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Bystro: rapid online variant annotation and
natural-language filtering at whole-genome
scale

Alex V. Kotlar1, Cristina E. Trevino1, Michael E. Zwick1, David J. Cutler1 and Thomas S. Wingo1,2,3*
Abstract

Accurately selecting relevant alleles in large sequencing experiments remains technically challenging. Bystro (https://
bystro.io/) is the first online, cloud-based application that makes variant annotation and filtering accessible to all
researchers for terabyte-sized whole-genome experiments containing thousands of samples. Its key innovation is a
general-purpose, natural-language search engine that enables users to identify and export alleles and samples of
interest in milliseconds. The search engine dramatically simplifies complex filtering tasks that previously required
programming experience or specialty command-line programs. Critically, Bystro’s annotation and filtering capabilities
are orders of magnitude faster than previous solutions, saving weeks of processing time for large experiments.

Keywords: Natural-language search, Genomics, Bioinformatics, Annotation, Filtering, Web, Online, Cloud, Big data
Background
While genome-wide association studies (GWAS) and
whole-exome sequencing (WES) remain important com-
ponents of human disease research, the future lies in
whole-genome sequencing (WGS), as it inarguably pro-
vides more complete data. The central challenge posed
by WGS is one of scale. Genetic disease studies require
thousands of samples to obtain adequate power and the
resulting WGS datasets are hundreds of gigabytes in size
and contain tens of millions of variants. Manipulating
data at this scale is difficult. To find the alleles that con-
tribute to traits of interest, two steps must occur. First,
the variants identified in a sequencing experiment need
to be described in a process called annotation and, sec-
ond, the relevant alleles need to be selected based on
those descriptions in a procedure called variant filtering.
Annotating and filtering large numbers of variant al-

leles require specialty software. Existing annotators, such
as ANNOVAR [1], SeqAnt [2], VEP [3], and GEMINI [4]
have played an important research role, and are suffi-
cient for small to medium experiments (e.g., read 10s to
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100s of WES samples). However, they require significant
computer science training to use in offline, distributed
computing environments and have substantial restric-
tions in terms of performance and the maximum size of
the data they will annotate online. Existing variant filter-
ing solutions are even more limited, with most analyses
requiring researchers to program custom scripts, which
can result in errors that impact reproducibility [5].
Therefore, annotation and filtering are not readily ac-
cessible to most scientists; even bioinformaticians face
challenges of performance, cost, and complexity.
Here we introduce an application called Bystro that

significantly simplifies variant annotation and filtering,
while also improving performance by orders of magni-
tude and saving weeks of processing time on large data-
sets. It is the first program capable of handling
sequencing experiments on the scale of thousands of
whole-genome samples and tens of millions of variants
online in a web browser and integrates the first, to our
knowledge, publicly available, online, natural-language
search engine for filtering variants and samples from
these experiments. The search engine enables real-time
(sub-second), nuanced variant filtering, both across all
samples and per sample, using simple phrases and inter-
active, web-based filters. Bystro makes it possible to effi-
ciently find alleles of interest in any sequencing
le is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
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experiment without computer science training, improv-
ing reproducibility while reducing annotation and filter-
ing costs.

Results
To compare Bystro’s capabilities with other recent pro-
grams, we submitted 1000 Genomes [6] Phase 1 and
Phase 3 variant call format (VCF) files for annotation
and filtering (Fig. 1). Phase 1 contains 39.4 million vari-
ants from 1092 WGS samples, while Phase 3 includes
84.9 million alleles from 2504 WGS samples. We first
evaluated the online capabilities of the web-based ver-
sions of Bystro, wANNOVAR [7], VEP, and GEMINI
(running on the Galaxy [8] platform). Bystro was the
only program able to complete either 1000 Genomes
Phase 1 or Phase 3 online, and was also the only applica-
tion to handle a 6 × 106 variant subset of Phase 3, a size
representative of modest whole-genome experiments.
When tested with 5 × 104–1 × 106 variant subsets of
1000 Genomes Phase 3, Bystro was approximately 144–
212× faster than GEMINI/Galaxy in generating a down-
loadable annotation and searchable result database and
was significantly easier to use as it did not require a sep-
arate annotation step (Fig. 2). When tested on a small
trio dataset, Bystro was able to identify de novo variants
without any additional software and was 45× faster than
GEMINI’s de_novo tool (Additional file 1: Table S1).
Bystro and GEMINI/Galaxy produced similarly detailed
outputs, with Bystro offering fewer but more complete
and recent sources, as well as more detailed annotations
for some classes of data (Additional file 1: Table S2 ;
Additional file 2). Notably, GEMINI was found to work
only with the hg19 human genome assembly, whereas
Bystro supports hg19, hg38, and a variety of model
organisms.
We next tested offline performance on identical

servers to gauge performance in the absence of web-
related file-size and networking limitations. Bystro was
113× faster than ANNOVAR and up to 790× faster than
VEP, annotating all 8.5 × 107 variants and 2504 samples
from Phase 3 in < 3 h (Table 1). Furthermore, ANNO-
VAR was unable to finish either Phase 1 or Phase 3 an-
notations due to memory requirements (exceeding
60 GB of RAM) and VEP annotated Phase 3 at a rate of
ten variants per second, indicating that it would need at
least 98 days to complete. Critically, Bystro’s run time
grew linearly with the number of submitted genotypes,
suggesting that it could handle even hundreds of thou-
sands of samples within days.
While offering significantly faster performance, Bystro

also provided 3.5× the number of annotation output
fields as ANNOVAR and 5.6× that of VEP (Additional
file 3). Notably, unlike ANNOVAR or VEP, Bystro anno-
tated each sample relative to its genotype, reporting
homozygosity, heterozygosity, missingness, sample
minor allele frequency, and labeling each sample as
homozygous, heterozygous, or missing. In contrast,
ANNOVAR provided only sample minor allele fre-
quency, while VEP reported no sample-level data. We
note that VEP is capable of providing per-sample anno-
tations (heterozygosity/homozygosity status), but we
were unable to use this feature for performance reasons.
A detailed comparison of the exact settings used is given
(Additional files 2 and 3).
To investigate annotation accuracy, we next compared

