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ABSTRACT

Next-generation sequencing is revolutionizing the
identification of transcription factor binding sites
throughout the human genome. However, the
bioinformatics analysis of large datasets collected
using chromatin immunoprecipitation and high-
throughput sequencing is often a roadblock that
impedes researchers in their attempts to gain bio-
logical insights from their experiments. We have
developed integrated peak-calling and analysis
software (Sole-Search) which is available through a
user-friendly interface and (i) converts raw data into
a format for visualization on a genome browser,
(ii) outputs ranked peak locations using a statisti-
cally based method that overcomes the significant
problem of false positives, (iii) identifies the gene
nearest to each peak, (iv) classifies the location of
each peak relative to gene structure, (v) provides
information such as the number of binding sites
per chromosome and per gene and (vi) allows the
user to determine overlap between two different
experiments. In addition, the program performs an
analysis of amplified and deleted regions of the
input genome. This software is web-based and
automated, allowing easy and immediate access to
all investigators. We demonstrate the utility of our
software by collecting, analyzing and comparing
ChIP-seq data for six different human transcription
factors/cell line combinations.

INTRODUCTION

Although chromatin immunoprecipitation (ChIP) was
first adapted for use with mammalian cells <10 years

ago (1,2), it is now the gold standard experiment for the
identification of a target gene of a particular transcription
factor. Recent advances allow investigators to use the
ChIP assay to identify and characterize the entire set of
binding sites for a given factor. Such large-scale studies of
transcription factor binding began using promoter-specific
microarrays, a technique called ChIP-chip (3–7).
However, many binding sites will be completely missed
on such arrays because some factors localize mainly to
regions outside of the tiled core promoters (8,9). ChIP-
chip has now been extended to the entire human genome
using a series of microarrays that contain oligonucleotides
spaced �35–100 nt apart (10,11). This gapped spacing is
necessary due to the large number of arrays (and thus the
large cost) that would be required if overlapping oligomers
were used. However, the gapped spacing results in the
genome-scale ChIP-chip experiments being less precise in
mapping the exact location of a binding site than if
overlapping oligomers were used. The latest development,
ChIP-seq, which uses the immunoprecipitated sample to
create a library that is analyzed using high-throughput
next generation sequencers, also provides genome-scale
analysis of binding sites (12–15). Because ChIP-seq is
not limited to a specific tiled region but can sample the
entire genome, this technique can provide a very precise
mapping of a peak location (16). A comparison of an
E2F4 binding site identified in the GMNN promoter
using both ChIP-chip and ChIP-seq is shown in
Supplementary Figure S1. Although both technologies
correctly identify the GMNN promoter as a target for
E2F4, ChIP-seq provides a more accurate location of
the binding site. Since the ChIP-seq technology provides
a genome-scale analysis that is less costly than genome-
wide ChIP-chip and because it allows for more precise
mapping of binding site locations, most investi-
gators are moving to this technology as the method of
choice for identifying transcription factor binding sites.
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However, as described below, like any other technology,
ChIP-seq also has issues that must be considered.
The first step in the analysis of ChIP-seq data is to

identify all sequenced tags that map uniquely to the
genome of interest. For many ChIP-seq experiments,
investigators analyze very short reads (e.g. 27 nt). This
short-read length can sometimes result in a sequenced
tag mapping to more than one place in the genome. If
this occurs, the tag will be discarded and not included in
peak analyses. In most cases, this is not a problem because
the region surrounding the ‘non-unique’ tag contains
many unique 27-mers and a peak can still be identified.
However, if a peak lies within a large region that is not
unique within the genome, it will be completely missed (i.e.
it will be a false negative). This is especially problematic
for genes that have been duplicated over evolutionary time
and thus have several identical (or almost identical) copies
that reside in different genomic locations (Supplementary
Figure S2). Another reason that false negatives can arise
in ChIP-seq analyses is due to effects of chromatin struc-
ture on the fragmentation step. Investigators use either
sonication or micrococcal nuclease to digest the chromatin
before using it in a ChIP assay. However, the sonication
and/or digestion step does not always provide a represen-
tative population of fragments in the right size range; this
is especially problematic for heterochromatic regions.
These regions will be underrepresented in the sequencing
library and peak identification can be adversely affected
using ChIP-seq (Supplementary Figure S3). Conversely,
just as heterochromatic regions are lost during sample
preparation, promoter regions are sometimes artificially
enriched. Promoters appear to be more easily fragmented
into small chromatin than other regions of the genome
and often show up as a small peak in an input sample
(17). However, proper analysis using appropriate input
libraries can improve the accuracy of binding site identi-
fication (see below for more details). Another problem
that must be considered when analyzing ChIP-seq data
is that certain regions always appear as peaks in a given
cell type, independent of the factor being tested
(Supplementary Figure S4). These false positives can be
due to repetitive regions being mis-annotated as unique.
This is especially problematic when studying cancer cell
lines and tissues, which have many amplified genomic
regions. It is critical that these false positives are
removed from the set of called peaks. As described
below, we have addressed many of these problems by iden-
tifying binding sites as regions that are significant over
background, independent of sequence density. We
present a software package, called Sole-Search, to
analyze ChIP-Seq data and determine statistically signifi-
cant peaks, with minimal false positives and false
negatives. We demonstrate the utility of our software by
collecting, analyzing and comparing ChIP-seq data for six
different human transcription factors/cell line
combinations; E2F4, E2F6 and YY1 in K562 cells; YY1
in Ntera2 cells, TCF7L2 (called in this article by its other
name TCF4) in HCT116 cells, and TFAP2A (called in
this article by its other name AP2a) in HeLa cells; the
analyses of these datasets are provided in Supplementary

Data S1–S21, whereas the sgr visualization files and
sequenced tag files are available on the UCSC browser.

MATERIALS AND METHODS

ChIP

E2F4, E2F6 and YY1 ChIP samples were prepared from
human chronic myelogenous leukemia cells (K562, ATCC
#CCL-243), which were grown in RPMI supplemented
with 10% FBS, 2mML-Glutamine, 100U/ml Pen-Strep
and harvested at a density of 106 cells/ml cells. YY1
samples were also prepared from Ntera2 embryonal car-
cinoma cells (ATCC #CRL-1973) which were grown in
DMEM (GIBCO #11960) with 10% FBS, 2mM
L-Glutamine and 100U/ml Pen-Strep and harvested at
90% confluency. TCF4 ChIP samples were prepared
from HCT116 cells (ATCC #CCL-247) which were
grown in McCoy’s 5A Medium supplemented with 10%
FBS and 1% Penicillin/Streptomycin until 80%
confluency. AP2a ChIP samples were prepared from
HeLa cells (ATCC #CCL-2.2) which were grown in 5%
BCS DMEM, 2mM L-Glutamine and harvested at
50–55% confluency. All cell cultures were cross-linked
for 10min by adding formaldehyde to the growth media
to a final concentration of 1%. Cross-linking was stopped
by the addition of glycine to 125mM final concentration,
and cells were washed twice with ice cold PBS. Chromatin
was fragmented using the Bioruptor sonicator
(Diagenode) for 30min (30 s pulses, 1.5min pauses in
between) to produce fragments �500 nt in size. ChIP
assays were performed using �5� 107 to 1� 108 cells for
each ChIP as described at http://www.genomecenter
.ucdavis.edu/farnham/protocol.html. Antibodies used
were: anti-TCF4 antibody (Cell Signaling Technology,
#9751), anti-E2F4 antibody (SantaCruz, #sc-866x), anti-
E2F6 (SantaCruz, #sc-22823x), anti-AP2a (Santa Cruz,
#sc-8975), and anti-YY1 SantaCruz, #sc-1703x).
Immunoprecipitates were collected using either Staph A
or protein G magnetic beads (Cell Signaling Technology);
further details are available upon request.

