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Abstract

Correlation functions, fusion rules, and the classical Yang-Baxter equation of vertex

operator algebras
by
Jianqi Liu

We introduce the notion of space of correlation functions associated with three mod-
ules M', M?, and M?> over a vertex operator algebra V. By studying the relations between the
space of correlation functions with the space of intertwining operators and the bi-modules over
Zhu’s algebra A(V), we prove a generalized version of the fusion rules theorem for vertex op-
erator algebras. We also give the analog of Rota-Baxter operators for vertex operator algebras
as a generalization of the Rota-Baxter operators for Lie algebras. We find some particular types
of sub-algebras of the lattice vertex operator algebra V; to give examples of such operators.
Using a general version of Rota-Baxter operators of vertex operator algebra, we find a tensor
form of the Yang-Baxter equations for vertex operator algebras that generalizes the classical

Yang-Baxter equation for Lie algebras.
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Chapter 1

Introduction

This thesis has two primary objectives. The first one is to systematically study the
system of correlation functions associated with modules and intertwining operators over vertex
operator algebras (see [I2, 6, P9, 27]). The second one is to find the analog of Rota-Baxter
operators (see [43, 2, B1]) and classical Yang-Baxter equations (see [5, B, &]) for vertex opera-
tor algebras. Since these are different topics in the field of vertex operator algebras, we separate
this thesis into two parts.

In part I of this thesis, after recalling the basics of vertex operator algebras, we study
the system of correlation functions associated with three modules M', M?, and M? over a vertex
operator algebra V. The ultimate goal of part I is to give an alternative version of the fusion
rules theorem (see [30, &9]) that allows us to compute the fusion rules of modules over vertex
operator algebras by determining certain bi-modules over the algebra A(V) defined Zhu in [[73].

In part II of this thesis, we give definitions and examples of Rota-Baxter operators
(see [B3, [T, BT]) on vertex (operator) algebras and study their basic properties. The ultimate
goal of part I1 is to use a generalization of the Rota-Baxter operators on vertex operator algebras,
introduce a notion of Yang-Baxter equations for vertex operator algebras and justify its well-
definiteness by relating it with the classical Yang-Baxter equations for Lie algebras.

We will also provide some new results and find some interesting substructures for
vertex operator algebras when we achieve these two primary goals. We will give an overview
of them in the rest of the introduction. Another central theme of this thesis is the study of Zhu’s
algebra A(V), which is a fundamental object in the theory of vertex operator algebras and was

studied extensively, see for instance [, IR, 19, 49, B0, [73]. We find that A(V) is noetherian for



a strongly finitely generated vertex operator algebra V, and we will give a concrete description
of A(V) for a sub-algebra of the lattice vertex operator algebra [29]. In the rest of this thesis, we

will abbreviate the term vertex operator algebra by “VOA” for simplicity.

1.1 Correlation functions and fusion rules of vertex operator alge-

bras

The space of intertwining operators (see [27]) of VOAs and its dimension, the so-
called fusion rule in the physics literature [61, b, BA], plays an essential role in studying the
tensor product of modules over VOAs, see [41, 53]. In the semi-simple case, the fusion rule
is the multiplicity of an irreducible module in a tensor product. For the affine Lie algebras or
the associated affine VOAs [B0], the fusion rules in case SE@) were computed in [65], and a
general version was stated in [Bf] without proof. In [30], Frenkel and Zhu proposed a formula
(Theorem 1.5.2 in [BU]) to compute the fusion rules for arbitrary vertex operator algebras by
using Zhu’s algebra A(V) defined in [[73] and some of its (bi)modules. Given irreducible mod-
ules M, M? and M? over a vertex operator algebra (V, Y, 1, w), Frenkel and Zhu’s fusion rules
theorem claimed that the space of intertwining operators / ( M]]”;Mz) could be identified with the
vector space (M>(0)* ®A(v) AMY) ®Av) M?(0))*, where A(M") is a bimodule over the Zhu’s
algebra A(V), and M 2(0) and M?(0) are the bottom levels of the V-modules M? and M>, which
are modules over A(V), see Section 1 in [B0] for more details.

Since A(V) is an essential object in the fusion rules theorem, and our objective is to
give a general version of this theorem, we will first study A(V) for irrational VOAs in more
detail in Chapter D. Note that if V is rational, then by the main result in [IR] Zhu’s algebra
A(V) is finite-dimensional semi-simple over C. In particular, A(V) is (left) noetherian as a ring.
In fact, the noetherian property of A(V) also holds for some irrational VOAs. For example, if
V= M[A)(l, 0) be the level one Heisenberg VOA (cf.[29]), then A(ME(I, 0)) is isomorphic to S ()
the polynomial ring over b, hence A(M;(1, 0)) is noetherian. More generally, if V = V5(k, 0) the
level k € Z.o vacuum module VOA associated to a finite-dimensional simple Lie algebra g, then
A(V5(k,0)) = U(g) (cf. [30]) which is noetherian as well. And if V = V(c,0) is the Virasoro
VOA of central charge ¢, then A(V(c,0)) = C[x] (cf. [68]). To explain this phenomenon, we
rediscovered the epimorphism between the C;-algebra R(V) and the graded algebra grA(V) in



[2], and we use this epimorphism and prove the following (see Theorem 2ZZ25):

Theorem 1. Let V be a CFT-type VOA. If V is strongly finitely generated, or equivalently,

C-cofinite, then A(V) is (left) noetherian as an algebra.

The notion of correlation functions on the Riemann surface arose in the conformal
field theory and quantum field theory, see [61], b, B3]. It was first interpreted by the language
of VOAs by Frenkel, Lepowsky, and Meurman in [29]. By finding the explicit expression of the
correlation functions on P!(C) associated to the lattice model, Frenkel, Lepowsky, and Meurman
proved the Jacobi identity for the lattice VOAs V; and the moonshine module VOA V¥ in [29].
Later, Frenkel and Zhu constructed the affine VOAs (WZNW model) and the Virasoro VOAs
(minimal model) by constructing correlation functions on P'(C) associated to the highest weight
representations of the affine Lie algebra'g = g®C[z, t~'1®CK and the Virasoro Lie algebra £ =
@nez CL, ® CC, see [BU]. Therefore, correlation functions play a central role in constructing
these fundamental examples of VOAs. Furthermore, the correlation functions on a torus C/I"
were given by the trace functions associated to a module: tr|y Yay(ay,z1) - .. Yu(a,, Zn)qL(O)_c/ 24,
The recursive formulas for trace functions lead to the modular invariance of characters of the
strongly rational VOAs. See [[73, [/4] for more details.

The correlation functions associated with a module M over a VOA V is given by
W, Yylar,z1) ... Y(ay, zy)v), where v € M’, v € M, and ay,...,a, € V. It is closely related
to Zhu’s algebra A(V). Zhu used a recursive formula of such correlation functions restricted
onto the bottom level M(0) and constructed an irreducible V-module from an irreducible A(V)-
module, see Theorem 2.2.1 in [[/3]. Frenkel and Zhu also claimed in [[/4, 30] that a similar
method can be applied to the proof of the fusion rules theorem (Theorem 1.5.2 in [B0]), and
the details of the proof were omitted. However, it was later realized by Li (see [2Y]) that some
additional conditions are needed in Frenkel and Zhu’s fusion rules theorem. Li gave a counter-
example in [49] in the case of the universal Virasoro vertex operator algebra that shows that
I(MIIWZ/IZ) is not isomorphic to (M>(0)* ®aAv) AMY) ®A(V) M?(0))* in general. Li also proved in
[49] that the fusion rules theorem is true when M2 and M? are the so-called generalized Verma
modules constructed in [I8]. In particular, it is true for the rational vertex operator algebras (see
Section 2 in [49] for more detailed discussions and the counter-example).

In Chapter B and Chapter B, we use a correlation function method as Frenkel and

Zhu claimed in [B0] and give an alternative proof (of an alternative version) of the fusion rules
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theorem. The correlation functions we will be focusing on are based on the following prototype

(n + 3)-point correlation functions on P!(C):

5, Yap(ar, z1) - . Yy (ar, 2)I(v, w)Ypp(arets 2ke1) - - - Yy (an, 2a)va), (1.1.1)

where vg e M3, ve M\, vy e M®,ay,...,a, €V, Z1,...,20, W are complex variables, and /
is an intertwining operator of type ( MIIW;IZ).

Our approach to the fusion rules theorem can be broken down into three steps. First,
we introduce a notion of space of correlation functions associated with V-modules M 1 M2,
Mﬂwjuz) were

essentially the properties satisfied by the limit rational function of (). In fact, Cor( Mf.”;ﬁ) is

3 . . .
and M3, denoted by Cor( Mﬂ” MZ)' The axioms we impose on an element in Cor(
essentially a quotient of the vector space of three-point genus zero conformal blocks, the dual
space to a certain quotient of the tensor product of 3 admissible V-modules (see [66, [/7]). Then

we prove the following (see Theorem B T3 and Corollary BT8):

Theorem 2. Let V be a VOA, and M', M2, and M?> are V-modules. Then Cor( MIIVI;IZ) is isomor-

3
phicto I ( Mﬂ” M2) as vector spaces.

In order to relate Cor( MIIWZ/IZ) with the modules over A(V), we introduce an auxiliary
notion of the space of correlation functions associated with M', M 2(0), and M3(0), denoted by
Cor( Mlleégzo)). This space can be viewed as the space A(V)-conformal blocks on the 3-pointed
rational curve Pé defined from the representations of Zhu’s algebra A(V). The axioms we
impose on this space are based on the restriction of the correlation functions (I_I_1l) onto the
bottom levels M2(0) and M>(0)*. In particular, we require a system of correlation functions S
3
in Cor( MI,WA;SEO)) to satisfy two recursive formulas obtained from the expansion of (ITl) with
respect to the left-most term Y,,3(ay, z1) and the right-most term Y, (ay, z,), one of which is
similar to (2.2.1) in [[[3]. Then our second step is to prove the following isomorphism (see

Corollary B3 and Theorem B379):

Theorem 3. Let M' be a V-module, and let M*(0) and M>(0) be irreducible A(V)-modules,

then we have the following isomorphism of vector spaces:

M3(O) ~ M’; - M(M3(0)*)/
Cor(M] MZ(O)) = Cor(M] MZ) = Cor(Ml M(MZ(O))), (112)

where M2 = M /Rad(M) and M¥ =M /RadM are quotient modules of the generalized Verma
modules M(M?*(0)) and M(M?>(0)*) defined in [[8], respectively.

4



The method we use to prove Theorem B is similar to the proof of Theorem 2.2.1 in
[[73]. However, unlike building V-modules from A(V)-modules based on the ordinary corre-
lation functions (V/, Y(ay,z1)...Y(ay,z,)v), in our case, due to the appearance of intertwining
operator /(v,w) in (IT), the modules M? and M3 constructed by (CI) are not necessarily
irreducible. This issue was first observed by Li in [49]. The V-modules M2 and M3 are quotient
modules of certain generalized Verma modules. They can be proved to be irreducible if a tech-
nical condition depends only on the (bi)modules over A(V) is satisfied. In particular, M? and
M3 are irreducible when V is rational. So we have Cor( MI,W;(ISEO)) = Cor( Mﬁ”;z) for irreducible
modules M? and M? over a rational VOA V. Chapter B is dedicated to the proof of Theorem B.

M3(0)
M M2(0)

space: (M 30)* ®av) Bn(M 1)®A(V) M?(0))*, where B,(M") is a new A(V)-bimodule that is given
by B,(M") = M /span{a o u, L(=1)v + (L(0) + hy —h3)v : a € V, u,v € M'}. We will show that

In the third step, we prove that Cor( ) is isomorphic to the following vector

By(M") is a quotient module of A(M"), and we will give examples to show that the vector spaces
(M(0)* ®a(vy Bi(M") ®4cv) M?(0))* and (M>(0)* ®4(vy A(M") ®4vy M*(0))* are not isomorphic
in general. But they can be proved to be isomorphic when V is rational, see Proposition BE-T-12.
We need to mod out the additional terms L(—1)v+(L(0)v+hs —h3)v in A(M") because otherwise,
the L(—1)-derivation property of the intertwining operators cannot be correctly reflected.
Chapter B is dedicated to the proof of the isomorphism Cor( MIIVIZ/;(Z)ZO)) = (M3(0)* ®AV)
By(M") ®Av) M?(0))*. Given a linear function f on M>(0)* ®A(V) By(M") ®Av) M?*(0), we

M3(0)
M M2(0)

). There is one recursive formula of the corre-

shall use the recursive formulas satisfied by elements in Cor(
M3(0)

M! M2(0)

lation functions (v, Y(a1,z1)...Y(an, z4)v), where v € M(0) and v/ € M(0)*, obtained by

) and reconstruct a Sys-

tem of correlation functions in Cor(

expanding the left-most term Y(aj,z;) (see (2.2.1) in [[73]). However, in our case, this for-
mula alone is insufficient to rebuild the correlation functions from f. The reason is again the
appearance of I(v,w) in the correlation functions, which makes expanding the left-most term
(v,w)in § (vg, (v,w)(ai,z1) ... (au, z,)v2) unreasonable, as the action v(n)a; = Reszw”*hl(v, w)a;
is not yet defined. This explains why we have to introduce an additional recursive formula
for the correlation functions (ICTTl) obtained by expanding the right-most term Y(a,,z,) in
(V3 I, W)Y (a1,21) - .. Y(an, 20)v2), where v € M3(0)* and vy € M*(0). We will use both recur-
sive formulas to reconstruct the correlation functions from f. Then by Theorem @ and B, we have

. . 3 3 3 . .
isomorphisms I(MZIWMZ) = Cor(M}yMz) = Cor(MIIVIA;(;zO)) =~ (M3(0) ®A(V) Bu(MY) ®av) M?*0))*.



This leads to our alternative version of the fusion rules theorem for general vertex operator

algebras:

Theorem 4. Let V be a CFT-type vertex operator algebra, and let M', M?, and M> be V-
modules with conformal weights hi, hy, and hs, respectively. Assume M?(0) and M>(0) are

irreducible A(V)-modules, then we have the following isomorphism of vector spaces:

M(M3(0)*Y M3 3 s | R
_ =] - | = (M°0)* By,(M M=“(0)) , 1.1.3
( w sroroy) =t i (M3(0)" ®@acv) Bi(M") ®av) M*(0)) (1.1.3)
where h = hy + hy — h3. Moreover, if V is rational, then we have an isomorphism:
M? 3 1 2 *
I(M] M2) = (M3(0)" ®av) AM") @av) M*(0)) . (1.1.4)

In particular, Frenkel and Zhu’s fusion rules theorem (IC1-4) holds for rational VOAs.
We call (T3) the generalized fusion rules theorem. Finally, we will use (I'T3) to determine
the fusion rules of the universal Virasoro VOA and the rank-one Heisenberg VOA. The Virasoro

VOA case shows that the counter-example given by Li in [49] does not contradict Theorem 8.

1.2 Rota-Baxter operators and analog of classical Yang-Baxter equa-

tions for vertex operator algebras

The Rota-Baxter identity was discovered independently by G.-C.Rota in [43] and

G. Baxter in [[[0]. This identity is given by the following equation on an algebraic structure F:
P(a) - P(b) = P(P(a)-b) + P(a- P(b)) + AP(a-b), Va,b € F, (1.2.1)

where P is a linear operator, - is a product on the algebra F', and A is a fixed element in the ground
field K. If F = A is an associative algebra, then P satisfying (") is called a Rota-Baxter
operator on A, and (A, P) is called a Rota-Baxter algebra (RBA). The Rota-Baxter identity
arises naturally in many fields of mathematics, and examples of Rota-Baxter operators P are
also quite abundant, see [B1] for more details. A similar identity of this type could also give rise
to the operator form of the classical Yang-Baxter equation (CYBE) [64]. Because of these vast
appearances of the Rota-Baxter type identities, the Rota-Baxter operators have been vigorously

studied on various algebraic structures. See, for instance, [B, 4, B, 32].



Since vertex (operator) algebras are not quite the same as usual algebraic structures,
it is natural to ask if one can introduce a notion of the Rota-Baxter operator for vertex algebras,
which could share certain similarities with the usual Rota-Baxter algebras. Chapter B is our first
attempt at this problem. We define an (ordinary) Rota-Baxter operator of weight 4 € C on a

vertex algebra (V, ;1) to be a linear map P : V — V, satisfying the following relation:
Y(P(a),z)P(b) = P(Y(P(a),z)b) + P(Y(a,2)P(b)) + AP(Y(a,z)b), Va,beV. (1.2.2)

In order to give natural examples of Rota-Baxter operators that satisfy (IC22), we first study
certain sub-algebras of the lattice VOA V| in Chapter B. Since the definition and construction
of these sub-algebras are similar to the Borel sub-algebra of a simple Lie algebra, we will call
them the Borel-type sub-algebras of the lattice VOA. We observe that any additive abelian sub-
monoid M < L corresponds to a sub-algebra Vy, := EBQG M MIA)(I, a) of the lattice VOA L. In
particular, a Borel-type sub-algebra of a lattice VOA V, associated to rank r positive definite
even lattice L is defined by
Vg = @ My(l.a), with B=Zs01&...0Zs00a,,
a€B

where {a1,...,a,} is a basis of L. By definition, Vp is a sub-algebra of the lattice VOA V|,
with the same Virasoro element w as V. Moreover, we will prove that a Borel-type sub-algebra

satisfies the following properties (see Theorem B3 and Proposition B.1A):

Theorem 5. Let B = Z>pa1®...®Zsoa, < L, and Vp be the associated Borel-type sub-algebra

of Vi.. Then Vp is irrational. Moreover, if (ajla;) > 0forall 1 <i # j <r, then Vg is Cy-cofinite.

We give a more thorough study of the rank-one Borel type sub-algebra Vz_, in Sec-
tion B2. In this case, we have a decomposition Vz, = Vz,., ® Vz,_, into vertex Leibniz sub-
algebras (see [56]), and we will show that the projection map P : Vz, — V7 along Vz,_, is
a Rota-Baxter operator of the lattice VOA V7, of weight —1, and P satisfies PL(—1) = L(—-1)P.
Therefore, our definition (I”27) of the Rota-Baxter operators indeed has some natural exam-
ples. We also found the presentation of Zhu’s algebra A(Vz,,) (see Proposition 821 and
Theorem BZX):

Theorem 6. Let L = Za, with (ala) = 2N for some fixed positive integer N, and let V7, =
D, M(1, ma) be the Borel-type sub-algebra. Then A(Vz,o) = C[x] ® Cy, where C[x] is the
polynomial ring, y2 =0, xy = Ny, and yx = —Ny.

7



In the classical theory of Rota-Baxter algebras, the Rota-Baxter identity (") has
an intimate relationship with the so-called dendriform relations given by Loday in [8Y], see
[BT, R, @] for more details. And the dendriform relations are the axioms satisfied by a pair
of (underlying) operators (<, >) that form the associative product a -b = a < b+a > b.
Note that a vertex algebra (V, ¥, 1, D) can be equivalently defined as a vector space V, equipped
with a vertex operator Y, a linear map D : V — V, and a vacuum element 1, satisfying the
truncation property, the vacuum and creation properties, the D-(bracket) derivative property,
and the weak associativity (see [9, B7, 54]). We may also view the vertex operator Y as the
“product” on V. Therefore, we can introduce a notion of dendriform vertex algebra (V, <., >, D)
that generalizes the usual dendriform (associative) algebra, see Definition B23. Then it relates
to the Rota-Baxter operators on VOAs as follows (see Theorem B2H, Theorem BZ26, and
Proposition B2ZT5):

Theorem 7. Let (V,Y,1) be a vertex algebra, and let P : V — V be a Rota-Baxter operator on
V of weight O such that PD = DP. Define:

a<;b:=Y(a,2)Pb), a>;b:=Y(P(a),z2)b, VYa,beV. (1.2.3)

Then (V, <;, >, D) is a dendriform vertex algebra.

On the other hand, let (V, <., >, D) be a dendriform vertex algebra. Define:
Y(a,2b :=a<,b+a>,b, Va,beV, (1.2.4)
then (V, Y, D) is a vertex algebra without vacuum. Moreover, let
Yw : V - End(V)l[z. 2 "), Yw(a,2)b:=a>.b, Va,b,eV.
Then Yy defines a representation of (V,Y, D) on V itself, where Y is given by (IZZ34).