Bystro with ANNOVAR and VEP on a previously analyzed
synthetic dataset [9]. Overall, excellent concordance between
all methods was noted (Additional files 4, 5 and 6). For in-
stance, in comparison with ANNOVAR, allele position
(>98%), allele identity (100%), and variant effects (>99%) were
highly consistent across all classes of variation, for sites that
Bystro did not exclude for quality reasons (Additional file 4).
In cases where the annotators disagreed, Bystro gave

the more correct interpretations. For instance, Bystro
and VEP excluded reference sites (ALT: “.”), while
ANNOVAR annotated such loci as “synonymous SNV”;
it is of course incorrect to call reference sites variant
(Additional files 4 and 5). In cases of insertions and dele-
tions, which are often ambgiuously represented in VCF
files due to the format’s padding requirements, Bystro al-
ways provided the parsimonious left-shifted representa-
tion, while ANNOVAR and VEP occasionally provided
right-shifted variants (Additional files 4 and 5). This is
evident at chr15:42680000CA > CAA, where both
ANNOVAR and VEP called the insertion as occuring
after the first “A,” with 2 bases of padding, rather than
the simpler option after the first base, “C,” with 1 base
of padding (Additional file 1: Table S3). Similar results
were found at multiallelic loci with complex indels
(Additional file 1: Table S4).
Similarly, in cases where Bystro and ANNOVAR or VEP

disagreed on variant consequences, Bystro always appeared
correct relative to the underlying transcript set. For example,
in the case of the simple insertion chr19:41123094G >GG,
Bystro correctly identified all three overlapping transcripts
(NM_003573;NM_001042544;NM_001042545) and noted
the variant as coding (exonic) relative to all three. In con-
trast, ANNOVAR called the allele as disrupting a splice site,
despite the fact that the nearest intron, and therefore splice
site, was 37 bp downstream (Additional file 1: Figure S1).
Additionally, Bystro’s strict VCF quality control measures

substantially improved annotation accuracy. This is evident
in the case of gnomAD, a VCF-format dataset that repre-
sents the largest experiment on human genetic variation.
While Bystro and ANNOVAR provided identical gnomAD
data for 93.7% of tested alleles, the remaining 6.3% were
low-quality gnomAD results that were included in ANNO-
VAR and excluded from Bystro (Additional file 4). For



Fig. 1 Using Bystro online to find alleles of interest in sequencing experiments. a After logging in (https://bystro.io/), users upload one or more
VCF or SNP-format files—containing alleles from a sequencing experiment—from a computer or a connected Amazon S3 bucket. Datasets of
over 890 GB, containing thousands of samples and tens of millions of variants, are supported. The data are rapidly annotated in the cloud, using
descriptions from public sources (e.g. RefSeq, dbSNP, Clinvar, and others). The annotated results can be filtered using Bystro’s natural-language
search engine and any search results can be saved as new annotations. Annotated experiments and saved results can be viewed online,
downloaded as tab-delimited text, or uploaded back to linked Amazon S3 buckets. b An example of using Bystro’s natural-language search
engine to filter 1000 Genomes Phase 3 (https://bystro.io/public). To do so, users may type natural phrases, specific terms, numerical ranges, or
apply filters on any annotated field. Queries are flexible, allowing misspelled terms such as “earl-onset” to accurately match. Complex tasks, such
as identifying de novo variants can be achieved by using Boolean operators (AND, OR, NOT, +, -), exact-match filters, and user-defined terms. For
instance, after labeling the “proband” and their “parents,” the user could simply search proband –parents or combine with additional parameters
for more refined queries, i.e. proband –parents missingness < .1 gnomad.exomes.af_nfe < .001
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instance, in the case of chr16:2103394C > T, ANNOVAR
reported rs760688660, which failed gnomAD’s random
forest qc step. We note that a 6.3% false-positive rate is
similar to the frequency of common variation and signifi-
cantly larger than the frequency of rare variants, making
ANNOVAR’s gnomAD annotations a potentially unreli-
able source of data for both common and rare variant
filtering.
Next, we explored the Bystro search engine’s ability to

filter the 84.9 million annotated Phase 3 variants.

https://bystro.io/
https://bystro.io/public


Fig. 2 Online performance comparison of Bystro, VEP, wANNOVAR, and GEMINI. Bystro, wANNOVAR, VEP, and GEMINI (running on Galaxy) we run
under similar conditions. Total processing time was recorded for 1000 Genomes Phase 3 WGS VCF files, containing either the full dataset (2504
samples, 8.49 × 107 variant sites) or subsets (2504 samples and 5 × 104, 3 × 105, 1 × 106, and 6 × 106 variants). Only Bystro successfully processed
more than 1 × 106 variants online; wANNOVAR (not shown) could not complete the smallest 5 × 104 variant subset; VEP could not complete more
than 5 × 104 variants; and GEMINI/Galaxy could not complete more than 1 × 106 variants. Online, VEP outputted a restricted subset of annotation
data compared to its offline version. GEMINI and Bystro (but not VEP) outputted whole-genome CADD scores, while only Bystro also returned
whole-genome PhyloP and PhastCons conservation scores. Bystro was faster than GEMINI/Galaxy by 144–212× across all time points