ChIP-seq library construction and quantitation

ChIP samples were tested by PCR using positive and
negative control primer sets prior to making the library.
ChIP libraries were created according to Robertson et al.
(12), using 15 cycles of amplification. Libraries were run
on a 2% agarose gel and the 150–450 bp or 400–600
fraction of the library was extracted and purified (except
as noted in Supplementary Figure S3, which compares
libraries made from 150 to 400 bp and 400 to 1 kb
samples); the library with the highest enrichment, as mon-
itored by qPCR was used for sequencing. The libraries
were initially quantitated using a Nanodrop. However,
we noted that the number of clusters obtained from
sequencing the libraries was often much lower than
expected from the concentration determined by the
Nanodrop. Therefore, to estimate relative amplification
potential, the DNA was quantitated using serial dilutions
and compared to a reference library by real-time PCR
using primers complementary to the library adapters.
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The amplification value relative to the reference library
was then used to estimate the flow-cell loading concentra-
tion. For example, to produce the desired number of
clusters for TCF4, 10 times more sample was loaded
onto the flow cell than would have been used if the
concentration was determined using the Nanodrop.
The ChIP-seq libraries were run on an Illumina GA2
by the DNA Technologies Core Faciity at the University
of California-Davis (http://genomecenter.ucdavis.edu/
dna_technologies/). The tag files for the E2F4, E2F6,
YY1, AP2a and TCF4 ChIP-seq experiments are
publicly available on the UCSC browser, as part of the
ENCODE Consortium (http://www.genome.ucsc
.edu/ENCODE/); see also Supplementary Table S1.

Statistical basis of peak calling by Sole-Search

Sole-Search employs several different analysis steps in the
peak calling, each step enabling elimination of different
types of false positives or false negatives in the final
peak list. Below, we describe each step in the program
and the consequences of removal of any individual step.

Step 1: Identification and compensation for amplified and
deleted regions of the genome. Human cell lines are well
known to have genomic instability and often contain
duplications and deletions of regions of the genome.
Since the regions that are duplicated in a cell line are
found in a single copy in the reference genome, they are
identified as unique in the initial stages of tag binning.
However, since these regions are actually found in
multiple copies, the entire region is overrepresented and
can appear to be composed of many binding sites; thus,
false positive peaks are called in these regions. The
plethora of false positives found in these regions may
skew downstream analysis of the set of peaks (such as
target gene identification, location analysis, etc.).
Therefore, it is beneficial to identify such regions as
being non-unique and estimate copy number, so that
peak calling in these regions may be adjusted accordingly.
To identify the duplicated and deleted regions, the input
data are first smoothed. Using a sliding window, all input
data sequenced for that cell type is binned into 200 bp bins
and smoothed using a sliding average (the values of ten
bins on either side of a center bin are averaged to create
the center bin’s smoothed value). For our analyses,
regions that have no sequence at all, and are greater
than 10 000 bp (and less than 2 900 000, to eliminate
calling centromeres as deletions) are considered deletion
events; these regions are identified in the deletions.gff file.
Similarly, we define large duplicated regions as being at
least 10 000 bp long: 1/3 of the bins must contain at least
3-fold more tags than the average bin tag count in the
genome. Small non-unique regions are defined as being
at least 2000 bp long: 1/3 of the bins within the region
must contain at least 4-fold more tags than average.
Copy number of the duplicated region can be roughly
estimated as fold increase of average bin count within
the duplicated region over average bin count within the
genome. Regions that comply with either the small or
large duplication parameters are listed with fold increase

values in the duplications.gff file. Since the method for
calling peaks, as described below, assumes that there is
only one copy of every region of the genome, Sole-
Search adjusts duplicated regions so that they are
represented by only one copy; to do so, tag counts, in
both background data and ChIP data, are divided by
the fold increase of the duplicated region.

Consequences of elimination of Step 1. If amplification is
not taken into consideration by the peak-calling program,
a large number of false positive peaks will be called in
these regions (Figures 1, 5C and Supplementary Figure
S9, Panel A). Furthermore, we note that peaks within
the duplicated regions will be ranked differently by
programs that do versus do not take into account the
extent of genomic amplification. Specifically, these
peaks will appear much higher on the ranked list of
peaks called by programs that do not take duplications
into account.

Step 2: Background estimation using the sequenceable tags
(Background Model 1). The first pass of peak calling is to
determine an accurate, statistically significant height
cutoff for peaks. This cutoff is often determined by
means of a false discovery rate (fdr): the basic concept is
to divide the number of false positive peaks determined
with a specific height cutoff in a simulated background, by
the number of peaks determined at that same height cutoff
in the ChIP-seq sample. These backgrounds are meant to
represent the ChIP tags randomly distributed among
unique genomic regions (12,18,19). However, certain
regions of the genome will have a higher abundance of
sequenced reads because binding sites are present in that
region, and thus there are many more tags in that location.
Likewise, certain regions are sequenced more than the rest
of the genome because they are misannotated as unique
(such a pericentromeric region or other duplication events;
Supplementary Figure S4). If the tag count represented in
these densely covered regions was randomly distributed
among the potential unique sequences, the background
model produced will be denser than the actual background
noise of the experiment. To account for this problem, the
fdr can be calculated after eliminating reads estimated to
be in the binding sites (18). Unique background models,
however, do not take into account the fact that a region is
not necessarily going to be sequenced even if it is unique
(e.g. because certain regions are not easily fragmented and
are less enriched in the sequencing library; Supplementary
Figure S3). Also, individual libraries can show biased
sequencing; reads are not randomly distributed among
unique regions, but cluster possibly due to the amplifica-
tion step. In these cases, distributing sequences randomly
across an estimated unique genome will spread the tags
too thin because the experimental method does not allow
for random unbiased sequencing of the entire unique
genome. In the program that we present, we account for
these factors, and create a background model that more
accurately reflects biology and experimental manipulation.
The first Sole-Search background model uses combined
reads from several different input libraries, representing
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not only unique reads, but sequenceable reads. In the first
round of analysis, the same number of unique tags that
were available from the ChIP sample is chosen randomly
from the merged input dataset. A sliding window of 30 bp
is used to determine how many 30 bp bins would represent
all sequenced reads for a typical run. The tags within these
bins are then scrambled and peak height cutoff is deter-
mined using a fdr of 0.0001 or a user chosen value. We
define fdr as false peaks (i.e. the number of peaks deter-
mined in the background model at a given a height cutoff)
over total peaks (i.e. all false and true-positive peaks deter-
mined within the ChIP data with the same height cutoff).
To eliminate the problem of distributing reads found
within peaks and false positive regions, these reads are
removed and the process is then repeated: in the second
round, the number of tags used to produce the back-
ground model is reduced by the number of tags found
under the peaks determined from the first round.
Also, the tags found in these regions are removed from
the possible sequenceable reads. This results in a rep-
resentative number of background reads/bins in the
background regions of the genome. The peak height

cutoff is then determined using this more accurate
model. Peaks that pass this step are further analyzed in
Model 2.

Consequences of elimination of Step 2. Sequence tags may
cluster by chance into small peak-like structures. Step 2
eliminates such regions of the genome from being consid-
ered peaks by placing a height restriction on peaks.
Therefore, if this step were removed, peaks called would
contain an abundance of small false positive peaks. For
example, �90 000 peaks are called for E2F4 in the absence
of step 2, in comparison to �17 000 peaks called if Step 2
is left in place (Figure 1 and Supplementary Figure S9,
Panel B). This peak set had an average peak height of
13.45 and a median height of 8, compared to using all
three steps, which produced a peak set with an average
peak height of 37 and a median of 27. While these addi-
tional ‘peaks’ are considered significant over a scarce
background (for example, zero, one or two tags), as deter-
mined by step 3, they have occurred by chance and are
normally removed by step 2.

