of

constructed designs stay constant, while theM2 values consistently decline alongside the rising of

λ.

However, direct visualization of design points becomes almost infeasible for designs with more

than two factors. Instead, we propose to select the best λ based on the robustness of Bayesian-

inspired distance designs against misspecifications of the correlation function. For simplicity, we

study the cases where misspecification only occurs within the Gaussian correlation structure de-

fined by Equation (4.2), but the methodology can be easily generalized to arbitrary correlation

functions.

66

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

λ = 1e−5

M1 = 1066.5, M2 = 600.2821

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

λ = 0.01

M1 = 1066.5, M2 = 596.3478

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

λ = 0.05

M1 = 1066.5, M2 = 583.7294

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

λ = 0.1

M1 = 1066.5, M2 = 573.2637

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

λ = 0.2

M1 = 1066.5, M2 = 558.6855

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

λ = 0.3

M1 = 1066.5, M2 = 547.0402

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

λ = 1

M1 = 1066.5, M2 = 542.0279

Figure 4.1: Visualization of two-dimensional Latin hypercube Bayesian-inspired distance designs
with 80 runs against different λ’s.

More precisely, with the same exponential prior assumption on Gaussian correlation parameter

αk’s as in Section 4.1, by varying their universal rate hyperparameter λ, we compute determinants

of the correlation matrix for any given design, given observations of αk’s sampled from Exp(λ) de-

fined in Equation (4.4) respectively, and study its robustness against correlation misspecifications.

Figures 4.3 and 4.4 summarize the results for designs with two and eight factors, respectively.

Given each rate hyperparameter λ, we sample 100 sets of αk’s, in order to account for the vari-

ability and measure the robustness of different designs. The y-axis in each figure represents the

relative log-determinant, which is defined as log(|R(α)|)/
∑

D | log(|RD(α)|)|, where RD(α) is

the correlation matrix for designD, and the summation in the denominator is taken over all designs

under comparisons. We generate other types of space-filling designs, including uniform (ud), max-

imin distance (maximin) and maximum projection (maxpro) designs via existing R packages; see

Section 4.5.2 for details.

67

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

λ = 1e−5

M1 = 168, M2 = 93.25

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

λ = 0.001

M1 = 168, M2 = 93.25

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

λ = 0.003

M1 = 168, M2 = 91.4414

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

λ = 0.005

M1 = 168, M2 = 88.1875

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

λ = 0.007

M1 = 168, M2 = 88.1875

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

λ = 0.01

M1 = 168, M2 = 87.625

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

λ = 0.05

M1 = 168, M2 = 83.6875

Figure 4.2: Visualization of two-dimensional multi-level balanced Bayesian-inspired distance de-
signs with 32 runs and 8 levels against varying λ’s.

Figure 4.3 illustrates that the BID design with λ = 0.01 achieves the largest determinant of

the correlation matrix when the underlying true rate parameter is 0.01 or 0.1, which coincides

with the conclusion drawn based on the space-filling visualization in Figure 4.1. Besides, both

BID designs consistently outperform the maximin distance and maximum projection designs. For

designs with eight factors, the proposed BID designs continue to dominate the other existing space-

filling designs, with maximum projection designs being the worst in this case. Particularly, the

Bayesian-inspired distance design with λ = 0.1 appears to be the most promising with respect to

the maximum entropy criterion according to Figure 4.4.

In general, given the numbers of design runs and factors needed for the experiment, we can de-

termine the optimal λ of the Bayesian-inspired distance criterion by following the aforementioned

procedure.

68

−0.3

−0.2

−0.1

R
el

at
iv

e
lo

g(
|R

(α
)|

)

αk ~ Exp(λ = 0.01)

−0.210

−0.205

−0.200

−0.195

−0.190

R
el

at
iv

e
lo

g(
|R

(α
)|

)

αk ~ Exp(λ = 0.1)

−0.202

−0.201

−0.200

−0.199

−0.198

R
el

at
iv

e
lo

g(
|R

(α
)|

)

αk ~ Exp(λ = 1)

ud maximin maxpro bid1e−5 bid1e−2

Figure 4.3: Comparisons of relative log-determinant of the correlation matrix among BID designs
and other space-filling designs with two factors. bid1e-5 and bid1e-2 represent the BID designs
with λ = 1e−5 and 0.01 respectively. Each subplot considers a different true Gaussian correlation
function, where the correlation parameter αk ∼ Exp(λ) with λ = 0.01, 0.1 and 1.

4.4 Optimization Algorithms for Design Construction

Bayesian-inspired distance designs are constructed by means of minimizing ψλ(D) in (4.6) among

all feasible designs. This, at first glance, can be easily solved using any continuous optimization

algorithm. However, a direct optimization of ψλ(D) is quite challenging, due to its enormous

number of optimization variables, nm, and countless local minima. The latter dilemma is identified

by the fact that ψλ(D) will remain unchanged under arbitrary column or row permutations.