Table 1 Bystro, VEP, ANNOVAR offline command-line performance

Software Dataset Samples Variants Variants/s Bystro vs

Bystro 1000G Phase 3 chr1 2504 1 × 106 8156 ± 195 –

1000G Phase 3 chr1 2504 2 × 106 8484 ± 67.9 –

1000G Phase 3 chr1 2504 4 × 106 8516 ± 57.2 –

1000G Phase 3 chr1 2504 6.5 × 106 7779 ± 21.8 –

1000G Phase 1 1092 3.9 × 107 5417 ± 76.8 –

1000G Phase 3 2504 8.5 × 107 7904 ± 15.9 –

VEP 1000G Phase 1 1092 3.9 × 107 18.67 ± 0.58 290×

1000G Phase 3 2504 8.5 × 107 10.00 ± 0.00 790×

ANNOVAR 1000G Phase 3 chr1 2504 1 × 106 74.67 ± 0.21 109×

1000G Phase 3 chr1 2504 2 × 106 75.32 ± 0.06 113×

1000G Phase 3 chr1 2504 4 × 106 75.15 ± 0.39 113×

1000G Phase 3 chr1 2504 6.5 × 106 NA NA

1000G Phase 1 1092 3.9 × 107 NA NA

1000G Phase 3 2504 8.5 × 107 NA NA

Bystro, VEP, and ANNOVAR were similarly configured with eight threads on Amazon i3.2xlarge servers. “Dataset” refers to the VCF file used. “Variants/s” is the
average of three trials. VEP performance was recorded after 2 × 105 sites in consideration of time. In runs of 1 × 106 or more annotated sites, VEP performance did
not deviate from the 2 × 105 value. ANNOVAR could not complete the full Phase 1, Phase 3, or Phase 3 chromosome 1 datasets due to memory limitations. Thus,
ANNOVAR was compared to Bystro on subsets of 1000 Genomes Phase 3 chromosome 1. Bystro run times included time taken to compress outputs. 1000
Genomes Phase 1 performance reflects IO limitations

Kotlar et al. Genome Biology  (2018) 19:14 Page 4 of 11
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Bystro’s search engine was unique in its natural-
language capabilities and no other tested online program
could handle the full Phase 3 dataset or subsets as large
as 6 × 106 variants (Fig. 2). First, we used Bystro’s search
engine to find all alleles in exonic regions by entering
the term “exonic” (933,343 alleles, 0.030 ± 0.030 s,
Table 2). The search engine calculated a transition to
transversion ratio of 2.96 for the query, consistent with
previously observed values in coding regions. To refine
results to rare, predicted deleterious alleles, we queried
“cadd > 20 maf < .001 pathogenic expert review mis-
sense” (65 alleles, 0.029 ± 0.009 s, Table 2). This search
query could be written using partial words (“pathogen”),
possessive nouns (“expert’s”), different tenses (“reviews”),
and synonyms (“nonsynonymous”) without changing the
results.
To test the search engine’s ability to accurately match

variants from full-text disease queries, we first searched
“early-onset breast cancer,” returning the expected alleles
in BRCA1 and BRCA2 (4335 variants, 0.037 ± 0.020 s,
Table 2). Notably, the queried phrase “early-onset breast
cancer” did not exist within the annotation and instead
matched closely related RefSeq transcript names, such as
“Homo sapiens breast cancer 2, early onset (BRCA2),
mRNA.” We next explored Bystro’s ability to handle syn-
onyms and acronyms. To test the hypothesis that Bystro
could interpret common ontologies, we queried “patho-
genic nonsense E.D.S,” where “nonsense” is a common
synonym for “stopGain” (a term annotated by the Bystro
annotation engine), and “E.D.S” is an acronym for
“Ehlers-Danlos Syndrome.” Bystro successfully parsed
this query, returning a single PLOD1 variant found in
1000 Genomes Phase 3 that introduces an early stop
codon in all three of its overlapping transcripts and
which has been reported in Clinvar as “pathogenic” for
Table 2 Online comparison of Bystro and recent programs in filterin

Group Search query

1 Exonic

2 (a) cadd > 20 maf < .001 pathogenic expert review missense

2 (b) cadd > 20 maf < .001 pathogenic expert’s review non-syn

2 (c) cadd > 20 maf < .001 pathogen expert-reviewed nonsyno

3 (a) Early onset breast cancer

3 (b) Early-onset breast cancer

3 (c) Early onset breast cancers

4 (a) Pathogenic nonsense Ehlers-Danlos

4 (b) Pathogenic nonsense E.D.S

4 (c) Pathogenic stopgain eds

The full 1000 Genomes Phase 3 VCF file (853 GB, 8.49 × 107 variants, 2504 samples)
natural-language search engine. VEP, GEMINI, and wANNOVAR (not shown) were al
engine uses a natural language parser that allows for unstructured queries: queries
returned, as would be expected for a search engine that could handle normal langu
calculated for each query by the search engine. The transition to transversion ratio
regions, suggesting that the search engine accurately identified exonic (coding) var
“Ehlers-Danlos syndrome, type 4” (one variant, 0.038 s ±
0.027 s, Table 2).
Since no other tested program could load or filter the

1000 Genomes Phase 3 VCF file online, we next com-
pared Bystro to GEMINI (running on the Galaxy plat-
form) on subsets of 1000 Genomes Phase 3. In contrast
with GEMINI’s structured SQL queries, Bystro enabled
shorter and more flexible searches. For instance, to re-
turn all missense, rare variants with CADD Phred
scores > 15, GEMINI required a 162-character SQL
query, while Bystro needed only 36 characters. Bystro
also demonstrated synonym support, returning identical
results for “missense” and “nonsynonymous” queries.
Critically, Bystro’s search engine enabled real-time (sub-
second) filtering, performing approximately four orders
of magnitude faster than GEMINI on Galaxy while
searching and returning similar volumes of data
(Table 3).
To test the accuracy of Bystro’s search engine relative

to the underlying annotation, we first compared Bystro’s
natural-language queries with Bystro’s “Filters,” which
provide a complimentary, exact-match filtering option.
All results were identical between the two methods
(Additional file 1: Table S5). To control for the possibil-
ity that Bystro’s “Filters” were biased, we created separ-
ate Perl filtering scripts that searched for exact matches
within the underlying tab-delimited text annotation.
Again, results were completely concordant (Additional
file 1: Table S5). Finally, to control for the possibility that
both Bystro’s “Filters” and the Perl scripts were biased
due to the programmer, we compared Bystro’s natural-
language queries with Excel filters on a smaller dataset
that could be manually examined. The queries were
found completely specific in this comparison as well
(Additional file 1: Table S6; Additional file 7).
g 8.49 × 107 variants from 1000 Genomes