Figure 1. Sole-Search schema. A user can upload one Solexa raw data file into the online program or can upload several files and have the data
merged into one file for analysis. The program parses the data and gives the user a summary report which details the number of reads, the number of
reads that match the human genome and the number of unique reads. A message is also provided indicating that the remainder of the analysis results
will be provided via email when the analysis is completed. Next, two background models are created to reflect the test sample submitted. The first
background model reflects all regions of the genome that are both unique and sequenceable. The second model reflects the biased sequencing of input
from that cell type. In the first step of the program, the duplicated and deleted regions of the genome are determined and background and ChIP tag
counts are normalized to reflect a single copy. In the second step, a peak height threshold is determined based on background model 1 and a false
discovery rate (0.0001 or 0.001 is recommended). The most significant peaks determined in the first pass are removed from the background model
and this step is repeated for an accurate height cutoff. In the third step, peaks are determined significant over background model 2. Again, the most
significant peaks determined in the first pass of this step are removed from the second background model, and this step is repeated, resulting in a
final peaks list. After the second pass is complete, output is sent to the user via email. The files produced can be used as visualization tools (Figures 2
and 3) or for further analysis with additional online software (Figure 4). Shown on the top of the browser shots in each panel are the peaks called
using Sole-Search and the peaks called if step 1, step 2 or step 3 of the program is removed (see also Supplementary Figure S9 for a larger view of
each panel).
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Step 3: Peak elimination using specific inputs (Background
Model 2). Because some larger peaks with heights sur-
passing the significant height cutoff in Model 1 are not
necessarily binding sites, but have accumulated tags
because a region is more easy to sequence, either
because it is a promoter region, which fragments easily
to the most desirable size, or because the region is
misannotated as unique, fdr cannot be used as the only
means to determine peaks. Therefore, to distinguish true
positives from false positives, sequenced ChIP data must
be compared directly to sequenced input data. To obtain
the most accurate results, the user can upload and analyze
their data using their own input file(s) prepared from the
same cells as their ChIP sample. However, our website
also offers several options of input from different cell
types and an option for ‘generic’ cell type (created using
tags from multiple, different human cell lines) which can
be used if an input library is not available for a particular
cell type. However, we stress that having an input library
from the same cell type is very important for final
analyses, due to amplifications and deletions in the
genomes of human cell lines. As indicated above, Sole-
Search will eliminate false positives due to amplified
regions. However, it will also identify deleted genomic
regions, which is very useful information when
characterizing the functional elements in a cell line (e.g.
this can provide insight into why a ‘known’ binding site is
not identified in a particular ChIP-seq experiment). ChIP-
seq tags and input tags (the same number of tags as in the
uploaded ChIP sample data set) are binned using a sliding
window of adjacent 30 bp. Each ChIP bin that had passed
height cutoff is compared to input using a one sample
t-test. Using a user-defined significance cutoff, ChIP bins
are retained if they are significant over background. As
described above, tags represented in peaks should not be
used to determine background, so the tags in the peaks
determined in round 1 of Model 2 are removed and a
second round of analysis is performed. Peaks that pass
both height cutoff (from Model 1) and significance
cutoff (from Model 2) are kept as potential peaks. Then,
any potential peak whose length is greater than the user-
specified length of chromatin fragment is kept to form the
final peak list.

Consequences of elimination of Step 3. Step 3 essentially
removes insignificant ‘peaks’ from consideration and
narrows binding sites to their essential elements.
Therefore, removal of this step will produce a peak set
that includes small false positive peaks and extended
true positive peaks. For example, removing the third
step produced 20 352 E2F4 peaks (instead of �17 000);
the extra peaks that were called were smaller than the aver-
age and median heights of the entire peak set and were
often in shoulder regions of larger peaks (Figure 1 and
Supplementary Figure S9, Panel C).

Sole-Search implementation. The Sole-Search tool set
employs a client-server architecture. Users initially access
the application through a web browser interface.
A graphical client-side Java application for data entry
and analysis request submission is automatically

downloaded and executed on the users local computer
via Java Web Start Technology (http://java.sun
.com/developer/technicalArticles/WebServices/JWS_2/-J-
WS_White_Paper.pdf). This client application is
downloaded again for future invocations only if an
upgraded version of the application has been installed
on the server. Executing the rich client interface on the
users’ local computer system allows Sole-Search to
transparently format and compress data files for upload
to the server, relieving users of the need to perform these
steps manually and reducing the bandwidth and time
required for data set upload. The client-side application
runs on any computer system (including those running
Windows, OS X or Linux) configured with Java JRE
version 1.4 or higher. Analysis requests are posted to the
application server using the CGI protocol. In response,
the application server invokes a set of Perl and shell
scripts installed on the web server. The server installation
depends on Linux, Perl and Apache web server
technologies. Users are notified of analysis completion
via email; results may be downloaded using URLs
included in this e-mail message within two days of
completion.
The Sole-Search system architecture is designed spe-

cially to handle the typically very large ChIP-seq data
files (i.e. often several gigabytes in size). To avoid http
time-outs, the client-side application transparently
compresses very large files and splits them into multiple
HTTP request. The system automatically retries failed
data transfers. Because each analysis run requires a large
amount of disk space, system memory and CPU resources,
the Sole-Search server queues analysis requests. The
maximum number of concurrent analysis jobs can be
configured according to the computing resources available
on the server. Ease of use is a primary concern since many
users will lack programming skills. The client interface
behaves like a locally installed application. Sole-Search
assists the user in handling the very large data files by
providing users with two modes of data transfer (based
on a fast or slow network); in the high speed network
mode, large files are only coarsely compressed before
being uploaded, greatly speeding up request submission
and dramatically reducing local resource consumption.
A comprehensive help system is built into the client appli-
cation and system administrators are provided informa-
tion concerning the system logs status and error
information related to each job submission, execution
and completion (administrators are notified by email auto-
matically when errors occur).