Alternatively, we shall narrow down the search space, by imposing certain restrictions onto the

design structure. Among those, Latin hypercubes is a class of extensively investigated candidate

designs, where each factor is composed ofn equally spaced levels and thus ensures one-dimensional

projection uniformity. Moreover, constructing an optimal Latin hypercube design (LHD) that min-

imizes ψλ(D) turns into a combinatorial optimization problem, since the total number of LHDs

with n runs andm factors is finite.

69

−0.6

−0.4

−0.2

0.0

R
el

at
iv

e
lo

g(
|R

(α
)|

)

αk ~ Exp(λ = 0.1)

−0.200

−0.175

−0.150

R
el

at
iv

e
lo

g(
|R

(α
)|

)

αk ~ Exp(λ = 0.5)

−0.19

−0.18

−0.17

−0.16

−0.15

R
el

at
iv

e
lo

g(
|R

(α
)|

)

αk ~ Exp(λ = 1)

ud

maximin

maxpro

bid1e−2

bid1e−1

bid1

Figure 4.4: Comparisons of relative log-determinant of the correlation matrix among BID designs
and other space-filling designs with eight factors. bid1e-2, bid1e-1 and bid1 correspond to the
BID designs with λ = 0.01, 0.1 and 1 respectively. Each subplot considers a different true Gaussian
correlation function, where the correlation parameter αk ∼ Exp(λ) with λ = 0.1, 0.5 and 1.

In the succeeding section, we will delve into two metaheuristic algorithms - simulated anneal-

ing and genetic algorithms, discuss our proposed implementations and compare performances to

existing ones. It is worth noting that both algorithms can be easily generalized to construct multi-

level balanced optimal designs (see Figure 4.2 for an illustrative example), which fills the gap of

the MaxPro package (Ba & Joseph, 2018).

4.4.1 Simulated Annealing Algorithm

Simulated annealing (SA) is a class of stochastic metaheuristic algorithms, which progressively

approximates the global optimum of an objective function. Its name comes from annealing in

metallurgy, a technique involving heating and controlled cooling of a material to alter its physical

properties. This optimization algorithm is sophisticatedly designed in a way to bypass the local

optimum, by retaining positive probability of accepting worse solutions, so as to ensure a more

extensive exploration of the entire solution space.

70

In the design literature, Morris and Mitchell (1995) successfully applied SA to construct the

maximin Latin hypercube designs. In their implementation, a new candidate LHD was generated

as a perturbation of the preceding one, by randomly swapping two distinct rows within a randomly

selected column. As a consequence, the one-dimensional uniformity structure of a Latin hypercube

design is preserved, since every column still remains as a permutation of n equally spaced levels.

This so-called exchange algorithm, when applied in our problem, manages to significantly re-

duce the computational complexity of the difference in ψλ(D), from O(n2m) to O(nm), and thus

serves as a principal building block in our modified version of SA as well. The novelty of our

implementation is that after a column of the current LHD, Dcurr, is randomly selected, we opt to

evaluate M different perturbations, and propose the next candidate design, say Dnext, that mini-

mizes ψλ(Dnext) − ψλ(Dcurr). This greedy implementation, although might seem more prone to

local optima, is capable of finding good Bayesian-inspired distance designs at an accelerated rate.

See Algorithm 1 for more detailed explanations.

Algorithm 1 Simulated annealing for Bayesian-inspired distance design constructions
1: procedure SA(n,m, λ,Niters,M, T0, c, Tmin)
2: Initialization: T ← T0, Dcurr ← A random LHD(n,m);
3: for t = 1 : Niters do
4: Randomly select a column index k0;
5: Dnext ← Dcurr, ψλ_min_diff ←∞;
6: for s = 1 :M do ▷ pick the most promising amongM perturbations
7: Randomly sample two distinct row indices i0, j0;
8: Generate Dprop, by swapping (i0, k0)th with (j0, k0)th element of Dcurr;
9: if ψλ(Dprop)− ψλ(Dcurr) < ψλ_min_diff then
10: Dnext ← Dprop;
11: ψλ_min_diff ← ψλ(Dprop)− ψλ(Dcurr);
12: end if
13: end for
14: if runif(1) ≤ exp(−(ψλ(Dnext)− ψλ(Dcurr))/T) then
15: Dcurr ← Dnext; ▷ proposal Dnext got accepted
16: T ← max{c · T, Tmin};
17: end if
18: end for
19: Return Dcurr as the constructed design.
20: end procedure

71

Algorithm 1 has several tuning parameters. Niters is the total number of optimization iterations

(default to 10,000),M is the number of perturbations considered for each randomly selected design

column (default to 100), c is the temperature diminishing factor (default to 0.99), T0 is the initial

temperature (default to 100), and Tmin corresponds to the minimal temperature allowed in the sys-

tem (default to 1e−15). For all numeric results shown in Section 4.5, our modified SA algorithm is

executed with default settings, without further adaptive parameter tuning.

