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Strategies for combating
plant salinity stress: the
potential of plant growth-
promoting microorganisms
Biswa R. Acharya1,2, Satwinder Pal Gill3, Amita Kaundal3*

and Devinder Sandhu1*

1US Salinity Laboratory, USDA-ARS, Riverside, CA, United States, 2College of Natural and Agricultural
Sciences, University of California Riverside, Riverside, CA, United States, 3Plants, Soils, and Climate,
College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
Global climate change and the decreasing availability of high-quality water lead

to an increase in the salinization of agricultural lands. This rising salinity

represents a significant abiotic stressor that detrimentally influences plant

physiology and gene expression. Consequently, critical processes such as

seed germination, growth, development, and yield are adversely affected.

Salinity severely impacts crop yields, given that many crop plants are sensitive

to salt stress. Plant growth-promoting microorganisms (PGPMs) in the

rhizosphere or the rhizoplane of plants are considered the “second genome”

of plants as they contribute significantly to improving the plant growth and

fitness of plants under normal conditions and when plants are under stress such

as salinity. PGPMs are crucial in assisting plants to navigate the harsh conditions

imposed by salt stress. By enhancing water and nutrient absorption, which is

often hampered by high salinity, these microorganisms significantly improve

plant resilience. They bolster the plant’s defenses by increasing the production

of osmoprotectants and antioxidants, mitigating salt-induced damage.

Furthermore, PGPMs supply growth-promoting hormones like auxins and

gibberellins and reduce levels of the stress hormone ethylene, fostering

healthier plant growth. Importantly, they activate genes responsible for

maintaining ion balance, a vital aspect of plant survival in saline

environments. This review underscores the multifaceted roles of PGPMs in

supporting plant life under salt stress, highlighting their value for agriculture in

salt-affected areas and their potential impact on global food security.
KEYWORDS

climate change, glycophyte, ion toxicity, osmotic stress, PGPMs, salinity tolerance,
salt stress
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1 Introduction

Climate change poses a formidable challenge to global

agricultural productivity, with agriculture being particularly

vulnerable to shifts in weather patterns and climate conditions. A

persistent increase in the average global temperatures has been

recorded in recent years, posing significant challenges to

agricultural productivity, food security, and environmental

sustainability (Siegel, 2021). Climate change not only is limited

to increasing average global temperature but also includes erratic

rainfall patterns, heat waves, droughts, and flash floods, all of which

adversely affect soil and water resources, agricultural workers, and

rural communities (https://www.epa.gov/climateimpacts/climate

-change-impacts-agriculture-and-food-supply). Regions that rely

heavily on agriculture, such as South Asian countries, are

particularly impacted by these climate-related challenges

(Rhaman et al., 2022). The global population is projected to

exceed 10 billion within the next 50 years (Glick, 2014),

significantly increasing the demand for food production and

placing additional strain on existing agricultural systems

(Alexandratos, 2005; Cheeseman et al, 2016). This surge in

population presents the dual challenges of boosting agricultural

productivity amidst increasingly worsening environmental

conditions. Among these challenges, drought and salt stress are

the two major abiotic stressors that significantly reduce crop yields

and threaten food security and livelihoods (Cheeseman et al, 2016).

Innovative strategies should be developed to address the food

security crisis and meet the demand of the projected growing

population in the climate change-induced environmental stresses

(Wang et al., 2020). The approaches being used currently, including

genetically modified organisms, have shown promise in mitigating

the impact of drought and salinity stress (Askari and Pepoyan, 2012;

Liang, 2016; Raza et al., 2023). However, regulatory constraints and

environmental concerns are hurdles to widespread adoption and

spread. Other candidate approaches include agronomic

management practices (Majeed and Siyyar, 2020) and soil

amendments (Bello et al., 2021). Organic amendments like

biochar, bio-fertilizer, vermicompost, and vermiwash can improve

the salinity tolerance of agricultural plants, leading to increased

yields (Hoque et al., 2022). Additionally, seed priming and

exogenous application of growth regulators can alleviate salt

stress impacts in plants at various stages of development from
Abbreviations: ABA, Abscisic acid; ACC, 1-aminocyclopropane-1-carboxylate;

APX, ascorbate peroxidase; ASC, ascorbate; BRs, brassinosteroids; CAT, catalase;

CKs, cytokinins; DHAR, dehydroascorbate reductase; ECe, electrical conductivity

of soil saturation extract; EPS, extracellular polymeric substances; ET, ethylene;

GAs, gibberellins; GIPC, glycosyl inositol phosphorylceramide; GMO, genetically

modified organism; GR, glutathione reductase; GSH, glutathione; HKT1, high-

affinity K+ transporter 1; IAA, indole-3-acetic acid; JA, jasmonic acid; KSB, K-

solubilizing bacteria; MDHAR, monodehydroascorbate dehydrogenase; MIP,

major intrinsic protein; MOCA1, mono cation-induced [Ca2+]i increase 1; NO,

nitric oxide; PGPM, plant growth-promoting microorganisms; PIP, plasma

membrane intrinsic protein; POX, peroxidase; Pro, proline; ROS, reactive

oxygen species; SA, salicylic acid; SLs, strigolactones; SOS, salt overly sensitive;

SOD, superoxide dismutase; TIP, tonoplast intrinsic protein.
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germination to maturity (Tania et al., 2022). However, these

approaches have limited effectiveness under harsh conditions, can

be expensive, may vary in efficacy with different crop species, and

may have environmental impacts.

Beneficial microorganisms colonize plants’ rhizospheres or inside

tissues, promoting growth, improving nutrient uptake, and conferring

tolerance to various abiotic stresses (Ganesh et al., 2022; Vocciante

et al., 2022). Unlike genetically modified organisms (GMOs), plant

growth-promoting microorganism (PGPM)-based interventions offer

a sustainable and environmentally friendly approach to improving

crop resilience without genetic modifications or adverse

environmental effects. This review highlights the significant

contributions of microorganisms to sustainable crop production

under challenging environmental conditions. By examining the

mechanisms underlying PGPM-mediated salinity tolerance and

their potential agricultural applications, we underscore the vital role

of these microorganisms in addressing future agricultural challenges.

We focus on PGPMs as a promising solution for overcoming the

limitations of existing strategies in mitigating salinity stress.

Harnessing the potential of PGPMs holds great promise for

addressing the complex challenges posed by climate change and

ensuring global food security amid increasing salinity stress. In this

era of unprecedented threats to agriculture, it is imperative to develop

innovative strategies to counteract these emerging challenges.
2 Salinity stress in plants and its
impact on crop production and
plant responses

Salinity, a major abiotic factor, severely affects the growth,

development, and yield of various plants at different stages of

their life (Khan et al., 2022). Soil salinization impacts agricultural

productivity around the globe (Hu et al., 2022). Over 800 million

hectares of irrigated land are impacted by soil salinity and are

anticipated to be aggravated by both current irrigation practices and

global climate change (Roy et al., 2014). The rising salinity in soils

and water resources is contributed by natural incidents and/or

human activities like irrigation water containing higher salts (Eswar

et al., 2021). Saline soil with high Na+ negatively impacts soil–water

and soil–air relationships, directly influencing plant growth and

productivity (Rengasamy and Olsson, 1991; Dexter, 2004).