RESULTS AND DISCUSSION

Sole-Search: a web-accessed ChIP-seq data analysis
program

Below, we describe the Sole-Search software package,
which is available in combination with additional
analysis tools. Importantly, we have made this software
available online so that experimentalists with minimal
bioinformatics expertise can easily analyze their ChIP-
seq data. A schematic representing the input files, the
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analysis steps used to call peaks and the output files
is shown in Figure 1. The program is entered via a
public web interface (http://chipseq.genomecenter.
ucdavis.edu/cgi-bin/chipseq.cgi). This web interface
allows the user to upload one or several lanes of ChIP-
seq data (e.g. if more than one lane of sequencing data are
available for a sample, the program can merge the reads
into a single file for analysis) from the Illumina pipeline,
as well as to upload one to several lanes of sequenced
input. As detailed above, the user also has the option of
choosing from a set of available input sequence files. The
user indicates the size cut-off to be used for peak width
(e.g. the smallest size of the chromatin), the number of
permutations of the background tags (2 to 10 is
allowed), the false discovery rate to be used for peak iden-
tification (0.0001 is recommended for factors that bind to
>10 000 sites and 0.001 for factors that bind to <10 000
sites in the genome), and the a-value, which determines
significance over background, to be used (0.001 is recom-
mended). The program then combines and parses the
ChIP-seq raw data and provides the user with input sta-
tistics, including the number of sequenced tags, the
number of tags matching the reference genome, and the
number of tags mapping to only one location of the ref-
erence genome (this set of ‘unique’ tags is used for all
further analyses). Links to the remaining output files
(Supplementary Figure S5) are provided via an email
that is sent to the user after the analysis is completed.
These output files include a job summary file
(Summary_Job.txt) that includes run statistics and the
parameters chosen by the user for this particular
analysis (see below for more details) and visualization
files of the data (rawbinning.sgr), developed using a
sliding window of adjacent 30 bp (Figure 2). For easier
manipulation of this large quantity of data, and so that
multiple datasets can be visualized at once in an appropri-
ate browser, these data are divided into files separated
by chromosome. The program next produces several
files related to peaks. One file is a summary
(Summary_Job_signifpeaks.txt) that details the number
of peaks, average peak height, median peak height,
highest peak, lowest peak and average peak width
(Table 1 for the information provided by the summary
file for each dataset analyzed in this article). A visualiza-
tion file (redbin.sgr) that includes tags under the called
peaks, but removes all of the background is also
provided (Figure 2); this file allows the user to visualize
the shape of each peak. Because the redbin.sgr file is much
smaller than the rawbinning.sgr files (due to the fact that
most of the tags sequenced in any ChIP-seq experiment
correspond to background and do not contribute to the
peaks), it can include all peaks in the genome and does not
need to be separated into individual chromosomes. A user
can upload several different redbin.sgr files into a browser
(such as the Affymetrix Integrated Genome Browser) at
once, allowing easy visualization of the peaks of multiple
factors without crashing the program due to large file
sizes. For further analysis, two statistically significant
peaks files are produced: one peaks file (Figure 2) is
characterized by the number of sequenced tags per peak
(signifpeaks.gff) and the other is characterized by effect

size of each peak (effectsize.gff), which measures how sig-
nificant the peak is over background. The effect size and
significant peaks files list the same peaks; the only differ-
ence is the rank order of the peaks (strict tag count versus
significance over background); smaller peaks in a region of
extremely low background may be ranked higher in the
effectsize file than in the signifpeaks file. Because many
investigators are studying cancer cells and tissues, there
is an issue with amplifications and deletions of large
regions of the genome. Sole-Search identifies the amplified
and deleted regions (and approximates copy number) and
provides visualization files (smear.sgr) identifying these
regions (Figure 3), as well as files listing the amplified
(duplications.gff) and deleted (deletions.gff) regions of
the genome of the cell line or tissue used.

Use of the Sole-Search ChIP-seq Tool set to analyze
E2F4 ChIP-seq data from K562 cells

To demonstrate the utility of the Sole-Search ChIP-seq
Tool set, we performed two ChIP assays for E2F4 in
K562 cells. For the first replicate, 4.7 million unique
reads were analyzed and for the second replicate, 8.8
million unique reads were analyzed (see Supplementary
Table S1 for a summary of the number of unique reads
used for all factors analyzed in this study). As described
below, each replicate was independently analyzed, the
experiments were compared using the Gff-Overlap Tool
to determine replicate quality, the replicate samples were
merged and reanalyzed using Sole-Search to produce a
final peaks file, the final peaks file obtained using Sole-
Search was compared to that obtained using two different
peak calling programs, and the Location-Analysis Tool
was used to characterize the E2F4 dataset (Figure 4).

It is important to perform at least two independent
ChIP experiments (for the same factor and same cell
type, but with cells grown on separate days) and to
prepare and sequence libraries from each of the samples.
A comparison of the two datasets will then provide infor-
mation as to the reproducibility of the ChIP-seq results for
that particular factor and cell line combination. The two
E2F4 ChIP samples were first analyzed independently
using Sole-Search; the output files from the Sole-Search
analysis of each of the E2F4 replicates can be found
in Supplementary Data S1 and S2. To determine
reproducibility of the datasets, we next used the Gff-
Overlap Tool. The Gff-Overlap tool allows an automated
comparison for replicate datasets using as input files the
peaks lists that are obtained as output files from the Sole-
Search program (signifpeaks.gff). We also note that any
other peaks files, such as those from other ChIP-seq or
ChIP-chip peak calling programs, can be used as input for
the Gff-Overlap program, as long as they are in gff format.
It is important to keep in mind that the number of peaks
increases with the number of tags sequenced (until satu-
ration has occurred) and that replicate datasets may
identify different numbers of peaks. Therefore, for com-
parison of peaks files, we recommend truncating the
longer list to the length of the shorter list. This is
illustrated in Figure 4 for replicate datasets for E2F4.
The peaks files provided by the Sole-Search program for
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each replicate (Supplementary Data S1 and S2) were
sorted in descending tag height and then the longer
replicate list was truncated to the length of the shorter
list. The two peak files were then uploaded into the

GFF-Overlap Tool for comparison. Output from this
program, which is sent to the user via email, includes a
summary file which indicates the total number of peaks
and the number of overlapping peaks for each dataset,

Figure 2. Visualization of ChIP-seq data using Sole-Search output files. ChIP-seq data for the merged TCF4 replicate dataset were analyzed using
Sole-Search (Table 1). Shown for a region of chromosome 1 is: (Peaks) the visualization file (signifpeaks.gff) indicating the called peaks; (TCF4
reduced binning) the visualization file (redbin.sgr) of the tags that correspond only to regions called as peaks, and (TCF4 raw binning) the
visualization file (rawbinning.sgr) of all binned and mapped tags. The inset shows the same files, but with an expanded view of a region of
chromosome 1. The rawbinning.sgr files are provided for each individual chromosome, due to their large size (e.g. the size of the TCF4 chromosome
1 rawbinning.sgr file is 64.1 MB). However, the redbin.sgr file and the signifpeaks.gff file are much smaller (e.g. the size of the TCF4 redbin.sgr file,
which shows TCF4 peaks for all chromosomes, is only 4.5Mb) and are provided as single files for the entire genome, for ease in comparing different
datasets.

Table 1. Shown is the information provided by Sole-search after analysis of the indicated ChIP-seq datasets

E2F4/K562 E2F6/K562 TCF4/HCT116 YY1/K562 YY1/Ntera2

No. of peaks 17 673 26 043 21 102 2408 4443
Average peak height 37 48 60 44 51
Median peak height 27 32 43 33 33
Highest peak 224 229 229 210 229
Lowest peak 13 13 14 13 13
Average peak width 451 520 378 354 353
No. of uniquely mapped reads 12 917 986 10 383 166 14 559 371 6 926 438 6 311 210
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a file listing the overlapping peaks, a file listing the non-
overlapping peaks, and a final file listing the union of both
peak sets (see Supplementary Data S7 for the overlap
analysis of the E2F4 replicates). These files are in gff
format and can be loaded into a genome browser,
similar to the peak files from which they are derived.
If the peaks from the two biological replicates show a
high degree of overlap, we recommend that the union
set of all sequenced reads for a given factor and cell type
be used for further analysis of the factor. This allows
peaks to be called using the largest number of reads, pro-
viding a very robust set of binding sites. Therefore, at this
point, the user can rerun Sole-Search, uploading all lanes
for both replicates into the program to produce a final
peaks file of the merged replicate dataset (see
Supplementary Data S3 for the Sole-Search analysis of
the merged E2F4 datasets). The final peak file from the
merged replicates should be considered the list of peaks
for a factor and is thus used for further analyses, as
described below.
Several other ChIP-seq peak calling programs for site-