Time (s) Variants Tr:Tv

0.030 ± 0.030 993,343 2.96

0.029 ± 0.009 65 1.71

onymous 0.036 ± 0.019 65 1.71

nymous 0.044 ± 0.025 65 1.71

0.046 ± 0.029 4335 2.51

0.037 ± 0.020 4335 2.51

0.033 ± 0.015 4335 2.51

0.038 ± 0.027 1 NA

0.078 ± 0.087 1 NA

0.040 ± 0.022 1 NA

was filtered in the publicly available Bystro web application using the Bystro
so tested, but were unable to annotate this dataset or filter it. Bystro’s search
in groups 2, 3, and 4 show phrasing variations that did not affect results
age variation. “Tr:Tv” is the transition to transversion ratio automatically
of 2.96 for the “exonic” query is close to the ~ 2.8–3.0 ratio expected in coding
iants



Table 3 Online comparison of Bystro and GEMINI/Galaxy in
filtering 1 × 106 variants

No. Program Query Time
(s)

Variants Ts/Tv

1 Bystro cadd > 15 alt:(a || c || t || g) 0.004
± 0

28,099 2.512

1 GEMINI SELECT * FROM variants JOIN
variant_impacts ON
variants.variant_id =
variant_impacts.variant_id
WHERE cadd_scaled > 15

442
± 87

22,063 NA

2 Bystro gnomad.exomes.af < .001
cadd > 15 missense

0.007
±
0.003

6840 3.083

2 GEMINI SELECT * FROM variants JOIN
variant_impacts ON
variants.variant_id =
variant_impacts.variant_id
WHERE cadd_scaled > 15 AND
aaf_exac_all < .001 AND
variant_impacts.impact
= “missense_variant”

77.6
± 18.6

5160 NA

3 Bystro gnomad.exomes.af < .001
cadd > 15 nonsynonymous

0.006
±
0.001

6840 3.083

3 GEMINI SELECT * FROM variants JOIN
variant_impacts ON
variants.variant_id =
variant_impacts.variant_id
WHERE cadd_scaled > 15 AND
aaf_exac_all < .001 AND
variant_impacts.impact
= “nonsynonymous_variant”

NA 0 NA

Bystro was compared to the latest hosted version of GEMINI (v0.8.1, on the
Galaxy platform) in filtering the 1 × 106 variant subset of 1000 Genomes Phase
3, which was the largest tested file that GEMINI/Galaxy could process. GEMINI
requires structured SQL queries, while Bystro allows for shorter, unstructured
search. In query 1, Bystro searched for CADD scores only within
single-nucleotide polymorphisms (using alt:(a || c || t || g) or equivalently the
regex query alt:/[actg]/), to normalize results with GEMINI, which provides no
CADD data for insertions and deletions. In queries 2 and 3, Bystro’s search
engine returned identical results for the synonymous terms “missense” and
“nonsynonymous,” despite annotating such sites only as “nonsynonymous.” In
contrast, GEMINI required the specific term “missense_variant.” GEMINI/Galaxy and
Bystro returned different results because the latest version of GEMINI on Galaxy
(0.8.1) uses outdated annotation sources. Comparisons between Bystro and GEMINI/
Galaxy are further limited as GEMINI does not provide a natural-language parser,
annotation field filters, an interactive result browser, per-query statistics, or the
ability to filter saved search results. Notably, Bystro also performed substantially
faster, returning all results in < 1 s

Kotlar et al. Genome Biology  (2018) 19:14 Page 6 of 11
Discussion
The Bystro annotation and filtering capabilities are pri-
marily exposed through a public web application
(https://bystro.io/) and are also available for custom, off-
line installation. To ensure data safety, Bystro follows in-
dustry recommendations for password management, in-
transit data security, and at-rest data security. Input and
output files are encrypted at rest on Amazon EFS file
systems, using AES 256-bit encryption, and every re-
quest for annotation or search data is authenticated by
the web server using short-lived identity tokens. To fur-
ther protect user data, annotation and search services
are not directly open to the Internet, but require routing
and authentication through the web server. Furthermore,
all web traffic is encrypted using TLS (HTTPS), and
password hashing follows the National Institute of Stan-
dards and Technology (NIST) recommended PBKDF2-
HMAC-SHA512 strategy.
Creating an annotation online is as simple as selecting

the genome and assembly used to make the VCF [10] or
SNP [11] format files and uploading these files from a
computer or Amazon S3 bucket, which can be easily
linked to the web application. Annotation occurs in the
cloud, where distributed instances of the Bystro annota-
tion engine process the data and send the results back to
the web application for storage and display (Fig. 1).
The Bystro annotation engine is open source and sup-

ports diverse model organisms including Homo sapiens
(hg19, hg38), M. musculus (mm9, mm10), R. macaque
(rheMac8), R. norvegicus (rn6), D. melanogaster (dm6),
C. elegans (ce11), and S. cerevisiae (sacCer3). To anno-
tate, it rapidly matches alleles from users’ submitted files
to descriptions from RefSeq [12], dbSNP [13], PhyloP
[14], PhastCons [14], Combined Annotation-Dependent
Depletion (CADD), Clinvar [15], and gnomAD [16]. For
custom installations, Bystro supports Ensembl, RefSeq,
or UCSC Known Genes transcript sets and can be flex-
ibly configured include annotations from any files in
genePredExt, wigFix, BED, or VCF formats.
The annotation engine is aware of alternate splicing