4.4.2 Genetic Algorithm

Another metaheuristic, genetic algorithm (GA), is inspired by Charles Darwin’s theory of natural

evolution. As a metaphor of natural selection, it is commonly applied to generate high-quality

solutions to complicated search and optimization problems, with the assistance of biologically-

inspired operators, including mutation, crossover, etc. GAs are deemed as intelligent exploitation

of random search, i.e., adaptively directing the search into better performance regions provided

with historical data from preceding generation. Therefore, it is rarely snared in the local optimum

and deemed appropriate for our optimal design construction purpose.

In terms of its actual implementation, each generation of GA consists of a set of popSize can-

didate Latin hypercube designs. Each LHD, known as an individual, can be fully characterized by

the vector of design factors, as an analogy to chromosome. After objective function evaluation, the

popSize ∗ pElit most promising individuals are consistently retained, and the popSize ∗ pCross

most fittest ones are used for reproduction, with 100 ∗ pMut% probability of mutation happening.

Particularly, we manage to properly overwrite both mutation and crossover operators, to cater to

the intrinsic Latin hypercube structure of each individual.

Mutation: The mutation of an individual can be achieved by randomly permuting some de-

sign column. This mechanism is adopted to ensure diversity in offspring population and better

exploration of the solution space.

Crossover: When two individuals, or LHDs, are selected to produce offspring in the next

72

generation, columns of child LHD share equal probability of inheriting from either parent. Defining

crossover in this way retains the one-dimensional projection uniformity structure in descendants

naturally.

More implementation details shall be found in Algorithm 2. Likewise, we adopt default pa-

rameter values within, where Niters = 10, 000, popSize = 100, pElit = 0.1, pCross = 0.2 and

pMut = 0.1, for both time saving and fair comparisons.

Carnell (2022) utilized the genetic algorithm to draw Latin hypercube samples in the lhs R

package. They implemented the crossover operator by swapping a single column between the cur-

rent fittest individual and another random one. Besides, their mutation is accomplished by switch-

ing merely two elements of a column. We claim that our novel implementation is more universal,

where offspring are generated by mixing approximately half chromosomes from many promising

ancestors, not necessarily the fittest. The mutation can potentially permute orders of all elements

within the selected column instead of just two. We will present more elaborate numerical compar-

isons in Section 4.5.1.

4.5 Numerical Results

This section investigates the discrepancy between two optimization algorithms mentioned above

in generating high-quality Bayesian-inspired distance (BID) designs and the disparity of the BID

criterion compared to other space-filling measures.

4.5.1 Optimization Algorithms

Comparing performances among different stochastic optimization algorithms can sometimes be

subtle. Some algorithms are more computationally efficient in finding a good but not necessarily

the optimal solution, while others, although potentially slower, emphasize finding the real global

optimum. For the optimal design construction purpose, we cherish both speeds and quality. In the

73

Algorithm 2 Genetic algorithm for Bayesian-inspired distance design constructions
1: procedure GA(n,m, λ,Niters, popSize, pElit, pCross, pMut)
2: Initialize the current generation Gcurr as a vector of popSize random LHD(n,m)s;
3: for t = 1 : Niters do
4: sort(Gcurr); ▷ sort the current generation based on ψλ(D) criterion
5: Gnext ← vector();
6: for i = 1 : popSize ∗ pElit do

▷ retain 100 ∗ pElit% fittest individuals and pass them into the next generation
7: Gnext ← c(Gnext, Gcurr[i]);
8: end for
9: for i = 1 : popSize ∗ (1− pElit) do ▷ rest are descendants of two promising parents
10: idx1, idx2← sample(popSize ∗ pCross, 2, replace = F);
11: par1, par2← Gcurr[idx1], Gcurr[idx2];
12: child← an n×m of 0s;
13: for k = 1 : m do
14: Generate a random number u between 0 and 1;
15: if u < (1− pMut)/2 then ▷ inherit from parent 1
16: child[, k]← par1[, k];
17: else if u < 1− pMut then ▷ inherit from parent 2
18: child[, k]← par2[, k];
19: else ▷ mutate with probability pMut
20: child[, k]← sample(n, n, replace = F); ▷ a permutation of 1 : n
21: end if
22: end for
23: Gnext ← c(Gnext, child);
24: end for
25: Gcurr ← Gnext;
26: end for
27: Return Gcurr as the constructed design.
28: end procedure

74

sequential experimentation setup, optimal designs are adaptively proposed to cater to the varying

number of design runs and factors in a timely fashion. While on the other hand, given design spec-

ifications as an initial design, we can afford more time and resources searching for that particular

optimal design.

