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Deep Learning Assisted Imaging Methods
to Facilitate Access to Ophthalmic
Telepathology

Andrew W. Browne, MD, PhD,1,2,3,* Geunwoo Kim, MS,4,* Anderson N. Vu, MD,2 Josiah K. To, MD,2

Don S. Minckler, MD,1,5 Maria Del Valle Estopinal, MD,1,5 Narsing A. Rao, MD,6 Christine A. Curcio, PhD,7

Pierre F. Baldi, PhD3,4

Purpose: To investigate the use of super-resolution imaging techniques to enable telepathology using low-
cost commercial cameras.

Design: Experimental study.
Participants: A total of 139 ophthalmic pathology slides obtained from the Ophthalmic Pathology service at

the University of California, Irvine.
Methods: Denoising Diffusion Probabilistic Model (DDPM) was developed to predict super-resolution pa-

thology slide images from low-resolution inputs. The model was pretrained using 150 000 images randomly
sampled from the ImageNet dataset. Patch aggregation was used to generate large images with DDPM. The
performance of DDPM was evaluated against that of generative adversarial networks (GANs) and Robust UNet,
which were also trained on the same dataset.

Main Outcome Measures: The performance of models trained to generate super-resolution output images
from low-resolution input images can be evaluated by using the mean squared error (MSE) and Structural
Similarity Index Measure (SSIM), as well as subjective grades provided by expert pathologist graders.

Results: In total, our study included 110 training images, 9 validation images, and 20 testing images. The
objective performance scores were averaged over patches generated from 20 test images. The DDPM-based
approach with pretraining produced the best results, with an MSE score of 1.35e-5 and an SSIM score of
0.8987. A qualitative analysis of super-resolution images was conducted by expert 3 pathologists and 1 expert
ophthalmic microscopist, and the average accuracy of identifying the correct ground truth images ranged from
25% to 70% (with an average accuracy of 46.5%) for widefield images and 25% to 60% (with an average ac-
curacy of 38.25%) for individual patches.

Conclusions: The DDPM-based approach with pretraining is assessed to be effective at super-resolution
prediction for ophthalmic pathology slides both in terms of objective and subjective measures. The proposed
methodology is expected to decrease the reliance on costly slide scanners for acquiring high-quality pathology
slide images, while also streamlining clinical workflow and expanding the scope of ophthalmic telepathology.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclo-
sures at the end of this article. Ophthalmology Science 2024;4:100450 ª 2023 by the American Academy of
Ophthalmology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).
Telepathology is the practice of pathology from a distance.
Experts use advanced telemedicine technologies to remotely
review pathology images acquired from anywhere in the
world. The telepathologists then provide consultation to
specialists where the images originate. While developed
countries enjoy digital telepathology tools, analog tele-
pathology imaging may predominate in developing coun-
tries. Technologies essential to digital telepathology include
virtual microscopy, ultrahigh-resolution slide scanners,
advanced telecommunications technology, and high-
resolution digital displays. Automated digital slide scan-
ners are used critically for virtual microscopy because they
produce virtual slide systems using large digital image files
of a complete glass slide. By storing large digital image files
ª 2023 by the American Academy of Ophthalmology
This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/). Published by Elsevier Inc.
on a computer server, pathologists with an internet
connection anywhere can virtually navigate slides at multi-
ple magnifications with high resolution. A significant
impediment to implementing virtual microscopy every-
where is the cost of automated digital slide scanners which
may cost $80 to $350 000 (i.e., USD).

Smartphone technologies have enabled developing soci-
eties and groups to benefit from digital technologies more
easily,1 and there is potential to expand telemedicine
capabilities through this technology.2 In recent years, the
proliferation of smartphones has led to a trend of digitizing
physical documents by simply scanning them with
smartphones. The once widely used flatbed scanners have
experienced a decrease in demand as individuals resort to
1https://doi.org/10.1016/j.xops.2023.100450
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using their smartphones for this purpose. Despite these
technological advancements, there remain obstacles to
overcome in terms of image resolution. Considering this,
the present research aims to examine the effectiveness of
super-resolution imaging techniques in enhancing the reso-
lution of low-cost commercial camera-generated pathology
slide photographs.