and annotates all variants relative to each alternate tran-
script. When provided sample information, Bystro also
annotates all variants relative to all sample genotypes. In
such cases, at every site it labels each sample as homozy-
gous, heterozygous, or missing, and also calculates the
heterozygosity, homozogosity, missingness, and sample
minor allele frequency. Furthermore, in contrast with
current programs that require substantial VCF file pre-
processing, Bystro automatically removes low-quality
sites, normalizes variant representations, splits multi-
allelic variants, and checks the reference allele against
the genome assembly. Critically, Bystro’s algorithm guar-
antees parsimonious (left-shifted) variant representa-
tions, even for multi-allelic sites containing complex
insertions and deletions.
The Bystro annotation engine is designed to scale to

any size experiment, offering the speed of distributed
computing solutions such as Hail [17], but with less
complexity. Current well-performing annotators—such
as ANNOVAR and SeqAnt—load significant amounts of
data into memory to improve performance. However,
when these programs use multiple threads to take ad-
vantage of multicore CPUs they may exceed available
memory (in some cases > 60 GB), resulting in a sharp
drop in performance or system crash. To solve this,
Bystro annotates directly from an efficient memory-
mapped database (LMDB), using only a few megabytes

https://bystro.io/
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per thread, and because memory-mapped databases nat-
urally lend themselves to the caching frequently accessed
data, Bystro achieves most of the benefits of in-memory
solutions, but without the per-thread penalties. This ap-
proach allows Bystro to take excellent advantage of mul-
ticore CPUs, while also enabling it to perform well on
inexpensive, low-memory machines. Critically, when
multiple files are submitted to it simultaneously, the
Bystro annotation engine can automatically distribute
the work throughout the cloud (or a user-configured
computer cluster), gaining additional performance by
processing the files on multiple computers (Fig. 1). Fur-
thermore, in reflection of the large sizes of both input
sequencing experiments and the corresponding annota-
tion outputs—on the order of terabytes for modern
whole-genome experiments—Bystro accepts compressed
input files and directly writes compressed outputs. This
ability to directly write compressed annotations with no
uncompressed intermediate is critical given the rapid
growth in sequencing experiment size.
When the web application receives a completed annota-

tion, it saves the data and creates a permanent results
page. Detailed information about the annotation, such as
the database version used for the annotation, is stored in a
log file that the user may download. Users may then ex-
plore several quality control metrics, including the transi-
tion to transversion ratio on a per-sample or per-
experiment basis. They may also download the results as
tab-delimited text to their computer or upload them to
any connected Amazon S3 bucket. In parallel with the
completion of an annotation, the Bystro search engine
automatically begins indexing the results. Once finished, a
search bar is revealed in the results page, allowing users to
filter their variants using the search engine (Fig. 1).
Unlike existing filtering solutions, Bystro’s Elasticsearch-

based natural-language search engine accepts unstruc-
tured, “full-text” queries and relies on a sophisticated lan-
guage parser to match annotated variants. This allows it
to offer the flexibility of modern search engines like Goo-
gle and Bing, while remaining specific enough for the pre-
cise identification of alleles relevant to the research
question. The Bystro search engine matches terms regard-
less of capitalization, punctuation, or word tense and ac-
curately finds partial terms within long annotation values.
Like the annotation engine, the search engine is also ex-
ceptionally fast, automatically distributing indexed anno-
tations throughout the cloud, enabling users to sift
through millions of variants from large WGS experiments
in milliseconds.
In order to provide flexible but specific matches with-

out relying on structured SQL queries, the search engine
identifies the data type of every value in the annotation.
Text undergoes stemming and lemmatization, which re-
duces the influence of grammatical variation, and is then
tokenized into left-edge n-grams, which allows for flex-
ible matching. Numerical data are stored in the smallest
integer or float format that can accommodate it, allow-
ing for rapid and accurate range queries. For complex
queries, the search engine supports Boolean operators
(AND, OR), regular expressions, and Levenshtein-edit
distance fuzzy matches. It also has a built-in dictionary
of synonyms, i.e. equating “stopgain” and “nonsense.”
In some cases, text will match accurately, but not spe-

cifically; this most often happens with short, generic
terms. For instance, querying “intergenic” alone may
match the word “intergenic” in “long intergenic non-
protein coding RNA” in refSeq’s description field, as well
as “intergenic” in the refSeq’s siteType field. To help im-
prove accuracy in such cases, Bystro provides three,
closely related features. (1) “Aggregations” allows users
to see the top 200 values for any text field or equiva-
lently the min, max, mean, standard deviation (and other
similar statistics) for any numerical field. This allows
users to quickly and precisely understand the compos-
ition of search results, as well as to generate summary
statistics. (2) “Filters” allows users to refine queries, by
forcing the inclusion or exclusion of any values found in
any field. For instance, rather than query “intergenic,” it
may be easier and more precise to simply click on the
“refSeq.siteType” filter, and select the “intergenic” value.
Any number of “Filters” may be combined with any
natural-language query, containing up to 1 million
words. (3) Bystro allows field names within a natural-
language query for added specificity. For example, rather
than searching for “intergenic,” the user could type
“refSeq.siteType:intergenic,” to indicate that they wished
to match “intergenic” specifically in the refSeq.siteType
annotation field.
Bystro’s search engine also includes several features to

increase flexibility beyond the contents of the annota-
tion. (1) “Custom Synonyms” allows users to define their
own terms and annotations. Among other uses, this
makes it possible to label trios, which can be used to
easily identify de novo variants and test allele transmis-
sion models. (2) “Search Tools” are small programs, ac-
cessible by a single mouse click, that dynamically modify
any query to generate complex result summaries. Some
of their functions include identifying compound hetero-
zygotes. (3) “Statistical Filters” dynamically perform stat-
istical tests on the variants returned from any query. For
instance, the “HWE” filter allows users to exclude vari-
ants out of Hardy-Weinberg Equilibrium. This is an
often-needed quality control step.
Most importantly, there is no limit to the number of