Algorithms under examination here include the simulated annealing algorithm proposed by

Morris and Mitchell (1995) for maximin Latin hypercube design constructions (SAbase), its modi-

fied greedy version detailed in Algorithm 1 (SA), the baseline genetic algorithm with crossover and

mutation operators defined by Carnell (2022) in geneticLHS for drawing Latin hypercube samples

(GAbase), together with our proposed implementation of genetic algorithm in Algorithm 2 (GA).

Hyperparameters within each algorithm are predetermined and deemed robust for diverse design

specifications.

We fix λ = 1 in the BID criterion as a trade-off between the maximum projection and opti-

mal moments criteria and evaluate different algorithm performances with respect to minimizing

ψ1(D). Extensive design specifications are investigated, with different number of design factors

m = 4, 6, 8, 10 and runs n = 2m, 5m, 10m. For each n andm, pairs of the aforementioned stochas-

tic searching processes under comparison are executed for an equal period, with ten repetitions each

for better variability measurement. It is also worth mentioning that we deliberately diminish the

searching time when comparing SAbase and SA for a more significant difference. Conclusively, we

visualize and report algorithm comparisons in the form of side-by-side boxplots in Figures 4.5 to

4.7.

Figures 4.5 and 4.6 deliver the message that our proposed implementations of SA and GAman-

age to achieve betterψ1(D) than their baseline version, respectively. Among all algorithms studied,

GAbase leads to the worst or most considerable ψ1(D) as well as the highest variation. Besides, our

proposed simulated annealing algorithm, SA, generally outperforms the genetic algorithm, GA,

although these two exhibit comparable results when the design size is moderately small.

75

0.855

0.860

0.865

4 6 8 10
m

ψ
1(D

)

n=2m

0.868

0.870

0.872

0.874

4 6 8 10
m

ψ
1(D

)

n=5m

0.872

0.873

0.874

0.875

0.876

4 6 8 10
m

ψ
1(D

)

n=10m

GAbase GA

Figure 4.5: Comparisons of metaheuristic genetic algorithms in constructing Bayesian-inspired
distance Latin hypercube designs (λ = 1) with disparate numbers of runs and factors.

4.5.2 Optimal Design Criteria

Furthermore, to justify the validity of the BID criterion, we consider comparisons among different

optimal designs regarding their both space-filling properties and model-fitting performances. Ex-

isting space-filling designs considered include uniform designs (Fang et al., 2006) (ud), maximin

distance designs (maximin), and maximum projection designs (maxpro). Additionally, random

designs (rand) are adopted as a baseline for more pronounced comparisons.

Given a desired number of design runs n and factors m, the uniform Latin hypercube design

is constructed using the R package UniDOE (A. Zhang et al., 2018) with centered L2-discrepancy

measure, the maximin Latin hypercube design is constructed via the SLHD package (Ba, 2015), and

the maximum projection Latin hypercube design is generated with the help of the MaxPro package

(Ba & Joseph, 2018). Last but not least, we run both Algorithm 1 and 2 in parallel and choose the

Bayesian-inspired distance (bid) design with smaller ψλ(D). Here, without loss of generality, we

fix λ = 1 as well.

76

0.855

0.858

0.861

0.864

4 6 8 10
m

ψ
1(D

)

n=2m

0.868

0.869

0.870

0.871

4 6 8 10
m

ψ
1(D

)

n=5m

0.8720

0.8725

0.8730

0.8735

4 6 8 10
m

ψ
1(D

)

n=10m

SAbase SA

Figure 4.6: Comparisons of simulated annealing algorithms in constructing Bayesian-inspired dis-
tance Latin hypercube designs (λ = 1) with disparate numbers of runs and factors.

4.5.2.1 Space-filling property

An early-stage computer or physical experiment often involves many inert or less active factors

(Woods & Lewis, 2017). Consequently, good space-filling properties in projection designs are

desirable, especially for factor screening proposes.

In this section, we compare projection properties of different space-filling designs under five

criteria: Euclidean distance, maximum projection criterion ψ(D) defined in (4.1), BID criterion

ψ1(D) defined in (4.6), relative centered L2-discrepancy CD2 and averaged column-wise corre-

lation ρave. The relative CD2 value is computed as the difference of the CD2 values between the

corresponding design and the BID design. For each projection dimension k ≤ m, we evaluate all(
m
k

)
projected designs and determine the worst case scenario respectively.