Increasing salinity stress modifies soil texture, causing decreased

porosity, which causes reduced water uptake by plants (Lu and

Fricke, 2023). Salinity not only disrupts the soil’s physical structure

but also significantly hampers the overall growth of plants, affecting

shoots, roots, and reproductive organs. Salinity-induced

modification of morphological, biochemical, and physiological

processes in plants diminishes agricultural productivity. In

addition, fluctuation in water dynamics, transpiration, nutritional

equilibrium, stomatal conductance, and oxidative damage under

salt stress collectively decrease crop yield. Moreover, salt stress

hampers photosynthetic activity, impedes biomass accumulation,

and disrupts source–sink dynamics, exerting a detrimental

influence on yield-related variables and accelerating the
frontiersin.org
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senescence of essential organs (Khataar et al., 2018). Over time, the

impact of salinity on plant productivity escalates, leading to

economic losses and societal effects (Atta et al., 2023).

Plants can be categorized into two main groups based on their

adaptive evolution: halophytes (salt-withstanding) and glycophytes

(salt-sensitive) (Khan et al., 2022). The majority of crop plants

belong to the glycophyte group and are adversely affected by

elevated salt levels in the soil or irrigation water, impacting their

growth, development, and yields (Shrivastava and Kumar, 2015).

Salt-affected plants usually show dark green leaves, which are

heavier and more succulent than typical plants of the same

species (Amacher et al., 2000).

For instance, the impact of salinity on crop yields can be seen in

specific examples. Beans experience no yield loss at an electrical

conductivity of soil saturation extract (ECe) of 1.0 dS m
−1, but show a

25% yield loss with ECe = 2.3 dS m−1 and a 50% yield loss with

ECe = 3.6 dS m−1 (Amacher et al., 2000). Conversely, barley shows no

yield loss with ECe = 8 dS m−1, a 25% yield loss with ECe = 13 dS m−1,

and a 50% yield loss with ECe = 17 dS m−1 (Amacher et al., 2000).

It should also be noted that the salinity tolerance level of different

cultivars of a specific species to salinity may show variation in

responses and yields as observed in guar, alfalfa, and other crops

(Sandhu et al., 2017; Kaundal et al., 2021; Sandhu et al., 2021, Sandhu

et al, 2023).

Some stages of the plant growth are more susceptible to salinity

stress than others (Sandhu and Kaundal, 2018). Several studies have

illustrated that salinity stress leads to substantial yield losses in

major crops during their reproductive stages. For example, salinity

has been demonstrated to decrease plant height, the number of

spikelets, spike length, grain weight, and overall yield (including

both grain and straw) in wheat (Kalhoro et al., 2016). Additionally,

the impact of salinity on grain yield depends on the stages of wheat

development. For example, salinity diminishes grain yield by 39%,

24.3%, and 13.4% during anthesis, early booting, and mid-grain

filling, respectively (Ashraf and Ashraf, 2016).

High soil salinity causes ionic toxicity and disrupts osmotic

equilibrium in plants, causing plant nutrient imbalance and

osmotic stress (Shrivastava and Kumar, 2015). Salt stress not only

disrupts ionic homeostasis and enhances osmotic potential but also

hinders several processes, including stomatal development, stomatal

movement, and expansion of cells. In pea plants, it has been shown

that the accumulation of ions in the apoplast contributes to cellular

necrosis (Speer and Kaiser, 1991). Similarly, in rice, the salt

accumulation in the apoplast disturbs cellular water relations,

which leads to dehydration and subsequently causes wilting

(Flowers et al., 1991). Yield losses in crops in response to salinity

are primarily attributed to Na+ and Cl−. However, other ions also

impact yield losses in crops. Toxicity impact varies among various

ions and combinations of ions (Hawkins and Lewis, 1993; Sandhu

et al., 2020). When the salinity level is low, it is easier for cellular

machinery to transport salt ions into the vacuole to adjust to the flux

of ions across the plasma membrane into the cell (Blumwald et al.,

2000). In contrast, when the salinity level is high, the influx rates

become elevated, disrupting the cellular ion homeostasis. It

subsequently leads to the accumulation of cations like Na+,

sometimes Mg2+, and Ca2+, and anions like Cl−, PO4
3−, and SO4

2−
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in the cytosol, stroma, and matrix rather than in the vacuole. Sodium

ions impact plant development by not only delaying flowering but

also hindering photosynthesis (Kim et al., 2007; Van Zelm et al.,

2020). This impairment occurs through the inhibition of carbon-

fixing enzymes and interference with proton-motive force.

Furthermore, multiple studies have observed that the K+/Na+ ratio

correlates with grain dry matter in wheat and other crops (Poustini

and Siosemardeh, 2004; Kalhoro et al., 2016; El Sabagh et al., 2021).

Elevated levels of NaCl in the soil decrease water potential,

consequently limiting the plant’s access to water from the soil; this,

in turn, triggers osmotic stress in plants (Acosta-Motos et al., 2017).

Ions like Na+ and Cl− enter plants through the outer cells of the root

(Van Zelm et al., 2020). Subsequently, these ions are transported

from the xylem of roots to the shoots. The elevation of ions within

plant cells initiates an ionic imbalance, leading to immediate

osmotic stress, followed by ionic stress, subsequently ionic

toxicity, and the generation of reactive oxygen species (ROS)

(Munns and Tester, 2008). An increase in Na+ due to salinity

inhibits biosynthesis and activity of diverse metabolic enzymes,

prompts stomatal closure, and diminishes photosynthesis. In

response to salinity-induced osmotic stress, plants synthesize

various compatible osmoprotectants and solutes, including

mannitol, inositol, trehalose, polyamines, glycine, betaine, and

proline to mitigate the severity of the salinity stress (Munns and

Tester, 2008; Park et al., 2016; Van Zelm et al., 2020).

The intricate mechanisms through which plants perceive salts are

not thoroughly comprehended. Salinity stress in plants triggers various

signaling pathways, the combined effects of which confer salinity

tolerance (Acharya et al., 2021). In response to salinity, MOCA1

(mono cation induced [Ca2+]i increase 1), an extracellular salt

sensor, detects Na+ and a few other monovalent cations (Jiang et al.,

2019). MOCA1 synthesizes glycosyl inositol phosphorylceramide

(GIPC) sphingolipids in the plasma membrane. GIPCs, with the

ability to bind to monovalent cations like Na+, are implicated in the

depolarization of cell-surface potential. It, in turn, triggers the opening

of calcium-influx channels, leading to elevated intracellular Ca2+ levels.