The Rota-Baxter operators are also closely related to the classical Yang-Baxter equa-
tions for both Lie algebras [b4, 45] and associative algebras [R]. Chapter [ is dedicated to
exploring such relations in the VOA context. The (parameter independent) classical Yang-
Baxter equation (CYBE) is an algebraic equation satisfied by a skew-symmetric two tensor

r=Y,a;®b; € g® of a Lie algebra g:

[r12, r13] + [r12, 23] + (113, 723] = 0, (1.2.5)
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where rip = X,;,a;b;®1,ri3 =2,;a;9 1 ®b;, and 13 = 3; 1 ® a; ® b; are elements in U(g)®3.
The CYBE (I”23) was obtained by taking the semi-classical limit of the quantum Yang-Baxter
equation: Ryp(uy, up)R13(u1, up)Ro3(uy, up) = Roz(uy, uz)Ry3(uy, up)R12(u1, up) discovered inde-
pendently by C.N. Yang in [[Z1] and R.J.Baxter in [IT]. The parameter independent CYBE
(CX3) was first studied by Belavin and Drinfeld in [S8]. They proved that the skew-symmetric
solutions to (I"23) can give rise to a notion of Lie bialgebras. On the other hand, by using the
natural isomorphism of vector spaces:

g®g = Hom(g",9), r = Z a;®b; = R, where R(f)= Z alf.bi), Vfeg’, (1.2.6)

i i
Semenov-Tian-Shansky gave an operator form of the CYBE in [64]. Under this isomorphism,

(CX3) translates to a relation:

[R(f), R(®)] = R(ad"(R(/))(g)) — Rad"(R(&)(/), Vf.geg, (1.2.7)

where ad® : g — gl(g") is the coadjoint representation. In particular, if g = g* as g-modules,

then (IC2717) is equivalent to the following equation:

[R(f), R(&)] = R([R(f), gD = R([R(2), [, Yf.g€q. (1.2.8)

Semenov-Tian-Shansky called R : g — g satisfying (I”Z®) an R-matrix and the equation (I"ZH)
the operator form CYBE. Observe that R satisfying (I"2R) is precisely a Rota-Baxter operator
of the Lie algebra g of weight 0, see [4, B1]. The operator form CYBE was first generalized
to the VOA case by Xu in [A9] as we mentioned in Section B1l. However, there was only the
operator form generalization of the R-matrix for Lie algebras given in [[Z0], and it is the same
as an RBO for VOAs of weight 0 given by (IC272)

Semenov-Tian-Shansky’s approach was later generalized to arbitrary representations
of the Lie algebra g by Kupershmidt in [43], wherein he introduced a notion of -operators
(relative Rota-Baxter operators) for Lie algebras associated to a module V over g, which is a

linear map 7 : V — g such that
[Tw),TW] =TT w).v)—T(T(W).u), Vu,velV. (1.2.9)

He also proved that skew-symmetric solutions r to the CYBE (ICX3) are in one-to-one corre-

spondence with the -operators 7 : g* — g. On the other hand, Bai proved in [2] that an arbitrary
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-operator 7' : V — g can also give rise to solutions to the CYBE (I”X3) in the semi-direct prod-
uct Lie algebra g > V*.

In this Chapter [, we will generalize these relations between O-operators and skew-
symmetric solutions to the CYBE to the VOA case. In particular, by using a generalized version
of the RBO for VOA we call relative RBO for VOA, we will give a tensor form analog of the
Classical Yang-Baxter equation for VOAs. In particular, for each index m in the vertex operator

Y (a, Z) = Zmez am?l 1, we have an equation:
ri2 riz—n -~ ) + 7 ' 3 = 1.2.1
12 ‘'m 13 3'm 1 13 °'m 3 0. ( oL 0)

In this equation, r is in the completion V®V of the tensor product V ® V with respect to the
natural filtration of V ® V, and the three products -, -, and -, are constructed from the vertex
operator Y. We call this equation the indexed m-vertex operator Yang-Baxter equation (m-

VOYBE). Note that (I"Zf) can be generalized to the complete tensor case:

[ [vievi=] [Hom(V;,v)) = Homip(V', V), 7> T, (1.2.11)
t=0 t=0

where Homp p(V’, V) is the space of level-preserving linear maps f : V' — V, with f(V;) C V,,
for all # € N. Then we have the following theorem that relates Rota-Baxter operators on VOAs

with the vertex-operator Yang-Baxter equation (see Theorem [Z1T11):

Theorem 8. For a given m € Z, r is an skew-symmetric solution to the m-VOYBE if and only if
the corresponding T, : V' — V given by (LZT) is a level-preserving m-relative RBO, that is,
for any f,g € V', the following equation holds:

T ()mTr(g) = T(Tr(fImg) + T(f(m)T(g)), (1.2.12)

where T,(f)mg = Res2" Yy (T(f),2)g and f(m)T,(g) = Res.2" Yy, (f, DT (g).

This theorem is a generalization of the Semenov-Tian-Shansky and Kupershmidt’s
results for the correspondence between RBOs and skew-solutions to the CYBEs of Lie algebras
[64, 45]. On the other hand, in order to solve the VOYBE, we can use relative RBOs of VOAs
and find solutions in the semi-direct product of a VOA V with the contragredient module W’.
However, unlike the Lie algebra case, we need a relative RBO T : V — W to satisfy some
compatibility conditions with the intertwining operators formed by contragredient modules.
We call such relative RBOs the strong relative RBOs on VOAs. Then we have the following
(see Theorem [239):
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Theorem 9. Let V be a VOA, W be an (ordinary) V-module of conformal weight 0, U = V < W’
be the semi-direct product VOA, T € Homy p(W, V) be a level-preserving linear operator, and r

beT —-T* € U@, where T?! = o(T). Define r1», r13, and ry3 as follows:

©  Pr

r :Z(;Z TOH® W) ®I- () @T(W) eI,
00 Ps

ryi= ) Y TeHeIew) -0 eleT()),
s=0 k=1
o Pr

3= ) S IRTON® W) — 18 () @ T()).

Il
(=]

r =1

Let m € Z. Then r is a skew-symmetric solution to the m-VOYBE in the VOA U = V < W' if and
only if T : W — V is a strong m-relative RBO.

This theorem is a generalization of Bai’s result for solving the CYBE with -operators
of Lie algebras [@]. Finally, by restricting everything to the first-level Lie algebra, we also show
that the results of Kupershmidt in [A5] and Bai in [4] can be recovered by our general result
Theorem B and Theorem B.

We fix some conventions that will be in force throughout this thesis:

(1) The symbols Z, Q, R, and C represent the set of integers, rational numbers, real numbers,

and complex numbers, respectively.
(2) All vector spaces are defined over the complex number field C, unless we state otherwise.
(3) N represents the set of natural numbers including zero: N = {0,1,2,3...}.

(4) The power series expansion and Laurent series expansion of a complex valued function

are both called the “power series expansion".

(5) When we use the integral sign fc f(2)dz, where C is a simple closed contour of z, it means

sm | f(2)dz.
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Part I

Correlation functions and fusion rules

of vertex operator algebras
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Chapter 2

Basics of vertex operator algebras

This Chapter is about the basics of vertex operator algebras (VOAs). We will recall
some previous known definitions and related constructions of VOAs, and present some new
discoveries about the basic concepts. We will also give some reinterpretations and alternative
proofs of the known results along the way.

Section 2.1 recalls the notions of vertex operator algebras (VOAs), modules over
VOA:s, the intertwining operators, and some related definitions and properties. In Section 2.2,
we recall the definition of Zhu’s algebra A(V) and the C,-algebra R(V), and then present some
new discoveries about the A(V) for strongly finitely generated VOA V. We will also study the
relations between R(V) and the graded algebra grA(V) for some classical examples of VOAs. In
Section 2.3, we first recall the definitions of derivation and automorphism of VOAs, and then
prove that all derivations of some classical examples of rational VOAs are inner derivations.
We will use the closed subgroups of the full automorphism groups and define the generalized
orbifold and commutant sub-VOAs. We will also give a generalized notion for the derivations,
called the A-differentials for VOAs. Finally, in Section 2.4, we recall the definition of the cor-
relation functions on the Riemann sphere associated with a module over VOAs as a preparation
for the next Chapter. Then we will give a reinterpretation of the equivalency between the Jacobi
identity of VOAs and the locality and associativity axioms of correlation functions. We will also
generalize the system of correlation functions associated with ordinary modules over VOAs to

twisted modules and prove some basic properties.
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2.1 Preliminaries

Borcherds gave the notion of vertex algebra in [IZ], later it was enhanced to the notion
of vertex operator algebra by Frenkel, Lepowsky, and Meurman in [?9], wherein the key axiom,
Jacobi identity, was interpreted by formal variables approach. We skip the recap of formal
calculus and refer to [274, [/3] for more details. Most of the definitions and related results in this

subsection can be found in [12, 16, 29, 74, 85, [73].

Definition 2.1.1. A vertex algebra (VA) is a triple (V, Y, 1) consisting of a vector space V, a

linear map Y called the vertex operator map or the state-field correspondence:

Y :V — (End V)[[z,z '],

a—Y(a,z) = Z a,z"" (a, € End V),

nez

and a distinguished element 1 € V called the vacuum vector, satisfying the following axioms:
(1) (Truncation property) For any a,b € V, a,b = 0 when n > 0.
(2) (Vacuum property) Y(1,z) = Idy.
(3) (Creation property) For any a € V, Y(a, 2)1 € V[[z]] and }1_1)% Y(a,2)1 =a.

(4) (The Jacobi identity) For any a,b € V,

- -2+
zgla(mz—zz) Y(a,21)Y(b,22) - zgla(%) Y(b,22)Y(a,21)
0 0 @2.1.1)
- zglé(mz—“) Y(Y(@. 20)b. 22).
2

A vertex algebra V is said to be generated by a subset S C V if

V= span{aélaﬁz...azrb:r20,n1,...n,EZ, a',....d,beS}.

V is called finitely generated if there exists a finite set S that generates V.

The Jacobi identity (Z111) has a component form (cf.[T2]):

3 i ! N +i [ = m
;(—1) (l,)am+l—ibn+i - ;(_1)1 (i)bn+l—iam+i = Z ( ; )(al+,‘b)m+n_,‘, (2.1.2)

i=0
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forall a,b € V, and m, n,[ € Z, which can be obtained by multiplying (ZZT1) with (z; —zz)lz’f’zg,

then take the residue Res; Res; Res;,. The Jacobi identity (ZT°T) has the following equivalent

characterization, see [I6, B, 7]:
Theorem 2.1.2. Let (V,Y,1) be a vertex algebra, then it satisfies the following properties:

(1) (locality) For any a,b € V, there exists some integer k € N such that
(@1 = 2 Y(a,20Y (b, 22) = (@1 = 2) Y (b, 22)Y (@, 21). (2.1.3)

(2) (weak associativity) For any a, b, c € V, there exists some integer k € N (depending on a

and c) such that

(20 + 22)*Y(Y(a, 20)b, 22)c = (20 + 22)*Y (@, 20 + 22)Y (b, 22)c. (2.1.4)

Moreover, if Y : V. — EndV[[z,z7'1] is a linear map that satisfies the truncation property, then
the Jacobi identity of Y in the definition of vertex algebra is equivalent to the locality and weak

associativity.

Let (V,Y,1) be a vertex algebra. Define a linear operator D : V — V by letting
Da :=a_;1,foralla € V. Then (V, Y, D, 1) satisfies the D-derivative property:

d
Y(Da,z) = —Y(a,2), (2.1.5)
dz
the D-bracket derivative property:
d
[D’ Y(a9 Z)] = _Y(a9 Z)9 (2.1.6)
dz
and the skew-symmetry:
Y(a,2)b = €PY (b, ~2)a, 2.1.7)

where a, b € V. (ZI3) and (Z-16) together are called the D-translation invariance property.

On the other hand, a vertex algebra also has the following equivalent definition, see [55, &4]:

Theorem 2.1.3. A vertex algebra (V,Y, D, 1) is a vector space V, equipped with a linear map
Y :V — End(V)[[z.z7 '], a distinguished vector 1, and a linear map D : V — V, satisfying
the truncation property, the vacuum and creation property, the D-bracket derivative property

(ZI8), and the locality (-13).
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Definition 2.1.4. A vertex operator algebra (VOA) is a quadruple (V, ¥, 1, w), where (V, Y (-, 2), 1)
is a Z-graded vertex algebra: V = @nez V., such that 1 € V), dimV,, < oo for each n € Z, and
V. = 0 for n sufficiently small. w € V; is another distinguished element called the Virasoro
element. When we write Y(w,z) = >,z L(n)z7"2, that is, L(n) = wy for each n € Z, the

following additional axioms are satisfied:
(5) (The Virasoro relation)
[Lm), L(n)] = (m — n)L(m + n) + %(nf — M)pen0C,
where ¢ € C is called the central charge (or rank) of V.
(6) (L(—1)-derivation property) D = L(-1), and
dizY(a’ 2) = Y(L(-1a,z) = [L(-1), Y(a, 2)].
(7) (L(0)-eigenspace property) L(0)a = na, for all a € V,, and n € Z. We call n the weight of
a homogeneous element a € V,,, and write wta = n.

A VOA V is said to be of the CFT-type, if V = Vy @& V., where Vy = Cl and V, = @:;1 V,. In
the rest of this thesis, we will sometimes denote a VOA (V, Y, 1, w) by V for simplicity when no

confusions occur.

Definition 2.1.5. Let (V, Y, 1, w) be a vertex operator algebra, a weak V-module (W, Yy) is a

vector space W, equipped with a linear map

Yw : V — End(W)[[z,z"'1],
ar Yy(a,)= ) amz"",

nez

satisfying the following axioms:
(1) (Truncation property) For any a € V and u € W, we have a(n)u = 0 for n > 0.
(2) (Vacuum property) Yw(1, z) = Idy.

(3) (The Jacobi identity) For any a,b € V,and u € W

—22 + 21

%'s (Z‘ Z_ Zz) Yw(a, 21)Yw (b, 22)u - za‘é( ) Y (b, 22)Yw(a. 2)u
0

(2.1.8)

. (z1—z
= Z215( IZ O) Yw(Y(a,z20)b, 20)u.
2
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A weak V-module W is said to be generated by a subset S € W if
W = span{al(nl)az(ng)...ar(nr)u cr>0,ny,...n,€2Z,a',...,a €eVueS).

A weak V-module W is called admissible (or N-gradable) if W = @neN W(n), and
amW(n) ¢ W(wta —m — 1 + n) for all homogeneous a € V,m € Z, and n € N. For v € W(n), we
call n the admissible degree of v, and write degv = n.

An ordinary V-module is an admissible V-module W such that dim W(n) < oo for
each n € N, and each W(n) is an eigenspace of L(0) = ReszYw(w, z) of eigenvalue A + n, where
A € Qs a fixed number called the conformal weight of W. We denote W(n) by W, for all

n, and write W = @ Wsn. In particular, (V,Y) itself is an ordinary V-module called the

neN
adjoint module. By convention, when we say that M is a V-module, it means that M is an

ordinary V-module.

Remark 2.1.6. Let (V,Y, 1, w) be a VOA, and (W, Yy ) be a V-module. In the rest of this thesis,
when no ambiguities occur, we sometimes also write Y(a,z) = 3,.cz a(n)z"~!. For the module
vertex operators, sometimes we write Yy (a,2) = ez @,z "'. The notations of these vertex

operators depend on our contexts and references.

The Jacobi identity (ZZI-R) also has a component form that is similar to (ZZT-2):

Z(—l)i(i)a(m +1—)b(n + i — Z(—l)l”(i)b(n + 1= a(m + iu
=0 =0 (2.1.9)
m . .
= Z ( ; )(a(l + Db)(m +n —i)u,
i=0

where a,b € V, u € W, and m,n,l € Z. Let (W,Yy) be a weak module over a VOA V.
If we write Yyy(w,2) = ez L(n)z7"72, it is proved in [20] that Yy also satisfies the L(—1)-
derivative property and the L(—1)-bracket derivative property: Yw(L(-1)a,z) = d%YW(a, z) =
[L(=1), Yw(a, 2)].

Zhu gave the notion of rational VOA in [[3], and the concept was later simplified by

Dong, Li, and Mason in [I].

Definition 2.1.7. A VOA V is called rational if the admissible V-module category is semisim-

ple. i.e., any admissible V-module M is a direct sum of irreducible admissible V-modules.
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The notion of intertwining operator for VOA were defined in Section 5.4 in [27]. Let

Vizh = {2 eqan” : ay € V.Vn € Q} be the set of V-valued series with rational powers.

Definition 2.1.8. Let V be a VOA, and (M, Y1), (M?,Y,,2), and (M?, Y,;3) be V-modules. An

intertwining operator of type ( M[]”;ﬂ) is a linear map

I(,w) : M' = Hom(M?, MD){w}, I(v,w) = Z vaw " (v e MY, v, € Hom(M?, M?)),
neQ

satisfying the following properties:
(1) (Truncation property) For any u € M2, v,u = 0 when n > 0.
(2) (L(—1)-derivative property)

d
I(L(-1)v,w) = %I(v, w), VYveM!, (2.1.10)

(3) (Jacobi identity) Forany a € V,v e M', and u € M?,

1.2
z016( L~

+
)YMz(a 2)I(v,22)u —zolé(—z Zl)l(v, 2)Yap(a, z0)u
0

(2.1.11)
=20 (Zl Z_z <0 ) I(Yyp(a, z0)v, 22)u.
The vector space of intertwining operators of type ( Mﬂ” M2) is denoted by ( M MZ) and its di-
mension is denoted by
3 M3
N = dimI(Ml M2)' (2.1.12)

The numbers Ny M 42 are called the fusion rules associated with the VOA V and modules.

Let M', M?, and M? be V-modules, with conformal weights hy, hy, and h3, respec-
tively, and let I € I( v M2) be an intertwining operator. Recall that I(v,w) = 3,cz v(im)w ™! .
w" where h = h; + hy — h3, and v(n) = Res,, I(v, w)W"™". Moreover, v(n)M?(m) C M3(degv -
n—1+m)foralln € Z and m € N, see Proposition 1.5.1 in [30] for more details.

We conclude this section by recalling the definition of contragredient modules of
modules over VOAs. Let V be a VOA, and (M, Y),) be an ordinary V-module. Let M’ be the

graded dual space M’ := €, M(n)*, and let Yy : V — End(M")[[z,z"']] be given by
Farr(a, 2V, v) = O, YVag(eH D (=270, 27w, (2.1.13)
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foranyv' e M’,ve M,anda € V. Then (M’, Yyy) is a V-module of the same conformal weight
with M, and it is called the contragredient modules of M. See Section 5.3 of [7] for more

details. We note that (ZZT-13) also has a component form:

-1 wta .
(apV',vy = Z( j), v, (LYY a)awia—n—j-2V), (2.1.14)
j=0 ’

forn € Z, a € V homogeneous, ve M, and v € M’.

2.2 Zhu’s algebra A(V) and the C,-algebra R(V)

The notion of Zhu’s algebra A(V) and the C,-algebra R(V) = V/C,(V) were both
defined by Zhu in [[73]. Similar to C»(V), there is the notion of C;(V) for CFT-type VOAs given
by Li in [51], which is closely related to the strongly finitely generation property of a VOA. In
this subsection, we will first recall these concepts and related results, then prove a noetherian
property of A(V) for certain finitely generated VOAs. The main content of this section can also
be found in [87].

First, we recall the definition of A(V), see [B0, [Z3] for more details. Let V be a VOA,

for homogeneous elements a, b € V, define:

1 wta t
aob = ResZY(a,z)b% = (W,“)a jab, 2.2.1)
z i\
=
1 wta t
axb = Res,¥(a,p T2 > (W_")a i1b. (222)
N =0

Let O(V) = spanfaob : a,b € V},and let A(V) = V/O(V). Fora € V, we denote a+O(V) € A(V)
by [a] as in [[/3]. By Theorem 2.1.1 in [[73], O(V) is a two-sided ideal with respect to *:

axO(V)ycOV), and OWV)xac OV), (2.2.3)

for any a € V. And A(V) is an associative algebra with respect to *, with the unit element [1].