For illustrating purposes, results for 25× 12 space-filling Latin hypercube designs are reported

in Figure 4.8. Similar patterns persist in designs with varying sizes as well. First of all, not very

surprisingly, random designs perform worst in all space-filling measures under every single projec-

tion dimension. Aside from that, every optimal design comparatively outperforms the others under

77

0.855

0.858

0.861

0.864

4 6 8 10
m

ψ
1(D

)

n=2m

0.868

0.869

0.870

0.871

0.872

4 6 8 10
m

ψ
1(D

)

n=5m

0.8720

0.8725

0.8730

0.8735

0.8740

4 6 8 10
m

ψ
1(D

)

n=10m

GA SA

Figure 4.7: Comparisons of our proposed optimization algorithms in constructing Bayesian-in-
spired distance Latin hypercube designs (λ = 1) with disparate numbers of runs and factors.

their own space-filling measure both in the full and projected spaces, e.g., the uniform design, even

under projection, achieves the smallest relative maximum CD2 values. Furthermore, our proposed

BID design demonstrates an appealing and robust pattern against different criteria and dimension

sparsity, especially in terms of the averaged correlation between factors. Therefore, it is deemed

robust and a promising initial design for various experimentation purposes.

4.5.2.2 Model-fitting performance

Apart from good space-filling properties in low dimensions, we are equally, if not more, interested

in Gaussian Process (GP) model-fitting performances upon various optimal designs. More specifi-

cally, for every row, xi, in an optimal design, we conduct either physical or computer experiments

and observe its corresponding response, yi. Aggregating all {(xi, yi) : i = 1, · · · , n} as the training

dataset, we then use them to fit a GP model. The evaluation of the model-fitting performance is

based on,

SRMSEtest =

√
(1/N)

∑N
i=1(ŷ(x

(i)
test)− y(x

(i)
test))

2√
(1/N)

∑N
i=1(ȳ − y(x

(i)
test))

2

, (4.12)

78

0.5

1.0

3 4 5 6 7 8 9 10 11 12
Projection dimension(k)

M
in

im
um

 E
uc

lid
ea

n
di

st
an

ce

0.1

0.2

0.3

3 4 5 6 7 8 9 10 11 12
Projection dimension(k)

M
ax

im
um

 ψ
(D

)

0.00

0.02

0.04

0.06

0.08

3 4 5 6 7 8 9 10 11 12
Projection dimension(k)

R
el

at
iv

e
m

ax
im

um
 C

D
2

0.1

0.2

0.3

3 4 5 6 7 8 9 10 11 12
Projection dimension(k)

M
ax

im
um

 ρ
av

e

0.8675

0.8700

0.8725

3 4 5 6 7 8 9 10 11 12
Projection dimension(k)

M
ax

im
um

 ψ
1(D

)

rand ud maximin maxpro bid

Figure 4.8: Comparisons of projection design properties under minimum Euclidean distance (the
larger the better), maximum ψ(D) (the smaller the better), relative maximum CD2 (the smaller the
better), maximum ρave (the smaller the better), and maximumψ1(D) (the smaller the better) criteria.

79

where x(i)test is the ith randomly selected test data point, y(x
(i)
test)) represents its true response, and

ŷ(x(i)test) corresponds to its predicted response using our fitted GP model. Last but not least, ȳ

is the average of responses in the training dataset, (1/n)
∑n

i=1 yi, which can be regarded as the

prediction from an intercept only model. Thus, Equation (4.12) is a standardized version of the

testing root mean squared error, which puts SRMSEtest roughly on [0, 1] whatever the scale of y,

with 1 indicating no better performance than the trivial predictor ȳ, and smaller values of SRMSEtest

are desired.

As for the GP model itself, we impose a Gaussian covariance structure, and estimate correla-

tion parameters by maximum likelihood via DiceKriging R package (Roustant et al., 2012). No

nugget effect is added, since experiments considered are deterministic, with no observational noise.

Finally, prediction made at any new test site is the universal kriging mean.

We consider a suite of simulation experiments instead of actual physical or computer ones

and apply the GP model as a function approximation, in analogy to the experiment emulation.

