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RESEARCH ARTICLE
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and resource use efficiencies of smallholder farmers in south-central
Bangladesh: a multi-criteria analysis
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Abstract
Diversification of smallholder rice-based cropping systems has the potential to increase cropping system intensity and boost food
security. However, impacts on resource use efficiencies (e.g., nutrients, energy, and labor) remain poorly understood, highlighting
the need to quantify synergies and trade-offs among different sustainability indicators under on-farm conditions. In southern coastal
Bangladesh, aman season rice is characterized by low inputs and low productivity.We evaluated the farm-level impacts of cropping
system intensification (adding irrigated boro season rice) and diversification (adding chili, groundnut, mungbean, or lathyrus) on
seven performance indicators (rice equivalent yield, energy efficiency, partial nitrogen productivity, partial potassium productivity,
partial greenhouse gas footprint, benefit-cost ratio, and hired labor energy productivity) based on a comprehensive survey of 501
households. Indicators were combined into a multi-criteria performance index, and their scope for improvement was calculated by
comparing an individual farmer’s performance to top-performing farmers (highest 20%). Results indicate that the baseline system
(single-crop aman season rice) was the least productive, while double cropped systems increased rice equivalent yield 72–217%.
Despite gains in productivity, higher cropping intensity reduced resource use efficiencies due to higher inputs of fertilizer and
energy, which also increased production costs, particularly for boro season rice. However, trade-offs were smaller for diversified
systems including legumes, largely owing to lower N fertilizer inputs. Aman season rice had the highest multi-criteria performance
index, followed by systems with mungbean and lathyrus, indicating the latter are promising options to boost food production and
profitability without compromising sustainability. Large gaps between individual and top-performing farmers existed for each
indicator, suggesting significant scope for improvement. By targeting indicators contributing most to the multi-criteria performance
index (partial nitrogen productivity, energy efficiency, hired labor energy productivity), results suggest further sustainability gains
can be achieved through future field research studies focused on optimizing management within diversified systems.

Keywords Cropping system diversification . Sustainability . Rice . Resource use efficiency . Multi-criteria . Smallholder .

Economic profitability

1 Introduction

A vital challenge in the twenty-first century is to produce
sufficient amounts of food while protecting both environmen-
tal quality and rural communities’ economic well-being
(Foley et al. 2011; Springmann et al. 2018). It is estimated
that global food and nonfood demand may increase by at least
60% between 2010 and 2050, and South Asian countries with
high population densities and changing dietary patterns will
need to double their crop production (Ladha et al. 2016;
Tilman et al. 2011). Since the Green Revolution, agriculture
has relied heavily on intensification and agrochemicals to in-
crease yields (Tilman et al. 2002). While productivity dramat-
ically increased, non-intended consequences of intensification
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have included environmental externalities, loss of natural re-
source quality, and declines in biodiversity (Robertson and
Swinton, 2005; Tilman et al. 2002).

Agricultural intensification is the process of increasing
crop productivity per unit area, which can either include
higher yields for a single crop or higher system productivity
by growing multiple crops per year on the same land (i.e.,
higher cropping intensity) (Pingali, 2012). In some of South
Asia’s most productive agricultural systems, cropping system
intensification has occurred through growing multiple cereal
crops within a year, such as in the irrigated rice-wheat
cropping systems of the Indo-Gangetic plain or triple rice
cropping systems in Vietnam (Chen et al. 2011; Ladha et al.
2016). However, the intensification of cereal systems is often
associated with higher inputs of nutrients, water, agrichemi-
cals, labor, and energy (Pingali, 2012; Tilman et al. 2002),
leading to major environmental concerns including high car-
bon footprints and low nutrient and energy use efficiencies
(Kumar et al. 2018; Ladha et al. 2009; Tilman et al. 2011).
Consequently, attention is now being directed toward devel-
oping cropping systems with more favorable effects on the
environment, particularly through increasing the diversity of
crops grown (Alam et al. 2017; Kremen et al. 2012).

Crop diversification represents a key pathway for improv-
ing sustainability, where multiple species or crop types are
grown in rotation in different seasons within the same calen-
dar year (Kar et al. 2004; Tamburini et al. 2020). Research has
shown this can provide numerous benefits, including in-
creased productivity (Gan et al. 2015), enhanced nitrogen
use efficiency (Mhango et al. 2012), and lower carbon foot-
prints (Yang et al. 2014), in addition to enhancing other eco-
system services (Tamburini et al. 2020). These criteria are,
however, not necessarily the most crucial for smallholder
farming systems struggling with poverty and limited re-
sources. Changes in cropping systems that compromise eco-
nomic profitability or farm-level efficiencies of labor, fertiliz-
er, or energy are not desirable. Thus, research must account
for a range of sustainability indicators and their potential syn-
ergies and trade-offs, ideally under representative constraints
and conditions for smallholders. For rice-wheat and continu-
ous rice cropping systems, experimental studies have a long
history comparing alternative sequences of different cultivated
species to examine diversification options (Alam et al. 2017;
Assefa et al. 2021; Hufnagel et al. 2020; Ladha et al. 2016).
Conversely, much less information is available from on-farm
studies considering what crop sequences provide the best op-
portunities for increasing system performance across multiple
indicators to balance the objectives of economic profitability,
food production, and efficient resource use in smallholder
systems.

A small country of just 143,570 square km, Bangladesh has
one of the world’s most dense populations with 163 million
people (World Bank, 2019). To feed the projected population

of 185 million by 2030, Bangladesh will need to increase food
production by 17% to achieve national food security (Timsina
et al. 2018). This demand puts immense pressure on the
country’s already limited arable land area. Further conversion
of non-agricultural land to farming is unlikely; thus, cropping
system intensification is suggested as the most feasible path-
way for increasing total food production (Krupnik et al. 2017;
Timsina et al. 2018). Since independence in 1971, the govern-
ment of Bangladesh has supported land-use intensification,
with an initial focus on rice which now covers 78% of total
arable land (BBS, 2016). While this helped Bangladesh
achieve self-sufficiency in rice production (Timsina et al.
2018), policymakers have long understood the negative ef-
fects of rice-based systems on water consumption, carbon
and energy footprints, and loss of diversity in crops and wild-
life; hence, the government proposed a crop diversification
policy as early as 1989 (BDP, 2018; MOA, 1989).