specific DNA binding transcription factors have recently
been published, such PeakSeq (18) and Sissrs (16).
Therefore, we have compared the E2F4 peak file
obtained using Sole-Search to the peak files obtained
using the same merged E2F4 dataset analyzed with
PeakSeq or Sissrs. Default parameters were used to call
peaks with all three programs. The E2F4/K562 dataset
constitutes 12 917 986 uniquely mapped reads and was
produced by merging two independently derived E2F4
datasets. Sole-Search identified 17 673 peaks (Table 1),
Peakseq identified 59 850 peaks (using the recommended
fdr of 0.05) and Sissrs identified either 40 925 peaks (using
the no background option) or 20 352 peaks (using the

background option). Since running Sissrs with too many
input tags exceeds memory, we only used three out of the
five possible K562 input lanes for analysis with this
program; all five input lanes were used as background
for the other two programs. As shown in Figure 5A, the
peaks identified by Sole-Search are contained within the
larger peak sets identified by the other two programs: 80%
of peaks called by Sole-Search are found in all three other
peak sets; of the remaining 20%, 19% are found in two
other peak sets and <1% of peaks identified by Sole-
Search are only found in one other set. A direct compar-
ison of the characteristics of the peaks identified by the
three programs revealed that the average height of
the Sole-Search, PeakSeq and Sissrs (with background)
were comparable: 37, 38 and 34, respectively.
Importantly, the median peak height of the PeakSeq set
was much lower (15) than for Sole-Search (28) or Sissrs
(25) indicating that the additional �40 000 peaks called by
PeakSeq were very small. We suggest that the fdr recom-
mended for use with PeakSeq is too lenient and that the
peak height average resembles the averages of the other
two programs because the large number of small peaks are
balanced by very large false positive peaks (i.e. peaks at
centromeric regions). Likewise, using Sissrs without a
background identifies a large number of peaks, suggesting
that using a background model is very important for the
elimination of false positives. Another reason why Sissrs
calls so many more peaks is shown in Figure 5B; a region
which is called as one or two peaks by Sole-Search and
PeakSeq may be called as many peaks by Sissrs (with or
without background). It is important to account for this
fact if using Sissrs peaks to find de novomotifs, as this may
skew results. Also illustrated in Figure 5B are additional
very small peaks that are called by PeakSeq when using

Figure 3. Identification of amplified and deleted regions of the genome. Shown for a region of chromosome 13 is the visualization file (smear.sgr)
that allows easy detection of the amplified and deleted regions of the genome being analyzed, a file showing the regions called as duplicated
(duplications.gff), and a file showing the deleted regions of the genome (deletions.gff).
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the recommended fdr and Sissrs if a background model is
not used. Finally, many of the ‘extra’ peaks called by
PeakSeq and by Sissrs are in the amplified region of the
K562 genome (Figure 5C). In the region shown, Sole-
Search identifies one peak, Sissrs (with background
model) identifies six peaks, and both PeakSeq and Sissrs
(no background model) identify a very large number of
peaks that are due to the over-represented tags in the
amplified region.

Analyzing ChIP-seq data is more complicated than
analyzing ChIP-chip data and a major problem in the
field is that many experimentalists lack the necessary
bioinformatics skill sets. For example, when using
promoter arrays, the ‘nearest’ gene is already known for
every binding site and so a list of target genes is quite easy
to obtain. In contrast, when using ChIP-seq, binding sites
can be located at a large distance from a gene. Therefore,
we have included in our software package, several tools to

allow certain follow-up characterizations that most
experimentalists would like to perform. For example,
detailed characterizations of binding patterns are
possible with the Location-Analysis Tool of the Sole-
Search software package (see Supplementary Data S9
for the Location-Analysis output for E2F4). The user
simply uploads the final peaks file (from the merged
replicates if two high quality replicates are available)
into the program. Again, we note that any peaks file, inde-
pendent of origin, can be uploaded into this program, as
long as it is in gff format and the coordinates are human
hg18, human hg19 or mouse mm9 (the user specifies which
genome build to use for the location analysis). The
analysis is automatically performed and the output is
sent to the user via email. The output includes: (i) an
analysis of the number of hits per chromosome
(chrom_count) that can be visualized graphically, (ii) a
file (loc_analysis) listing the chromosomal location of
each peak, the name and chromosomal location of the
gene nearest to each binding site (the nearest gene can
be located 50 or 30 of the binding site), the distance
between the binding site and the start site of transcription
of the nearest gene, and a classification as to whether the
binding site is located close or distal upstream, close or
distal downstream or within the target gene, (iii) an
analysis of whether the factor binds in one or multiple
places near a target gene (gene_count); to derive this infor-
mation, the loc_analysis list is collapsed such that each
gene is listed only once and the number of sites that
match to each gene is tallied, (iv) a file (dist_analysis)
that allows a graphical analysis of the location of all
binding sites for a factor with respect to the start site of
transcription of the nearest gene, (v) a file listing the
number of binding sites located upstream, downstream
or within a gene (pos_info) and (vi) a file listing the break-
down of the intragenic binding sites into different
exons and introns (intron_information). Graphical
representations of the chrom_count, gene_count,
dist_analysis, pos_info, and intron_information files for
the E2F4 dataset is shown in Supplementary Figure S6;
the large loc_analysis excel tables for the E2F4 dataset can
be found in Supplementary Data S9. As we expected,
based on previous ChIP-chip analysis of 1% of the
human genome (20,21), most E2F4 binding sites in K562
cells identified using Sole-Search fall within 1 kb upstream
or downstream of the start site (Supplementary Figure
S6). As a comparison, we also performed a location
analysis of the peaks identified using PeakSeq and Sissrs
(with and without background correction). As shown in
Supplementary Figure S8, Sissrs (with background correc-
tion) identified a similar number of binding sites as did
Sole-Search and the set of sites identified by Sissrs had an
almost identical location pattern with respect to the start
site of transcription as did the sites identified by Sole-
Search (Supplementary Figure S8A and C). However,
the larger number of sites identified by PeakSeq and
Sissrs with no background correction had very different
location profiles (Supplementary Figure S8B and D), sug-
gesting that many of the extra peaks were not bona fide
E2F4 binding sites.

6091
(74%)

truncate to
top 8278

8278 Rep A
peaks

10602 Rep B
peaks

Merge RepA and RepB reads

Sole-search tool to
identify union peaks

Sole-search tool to identify peaks

17,673

E2F4

Location of all peaks
Number of peaks/chromosome 

Number of peaks/gene
Location analysis relative to ATG

Location analysis relative to gene structure

Overlap analysis tool

Location analysis tool

Figure 4. Step-wise analysis of ChIP-seq data. Shown are the steps
taken to analyze the E2F4 ChIP-seq data. First, each replicate was
analyzed separately (Supplementary Folders S1 and S2) using Sole-
Search, then the replicate peak lists were sorted by peak height and
truncated to the same length. Then, the two peak lists were compared
using the Overlap analysis Tool (Supplementary Folder S7). The
overlap was determined to be 74% and then Sole-Search was
repeated, inputting both replicates using the option to merge the
replicate files (Supplementary Folder S3). The peaks were then
characterized using the Location-Analysis tool (Supplementary Folder
S9 and Figure S6).
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Using the Sole-Search ChIP-seq Tool set to gain
biological insight into transcriptional regulation

In addition to allowing a rapid, facile, user-friendly and
statistically based identification of the binding sites for a
particular factor, the Sole-Search ChIP-seq Tool set can
be used to (i) compare binding patterns of two different
factors, to determine if they tend to bind in similar regions
(with respect to the start site of transcription), (ii) compare
binding sites of two different members of a family of

transcription factors, (iii) compare binding sites of a
single factor in two different cell types, (iv) identify
binding modules (enhanceosomes) and (v) assist in per-
forming motif analyses.