Simulation functions under investigation here include,

(a) Borehole (Worley, 1987): f(x) = 2πTu(Hu−Hl)

ln(r/rw)

[
1+ 2LTu

ln(r/rw)r2wKw
+Tu

Tl

] , with

• rw = (0.15− 0.05) ∗ x1 + 0.05, r = (50000− 100) ∗ x2 + 100,

• Tu = (115600− 63070) ∗ x3 + 63070, Hu = (1110− 990) ∗ x4 + 990,

• Tl = (116− 63.1) ∗ x5 + 63.1, Hl = (820− 700) ∗ x6 + 700,

• L = (1680− 1120) ∗ x7 + 1120, Kw = (12045− 9855) ∗ x8 + 9855;

(b) Linear with decreasing coefficients (Linkletter et al., 2006): f(x) =
∑8

k=1 0.2 xk/2
k−1;

(c) Quadratic with two-way interactions: f(x) =
∑8

k=1

(∑
l≤k xl

)
xk;

(d) Trigonometric (Oakley & O’Hagan, 2004): f(x) = a1⊤x+ a2⊤ sin(x)+ a3⊤ cos(x)+ x⊤Mx

with a1, a2, a3,M predetermined as constant vectors and matrix respectively;

80

where x = (x1, x2, · · · , x8) with xi ∈ [0, 1] for all i = 1, · · · , 8.

For each simulation function, we consider scenarios when it possesses k ≤ m active vari-

ables (factors) by fixing the rest at their medium level (i.e., xi = 0.5) as constants and calculate

SRMSEtest based onN = 1000 randomly selected test data points respectively for different optimal

designs.

Specifically, we compare GP model-fitting performances among five classes of 70 × 8 space-

filling designs as in the preceding section, including random, maximin distance, maximum pro-

jection, uniform, and BID designs. Notice that all optimal design criteria remain unchanged after

arbitrary column rearrangement. However, assigning a different design column to one particular

factor will lead to slightly varying model-fitting and prediction results. Consequently, we opt to

randomly assign columns of design matrices to input variables, with 100 repetitions to account for

the variation.

Figure 4.9 summarizes our simulation study, highlighting the merits of our proposed BID de-

signs concerning the GP model prediction. First of all, among all functions investigated, the BID

design renders a decently small, if not the smallest, average testing SRMSE. Moreover, when there

only exists exceptionally few active factors in the system, fitting a GP model with the BID design

tends to be more stable than using other space-filling designs, i.e., assigning different portions of

design columns to those unknown active factors will not cause dramatically diverging prediction

accuracy.

Consequently, our proposed Bayesian-inspired distance designs are deemed as a robust initial

design for the GP modeling, especially when inert factors exist in the system and cannot be identi-

fied before conducting the experiment.

4.6 Concluding Remarks

This chapter introduces a new optimal design criterion, the Bayesian-inspired distance criterion,

for the Gaussian Process modeling by meticulously planning a more reasonable (exponential) prior

81

0.030

0.035

0.040

0.045

0.050

S
R

M
S

E
, k

=
1

Borehole

0.030

0.035

0.040

Linkletter

0.030

0.035

0.040

0.045

Interactions

0.024

0.028

0.032

0.036

Oakley

0.04

0.06

0.08

0.10

S
R

M
S

E
, k

=
4

0.03

0.04

0.05

0.030

0.035

0.040

0.045

0.050

0.055

0.10

0.12

0.14

0.16

0.18

0.05

0.06

0.07

0.08

S
R

M
S

E
, k

=
8

0.03

0.04

0.05

0.03

0.04

0.05

0.04

0.06

0.08

0.10

rand ud maximin maxpro bid

Figure 4.9: Extensive comparisons of GPmodel-fitting performances on various physical and simu-
lation functions. The Bayesian-inspired distance design is constructed with rate parameter λ = 0.1,
following the footsteps of tuning procedures proposed in Section 4.3.

82

imposed on the correlation parameters within. We revealed the intrinsic connections between this

new criterion ψλ to other existing ones, including maximum projection and optimal moments crite-

ria. Systematic approaches are introduced to selecting the best rate parameter λ of the exponential

prior, regardless of whether direct visualization of the resulting optimal design is viable or not,

given the design size. Moreover, we present two classes of metaheuristic algorithms, along with

our novel implementations, to efficiently search for the corresponding optimal design once the

rate parameter λ is fully determined. Extensive numerical results are demonstrated for comparing

speed and quality of solution of different optimization algorithms, as well as illustrating merits of

the Bayesian-inspired distance designs in a comprehensive manner.

83

CHAPTER 5

Conclusion

Gaussian Process models are increasingly being employed as surrogate models for approximating

complex emulation systems due to their flexibility and capability of fitting non-smooth black-box

functions. Maximin distance designs, well-known as a class of space-filling designs, propose to

maximize the separation distance between any pair of design points. It is asymptotically D-optimal

for the Gaussian Process modeling when certain conditions among observations are met. Existing

algorithmic search for maximin distance designs has severely reduced performancewhen the design

size grows moderately large. Consequently, we concentrate on systematic and easy-to-implement

construction methods that generate maximin distance designs in a deterministic fashion.