Major crops grown in rotation with rice in Bangladesh are
wheat, maize, potato, mustard, and winter vegetables using
three cropping seasons (boro, pre-monsoon, and monsoon),
but this is primarily in the northern and northeastern regions.
In contrast, systems are less diversified in the Southcentral
coastal zone, which consists primarily of one rice crop per
year followed by a fallow season during the dry winter (boro
season) (Krupnik et al. 2017). In this area, high and prolonged
rainfall during the monsoon season (aman season), combined
with the ebb and flow of tidal water movement into agricul-
tural fields, forces farmers to rely on aman season rice as the
cropping system base (Fig. 1). Three categories of aman sea-
son rice are cultivated depending on field landscape position
and the corresponding level of water inundation a field expe-
riences during the monsoon (i.e., flooding depth). Short-, me-
dium-, and long-duration varieties are typically planted in
high (0-–30-cm flooding depth), medium (medium-high and
medium-low, 30–180 cm), and low (low and very low, >180
cm) landscape positions, respectively (Brammer, 2012;
Emran et al. 2019). Due to climate risks and resource con-
straints (Aravindakshan et al. 2021), management of aman
season rice is generally low input without irrigation, causing
low average yields of 2.4 t ha−1 (BBS, 2016) with significant
spatiotemporal variation (Assefa et al. 2021).

During the dry winter season, farmers have the potential to
grow additional crops in coastal areas (Aravindakshan et al.
2021; Krupnik et al. 2017). Currently, the government is pro-
moting irrigated rice (boro season rice) to overcome the low
cropping system intensity compared to other regions. Farmers
also cultivate groundnut, chili, mungbeans, and lathyrus, each
having different input requirements and economic outcomes.
However, we are not aware of research in Bangladesh quan-
tifying how alternative crop sequences impact system perfor-
mance in terms of agronomic, economic, and environmental
indicators. Such holistic approaches are increasingly used to
evaluate the sustainability of rice-based systems in other
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countries (Devkota et al. 2019; White et al. 2020). Optimizing
outcomes across indicators is often challenging due to con-
flicts between food production and environmental goals, high-
lighting the need to explicitly assess trade-offs (Klapwijk et al.
2014). When considering multiple crops in rotation, research
should account for the management practices and inputs asso-
ciated with each crop relative to their outputs, which dictates
system-level resource use efficiencies (Kumar et al. 2018;
Ladha et al. 2016). For example, crops with lower inputs such
as aman season rice may result in high resource use efficiency
depending on yield levels, but whether this is also true for
crops like mungbean and lathyrus remains unclear. On the
other hand, irrigated rice grown during the boro season re-
quires a higher amount of fertilizers (NPK), labor, and fuel
for irrigation. While these inputs contribute to higher grain
yield, production costs are higher, which may influence prof-
itability and decrease resource use efficiencies.

In this study, we conducted a multi-criteria assessment of
coastal smallholder cropping systems in southern Bangladesh
to investigate opportunities for improving the dominant cur-
rent system of low input, low productivity aman season rice.
Using survey data from 501 households, our objectives were
to (a) evaluate synergies and trade-offs of different cropping
systems on farm-level productivity and resource use efficien-
cies, (b) develop a multi-criteria performance index using sev-
en indicators considering agronomic, environmental, and

economic dimensions, and (c) explore the scope for improv-
ing farm-level yield and resource use efficiencies for individ-
ual compared to top-performing farmers. Results show it is
possible to increase productivity through higher cropping sys-
tem intensity, but this comes with a cost of decreased resource
use efficiencies and higher costs of production and climate
risk, which can represent important trade-offs for smallholder
farmers. However, crop diversification strategies with le-
gumes resulted in a better balance of boosting food production
without compromising environmental footprint, providing
new insights for future research, extension, and policy in
rice-based cropping systems.

2 Materials and methods

2.1 Study area

We studied existing smallholder cropping systems in south-
central coastal Bangladesh, located in the active siltation zone
of the Ganges-Brahmaputra estuary, consisting of many rives
and tidal canals. Following previous work, our analysis fo-
cused on three districts—Patuakhali, Barguna, and Barishal
(see the map of the study area in Aravindakshan et al. 2020
or Emran et al. 2021). The climate is subtropical and humid,
with 1955 to 2100 mm annual rainfall. The majority soil type

Fig. 1 Images represent a) sluice gate and embankment of a polder, b)
household with pond and fallow land after harvesting aman season rice,
c) long-duration (left) and short-duration aman season rice, d) existing
single and double cropped calender, e) Transplanting aman season rice in

medium land (cm scale), f) mung bean (Vigna radiate L.), g) wet field
during aman season rice harvesting, h) Lathyrus (Lathyrus sativus L.), i)
land elevation (0–3 m), major river, and j) groundnut (Arachis hypogaea
L.). Photographs by Shah-Al Emran.

Impact of cropping system diversification on productivity and resource use efficiencies of smallholder... Page 3 of 16 78



is silty clay loam, suitable for growing a wide range of crops.
This area consists of hundreds of low-lying isolated islands
(elevation 0–3m), separated by an extensive river and natural
canal network. As a result, extreme weather events cause sig-
nificant concerns for crop production in this area due to tidal
flooding during the monsoon season, cyclones during May
and November bringing high rainfall, and frequent drought
during the dry season.

To support coastal farmlands against tidal flooding, cy-
clones, and saline water intrusion, Bangladesh’s government
has developed polders, which are system embankments
consisting of dykes and sluice gates to control water move-
ment. Approximately 59 and 70% of households are involved
in farming both outside and within polders, respectively
(BBS, 2016). Polders are mostly developed in seventeen
southern districts with closer proximity to the coastline, in-
cluding Patuakhali and Barguna of south-central
Bangladesh. In contrast, Barishal, the northernmost district
of south-central Bangladesh, remains outside of polders,
which makes it vulnerable to tidal flooding, but it generally
does not experience soil or water salinity. While these three
study sites are in the same agro-ecological zone, their different
proximity to the coastline influences the crop choices due to
differences in tidal flooding risks, drainage, soil salinity, and
brackish water intrusion. Therefore, we evaluated cropping
systems practiced by farming households within and outside
of polders separately. For example, high tidal flooding can
force farmers to cultivate long-duration traditional (local) rice
varieties during the monsoon, which are only ready for harvest
in late December or early January. Thus, it can be challenging
for farmers to cultivate subsequent dry season crops on time,
and fallowing their fields for half the year decreases cropping
system diversity. While polders protect against tidal surges
that can occur due to cyclones (Adnan et al. 2019; Sattar and
Cheung, 2019), their construction changes the land and hy-
drology within polders, presenting other concerns.Water stag-
nation and land subsidence are key issues (Krupnik et al.
2015, 2017), reducing farmers’ options for diversifying their
systems. Previous studies in the adjacent south-western coast-
al zone have observed a positive impact of polders on yield,
economic performance, and cropping intensity (Chowdhury
et al. 2010; Zaman and Mannaf, 2016), supporting our deci-
sion to separately analyze households within and outside of
polders.