(a) Comparison of binding patterns of different transcrip-
tion factors. As noted above, most E2F4 binding sites are
located in core promoter regions, very near to the start site
of transcription. However, most transcription factors do
not show this type of location analysis pattern (12,16).

Figure 5. Comparison of peak calling by different programs. (A) Peaks were called using the 12 917 986 uniquely mapped tags from the E2F4 merged
dataset using Sole-Search, PeakSeq and Sissrs (either with or without using a background; note that only 3 of the 5 lanes of input could be used with
Sissrs because the program could not handle the larger number of reads but all 5 lanes were used with the other two programs). The Venn diagram
shows the number of peaks called by each program and the relative overlap of the different datasets. (B) Shown for a region of chromosome 1 is the
sgr visualization file for the K562 input sample, the E2F4 ChIP sample and the peaks called by each program. (C) Shown for a region of
chromosome 9 is the sgr visualization file for the K562 input sample, the E2F4 ChIP sample, and the peaks called by each program; note the
very large number of peaks called by PeakSeq and Sissrs in the amplified genomic region.
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To illustrate this point, a complete analysis (using two
replicates, as outlined in Figure 4) was performed for
TCF4. A previous analysis of TCF4 binding using
ChIP-chip identified �6800 sites and found that most of
the sites were located outside of core promoter regions
(22). However, because of possible differences between
experimental platforms, we needed to identify the set of
TCF4 sites using ChIP-seq. Therefore, two independent
replicate TCF4 datasets were produced and analyzed
using Sole-Search, the resultant individual peak files
were compared using the Overlap-Tool, the individual
datasets were then merged and re-analyzed using Sole-
Search, and then the merged peak file (21 102 peaks) was
analyzed using the Location-Analysis Tool; see
Supplementary Data S4–S6 for the Sole-Search output
files for each single ChIP-seq replicate of TCF4 and the
merged dataset; Supplementary Data S8 for the Overlap-
Analysis of the TCF4 replicates, Supplementary Data S10
for the output files from the Location-Analysis
of TCF4 peaks, and Supplementary Figure S7 for
the graphical representations of the chrom_count,
gene_count, dist_analysis, pos_info, and intron
_information files for the TCF4 dataset. Although both
E2F4 and TCF4 bind to a similar number of places in the
human genome (Table 1), their binding patterns are very
different (compare Supplementary Figures S6C and S7C).
In particular, regions corresponding to 10–100 kb
upstream or downstream from the start site of genes (i.e.
regions considered typical of where enhancers are located)
are highly enriched in the TCF4 set of binding sites (see
Figure 2 for an example of TCF4 binding in between two
genes). Thus, E2F4 binding sites are promoter-specific,
but TCF4 binding sites are found at both promoters and
enhancers.

(b) Comparison of different members of a family of
transcription factors. Most site-specific DNA-binding
transcription factors are members of multi-gene families,
with each member having a very similar DNA binding
domain. A common question that is asked about the dif-
ferent family members is whether they bind to the same
genomic locations (and therefore regulate the same set of
target genes) or if they bind to different locations (and
therefore regulate distinct sets of genes). The E2F family
of transcription factors consists of eight genes, each
having a highly conserved DNA binding domain (23). In
particular, E2F4 and E2F6 have very similar DNA
binding and hetero-dimerization domains (both proteins
require dimerization with DP1 to bind to DNA in vitro).
However, the C-terminal regions of E2F4 and E2F6 are
very different, with E2F4 having a pocket protein binding
domain [that mediates interaction with the retinoblastoma
(Rb) protein family members] and a transactivation
domain, both of which are absent in E2F6. Comparisons
of E2F4 and E2F6 binding has been performed previously
using ChIP-chip and promoter arrays (21). However, a
genome-wide comparison of the binding patterns of
these two E2F family members has not been performed.
Therefore, we performed ChIP-seq using two biological
replicates of K562 cells for both E2F4 and E2F6.
Sole-Search and the Overlap-Analysis Tool, as

illustrated in Figure 4, were used to analyze each
dataset. Briefly, each replicate was sequenced and peaks
were called using Sole-Search (Supplementary Data S1, S2
for E2F4 and S11, S12 for E2F6) then the Gff-Overlap
Tool was used to confirm a high degree of overlap for
the E2F4 replicates and for the E2F6 replicates. The
merged E2F4 and merged E2F6 replicates were then
re-analyzed using Sole-Search (Supplementary Data S3
for E2F4 and S13 for E2F6); the information from the
Summary Text output file for each dataset can be found
in Table 1. To determine if E2F4 and E2F6 bind to the
same locations, the signifpeaks.gff files for the merged
E2F4 and merged E2F6 datasets were then uploaded
into the Gff-Overlap Tool, using 0 nt distance, such that
the peaks must overlap by at least 1 nt (Supplementary
Data S15). In this case, we did not truncate the lists to
the same length because we are not comparing replicates
but rather are comparing two different family members
(and the number of uniquely mapped reads was similar
for each dataset). When we compared the 17 611 E2F4
and 25 944 E2F6 peaks, we found that 14 700 of the
E2F4 peaks were in the E2F6 dataset (83%), but
because there are so many more E2F6 sites, only 54% of
the E2F6 sites were in the E2F4 dataset. To determine if
the characteristics of the E2F4 versus E2F6 overlapping
versus non-overlapping sites were similar, these two sets of
peaks were analyzed using the Location-Analysis Tool
(Supplementary Data S16 and S17). As shown in Figure
6A, the �15 000 peaks in common for E2F4 and E2F6 are
all localized to core promoter regions. In contrast, when
the �12 000 peaks that were unique to E2F6 were
analyzed, they were found to be enriched in promoters
and enhancer regions (data not shown). One caveat to
this analysis could be that if many of the E2F6-specific
peaks were small, false positives, this could skew the
results. Therefore, the �12 000 E2F6-specific peaks were
ranked and the top 1000 were selected and analyzed for
their location pattern. As shown in Figure 6B, these peaks
are all very strong (having an average peak height higher
than that of the common peaks). However, the binding
pattern of these E2F6-specific peaks is quite different
than the E2F4 and E2F6 overlapping peaks. Thus,
although both E2F4 and E2F6 bind to the same �15 000
promoters in the genome, E2F6 also a set unique set of
binding sites that differ in location relative to the start site
of transcription from sites bound by both family members.
The common and unique peaks files identified for the
genome wide ChIP-seq for E2F4 and E2F6 are provided
in Supplementary Data S15.

(c) Comparison of binding patterns of one factor in
different cell types. Many site-specific factors are
expressed in many different tissues (24). However, very
few studies have examined binding of a factor in more
than one cell type. YY1 is a site-specific factor that is
expressed in most cell types. To determine if YY1 binds
to the same locations and regulates the same target genes
in different cell types, we analyzed YY1 binding in K562
chronic myeloid leukemia cells and Ntera2 embryonal car-
cinoma cells. ChIP-seq data for YY1 in both cell types was
analyzed using Sole-Search (Table 1); 4443 sites were
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identified in Ntera2 cells and 2408 sites were identified in
K562 cells (Supplementary Data S18–19). The Ntera2 list
was truncated and both sets of 2408 peaks were
compared using the Gff-Overlap Tool. In general, the
binding sites are very similar in the two cell types; an
overlap of 74% was obtained, which is similar to the

overlap obtained when two replicates in the same cell
type are analyzed. Examples from the overlapping and
non-overlapping peaks files (Supplementary Data S20),
along with visualization of the Ntera2 and the K562
YY1 ChIP-seq data, are shown for a region of chromo-
some 1 in Figure 7.