Super-resolution refers to the process of improving the
quality of low-resolution images by upscaling them to higher
resolutions. However, due to the existence of multiple output
images for a single input image, image super-resolution is a
challenging inverse problem. Moreover, the conditional
distribution of output images given the input image is often
complex and not easily described by simple parametric dis-
tributions like multivariate Gaussian. Regression-based
methods with convolutional neural networks, which are
frequently used in image processing, have been proposed to
improve super-resolution imaging.3 While feedforward
convolutional neural networks may work well for low
magnification ratios, they typically lack the level of detail
required for high magnification ratios.4 Thus, the
complexity and ambiguity of image super-resolution
require more sophisticated and nuanced techniques beyond
simple regression-based approaches. Deep generative
models, on the other hand, can generate highly detailed im-
ages by learning complex empirical distributions.5 Various
deep generative models, such as autoregressive models,
variational autoencoders, normalizing flows, and generative
adversarial networks (GANs) have obtained good results
on super-resolution tasks.6e9 While a few years ago GANs
used to be considered state-of-the-art for many image-
generation tasks, GANs are notoriously difficult to gener-
alize, and they suffer from training instability.10 In this study,
we investigated the use of the Denoising Diffusion
Probabilistic Model (DDPM), which recently outperformed
GANs in a variety of image generation tasks.11

To evaluate the effectiveness of our proposed method-
ology, we curated a dataset consisting of high and low-
resolution images of ophthalmic pathology slides, as
depicted in Figure 1A, B. Subsequently, we employed a
DDPM model to learn from the dataset and predict super-
resolution images from low-resolution inputs, illustrated in
Figure 1C, D. The performance of the generated images was
evaluated using objective metrics. We then compared the
DDPM model performance with a regression-based model
and a GAN-based model trained using the same data.
Finally, we investigated whether 3 ophthalmic pathologists
(N.R., M.E., D.M.) and 1 expert ophthalmic microscopist
(C.C.) could distinguish the ground-truth high-resolution
images from synthetic super-resolution images generated by
our approach.
Methods

Image Acquisition

Ophthalmic pathology slides were obtained from the Ophthalmic
Pathology service at the University of California, Irvine and used
in accordance with approval from the institutional review board for
retrospective research. Slides were scanned to achieve the highest
2

resolution image on a Leica Biosystems Aperio Versa 200 (Leica
Biosystems). Low-resolution images of slides were acquired using
a 12 megapixel Raspberry Pi High-Quality Camera sensor and a
telephoto lens. Slides were placed on a digital liquid-crystal display
with a white screen background. Photographs of the slides were
aligned and registered with high-resolution scanned images using
i2k retina align software. One example pair of low-resolution im-
ages from the Raspberry Pi camera and the high-resolution image
from the slide scanner is shown in Figure 2. The high-resolution
images possess a pixel resolution of 3636 � 2727 while the low-
resolution images possess 909 � 681 pixels. The dataset consists
of a total of 139 image pairs, which were further categorized into
110 training images, 9 validation images, and 20 testing images.
This study received institutional review board approval from the
University of California, Irvine, and was conducted in accordance
with the Declaration of Helsinki. Formal informed consent was
waived by the institutional review board given the retrospective
nature of the study.

DDPM

To improve the image resolution, this study focused on using
DDPM,11e13 which belongs to the category of deep generative
models that generate data by means of iterative denoising. Specif-
ically, the forward process of DDPM consists of generating random
noise from data, whereas the reverse process was employed to
generate data. This reversal was approximated through neural net-
works that maximize the data likelihood. Despite recent advances
and the widespread availability of graphics processing units (GPUs),
the memory requirements of DDPMs may exceed the GPU memory
capacity if the input images are too large. Consequently, the use of
DDPMs to recover super-resolution images from low-resolution
images in our dataset was hindered by GPU memory limitations,
forcing us to use multiple passes for a single image. Therefore, we
partitioned the image into multiple nonoverlapping patches and ran
the model separately on each patch. We then merged these patches
to construct the complete image while addressing inconsistencies,
especially at the boundaries, arising from independent model exe-
cutions. To assess the quality of the super-resolution images pro-
duced by our model, we compared the patch-by-patch performance
with 2 baseline models, namely Real-ESRGAN and Robust
UNet.14,15 The models were trained using 8 NVIDIA RTX A5000
GPUs to accelerate the training process and facilitate batch
processing of the diffusion model. To address the challenge of
data scarcity, we pretrained the diffusion model with 150 000
randomly sampled images from the ImageNet dataset16 and
subsequently fine-tuned it using our pathology slide image dataset.