By Lemma 2.1.3 in [[73], we have the following formulas:

1 wtbh—1
axb=Res.Y(b, a2 (mod O(V)), (2.2.4)
Z
axb—bxa=Res,Y(a,z)b(1l + z)wm_l (mod O(V)), (2.2.5)
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for any homogeneous a, b € V. Furthermore, if m > n > 0, we have:

(1 + Z)Wta+n

Res,Y(a, 2)b on =0 (mod O(V)). (2.2.6)
Z

m

By Theorem 2.1.2 in [[73], for any admissible V-module M = @20:0 M(n), the bottom

level M(0) is a module over A(V) under the action:
A(V) = End(M), [a] » o(a) = awa-1-

Furthermore, by Theorem 2.2.1 in [[73], given an irreducible A(V)-module U, there exists an ad-
missible V-module W such that W(0) = U, and there is an one-to-one correspondence between
irreducible V-modules and irreducible A(V)-modules.

Let V be a CFT-type VOA, then A(V) has a filtration: A(V)y C A(V); CA(V), C...,
where A(V), is the image of @:’:O V; € Vin A(V). We call this filtration the level filtration of
A(V). Itis clear that [1] € A(V)o, [w] € A(V)2, and by (Z222), we have [a] * [b] € A(V)p4n, for
[a] € A(V),, and [b] € A(V),.

These properties indicate that A(V) is a filtered algebra (one can find more details

about the filtered algebras in [b0, 67]), and we have the associated graded algebra:

grA(V) = P AWVIAV )1 = @AV, 2.2.7)
n=0 n=0
where (grA(V)), = A(V),/A(V),-1 for each n > 0, and A(V)_; = 0. For [a] € A(V),, we denote

the image [a] + A(V),—1 in grA(V) by [a]. For [a] € A(V),/JA(V)p—1 and [b] € A(V),,/JA(V)p-1,

their product is given by

[a] * [b] = [a] * [b] € AV )msn/ANV Dman-1. (2.2.8)

2.2.1 The notherianess of A(V) for C,-cofinite VOAs

Lemma 2.2.1. grA(V) is a commutative Poisson algebra with the product and the Lie bracket
given by:

[a]  [b] = [a-1D] + A(V)min-1 € (FA(V)mn, (2.2.9)

{lal, [p]} = [aob] + A(V)min—2 € (ZrA(V))min-1, (2.2.10)

for all [a] € A(V)/A(V )1 and [b] € A(V)n/A(V),_1, where m,n € N.

20



Proof. By (E2Z1I) and (ZZXR), we have:

wta

[a]  [p] = [a- 1b]+2( )[a, 6] = [a_1b]

since wt(a;_1b) = wta + wtb — j < m+n — 1 for any j > 1. Thus [a;_1b] € A(V);4,-1 and
[a;-1b] = 0in A(V)p4n/A(V)msn-1. Moreover, by (Z23) and (ZXX), we have:

wta—1

[+l - Bl fal = ) (W“‘j‘ 1)[%—.;)]:0

j=0
since wt(a;b) = wta + wtb — j—1 < m+n —1 for all j > 0. This shows that grA(V) is a
commutative algebra over C. It follows from a standard fact of filtered rings (cf. [BZ]) that

grA(V) is a Poisson algebra with respect to the bracket
{[al, D1} := [al * [b] = [b] * [a] + AV)rn-2 € (AV ) mtn-1-

Since we have [a] * [b] — [b] * [a] = [agh] (mod A(V);,4+n-2), it follows that grA(V) is a com-

mutative Poisson algebra with respect to the bracket given in (Z2710). O

The notion of a strongly generated vertex operator algebra is defined by Kac in [£4]:
Definition 2.2.2. Let V be a VOA, and let U C V be a subset. V is said to be strongly generated
by U if V is spanned by elements of the form:

1 r

a_p, ...a_, u,

1

where a',...,a",u € U, and n; > 1 for all i. If V is strongly generated by a finite-dimensional

subspace U, then V is called strongly finitely generated.
Let V be a VOA, the following notions were given by Zhu in [[73]:
Cy(V) =span{la_sb:a,b eV}, and R(V):=V/Cy(V). (2.2.11)

V is called C,-cofinite if R(V) is a finite-dimensional vector space. It is also proved by Zhu in

[[73] that (R(V), -, {-,-}) is a commutative Poisson algebra, where

@+ C(V))-(b+Cao(V)) : =a_1b+ Cy(V), (2.2.12)
{a+ Ca(V), b+ Ca(V)} : = aph + Co(V), (2.2.13)
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Let V = Vo @ V, be a CFT-type VOA, the subspace C{(V) was defined by Li in [5T]:
Ci(V):=span(fa_1b:a,be V,}Ulasl:aeV}). (2.2.14)

The following result was essentially proved by Li, see Theorem 4.11 in [50]:

Proposition 2.2.3. Let V be a CFT-type VOA, and let U C V. be a graded subspace. The

following conditions are equivalent:
(1) V is strongly generated by U.
(2) Vo =U + C(V), where C1(V) = span({u-1v : u,v € Vo) U{L(=Du : u € V}).
(3) (U + C2(V))/Cy(V) generates V/Cr(V) as commutative algebra.
The following well-known fact about filtered rings can be found in [b0]:

Proposition 2.2.4. Let R be a filtered ring such that grR is left noetherian, then R is left noethe-

rian.

Theorem 2.2.5. Let V be a CFT-type VOA. If V is strongly finitely generated, or equivalently,

C-cofinite, then A(V) is (left) noetherian as an algebra.

Proof. First, we show that there is a well-defined epimorphism of commutative Poisson alge-

bras (a similar epimorphism was discovered by Arakawa, Lam, and Yamada in [2]):

¢ R(V) = V/Co(V) — grA(V) = @A(V)H/A(V)n—la
n=0 (2.2.15)

a+ CyV) - [a] € A(V),JA(V),—, fora e V,.

To prove (Z2Z139), first define ¢ : V = @:’:0 Vi = grA(V) : ¢p(x1 + -+ X)) =X + -+ + X,
where x; € V,, and x; € A(V),,/A(V),,—1 for all i. It is clear that ¢ is linear. We claim that
@(C2(V)) = 0. Indeed, let a_,b be a spanning element in C(V), with a € V,, and b € V,,, where
m > 1and n > 0. Then a_sb € Vype1 and ¢(a_sb) = [a_2b] € AV)pmins1/A(V)min. Recall
that L(—1)a + L(0)a = 0 (mod O(V)). Thus a_»b = (L(-1)a)-1b = (—L(0)a)_1b = —ma_1b
(mod O(V)), with wt(a_1b) = m + n. Hence [a_»b] = —m[a_1b] = ﬁ n AV)pmans1 /ANV) man.
Thus, ¢(C>(V)) = 0 and ¢ in (E2213) is well-defined.
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Since A(V), is the image of @?:0 V, in A(V), itis clear that ¢ is surjective. Moreover,
by (E212), (2 13), and Lemma D11, we have:

P((a+ Co(V)) - (b + Co(V)) = pla-1b + C2(V)) = [a-1D] + A(V)wiarwid
= ¢la+ Co(V) * ¢(b + Co(V)),

p(la + C2(V), b + C2(V)})) = ¢laoh + Co(V)) = [aob] + A(V)wia+wiv-1
= {pla+ Co(V)), (b + C2(V))}.

for all homogeneous a, b € V. Therefore, ¢ given in (Z219) is an epimorphism of commutative
Poisson algebras. Now let U = span{x!,..., x"} be a subspace that strongly generates V. By
proposition 223, V/C»(V) is generated by (x! + Co(V),...,x" + C2(V)} as an algebra. In
particular, V/C»(V) is finitely generated, and so its image grA(V) under the epimorphism ¢ is
also finitely generated. Thus grA(V) is noetherian, and so A(V) is also (left) noetherian by
Proposition 724 O

Proposition 2.2.6. The epimorphism ¢ in (Z2Z13) is an isomorphism if and only if the following
condition holds: For any a = a1+---+a, € O(V), witha; € V,, foreachiandn; <ny < --- < n,,

the highest weight summand a, of a belongs to C>(V).

Proof. By the proof of Theorem X3, we already have C»(V) C ker¢. Then ¢ is an isomor-
phism if and only if C>(V) = ker ¢. Also, note that ¢ in (2213) is grading preserving. Assume
the condition for O(V) is true, let x + C,(V) € ker ¢ with x € V,, we have x + O(V) € A(V),,—1,
and so there exists y € EB?:_()I Vi such that

x—y=a=ay+---+a, € 0V),

with a; € V,, for each i and ny < n, < --- < n,. By comparing the highest-weight elements
on both sides of this equation, we have x = a, € C,(V). Hence C(V) = ker¢, and ¢ is an
isomorphism. Conversely, assume C2(V) = ker¢. Leta = a; +--- + a, € O(V), with a; € V,,

foreachiand n; < ny < ... < n,, we have:
a,+0\V)=—-a;—ay—---—a,_1 +0(V)

in A(V),,. But the right hand side lies in A(V),,—1 asn; < np < --- < n_; < n, — 1. Hence

#(a,) =a, =0 € A(V),, /A(V)n,-1, and a, € ker ¢ = Co(V). O
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2.2.2 The graded algebra grA(V) and R(V)

Although the condition for O(V) in Proposition 28 is obvious for the spanning
elements of O(V) since aob = a_sb + 3 ;5 (W;.“)a j—2b by definition, and wt(a;j—2b) < wt(a_b)
for all j > 0, it is not true for a general element };’_, u' o V' in O(V) since the highest weight
components u' 2vi may cancel with each other. But for certain examples of VOAs, especially
the VOA s that are also universal highest weight modules over infinite dimensional Lie algebras,
we do have the isomorphism R(V) = grA(V) as commutative Poisson algebras, and it can be

proved in different ways.

Proposition 2.2.7. Let g be a finite-dimensional Lie algebra, equipped with a non-degenerated
symmetric invariant bilinear form. Let V be the vacuum module VOA V4(k,0) of level k € C in
[30], then we have: R(V5(k,0)) = grA(V(k, 0)).

Proof. By Proposition 5.16 in [ZT], we have:
R(V4(k,0)) = S(g), with ad'(-1)...d D1+ Cy(V)» d'd®...d,

for a',...,a" € g. On the other hand, we have the following identification of the Zhu’s al-
gebra, see Section 3 in [B0]: A(V5(k,0)) = U(g), with [a'(=1)...a"(~1)1] — d"...a'. Then
A(V5(k,0)), = spanf{[a'(-1)...a"(-D1] :d' €9, 0 < r <n} =spanfa”...a' :d' €9, 0<r<
n} = U(Q)n, for each n € N, where {U(g),},, is the standard filtration of U(g). Hence

grA(V5(k, 0))(= grU(g)) = S(9),
[a'(=1)...a" (D1 +A(V),.; > d ... =d'...d".
It follows immediately that we have an isomorphism:

R(V5(k, 0)) = grA(Vs(k, 0)),

(2.2.16)
d'(=1)...a"(~D1+ Co(V) > [a' (=1)...d" (=D1] + A(V),_,,

and the morphism (Z2T8) is exactly the linear map ¢ in (Z2Z19). O

By adopting a similar method, it is easy to show that R(Mg(k, 0)) = grA(ME(k, 0)),
where M[A)(k, 0) is the Heisenberg VOA of level k, and the isomorphism if given by ¢ in (Z213).

Proposition 2.2.8. Let V = V(c,0) = V(c,0)/{L_11) be the Virasoro VOA associated with the
(universal) highest weight module V(c,0) (cf. [30]). Then

R(V(c,0)) = grA(V(c,0)).
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Proof. Recall that V(c,0) = span{L_,, ...L_, 1 : k > O,n; > np > --- > ng > 2}, and the

spanning elements are linearly independent. Thus, we have a linear isomorphism:
R(V(c,0)) = span{(L_5)"1 + Co(V) : n > 0} = C[y], (L)"1+Cr(V) > y", YreN.

On the other hand, it is proved by Wang in [b¥] that there is an isomorphism of algebras:

A(V(c,0)) = C[x], [w]" — x", for all n € N. Moreover, we have the following facts in [6R]:
L,=(D)"(n— 1)L+ L)+ L) (mod O(V(c,0))),

and [b] * [w] = [(L—p + L_1)b] for any b € V(c,0). Thus [L_y, ...L_, 1] = P([w]) in A(V(c,0)),
where P(x) € C[x], with deg P < k. So the level filtration of A(V) satisfies:
A(V(c,0)), = span{[L_p, ... L.y, 1] : k> 0,01 + -+ + ng = n,n; > 2,Vi}
= span{P([w]) : deg P < k < |n/2]}
= span{[1], [w], [0],....[w]" : r < [n/2]},
for all n € N. In particular, A(V(c,0))2, = A(V(c,0))2p+1 = span{[1], [w], ..., [w]"}, for all

p € N. But we also have a filtration {F,C[x]},en of C[x], where F>,C[x] = F5,,1C[x] =

span{l, x, x2,..., xP}. We have an isomorphism under this filtration:

er’Clx] = @ Fa,Clxl/F2p1Clxl = Clyl,  x” + F2p1Clx] > 7, Vp € N,
p=0

Moreover, we observe the following fact in A(V(c, 0))2,/A(V(c, 0))2p-1:
[w]” + A(V(c,00)2p-1 = [(La + Lo)P1] + A(V(c,0))2p-1 = [(L2)P1] + A(V(c, 0))2p-1-

It follows that we have an isomorphism:

Py(V(c,0))(= Cy]) = grA(V(c, 0)),
) . (2.2.17)
(L2)P1+ Co(V) = [0l + A(V(c,0))2p-1 = [(L2)"1] + A(V(c,0)), Yp € N.
The morphism (Z2T7) is the same as ¢ in (ZZ2Z13). O
Now we give a counterexample showing that R(V) is not generally isomorphic to
grA(V). Let L be a positive definite even lattice. The lattice VOA V; was defined by Frenkel,

Lepowsky, and Meurman in [29]. For certain lattice L, R(Vy) is not isomorphic to grA(Vy).

25



Example 2.2.9. Let L = Eg be the root lattice of type Eg. It is well-known that this lat-
tice is unimodular. Dong proved in [[3] that Vg, is rational, and its adjoint module is the
only irreducible module. The bottom level of this module is C1. By Theorem 2.2.1 in [[73],
dimA(Vgg) = 1 = dim grA(VE,).

On the other hand, for any CFT-type VOA V, we have ViNC(V) = 0 since wt(a_b) =
wta + wtb + 1 > 2, for any nonzero a_»b. Hence dim P»(VEg,) > dim(Vgg); > rankEg = 8 >
dim grA(VE,). In fact, a similar argument also shows that dim R(Vy) > dim grA(Vy), for any

unimodular lattice L.

Proposition 2.2.10. Let L = Za be the positive definite lattice of rank 1, with (a|a) = 2k, where
k € Z.o. Then we have R(Vz,) = grA(Vzy).

Proof. Since ¢ : R(Vz,) — grA(Vz,) in (Z2Z139) is already an epimorphism, we only have to
show that dim R(Vz,) = dim grA(Vz,).

Consider the dual lattice L° = |_|ﬁ:_k gL+ %{af. By Theorem 3.1 in [I3], the irre-
ducible Vz, modules are Vitlas for —k + 1 < n < k. When n = k, the bottom level of V, 1o is
Ce®? @ Ce=/2, When |n| < k, we have (ma + wlma + spa) = (m + z”—k)z(aflaf) > (z”—k)z (o),
for all m € Z\{0}, since m> + %m > 0. So the bottom level of VLJ%C, is one-dimenional for every

—k + 1 < n < k. Thus, by Theorem 2.2.1 in [[73],
dim grA(Vzg) = dimA(Vzy) = 2% + 2k — 1) - 12 = 2k + 3.

On the other hand, by Proposition 5.19 in [21], R(Vz,) is a quotient of the polynomial algebra
C[X, Y, Z], modulo the relations: X% = Y2 = XZ = YZ = 0,XY = ﬁZZk. In particular, R(Vy)

has a basis 1,X,7,Z,...,Z%1, 72k = 2k)!XY. So dim R(Vz,) = 2k + 3 = dim grA(Vz,). O

Remark 2.2.11. By Example 229 and Proposition 211, for an affine VOA I5(k, 0) with pos-
itive integer level k, the C, algebra R(L(k, 0)) may or may not be isomorphic to grA(L5(k, 0)).
Indeed, since L = Eg is a simple laced root lattice, the lattice VOA Vg, is isomorphic
to the affine VOA Lg’E;(l,O) (see [B0O, 2Y9]), where gg, is the simple Lie algebra whose root
system is of the type Eg. By Example "9, R(Lg;_g(l, 0)) # grA(L&;(l, 0)).
On the other hand, L = Za with (ala) = 2 is the root lattice of type A;. Hence
V= L@(l ,0) as VOAs. Then by Proposition 210, we have R(L;l;(l ,0)) = grA(LE(l ,0)).
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The notherianess of A(V) has the following application. Let V be a VOA. By Def-
inition 15, a grading subspace M(n) of an admissible V-module M needs not be finite-
dimensional. For instance, let U be an infinite-dimensional module over a simple Lie algebra
g, by the construction in [B0], the induced module V5(k, U) = U ® ®u. U 1s an admissible
module over the VOA V;(k, 0), and V(k, U)(0) = U is not finite-dimensional.

The bottom level M(0) of any admissible module M is an A(V)-module, with the

action given by [a].w = aya—1w, for all [a] € A(V) and w € M(0), see [[73, IR] for more details.

Proposition 2.2.12. Let V be a CFT-type VOA that is C|-cofinite. Assume M is an admissible
V-module such that M is generated by finitely many elements in M(0). Then M must have a

maximal submodule.

Proof. By our assumption, there exists a finite set S C M(0) such that

M:span{arl“ ...aﬁkw:aie V,k>0, ni,...ng € Z,we S}

Given a spanning element x = a,ll1 ... aﬁkw of M, if wta' — n; — 1 < 0 for some i, then afh_w =0,
and x can be written as a sum of elements of shorter length. So it follows from an easy induction

that the bottom level M(0) of M is spanned by elements of the form:

1

k
Agiq---a

wiak—1""

fora',...,d eV homogeneous, and w € §. i.e., M(0) is a finitely generated A(V)-module.
Since A(V) is noetherian by Theorem 23, M(0) is a noetherian module, and so M(0) has a
maximal submodule U. Let W < M be the V-submodule generated by U. Then the bottom level
of the quotient module M/W is an irreducible A(V)-module M(0)/U, and M/W is generated
by its bottom level. Hence M/W is a quotient of the generalized Verma module M(M(0)/U)
constructed in [I¥]. By Theorem 6.3 in [IR], M/W has a maximal submodule W, with the
property that W n (M(0)/U) = 0. But then (M/W)/W = L(M(0)/U), which is an irreducible
V-module since M(0)/U is an irreducible A(V)-module. Thus, 7~}(W) + W < M is a maximal

submodule, where 7 : M — M/W is the quotient map. O

We conclude this subsection by recalling the A(V)-bimodule A(M) associated with an
ordinary V-module M. See Section 1.5 in [30] for more details. For a € V and v € M, define:
1+ wta
axv:=Res.Yyla oyt 2 (2.2.18)
Z
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1+ wta—1
vea:=Res.Yyla oyt D (2.2.19)
Z

(1 + Z)wta

5 (2.2.20)
Z

aov:=ResYy(a,z)v

Let O(M) :=spanfaov:ae€V,ve M}, and let A(M) := M/O(M).

It is proved in [B0] that a « O(M) c O(M), O(M) *a Cc O(M), and A(M) is a bimodule
of A(V), with respect to the left and right action given by (2IR) and (Z219), respectively.
See Theorem 1.5.1 in [B0] for more details. Moreover, let M!, M?, and M> be V-modules, with
conformal weights /4y, h», and h3, respectively, and let I € 1 ( MZIW;IZ) be an intertwining operator.
Write I(v,w) = ),z vim)w™ ! . w" and denote v(degv — 1) by o(v). Then we have a linear

map o : M' — Hom(M?(0), M3(0)), v — o(v), and we have:
o(a=v)=o(a)o(v), o(v=a)=oWola), o(aov)=0, (2.2.21)

foralla € Vandv e M!, see Lemma 1.5.2 in [30] for more details.
In Chapter 4, we will construct a new A(V)-bimodule B,(M) associated with M,

which can correctly capture the fusion rules.

2.3 Derivations and automorphisms of VOAs

In this section, we first recall the definition of derivations and inner derivations of
VOAs. Then we give a concrete description of the derivation algebra for some classical exam-
ples of VOAs. Moreover, we prove that the derivations on lattice VOAs are all inner. We then
recall the definition of automorphism of VOAs. We will use the closed automorphism groups
and their Lie algebras to give a new way to construct new VOAs, as a uniform generalization of
the orbifold and commutant construction.