Figure 6. Comparison of E2F4 and E2F6 binding sites. The signifpeaks.gff files for the merged E2F4 and merged E2F6 datasets were uploaded into
the Gff-Overlap Tool, using 0 nt distance (Supplementary Folder S15). (A) The �15 000 binding sites that were identified (using the overlapping
peaks file from the Overlap Analysis Tool) to be bound by both E2F4 and E2F6 in K562 cells were analyzed using the Location-Analysis Tool
(Supplementary Folder S16). A graphical representation of the dist_analysis file is shown. (B) The top 1000 of the �12 000 E2F6-specific binding sites
that were identified (using the non-overlapping peaks file from the Overlap Analysis Tool) were analyzed using the Location-Analysis Tool
(Supplementary folder S17). A graphical representation of the dist_analysis file is shown.
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(d) Identification of binding modules
(enhanceosomes). Although the GFF-Overlap Tool has
an option to extend the region that you consider to
represent overlapping peaks, for replicates of the same
factor we recommend that the value be 0 (i.e. at least
1 nt of the peaks should overlap). However, changing
the overlap distance can allow a user to determine co-
localization of different factors in the genome. In this
case, one would not expect the center of the peaks to be
at the exact same location. Rather, one can use this tool to
identify possible enhanceosomes, as defined as relatively
small regions, located far from a core promoter, that are
bound by different factors. To illustrate this use of the
Sole-Search Tool set, we wanted to analyze two different
factors that have approximately half of their binding sites
far from start sites. As shown in Supplementary Figure S7,
the TCF4 binding pattern fits this requirement. However,
E2F4, E2F6 and YY1 all have the majority of their sites in
core promoters. Therefore, we needed to identify another
factor that binds far from start sites. We tested several
factors and found that the AP2a binding pattern fits this
requirement. Therefore, we performed two ChIP-seq
replicates of AP2a, called peaks using Sole-Search, deter-
mined that the two sets showed a high degree of overlap,
merged the two replicates, and called peaks again using
Sole-Search, identifying 17 118 AP2a peaks. We then
analyzed the AP2a signifpeaks file (17 118 peaks) and
the TCF4 signifpeaks file (21 102 peaks) using the
Location-Analysis Tool. The 6272 AP2a peaks and the
6682 TCF4 peaks that were identified as being ±10 to
100 kb from the start site of a gene (and thus located in
a region that may correspond to an enhancer) were then
compared using the Overlap Tool. The number of sites
identified when spacing was varied between 0 kb (peaks
must overlap) to 10 kb is shown in Figure 8. Also shown
are examples of AP2a and TCF4 peaks, all of them far
from start sites of genes, that overlap or are separated by
less than 1 kb or less than 5 kb. The several thousand
regions identified to contain both AP2a and TCF4
binding sites are good candidates for enhanceosomes.

We anticipate that as more and more factors are
analyzed using ChIP-seq, the GFF-Overlap Tool will be
very useful for identifying additional enhanceosomes.

(e) Motif analysis. Although some factors, such as
members of the E2F family, appear to lack a requirement
for a specific motif for binding in vivo (25), other factors
appear to be recruited to a majority of their binding sites
via a common motif. For example, each of the sets of
binding sites for p63, STAT1 and REST (also known as
NRSF) show a high enrichment for a specific motif
(12,26,27). However, these previous studies did not
examine whether the identified motif was similarly
enriched in all categories of binding sites for a particular
factor. Specifically, they did not determine if a particular
factor was recruited to promoter regions versus enhancer
regions using the same motif. To address this question, we
have used our ChIP-seq data for TCF4. We began by
developing a position weight matrix for the TCF4 motif
using our ChIP-seq data and the de novo motif search
program Meme; the position weight matrix that we
derived was similar to the TCF4 consensus motif identified
previously (22). We then determined that 46% of the top
500 binding sites identified by Sole-Search contained a
good match to the TCF4 position weight matrix. We
next used PeakSeq and Sissrs (with and without back-
ground correction) to identify TCF4 binding sites and
then determined the percentage of those binding sites
that contained a match to the TCF4 position weight
matrix (Supplementary Table S2). We found that TCF4
motifs were found at about the same percentage in Sole-
Search and PeakSeq but that Sissrs peak sets had a much
lower percentage of sites that contained a match to the
TCF4 consensus. It should be noted that the average
peak width called by each of the programs is different.
In particular, PeakSeq calls wider peaks and Sissrs calls
narrower peaks than does Sole-Search. However, even
after correction for the width of the peak, a greater per-
centage of top 500 binding sites identified by Solesearch or
by PeakSeq contained the TCF4 consensus motif than did
the top 500 binding sites identified by Sissrs. These results

Figure 7. Comparison of YY1 binding sites in two different cell types. The YY1 binding sites (signifpeaks.gff) identified using Sole-Search for K562
cells (Supplementary Folder S18) and for Ntera2 cells (Supplementary Folder S19) were compared using the Overlap Analysis Tool (Supplementary
Folder S20). Shown for a region of chromosome 1 is the sgr visualization file for the YY1 ChIP-seq data from K562 and from Ntera2. Also shown
for this region are the peaks that are common to both cell types and the peaks that are specific for each cell type.
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suggest that the peaks identified by Sissrs are likely to be
too narrow for optimal motif analyses.
In our ChIP-seq experiments, we identified 21 102 TCF4

binding sites in the human colon cancer cell line HCT116.
Using our Location-Analysis Tool, we determined that
6682 sites are located in enhancer regions (±10 to
100 kb from the start site) and 9341 sites are located in
promoter sites (±2kb from start site); we note that the
location analysis for our large ChIP-seq dataset is similar
to that reported for a smaller number of sites previously
identified by ChIP-chip (22). We determined that the 6682
TCF4 enhancer sites have an average peak height of 66
tags and the 9341 TCF4 promoter sites have an average
peak height of 54 tags. Thus, TCF4 appears to be
recruited to these two subsets of sites with equal efficiency.
To determine if the same motif is used for TCF4
recruitment in the two subsets of sites, we performed
motif analysis of the top 500 TCF4 promoter binding
sites and the top 500 TCF4 enhancer binding sites using
the de novo motif search Meme (28). The top three motifs
with a length of seven were selected; a length of seven was

chosen because it is the length of a previously determined
TCF4 motif (22). In the promoter subset, only the known
TCF4 consensus motif was identified. However, in the
enhancer subset, motifs for three different transcription
factors were identified: the AP1 motif (consensus TGAG
TCA): E-value=1.1e-097; the TCF4 motif (consensus AT
CAAAG): E-value=7.9e-078; and the ETS1 motif (con-
sensus CAGGAAG): E-value=3.1e-032; see Figure 9A.