The first class of maximin distance designs constructed in Chapter 2 are Latin squares, which

is a special case of Latin hypercube designs (LHDs). Theoretical results show that some of the

constructed designs are both (asymptotically) maximin L1-distance and equidistant designs, which

means that their pairwise L1-distances are all equal and, therefore, they are also uniform projec-

tion designs. Aside from it, we illustrate procedures on generating more flexible LHDs when the

number of design runs are substantially different from that of design factors, while retaining the

maximin distance property. Chapter 3 introduces another class of maximin distance designs with

the extra mirror-symmetry property among design points, which guarantees uncorrelated estimates

of main and interaction effects. The proposed method first constructs a class of maximin balanced

designs via a piece-wise linear transformation, and further rotates it to generate LHDs. We show via

mathematical proofs that the rotation step keeps the maximin distance optimality of the generated

balanced designs, providing a class of maximin LHDs. Both classes of maximin distance designs

84

are also (nearly) column-orthogonal, and we further highlight their robustness against different

space-filling criteria through numerical comparisons.

Chapter 4 points out one major drawback of the maximin distance criterion, which is its poor

space-filling performance on low-dimensional projections. This makes it undesirable in the case

when many inert or less active factors exist in an early-stage experiment. To tackle this problem,

we introduce a new optimal design criterion, so-called the Bayesian-inspired distance criterion,

following the footsteps of the maximum projection criterion. The main contribution and novelty of

our proposed criterion reflect in a more reasonable (exponential) prior imposed on the correlation

parameters. We provide justifications of it over the original noninformative prior and discuss sys-

tematic approaches to optimally selecting the hyperparameter within. Moreover, we present novel

implementations of two classes of metaheuristic algorithms to efficiently search for the correspond-

ing optimal design once the hyperparameter is fully determined. Extensive numerical results are

demonstrated for comparing speed and quality of solutions from different searching algorithms.

The Bayesian-inspired distance criterion and its optimal designs look promising under many space-

filling criteria and low-dimensional projections. Moreover, comprehensive simulation functions

are investigated for verification of its accurate and consistent Gaussian Process model fitting and

predictions.

85

BIBLIOGRAPHY

Ba, S. (2015). Slhd: Maximin-distance (sliced) latin hypercube designs [R package version 2.1-1].

https://CRAN.R-project.org/package=SLHD

Ba, S., & Joseph, V. R. (2018). Maxpro: Maximum projection designs [R package version 4.1-2].

https://CRAN.R-project.org/package=MaxPro

Ba, S., Myers, W. R., & Brenneman, W. A. (2015). Optimal sliced Latin hypercube designs. Tech-

nometrics, 57(4), 479–487.

Butler, N. A. (2001). Optimal and orthogonal Latin hypercube designs for computer experiments.

Biometrika, 88(3), 847–857.

Carnell, R. (2022). Lhs: Latin hypercube samples [R package version 1.1.5]. https://github.com/

bertcarnell/lhs

Chen, R.-B., Hsieh, D.-N., Hung, Y., & Wang, W. (2013). Optimizing Latin hypercube designs by

particle swarm. Statistics and computing, 23(5), 663–676.

Elsawah, A.M., Fang, K.-T., &Deng, Y. H. (2021). Some interesting behaviors of good lattice point

sets. Communications in Statistics - Simulation and Computation, 50(11), 3650–3668.

Fang, K.-T., Li, R., & Sudjianto, A. (2006).Design and modeling for computer experiments. Chap-

man; Hall/CRC.

Fang, K.-T., Liu, M.-Q., Qin, H., & Zhou, Y.-D. (2018). Theory and application of uniform exper-

imental designs. Singapore; Beijing: Springer; Science Press.

Georgiou, S. D. (2009). Orthogonal Latin hypercube designs from generalized orthogonal designs.

Journal of Statistical Planning and Inference, 139(4), 1530–1540.

Georgiou, S. D., & Efthimiou, I. (2014). Some classes of orthogonal Latin hypercube designs.

Statistica Sinica, 24(1), 101–120.

He, X. (2019). Interleaved lattice-based maximin distance designs. Biometrika, 106(2), 453–464.

Hedayat, A., Sloane, N., & Stufken, J. (1999).Orthogonal arrays: Theory and applications. Springer,

New York.

86

Johnson, M. E., Moore, L. M., & Ylvisaker, D. (1990). Minimax and maximin distance designs.

Journal of Statistical Planning and Inference, 26(2), 131–148.

Joseph, V. R., Gul, E., & Ba, S. (2015). Maximum projection designs for computer experiments.

Biometrika, 102(2), 371–380.

Joseph, V. R., & Hung, Y. (2008). Orthogonal-maximin Latin hypercube designs. Statistica Sinica,

171–186.