The activation of the salt overly sensitive (SOS) pathway follows the

increase in intracellular Ca2+ (Zhu, 2002). Within this pathway, SOS3,

upon binding with Ca2+, interacts with SOS2 and stimulates its kinase

domain (Kaundal et al., 2022). Subsequently, SOS1 is phosphorylated

by activated SOS2, facilitating the transport of Na+ from the interior to

the exterior of the cell (Figure 1) (Quintero et al., 2011). The evidence

described above indicates that both calcium and SOS signaling

pathways are critical for plant’s salinity tolerance. In addition to SOS

pathway components (SOS1, SOS2, and SOS3), CIPK8, CBL 8, and

CBL10 contribute to Na homeostasis under high salt stress (Figure 1)

(Acharya et al., 2024).

ROS are important secondary messengers in response to diverse

stress signaling pathways, including salt stress (Ma et al., 2012). The

excessive generation of ROS in response to salinity leads to oxidative

stress, which, in turn, causes damage to proteins, membrane lipids, and

nucleic acids (Ma et al., 2012). To protect cellular components and

macromolecules from the detrimental effects of oxidative stress-

mediated damage, plants engage in the synthesis of both non-

enzymatic and enzymatic antioxidants. Plants synthesize various

non-enzymatic antioxidants, including ascorbic acid (vitamin C),
frontiersin.org
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glutathione (GSH), and proline (Pro) (Gill and Tuteja, 2010).

Enzymatic antioxidants are responsible for detoxifying ROS,

encompassing superoxide dismutase (SOD), catalase (CAT),

peroxidase (POX), and enzymes associated with the ascorbate

(ASC)–glutathione cycle, such as monodehydroascorbate

dehydrogenase (MDHAR), ASC peroxidase (APX), dehydroascorbate

reductase (DHAR), and glutathione reductase (GR) (Gill and Tuteja,

2010; Foyer and Noctor, 2011).

Plant hormones are alternatively known as phytohormones,

which play essential roles in plant growth and development and

play critical roles in response to biotic and abiotic stress. In general,

phytohormones are classified into two groups: auxin, brassinosteroids

(BRs), cytokinins (CKs), gibberellins (GAs), and strigolactones (SLs)

are known as plant growth hormones, and abscisic acid (ABA),

ethylene (ET), jasmonic acid (JA), and salicylic acid (SA) are

considered as plant stress hormones (Verma et al., 2016). The

regulation of development, growth, and adaptation in plants under

salinity stress is critically influenced by stress and growth hormones

(Yu et al., 2020). A complex interplay occurs among plant stress

hormones and plant growth hormones in response to salinity. These

hormones play modulatory roles, engaging in complex crosstalk that

significantly contributes to the plant growth adaptation during

salinity stress (Yu et al., 2020). It should also be noted that the

expression status of genes associated with phytohormone

biosynthesis, transport, and signaling is an important determinant

of salinity tolerance in plants (Acharya et al., 2022a, Acharya et

al., 2022b).
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3 Plant growth-promoting microbes
to mitigate salinity stress
A diverse group of helpful microbes known as PGPMs inhabit the

rhizoplane (root surface), rhizosphere (soil around roots), or

endosphere (internal tissues). Generally, PGPMs include plant

growth-promoting bacteria, rhizobia, and arbuscular mycorrhizal

fungi. These microbes enhance plant growth in various ways,

including producing indole-3-acetic acid (IAA), solubilizing

phosphate for uptake, fixing nitrogen, producing beneficial enzymes

like CAT (which helps to reduce oxidative stress), ACC deaminase

(which reduces ET level that contributes to promote root growth), and

producing siderophore (which chelates iron for plant use) (Mohanty

et al., 2021). A detailed overview of the various ways PGPMs stimulate

plant growth under non-stress conditions is thoroughly discussed in

several recent reviews (Gahan and Schmalenberger, 2014; De Palma

et al., 2022; Orozco-Mosqueda et al., 2023).

In this review, we focused on the role of PGPMs under salinity

stress. Numerous research groups have discovered a wide array of

PGPMs that alleviate salinity stress in plants. Various aspects of

PGPM–plant interactions during salinity stress have been

documented in previous research (Liu et al., 2022; Shrivastava and

Kumar, 2015; Kaushal, 2020; Kumar et al., 2020; Mishra et al., 2021;

Hoque et al., 2023; Mishra et al., 2023; Kumawat et al., 2024). In the

following section, we categorize the various mechanisms through

which PGPMs aid in mitigating salinity stress in plants.
FIGURE 1

A model illustrating the role of the salt overly sensitive (SOS) pathway, including the SOS1, SOS2 (CIPK24), and SOS3 (CBL4) proteins, in maintaining
Na+ homeostasis under low- and high-salinity stress in plants. In addition to SOS1, SOS2, and SOS3, CIPK8, CBL 8, and CBL10 contribute to Na+

homeostasis under high salt stress.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1406913
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Acharya et al. 10.3389/fpls.2024.1406913
3.1 Nutrient uptake and utilization

Essential nutrients are crucial for plant growth and yield, but their

deficiency can negatively impact various aspects of plant

development. During salinity conditions, elevated levels of sodium

Na+ and Cl− limit the uptake of macronutrients, including nitrogen

(N), phosphorus (P), potassium (K), calcium (Ca), and magnesium

(Mg) (Guo et al., 2020). It leads to a decreased availability of essential

nutrients in plants, potentially triggering leaf senescence and

inhibiting overall plant growth (Kumari et al., 2022).

Potassium-solubilizing bacteria (KSB) play a pivotal role in

enhancing nutrient availability for plants, particularly in saline soils.

Notable among these are bacterial species, such as Pseudomonas sp.

and Bacillus sp., which can make K more accessible for plant uptake

by solubilizing various silicate minerals (Supplementary Table 1)

(Jaiswal et al., 2016; Vasanthi et al., 2018). Specifically, the PGPM

strain Burkholderia cepacia SE4 has been shown to release K from

soils, making it available to Cucumis sativus plants (Kang et al.,

2014a). Moreover, the application of Achromobacter piechaudii to

Solanum lycopersicum plants improved the uptake of K and P, while

the application of salt-tolerant rhizobacteria, Bacillus aquimaris, in

Triticum aestivum has been shown to enhance the uptake of K, P,

and N in saline environments (Mayak et al., 2004; Upadhyay and

Singh, 2015). Similarly, the application of Azospirillum lipoferum or

Azotobacter chroococcum in Zea mays L under salinity enhanced K

accumulation and provided salinity tolerance (Abdel Latef et al.,

2020). In Glycine max seedlings subjected to salinity, inoculation

with B. firmus (SW5) led to enhanced N and P accumulation and

greater salinity tolerance, underscoring the significant role of

B. firmus (SW5) in nutrient acquisition under stress conditions

(El-Esawi et al., 2018). These findings suggest that salt-tolerant KSB

can significantly enhance crop yields in saline soils.