2.2 Survey data and cropping systems evaluated

Comprehensive household survey data were collected through
the Cereal System Initiative for South Asia (CSISA) project
(Aravindakshan et al. 2020; http://hdl.handle.net/11529/
10898), publicly available at the CIMMYT DataVerse.
Please refer to Aravindakshan et al. (2020) for detailed infor-
mation on the survey methodology and summary of

household variables covering socioeconomic status, field
characteristics, and crop management practices. The complete
dataset includes agricultural livelihood information for 297
and 204 smallholder households located within and outside
of polders, respectively, for the years 1995, 2000, 2005, 2010,
and 2015. To address our research objectives with a focus on
recent trends in farming systems and crop management, we
used data from 2015 to estimate cropping system productivity,
resource use efficiency, and environmental consequences, as
described below. Variables used from the survey included
information for land preparation, crops grown, agronomic in-
puts (fertilizer and pesticide use), total costs of production,
labor use, and crop yield.

Cropping systems in this region are complex with the po-
tential for species diversification depending on interactions
between climate, hydrology, and available resources to invest
in agricultural activities. There are three cropping seasons in
Bangladesh:

& Rabi (typically mid-November to mid-March, also known
as winter or boro season)

& Kharif-1 (typically mid-March to mid-July, also known as
pre-monsoon or spring)

& Kharif-2 (typically mid-July to mid-November, also
known as monsoon or aman season)

The rabi season is almost free from tidal flooding; this
allows farmers to cultivate pulses, oilseeds, vegetables, and
irrigated boro season rice. Kharif-2 is the most popular season
for cultivating low input rainfed transplanted aman season
rice. In between these two major cropping seasons, kharif-1
can be merged with kharif-2 or rabi crops, although much of
the land in our study area remains fallow. During kharif-1,
broadcast aus season rice was popular until the 1990s, but this
system is no longer practiced in the study area.

In this study, we evaluated changes to the single-crop base-
line system of aman season rice by considering additional
crops grown during the rabi season. For the annual sequence
of three seasons (rabi, kharif-1, kharif-2), survey results indi-
cate that smallholders’ most typical cropping systems were
fallow–fallow–aman, mungbean–fallow–aman, and
lathyrus–fallow–aman (Table 1). Three minor systems includ-
ed groundnut–fallow–aman, boro–fallow–aman, and chili–
fallow–aman. As all survey participants cultivated aman rice
during the Kharif-2 season, fallow-fallow-aman was consid-
ered as the control in this study. In 2015, no households cul-
tivated aus season rice. Alternative crop sequences included
both cropping system intensification (growing an additional
boro season rice crop in boro-fallow-aman) and diversifica-
tion (growing other non-rice species such as mungbean,
lathyrus, groundnut, or chili after aman season rice).
Because all cropping systems included aman season rice, just
the additional rabi season crop is mentioned for simplicity
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when referencing each crop rotation in the text. Among 297
households within polders, 92.9 and 37.7% integrated
mungbean and lathyrus into their systems, respectively,
whereas 79.4 and 51.0% of the 204 households outside pol-
ders practiced these rotations. Less than 15% of households
practiced the other cropping systems, including groundnut,
boro, and chili. We did not include chili-fallow-aman and
groundnut-fallow-aman cropping system in outside polders
due to the small sample size (groundnut 2 and chili 7)
(Table 1). Overall, cropping systems within polders showed
relatively higher diversity than outside polders.

2.3 Productivity and resource use efficiency indicators

For each cropping system, we calculated rice equivalent yield
(Eq. 1) and total energy production (Eq. 3) as the primary
indicators of productivity. This was necessary to standardize
household production across the different crop sequences, in-
cluding rice and non-rice crops. We did not consider econom-
ic productivity (gross margin) as a separate indicator because
net economic returns are embedded in the rice equivalent yield
formula below (Lal et al. 2017). All indicators were calculated
on a per hectare basis covering a full annual production cycle
for each cropping system (rabi, kharif-1, kharif-2).

REY ¼ Yx � Px

Pr
ð1Þ

Net returns ¼ Gross returns−Cost of cultivation ð1aÞ
Gross returns ¼ Yx � Unit price BDT t−1

� �
* ð1bÞ

Cost of cultivation ¼ ∑i
mInputsi;m þ ∑i

jLabori; j

þ Land preparationþ Irrigation ð1cÞ

Here, REY= rice equivalent yield (t ha−1 year−1) (aman
season rice equivalent), Yx = yield of the crop (t ha−1 Year−1)
(for rice, Yx = grain yield + grain equivalent straw yield), Px =
price of the crop (BDT t−1), and Pr = price of aman rice (BDT
t−1). In this calculation, rice price for each household was used
to estimate rice equivalent yield, as selling prices differed

from household to household. We considered straw values
for rice gross return calculation. Units for net returns, gross
returns, cost of cultivation, inputs, labor, land preparation, and
irrigation were expressed in BDT ha−1 year−1.

Agronomic energy input (AEI, Equation 2, 2a, 2b), total
energy production (TEP, Eq. 3), and net energy yield (NEY,
Eq. 4) were calculated using standard energy conversion co-
efficients available in Supplementary Information (Table S1).
Units for all energy inputs and outputs were GJ ha−1 year−1.

AEI ¼ ∑ AEIa þ AEImið ÞR þ ∑ AEIa þ AEImið ÞNR ð2Þ

AEIa ¼ Ia � EFa

A
ð2aÞ

AEImi ¼ T x EFmi ð2bÞ

TEP ¼ Aman GY x EFry
� �þ second crop GY x EFgyð Þ ð3Þ

In Eqs. 2, 2a, 2b, Ia is the mass or volume of agronomic
input a applied to the field with an area A (ha), R is aman
season rice, NR is the non-aman season crop, EFa is embed-
ded energy for a (MJ kg−1 or MJ L−1), T is time (person-hours
for labor) and EFmi is the energy factor of human labor
(MJh−1) (Table S1). In Eq. 3, GY indicates grain yield (t
ha−1), EFry is the energy factor of the rice grain, and EFgy is
the energy factor of non-rice grain on an equivalent weight
basis (Table S1).