Keedwell, A. D., & Dénes, J. (2015). Latin squares and their applications (2nd edition). NewYork:

Academic Press.

Li,W., Liu,M.-Q., &Tang, B. (2021). Amethod of constructingmaximin distance designs.Biometrika,

108(4), 845–855.

Lin, C. D., & Tang, B. (2015). Latin hypercubes and space-filling designs. In A. Dean, M.Morris, J.

Stufken, & D. Bingham (Eds.), Handbook of design and analysis of experiments (pp. 593–

625). Chapman; Hall/CRC.

Linkletter, C., Bingham, D., Hengartner, N., Higdon, D., & Ye, K. Q. (2006). Variable selection for

gaussian process models in computer experiments. Technometrics, 48(4), 478–490.

McKay, M., Beckman, R., & Conover, W. (1979). A comparison of three methods for selecting

values of input variables in the analysis of output from a computer code. Technometrics,

21, 239–245.

Moon, H., Dean, A., & Santner, T. (2011). Algorithms for generating maximin Latin hypercube

and orthogonal designs. Journal of Statistical Theory and Practice, 5(1), 81–98.

Morris, M. D., & Mitchell, T. J. (1995). Exploratory designs for computational experiments. Jour-

nal of Statistical Planning and Inference, 43(3), 381–402.

Oakley, J. E., & O’Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: A

bayesian approach. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), 66(3), 751–769.

Pang, F., Liu, M.-Q., & Lin, D. K. J. (2009). A construction method for orthogonal Latin hypercube

designs with prime power levels. Statistica Sinica, 19(4), 1721–1728.

87

Roustant, O., Ginsbourger, D., & Deville, Y. (2012). DiceKriging, DiceOptim: Two R packages for

the analysis of computer experiments by kriging-based metamodeling and optimization.

Journal of Statistical Software, 51(1), 1–55. https://www.jstatsoft.org/v51/i01/

Santner, T. J., Williams, B. J., & Notz, W. I. (2018). The design and analysis of computer experi-

ments (2nd edition). New York: Springer.

Shewry, M. C., & Wynn, H. P. (1987). Maximum entropy sampling. Journal of Applied Statistics,

14(2), 165–170.

Steinberg, D. M., & Lin, D. K. J. (2006). A construction method for orthogonal Latin hypercube

designs. Biometrika, 93(2), 279–288.

Sun, F., Wang, Y., & Xu, H. (2019). Uniform projection designs. The Annals of Statistics, 47(1),

641–661.

Tang, Y., & Xu, H. (2014). Permuting regular fractional factorial designs for screening quantitative

factors. Biometrika, 101(2), 333–350.

Wang, L., Sun, F., Lin, D. K. J., & Liu, M.-Q. (2018). Construction of orthogonal symmetric Latin

hypercube designs. Statistica Sinica, 28, 1503–1520.

Wang, L., Xiao, Q., & Xu, H. (2018). Optimal maximin L1-distance Latin hypercube designs based

on good lattice point designs. The Annals of Statistics, 46(6B), 3741–3766.

Woods, D., & Lewis, S. (2017). Design of experiments for screening. https://doi.org/10.1007/978-

3-319-12385-1_33

Worley, B. A. (1987). Deterministic uncertainty analysis. https://doi.org/10.2172/5534706

Xiao, Q., & Xu, H. (2017). Construction of maximin distance Latin squares and related Latin hy-

percube designs. Biometrika, 104(2), 455–464.

Xiao, Q., & Xu, H. (2018). Construction of maximin distance designs via level permutation and

expansion. Statist. Sinica, 28, 1395–1414.

Ye, K. Q. (1998). Orthogonal column Latin hypercubes and their application in computer experi-

ments. Journal of the American Statistical Association, 93(444), 1430–1439.

88

Ye, K. Q., Li, W., & Sudjianto, A. (2000). Algorithmic construction of optimal symmetric latin

hypercube designs. Journal of Statistical Planning and Inference, 90, 145–159.

Zhang, A., Li, H., Quan, S., & Yang, Z. (2018).Unidoe: Uniform design of experiments [R package

version 1.0.2]. https://CRAN.R-project.org/package=UniDOE

Zhang, X.-R., Liu, M.-Q., & Zhou, Y.-D. (2020). Orthogonal uniform composite designs. Journal

of Statistical Planning and Inference, 206, 100–110.

Zhou, W., Yang, J.-F., & Liu, M.-Q. (2020). Optimal maximin l2-distance latin hypercube designs.

Journal of Statistical Planning and Inference, 207, 113–122.

Zhou, Y., & Xu, H. (2015). Space-filling properties of good lattice point sets. Biometrika, 102(4),

959–966.

89