Plant PGPMs also play a crucial role in increasing the accessibility

of other essential minerals such as iron (Fe), zinc (Zn), and sulfur (S)

to plants (Supplementary Table 1) (Gahan and Schmalenberger,

2014; Mishra et al., 2023). Iron is an essential micronutrient for

plants as it is necessary for several metalloenzymes that are crucial in

processes such as respiration and photosynthesis (Kobayashi et al.,

2019). Salinity causes a deficiency of Fe that impacts plant growth,

development, yield, and several other biological processes, including

chlorophyll biosynthesis (Kobayashi et al., 2019). It has been

documented that soil microbes play critical roles in accumulating

Fe in roots and in transporting Fe in different plants (Masalha et al.,

2000). Under conditions of low Fe availability, both microorganisms

and plants produce siderophores—small organic molecules that

selectively chelate ferric ions [Fe(III)], facilitating iron uptake

(Ferreira et al., 2019; Timofeeva et al., 2022). The application of

endophytic streptomyces has been demonstrated to significantly

enhance the growth of mung bean and rice plants, leading to a

notable increase in the biomass of both roots and shoots (Rungin

et al., 2012). Furthermore, salt-tolerant siderophore-producing

rhizobacteria (e.g., Bacillus aryabhattai MS3) have demonstrated

the ability to promote plant growth in saline soils where Fe is

limited (Sultana et al., 2020, Sultana et al., 2021). Therefore,

siderophore-producing rhizobacteria are recognized as highly
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beneficial PGPMs, enabling plants to thrive in saline soils with

limited iron availability (Ferreira et al., 2019).

Zinc (Zn) is a crucial plant micronutrient, essential for their

development, growth, and yield (Saleem et al., 2022). Saline, sodic,

and calcareous soil often cause Zn deficiency in plants (Tavallali

et al., 2009; Daneshbakhsh et al., 2013). In the saline environment,

the application of Zn is known to enhance sanity tolerance and

stimulate proline metabolism (Mushtaq et al., 2023). Numerous

studies have shown that PGPMs, including species such as

Trichoderma sp., Providencia sp., Anabaena sp., and Bacillus sp.,

are capable of solubilizing Zn present in the soil (Upadhayay et al.,

2022), which could be used for growth developments of plants

including wheat (De Santiago et al., 2011).

Sulfur is a vital macronutrient crucial for the plant development

and growth (Narayan et al., 2023). P. putida has been shown to play

an important role in the S cycle in the conversion of organic S to an

inorganic form that plants can uptake (Kertesz and Mirleau, 2004).

Application of P. putida, Pseudomonas fluorescens, and B. subtilis

provided salinity tolerance in soybean (Abulfaraj and Jalal, 2021).

An Enterobacter sp., SA187, is known to promote alfalfa growth and

yield in field conditions (De Zélicourt et al., 2018). Under salt stress,

Arabidopsis plants showed symptoms resembling S starvation (De

Zélicourt et al., 2018; Andrés-Barrao et al., 2021). However, when

colonized with Enterobacter sp., SA187, these plants showed

enhanced uptake of S and improved sulfur metabolism. This

interaction also modulated the phytohormone signaling pathway

and provided salinity tolerance (Supplementary Table 1) (De

Zélicourt et al., 2018; Andrés-Barrao et al., 2021).
3.2 Synthesis of osmolytes and regulation

Salinity triggers osmotic stress in plants, leading them to

produce various osmolytes that serve as osmoprotectants—like

mannitol, inositol, trehalose, polyamines, glycine, proline, and

betaine—to mitigate the severity of the salinity stress (Munns and

Tester, 2008; Park et al., 2016; Van Zelm et al., 2020). In saline

environments, PGPMs further support plants under osmotic stress

by producing these osmoprotectants, thereby enhancing the plants’

tolerance to salinity (Supplementary Table 1). For example,

inoculation of PGPMs, P. fluorescens, and B. subtilis enhanced

proline accumulation in cucumber plants under salinity stress

compared to non-inoculated plants (Saberi-Riseh et al., 2020).

Similarly, the application of salt-tolerant Stenotrophomonas

maltophilia BJ01 enhanced proline accumulation in peanut plants,

providing salinity tolerance (Alexander et al., 2020). Additionally,

B. amyloliquefaciens NBRI-SN13 enhanced proline and total sugar

accumulation in rice seedlings, in contrast to non-inoculated

seedlings (Tiwari et al., 2017).

In capsicum, the application of a salt-tolerant rhizobacteria, B.

fortis, improved proline accumulation and conferred salinity

tolerance (Yasin et al., 2018). Chickpea plants inoculated with

Azosprillum lipoferum FK1 accumulated osmolytes like betaine,

glycine, proline, and soluble sugars in response to salinity (El-

Esawi et al., 2019). Further studies indicated that while salt
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treatment alone increased soluble sugars and proline content in

maize plants, inoculation with A. lipoferum or A. chroococcum

significantly boosted these levels, compared to plants treated with

salt alone, enhancing maize growth under salinity (Abdel Latef

et al., 2020). This suggests that the production of osmolytes and

other components by these two PGPMs contributed to salinity

tolerance and improved maize growth.

In soybeans, inoculation of B. firmus (SW5) not only increased

the accumulation of osmoprotectants like glycine betaine and

proline but also enhanced root architectural traits, including root

length and volume, thereby improving salinity tolerance (El-Esawi

et al., 2018). Moreover, an endophytic fungus, Paecilomyces

formosus, known for producing Gas, provided salinity tolerance

in cucumber by enhancing the accumulation of proline and other

beneficial plant traits (Khan et al., 2012).
3.3 Enhancement of water transport

Aquaporins, integral membrane proteins from the major

intrinsic protein (MIP) superfamily, form water-selective channels

across membranes that play important roles in water transport and

can also transport small neutral molecules (Kapilan et al., 2018).

They play vital roles in cellular water transport as members of the

plasma membrane intrinsic protein (PIP) and tonoplast intrinsic

protein (TIP) families (Afzal et al., 2016). Aquaporins are key

contributors to plant root hydraulic conductivity (Grondin et al.,

2020). Expression of aquaporins is highly regulated by drought and

salinity. An aquaporin gene SpAQP1 of Sesuvium portulacastrum, a

halophyte, was strongly induced in response to salt or drought

treatment (Chang et al., 2016). Transgenic tobacco plants

expressing SpAQP1 demonstrated enhanced salt tolerance

compared to wild-type and vector control plants, underscoring

the role of aquaporin genes in salinity tolerance (Chang et al., 2016).