Our results suggested that different motifs may be
important for recruitment of TCF4 to enhancers versus
promoter regions. However, it was possible that the AP1
and ETS1 motifs are present in the promoter regions
bound by TCF4, but were just not identified using
Meme. Therefore, we more directly examined the prev-
alence of TCF4, AP1, and ETS1 motifs in various subsets
of TCF4 binding sites. Using the weight matrix for the
TCF4, AP1 and ETS1 motifs (as determined by Meme
in the first analysis), four different sets of binding sites
were analyzed; these included all 9341 TCF4 ChIP-seq
promoter binding sites, the top 500 ChIP-seq TCF4
promoter binding sites, all 6682 TCF4 ChIP-seq

Figure 8. Using the Sole-Search Tool set to identify enhanceosomes. A location analysis of the 17 118 AP2a peaks and 21 102 TCF4 peaks was
performed using the Location-Analysis Tool. The 6272 AP2a and 6682 TCF4 enhancer sites (defined as ±10 to 100 kb from the start site of a gene)
were then compared using the Overlap Tool. The number of sites identified when the spacing between TCF4 and AP2a sites was varied between 0 kb
(peaks must overlap) to 10 kb is shown in the top panel. Also shown are examples of AP2a and TCF4 peaks, all of them far from start sites of genes,
that overlap by 0, <1 kb or <5 kb.

e13 Nucleic Acids Research, 2010, Vol. 38, No. 3 PAGE 14 OF 17



enhancer binding sites, and the top 500 TCF4 ChIP-seq
enhancer binding sites. Potential motifs in the four differ-
ent peak sets were scored using a log-odds score (and a
strict threshold of 8) that takes into account the back-
ground nucleotide frequencies of the sequences being
scanned. We found that all three motifs were enriched in
the TCF4 enhancer binding sites, when compared to a set
of random sequences (Table 2). For example, the set of
500 highest-ranking TCF4 enhancer sites showed a very
strong enrichment of the identified motifs (45% contained
a TCF4 motif, 38% contained an AP-1 motif, and 34%
contained an ETS1 motif, as compared to 500 random
regions of which only 3%, 4% and 15% contained a
TCF4, AP-1 or ETS1 motif, respectively). Interestingly,
the TCF4, AP-1 and ETS1 motifs were all found at
about the same frequency in the TCF4 enhancer regions.
To determine if the AP-1 and ETS1 motifs were enriched
in a set of binding sites of another transcription factor, we
also analyzed the promoter and enhancer binding sites
from AP2a ChIP-seq data (Table 2). We found that the

TCF4 motif was not significantly enriched in the AP2a
promoter or enhancer peaks, that the AP-1 motif was
somewhat enriched in the AP2a enhancer, but not
promoter, peak set, and that the ETS1 motif was
somewhat enriched in the AP2a promoter, but not the
enhancer, peak set.Our motif analysis results suggest
that TCF4, AP1 and ETS family members may bind to
many of the same genomic locations. To test our
bioinformatics predictions, additional ChIP-seq data was
required. Fortunately, ChIP-seq data for JUN (one of the
heterodimeric components of AP1) in K562 cells was
available from the Snyder laboratory’s contributions
to the ENCODE consortium (http://genome.ucsc
.edu/ENCODE/). Although this is a different cell type
than was used for the TCF4 ChIP-seq experiments, it
was possible that many of the JUN targets would be the
same in K562 and HCT116 cells. Therefore, we
downloaded the JUN ChIP-seq data from the UCSC
browser, called peaks using Sole-Search, and then used
the Gff-Overlap Tool to determine overlaps between the

Figure 9. Motif analysis of TCF4 ChIP-seq data. The signifpeaks.gff file for the merged TCF4 dataset was analyzed using the Location Analysis
Tool (Supplementary Folder S10). Then, the sites corresponding to promoters (±2kb from a transcription start site) or enhancers (±10 to 100 kb
from a start site) were selected. Each set was then analyzed using Meme for de novo motif identification. As shown in (A), the three motifs identified
in the enhancer binding sites correspond to known motifs for AP-1 (TGAGTCA), TCF4 (T/ATCAAAG) and ETS-1 (G/CAGGAAG). (B) The
similar binding patterns of TCF4 (HCT116 cells) and JUN (K562 cells) across a region of chromosome 1. Also shown for that region of chromosome
1 are the overlapping sites identified when the Gff-Overlap Tool was used to compare the TCF4 and JUN peak files and the TCF4 and JUN motifs
identified in the TCF4 peaks.
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TCF4 and JUN binding sites. We found �7400 locations
that were bound by both proteins. A comparison of TCF4
and JUN binding across the DHRS3 gene on chromosome
1 is shown in Figure 9B. Clearly, the binding patterns of
these two proteins are very similar, even though different
cell lines were used for the ChIP-seq experiments.
Interestingly, TCF4 has previously been shown to physi-
cally interact with JUN (29). It has been previously
suggested that the JUN and TCF4 interaction is a molec-
ular mechanism that integrates the activation of the TCF/
CTNNB1 (b-catenin) pathway by the JNK pathway.
Using genome-wide ChIP-seq of TCF4 and motif
analysis of the TCF4-bound enhancer regions, our
studies suggest that interaction with JUN may be a
major mechanism for recruitment of TCF4 to the
genome. Also, JUN has been shown to physically
interact with ETS family members (30). Future ChIP-seq
experiments are required to determine if ETS binding is
coincident with TCF4 and JUN throughout the genome.

CONCLUSIONS

As described above, we have developed statistically based,
integrated analysis software for ChIP-seq data that uses
reads from the Illumina pipeline to create visualization
files, calls peaks (taking into account background due to
input characteristics), provides different types of peak
files, and automatically provides information concerning
critical characteristics of the binding patterns. We demon-
strate the utility of this analysis approach by experimen-
tally collecting and analyzing 10 different ChIP-seq
datasets (two replicates each of E2F4, E2F6, TCF4,
YY1 and AP2a). We use the Sole-Search Tool set to
identify and compare binding patterns of different E2F
family members and binding patterns of YY1 in different
cell types, to identify potential enhanceosomes, and to
provide insight into the mechanism by which TCF4
regulates transcription. All analysis files and tag files for
each dataset are provided as supplementary data or are
publicly available on the UCSC browser as a resource for
the scientific community and so that they can be used by
investigators who wish to familiarize themselves with the

various tools of the Sole-Search program prior to
analyzing their own ChIP-seq data.

We note that Sole-Search has both similarities and
differences in comparison to several other recently
described ChIP-seq peak-calling programs. The earliest
ChIP-seq peak calling programs did not take into
account peaks that also occur in input sequences (12,15)
and thus peak lists derived using these early methods
include many false positives. However, similar to Sole-
Search, more recently developed programs, such as
PeakSeq, Sissrs, MACS, CisGenome and GLITR
(16,18,31–33), allow the user to take into account
sequencing biases in the input samples; a comparison of
the ways in which several different programs use input
data to identify bona fide binding sites can be found in
Tuteja et al. (33). Of these published programs, Sole-
Search is the only program that specifically controls for
amplified regions of the genome and automatically
provides files listing the amplified and deleted regions of
the genome in the cell line used for the ChIP-seq study,
making Sole-Search especially well-suited for studying
transcription factor binding sites and chromatin profiles
of cancer genomes. We showed that programs that do not
take into account the amplified regions call far too many
peaks in certain regions of the genome. We compared
binding patterns of E2F4 peaks and motif analyses of
TCF4 peaks using Solesearch, PeakSeq and Sissrs. We
showed that the smaller peak sets called by Sole-Search
and Sissrs (with background correction) provide more
accurate E2F4 location analyses than do the larger sets
of peaks called by PeakSeq and Sissrs (without a back-
ground correction) and that the TCF4 peaks called by
Sole-Search and PeakSeq contain more consensus TCF4
motifs than the peaks called by Sissrs. We note that unlike
many of the previous programs, both Sole-Search and
CisGenome (32) provide an integrated set of downstream
analysis programs. Finally, we emphasize that one unique
aspect of Sole-Search is that it is web-based (http://chipseq
.genomecenter.ucdavis.edu/cgi-bin/chipseq.cgi) so that
experimentalists with minimal bioinformatics expertise
can quickly analyze their ChIP-seq data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Table 2.

No. of
Peaks

TCF4
motifs
(%)

AP-1
motifs
(%)

Ets
motifs
(%)

TCF4 binding sites
Promoters 9341 14 4 23

top 500 45 10 48
Enhancers 6682 23 24 19

top 500 45 38 34
AP2a binding sites
Promoters 4548 6 6 19

top 500 11 12 35
Enhancers 4850 5 18 11

top 500 8 31 20
Random regions 9341 4 4 17

500 3 4 15
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