Finally, net energy yield (GJ ha−1 year−1) was calculated as
follows:

NEY ¼ TEPi−AEIti ð4Þ

Here, TEPi is the annual total energy production of
cropping system i calculated as in Eq. 3, and AEIti is the total
agronomic energy input for the cropping system i.

Resource use efficiency indicators included energy effi-
ciency, partial N productivity, partial K productivity,
benefit-cost ratio, partial greenhouse gas (GHG) footprint,

Table 1 Existing cropping
systems identified in our survey
and the extent to which they are
practiced by farmers (number of
households and % of total) in
south-central Bangladesh. Due to
small sample size, chili-fallow-
aman and groundnut-fallow-
amanwere not included in further
analysis for households outside
polders.

Cropping system Households within polders

(% of total)

Households outside polders

(% of total)

Boro – fallow – aman 11 (3.7) 17 (8.3)

Chili – fallow – aman 23 (7.7) 7 (3.4)

Fallow – fallow – aman 297 (100) 204 (100)

Groundnut – fallow – aman 44 (14.8) 2 (1)

Lathyrus – fallow – aman 112 (37.7) 104 (51.0)

Mungbean – fallow – aman 276 (92.9) 162 (79.4)
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and hired labor energy productivity at the cropping system
level calculated by the following equations:

Energy efficiency ¼ Net energy yield

Agronomic energy input
ð5Þ

Partial N productivity ¼ Total energy production

N rate
ð6Þ

Partial K productivity ¼ Total energy production

K2O rate
ð7Þ

Benefit−cost ratio ¼ Gross returns

Total cost of production
ð8Þ

Partial GHG footprint ¼ Partial GHG emissions

Total energy production
ð9Þ

Hired labor energy productivity ¼ Total energy production

Hired labor
ð10Þ

Units for all energy inputs and outputs were expressed in
GJ ha−1 year−1, partial GHG emissions (kg CO2 eq ha

−1), total
cost of production (USD ha−1 year−1, where 1 USD = 77.87
BDT), gross return (USD ha−1 year−1), and hired labor (per-
son-days (PSD) ha−1). Economic performance was estimated
as the benefit-cost ratio (Eq. 8) based on gross returns (Eq. 1b)
and the total cost of production (Eq. 1c) considering all man-
agement operations, inputs, and hired labor.

In this study, only partial GHG emissions were calculated
to estimate partial GHG footprint as kg CO2 eq per GJ energy
production (Eq. 9). This included GHG emissions associated
with agronomic inputs and their corresponding CO2 eq using
standard coefficients (Table S1), consisting of CO2, N2O, and
CH4 emissions associated with the production and use of
chemical fertilizer and fuel. Following Emran et al. (2019),
we did not include field GHG emissions due to data limita-
tions. In flooded rice systems, field GHG emissions are pri-
marily methane (CH4) and, to a smaller extent, nitrous oxide
(N2O) emissions. In its simplest form, the established IPCC
methodology for estimating CH4 emissions is based on an
emission factor multiplied by the duration of field flooding.
However, the duration of flooding was not a question in our
survey and water management in coastal regions depends on
multiple factors including monsoon rains, the length of the
growing season for different rice varieties, and the land eleva-
tion of different fields influencing flooding depth. Therefore,
to be conservative, we did not consider CH4 emissions result-
ing from anaerobic decomposition and soil-plant-floodwater
processes. Because all cropping systems included one season
of rice except boro-fallow-aman, this approach had limited
effects on the indicator partial GHG emissions. That is,

relative differences between cropping systems would remain
the same if CH4 emissions were included, except for the sys-
tem including boro,which had two rice seasons. However, we
did estimate both direct and indirect N2O emissions based on
fertilizer N inputs and their associated losses following estab-
lished IPCC methodology (Intergovernmental Panel on
Climate Change (IPCC), 2006).

For each indicator, the impact of cropping system diversi-
fication was evaluated by calculating the relative change in
performance for each system compared to single aman season
rice within each household (Eq. 11). This approach allowed us
to assess synergies and trade-offs of alternative cropping sys-
tems, with a desirable improvement in indicators representing
a synergy and undesirable effects representing a trade-off.

Relative Change

¼ System value−aman season rice valueð Þ � 100

aman season rice value
ð11Þ

2.4 Multi-criteria performance index

Factor analysis is a widely used method to develop a multi-
criteria performance index in different disciplines, with in-
creasing implementation to assess the sustainability of agri-
cultural systems (Laurett et al. 2021; Valizadeh and Hayati,
2021). The benefit of using factor analysis is the ability to
create latent (or unobserved) variables which represent corre-
lations among multiple observed variables, thereby reducing
the complexity of the dataset based on the statistical interde-
pendency among key cropping system performance indicators
(Pett et al. 2003). We calculated a multi-criteria performance
index through factor analysis considering the following vari-
ables: rice equivalent yield, energy efficiency, partial N pro-
ductivity, partial K productivity, partial GHG footprint,
benefit-cost ratio, and hired labor energy productivity. Total
energy production was not included for this calculation be-
cause most of the resource use efficiency indicators were
based on total energy production already. This performance
index was calculated separately for polder and non-polder
households. The sample size, sample to variable ratio, and
sampling adequacy were sufficient for factor analysis
(Comrey, 1973; Pett et al. 2003). The analysis suitability of
the survey data was assessed by the Kaiser-Meyer-Olkin
(KMO) measure of sampling adequacy (MSA) test (overall
MSA 0.73 and 0.71 for polder and non-polder areas, respec-
tively). The extraction method was principal component ana-
lysis (PCA) involving a Varimax (orthogonal) rotation. As a
single factor described the majority of variance in polders and
non-polder households, we considered the first factor score as
the multi-criteria performance index in our analysis. To con-
duct factor analysis, we used the R packages “psych,”
“psychTools,” and “GPArotation” (R version 3.5.2).
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2.5 Scope for farm-level improvement

In this study, the scope of improving farm-level performance
was estimated by comparing the mean of the top twentieth
percentile of farmers to individual farmers for each indicator
following Eq. 12. Using the mean of the top 20% accounted
for smaller sample sizes in polder areas.

Scope ¼ Pfy−AFY

AFY
� 100 ð12Þ

Here, Pfy = potential cropping system performance obtain-
ed by the mean of the top twentieth percentile of farmers and
AFY = household cropping system performance. Calculating
the difference between individual and top-performing farmers
is increasingly used to understand opportunities for closing
yield and resource use efficiency gaps in rice systems (Stuart
et al. 2016; Saito et al. 2021; White et al., 2020).