In Arabidopsis, exposure to 100 mM NaCl leads to the

downregulation of PIP and TIP aquaporin genes (Boursiac et al.,

2005), a response also observed in other plants like cotton and

tomato (Braz et al., 2019; Jia et al., 2020), significantly impacting

root hydraulic conductivity (Siefritz et al., 2002). Conversely, the

application of PGPMs has been shown to upregulate the expression

of aquaporin genes, enhancing plant resilience to salinity. For

instance, in maize, application of Pantoea agglomerans or

B. megaterium upregulated aquaporin genes, improving root

hydraulic conductivity and salinity tolerance (Marulanda et al.,

2010; Gond et al., 2015). Similarly, barley seedlings treated with 200

mM NaCl exhibited reduced biomass and height alongside

downregulated HvPIP2;1 aquaporin gene expression (Zawoznik

et al., 2011). However, inoculation with Azospirillum brasilense

strain AZ39 induced HvPIP2;1 expression, mitigating biomass and

height reduction (Zawoznik et al., 2011). These observations suggest

that A. brasilense strain AZ39 alleviates salinity stress possibly by

upregulating the HvPIP2;1 aquaporin gene, thereby enhancing root

hair length, density, and improving water uptake. Furthermore, in

response to salt stress, the mycorrhizae-mediated modulation of the

expression of aquaporin genes has been reported in multiple plant

species including Phaseolus vulgaris, Lactuca sativa, and Robinia
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pseudoacacia (Sharma et al., 2021). Mycorrhiza-mediated

upregulation of aquaporin gene improved water status, K+/Na+

homeostasis, increased photosynthesis, enhanced expression of

genes associated with ion homeostasis, including SOS1 and HKT1,

and alleviated salinity tolerance in black locust (Robinia

pseudoacacia) (Supplementary Table 1) (Chen et al., 2017).
3.4 Regulation of ionic equilibrium

During salinity stress, toxic ions like Na+ and Cl− increase in the

cytosol, and excessive accumulation of these ions causes toxicity.

Na+ not only imbalances the K+/Na+ ratio but also affects many

physiological processes and functions of various proteins (Assaha

et al., 2017). The SOS signaling pathway plays an important role to

reduce Na+ inside of the cell, and that, in turn, helps maintain Na+

homeostasis (Park et al., 2016). Additionally, the high-affinity K+

transporter 1 (HKT1) contributes to Na+ homeostasis by removing

Na+ from the xylem and sending Na+ back to the root (Kaundal

et al., 2019). In rice, it has been shown that OsHKT1;4-mediated

Na+ transport in stems plays a role in excluding Na+ from leaf

blades during the reproductive growth stage in response to salt

stress (Suzuki et al., 2016). Na+/H+ antiporters have been implicated

in Na+ and K+ homeostasis and salt tolerance (Apse et al., 1999;

Bassil et al., 2011). Moreover, the proton pump, AVP1, has been

shown to play a role in salinity tolerance in different plants (Gaxiola

et al., 2001; Lian et al., 2024).

Multiple PGPMs have been identified to induce expression of

SOS pathway genes (Supplementary Table 1). Notably, volatile

compounds produced by rhizobacteria Alcaligenes faecalis

JBCS129 have been shown to upregulate expression of

Arabidopsis SOS1, HKT1, NHX1, and AVP1 under salt stress,

assisting the plant in maintaining ion homeostasis during salinity

stress (Bhattacharyya et al., 2015). The application of PGPM strain

Glutamicibacter sp. YD01 in rice seedlings provided salinity

tolerance by inducing expression of OsHKT1 significantly and

maintaining ion homeostasis (Ji et al., 2020). This strain also

produces ACC (1-aminocyclopropane-1-carboxylate) deaminase

and IAA, further supporting plant growth under stress.

In response to salinity, maize plants showed increased Na+,

decreased K+, and reduced K+/Na+ ratio. However, salt-stressed

maize plants inoculated with A. lipoferum or A. chroococcum showed

reduced Na+, enhanced K+ accumulation, increased K+/Na+ ratio, and

improved salinity tolerance, indicating that both A. lipoferum or

A. chroococcum contribute to plant ion homeostasis in response to

salinity (Abdel Latef et al., 2020). Similarly, inoculating white clover

plant (Trifolium repens) with A. brasilense enhanced growth under

salinity and reduced Na+ content, enhanced K+ content, and increased

K+/Na+ ratio, suggesting that A. brasilense treatment contributes to ion

homeostasis in plants under salinity (Khalid et al., 2017). Additionally,

the application of Variovorax paradoxus 5C-2 to pea plants under

salinity enhanced ion homeostasis by increasing K+ uptake, decreasing

Na+ accumulation, and enhancing K+/Na+ ratio, leading to enhanced

growth and salinity tolerance compared to uninoculated plants (Wang

et al., 2016). Under salinity stress, rice inoculated withC. albidum strain

SRV4 exhibited lower Na accumulation and higher K accumulation
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compared to non-inoculated plants (Vimal et al., 2019). This improved

tolerance to salinity indicates the positive role of C. albidum in

maintaining ion homeostasis during salt stress.
3.5 Production of antioxidants

Various plant enzymes, including APX, CAT, GR, POX, and

SOD, exhibit antioxidant activity (Upadhyay et al., 2012). Many

PGPMs have been shown to boost the activity of these antioxidant

enzymes. For instance, Piriformospora indica, a root-colonizing

basidiomycete fungus, promotes growth and provides resistance

against mild salinity stress in barley by activating the antioxidative

capacity through the glutathione–ascorbate cycle (Waller et al.,

2005). Similarly, applying A. lipoferum or A. chroococcum to maize

plants enhanced the activity of CAT and POX POD, showcasing

their positive regulatory roles in salinity tolerance (Abdel Latef

et al., 2020). In soybean seedlings, B. firmus (SW5) inoculation

elevates the activity of APX, SOD, CAT, and POD, alongside

reducing H2O2 levels, indicating its contribution to enhanced

antioxidative capacity (El-Esawi et al., 2018). Inoculating okra

seeds with ACC-producing Enterobacter sp. UPMR18 improved

seed germination and seedling growth under salinity conditions

(Habib et al., 2016). This was accompanied by heightened ROS-

scavenging activity of enzymes like APX, CAT, and SOD, indicating

that these ROS-scavenging enzymes play a beneficial role in

enhancing salinity tolerance through the action of PGPMs

(Supplementary Table 1). The application of P. putida H-2–3

showed a higher activity of SOD and improved soybean plant

growth under salinity and drought (Kang et al., 2014b).

Additionally, a GA-producing endophytic fungus, P. formosus,

aids in salinity tolerance in cucumber by accumulating

antioxidants, among other beneficial traits (Khan et al., 2012).