query terms and “Filters” that can be combined and
users can save and download the results of any search
query, which enables recursive filtering on a single data-
set. The saved results are indexed for search and
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hyperlinked to the annotations that they were generated
from, forming permanent records that can be used to re-
produce complex analyses. This multi-step filtering pro-
vides functionality similar to custom command-line
filtering script pipelines, but is significantly faster, less
error prone, and accessible to researchers without pro-
gramming experience.
While Bystro’s annotation and filtering performance is

currently unparalleled by any other approach, other soft-
ware (such as Hail [17]) could achieve similar perform-
ance by implementing distributed computing algorithms
like MapReduce [18] and spreading annotation work-
loads across many servers. Bystro demonstrates that
these workarounds are unnecessary to achieve reason-
able run times for large datasets online or offline. Add-
itionally, while Bystro’s natural-language search engine
significantly reduces the difficulty of variant filtering, it
does not handle language idiosyncrasies as robustly as
more mature solutions like Google’s and may return un-
expected results when search queries are very short and
non-specific, since such queries may have multiple cor-
rect matches. This is easily avoided by using longer
phrases, by using “Custom Synonyms” to define more
specific terms, by examining the composition of results
using “Aggregations,” or by applying “Filters” to precisely
filter results. Such considerations and options are well-
documented in Bystro’s online user guide (https://
bystro.io/help).
Conclusions
To date, identifying alleles of interest in sequencing ex-
periments has been time-consuming and technically
challenging, especially for WGS experiments. Bystro in-
creases performance by orders of magnitude and im-
proves ease of use through three key innovations: (1) a
low-memory, high-performance, multi-threaded variant
annotator that automatically distributes work in cloud or
clustered environments; (2) an online architecture that
handles significantly larger sequencing experiments than
previous solutions; and (3) the first publicly available,
general-purpose, natural-language search engine for
variant filtering in individual research experiments.
Bystro annotates large experiments in minutes and its
search engine is capable of matching variants within
whole-genome datasets in milliseconds, enabling real-
time data analysis. Bystro’s features enable practically
any researcher—regardless of their computational
experience—to analyze large sequencing experiments
(e.g. thousands of whole-genome samples) within less
than one day and small ones (e.g. hundreds of whole-
exome samples) in seconds. As genome sequencing con-
tinues the march toward ever-larger datasets and be-
comes more frequently used in diverse research settings,
Bystro’s combination of performance and ease of use will
prove invaluable for reproducible, rapid research.

Methods
Accessing Bystro
For most users, we recommend the Bystro web applica-
tion (https://bystro.io), as it gives full functionality, sup-
ports arbitrarily large datasets, and provides a
convenient interface to the natural-language search en-
gine. Users with computational experience can download
the Bystro open-source package (https://github.com/
akotlar/bystro). Using the provided installation script or
Amazon AMI image, Bystro can be easily deployed on
an individual computer, computational cluster, or any
Amazon Web Services (AWS) EC2 instance. Bystro has
very low memory and CPU requirements, but benefits
from fast SSD drives. As such we recommend at AWS
instances with provisioned I/O EBS drives, RAID 0 non-
provisioned EBS, or i2/i3-class EC2 instances.
Detailed documentation on Bystro’s use, as well as ex-

ample search queries can be found at https://bystro.io/help.

Bystro comparisons with ANNOVAR, wANNOVAR, VEP,
and GEMINI/Galaxy
Bystro database
Bystro databases were created using the open-source
package (https://github.com/akotlar/bystro). The hg19
and hg38 databases contains RefSeq, dbSNP, PhyloP,
PhastCons, Combined Annotation-Dependent Depletion
(CADD), and Clinvar fields, as well as custom annota-
tions (Additional file 8). A complete listing of the ori-
ginal source data is enumerated in the Git repository
(https://github.com/akotlar/bystro/tree/master/config).
Other organism databases contain a subset of these
sources, based on availability. Pre-built, up-to-date ver-
sions of these databases are publicly available (https://
github.com/akotlar/bystro).

WGS datasets
Phase 1 and Phase 3 autosome and chromosome X VCF
files were downloaded from http://www.international-
genome.org/data/. Phase 1 files were concatenated using
bcftools [19] “concat” function. Phase 3 files were
concatenated using a custom Perl script (https://github.-
com/wingolab-org/GenPro/blob/master/bin/mergeSnp-
Files). The Phase 1 VCF file was 895 GB (139 GB
compressed) and the Phase 3 data were 853 GB
(15.6 GB compressed). The larger size of Phase 1 can be
attributed to the inclusion of extra genotype information
(the genotype likelihood). The full Phase 3 chromosome
1 VCF file (6.4 × 106 variants, 1.2 GB compressed) and
5 × 104–4 × 106 variant allele subsets (8–655 MB com-
pressed) were also tested. All Phase 1 and Phase 3 data

https://bystro.io/help
https://bystro.io/help
https://bystro.io/
https://github.com/akotlar/bystro
https://github.com/akotlar/bystro
https://bystro.io/help
https://github.com/akotlar/bystro
https://github.com/akotlar/bystro/tree/master/config
https://github.com/akotlar/bystro
https://github.com/akotlar/bystro
http://www.internationalgenome.org/data/
http://www.internationalgenome.org/data/
https://github.com/wingolab-org/GenPro/blob/master/bin/mergeSnpFiles
https://github.com/wingolab-org/GenPro/blob/master/bin/mergeSnpFiles
https://github.com/wingolab-org/GenPro/blob/master/bin/mergeSnpFiles
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correspond to the GRCh37/hg19 human genome assem-
bly. All data used are available (Additional file 9).