Finally, we generalize the notion of derivations to A-differentials, which is closely
related to the Rota-Baxter operators of VOAs in part II. We will show that the set 1-differentials
are in one-to-one correspondence with the automorphism group for a simple VOA. We also

propose a way to construct the A-differentials.

2.3.1 The derivation algebras of the classical examples of VOAs

Let V be a VOA. The notion of derivations of VOAs can be found in [14, B5].
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Definition 2.3.1. A linear map f : V — V is called a derivation if f(1) = 0, f(w) = 0, and
f(Y(a,2)b) = Y(f(a),2)b + Y(a,2)f(b), Va,beV. (2.3.1)
The Lie algebra of all derivations on V is denoted by Der(V).

Recall that the first level V| forms a Lie algebra with respect to the bracket: [a, b] =
agb for a,b € V. By (Z3), any derivation f € Der(V) satisfies f(agh) = f(a)ob + aof(b).
Thus, fly, is a derivation on the Lie algebra V;. Recall the following fact in [I4], we write out

the proof for completeness:

Lemma 2.3.2. Let V be a CFT-type VOA. Then for any a € Vi, f = ag = Res;Y(a,z) : V-V

is a derivation on V.

Proof. Clearly, apl = 0. Note that w;a = 0 for j > 3, then we have

-1
apw = w_1apl - [w_1,a0]1 = - Z( . )(wja)—l—jl
o/

= —(woa)_11 + (a)la)_zl - (a)za)_3l = —a_21 + a_21 + ,111_31 =0,
where we used the fact that wya € Vy = C1. Finally, for any b € V and n € Z, we have:

0
[ag, bl = )| (j)<“ bInj = (aob)n.

>0

It follows that agY (b, z) — Y (b, 2)ag = Y(aob, 2). i.e., f = ag € Der(V). O

Definition 2.3.3. [14] Let V be a VOA. Assume that V is CFT-type, or V satisfies L(1)V; = 0.
Then a derivation f : V — V is called an inner derivation if f = ag for some a € V. The

subspace of inner derivations of V is denoted by Inn(V).
A derivation can be uniquely determined by its actions on the generators:

Lemma 2.3.4. Assume that V is generated by a subspace U C V. Let f : V — V be a derivation
on V. If there exists some a € V| such that f(b) = aob for all b € U, then f =agonV.

Proof. By (Z3), for any spanning element a,, ...a, 1€V, withr > 0,4’ € U, and n; € Z for

i=1,2,...,r, we have:
r r
1 1 j 1 j 1
flay, ...a, 1) = Zam o fl@ . ap 1= Zanl oo (ao@ ;... ap 1 = aop(a,, ...a, 1).
= =1
Thus, f =agon V. O
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Proposition 2.3.5. Let V = V(c,0) or L(c,0), the (universal) Virasoro VOA. Then Der(V) =
0 = Inn(V).

Proof. Since V = V(c,0) and V = L(c, 0) are both generated by w, and any derivation f satisfies
f(w) = 0, then by Lemma Z34, we have f = 0 on V. Thus, we have Inn(V) = 0 = Der(V). O

Proposition 2.3.6. Let V be the vacuum module VOA V5(k,0), or the affine VOA L5(k,0). Then
Der(V) = Inn(V).

Proof. Recall that V5(k, 0) and L(k, 0), V are both generated by their first levels, which are the
simple Lie algebra g via the map V| = spanf{a(-1)1 : a € g} — g : a(-1)1 — a, Ya € g.
Let f € Der(V). Since fly, is a derivation of the Lie algebra V| = g, and any derivation of g
is an inner derivation, then there exists some a € Vj such that fly, = ap : V| — V;.But Vis

generated by V7, then by Lemma 373, we have f =apon V. i.e., f € Inn(V). O

Proposition 2.3.7. Let V be the Heisenberg VOA ME(I,O) associated with a n-dimentional

inner product space V). Then DerV = o(n, C), the Lie algebra of n X n skew-symmetric matrices.

Proof. Similar to the affine VOA case, a derivation f € Der(V) is completely determined by
its restriction onto the first level b, i.e., Der(V) — gl(h,C) : f +— f]y is an embedding of Lie
algebras. Since } is abelian, each g € gl(h, C) satisfies g([a, b]) = [g(a), b] + [a, g(D)], Va,b € }.
Let {a!,...,a"} be an orthonormal basis of ) with respect to the inner product (:|-). Recall that

w = %Zle a'(-=1)*1. For any f € Der(V), assume that fly(a’) = Z?:l cijaj, as f(w) = 0, we

have:
0=5 ;ma")(—l)a"(—l)l +ad(=Df@)=DD) = Z; fl@)-Da'(=D1
- Z Z cij@/ (- (-1)1.
i=1 j=1
Thus, ¢;j = —cj; forall 1 < i, j < n, and so the image of Der(V) — gl-(h) is o(n, C). O

Note that Inn(M[A)(I,O)) = 0. Indeed, for any a,ay,...,a, € b, and ny,...,n, > 1,
we have a(0)(a;(-ny)...a,(—n,)1) = 0. In particular, if dimb = 1, then Der(MIA)(l,O)) =0=
Inn(Mg(l, 0)); while f dim ) > 2, we have Der(Mg( 1,0)) # Inn(Mg( 1,0)).

For the lattice VOA Vp, a concrete description of the automorphism group Aut(Vy)

is given by Dong and Nagatomo, see Theorem 2.1 in [15]. On the other hand, we will prove
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that all derivations of the lattice VOA are inner. First, we recall the notion of strongly rational

VOAs:

Definition 2.3.8. Let V be a VOA. V is called strongly rational if it is of CFT-type, rational,
C,-cofinite, and satisfies L(1)V; = 0.

According to [50], a stongly rational V carries a nondegenerate symmetric invariant

bilinear form (:|-) : V X V — C. By definition, the bilinear form is invariant means that
(Y(a, 2uly) = @Y (e V(=22 Va, ), (2.32)

for all a,u,v € V (cf. (I 13)). By rescaling the bilinear form with a nonzero scalar, we may
assume that (1/1) = 1. The following Theorem in [14] describes the derivation algebra for

strongly rational VOAs:

Theorem 2.3.9. Let V be a strongly rational VOA. Assume that 3. _, V,, generates V for some
n > 0. Then Der(V) is a direct sum of ideals o(g) and g*, where g is the Lie algebra V\, and g*
consists of d € Der(V) such that try,o(u)d = 0 for all u € V.

Remark 2.3.10. The proof of Theorem Z39 in [14] also shows that d|y, = 0, for any d € g*.
Lemma 2.3.11. Let d € Der(V), and u € Ker L(1). We have (dulv) = —(uldv) for allv € V.

Proof. Since dV,, C V,, and (V,,|V,,) = 0 if m # n, we may assume that v € V, and u €
Vu Nker L(1). Then up,—1v € Vy = C1, and so uy,,—1v = A1 for some A € C. By (Z32), and the
fact that L(1)u = 0, we have:
(=1)" ;
@) = (g 1v) = (1] )" = L) W11 j-2v)
= J!
=

= (=1)"Muzp-1v) = (=1)"A.

Thus, uy,_1v = (=1)"(u|lv)1. Furthermore, since d(1) = 0 and dL(1) = L(1)d, we have du €
Ker L(1), and so 0 = d(uz,—1v) = du)—1v + uzu_1d(v) = (=1)*(d@)|v)1 + (-=1)"(uld(v))1.
Therefore, (dulv) = —(uldv). O

Theorem 2.3.12. Let L be a positive definite even lattice. Then Der(Vy) = Inn(Vy)
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Proof. Letd € g*, by Theorem 239, we just need to show d € Inn(Vy).

We use induction on the level n of Vi to show that each e¢* € (V1), is an eigenvector
of d. Indeed, when n = 1 we have d = 0 on (V)1, so all ¢“ in the first level are eigenvectors of
d of eigenvalue 0. Assume that de® = Aye” for all @ € L with (e|e@) < 2n. Since dh = 0 for all

heb, wehave du = A uforallu € M(1, @), and a € L s.t. (ala) < 2n. Let

U= P ML) (Vi< Vo

ael,(ala)<2n

Then we have dU C U. Moreover, since a basis element in (V}),, is of the form
X = a/l(—n]) ... a/k(—nk)eﬁ,

where k > 0,0’ e hfori=1,2,....k,ny =--->ng > 1, and 8 € L, while x has weight equal to
ny+---+ngt+ @ = n, it follows that (V1), = U @ W, where W = span{e® : (a|a) = 2n}, and
U = spanfa'(-ny)...a"(=mp)éf : k> 1,n1 > -+ > np > 1,(B|B) < 2n}. Let (-|-) be the standard
symmetric invariant bilinear form on V;, then for any spanning element /' (—ny) . ... X (=ny)éP e

U and ¢* € W, we have:
@' (-m)...d"(~mp)efle?) = (@ (-m2). .. " (—np)fla’ (n1)e®) = 0,

hence U L W. But (-|-) is nondegenerate on (V7 ), it follows that (:|-) is also nondegenerate on
both U and W, and W = U*. Now for any u € U and w € W, since w € ker L(1), then by
Lemma D311, we have: (dw|u) = —(w|du) = 0. Hence dw € U+ = W. On the other hand, it

is easy to see that W = P Ce®, and each subspace Ce” is a common eigenspace of

acL,(ala)=2n
H(0) with eigenfunction (a/|-). ;ilnt):e d commutes with H(0), we have de® = A e® forall @ € L
s.t. (@la) = 2n. This finishes the proof of our claim that each ¢* is an eigenvector of d.

Now let L = Za1 @ ... ® Za,, and let de® = A;e* fori = 1,2,...,r. Since b =
Cay ®. ..o Ca,, there must exist some & € hs.t. (hla;) = A;, fori=1,2,...,r. Hence d = h(0)

a,

on ™, e*?, ..., e%, which is a set of generators of V. This shows that d = h(0) on V;, and so

d is an inner derivation. O

2.3.2 Automorphism groups and A-differentials of VOAs

The definition of automorphisms of VOAs can be found in [29, 77].
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Definition 2.3.13. Let (V, Y, 1, w) be a VOA. An automorphism on V is a linear automorphism
¢ € GL(V), such that ¢(1) = 1, ¢(w) = w, and

¢(Y(a,2)b) = Y(¢(a),2)p(b) ( = ¢(anb) = ¢(@)p(b), Vn € Z), Va,beV.  (2.3.3)
The subgroup of GL(V) consisting of all automorphisms of V is denoted by Aut (V).

Lemma 2.3.14. Let d € Der(V), then ¢4 = Yo d"/n! € Aut (V). (This is not true if the VOA' V
is defined over a ground field F that is not complete, e.g., F = Z/pZ or Q.)

Proof. Since d(1) = 0 and d(w) = 0, it is clear that e?(1) = 1 and ¢%(w) = w. Forany n € N

and a € V,, if we view d : V,, — V,, as a matrix, then by the triangle inequality, we have:

N N N
d'a ld"all _ < ldiliall
1) s ) =< ) = <,
n=0 "~ n=0 ’ n=0 ’

where ||a|| is given by the standard norm on the finite-dimensional C-vector space V,,. Thus the
series ), ° (d"a)/n! is convergent in V,,, and we let the limit be e?a € V,. This shows that e¢
is well-defined. Moreover, by induction, it is easy to check that d"(a,b) = ZT:O(dm‘j a),(d’b),
forall a,b € V,n € Z, and m € N. It follows immediately that ed(a,b) = (e“a),(e?b), for all

a,b € V,and n € Z. Hence ¢? € Aut(V). O

By Theorem 2.1 in [T4], if V is finitely generated, then Aut (V) is a linear algebraic
group. By Lemma Z3T4, for any ag € Inn(V), we have e® € Aut(V). Let G < Aut(V) be
the closed subgroup generated by {e“° : a € V;}. Then it is clear that the Lie algebra g of G is
precisely the Lie algebra V|. Moreover, by the main Theorem in [I7], if V is strongly rational,

g is a reductive Lie algebra, then G is a reductive algebraic group.

Remark 2.3.15. It is expected that Der(V) is isomorphic to the Lie algebra of the linear al-
gebraic group Aut (V). In particular, if Der(V) = Inn(V), then dimG = dim Aut(V), and so
G = Aut (V)°. We will prove Der(V) = Lie(Aut (V)) in the future.

Since G < Aut (V) is an algebraic group, we can discuss the fixed point sub-VOA of
a closed subgroup of G. This leads to the following definition:

Definition 2.3.16. Let H < G be a closed connected subgroup, with Lie algebra h < g. The
generalized orbifold V# is defined to be the fixed points sub-VOA of V:

VE .=(veV:x(v)=v, Vx € H}. (2.3.4)
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VH < V is a sub-VOA that share the same Virasoro element as V. We have the

following classical result from algebraic groups. See Theorem (13.2) in [B3].

Theorem 2.3.17. Let H be a closed subgroup of a linear algebraic group G. If H < G, ={g €
G:gv)=v},thenhCg,={Xe€g:X(v)=0}.

Proposition 2.3.18. The generalized orbifold V! is equal to VP = {v € V : agv = 0, Va € b}.

Proof. For any v € V¥ we clearly have H < G,, hence f) C g, by Theorem I3 17 i.e., for any

X

a € b, we have agv = 0. This shows V V9. Conversely, for any v € VY, since eXv = v for any

Xebhand H=(X:Xeh), wehave x(v) = vforallx € H.ie.,ve VZ Hence VP c VH. O

Thus, the generalized orbifold VH is also a generalized commutant (see the last

Section in [B0] for the definition of commutant sub-VOASs):
VAi={veV:aw=0, Yaeb) (2.3.5)
We consider the following easy examples:

Example 2.3.19. Let V = V;, L = Za the rank one lattice VOA, with (a|la) = 4. Then
g=Ca(-D1l.Let H=G then VA = {v e V: a(0)y = 0} = MIA)(I,O).

Example 2.3.20. Let V = V5(k, 0) be the level k vacuume module VOA associated to the Lie
algebra g = sl(2,C) = Ce + Ch + Cf.
(1) Let H be the Cartan subgroup D(2,C) N SL(2,C) then § = Ch. VH = {y e V:h0)yw = 0}
is the eigenspace of /(0) of eigenvalue 0. In particular, by the PBW theorem,

VH = spante”(=r)f"(=s)L : m, 1, s € N} + My(k, 0).

In fact, a general case of such sub-VOAs denoted by V(k, 0)(0) was also studied by Dong
and Wang in [25]. They found a set of generators of this sub-VOA as an intermediate

result towards the structure theory of parafermion VOAs. See Theorem 2.1 in [25].

(2) Consider the Borel subgroup B = T'(2,C) n SL(2,C) then its Lie algebra is the Borel
subalgebra b = Ce + Ch. Then the first level of V2 is 0, since the centralizer of b in g is
0. It is easy to check that the second level is 1-dimensional: (V?), = Cw, while the third

level is nonzero. e.g., it is easy to see that
x = 2e(=2)f(=D1 + 2e(=1) f(=2)1 = 2h(=3)1 + h(-2)h(-1)1 € (VB)5.
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So the Virasoro sub-VOA L(c,0) < VB, where c is the central charge of V, but L(c) # VB,

We will further study the generalized orbifold and commutant in the future. More
precisely, we will see if the generalized orbifold and commutant can give us rational VOAs.

The automorphism group also gives rise to a generalized notion of derivations with
weight for VOAs, which is closely related to the Rota-Baxter operators on VOAs we will study

in this thesis’s second part.

Definition 2.3.21. Let (V, Y, 1) be a vertex algebra, and A € C be a fixed complex number. A

linear map d : V — V is called a weak A-differential of V if it satisfies
d(Y(a,2)b) = Y(da,z2)b + Y(a, 2)db + AY(da, z)db, (2.3.6)

forall a,b € V. ie., d(a,b) = (da),,b + a,,(db) + A(da),,(db), for all a,b € V, and m € Z.
Let (V,Y,1,w) be a VOA. A A-differential on V is a weak A-differential d : V — V
such that d1 = 0 and dw = 0. The space of A-differentials on V is denoted by Diff ;(V).

By Definition IZ377], it is easy to see that a O-differential operator is just a deriva-
tion on V. i.e., Diffo(V) = Der(V). The 1-differentials have a nice correspondence with the

automorphisms on V. Recall that an endomorphism of V is a linear map ¢ : V — V such that

¢(Y(a,2)b) = Y(¢(a), 2)p(b), (2.3.7)
¢(1) =1, and ¢(w) = w (cf. [Z7]). The space of endomorphisms on V is denoted by Endy (V).

Lemma 2.3.22. If (V,Y,1,w) is a simple VOA, then Endy (V) is a division algebra over C, with
the unit group Aut (V).

Proof. Let ¢ € Endy(V) — {0}, it suffices to show that ¢ is an automorphism. First we note that
ker ¢ is an ideal of V: for any u € ker¢, a € V, and m € Z, we have ¢(a,,u) = ¢(a),¢(u) = 0
by (Z371). Since ¢ # 0, we have ker ¢ = 0, and ¢ is injective. Moreover, for any a € V,,, since
d(w) = w, we have L(0)p(a) = ¢p(w)1¢(a) = ¢(L(0)a) = ng(a). It follows that ¢(V,,) C V,, for
every n € N, and since dim V,, < oo for each n, we have ¢|y, : V,, = V,, is a linear isomorphism

for every n € N . Thus, ¢ is an automorphism. O

Proposition 2.3.23. Let (V, Y, 1, w) be a simple VOA. Then the map « : Diff (V) — Aut(V),d —

d + 1dy is a bijection.
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Proof. Since d1 = 0 and dw = 0, we have (d + Idy)(1) = 1 and (d + Idy)(w) = w. Moreover,

(d +1d)(Y(a,z)b) = Y(da, 2)b + Y(a,z)db + Y(da, z)db + Y(a, 2)b
=Y(da+a,z)b+ Y(a+ da,z)db
= Y((d + Id)(a), 2)(d + 1d)(D),

thus d + Idy € Endy(V). Butd + Idy # 0, since otherwise d = —Idy does not satsify d1 = 0.
Hence a(d) = d + Idy € (Endy(V))* = Aut(V), in view of Lemma 2322, On the other hand,
for ¢ € Aut(V), we have (¢ — Idy)(1) = 0 and (¢ — Idy)(w) = 0, and

Y((¢ - Idv)(a),2)b + Y(a,z)(¢ = 1dy)(D) + Y((¢ — Idy)(a), 2)(¢ — Idy)(D)

= Y(¢(a),2)b = Y(a,2)b + Y(a,2)p(b) — Y(a,2)b + Y(p(a), 2)p(b) — Y(a, 2)p(b)
- Y(¢(a),2)b + Y(a,2)b

= Y(¢(a), )¢(b) — Y(a,2)b = (¢ — Idy)(Y(a, 2)D).

Thus, ¢ — Idy € Dift (V). Clearly, ¢ — ¢ — Idy is an inverse of @, hence « is a bijection. O

Remark 2.3.24. By a similar argument, we can show that § : Diff_;(V) — Aut(V),d —
Idy — d is a bijection, whose inverse is given by ¢ +— Idy — ¢. Thus, the 1-differentials and
—1-differentials on simple VOAs can be completely determined. The natural question is to
construct a A-differential on some specific VOAs for a given A € C. We will study this problem

in the future.

2.4 Correlation functions associated with a module

In this section, we will discuss the system of correlation functions associated with a
module M over a VOA (V,Y,1,w). Some results in this section are well-known, and we will
write out the proof for part of them as a reference for the later chapters. In particular, we
will prove that the locality and associativity of the correlation functions can give rise to the
component form Jacobi identity with the assistance of Cauchy’s integral Theorem. Such a fact
was first pointed out for the lattice VOA in Appendix A. of [29], and later it was reformulated in
a formal variable language in [27]. Hence the rationality of products, locality(commutativity),

and associativity of the vertex operators given in [7] are the essential axioms of VOAs.
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The outline of this section is the following: We first recall Cauchy’s integral Theorem
and configuration of contours in the Appendix of [?9]. Then we introduce the notion of a system
of correlation functions associated with a V-module and prove some basic properties. Finally,
we will construct the system of correlation functions associated with a twisted module over
VOAs [[I8, [70], and give a component form of the twisted Jacobi identity. We will show that the
component form of the twisted Jacobi identity also follows from the locality and associativity

of the twisted correlation functions.