2.6 Statistical analysis

Statistical analysis was performed using SAS (version 9.4)
(SAS Institute, 2013). We used the “PROC GLM” command
for a linear regression model for a one-way analysis of vari-
ance (ANOVA). We considered the least squares means
(LSMEANS) because of the unbalanced dataset (unequal
sample size for different cropping systems), helping ensure
robustness of the analysis. The model was configured with
cropping system as a fixed effect, treating households within
and outside polders separately. Where the F-test indicated
significance, means were separated at alpha=0.05 according
to Tukey’s HSD. All confidence intervals presented in this
study represent least squares means (LSMEANS) at the 95%
level, weighted based on sample size. Data were evaluated to
ensure the assumptions of normality and variance were met.
All bar plots were created using the “ggplot2” package of R (R
version 3.5.2) (R-Core-Team, 2020).

3 Results

3.1 Productivity and resource use efficiency indicators

Rice equivalent yield of aman season rice was 2.48 and
2.16 t ha−1 year−1, within polders and outside polders,
respectively (Table 2). Cropping system intensification (two
rice crops including boro) and diversification (aman season rice
plus a non-rice crop of chili, groundnut, lathyrus, or mungbean)
showed significant effects (P<0.001) for all performance indi-
cators. Results for each indicator followed a similar pattern in
both areas. In terms of food production, the system with chili
(7.78 t ha−1 year−1) and boro (6.13 t ha−1 year−1) produced the Ta
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highest rice equivalent yield within and outside polders, respec-
tively. In polders, this was followed by systems with boro,
groundnut, and mungbean, while mungbean–fallow–aman
was the second highest outside of polders. All double cropped
systems increased rice equivalent yield compared to aman sea-
son rice, but gains with lathyrus were lowest in both areas.

Despite greater productivity from growing an additional
crop during the rabi season, resource use efficiencies were
often reduced with double cropped systems, particularly par-
tial GHG footprint. Rice intensification with boro showed the
lowest energy efficiency, benefit-cost ratio, and partial nitro-
gen use efficiency both within and outside polders, while also
showing the lowest partial potassium efficiency outside pol-
ders. In addition, the boro system showed the highest partial
GHG footprint. In contrast, diversification through the addi-
tion of legumes (mungbean, lathyrus, and groundnut) im-
proved multiple performance indicators, particularly nitrogen
and potassium use efficiency, profitability, and partial GHG
footprint in comparison with the boro systems. In both areas,
the integration of mungbean supported higher economic prof-
itability with moderate efficiencies but low labor productivity.
Groundnut integration had the best labor productivity, partial
N productivity, and partial GHG footprint. However, the
single-crop system of aman season rice still had among the
highest nitrogen use efficiency, energy efficiency, and labor
productivity, resulting from low inputs in this system. Chili
was the only non-rice, non-legume crop considered in polder

areas. The chili system produced the highest rice equivalent
yield but had relatively poor partial N productivity, partial K
productivity, benefit-cost ratio, partial GHG footprint, and
labor productivity.

When indicators were expressed as percentage change
compared to aman season rice, both synergies and trade-
offs were observed with double cropping (Fig. 2). Double
cropping increased rice equivalent yield by a range of 72–
217%, but the magnitude differed for each system, with
legumes showing lower increases than boro or chili systems.
In both areas, double cropping had trade-offs in energy ef-
ficiency, partial nitrogen productivity, and partial GHG foot-
print in all systems except groundnut within polders. The
chili and boro systems showed the highest trade-offs in par-
tial nitrogen use efficiency within and outside polders, re-
spectively, while boro showed the highest trade-offs across
partial GHG footprint and other resource use efficiencies.
Meanwhile, systems with mungbean and lathyrus decreased
labor productivity but also reduced trade-offs while main-
taining or increasing economic profitability in both areas,
as did groundnut in polder areas.

3.2 Multi-criteria performance index

The multi-criteria performance index represented 55 and
57% of variance in polder and non-polder households, re-
spectively (Table 3; Fig. 3). Higher loading scores represent

Fig. 2 Farm-level synergies and trade-offs of different cropping systems
compared to the baseline single aman season rice in (a) within polder and
(b) outside polder. Values are expressed as percentage change relative to
fallow-fallow-aman (± 95% CI) within (a) and outside (b) polders in

south-central Bangladesh. Cropping system abbreviations are fallow–
fallow–aman (FFA), groundnut–fallow–aman (GFA), boro–fallow–
aman (BFA), chili–fallow–aman (CFA), mungbean–fallow–aman
(MFA), and lathyrus–fallow–aman (LFA).
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more influential variables that can positively or negatively
affect the index based on loading dimension. Given that
most variables represented efficiencies, higher values indi-
cate improvements in sustainability. Hence, systems with a
positive multi-criteria performance index, in this case, are
more desirable, while systems with a negative index indicate
lower food production and efficiencies, making them less
desirable. In both polder and non-polder areas, aman season
rice had the highest index, along with groundnut systems
within polders. Other double cropped systems reduced the
multi-criteria performance index, with the intensified boro
system having the lowest value in both areas. Considering
diversification options, cultivating legumes (mungbean,
lathyrus, and groundnut) showed a higher multi-criteria

performance index than chili within polders, and the boro
system both within and outside polders.

In both areas, partial N productivity had the biggest
positive influence (loading scores of 0.922 and 0.948 in
polder and non-polder, respectively) on the multi-criteria
performance index followed by energy efficiency (0.84,
0.92), hired labor energy productivity (0.81, 0.80), partial
K productivity (0.73, 0.79), and benefit-cost ratio (0.60,
0.62). In contrast to the productivity and efficiency indi-
cators, the negative loading of partial GHG footprint re-
flects how this indicator corresponds with a negative en-
vironmental impact. That is, an increase in GHG emissions
per unit of energy production decreased the multi-criteria
performance index.

Table 3 Factor loading for the 7
performance indicators are
presented in addition to sum of
squared (SS) loadings, proportion
of variation explained, measure of
sampling accuracy (MSA), and
root mean square of residuals
(RMSR).