Application of Curtobacterium albidum strain SRV4 in rice under

salinity showed the higher activity of antioxidant enzymes,

including CAT and SOD, and provided tolerance to salinity

compared to non-inoculated plants (Vimal et al., 2019).
3.6 Phytohormone synthesis
and regulation

Phytohormones play vital roles in regulating plant growth,

development, and various physiological processes (Acharya and

Assmann, 2009; Acharya et al., 2013; Miransari and Smith, 2014;

Acharya et al., 2017). In response to salinity stress, various

phytohormones, including auxins, CK, ET, and GAs, are critical

in helping plant to adapt (Kaundal et al., 2021; Acharya et al., 2022a,

Acharya et al., 2022b). Several PGPMs have been identified that

produce and excrete hormones that plants can absorb through their

roots, enhancing plant growth or regulating hormone balance to

improve salinity responses (Backer et al., 2018). For instance,

application of a halotolerant PGPM strain, Glutamicibacter sp.

YD01, equipped with ACC deaminase, has been shown to provide

salinity tolerance by reducing ET in rice seedlings (Supplementary

Table 1) (Ji et al., 2020). Furthermore, PGPMs are known to
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synthesize some phytohormones like auxin, CK, ET, GA, and SA,

modulating physiological activity through molecular responses

(Orozco-Mosqueda et al., 2023). Additionally, many organic

compounds produced by PGPMs are known to influence plant

physiological activities, underlining the significant role these

microorganisms play in enhancing plant health and stress

resilience. The next section explores how PGPMs influence the

regulation of various phytohormones.

3.6.1 Auxin
Auxin, a crucial phytohormone, plays significant roles in plant

growth and development, and particularly root development,

including primary root elongation and lateral root initiation (Van

Zelm et al., 2020). Additionally, auxin is vital in plant responses to

salt stress; reduced auxin levels in roots under such conditions

negatively impact root growth and architecture (Smolko et al.,

2021). Specifically, salt stress, primarily through Na+, inhibits

auxin-mediated primary root elongation and impedes auxin-

mediated lateral root initiation, emergence, and elongation (Van

Zelm et al., 2020). In response to salinity, the ABA concentration

increases, which further inhibits lateral root emergence and

elongation (Van Zelm et al., 2020). An increase in Na+ in roots

reduces auxins and enhances ABA that, in turn, causes inhibition of

lateral growth.

Many PGPMs are known to synthesize IAA, a physiologically

active auxin, including species Aeromonas veronii, A. brasilense,

Enterobacter sp., Rhizobium leguminosarum, Actinobacteria,

Frankia, Kitasatospora, Nocardia, Pseudomonas, Bacillus, and

Streptomyces (Supplementary Table 1) (Vessey, 2003; Kumar

et al., 2020; Ganesh et al., 2022). The impact of the exogenous

application of IAA is dependent on concentration; high

concentrations accelerate the development of lateral roots and

root hair formation while negatively affecting primary root

growth (Vacheron et al., 2013). In contrast, a low dose of IAA

may promote primary root growth (Vacheron et al., 2013). The

application of PGPMs that produce auxin have been shown to

induce plant growth by enhancing root growth and biomass (Backer

et al., 2018). Additionally, many PGPMs indirectly influence auxin

signaling pathways in plants. For example, some PGPMs with

nitrite reductase activity, like A. brasilense, produce nitric oxide

(NO), which is involved in lateral root development under stress

conditions (Supplementary Table 1) (Wimalasekera and

Scherer, 2022).

The uptake of IAA produced by PGPMs promotes primary and

lateral root growth, as well as root hair proliferation, enabling plants

to absorb more nutrients and minerals for improved growth and

productivity. This indicates that the presence of PGPMs in soil,

through the production of IAA, can significantly enhance plant

growth compared to soils without PGPMs (Glick, 2014). Salt-

tolerant rhizobacterial strains that produce auxin and proline

mitigated salinity-induced growth inhibition of barley plants by

regulating ion homeostasis and leaf water potential (Metoui Ben

Mahmoud et al., 2020). A study showed that Medicago truncatula

nodulated by an IAA-overproducing strain, Sinorhizobium

meliloti RD64, showed improved tolerance to 300 mM NaCl

(Supplementary Table 1) (Bianco and Defez, 2009). An IAA-
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producing PGPM strain, C. albidum SRV4, provided tolerance in rice

by improving growth, improving K uptake, and boosting

antioxidative enzymatic activities (Vimal et al., 2019). IAA-

producing PGPM Pseudomonas sp. provides salinity tolerance in

cotton (Egamberdieva et al., 2015). Three IAA-producing

halotolerant PGPMs isolated from halophytes, Micrococcus

yunnanensis, Planococcus rifietoensis, and V. paradoxus, have been

shown to provide salinity tolerance in sugar beet (Supplementary

Table 1) (Zhou et al., 2017).

3.6.2 Gibberellins
GAs constitute a large group of phytohormones that positively

regulate various aspects of plant growth, such as root and stem

elongation, cell division, bolting, flowering, seed germination, and

dormancy (Swain and Singh, 2005). DELLA (aspartic acid–glutamic

acid–leucine–leucine–alanine) proteins, a sub-family of plant-

specific GRAS (GIBBERILIC ACID INSENSITIVE, REPRESSOR

OF ga1–3, and SCARECROW) transcriptional regulators, are

critical components of the GA signaling pathway (Phokas and

Coates, 2021). Abiotic stresses, such as salinity, are known to

reduce GA levels, primarily by inhibiting the enzymes responsible

for GA biosynthesis, highlighting the crucial role of GAs in plant

stress resilience (Achard et al., 2006; Magome et al., 2008).

Many PGPMs are capable of producing GAs, which aid in plant

growth enhancement (Backer et al., 2018). GA-producing bacteria,

Burkholdera cepacia SE4, Promicromonospora sp. SE188, and

Acinetobacter calcoaceticus SE370, provided salinity tolerance in

cucumber plants (Kang et al., 2014a). Similarly, Pseudomonas

putida H-2–3, another GA producer, improved soybean growth

under salinity and drought (Supplementary Table 1) (Kang et al.,

2014b). Further research has demonstrated that the application of

the GA-producing endophytic fungus Penicillium funiculosum

LHL06 can impart salt stress tolerance to soybean, by lowering

plant levels of ABA and JA, and enhancing isoflavone biosynthesis

(Khan et al., 2011). Additionally, the GA-producing endophytic

fungus, P. formosus, provided salinity tolerance in cucumber by

reducing stress hormone ABA and enhancing the accumulation of

antioxidants and proline (Khan et al., 2012). A recent study shows

that a GA-producing PGPM, B. subtilis ER-08 (isolated from a

halotolerant plant), with multiple growth-promoting attributes

enhanced the growth of fenugreek (Trigonella foenum-graecum L.)

in response to salinity and drought stress (Supplementary Table 1)

(Patel et al., 2023).