2.4.1 The Cauchy-Jacobi identity

We first recall the embedding ¢ in [29, 77, [73]: t,,, Ly, and ¢, ,—,, are embeddings of
the Laurent polynomial ring C[z*!, w*!, (z — w)*!] into the fields of power series C((2))((w)),

C((W))((2)), and C((w))((z — w)), respectively, they are given as follows:

LWz =w)) 1= ) (j.)(—l)fz’””‘fw"”, (24.1)
=0

L@ W'z =w)) = Z (j.)(—l)""w””‘fzm”, (2.4.2)
Jj=0

ben@ W= w)) = ) (’;)W“’""’ (2= w)'". (243)
=0

for all m,n,l € Z. 1i.e., t;,(f(z,w)) is the series expansion of a rational function f(z,w) €
Clz*', w*!, (z — w)*'] in the domain 0 < |w| < |z, t,.(f(z, w)) is the series expansion in the
domain 0 < |z] < |w|, and ¢, .- (f(z, w)) is the series expansion in 0 < |z — w| < |w].

We observe the following fact about ¢, ,, f(z, w):

Res Res,, (¢ f(z, W) = ResZReSW[ Z ap,qz_p_lw_q_l] = Res, [Z ap,oz_p_l]

Pq€Z peZ
= apo = Res, (Z ao,qw_"_1 = Res,Res; [ Z ap,qz_[’_lw_q_l]
qEZ P-gEZ
= Res,Res; (t;,,f(z,w)). (2.4.4)

That is, once we fix the domain O < [w < |z| of expansion for the rational function f(z, w), the

order of taking residues or contour integrals for f(z, w) is interchangeable. Similarly, we have:
Res.Res,, (1. f(z,w)) = Res, Res; (4, f(z, W), (2.4.5)
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c, |9 o |©
w z
z w
Figure 2.1: Figure of contours Cy, C3, C, C)
Res,Res;_y (4 - f(z, W) = Res,_yRes,, (- f(z,W)) . (2.4.6)

The following Theorem is a consequence of Cauchy’s integral Theorem (or Cauchy’s

residue Theorem) in complex analysis, see the Appendix A. of [2Y]:

Theorem 2.4.1. Let f(z,w) € C[z*!, w®!, (z — w)*!], we have:
Res;Res,, (¢ f(z, w)) — ResyRes; (1, f(z, w)) = Res,Res,—y, (- f(z,W)) . 2.4.7)

Proof. First, we observe that f(z, w) has the following form:

h ’ + + +
fzw) = % € C[z—l,w—l,(z - w)—l], where r, 5,1 € N,

where h(z, w) € C[z, w] is a polynomial. Then the only possible poles of f(z, w)areatz = 0,w =
0, and z = w. We use the contour integration interpretations for the residues in (ZZ477), and we
adopt the notations in Proposition A.2.8 in [29]. Let C1,C£ be contours of w, and let C{,Cg
be contours of z. The configuration of these contours is given by Figure 1. Then f(z, w) is
holomorphic in w inside of C’, except at the pole w = 0, and f(z, w) is holomorphic in z inside

of C, except at the pole z = 0. Then by (Z24),

Res;Res,, (t;,,f(z, w)) — Res,Res; (¢, f(z, w))

= Res,Res; (Lz,wf(z, W)) — Res, Res, (Lw,zf(L W))

=f f f(z,w)dzdw—f f f(z, w)dzdw.
3 YC C1 VG

= f f(Z, W)dZdW - f f(Z, W)dZdW,
C Ci

CiJC
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Figure 2.2: Figure of mixed contours

where we choose the contours properly so that C, = Cy, similar to Proposition A.2.8 in [29].
Then the contours in the integrals above are given by the left diagram in Figure 2.

Consider the integral fc; fCi f(z,w)dzdw. Since the only possible poles of f(z,w)
inside of the contour C| are at z = 0 and z = w, by the Cauchy’s integral Theorem, fCi f(z,wydz
is equal to the sum of contour integrals of f(z, w) around z = 0 and z = w. Let C%(w) be a small

circle surrounding w, with radius € < |w]|, see the diagram on the right in Figure 2. Then

f flewydz= | f(z,w)ydz + f(z, wydz, (2.4.8)
C C

Ce(w)

and it follows that

Res;Res,, (t;4,f(z, w)) — ResyRes; (4. f(z,w)) = f f [z, w)dzdw — f f(z, wydzdw
c Je ol

C

= f f(z,w)dzdw = Res,Res,_, (ty z—wf(z, W)) .
C1 JCiw)
This proves (ZZ471). O

In fact, from the proof of Theorem -4 and formula (Z4-8), we also have a stronger

form of the formula (Z477), which is precisely (1.1.4) in [[73]:

Res, (Lz,wf(z’ W)) — Res, (Lw,zf(z, W)) = Res;-, (Lw,z—wf(za W)) . (2.4.9)

Theorem 2471l can give us an alternative (analytic) proof of Theorem (the original proof

of this Theorem in [71] uses the formal variable approach, see Proposition 3.1.1 in [277]):
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Corollary 2.4.2. Let V be a vector space and Y : V — End(V)[[z,z~'1] be a vertex operator
satisfying the truncation property, the locality (Z13), and the weak associativity (1-4). Then
Y satisfies the Jacobi identity (Z12).

Proof. Indeed, the locality and weak associativity of Y together indicate that there exists some

f(z,w) € Clz*", w*!, (z — w)*!] such that

', Y (a, 2)Y (b, wZ"w(z = W) = 1, f (2, W), (2.4.10)
Y (b, W)Y (a, 20 Z"W(zZ = W) = 1 f (2, W), (2.4.11)
V', Y(Y(a,z = Wb, wZ"W' (2 = W) = 1y f (2, W), (2.4.12)

for fixed a,b,v € V, Vv € V*, and m,n, [ € Z, see Sections 3.2 and 3.3 in [27] for more details.

By substituting (ZZ410)-(Z4T7) into (ZZ417), we have:

S (! ’ S i l ’
Z(_l)l()<v s Amal—ibpyiv) — Z(_l)l+ ()(V s bnsi—iGmyiv)
i=0 ! i=0 !

= Res Res, (', Y(a,2)Y (b, wv)Z"w"(z — w)! — Res,Res (v, Y(b, w)Y (a, 2)v)Z"w"(z — w)’

= Res,Res._,,(v', Y(Y(a,z — w)b, W)W + 7 — w)"w"(z — w)’

= Z (m)<v (@14ib)msn—iv)-
i=0 !

This shows the Jacobi identity in the component form (ZZI2) since u € V is equal to 0 if and

only if (/,u) = 0, for all v/ € V*, O

Remark 2.4.3. We believe that Cauchy’s Theorem 241 should have an analog in p-adic anal-
ysis, and the axioms (ZZ410)-(2"4T7) should lead to a proper Jacobi identity for the so-called
“p-adic VOA”. We will study this problem in the future.

2.4.2 Axioms of correlation functions associated with a module

Let (V,Y,1, w) be a VOA, and let V’ be the graded dual space of V: V' = EBZO:O V.. By
definition, a n-points correlation function on P!(C) associated with V is the limit of the power
series (V',Y(a1,z1)Y(az,22)...Y(a,, z,)v) on the domain |z1| > |z2] > --- > |z4] > 0, where
ai,az,...,ap,veV,and v e V', see Proposition 3.5.1 in [27] for more details.

We consider a slightly generalized notion of correlation functions associated with a

V-module. Let M = @20:0 M (n) be an ordinary V-module of conformal weight A € C, and let
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M = @:;0 M (n)* be its contragredient module, see Definition LT3 and (Z113). Consider

the power series:

' Yu(ar, z)Ym(az, z2) - .. Yy(an, 2,)v) (2.4.13)

in n complex variables zy, . . ., z, with integer powers, where ay,...,a, € V,ve M,andVv € M'.
Recall that the power series ((Z413) converges in the domain D = {(z1,22,...,2,) € C" : |z1] >
|z2] > -+ > |z,| > O} to a rational function in 21,22, ...,2,, and z; — zj, where 1 <i # j < n (cf.

[272, [72]). We adopt the notations in [[7Z2] and denote this rational function by:

O/, Yu(ar, z)Yu(az, z2) . .. Yu(an, 20)0). (2.4.14)

The rational function (2214) is called a n-point correlation function (on P'(C)) associated
with M, where a;,a;...,a, can be viewed as n-distinct points on PY(C), and z1,25 ..., 2, are
local coordinates around these points. Also recall that the only possible poles of (414 are at
zi=0and z; = zj, for 1 <i# j < n,see [2], 73] for more details. We use the symbol S y/(or

simply S) as in [[/3] to denote (Z-414):

SOV, (a1, z1)(a2,22) . .. (an, z20)v) 1= (V. Yy(ar, z20)Yu(az, z2) . .. Yu(an, zo)v).  (2.4.15)

[S O

Then we have a system of multi-linear maps Sy = {S},}" :

SnMM/XVXXVXM—)T(ZI,ZZvazn),
(2.4.16)

(' ar,a,...,an,v) = Sy(v', (a1, 21)(a2,22) - . . (@, 70)V)s
where ¥ (z1,22 - . .,2y) 18 the vector space of rational functions in n variables z1, 22, . . . , z,, With
only possible poles at z; = 0, and z; = zj, forsome 1 <i# j < n.
Sy is called a system of correlation functions (on P'(C)) associated with M. This
system of correlation functions S j; satisfies the following properties. See Theorem 2.1 in [[7]

and Section 4.1 in [[73] for more details. A similar result can also be found in [b6].

Theorem 2.4.4. For any ay,az,...,a, € V, v € M, and V' € M’, the system of correlation

functions S y; given by (ZA18) satisfies the following genus-zero properties:

(1) (Truncation property) For fixed a € V and v € M, the series expansion of S y(V', (a, z)v)
around z = 0 has a uniform lower bound for z independent of v/ € M'. i.e., S(V',(a,2)v) =

ZnSN anZ_"_l,for allv e M.
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(2) (Vacuum property)
Su(v',(,2)(a1,z1) ... (anz2a)v) = Su(V', (a1,21) - . . (An, 20)V). (2.4.17)
(3) (L(—1)-derivation property)
Su(v',(L(=Day,z1)(@2,22) . . . (an, Zn)v) = d%SM(V’, (a,z1)...(an,z)v).  (24.18)
(4) (Locality) The terms (a1, z1), (a2, 22), - . . , (an, 2n) can be permuted arbitrarily. i.e.,
Su(v,(ar,z1)a2,22) ... (an, z)V) = S u(V', (@i, 2, ains 2iy) - - - (@i, 23, V). (2.4.19)
(5) (Associativity) For any k € Z, we have:

LSM(V',(M,Zl)(az,Zz)---(an,Zn)V)(Zl — )z = S (v, (@12, 22) - . . (Ans 20)V),
(2.4.20)

where C is a contour of 71 surrounding zp, with z3, .. ., 2, lying outside of C.

(6) (The Virasoro relation) Let w € V be the Virasoro element, and let x, x1, . .., X, be com-

plex variables, denote the rational function

SM(V,’ (W, x1) ... (W, xp)(a1,21) ... (An, Z0)V)

by S for simplicity. Assume that Vv',v,ay,...,a, are the highest-weight vectors for the

Virasoro algebra, then we have:

Su(V', (W, X)W, x1) ... (W, Xp)(a1,21) - . . (@n, Zn)V)
B x~ Zk d & wtay wty
Zx zkdzk Z(X_Zk)2S+(x_w)2S

wtvS Zx “wi d zm: 2 S (2.4.21)

X = X dxk (x — x)?

c 2 1
=Y SV (@, x1) . (@, %) . . (@, X)) (@1, 21) - - - (A Z0)V)
"3 kZ: (x = xp)*

(7) (The generating property for M) For any a € V and m € Z, we have:
Su(V',(a1,21) . .. (@n, zn)a(m)v) = f Su(V',(a1,21) ... (an, 2)(a, 2v)Z"dz,  (2.4.22)
C
where C = Cg(0) is a contour of z surrounding 0, with z1, . . ., z, lying outside.
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Proof. (1), (2), and (3) are clear. For the proof of (Z4T19) and (ZZ420), see Theorem 2.1 in
[[Z2]. To prove (6), we note that the left-hand side of (ZZ4_21]) is the limit of the power series:

W Yu(w, 0)Ypm(w, x1) ... Y, xm)Ym(ar, z1) - . . Yy(an, 2,)v)

on the domain |x| > |x1| > -+ > |xu] > lzil > -+ > |zu|. Since L(n)v = 0 for n > 0,
L)y = wtv - v, L(—n)v" = 0 for n < 0, and (', L(n)v) = (L(-n)’,v), we can write the power

series as follows:

VS Yu(w, 0)Ym(w, x1) ... Y, xm)Ym(ar, z1) - . . Yy(an, 20)v)

= (v, ) LODX" Y ig(@1,31) - Yaa (s 2)V) + O, ) LYy, 1) - Yag(an, )0

n>0 n<0
’ —n-2 , wtvy
= > 0 IL), Y (@i, %1) - Y@, )X 4+ 0, Vg1, 31) . Y (@ 2)V) =5
n>0 X
For the highest-weight vector a of the Virasoro algebra, it is easy to show that
-1
ho Xz d wta
DL, Yula, " = === Yi(a,2) + ——— Yu(a, 2).
n>—1 x—zdz (X_Z)
Furthermore, by the Virasoro relation, we have:
D L), Y(w, x) "
n>0
n+l n+1 ¢ -2\ . —n-2
= Z Yy(wow, xp)x;~ + (n+ DY y(wiw, xp)x; + 3 YM(EI,Xk)X'Z X
n>0
-1
X 'xx d 2 c 1
= —Yy(w, x) + ———Yy(w, xp) + =—————.
X — Xy dxy, m(@, xi) (x — x)? m(@, xi) 2 (x — xp)*

This shows (ZZZ21)) by taking the limit of the resulting power series. In the next chapter, we
give a more general version of this Theorem, wherein the correlation functions are given by
intertwining operators, and we will prove a more general version of the generating property (7).

So we omit the proof for them in this Theorem. O

In fact, a particular converse of this Theorem is also true, and it was claimed in [[/7]
without proof. In other words, the genus-zero properties (1)—(7) in Theorem 244 are good
enough to characterize a V-module.

Let(V,Y,1,w)be a VOA, and let M = @:’:O M (n) be a graded vector space, equipped

with a linear operator Yy, : V. — End(M)[[z,z7 '], a = Yu(a,z) = X,cz a(m)z"~! (we do not
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require (M, Yy) to satisfy any axiom). Let M’ = @;O:O M(n)* be the graded dual space of M.

Then we have the following:

Theorem 2.4.5. With the settings as above, suppose there exists a system of correlation func-

tions Sy = {87} 0"
Syt M XVX--XxVXM—>F (21,22, .12, (2.4.23)
(V,ai,ay,...,a,,v) = Syu(V, (a1, 21)(a2,22) . . . (An, 20)V),

satisfying the genus-zero properties (1)-(7) in Theorem L34, where the term a(m)v in (Z222)
is defined by Res, 7" Yy(a, z)v, and the 0-point function in (CA23) is given by S (v, v) = (', v),
foranyv e M andVv' € M’'. Then (M, Yy) is an admissible V-module.

Proof. By the generating property (ZZ422) and the assumption that S (v, v) = (v, v), we have:

V', Yu(a,z)v) = Z<V',a(m)V>z"”‘1 = Z ( fc Su(v,(a, Z)V)Zde) F

mez meZ
where the right-hand side is the Laurent series expansion of the rational function S (v/, (a, 2)v).

Then we have the following equality of rational functions:
Su(v'(a,2)v) = (v, Yu(a, 2)v), (2.4.24)

in view of (Z414)), and by the Truncation property (1), we have a(m)v = 0 for m > 0. i.e., Yy
also satisfies the truncation property. By (Z4224)), (Z417), and (Z4IX), we have:

d
Yy(L,z)v=v, and Yy(L(-1)a,z)= d_ZYM(Cl, 2),

forall a € V and v € M. It remains to prove the Jacobi identity (ZT9) of Y,,. Indeed, by using

the notations in Theorem 24711, we have:

o, ;(—1)"(5)61@ +1—)b(n + i) = ;(—1)f(i)s ', a(m + 1 — )b(n + i)v)
= Z(—l)i(l,)f SO, (a,2)b(n + " dz
i=0 Ve

:Z(_ni(ﬁ) f f S, (a, 2)(b, W) Z" W dwdy (2.4.25)
i=0 Y6

B f f SOV, (@, 2)(b, w)Z"w"(z — w) dwdz
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= Res;Res, (12,08 (v, (@, 2)(b, w))Z"w"(z = w)')..

where the contours C'| and C, are contours centered at O of w and z in Figure IZT, and we denote

Sy by S for simplicity. Similarly, we have:

o, ;(—1)l+"(§)b(n +1— ia(m + i) = ;(—1)”"(5)5@', b(n + 1 — i)a(m + i)

= Z(—l)l”(l,) f S, (b, w)a(m + i)W dw
i=0 Je

= Z(_D“i(l_) f f SO, (b,w)a, V)" W dzdw (2.4.26)
i=0 1) Jeir Je,

= f f SOV, (b, w)(a, 2)v)Z" W' (z — w)ldzdw
Ci JC;
= Res, Res; (40,25 (v, (b, w)(@, )" W' (z = w)') ,

where C1,C, are contours of w,z centered at O in Figure 1. Finally, by (Z424) and the

associativity (ZZ420), we have:

Z (n?)@', (al+ib)(m +n— l)v> = Z (m) f S(V’, (a]+ib, W)V)Wm+n—i
1 i c

i20 i>0
=> (m) f f SO, (@, 2)(b, wv)(z = w) W dzdw
>0 \L/Jc Jciw)
= f f SO, (a,z)(b,w)v)(z — w)le,Z_W(w + (z — w))"w'dzdw (2.4.27)
C1 JCw)

= ResyRes;y (S (v, (@, 2)(b, w)"w"(z = w)'),

where C, and C*(w) are the contours in Figure . By the locality (ZZ419), we have an equality
S, (a,2)(b,w)v) = S/, (b,w)(a,z)v) in the Laurent polynomial ring C[z*!, w*!, (z — w)*!].
Then it follows from Theorem 2241 that

Res,Res,, (LZ,WS W, (a,2)(b, wW)7"W"(z — w)l) — Res,,Res, (LW,ZS o', (b,w)(a, Dv)"W' (z — w)l)

= ResyRes;y, (1S (V' (@, )0, w)"w' (2 = w)').

Since v/ € M’ is chosen arbitrarily, the component form Jacobi identity (ZT-9) holds, in view

of (Z4729), (X428), and (Z4210). Thus, (M, Yy,) is a V-module. O

Remark 2.4.6. In the proof of the Jacobi identity for Y, in Theorem Z45, we have only used
(2223, which follows from the truncation property (1), the locality (Z419), associativity
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(Z220), and the generating property for M (Z42). Therefore, we only need (1), (2), (4),
(5), and (7) in Theorem 243 hold to obtain a V-module structure on (M, Ys). In the next
chapter, we will give a more explicit description of a generalization of the correspondence give
in Theorem PZ49, wherein the correlation functions are defined by both vertex operators and

intertwining operators.

(o8]

n=0
over A(V), by using the recursive formula satisfied by the series (Z413). This is the essential

Remark 2.4.7. A system of correlation functions Sy, = {§},}* , can be built from a module U

idea of constructing a V-module from an A(V)-module. See Theorem 2.2.1 in [[73].

We can also consider the case when M = V. Then the axioms of the VOA V itself
correspond to the genus-zero axioms (1)—(7) in Theorem 2244, with M replaced by V. More
precisely, let V = @:O:O V,, be a graded vector space, with dimV,, < co foralln € N, and V' =

-0 Vi be its graded dual space. Let Y : V — End(V)[[z,z7 '], a = Y(a,2) = ¥z a(n)z™!
be a linear map. Again, we do not require Y to satisfy any axiom at this point. By adopting a

similar proof as Theorem 245, we have the following:

Corollary 2.4.8. With the settings as above, suppose there exists a system of correlation func-

tions § ={S"}?,, where for eachn € N,

STV XVX-o - X VXV > F (21,22, 2n), (2.4.28)

(V/, al’a2a cee a}’h V) g S(V” (al,Zl)(CIZ, ZZ) e (a}’h Zn)v),

satisfying the truncation property (1), the locality (4), the associativity (5), and the generating
property (7) in Theorem &4, where the term ay(k)a, in (Z420) is defined by Reszzk Y(ay, 2)ao,
and the term a(m)v in (Z&72) is defined by Res,z"Y (a, z)v, and the 0-point function in (ZZ42R)
is given by S(V',v) = V', v), for any ay,...,a,,v € and V' € V'. Then (V,Y) satisfies the
truncation property and the Jacobi identity (IZ12).