For the pretraining phase, we employed the established super-
resolution objective. Specifically, we sampled images from the
ImageNet dataset and subsequently generated super-resolution
images using the diffusion model. Given that our pretraining
approach is conducted in an end-to-end fashion, the entire archi-
tecture of the network was trained. The ImageNet dataset is a
widely used large-scale dataset in computer vision research. It
contains millions of labeled images spanning over thousands of
categories. By randomly sampling 150 000 images from the
ImageNet dataset, we aimed to create a representative subset that
captures diverse visual features and objects present in the larger
dataset. The training was halted after 2 million iterations for our
dataset and 6 million iterations for the ImageNet dataset.

Data Processing

Initially, we performed bi-linear interpolation on low-resolution
images to adjust their pixel resolution to match that of high-
resolution images. The diffusion model was employed to recover



Figure 1. Description of overall workflow and project goals. A, Low-resolution images are acquired using a low-cost charge-coupled device camera to
photograph slides placed on a digital display that provides white light transillumination. B, An automated slide scanner produces high-resolution images of
the same slide. C, Paired low- and high-resolution images are used to train a model to predict high-resolution images from low-resolution input images. D,
The model is tested and evaluated using objective metrics of image similarity (mean squared error, Structural Similarity Index Measure) and by evaluation by
qualified observers.
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resolution details from these interpolated images. As previously
stated, the high-resolution images used in our investigation were of
almost 4K resolution (3636 horizontal pixels and 2727 vertical
pixels), posing a challenge for the training of the diffusion model
using GPUs due to memory limitations associated with batch
processing. Consequently, we randomly extracted 256 � 256
patches, obtaining a model output for each patch individually. We
normalized the RGB values of the images to [�1, 1] to enhance
training stability and the model’s ability to generalize.

Patch Aggregation

It was not feasible to generate complete super-resolution images of
entire images in a single iteration. Thus, we generated patches of
images. Merging of the patches posed 2 significant challenges: (1)
color disparity (e.g., variations in brightness and saturation), and
(2) visible seams (i.e., discrepancies in recovered details). As the
Figure 2. An example pair of images produced by a low-resolution Raspberry
stochastic nature of the diffusion model precludes complete reso-
lution of the challenges, postprocessing techniques must be applied
to address these issues. To address the first issue, we generated
multiple outputs for each pixel through the production of over-
lapping patches and averaged them to minimize variance. How-
ever, this method comes with an extended inference time, and thus,
we limit the degree of overlap to 3, i.e., 3 outputs generated for the
same pixel. In addition, we subsequently apply a Gaussian blur to
the resulting image to smooth the hard edges between patches. To
avoid a reduction in overall image resolution, the standard devia-
tion of the blur was fixed at 0.5. Furthermore, we cut the patches
into circular shapes to make the edges even more invisible.

Evaluating Model Performance

The evaluation of a trained model’s ability to predict super-
resolution output using low-resolution input images was
Pi Camera (A) and high-resolution Slide Scanner (B).
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Table 1. Average MSE and SSIM of 4 Trained Models on Patches
Generated From 20 Test Images

Model Name MSE SSIM

RUNet 0.076 0.5484
Real-ESRGAN 0.054 0.5860
DDPM 8.78e-5 0.8766
DDPM with pretraining 1.35e-5 0.8987

DDPM ¼ Denoising Diffusion Probabilistic Model; RUNet ¼ Robust
UNet; MSE ¼ mean squared error; SSIM ¼ Structural Similarity Index
Measure.
Bold values are from our proposed method and they achieved SoTA.
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conducted using a combination of objective image metrics and
subjective expert pathologist graders. The model’s performance
was objectively compared on individual patches, utilizing
commonly employed metrics for image reconstruction, such as
mean squared error (MSE) and Structural Similarity Index Measure
(SSIM).17 To further evaluate the model’s performance, 3 expert
ophthalmic pathologists and 1 experienced microscopist were
involved in the assessment. They examined 20 pairs of high-
resolution images alongside their corresponding super-resolution
counterparts. The experts were given the task of identifying
which of the paired images was the ground truth high-resolution
image. This assessment was conducted for both 20 full-frame
image pairs and 20 individual patch pairs. Throughout the review
process, the experts were kept unaware of the image sources to
ensure unbiased evaluation.
Results

First, we present a performance comparison between our
DDPM-based approaches and 2 baseline models. Table 1
summarizes the objective performance scores of these
models, which were averaged over the patches generated
from 20 test images. The results indicate that the DDPM-
based approaches produced lower MSE and higher SSIM
scores than both Robust UNet and Real-ESRGAN.
Figure 3. Sample patches of low-, high- and super-resolution images. Each col
Specifically, the first row pertains to low-resolution patches, the second row
generated through our proposed approach.