Online annotation comparisons
For online comparisons, the latest online versions of-
fered at time of writing were used. Bystro beta10 (Sep-
tember 2017), wANNOVAR (April 2017), VEP (April
2017), and GEMINI (Galaxy version 0.8.1, released Feb-
ruary 2016, latest as of October 2017) were tested online
with the full 1000 Genomes Phase 1 and Phase 3 VCF
files, unless they were unable to upload the files due to
file size restrictions (Additional file 2). Bystro was found
to be the only program capable of uploading and pro-
cessing the full Phase 1 and Phase 3 datasets or subsets
of Phase 3 larger than 1 × 106 variants.
To conduct Bystro online annotations, a new user was

registered within the public Bystro web application
(https://bystro.io/). Phase 1 and Phase 3 files were sub-
mitted in triplicate, one replicate at a time, using the de-
fault database configuration (Additional file 2). Indexing
was automatically performed by Bystro upon completion
of each annotation. The Phase 3 annotation is publicly
available to be tested (https://bystro.io/public).
The public Bystro server was configured on an Ama-

zon i3.2xlarge EC2 instance. The server supported eight
simultaneous users. Throughout the duration of each ex-
periment, multiple users had concurrent access to this
server, increasing experiment variance, and limiting ob-
served performance.
Online Variant Effect Predictor (VEP) submissions

were done using the VEP web application (http://
www.ensembl.org/info/docs/tools/vep/index.html). VEP
has a 50-MB (compressed) file size limit. Due to gateway
timeout issues and this file size limit, datasets > 5 × 104

variants failed to complete (Additional file 2).
Online ANNOVAR submissions were handled using

the wANNOVAR web application. wANNOVAR could
not accept the smallest tested file, the 5 × 104 variant
subset of Phase 3 chromosome 1 (8 MB compressed)
due to file size restrictions (Additional file 2).
Galaxy submission was made using the public Galaxy

servers. Galaxy provides ANNOVAR, but its version of
this software failed to complete any annotations, with
the error “unknown option: vcfinput.” Annotations on
Galaxy were therefore performed using GEMINI, which
provides annotations similar to Bystro’s. Galaxy has a
total storage allocation of 250 GB (after requisite decom-
pression), and both Phase 1 and Phase 3 exceed this size.
Galaxy was therefore tested with the full 6.4 × 106 vari-
ant Phase 3 chromosome 1 VCF file. Galaxy’s FTP server
was able to upload the file; however, Galaxy was unable
to load the data into GEMINI, terminating after running
for 36 h, with the message “This job was terminated be-
cause it ran longer than the maximum allowed job run
time” (Additional file 2). Subsets of Phase 3 chromo-
some 1 containing 5 × 104, 3 × 105, and 1 × 106 variants
were therefore tested. Three repetitions of the 5 × 104

variant submission were made. In consideration of the
duration of execution, two repetitions were made of the
3 × 105 and 1 × 106 variants submissions. Since Galaxy
does not record completion time, QuickTime was used
to record each submission.
Bystro, VEP, and GEMINI online annotation times in-

cluded the time to generate both a user-readable tab-
delimited text annotation and a searchable database.
GEMINI required an extra step to do so, using the query
SELECT * FROM variants JOIN variant_impacts ON
variants.name = variant_impacts.name.

Variant filtering comparisons
After Bystro completed each annotation, it automatically
indexed the results for search. The time taken to index
this data was recorded. Once this was completed, the
Bystro web application’s search bar was used to filter the
annotated sequencing experiments. The query time, as
well as the number of results and the transition to trans-
version ratio for each query, were automatically gener-
ated by the search engine and recorded. Query time did
not take into account network latency between the
search server and the web server. All queries were run
six times and averaged. The public search engine, which
processed all queries, was hosted on a single Amazon
i3.2xlarge EC2 instance.
Since VEP, wANNOVAR, and Galaxy/GEMINI could

not complete Phase 1 or Phase 3 annotations, variant fil-
tering on these datasets could not be attempted. For
small experiments, VEP and GEMINI can filter based on
exact matches, while wANNOVAR provides only pre-
configured phenotype and disease model filters. VEP
could annotate and filter at most only 5 × 104 variants
and was therefore excluded from query comparisons.
Galaxy/GEMINI was tested with subsets of 1000 Ge-

nomes Phase 3 of 1 × 106 variants (the largest tested
dataset that Galaxy could handle), with the described
settings (Additional file 2). In all GEMINI queries, a
JOIN operation on the variant_impacts table was used
to return all variant consequences, and all affected tran-
scripts, as Bystro does by default. Similarly, Bystro’s
CADD query was restricted to single nucleotide poly-
morphisms (using alt:(A || C || T || G)), as its behavior
diverges from GEMINI’s at insertions and deletions:
Bystro returns all possible CADD Phred scores at such
sites, whereas GEMINI returns a missing value. Bystro
returns all values to give users added flexibility: its
search engine can accurately search within arrays (lists)
of data. Furthermore, as GEMINI on Galaxy only pro-
vided the Ensembl transcript set, for all query compari-
sons with GEMINI, Bystro was configured to use

https://bystro.io/
https://bystro.io/public
http://www.ensembl.org/info/docs/tools/vep/index.html
http://www.ensembl.org/info/docs/tools/vep/index.html
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Ensembl 90, which was the latest version available at
time of revision. It is important to note that the latest
version of GEMINI on Galaxy (0.8.1) dates to February
2016 and its databases are several years older: CADD
(v1.0, 2014), Ensembl (v75, February 2014), ExAc (v0.3,
October 2014), whereas Bystro uses up-to-date re-
sources. As a result of searching more up-to-date
Ensembl (v90), population allele frequency (gnomAD
2.0.1, the successor to ExAc 1.0), and CADD (v1.3) data,
Bystro’s queries returned more data.
Since Galaxy does not report run times, QuickTime

software was used to record each run, and the query
time was calculated as the difference between the time
the search submission entered the Galaxy queue, to the
time that it was marked completed. Galaxy/GEMINI
queries were each run more than six times. Because run
times varied by more than 17×, the fastest consecutive
six runs were averaged to minimize the influence of Gal-
axy server load.
All comparisons with the Bystro search engine are lim-

ited, because no other existing method provides natural-
language parsing and either rely on built-in scripts or re-
quire the user to learn a specific language (SQL).