Corollary Z4R (or a similar format) was used in the construction of the lattice VOA
V. in Section A.3 of [29], and the affine and Virasoro VOAs in [B0]. We believe that Corol-
lary IZ4R, together with the A(V)-theory, should also be useful in studying the simple current

extensions of VOASs.
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2.4.3 Twisted correlation functions

Now we consider the correlation functions associated with a twisted module over a
VOA V. Let (V,Y,1,w) be a VOA, and let g € Aut(V) be an order T € N automorphism of V.
Then V = EBrT:_Ol V", where V' = {a € V : T(a) = ¢*™"/Ta} is the eigenspace of T of eigenvalue
2T Then it is easy to see that V0 is a sub-VOA of V, and each V" is a module over V°,
with respect to the same vertex operator Y (cf. [, I8, 29]). Recall the following definition in

[0, 70]:

Definition 2.4.9. With the settings as above, a weak g-twisted V-module is a vector space M,

equipped with a linear map

Yy 1V — End(M){z},

b Yu(b,) = Y bz,
neQ

satisfying the following axioms forall0 <r <7 —-1,a€ V', be V,andu € M:
(1) (Index property) Yy(a,z) = Zper sz a(m)z "1
(2) (Truncation property) a(n)u = 0 for n > 0.
(3) (Vacuum property) Yy (1, z) = Idy,.

(4) (Twisted Jacobi identity)

=22t 21

2515 (Zl z_ ZZ) Yy(a,z1)Ymu(b, z2)u - 2615(
0

—r/T
—1[<1 — 20 21 — 20
= Z21 (—Zz ) 5( - ) Yy(Y(a,zo)b, 20)u.

) Yy(b,z2)Ym(a,z1)u
(2.4.29)

A weak g-twisted V-module is called admissible if M = EB M(n), such that a(m)M(n) C

ne%ZJ,
M(wta—m—1+n),forallmeZ,neZ,/T, and a € V homogeneous.

A weak g-twisted V-module is called a g-twisted V-module if M = [].c M,, with
dimM, < oo, and M, = {u € M : L(O)u = Au}, for each A € C. Moreover, for fixed 1 € C, we

have M. » = 0 for n € Z small enough.

We want to derive a component form of the twisted Jacobi identity (ZZ429). Since an

extra term appears on the right-hand side of (ZZ429), we need more subtle discussions for the
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formal delta functions. Recall that by convention, (z1 + 22)* = X js0 (L;-)Z?_j zé, for any @ € C.

We observe the following fact for this expansion:

Lemma 2.4.10. Let 29, z1, 22 be formal variables, and a € C, then we have:
(z0 + (z2 +21))" = (20 + (21 + 22))" = ((zo + 21) + 22)" (2.4.30)

Proof. The first equality is clear, and we only prove the second equality:

m— -D...(a- 1 a-m_m—j_j
(20 + (21 +22)" = ZZ( )( )" m Iy = Z ala (3n—(j(;!j!m+ )zo i)

m>0 j>0 m, j>0,m—j>0
a’(a_l) (a_l_]"'l)ozzjlj - lll_/tj
- Z l‘]' 1% = Z Z 212
i>0,7>0 j=0 i>0
= ((zo +21) + 22)%,
where we changed the variable m +— i + j in the third equality. O

The following formula was used in Section 5 of [I8] without proof. We will write out

the proof for it for completeness.
Lemma 2.4.11.

r/T r/T
Zgl (Z1 Z—ZZo) (Z1 - Zo) Z 1(Z2 + Zo) (Z2Z+l Zo) (2‘ ‘31)

Proof. Recall that the binomial coefficients satisfy ( ) ( @ 1”)( 1)/, for all 2 € C. Then

r/T r
131 — % 21 — & z:z:n—— P n— nl
121( 122 O) ( 1 O) ( T)( 1Yz, r B +TZ{)

nezZ j=0
-n+ = _1+] n—*—j —n—l+5 j m+ —m=l-7 m—j+g j
»» =22, ERE
nezZ j=0 mezZ j=>0
r/T
—m—1-+ r _1{22+22 22+
»E (>( ) )-
mezZ < <1
This shows (2-Z231)). O

By the proof of (ZZ4731), together with (ZZ430), it is easy to derive the following

equality, and the proof is also similar to the usual case:

r/T r/T
Z1_1(22+Zo) 5(Z2+Zo)(z o) = (Z2+ZO) 5(22+ZO)Z6, (2.4.32)
4 21 21 <1

48



Proposition 2.4.12. Let M be a g-twisted V-module. The twisted Jacobi identity (Z429) has
the following component form: Let a € V', b € V*, for some 0 < r,s < T -1, u € M, and

m,n,l € Z. We have:

; (i)(—l)ia(% +m+ - i)b(% +n+i)- ;(—1)”1'(5);,(% +n+1-ia(m+ % +1)
= Z (m + %)(ajub)(m tn4 2S5 7. 2433)
S\ T

Proof. First, we observe that a,b € V'**, for all p € Z. Multiply (Z329) with /" 723" (2, —

22)', then apply Res; Res; Res;,, we have:
L.H.S. of ResZOReszlReszzzTJrTzTT(zl - ) (CZ79)

_ 21 — &
= ReszoResaReszzzolé(]Z—oz) Z a(p + _)b(q + ) e 1+mZ2q 1+n(Z1 _22)1
P.gEZ

2 +2Z
#) > bla+ alp+ 25" Sz 4 1)

RCSZOReSleeSzZZO 0
20
P-qEZ

— S (! ior ny, S LN will\, S _ ro
= ;(i)(—l)a(f +m+l—l)b(f +n+z)—;(—1) . b(f +n+1-ia(m+ - +i).
On the other hand, by the proof of (ZZ430), together with (IZ437), we have:

+L s
R.HLS. of Res, Res; Res,,2| "2, ' (z1 — 2) - (Z&29)

T
2+ zo)r/ 6(12 + 20

1 m+g ntiog
= Res; Res;, Res;,z; Yu(Y(a,z20b,22)z, "z, "z

r+ R
= Res Res;, Res,, Z Z( ) ot z , Z (apb)(q + 1 S)

teZ j=0 D.q€EZ

—pl—q l-F—% m+g n+g |

%) 9 L %

t+ L
= ResZOResZ]RestZ( ) Z Jibem e by (g + —)

teZ j>0 P.qEZ
m+ %
= Z( . T)(aj+lb)(m—j+n+ T) (withp=j+1Il,t=m,g=1t—-j+n).
>0
This proves (ZZ433) O

By the proof of Proposition 417, together with (3.5) in [T8], we can easily derive a

twisted version of the rationality of product, locality, and weak associativity:
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Proposition 2.4.13. Let (M, Yyy) be a g-twisted V-module, and let a € V', b € V?, for some 0 <

rns<T-lLueM u €M, andm,n,l € Z. Then there exists f(z1,22) € C[Z?l,zfl, (z1—22)*'],

such that
W Yu(a,z0)Yu(b, 22)u)zy T2y T (21 = 22)' = 1y 0 f(21, 22), (2.4.34)
W, Yu(b,22)Ya, 20wz, T2y T (21 = 22)' = by o f(21, 22), (2.4.35)
W, Yy(Y(a,z1 = 22)b, 2wz, 25 T (@1 = 22) = by oy f(21,22). (2.4.36)

Furthermore, the component form of the twisted Jacobi identity (Z233) follows from (Z234)-
(ZZ338), rogether with Theorem 2241,

Now we consider the correlation functions associated with a g-twisted V-module

(M, Yy). For simplicity, we let M = P Myw = €D,c1, M(n). Recall that M has
T &+

nE%ZJr
the contragredient module (M’, Yy )(cf. [IR, 70]), where M’ = P nelz, M(n)*, and
Yarr(a, 2 f,u) = (f, V(e D (=27 Va, 27wy, (2.4.37)

foralla € V, f € M’, and u € M. It was proved in [[Z00] that (M’, Yy;/) is a g~ '-twisted V-module.

Let ay,az,...,a, € V be homogeneous with respect to the 7-grading, where a; €

Viia, eV, . ..,a,€ V" forsome 0 <ry,r,...,r, < T — 1. Consider the series
W, Yular, 20Yu(az, 22) . .. Yar(an, zay)2 72217 2! (2.4.38)

where u € M and ' € M’. Similar to the beginning of subsection 2.4.3, by (Z-4734)-(Z436),
together with the Definition of twisted modules, the series (Z438) only has integral powers of
21,225+ - - s Zn, and it is convergent in the domain D = {(z1,z2,...,2,) € C" ¢ |z1| > |za > -+ >
|z,| > O} to a rational function in z1,22,...,2,, and z; — zj, where 1 <i # j < n. We denote the

limit rational function of (Z43X) by:

Sy, (a1,z1)(az2,22) .. . (ay, 2)u). (2.4.39)

The rational function (ZZ439) is called a n-point twisted correlation function associated with

M. Sy in (Z439) also give rise to a sequence of functions

Sy M XV xVXM— F(z1,20,....2),
(2.4.40)

(V,7 Cll, Cl2, LR al’h V) — SM(V,, ((11,21)((12, ZZ) s (an’ Zn)v)
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We call Sy = {S7,},7, a system of twisted correlation functions associated with M. More-

over, we have the following properties of the system of twisted rational functions (ZZ4-40) that

are similar to the genus-zero properties in Theorem 244

Theorem 2.4.14. For any a; € V"',...,a, € V", where O < ry,...r, < T -1, u € M, and
u' € M’, the system of correlation functions Sy = {S'),} ) defined by (IZZ38) satisfies the

following twisted genus-zero properties:

(1) (Truncation property) For fixed a € V" and u € M, the series expansion of S y(u’, (a, z)u)
around z = 0 has a uniform lower bound for z independent of u' € M. i.e., there exists

N € N such that S (W, (a,2)u) = ZHS%N a2 "1 forallu’ € M.
(2) (Vacuum property)
Su', A, 2)(ar,21) ... (an, z0)w) = Sm@', (ar,z1) . ... (an, 2)10). (24.41)
(3) (L(—1)-derivation property)

d
S, (L(=Day,z1) ... (@n.2)V) = —— (Sm(@'. (@1.21) - .- (am z)w)z," ") 27

dzi
(2.4.42)
(4) (Locality) The terms (a1, z1), (a2, 22), - . . , (an, 2n) can be permuted arbitrarily. i.e.,
Sm@’, (a1, 210(a2,22) - - - (@, 7)u) = S MW, (@i, , 20 @iy Ziy) - - - (@i 23, ). (2.4.43)
(5) (Associativity) For any k € Z, we have:

f Sy (a1, 21)(a2,22) ... (an, 2)u)z1 — 24 dz1 = Sy, (araz, 22) . . .2 "7,
C
(2.4.44)

where C is a contour of 71 surrounding zp, with z3, .. ., z, lying outside of C.

(6) (The Virasoro relation) Let w € V be the Virasoro element, and let x, x1, . .., X, be com-

plex variables, denote the rational function

Sy, (w,x1)...(w,xp)(a1,z1)...(ay, 2,)u1)

by S for simplicity. Assume that u',u,ay,...,a, are the highest-weight vectors for the

Virasoro algebra, then we have:
SM(”’? (CL), x)((l), xl) AR ((L), xm)(al, Zl) e (an, Zn)u)
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n

_Zx 2 rk/T d (S _rk/T)+ wtay S wty S

+
P H(x-z)?  (x-w)?
t “wy d L 2
sy S g N (2.4.45)
X =1 x—xkdxk =1 (x—xk)

m 1 —
+ %,Z‘ (x—x )4SM(v',(w,X1)---(w, xi) - . (W, xm)(ai, 21) - - - (an, 2n)ut)

(7) (The generating property for M) For any a € V' and m € Z, we have:

Su@’,(ar,z1) ... (an, z0)a(m + %)u) = fCSM(u', (a1,z1) ... (an, 2p)(a, Du)z"dz,
(2.4.46)

where C = Cg(0) is a contour of z surrounding 0, with z1, . .., z, lying outside.

Proof. (1) and (2) follow from the Definition and (ZZ438), (3) follows from Yy (L(-1)a,z) =
dizY m(a, z), see (3.9) in [IX]. (4) and (5) follows from Proposition Z4T3. We write out some

details of the associativity (5). By definition and Proposition 2413, let |z1], |z2] < |z3l, . . -, |zal,

L.H.S. of (C443) = f Lyt Yag(ar, 20)Yu(az, 22) .. )z T2 T (2 = )hdz
C

T T n/T
= f Ly oy, V(Y (a1, 21 = 22)a2,22) - .. Y@, 22 22T 20 () = o)z
C

= (@ V(@ eaz. 22) .. Y@ zgyuday ™7 M) /T on /T

= R.H.S. of (ZZ243),

where we used the fact that (a))ray € V'**. The proof of (6) is similar to the corresponding one
in Theorem P”474. We just need to observe that w € V0, and so Yy (w, x) = Dine 947 L(n)z "2,
(7) follows from (Z-238) and Y(a,2) = Yez sz alm)z™ . O

Finally, we also have a twisted version of Theorem IZ43. Let (V, Y, 1, w) be a VOA,

and g € Aut(V) be of order T. Let M = P M (n) be a graded vector space, equipped

ne%Z+

with a linear operator Yy, : V — End(M)[[Z%,Z_%]], aeV' ' Yya,z) = Zn€%+Z a(m)z" 1.

Again, we do not require (M, Yy) to satisfy any axiom. Let M’ = @:oe 15 M(n)" be the graded
T &+

dual space of M. Then we have the following:

Theorem 2.4.15. With the settings as above, suppose there exists a system of correlation func-

tions Sy = {87,177
Sy M XVX--XVXM— F(z1,22,...,2n), (2.4.47)
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W' ay,az,...,anu) = Sy, (a1,z1)(a2,22) . .. (an, 20)u),

satisfying the twisted genus-zero properties (1)-(7) in Theorem 414, where the term a(m+ %)u
in (ZZ28) is defined by Res.zT*"Yy(a,z)u, and the 0-point function in (ZAZD) is given by
Sy, u) = W, u), foranyu € M and u' € M’'. Then (M,Yy) is a g-twisted admissible
V-module.

Proof. The proof is also similar to Theorem Z475, with some index adjustments. We write out

the details for completeness. Let a € V", then by (ZZ4-48) and the assumption, we have:

W', Yy(a, et = > ' a(m + %)mz—m—l =) ( fc Su' . (a, z)u)z’”dz) 7",

mezZ mez

which is the power series expansion of S /(' (a, z)u). Thus, we have:
Sy, (a, 2)u) = lim{u’, Yy (a, 2)u)zT . (2.4.48)

By the truncation property (1) of S 5, we have a(m)u = 0, for m > 0. By (ZZ4-41]) and ("24R),
we have Yy(1,z) = Idy,. By (Z242), (Z44R), and the uniform convergence of the power series,

we have:

lim(u Yy (L(-Dat, uyF = Syl (L~)a, ) = 2 (SM(u (a, uyz"") /7
-4 (lim Yy (L(- Da, D7 z7/7) /T = tim L0 Yor(L(-Dya, s
dz dz

Thus, Yy (L(-1)a,z) = diZY m(a, z). Finally, we prove the component form twisted Jacobi iden-
tity (Z433). Leta € V" and b € V¥, by (Z448) and (”24R), we have:

W, Z (i)(—l)ia(% +m+l- i)b(% +n+u)

NS s a(—+m+l—l)b(—+n+l)u)
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= Res,, Res,, (LMZS m@’, (a,z1)(b, 22)u)Z'25(z1 — Zz)l),

where C| and C, are given by Figure I, with z = z; and w = z5. Similarly, we have:

', - Z(—l)’”(i)b(% +n+1—ida(m+ % + i)

i=0

= —Res;,Res;, (L2, S m(W', (b, 22)(@. 20w (@1 = 22)').

Moreover, since a b € V'** for all j > 0, by the associativity (Z444) and (Z4-4R), we have

[e9)

, m+ % r+s . o (m+ & , mtn—j
(u ,Z( ] T)(aj+lb)(m+n+ T —])u) = Z( ] T)fc SM(u ,(aj+1b,22)u)22+ ]de
1

7=0 j=0
= (m+ L i
= ( .T) f f o Su (a, 2B, )@ — 22)'dy 2 ) dzadz,
J C) JC ()
= f f S, (a,20)(b, 2)u)(z1 — 22)(z2 + 21 — 22)" T 242, dzadzy
C) JC ()

= f f Sl (@, z)b, )z - 2272
C1 JC ()
= Res;,Res;, , (to,0-0 5w, (@.20)(b, 2)u)z1 — 22)'7]'23)

where C| and CZ'(z,) are given by Figure 2. Now the component form Jacobi identity follows

from the locality (Z4743)), together with Theorem 2411, O

Remark 2.4.16. Since the twisted correlation functions satisfy the similar properties as the
usual correlation functions, we believe that Zhu’s method of constructing an irreducible V-
module from an irreducible A(V)-module (Theorem 2.1.2 in [[73]) by using the recursive formula
of correlation functions can be easily generalized to the twisted case. This would result in a one-
to-one correspondence between irreducible twisted V-modules and irreducible Ag(V)-modules,
where Ag(V) is the twisted Zhu’s algebra defined by Dong, Li, and Mason in [I8]. Such a

correspondence for twisted modules was first obtained by a purely algebraic approach in [[IX].

Remark 2.4.17. Another possible way to generalize the system of correlation functions on
P!(C) is to define it over a higher dimensional complex manifold, for example, P"(C), where r >
2. Then instead of one coordinate z;, we need several coordinates [z1, ..., z,]. In other words, we

need to define the generalized vertex operator “Y(d, (z1,...,z,))”, and find the axioms of such
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vertex operators that generalize the usual rationality of products, locality, and associativity. A

natural candidate for “Y(d, (z1,...,z,))” is obviously the tensor product of vertex operators:
Y(ala Zl) ® Y(a25 Z2) ® e ® Y(ar, Zr)a

but there are still a lot of details to work out. We will study this problem in the future.
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Chapter 3

Space of correlation functions

In Section 24 of Chapter 2, we introduced the notion of a system of correlation func-
tions S s associated with a module M over VOA V. Such a function was built from the module
vertex operator: (', Yyr(ai,z1)Yu(as, z2) ... Y(ay, 70)Vv).

In this Chapter, we will consider a general case of the system of correlation func-
tions that are defined by both the module vertex operators and an intertwining operator / €
I( MZIW;,Z), where M', M?, and M> are V-modules of conformal weights hy, hy, and hs, respec-

tively. Namely, we will study the rational function defined by the limit of the following series:
V3 Yo (@, 2n) o Yo (@ret, 2= DIV, WY (g, 20) - Yo (@ z)va)w" 2700 (3.0.1)

where v € (M?Y,ve M',v, € M?,and ay,...,a, € V. Such correlation functions satisfy some
similar axioms as the ones in Theorem Z4-4. Furthermore, instead of one system of correlation

functions S 57, we will study the vector space spanned by all systems of correlation functions
defined by (B0T) in this Chapter, where we let the intertwining operator [/ vary in [ ( Mﬂ”;[ )
We denote this vector space by Cor( MIIWZ/[Z)’ and we will show that Cor( levf;[z) can be naturally

M3

. 3
Ml MZ)' Hence the fusion rule N 1"‘/[/’, 42 can also be computed

identified with the vector space [ (
3 . 3
by N%f o = dim Cor( ul MZ)-
The domain (M3) XV x---x M' x---x M? of the system of correlation functions de-
fined by (B1I) can also be restricted onto the bottom levels: M 30" xVx---xM'x---x M*0),

and the restricted functions have intimate relations with the Zhu’s algebra A(V) and some of its

M3(0) )
M M2(0))"

Then we use certain generating formulas satisfied by the correlation functions and prove that

bimodules. We denote the vector space of the restricted correlation functions by Cor(
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Cor( M’}%EO)) is isomorphic to both Cor( MIIWMZ) and Cor( 1\% (%33(5») when M?(0) and M3(0)
are irreducible modules over A(V), where M(M?(0)) and M(M?3(0)*) are the generalized Verma
modules (see [I8]) associated with irreducible A(V)-modules M?(0) and M>(0)*, respectively.
However, unlike building V-modules from A(V)-modules (see Theorem 2.2.1 in [[73]) based
on the ordinary correlation functions (v', Yy(ai1,z1) ... Yu(an, z4)v), in our case, due to the ap-
pearance of the intertwining operator /(v, w) in (B0l), the modules M? and M3 constructed
by (B1T) are not necessarily irreducible. This issue was first observed by Li in [49]. The
V-modules M2 and M3 are quotient modules of certain generalized Verma modules. They
can be proved to be irreducible if a technical condition depends only on the (bi)modules over

A(V) is satisfied. In particular, if the VOA V is rational, then the generalized Verma modules
M(M?*(0)) and M(M?3(0)*) are both irreducible, see Theorem 6.3 in Il X], and so the fusion rule

of irreducible V-modules M', M?, and M3 can be computed by N Ml ) = dim Cor( MIIVI;,Q)

dim Cor{, 9, ).