4

Additionally, the DDPM-based approach with pretraining
showed further improvement in both MSE and SSIM met-
rics. A high SSIM score of 0.89 was attained by our DDPM-
based approaches with pretraining, indicating a high degree
of similarity between the compared images. Such a score
implies that the images are almost identical, with only
negligible differences that are hardly discernible to the hu-
man eye.

Figure 3 displays 8 examples of predicted super-
resolution patches from the best-performing approach (i.e.,
DDPM with pretraining) along with their corresponding
low- and high-resolution counterparts. The performance of
DDPM was sometimes inconsistent in terms of recovering
image brightness, as observed in Sample 2. However, in
most cases, DDPM demonstrated success in restoring res-
olution details.

To further investigate the performance of our model, a
qualitative analysis of super-resolution images was con-
ducted to determine the extent to which ground truth images
could be distinguished from predicted images by expert
graders. The results of this analysis are presented in
Figures 4 and 5, which depict the accuracy rate of experts
tasked with distinguishing groundtruth images from super-
resolution predictions. Specifically, Figure 4 pertains to
wide field of view microscopy images, with the super-
resolution image being composed of multiple stitched
patches, while Figure 5 pertains to individual patches
viewed at higher magnification. In both figures, section
(A) presents the graders’ results in binary matrices, with
correct (white) and incorrect (black) answers for each of
the 20 sample images shown. The average accuracy of
identifying the correct groundtruth images ranged from
25% to 70% (with an average accuracy of 46.5%) for
widefield images, and 25% to 60% (with an average
accuracy of 38.25%) for individual patches. In addition,
we presented the precision, recall, specificity, and F1
score for each grader in both qualitative assessments, as
detailed in Tables 2 and 3. Panels in (B) of Figures 4 and
5 depict example images where most graders were
umn displays identical patches sourced from images of varying resolutions.
to high-resolution patches, and the final row to super-resolution patches



A

B

Figure 4. Results of test on 20 wide field of view microscopy images. Section (A) presents binary matrices illustrating the results obtained by graders for each
of the 20 test images. The matrices show correct (white) and incorrect (black) answers. Panels in (B) of Figures 4 and 5 present visual representations of
example images for which either most graders were accurate or most graders were inaccurate. It consists of 3 vertical columns of panels, with the first and
second columns depicting low- and high-resolution images, respectively. The third column displays super-resolution images, which were generated by our
model.
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accurate and none of the graders were accurate, respectively.
These panels consist of 3 columns. The first column depicts
images of low-resolution, while the second column displays
high-resolution counterparts. The third column presents
super-resolution images, which are the output of our model.
Discussion

We evaluated a workflow using a widely available camera to
acquire photographs of ophthalmic pathology slides paired
with high-resolution scanned images of the slides. We sought
5



Figure 5. Results of test on 20 individual patches. Section (A) presents binary matrices illustrating the results obtained by graders for each patch sampled from
the 20 test images. The matrices show correct (white) and incorrect (black) answers. Panels in (B) of Figures 4 and 5 present visual representations of example
patches for which either most graders were accurate or most graders were inaccurate. It consists of 3 vertical columns of panels, with the first and second columns
depicting low- and high-resolution patches, respectively. The third column displays super-resolution patches, which were generated by our model.

Ophthalmology Science Volume 4, Number 3, June 2024
to evaluate DDPM as an alternative to Real-ESRGAN and
Robust UNet to predict high-resolution images using low-
resolution input photographs of slides. Our results demon-
strated a substantial improvement in both MSE and SSIM
6

scores with the use of DDPM rather than baselinemodels. This
improvement can be attributed to the inherent ability of DDPM
to capture and approximate complex conditional distributions
between low-resolution and high-resolution images.



Table 2. Performance Metrics of 4 Graders in the Qualitative
Evaluation on Widefield Images

Grader Precision Recall F1 Score Specificity

Grader 1 0.25 0.25 0.4 0.25
Grader 2 0.7 0.7 0.82 0.7
Grader 3 0.55 0.55 0.71 0.55
Grader 4 0.45 0.45 0.62 0.45

The table displays the precision, recall, F1 score, and specificity for each
grader, providing insights into their respective accuracies and potential
biases.