3.6.3 Cytokinins
CKs have been identified as both positive and negative

regulators in the context of salinity stress tolerance (Liu et al.,

2020). For instance, increased CK levels during salinity stress have

been observed in plants like Arabidopsis, rice, tomato, and apple.

Notably, the OsCKX2 knockout rice mutant, which has a higher

level of CK content, shows higher salinity tolerance compared to

wild type (Joshi et al., 2018). Additionally, the application of

INCYDE, a CK degradation inhibitor, has been shown to increase

salinity tolerance in tomatoes, underscoring CK’s beneficial role in

salinity tolerance by suggesting that salt stress may reduce CK

levels, thereby diminishing salinity tolerance (Aremu et al., 2014).
Frontiers in Plant Science 08
Conversely, there are instances where increased CK levels have been

associated with reduced salinity tolerance. Overproduction of CK in

Arabidopsis showed reduced salinity tolerance (Wang et al., 2015).

Furthermore, in Arabidopsis, CK negatively regulates the

expression of HKT1, which is responsible for unloading Na+ from

the root xylem, which, in turn, causes an increase of Na+ in the

shoot (Mason et al., 2010). Additionally, reduced CK level due to

increased degradation or reduced synthesis provided enhanced

tolerance to salinity, including wheat and tomato (Avalbaev

et al., 2016).

3.6.4 Ethylene
It is well known that ET is one of the important phytohormones

that play key roles in several plant physiological processes,

including salinity stress (Riyazuddin et al., 2020). Salinity and

other abiotic stresses increase ET content, causing the stunted

growth of plants (Chen et al., 2021). ACC deaminase, an enzyme

that hydrolyzes ACC, the immediate precursor of ET, plays a vital

role in reducing ET levels, thereby aiding plant growth under stress

conditions (Shahid et al., 2023). PGPMs utilize ACC deaminase to

reduce ET levels, which, in turn, helps to reduce the stress level

induced by salinity or other stresses (Glick et al., 2007; Orozco-

Mosqueda et al., 2020). For instance, P. fluorescens strain TDK1,

which produces ACC deaminase, has been shown to confer salinity

tolerance and increase yield in peanuts (Saravanakumar and

Samiyappan, 2007). Similarly, inoculation with V. paradoxus

5C-2, an ACC deaminase-producing PGPM, has provided salinity

tolerance in Pisum sativum L. cv. Alderman, leading to increased

biomass and enhanced photosynthetic activity (Wang et al., 2016).

In addition, various studies have documented that rhizobacteria

that have functional ACC deaminase provide tolerance in various

crops, including P. fluorescens LSMR-29 and E. hirae LSMRS-7 in

Vigna radiata (Kumawat et al., 2024), Arthrobacter protophoramiae

in P. sativum (Barnawal et al., 2014), P. fluorescens NBRC 14160

and B. megaterium NBRC 15308 in wheat (Fathalla and Abd El-

Mageed, 2020), Glutamicibacter sp. YD01 in rice seedlings (Ji et al.,

2020), Aneurinibacillus aneurinilyticus and Paenibacillus sp. in

French bean (Gupta and Pandey, 2019), Bacillus sp. PM31 in

maize (Ali et al., 2023), and Hartmannibacter diazotrophicus E19T

in barley (Supplementary Table 1) (Suarez et al., 2015).

Additionally, multiple species of ACC deaminase producing

halotolerant PGPMs with additional growth-promoting properties

isolated from halophytes, P. rifietoensis, V. paradoxus, and M.

yunnanensis, have been shown to provide tolerance to salt stress

in Beta vulgaris by reducing ET content (Zhou et al., 2017).
3.7 Biofilms

Biofilms are complex and structured communities of

microorganisms, primarily bacteria that adhere to surfaces and

are encased in a self-produced matrix of extracellular polymeric

substances (EPS), comprising polysaccharides, proteins, nucleic

acids, and other molecules (Di Martino, 2018). Biofilm-producing

microorganisms gain a survival advantage in unfavorable

conditions, including saline soils, where increased osmotic
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pressure could otherwise lead to cell death through cytoplasmic

lysis. The ability to form biofilms equips these microorganisms with

a protective mechanism against saline environments and other

abiotic stresses, effectively serving as barriers that enable them to

withstand and thrive under harsh conditions (Yin et al., 2019).

Halotolerant PGPMs thrive in saline environments, establishing

themselves around the root zone, and promoting plant growth and

development (Ahemad and Kibret, 2014). They produce various

beneficial chemicals and growth regulators in the rhizosphere.

Among these, certain halotolerant PGPM strains have been

discovered to enhance salinity stress tolerance in plants. For

example, two halotolerant biofilm-forming PGPM strains, AP6

and PB5, affiliated with B. licheniformis and P. plecoglossicida,

respectively, were found to produce IAA and ACC deaminase

(Yasmeen et al., 2020). These strains contributed to salinity

tolerance and led to better growth and yield of sunflower plants

than the non-inoculated plants. It demonstrates the multifaceted

benefits of biofilm formation, including the production of IAA and

ACC deaminase, which contribute to improved plant growth,

productivity, and salinity tolerance (Yasmeen et al., 2020).

Furthermore, wheat seedlings inoculated with exopolysaccharide-

producing bacteria have been shown to stimulate growth and

provide salinity tolerance by restricting Na+ influx (Ashraf et al.,

2004). An exopolysaccharide-producing PGPM strain, C. albidum

strain SRV4, provided tolerance to rice (Vimal et al., 2019).
4 Challenges in applying PGPMs in
soil for improvement of crops

PGPMs have been extensively researched over the years, and

many efforts have been made to leverage their potential for

commercial use. Despite their significant promise for sustainable

agriculture, their broad-scale implementation encounters

various obstacles.
4.1 Inconsistent efficacy of PGPMs

PGPMs can be highly context-dependent, varying across

different soil types and climates (Martıńez-Viveros et al., 2010).

One of the primary challenges in utilizing PGPMs is ensuring their

survival and persistence in the soil environment. Soil conditions,

such as temperature, pH, and the presence of competing

microorganisms, can impact the viability of these microbes

(Martıńez-Viveros et al., 2010), making it difficult for farmers to

predict and ensure positive outcomes from PGPM application,

which, in turn, slows their widespread adoption in agriculture.
4.2 Specificity of action

While some PGPMs exhibit broad-spectrum benefits, many

work optimally with specific plant species or crop cultivars (Dhawi

and Hess, 2017; Pratush et al., 2018; Ma et al., 2020). Identifying the

most effective strain for each crop–soil combination requires
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extensive testing, complicating large-scale implementation.