We fix some notations for this Chapter. Let V = (V,Y,1,w) be a vertex operator
algebra (VOA) which is of the CFT-type: V = EBZO:O Vi, with Vy = C1. A module M over V
is an ordinary V-module: M = @:o:o M+, where each M., is an eigenspace of L(0) with
eigenvalue A + n. Any V-module M is N-gradable (or admissible): M = EBZO:O M(n), with
M(n) = My, for each n. We write Yy(a,2) = X,z a(n)z"!, for all @ € V, and we write
Yu(w,2) = Yez L(n)z7"%. The Definitions and notations of these concepts can be found in

Section 1. The main content of this Chapter can also be found in [58].

3.1 Space of correlation functions associated with three modules

M', M?, and M>

In this Section, based on the properties of the limit rational function of the series
(B0, we will introduce the notion of space of correlation functions associated with V-modules
M', M?, and M?, Cor(

M M2) We will also prove that Cor( Mll” MZ) = [ ( M MZ) as vector spaces

by using the techniques we developed in Section 4.
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3.1.1 The (n + 3)-point correlation functions

Let M', M2, and M? be V-modules with conformal weights hy, hy, and hs, respec-
M3
M! M?
w" where h = h; + hy — h3, and v(n) = Res,, I(v, w)wW"™". Moreover, v(n)M?(m) C M3(degv -

-n-1

tively, and let I € [ ( ) be an intertwining operator. Recall that I(v,w) = },c7 v(im)w

n—1+m)foralln € Z and m € N, see Section 1. Consider the power series (B01):
Vi Y(ar,z1) . Yk 2)I 0, WY (@1, 2es1) - - - Y(@ns 2n)v2)w” (3.1.1)

in n + 1 complex variables zy, ..., z,, w with integer powers, where ay,...,a, € V, v € M,
v2 € M?, and V; € (M?)" which is the contragredient module of M>. We also omit the module
notations M3 and M? in Y, and Y,,> in (1)) for simplicity. We multiply the term w" to avoid
the appearance of the logarithm when computing the integrations.

Similar to Corollary 22472, the product of an intertwining operator and module vertex
operators also satisfies the rationality of product property, locality, and associativity. In other
words, with the notations as above, for any vg € (M3)’, aeV,vye M? and m,n,l € Z, there

exists some f(z,w) € C[z*!, w*!, (z — w)*!], such that

05, Yo (a, DI, wvad 2wz = w) = 1 f (2, W), (3.1.2)
Vi I, WY yp(@, 2v2) "Wz = w)l = 1, f(z, W), (3.1.3)
0, 1Yy (@, 2 = W), wva)?" Wiz — w)! = 1, - fz, W), (3.1.4)

and the proof is also similar to the corresponding ones in [277], we omit the details of the proof.
Then it follows that the power series (BI1) converges in the domain D = {(z1,...,2,, W) €
C™ Nzl > lzal > --- > W] > --- > |z,| > 0} to a rational function in zi, ...,z W, z; — z;j and

zk —w, where 1 <i# j<nand1 <k <n. We denote this rational function by:

(5. Y(ar,z1) . .. Y(ag, z)I(v, W)Y (ags1, 2ks1) - - - Y(@n, 20)v2), (3.1.5)

Note that the only possible poles of (B13) are at z; = 0, w = 0, z; = z; and zx = w. Moreover,
by (BI2) and (B13), together with Corollary 472, the rational function (B213) does not de-
pend on the place k where I(v, w) is placed at. In other words, for any permutation (i1, ip, . . ., ;)

of (1,2,...,n)and any k = 0, 1,...,n the power series
V5. Y (@i 2i) - - Y@y i) 10 WY (@, Zi) - - - Y (@i, 23, 02w
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have the same limit function (B-I3) on their corresponding domain of convergence. We use the

symbol S; to denote the limit function (B-15):

S5, (a1, z1) ... (W) .. (@, 2)v2) 1= V5, Y(ar, z1) .. I(v,w) .. Y (ap, 2)v2). (3.1.6)

n

Then we have a system of linear maps S; = {(S1)], ,1 ,}2o*

S (MY XV XM X VXM S F(Zh, s 2 W),
V.M.V (3'1'7)

(Vé,al, o ,V, e 9al’l9v2) = S[(Vg,(a],zl) e (V,W) e (an,zn)VZ)a
where 7 (z1, . . .,2s, W) is the space of rational functions in n + 1 variables z;, 22, . . ., z, W, With
only possible poles at z; = 0, w = 0, z; = zj, zx = w. For a fixed n € N, we have (Sl)rztxllv v =
(Sl)r\l/Ml...V =...= (Sl)r\l/...VMl’ since the terms (ay, z1), . . . , (@, 24), and (v, w) can be permuted
within S; in (B7T°6). We may view S as a (n + 3)-point correlation function on P!(C), where
we associated V-modules: (M3 Y, V,...M I ...V, and M? to these points.
We introduce the following notion that generalizes both Definition 4.1.1 in [[Z3] and

the genus-zero axioms in Theorem Z274:

Definition 3.1.1. A system of linear maps S = {S"'/.“Mlmv};’;o,

Sn

(. (MY XVX...XM' X ... VXM?> > F(z1,...,20W),

(V,3aal’ AR ,V, . ’an’ v2) g S(V;, (alazl) e (V, W) e (an’Zn)VZ),
is said to satisfy the genus-zero property associated with M', M?, and M? if it satisfies

(1) (Truncation property) For fixed v € M' and v, € M?, the Laurent series expansion of
S (vg, (v, w)vp) around w = 0 has a uniform lower bound for w independent of vg e (M3Y.

ie., SOV, (W) = Xuay apw ™! for all v € (M7

(2) (Locality) The terms (ay,z1), - - -, (@n, 2n), and (v, w) can be permuted arbitrarily within S.

e, S, =8V, = =87, forany fixedn e N.

(3) (Vacuum property)

SOy, A, 2)(ar,z1) ... (v, w) .. (an, 20)v2) = SOV, (a1, z1) ... (v, w) ... (@n, Zn)v2). (3.1.8)
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(4) (L(—1)-derivation property)

d
S5 (L(=Dai,z1) ... (@, 20) (v, W2) = ——

) S04, (a1,21) - - - (an, 2) (v, Whr2),
21

p (3.1.9)
S (v, (L(=1)v, w)(a1,z1) ... vo)w ™" = - (S04 ow)ar,zn) ... vaw ™).
(5) (Associativity)

ch(vg,(al,m)(v, W) .. (an, 22z = wdzy = S V5, (@ (k)v, w) ... (an, 20)v2),

LS(VQ, (@1,21(a2,22) ... v, W)z — 22)kdz1 = SOV, (a1(k)az, 22) . .. (v, w)va),
(3.1.10)

where in the first equation of (BI_10), C is a contour of z; surrounding w, with z5, ..., z,
outside of C; while in the second equation of (BI10), C is a contour of z; surrounding

22, With z3, ..., z,, w outside of C.

(6) (The Virasoro relation) Let w € V be the Virasoro element, and let x, x1, . .., x,; be com-

plex variables, denote the rational function

S(v'3, (W, x1) ... (W, xx)(a1,21)...(v,w)...(an, 2n)v2)

by S for simplicity. Assume that v’3, v,W,ai,...,a, are the highest-weight vectors for the

Virasoro algebra, then we have:

S5, (w, X)W, x1) ... (W, Xp)(ar, z1) ... (v, w) ... (an, 20)v2)

x1z d " wta xw wty
_Z k Z ks —(S w4 S

X =2 de e (x = z)? x—w'" dw (x —w)?
Wty xtwy d - 2
+ —=S + —S+ )y ——§ 3.1.11
x2 kz:; X — X dxi kz:; (x — xx)? ( )

m 1 —
+ % Z (x - )45(\13, (W, x1) .. (W, xk) ... (W, xm)(@1,21) ... (v, W) ... (@n, Z0)V2)
k=

(7) (The generating property for M?) For any a € V and m € Z, we have:
S(V;, (a17 Zl) e (V9 W) e (an, Zn)a(m)VZ)
(3.1.12)
= f S5, (ar,z1) ... (v, w) ... (an, 2a)(a, 2)v2)"dz,
C

where C = Cg(0) is a contour of z surrounding 0 with zy, ..., z,, w lying outside.
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(8) (The generating property for (M?>)") Denote (eZilL(l)(—zz)L(O)a, 7) by (a,z)’, then

S (a(m)vy, (ar,z1) ... (v, w) ... (an, 20)v2)
(3.1.13)
= f S, (@, 2) (@1,21) - (v, W) . (any 0)V2)Z ™2z,
CI

where C’ = C,(0) is a contour of z surrounding 0 with zi, ..., z,, w lying inside.

Definition 3.1.2. The vector space of the system of linear maps § = {S o satisfying

v }
V.MV
the genus-zero property associated with M', M?, and M? is called the space of correlation

functions associated with M', M?, and M3. We denote it by Cor( levlz/ﬂ).

Proposition 3.1.3. The system of functions S given by (B318) and (B11) satisfies the genus-

zero property associated with M U M2, and M3 in Definition B-L1. Thus S| € Cor( M?/IZF).

Proof. The properties (1) - (6) for S; follow immediately from the Definition of S in (BT1-6),
(BID), together with (B12)—(B14) and the expansion formula of the vertex operator Y. See
Section 5.6 in [27] and the proof of Theorem 244 for more details.

To prove (BI12), we note that the Laurent series expansion of the rational function
(BIA) on the domain |z| < |z, |w]| for all i is ZmeZ(vly Y(ai,z1)... Iv,w)...a(m)v2)z""!. The

coefficient of 77! in the Laurent series is also

f(vg, Y(ai,z1)... 1(v,w) ... Y(ay, zn)Y(a,2)v2)2"dz,
C

where C = Cg(0) is a contour of z surrounding 0 with zj,...,z, and w lying outside. This
proves (B1712). To prove (3T-13), we denote the term }’ 5 %(—I)W‘“(L(l)aj YRwta—m—j—2)

by a’(m), then by the definition of contragredient module (see (5.2.4) in [27]), the series

D (@lm)yy, Y(ar,z1) ... A0, w) ... Y(an z)Y(a, )™

mez

= > 0hd mY(ar,z1).. 10, w)... Y (@n, zv2)e "

mezZ

is the expansion of (vg, YW (—z72LO0g =YY (ay,z1) ... I(v,w). .. Y(ay, 2,)v2) on the domain
Iz~ > |z, wl, or equivalently, |z| < 1/|zl,1/w|, for i = 1,...,n. By comparing the Laurent

-m-1 we have:

coefficient of z
(a(m)vy, Y(ar,z1) ... 1(v,w) ... Y(an, 2,)Y(a, 2)v2)
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= f 05, V(e D= 0%, 7YY (ar, z1) .. I, w) . .. Y(ay, 20)v2)2"dz, (3.1.14)
Cr(0)

where R is small enough such that R < 1/|z|,1/lw|, for i = 1,...,n. Change the variable
7 — 1/zin the integral (31_14). Note that the parametrization of 1/zis (1/R)e", which gives us
a clockwise orientation, and d(1/z) = —(1/z%)dz. Let C’ = C,(0), with radius » = 1/R > |z, [w|
fori =1,...,n, equipped with the counterclockwise orientation. Then zi,...,z,, w are inside

of C’, and
BI113) = - fc,(vfz, Y(eZ_IL(l)(—zz)L(O)a, DY(a1,z1)... v, w) ... Y(an, z2)v2)z (=7 2)dz
= - 5, Y(eZ"L(l)(—z2)L<o>a, DY(ar,z1)... I, w) ... Y(an, z2)v2)z " 2dz
= L, S 14 (@,2) (a1,21) - - . (0, W) ... . (s 20)V2)T ™ 2dlz.
This proves (B-1-13). _
Remark 3.1.4. Let S € Cor( lewiﬁ). With the notations of Proposition B13, we have:
S(a' (mvs, (ar,z1) ... (v, w) ... (an, 20)V2)

1 - ; .
I B R R B e
C/

j=0 7"
= f S0, (¢ LD (= LO LD (=2 LOV g NG 21) . (@, 20)v2)2"dz
= L S5, (& EDe= LW g @y 70) . (ans 20)v2)2"dz
_ fc 504,(@,2)@12) . ). (@, 22"z
Hence the generating property for (M>)’ (8) in Definition BT is equivalent to:
S(a'(m)vg, (ar,z1)...(v,w)...(an,20)v2) (3.1.15)
. fc S04 (@)@ 2) - aw) 22,
where a’(m) = 350 %(—I)Wt“(L(l)ja)(Zwta —-m—j—2)and C' = C,(0) as in (8).

As a consequence of Proposition B13, we have a well-defined linear map:

M3 M3
a: I(M1 Mz) N Cor(M1 MZ)’ IS, (3.1.16)

where S is given by (B18) and (B117).
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3.1.2 The space of correlation functions and the space of intertwining operators

Although the genus-zero property associated with three V-modules in Definition BT
seems long and intrinsic, it is good enough to characterize an intertwining operator. In other
words, we can construct an inverse of the map « in (B118).

Fix a system of correlation functions S in Cor( MZIVI;,Z), we construct an intertwining
operator I € [ ( MIIWZ/F ) in the following way:

Let v e M!, define a linear map v(n) : M> — M? by the formula:
V5, v(mva) = f S5, (v, wvpw'dw, (3.1.17)
c

where C is a contour of w surrounding 0. Note that an element u € M? is uniquely determined
by the value (v}, u) for v} € (M3Y, so we have a well-defined element v(n)v, in M>. Then we
define I5 (v, w) as the following power series:

Is(v, w) = Z vyw ™, (3.1.18)

nez

where h = hy + hy — hs. It is clear that I(v, w) € Hom(M?, M>){z}.

Theorem 3.1.5. The series Is (v, w) defined by (B111) and (BIIR) is an intertwining operator
of type (4,12

Proof. By Definition BT1], § (v’3, (v, w)»p) is a rational function in w with the only possible pole
at w = 0, and the term (BTT7) is the Laurent coefficient of S (v}, (v, w)v2). Thus the series
(X5 Is (v, w)x2)w! is the Laurent series expansion of S (x5, (v, w)x2) around w = 0 by (ETIR).
In particular, if we denote the limit of the Laurent series (v’3, I(v, w)vy Iw' by (vg, I(v,w)vy), then

we have the following equality of rational functions:
(. Is (v w)v2) = S (v, (v, w)v2) (3.1.19)

Since § satisfies the property (1) in Definition B, for v € M Uand v, € M2, there
exists N € Z such that (v}, Is (v, wva)w" = 3,y (.S 05, (v, whvo)w"dw) w1, for all v} €
(M3Y. Hence we have v(n)v, = 0 for n > 0. By the L(—1)-derivative property of S, together
with (B11IX), we have:

d d
V5, Is(L(=1)v, w)va) = s Vs, v, wh)w™) = E%’ Is (v, w)v).
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Hence I (L(—-1)v,w) = ﬁ[s (v, w). Moreover, we claim that the following equation holds:

(59

> (": )(a(l +V)m + 1 — o (3.1.20)

i=0
= Z(—l)"(l,)a(m + 1= iy(n + i)vy — Z(—n’”(l, )v(n +1— Ha(m + i),
i=0 ! i=0 !

forallm,n,l € Z,ac V,ve M, and v, € M?. Note that (B120) is the component form of the
Jacobi identity for the intertwining operator Is.
Indeed, the proof is similar to the proof of Theorem "4 and Z4T4, with a different

order of integration and choice of radii . By (31_I7) and the generating property of (M?)" of S
(B113), we have:

<V/3, Z(—l)i(l)a(m +1-iv(n+iv) = Z(_l)l(f) fC, S(@(m+1— i)v'3, o, W)VQ)Wn+idW

i=0 i i=0 1
> (] S
=Z(—1)’(.)f f S (v, (@, D)0, wiv)Z"™ W™ dzdw (3.1.21)
i=0 Jci e
= f f N (Vé,(a,Z)(V,W)Vz)zmw”(z—w)la’zdw
1 2

= Res,Res,, (LZ’WS (v}, (@, 2)(v, wvp)Z"w" (z — w)l) .

where C is a contour of w centered at 0, and CJ is a contour of z centered at O such that w is
lying inside, and the last equality follows from (Z4.4). So C’ and C}, can be given in Figure I,
On the other hand, by (B-T-T7) and the generating property (B-T-12) of S, we have:

3, ;(—1)l+i(§)v(n + 1= 1alm + ijvy) = ;(—1)1”(5) fcl S Vs, (v, wya(m + Dyvo)w™ = dw

:Z(_nlﬂ'(l,) f f S (v, (v, w)(@, 2)v2)2" W dwdz (3.1.22)
i=0 JaJe

= f f S (v, (0, W)@, D)v2)Z"W"(z — w)ldwdz
Ci JCy

= Resy,Res; (1,28 (v}, (v, w)(@, 2v2)2"w"(z = w)'),

where C is a contours in w centered at 0, and C, is a contour of z centered at 0, with w lying
outside. Thus, C; and C; can also be given by Figure P71 Then by the Definition formulas
(BIT32), (B120), and (B1X2), together with (2) and (5) in Definition BT, we have:
- (! - (1
Loy (=1 +l—iwn+ivy — Y (=D +1—ia(m+i
(5 Z( ) (l.)a(m Dv(n + i)y, Z( ) (l.)V(n Da(m + i)va)

i=0 i=0
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= Res:Res,, (12,08 (V}, (@, (v, wh2)2"w"(z = w))
— Res,Res; (128 (v, (v, w)(@, v2)2"w" (2 = w)')

= ResyRes:y (1S (v, (@, )0, wv)2"w' (2 = w)'),

= f f S (v}, (@, 2)(v, wva)(z — w) " w"dzdw (3.1.23)
Cy JCiw)

= f f S5, (a,2)(v, w)vz)(z—w)le,z_W(w+ (z —w))"W'dzdw
Cy JCi(w)

(”7) f f S (0 (@, v, W)z = W dzdw
i>0 l CZ Ci(w)

(".1 ) f S 4, (a(l + iyv, wyvy)w™
iso \/YJe

= (r?)(vg, (a(l + Dv)(m + n — ivy),
i>0

where the contours C; and C%(w) are given by Figure 2, and we’ve used Theorem 247 to
obtain the third equality. Since v} in (BZIZZ3) can be choosen arbitraily, the Jacobi identity

(B120) follows, and so Iy given by (BIIX) is an intertwining operator of type ( MIIW;IZ). O

3
Corollary 3.1.6. The vector space of intertwining operators 1 ( M]]VI MZ) is isomorphic to the vector

3
space Cor( M/]Vl M2) in Definition 12,

Proof. Theorem B3 indicates that there exists a well-defined linear map:

M3 M3
B: Cor(M1 M2) — I(M1 Mz)’ S . (3.1.24)
By (BI8) and (BTT19), it is clear that S8 is an inverse of the linear map « in (B2I_1d). Hence
I ( MIIVI;IZ) = Cor( MIIWZ/IZ) as vector spaces. O

Remark 3.1.7. If we consider the case when M! = V and M> = M? = M, then an intertwining

M

operator [ € (V M

) is just a vertex operator Yy : V — End(M)[[z, 7z~ 1], and Corollary BT in

this case is precisely Theorem ”475 about the correlation function associated with one module.

3.2 The correlation functions defined on the bottom levels

. . 3
In this Section, we will restricted a system of correlation function § € Cor( M]]” MZ) onto

the bottom levels M>(0)* and M?(0) of (M?)’ and M?, respectively, and use the properties of the
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restricted correlation functions to give an auxiliary notion of the space of correlation functions
associated with M', M?(0), and M>(0), denoted by Cor( Mﬂ‘ﬁﬁgo)). We will give a lift for any
S e Cor(M?/IZ;gzo)) to a system of functions on the domain MO X VXXM x---xVxM,
where M is a free object associated to M>(0). We will also define the radical of the lifted
functions, and prove some properties of the radical.