Browne et al � Deep Learning for Ophthalmic Telepathology Imaging
Moreover, our analysis indicates that the DDPM model can
recover not only the resolution from low-resolution images but
also camera-specific features such as hue, saturation, and
brightness, which are significant contributors to the overall
appealing quality of the super-resolution images. Specifically,
we observed that enhancing the contrast and brightness of the
generated images aligns them more closely with the high-
resolution ground truth images, resulting in better quantita-
tive metrics scores. The findings of our study thus suggest that
DDPM is a promising technique for generating high-quality
super-resolution pathology slide photographs with improved
visual and quantitative performance.

The efficacy of pretraining with ImageNet dataset on the
performance of DDPM is noteworthy. While the diffusion
model exhibited remarkable performance with limited data,
our results demonstrated that pretraining can further enhance
model performance. The use of small datasets to train
models is a common challenge in biomedical imaging,
which underscores the significance of exploring techniques
that can boost model performance with limited data. Despite
the modest gains in objective performance metrics observed
in this study, our results highlight the practical utility of
pretraining in addressing the limitations posed by small
training datasets. This study provides compelling evidence
supporting the adoption of pretraining as an effective strat-
egy to improve the performance of DDPM in scenarios
where data is scarce. It is our contention that this outcome
will further augment the feasibility of our methodology and
render it more practical for clinical settings.

After training our models, we then sought to evaluate
human expert observation of predicted images as they
compare with ground truth high-resolution scanned images.
Table 3. Performance Metrics of 4 Graders in the Qualitative
Evaluation on Patches

Grader Precision Recall F1 Score Specificity

Grader 1 0.45 0.45 0.6216 0.45
Grader 2 0.25 0.25 0.4 0.25
Grader 3 0.3 0.3 0.4615 0.3
Grader 4 0.6 0.6 0.75 0.6

The table displays the precision, recall, F1 score, and specificity for each
grader, providing insights into their respective accuracies and potential
biases.
A human review of widefield images revealed that the ob-
servers could distinguish the ground truth image with an
average accuracy of only 46.5%. While this accuracy rate
indicates that super-resolution predicted images are subjec-
tively similar in appearance to ground truth images, there is
still ample opportunity to improve the patch aggregation
processes to improve widefield image composition. Specif-
ically, our analysis revealed that poor-quality patches
located at the edges of images were the primary contributors
to lower accuracy rates, seen as subtle artifacts in the super-
resolution image of the first sample in Figure 4B.
Additionally, despite applying Gaussian blur and
averaging over patches, residual resolution disparities
persisted. To address these limitations, we anticipate that
future research efforts could explore (1) increasing the
number of outputs per pixel and (2) implementing more
refined patch aggregation methods. By elevating the
number of outputs per pixel, we can achieve better
consistency between patches by reducing the stochastic of
model outputs. In addition, implementing more refined
patch aggregation methods could help to address the
disparities arising from factors beyond resolution. Overall,
these potential solutions hold promise for more realistic
super-resolution outputs of widefield images.

The presented pilot study also reveals imaging and model
limitations. Image acquisition using a low-cost camera can
suffer from image parallax. To minimize parallax, we used a
telephoto lens to zoom on the slides when they were
imaged. Slide scanners do not suffer from image parallax
because the slide is located between and in close contact
with the camera sensor and the light source. Second,
registration of high- and low-resolution images using soft-
ware may suffer from microscopic misalignments that
negatively affect the model performance. While image
parallax and registration may not be significant at the ul-
trastructural pathology specimen level, it is likely to nega-
tively affect small cellular features. This may be overcome
with refined hardware for low-resolution imaging or by
using simple flatbed scanners that more closely approximate
high-resolution automated scanners. The second group of
limitations rests with model training, performance, and im-
age reconstruction. First, a nonnegligible amount of
computing resources is needed to run the inference of the
diffusion model at a reasonable speed. In our experiments,
we used 8 GPUs, but this might not be feasible in real use
cases. In addition, the stitching method for generating the
entire super-resolution images inherently suffers from
visible seams and color discrepancy. One possible future
approach is to explore recent improvements in diffusion
models that accelerate the sampling process and reduce the
stochasticity in it. However, their applicability to a wide
range of data has not been proven, so more investigation is
needed. Alternatively, further model exploration can be
conducted to determine the model that does not involve
probability sampling but can match the performance of the
diffusion model. The proposed system for telepathology will
need to be further enhanced with larger training datasets and
validated in actual workflows for diagnostic accuracy by
pathologists evaluating images produced by conventional
and super-resolution imaging approaches.
7
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