Factor loading

Within polder Outside polder

Variables

Rice equivalent yield (t ha−1) −0.083 0.020

Partial N productivity (GJ kg N−1) 0.922 0.948

Partial K productivity (GJ kg K2O
−1) 0.732 0.791

Energy efficiency 0.839 0.922

Benefit-cost ratio 0.596 0.622

Partial GHG footprint (kg CO2 eq GJ−1) −0.853 −0.790
Hired labor energy productivity (GJ PSD−1) 0.81 0.796

Statistical Analysis

Sum of squared (SS) loading 3.84 4.02

Proportion of variation 0.55 0.57

Overall MSA 0.73 0.71

RMSR 0.16; 0.19 0.20; 0.25

Fig. 3 Multi-criteria performance index of different cropping systems( a)
within polders and( b) outside polders in south-central Bangladesh.
Means (± 95% CI) followed by the same letter are not significantly
different at 0.05 confidence level. Cropping system abbreviations are

fallow–fallow–aman (FFA), groundnut–fallow–aman (GFA), boro–
fallow–aman (BFA), chili–fallow–aman (CFA), mungbean–fallow–
aman (MFA), and lathyrus–fallow–aman (LFA).
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3.3 Scope to improve farm-level performance

Assessing values for each farmer compared to top-
performing farmers revealed considerable scope to im-
prove productivity, profitability, and resource use effi-
ciency in all cropping systems (Fig. 4). In both areas,
aman season rice had the largest room for improvement
within each indicator, ranging from 32 to 43% for partial
N productivity and 46–64% for partial K productivity.
Among double cropped systems outside polders, those
with mungbean and lathyrus showed higher scope to im-
prove performance, except for economic profitability.
Within polders, systems with chili and groundnut had
the least overall room for improvement. Partial nitrogen
use efficiency, which was earlier identified as the most
important variable to increase the multi-criteria perfor-
mance index, had room to increase by 15–42% depending
on the cropping system. Similar trends were also observed
for other performance indicators, where legume integra-
tion (mungbean, groundnut, lathyrus) resulted in higher
(on average 30%) scope to improve performance com-
pared to other double cropped systems, both within and
outside polders. Overall, farmers outside polders showed
similar or higher scope to improve performance compared
to within polders.

4 Discussion

4.1 Limits of rice intensification

The low productivity of aman season rice favors intensifica-
tion of this cropping system, because aman season rice alone
cannot promise food security for Bangladesh’s growing pop-
ulation (Timsina et al. 2018). Aman season rice was the single
most important crop cultivated by all farmers in this study,
despite it being the least productive system (Table 2). Our
findings are in line with Assefa et al. (2021) who reported
the rice-fallow system was the least productive inside polders
in southwestern Bangladesh. However, this system likely re-
mains popular among farmers because it required the lowest
amount of fertilizers (31–32 kg N ha−1), production costs
(<430 USD ha−1), and energy inputs (6 GJ ha−1) (Table S2),
which enhanced resource use efficiencies and placed aman
season rice as the highest multi-criteria performance index
(Fig. 3). Despite the sustainability benefits of this single crop
system for the indicators evaluated here, increasing food pro-
duction through cropping system intensification is a priority
for coastal Bangladesh. Recent studies have shown the poten-
tial to cultivate two to three crops annually, producing 13–31 t
ha−1 rice equivalent grain (Alam et al., 2015, 2017; Ladha
et al. 2016). Similarly, Bhattacharya et al. (2019) showed that

Fig. 4 Scope to improve farm-level performance and minimize trade-offs
for different cropping systems (a) within polders and (b) outside polders
in south-central Bangladesh. Values were calculated as the difference
between the top-performing farmers (mean of top 20 percent) and

individual farmers for each indicator and system (± 95% CI). Cropping
system abbreviations are fallow–fallow–aman (FFA), groundnut–fallow–
aman (GFA), boro–fallow–aman (BFA), chili–fallow–aman (CFA),
mungbean–fallow–aman (MFA), and lathyrus–fallow–aman (LFA).
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cropping system intensification with improved varieties and
best management practices inside polders can achieve an an-
nual productivity of 14–20 t ha−1 and gross income of USD
1200 ha−1 year−1.

An important question facing coastal regions is whether
intensification should occur through adding an additional
rice crop, grown under irrigation during the boro season
(dry winter period), or through rotation with non-rice crops.
Our results show that farmers practicing the intensified dou-
ble rice system (boro-fallow-aman) can produce 3.70 and
3.97 t ha−1 more grain compared to aman season rice alone
within and outside polders, respectively. To reduce the strain
on groundwater resources in the north of Bangladesh, cur-
rent government policy is emphasizing the need to increase
cropping system intensity by expanding irrigated boro rice
in coastal regions, replacing the current practice of fallowing
land during winter (BDP, 2018; MoA, FAO, 2013).
However, in our study, the double rice system required the
highest labor, fertilizers, energy, and production costs
(1355–1368 USD ha−1), which resulted in the lowest
multi-criteria performance index. Moreover, cultivating two
rice crops per year, particularly with high agrochemical use
in the boro season, resulted in the highest GHG emissions
per unit of energy input. At the national level, boro season
rice has the greatest total water consumption and grey water
footprint, an indicator of pollution, despite it occupying low-
er cropped area than aman season rice, contributing to sig-
nificant concerns about the sustainability of water resources
(Mullick and Das, 2021). These findings underscore the
cropping system intensification challenges facing
Bangladesh, where prominent trade-offs exist between food
production and environmental goals, particularly related to
water use and GHG emissions for rice production (Pandey
et al. 2020; Sapkota et al. 2021).

Besides environmental footprint, the prospect for resource-
poor smallholder farmers adopting input-intensive systems
such as boro rice with low profitability and high production
costs is extremely challenging in Bangladesh. Recent choice
experiments with farmers illustrate there is little preference for
boro rice as an intensification option compared to other crops
(Aravindakshan et al. 2021), with boro-fallow-aman practiced
by less than 10% of farmers in our study area. Indeed, boro
rice area has been declining in the past decades, largely due to
high fertilizer input and irrigation costs. Although the govern-
ment recognizes the need to reduce reliance on boro rice for
maintaining self-sufficiency in rice production, it still ac-
counts for over 50% of national rice production. In this con-
text, alternative cropping systems that meet food production
and economic goals while reducing negative environmental
externalities are urgently needed. Our results show that double
cropping with higher diversity is an important tool to enhance
rice equivalent yield and multi-criteria performance across
different indicators.