Additionally, natural crop variability within a species further

challenges finding a “one-size-fits-all” solution.
4.3 Issues in the development process

The development of PGPMs is based on screening assays in a

laboratory setting, which measure specific PGPM activities such as

IAA production, calcium phosphate solubilization, and siderophore

production (Ganesh et al., 2022). However, the presence of these

characteristics in microorganisms does not always guarantee effective

PGPM function under field conditions. Conversely, microbes lacking

these in vitro properties might possess alternative mechanisms for

promoting plant growth, which are less well-understood. Because of

this knowledge gap, such microbes risk being overlooked and

discarded during the early stages of laboratory screening, potentially

missing out on effective PGPM candidates (Cardinale et al., 2015).
4.4 Shelf life and viability

PGPMs are living entities with specific viability requirements, and

owing to their structural and cellular composition, they have a relatively

short shelf life (Arriel-Elias et al., 2018). Maintaining their effectiveness

throughout production, storage, and application can be expensive,

complex, and challenging, especially for small-scale farmers.
4.5 Regulatory hurdles and lack
of standardization

Regulatory systems frequently lag scientific progress. Concerns

about unintended environmental impacts and the complex nature

of microbial communities can create regulatory hurdles, stalling

commercialization efforts (Leggett et al., 2011). Additionally,

the lack of consistent standardization in strain identification,

characterization, and quality control for agricultural applications

impedes broad adoption and undermines farmer confidence.
4.6 Economic benefit to farmers

A clear economic benefit demonstrated for farmers is crucial for

widespread adoption. The microbes’ application method must align

with the farmer’s equipment and agricultural practices. Factors like

upfront costs, application complexity, and reliable performance data

compared to conventional methods need careful consideration.

Farmers commonly perceive PGPM formulations as costlier and less

effective than chemical alternatives, which needs to be addressed.
4.7 Farmers’ risk-taking ability:

Crop producers usually depend solely on farming for their

livelihood and sustenance, with little to no extra financial runway

between two crops. With such financial constraints, farmers are
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unwilling to use nontraditional measures compared to tried-and-tested

methods. This can pose a big hurdle in the widespread adoption

of PGPMs.

More extensive work needs to be done by agricultural researchers

and farmers to adopt PGPM formulations on a broader scale (Parnell

et al., 2016). Educating farmers about the long-term benefits and

building trust in PGPM technology is essential. Farmer education and

awareness play a crucial role. Shifting from traditional practices to

effectively utilizing PGPMs requires knowledge and training, which

may be limited to certain regions. Addressing these challenges

through continued research, improved formulations, streamlined

regulations, and effective farmer education is crucial to unlocking

the full potential of PGPMs and transforming agriculture toward a

more sustainable future.
5 Conclusions

Salt stress disrupts various plant processes, including seed

germination, seedling and root growth, development, early

senescence, flowering, and yield, potentially leading to premature

death. In saline environments, reduced water uptake causes osmotic

stress due to changes in cell turgor. Plants synthesize osmoprotectants

to cope, but these may be insufficient. Higher levels of Na+ and Cl−

lead to ionic stress and imbalance, specifically affecting the K+/Na+

ratio. Gene expression changes may enable some tolerance,

depending on salinity levels and plant genetics. Salinity negatively

impacts the acquisition of essential nutrients like N, P, and K and

induces oxidative stress by increasing ROS accumulation, which can

be harmful. Although plants produce antioxidants, these may not
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fully counteract oxidative stress. Stress hormones like ABA and ET

increase under salinity, inhibiting growth, while growth hormones

like auxins and GAs are inhibited, further negatively impacting

plant growth.

In a saline environment, halotolerant PGPMs can play critical

roles in improving plant growth (Figure 2). Their natural

availability or supplementation of PGPMs alleviates the impact of

salinity stress on plant development, growth, and yield by

influencing various aspects of plant life. They modulate

nutritional, physiological, biochemical, and molecular aspects of

plant life. PGPMs enhance water uptake during salinity by

upregulating the expression of aquaporin genes and additional

mechanisms. Many PGPMs also enhance the accumulation of

osmoprotectants in plants, thereby enhancing tolerance to

salinity. They contribute to reducing the Na+ levels by

upregulating genes that are involved in ion homeostasis, such as

SOS1 and HKT1, along with other genes playing roles in ion

homeostasis. Halotolerant PGPMs also play critical roles in plant

growth by enhancing the availability of essential nutrients,

providing growth hormones like auxins and GAs, helping plants

reduce stress hormones like ET through ACC deaminase, and

enhancing the antioxidant capacity of plants. Employing PGPMs

that produce ribosylated CK is beneficial, as this variant can move

from the root to the shoot, promoting cell expansion and division

without adversely impacting root growth, owing to its altered CK

composition (Kudoyarova et al., 2019). Some PGPMs produce

multiple hormones, enabling one to predict expected outcomes

based on their respective functions. Specific combinations of

PGPMs may be utilized according to the specific needs of a crop

or plant to enhance salinity tolerance. Employing mathematical
A B C

FIGURE 2

Roles of plant growth-promoting microorganisms (PGPMs) in enhancing salinity stress defense in plants. (A) A healthy plant in non-saline soil. (B) A
plant facing saline conditions shows yellowing of leaves and stunted growth due to excessive ions in soil and tissues. (C) A plant in salt-affected soil
treated with PGPMs regains health by mitigating the osmotic and ionic stresses induced by salinity.
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modeling, one can predict which combinations of PGPMs would

be most effective in imparting salinity tolerance to a specific crop

with known traits, including its tolerance level of salinity, as well as

its physiological, biochemical, and molecular tolerance traits.

Additionally, specific traits of PGPMs could be improved using

gene editing technology tailored to the specific needs of a user.

PGPMs present promising opportunities for sustainable agriculture

by enhancing yields and resilience and decreasing dependence on

harsh chemicals. Nevertheless, further efforts are needed to translate

the potential observed in laboratory studies into broad-scale

field applications.
6 Perspectives

Despite recent progress on PGPM-mediated salinity tolerance

in plants, many questions remain unanswered. For instance, do

PGPMs contribute to enhancing Na+ or salt-sensing mechanisms in

plants? While literature suggests that many PGPMs provide general

benefits like nutrient uptake, it is unclear if they are equally effective

outside their natural range. Additionally, could some plant species

be negatively impacted by specific strains of PGPMs?

Several reports indicate that PGPMs modulate gene expression

in response to salinity. Do PGPMs induce epigenetic modifications

in host plants under salt stress, affecting gene expression related to

salinity tolerance? RNA-binding proteins (RBPs) are well-known

regulators of gene expression at the post-transcriptional level. Given

that PGPMs have been shown to provide salinity tolerance by

regulating various genes, it would be highly interesting to

investigate whether PGPMs specifically regulate gene expression

through RBPs to promote salinity tolerance.
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