Filtering accuracy comparison
The latest version of Bystro (beta 10, September 2017)
was used. For the 1000 Genomes query accuracy checks,
the same underlying Ensembl-based Bystro annotation
and search index was used as in the Bystro/GEMINI fil-
tering comparison. Direct comparison to GEMINI were
not made, in reflection of the age of the latest GEMINI
Galaxy version (v0.8.1, with database sources dating to
2014). All Bystro queries from that comparison were
saved, downloaded, and compared with Bystro “Filters,”
which are exact-match alternatives to Bystro’s natural-
language queries, as well as custom Perl filtering scripts
that also require exact matches. A second query accur-
acy step was conducted, on the Yen et al. 2017 [9] VCF
file. This file was annotated using the standard RefSeq
Bystro database. The same queries used in the Bystro/
GEMINI comparison were re-created on this smaller an-
notation, saved, downloaded, and compared with Bystro
“Filters” and Excel filters. Excel filters were created in
Excel 2016 (Mac) and required exact matches. All Excel-
filtered and all Bystro query results were manually
inspected for concordance (Additional file 7). All scripts
generated and used in the comparison may be found at
https://github.com/akotlar/bystro-paper.

Offline annotation comparisons
To generate offline performance data, the latest versions
of each program available at time of writing were used.
Bystro beta10 (September 2017), VEP 86 (March 2017),
and ANNOVAR (March 2017) were each run on
separate, dedicated Amazon i3.2xlarge EC2 instances
(Additional file 3). All programs’ databases were updated
to the latest versions available as of March 2017 (VEP,
ANNOVAR) or September 2017 (Bystro). All programs
were configured to use the RefSeq transcript set.
Each instance contained four CPU cores (eight

threads), 60 GB RAM, and a 1920 GB NVMe SSD. Each
instance was identically configured. All programs were
configured to as closely match Bystro’s output as pos-
sible, although Bystro output more total annotation
fields (Additional file 3). Each dataset tested was run
three times. The annotation time for each run was re-
corded and averaged to generate the mean variant per
second (variant/s) performance. Submissions were re-
corded using the terminal recorder asciinema; both
memory and CPU usage were recorded using the “free”
and “top” commands set to a 30-s timeout.
VEP was configured to use eight threads and to run in

“offline” mode to maximize performance, as recom-
mended [3]. In each of three recorded trials, VEP was
set to annotate from RefSeq and CADD and to check
the reference assembly (Additional file 3). Based on
VEP’s observed performance, adding PhastCons annota-
tions was not attempted. VEP’s performance was mea-
sured by reading the program’s log, which records
variant/second performance every 5 × 103 annotated
sites. In consideration of time, VEP was stopped after at
least 2 × 105 variants were completed and the 2 × 105

variants performance was recorded.
ANNOVAR was configured to annotate RefSeq, CADD,

PhastCons 100way, PhyloP 100way, Clinvar, avSNP, and
ExAc version 0.3 (Additional file 3). ANNOVAR’s avSNP
database was used in place of dbSNP, as recommended.
We configured ANNOVAR to report allele frequencies
from ExAc, because it does not do so from either avSNP
or dbSNP databases. When annotating Phase 1, Phase 3,
or Phase 3 chromosome 1, ANNOVAR crashed by ex-
ceeding the available 60 GB of memory. It was therefore
tested with the subsets of Phase 3 chromosome 1 that
contained 1 × 106–4 × 106 variants.
Bystro was configured to annotate descriptions from

RefSeq, dbSNP 147, CADD, PhastCons 100way, PhyloP
100way, Clinvar, and to check the reference for each
submitted genomic position (Additional file 3).

Annotation accuracy comparison
The latest version of Bystro (beta 10, September 2017),
ANNOVAR (July 2017), and VEP (version 90) at the
time of revision submission were used. All programs’ da-
tabases were updated to the latest version available.
RefSeq-based databases were downloaded using each
program’s database builder. All programs were com-
pared on the Yen et al. 2017 VCF file [9] for position,
variant call, and variant effects, based on each programs’

https://github.com/akotlar/bystro-paper
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respective RefSeq database. The Yen et al. VCF file file-
format header line was modified to “VCFv4.1” to allow
programs to recognize it as a valid VCF file. This modi-
fied file is available at https://github.com/akotlar/bystro-
paper. For the SnpEff comparison, annotations were
adapted from Additional file 1 of Yen et al. 2017 [9].
ANNOVAR was additionally configured with gnomAD
genomes, gnomAD exomes, and CADD 1.3, and com-
pared to Bystro on the corresponding values.

Additional files

Additional file 1: This file contains: (1) a feature comparison of tested
programs; (2) investigation of annotation concordance between tested
programs; (3) investigation of Bystro query accuracy. (DOCX 1354 kb)

Additional file 2: :Description of online comparison settings. (XLSX 596 kb)

Additional file 3: Description of online comparison settings. (XLSX 34 kb)

Additional file 4: Bystro vs ANNOVAR annotation comparison details.
(XLSX 85 kb)

Additional file 5: :Bystro vs VEP annotation comparison details. (XLSX 684 kb)

Additional file 6: Bystro vs SnpEff annotation comparison details. (XLSX 62 kb)

Additional file 7: Bystro queries vs Excel filters concordance details.
(XLSX 162 kb)

Additional file 8: Species supported at time of writing and their
configurations. (XLSX 40 kb)

Additional file 9: URLs of 1000 Genomes Phase 1, 1000 Genomes Phase
3, and Yen et al. 2017 VCF files used. (XLSX 48 kb)
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