4.2 Overcoming trade-offs through diversification

Our findings support efforts to increase cropping system di-
versity, while highlighting the importance of different crop
species and how alternative rotation sequences impact the
required inputs for cultivation. Diversification through le-
gumes (mungbean, groundnut, and lathyrus) boosted total sys-
tem productivity while reducing trade-offs in resource use
efficiency for double cropped systems, contributing to en-
hanced multi-criteria performance (Fig. 3). Assefa et al.
(2021) also observed higher rice equivalent yield and econom-
ic performance in rice-mungbean systems compared to rice-
fallow systems inside polders within 100 km of our study area.
In contrast, although integration of chili achieved the highest
rice equivalent yield within polders, diversification with this
non-legume crop also reduced resource use efficiencies and
increased GHG emissions. Legume integration into cereal-
based cropping systems has been shown to provide multiple
benefits, including increased profitability with decreased ni-
trogen, water, and GHG footprints (Alam et al. 2017; Hossain
et al. 2016; Ladha et al. 2016). However, there are important
aspects of risk and crop establishment to consider in coastal
environments that may present challenges to smallholder
adoption, discussed below.

The inclusion of legume crops in rice monoculture systems
could increase soil fertility through biological nitrogen fixa-
tion (Bhuiyan, 2004), with estimates that cultivating
mungbeans could add 25–40 kg N ha−1 to the soil-plant sys-
tem (Ahlawat et al. 1998; Ali, 1992). Lowering the need for N
fertilizer inputs is key for decreasing energy consumption,
GHG emissions, and production costs. In our study, farmers
applied 11–17 kg N ha−1 when growing mungbean, lathyrus,
or groundnut, in addition to the N rate for aman season rice
(31–32 kg N ha−1), whereas growing chili and boro required
60–120 kg N ha–1 extra N fertilizer (Table S2). Besides,
mungbean and lathyrus required significantly less labor, K
fertilizer, and production cost than boro season rice in both
polder and non-polder households. The system with boro rice
had the highest N inputs (150–153 kg N ha−1), causing the
greatest trade-offs in resource use efficiencies, particularly
partial GHG footprint as discussed above. These findings
align with our recent field experiments in south-central
Bangladesh, where increasing N rates for rice showed a clear
trade-off between agronomic, economic, and environmental
goals (Emran et al. 2019).

Several factors influence the potential for diversification of
this baseline system. The successful integration of non-rice
crops is largely controlled by climate and precipitation pat-
terns, including field flooding due to high rainfall, the risk of
tropical cyclones, soil and irrigation water salinity during the
winter period, and poor drainage which can result in late plant-
ing (Assefa et al. 2021; Krupnik et al. 2015, 2017). Modern
short-duration aman season rice varieties may have the
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highest scope for diversification because early harvesting of
rice facilitates optimum planting time for high-value winter
crops such as groundnut, chili, tomato, wheat, lentil, sesame,
mustard, and other vegetables. For medium-duration aman
rice varieties, farmers generally miss the early planting of
winter crops due to a later rice harvest and wet soil, and there-
fore growmungbean, lathyrus, or black gram as a second crop
or leave land fallow. Finally, long-duration aman season rice
varieties span almost both the monsoon and winter season,
forcing farmers to grow lathyrus or leave fields fallow.
Considering that about 80% of land in this region belongs to
the medium land type (BARC, 2018), our results suggest that
mungbean and lathyrus represent important crops that could
be grown after medium-duration aman rice varieties to in-
crease agricultural productivity and sustainability for small-
holders. Importantly, these crops are already grown by a large
proportion of farmers in this area (Table 1) and represent the
best multi-criteria performance index for diversified systems.

4.3 Significance of multi-criteria approach

To achieve agricultural sustainability, multi-criteria assess-
ments are necessary to minimize trade-offs and identify
cropping systems capable of promoting synergies between
input use efficiencies, economics, and environmental costs.
In this field of research, an important knowledge gap is not
only considering positive and negative relationships among
indicators but how to compare the overall performance of
different cropping systems based on an integrated understand-
ing of these relationships as a standard value. In our study,
aman season rice had the highest sustainability, followed by
cropping systems with mungbean and lathyrus among diver-
sified systems, and lastly the system including boro rice
(Fig. 3; Table 3). Previous work has shown the benefits of
calculating a multi-criteria performance index as a composite
value (Fadul-Pacheco et al. 2013; Sabiha et al. 2016). This is a
step further than other research efforts focused on displaying
synergies and trade-offs through visualization tools to inform
policy (Kanter et al. 2018; Kumar et al. 2018), where the net
impacts across multiple indicators are not always clear.

Consistent with our multi-criteria performance index, all
farmers in this region practice the baseline system of aman
season rice. The low input requirements of this system result-
ed in the highest nitrogen use efficiency, energy efficiency,
and labor productivity, making it attractive to smallholders
who are risk averse, despite it having the lowest productivity.
Recent work in southwestern coastal areas also found that
rice-fallow has a lower risk compared to other more profitable
rotations such as rice-maize or rice-sunflower in polders
(Assefa et al., 2021). Regarding the multi-criteria index, a
novel insight from our study is that the economic gains from
mungbean or lathyrus more than offset the lower labor pro-
ductivity and marginal resource use efficiencies of these

systems, helping them balance competing objectives across
multiple dimensions of sustainability important to small-
holders. In line with this result, recent work has shown that
farmers prefer mungbean over maize or wheat as an intensifi-
cation option, highlighting the need for improved mungbean
varieties adapted to local conditions (Aravindakshan et al.
2021). While our results show clear benefits from diversifica-
tion with legumes, we note that our index does not include
aspects of required investment (capital costs of production)
and risk (climate extremes causing unfavorable growing con-
ditions) that are crucial elements of adoption for resource-
limited smallholders.

Among the alternative crops evaluated, mungbean and
lathyrus currently cover the most land area compared to
higher-yielding and high-value chili, groundnut, maize, and
other crops (BBS, 2016; Kamal et al. 2020). As noted above,
reasons for farmers avoiding high-yielding dry season crops
are the late harvest of aman rice, high soil moisture until mid-
February, and lack of dry season irrigation access (Islam et al.
2016; Krupnik et al. 2017; Ritu and Mondal, 2004). Although
the system with lathyrus shared a similar multi-criteria perfor-
mance index as mungbean-fallow-aman, the latter contributed
to a higher benefit-cost ratio (1.64 and 1.78; non-polder and
polder) and grain yield, which may explain why mungbean is
cultivated by more farmers in this region (Table 1). Besides,
mungbean is also best suited in the high and medium highland
covering more than 80% of this region’s cropland, as it can be
planted during late winter. Lathyrus is also flexible and can be
cultivated on different land types (based on flooding depth),
solely as independent or relay crops. Lathyrus is a better sec-
ond crop following long-duration aman season rice, particu-
larly in medium-low and low land fields. Though groundnut-
fallow-aman had a similar multi-criteria performance to sys-
temswith lathyrus andmungbeanwithin polders, groundnut is
more susceptible to waterlogging conditions and this physio-
logical barrier limits where it can be planted. As groundnut
grows better in sandy or silty loam soil, mostly found in this
region’s highlands, it is not widely planted in flood-prone
fields outside of polders (BARC, 2018; BBS, 2016).
Therefore, expanding groundnut in medium highland fields
which experience excess water will require developing im-
proved varieties with waterlogging resistance.

4.4 Scope for farm-level improvement

Potential gains in crop productivity or efficiencies are increas-
ingly quantified in on-farm research by exploring variability
among a population of farmers (Stuart et al. 2016; Saito et al.
2021). With this approach, the benchmark for current man-
agement is the performance of individual farmers, and the
upper threshold of potential achievement is represented by
top-performing farmers, which are assumed to be facing sim-
ilar biophysical and socioeconomic constraints. In our study,

78 Page 12 of 16 S. Emran et al.



we found significant scope for improving cropping system
performance based on the combination of variation in envi-
ronment and management practices across different indicators
(Fig. 4). This difference between individual and top-
performing farmers represents the gap in yield or efficiency
that can theoretically be closed through improved agronomic
management for a given indicator (Devkota et al. 2019).

Depending on the cropping system, we observed a 12–48%
scope to improve rice equivalent yield, which can also be
considered as the attainable yield gap (Fig. 4). This observa-
tion is in line with a 19–64% yield gap reported for different
crops in other studies, including rice in Bangladesh (Assefa
et al. 2021; Guilpart et al. 2017; Timsina et al. 2018). There
are two other important points from our analysis of variability
among farmers. First, aman season rice always had the largest
gap between average and top-performing farmers across dif-
ferent indicators. This is because aman season rice is grown in
all field types (i.e., different landscape positions), often with
different varieties and varying amounts of inputs. Other stud-
ies have reported large spatiotemporal variation for rice yield
in smallholder systems of Bangladesh, even under the same
varieties and fertilizer inputs (Ara et al. 2017; Assefa et al.
2021). In southern Bangladesh, variation in soil fertility
(mostly nitrogen) and field elevation (which controls flooding
depth) are important determinants of rice yield (Ara et al.
2017; Ran et al. 2018). Because aman season rice is both
the most widely practiced system and has the largest scope
for improvement, our results suggest that developing and im-
plementing improved management practices should remain a
key priority for government research and extension programs.

Second, this analysis demonstrates the potential for closing
resource use efficiency gaps in diversified cropping systems,
which could reduce trade-offs and further increase the multi-
criteria performance index. The results above show that sys-
tems with mungbean, lathyrus, and groundnut increased rice
equivalent yield, yet higher inputs led to lower resource use
efficiencies compared to aman season rice. Specific indicators
to target for improvement are those contributing most to the
multi-criteria index, including partial N productivity, energy
efficiency, and hired labor energy productivity, all with load-
ing scores of 0.80 or above. Across the different cropping
systems, our analysis suggests that farmers can achieve large
gains in partial nitrogen use efficiency (15–42%), energy ef-
ficiency (18–55%), and labor productivity (25–60%) by im-
plementing management practices similar to the top-
performing farmers.

A limitation of the survey data used in this study is that it
lacked detailed agronomic information, preventing an analysis
of differences in management for top farmers. Therefore, al-
though our research represents an important step in integrating
multiple dimensions of sustainability based on a combination
of current diversification options and farmer practices, further
agronomic field trials are necessary. Building on the work of

others (Alam et al. 2015, 2017; Bhattacharya et al. 2019;
Kumar et al. 2018; Ladha et al. 2016), such research should
optimize management practices within diversified systems to
increase partial nitrogen productivity, energy efficiency, and
labor productivity, ideally under on-farm smallholder condi-
tions. While our study focused on agronomic factors, socio-
economic constraints can play an equal or greater role regard-
ing the potential for increasing cropping system intensity in
smallholder systems. See Emran et al. (2021) for an in-depth
discussion of how off-farm employment, farm size, distance to
roads and markets, and access to capital, labor, inputs, and
extension services all influenced farm-level household
productivity.

5 Conclusion

Bangladesh faces challenges regarding food security, land
availability, and diminishing natural resources that will grow
in the future due to increasing population and climate change.
In this study, we evaluated a range of cropping systems cur-
rently practiced by smallholder farmers in the south-central
coastal region to quantify gains in food production and eco-
nomic profitability through intensification (double rice) or di-
versification (rice and non-rice crops), while simultaneously
accounting for changes in resource use efficiencies leading to
negative environmental impacts. Results show that the base-
line single-crop system of aman season rice had the lowest
productivity and economic performance, but it was also low
input with low risk, translating into important sustainability
benefits and the highest multi-criteria performance index. In
contrast, double cropping with rice or other crops clearly im-
proved total system productivity, but this also required addi-
tional inputs (fertilizers, labor, and energy), which increased
production costs and caused a trade-off in environmental per-
formance through lower resource use efficiencies. Among the
double cropped systems, diversification through mungbean or
lathyrus had lower trade-offs because these systems required
the lowest fertilizer inputs and production costs. Finally, the
large variability among farmers suggested that top-performing
farmers have been able to implement management approaches
and techniques to increase yield and mitigate these trade-offs,
despite biophysical and socioeconomic challenges. We con-
clude that targeting improvements in key indicators (partial
nitrogen productivity, energy efficiency, and hired labor ener-
gy productivity) through future field trials with mungbean and
lathyrus could strongly affect the multi-criteria performance of
diversified systems. Overall our results support diversification
as a key principle of sustainable cropping system intensifica-
tion, but government policy, research, and agricultural educa-
tion programs are needed to further optimize management and
address economic risk as a barrier to adoption. Of particular
importance is that timely planting of winter crops following
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aman season rice, even short-duration varieties, remains a
major challenge for enhancing diversification in low-lying
coastal zones because high soil moisture in medium land
fields hampers tillage, seed germination, and crop establish-
ment. Smallholders face other large socioeconomic and envi-
ronmental constraints, including climate shocks and limited
access to inputs, credit, labor, roads, and markets. These
broader challenges emphasize the need for holistic support
systems and the co-creation of knowledge with farmers, re-
searchers, and government institutions.
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