Recall that the bottom level M(0) of any N-gradable V-module M = @Zio M(n)is a
module over the Zhu’s algebra A(V) under the module action: [a].v = o(a)v = a(wta — 1)v, for
all [a] € A(V) and v € M(0), see Section 2. For the rest of this Section, we assume that the

A(V)-modules M2(0) and M>(0) are irreducible.

3.2.1 The space of correlation functions associated with M, M?(0), and M>(0)

LetS € Cor( M11v1 M2), and let [ € [ ( MIIVI M2) be its corresponding intertwining operator
under the isomorphism § in (B-I-24). For each n € N, consider the restriction of S onto the

bottom levels M%(0) and M>(0)*:
Syt sz - MPO) XV X oXx MY+ x VX M*(0) > Fz1,...,zmw).  (3.2.1)

To simplify our notation, we use the same symbol S to denote the restricted function (B22T).
Clearly, S in (BZX1) satisfies properties (1)—(6) in Definition BT, with the elements vg and v
in these properties belong to M 3(0)* and M?(0), respectively. Moreover, since (v, I(v, w)vz) =
S (v’3, (v, w)1p) by (B.I-19), and v(in)M?(m) € M>(m+ degv—n—1) forall v € M' homogeneous,
neZ,and m € N (see (1.5.4) in [30]), then we have:

S (v, (v, W) = V5, v(degv — Dvo)w™ degv. (3.2.2)
We introduce the following intermediate notion based on the properties satisfied by the system
of restricted correlation functions (B221).

Definition 3.2.1. Let M2(0) and M>(0) be irreducible A(V)-modules, and let S = S

be a system of linear maps:

Sn

oy MO XVX...x M ' x...VxM*O0) > F(@i,.. 20 W),

V5, a1,...,V, ..., an,v2) = SOV, (a1, 21) ... (v, W) ... (dny Zn)V2).

Then S is said to satisfy the genus-zero property associated with M', M?(0), and M>(0) if

the following conditions are satisfied:

66



(1) § satisfies properties (2) — (6) in Definition BT, with the elements vg and v, in these
properties belong to M3(0)* and M>(0), respectively.

(2) There exists a linear functional f : M! — Homc(M?(0), M3(0)),v — f,, such that
S (v, (v, whva) = Oy, fyma)yw™ 8, (3.2.3)
for all v € M?(0) and v}, € M>(0)*.

(3) (The recursive formula for M>3(0)*) For any v, € M30)*, v € M', v, € M*0), and

ai,...,a, €V,

S (4, (@, 2)(a1,z21) - . . (@n, 7)) (v, wv2) = S(Vy0(a), (ar, z1) - . . (@n, 20) (v, Whv2)z ™
n
D  Futai@ 208 (%, (@1,20) - (@i %) - - (@, 20) (v, Wv2) (3.2.4)
k=1 i>0
D Faiaizw)S (4, (@1,20) ... (@, 2)(@(i)v, wyva),
i>0
where Fy,,,i(z, w) is a rational function in z, w given by:
ta+ 7 . .
Lz,w(Fwta,i(Z, w)) = Z (W ai ])Z—wta—j—lwwtaﬂ—z’
20 ' (3.2.5)
—m d 1 mn
Fpi(z,w) = Z—(—) i , VneN,
’ ' \dw/ z—w

and vjo(a) is given by the natural right module action on M 3(0)*.

(4) (The recursive formula for M>(0)) For any v € M3(0), v € M', v» € M?*(0), and

ai,...,a, €V, we have:
SO, (a1,21) . . . (an 2) v, W)@, 2)v2) = S (5, (a1, 21) - . . (an, 2a)(v, who(@)vp)z ™
n
+ 3 Guai@ WIS 0, (@1,21) - (@), 20) - - (@, 20) (v, w)v2) (3.2.6)
k=1 i>0
+ 2 Gutaim WS (%, (@1,21) - (@n, ) (ali)v, w)(a, v2),
>0
where Gyi,,i(z, w) is a rational function defined by
ta—2—j o .
by (Gutai(z W) = — Z (w a i J)me J2-i~wiari+]
20 (3.2.7)
—m+1 d i m—1
Guizw) = (o) (2= ) vnew
’ i \dw/\z—w
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The vector space of the system of functions satisfying the genus-zero property associated with

1 a2 300 M3(0)
M*, M~(0), and M-(0) is denoted by Cor( M2 (0)).
We observe that the rational functions F and G given by (323) and (B271) satisfy the

following relation:

-m ( J i m m—1 -1 )
meavw-—cmxavw=:57—(3;)( LA )=—(”l }rmwm‘“z

i! z—-w Z—-w

for all m € N. In particular, we have:
wta — 1 :
FWta,i(Z, w) — tha,i(z’ w) = _( ; )Z—Wtawwta—l—z' (3.2.8)

The equation (B3228) will be used multiple times in Chapter 4 when we build a system of corre-

lation functions S from a linear map on a tensor product of A(V)-modules.

Proposition 3.2.2. Let § € Cor( MIIVI;I ) Then the system of restricted functions S in (B2Z2)

satisfies the genus-zero property associated with M"', M?(0), and M>(0).
Proof. By our discussion in the begining of this subsection, S in (B3Z21) satisfies (1) and (2)
in Definition BT, where the f, in (B223) is given by f, = v(degv — 1), for allv € M 1
The proof of (B2Z4) is similar to the proof of Lemma 2.2.1 in [[[3]. We omit the details. To
prove (B2X6), we only consider the case when n = 0 (the general case follows from a similar
argument.) Note that a(n)v, = 0 if wta —n — 1 < 0, it follows that <v§,1(v, w)Y(a,z)va) =
Vi I, w)o(@Wv2)z™ + ¥amn—150{v3 1V, w)a(n)v2)z"~!. By the definition of contragredient
modules, we have (v}, a(n)u) = ¥;>0 l.l—!(—l)i<(L(i)a)(2wta —n—i-2),,u), forany n € Z. But
(L(Da)2wta —n —i—2)v; € (M3 (-wta +n+ 1) = 0 when wta —n — 1 > 0. Thus

Z 05, I, wa(myva)z "' = - Z %, La(n), I(v, w)Iva)z ™!

wta—n—1>0 wta—n—1>0

- Z Z (’Z)<V/3’I(a(i)v, W)z I

wta—n—1>0 i>0

wta—j—2 . o
= — Z Z ( a i] )Z—Wta+.[+2—1WWta—j—2—1<v§’ 1a(i)v, wyvy)

Jj=0 >0

= > 12 (Guailz, WIS, Haliv, wiva),

i>0

where the last equality follows from (B2271). Hence we have:

V5, 1, WY (a,2)) = V3, I(v, who(a)va)z ™ + Z b, (Gwa,i(z, WV3, 1(a(@)v, wiva)

i>0
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as power series. By taking the limit of this series, we obtain (B228) for n = 0. O

As a consequence of Proposition B2, we have a well-defined restriction map:

M3 M3(0)
p: Cor(M1 MZ) — Cor(M1 MZ(O))’ S B S|aB 0y . M1 xM2(0)> (3.2.9)

where M? and M? are any V-modules, with bottom levels M?(0) and M3(0), respectively.

The following Lemma will be used in the next chapter:

Lemma 3.2.3. Let S € Cor(,\'\%) }, and let f - M" — Homc(M?(0), M*(0)). v = f, be the

linear functional in Definition BZ_1. Suppose that f, = 0 for all v € M'. Then S = 0.

Proof. We use induction on n to show that S (v}, (a1,21) ... (an, 22)(v,w)v2) = 0 for all v} €
M3*(0)*,v € M', v, € M*(0), and ay,...,a, € V. When n = 0, by the assumption and (323),
we have: S (v, (v, w)va) = (v}, fu(v2)yw™ %87 = (v, 0yw 48" = 0, for all v, € M3(0)*, v € M",

and v, € M%(0). For n > 0, by the recursive formula (B224), we have

SO, (ar,z1) .. . (an, 2) (v, Wv2) = S(Vyo0(ar), (a2, 22) . . . (@, z0) (v, W)z

+;Zymmm@m%«mm”mmm@yw%ame>

+ D Futa i@, w)S (%4, (a2, 22) . (s 2)(@1 (i), w)va).

20
Since each term on the right-hand side has a smaller length, the right-hand side is equal to 0 by

the induction hypothesis, so we have S(vg, (a1,z1)...(an, 7)) (v, w)rp) = 0. O

3.2.2 Generalized Verma modules and the radical of correlation functions

Recall that for any irreducible A(V)-module U, Dong, Li, and Mason constructed a
generalized Verma module M(U) in [IR]. By their construction, M(U) = (U(L(V)) ®u(£(v)s0)
U)/U(L(V))W, where

LV =VRCL /(L) el+1e d%)(v ® Clt, '] (3.2.10)

is the Lie algebra associated with the VOA V (cf. [I2, IX]).L(V) is a graded vector space:
L(V) = @nez L(V),, where deg(a®t") := wta — n — 1, for all homogeneous @ € V and
n € Z, and L(V), is spanned by elements in L(V) of degree n. Moreover, recall that £(V)so =
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@neN L(V),, and L(V)y is a Lie subalgebra. There exists an epimorphism of Lie algebras
L(V)o = A(V)Lie, and so U is a modules over L(V)xo. W is the subspace of U(L(V)) ®u(£v).,)
U spanned by the coefficients of the weak associativity equality (ZZ1-4), see Section 5 in [IR]
for more details.

M(U) is N-gradable: M(U) = €, M(n), with the bottom level M(U)(0) = U. It
satisfies a universal property in the sense that any N-gradable V-module with bottom level U is
a quotient module of M(U) (Theorem 6.2 in [I8]). Moreover, M(U) admits a unique maximal
graded £(V)-submodule J subject to JAU = 0, and L(U) = M(U)/J is an irreducible V-module
(Theorem 6.3 in [TY]).

In Section 2 of [49], Li gave an alternative definition of the generalized Verma module
F(U) associated with U, namely, F(U) = (U(L(V))®u(£v).o) U)/J(U), where J(U) is the inter-
section of ker e, where « runs over all £(V)-homomorphisms from F(U) to weak V-modules.
Clearly, M(U) = F(U) since they satisfy the same universal property.

Let M := T(L(V)) @ M?(0), where T(L(V)) is the tensor algebra of L(V). Given a
S e Cor(M[]VI;;(Z)EO)), we want to extend the domain of S to M3(0)* X VX ---x M' x---x V x M.
To simplify our notation, we omit the tensor symbol in an element of M and denote an element

b® 1" in L(V) by (b, n), then an element in M can be written as:
x = (b1,i1)(b1,12) ... (By, im)Vv2 (3.2.11)

where b; € V, iy € Z, va € M*(0), and (b, i) linear in b. We extend the last input space of S
from M?(0) to M by repeatedly using the generating formula (B-II2). i.e., we let:

S MO XVX- XM X XVXM > F@s.. 20 W),
S (@1,21) .. . (any Vo), W) (32.12)
- f f SO (@1,20) - (@ 2) 0, W)B1,W1) .- o W)W . widwy . W,

Ci Cn

where Cy, is a contour of wy, C contains Cy4 for each k, C,, contains 0, and z1,...,z,, w are
lying outside of C;. We first prove the well-definedness of S in (B2212). By (BZXZ10), we just

need to show that § in (B3Z212) agrees on the elements:

(b1,01) ... (L(=Dbp, i) ... (b, im)va, and  —irp(b1,i1)...(br,ix — 1) ... (b im)v2.
Indeed, by the Definition B2, S in (B3) satisfies (31.9). Thus,
S5, (ar,z1) ... (@, v)) (v, w)(b1,01) ... (L(=Dbx, i) . . . (D, Tm)V2)
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d ., , , :
:ff d—S(v3,(a1,Z1)...(an,zn)(v,w)...(bk,wk)...VQ)wlll...wZ‘...w;h”dwl...dwm
Ci Cn OWk

=_f.-.f S (Vs (@1,21) - (s 20) 0, W) .. By wi) . )W Wl wimdwy L dwy,
Cy Cn

=S5, (a1,21) - - - (@, Vi)V, W)(=ii) (b1, 11) - .. (Diy ik = 1) .. (D B)V2).

Introduce a natural gradation on M by letting
m
deg((b1,11)(D1,12) - . . (b, Im)v2) 1= Z(Wtbk —ik— 1), (3.2.13)
k=1

and denote the degree n subspace by M(n). Then M = &, _, M(n), with M*(0) € M(0). Similar
to (2.2.30) in [[73], we define the radical of S on M by
Rad(§) := {x € MIS(V}, (a1,21) . . . (@, 2)(V, W)x) = 0,

(3.2.14)
Yn>0,ay,...a, €V, ve M', v € M3(0)*},

then let Rad(M) := (g Rad(S), where the intersection is taken over all S € Cor( Mﬂ”;;?go)). In
fact, we can take the intersection over all nonzero S since Rad(S) = M if § = 0.

It is clear that the extended S in (BZ12) factors through M/Rad(M). Next, we
show some essential properties of Rad(M), which will eventually lead to the conclusion that

M /Rad(M) carries a structure of N-gradable V-module whose bottom level is M2(0).

Lemma 3.2.4. Let W be the subspace of M spanned by the following elements:

> (@)(a(z +i)b,m+n—i)x
£\ |

=0 . 1 (3.2.15)

(] .
—( Z(—l)’(_)(a, m+1—i)b,n+i)x— Z(—l)’“(,)(b, n+l-i)a,m+ i)x),

i=0 ! i=0 !
where a,b € V, m,n,l € Z, and x € M. Then we have W c Rad(M).
Proof. By the formula (32_12), for the following element in M, it is easy to see that

X' = (b1,i1) ... (bys im)x,
where x = (c1, j1) ... (cy, ju)v2 for some b;,c; € V and i, j; € Z, we have:
S5, (a1,21) - . - (an, Vi) (v, W)X') (3.2.16)
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- f f S0y (@1,21) .- s 20 )1 W1) - . By W DWE Wiy . v,
Cl m

where Cy is a contour of wy, Ci, is inside of Cy, for each k, C,, contains 0, and z1, ..., z,, w are

M3(0) )
M M2(0))"

Denote the element (B2213) by y. We adopt the notations in Proposition A.2.8 in [29]

lying outside of C;. Now we fix a nonzero element S € Cor(

again. Let C ;e be the circle of w;, i = 1,2, centered at 0 with radius R, and let C l (w») be the
circle of w; centered at w, with radius e. We may choose € small enough so that [w; —w;| < |ws|
for any wy lying on C!(w,). Choose R, r,p > 0 so that R > p > r. By (BZI8) and the locality
(2) in Definition BT of S, we have:

S5, (a1,z1) - - - (@ny 22) (v, W)y)

= LZ Z (H;)S V5, (a1, z1) . . . (an, z)) (v, w)(a(l + )b, wz)x)wgﬁn_idwz

P i=0

> (] o
—J;l fc; Z(—l)’(l,)S(vg,(al,m)...(a,,,zn)(v,w)(a,wl)(b,wz)x)w’l””‘lwg“dwldwz

p =0

+f f Z(_l)lﬂ(.)s(vg,(al,m)---(an,Zn)(VaW)(b,Wz)(a,Wl)x)er'HleH_ldWlsz
e Jer i

r =0
= f Z (m)S (V3 (@1,21) - - - (ans 7))V, w)(all + )b, wo) X)W dws
G izo \!
- f} f2S(Vfo,,(al,m)---(an,zn)(v, W)@, wi) (B, W2)X) * g s (W1 = W)W Widwidw:
cl Jez
+ f . f 1 Sy (@1521) - - (@ns 70) (Vs WDy W)@ W1X) * Ly oy (w2 + W)W Widw dwo
c; Jcl
[e5) m ‘
= fz Z (i)S V5, (a1,21) - . . (an, ) v, w)(a(l + Db, wp)x)wh ™" dw
Cp i=0
- f f S5, (a1,21) - - (ans 20) (0, WY@, w) (B, w2)v2)(wi — wo) witwydwidw.
2 Jctwa)
e} m ‘
= fz Z (i)S V5, (a1,21) - . . (an, ) v, w)(a(l + Db, wp)x)wh ™ dw
Cp i=0
- Z NS V4 (@rs z1) - - 0, W)@ wi )by wva)(wy — w) W dw dwy
c2 Jckw l } 2
> YCew) 1
=0,
for all v’3 € M3(O)*, a,...a, € V,and v € M', where the last equality follows from the
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associativity (5) in Definition B-T1l. This shows y € Rad(S). But § is chosen arbitrarily. Hence
we have y € Rad(M). o

Lemma 3.2.5. M and Rad(M) satisfy the following properties:
(a) If x € Rad(M), then (b, i)x € Rad(M), foranyb € V and i € Z.
(b) M*(0) N Rad(M) = 0.

(c) M(n) c Rad(M) for all n < 0.

Proof. Since Rad(M) = Mg Rad(S), we just need to show that (a), (b), and (c) hold for Rad(S),

3
where S € Cor( MZ,WA;(Z)EO)

(a) Let x € Rad(S), by (BZZ12) and the definition (B2214) of Rad(S ), we have

) 1S nonzero.

S(vg,(al,z,l)...(v,w)(b,i)x):fS(vg,(al,zl)...(v,w)(b,wl)x)wﬁdwl :fo-wﬁdwl =0,
C C

where C is a contour of wy, with zy, ..., z,, w lying outside. Thus (b, i)x € Rad(S).
(b) Suppose there exists some v, # 0 in M?(0) N Rad(S), then by (B223) and the

recursive formula (B3Z26), we have

0 = 1, (S5, (@, 2)(v, W)12))

= S (V5 v, wio(@)vp)z ™ + Z tw.2(Gwia,i(z, WS (v5, (a(i)v, w)vz) (3.2.17)
i>0
= (v, fylo(a)va)yz W aw™dee — Z (Wta —iZ - j)wdeg VIl WG fain (V)

i,j20
foranya € V, v} € M?3(0)*, and v € M'. By comparing the coefficients of 77V~ 9" on
both sides of (B2Z11), we have (vg,fv(o(a)vz» =0 forall v € M>(0),a e V,and v € M".
Then f,(M*(0)) = 0, since M*(0) is an irreducible A(V)-module, and M*(0) = A(V).v, =
span{o(a)vala € V}. It follows that f, = O forallv e M L By Lemma B73, we have § = 0,
which is a contradiction.
(c) Let x = (b, ipy) . .. (b1, i1)v2, with 377 (Wth; — i — 1) < 0. We use induction on
the length m of x to show that x € Rad(S). For the base case, let x = (b, f)v, withwtb—1—1 < 0,
then by (B3217) and (B2X6), we have

S(vg,(al,m)...(v,w)x):LS(V&,(al,zl)...(v,w)(b,z)vz)ztdz
= f Sy (@1,21) - - - (ans 20) (v, Wo(b)v2)zZ ™ dz (3.2.18)
c
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t [ DY G S 02 bl 0. ow )

k=1 i>0

+ f Zthb,i(z,w)S(vg,(al,m)...(b(i)v,w)vz)z’dz,

i>0
where C is a contour of z surrounding 0, with all other variables lying outside C. In particular,

we have |z| < |z| for all k, and |z| < |w|. Then by (B272),

Z—wtb+1+t d i Z]\;vtb—l
f Gwi,i(z, )7 dz = f —(—)( )dz =0, (3.2.19)
c c i! dzi ) \z — zx

since —wtb + 1 +¢ > 0, and 1/(z — z¢) is a sum of nonnegative powers in z for all z lying on the
contour C. We also have fc 77V dz = 0, since t — wth > —1. It follows that all the integrals on

the right-hand side of (BZZI8) are equal to 0. This finishes the base case.

Now let m > 0, and consider x = (by,, i) . . . (b1, i1)v2 € M. We have:

S5, (ar,z1) ... (v, w)x)

i[mfS%MMJH&WMMMM®MWW%WWMMJW
Cn Cq

i[mfS%Mwﬁ&w%mwhmmmwmﬂwwmwdw
Cn C n

+f ZZthbl,,-(wl,zk)S(vg,...(bl(i)ak,zk)...(v,w)...vz)wfg...w’;dwl...dwm

Ci k=1 20 ()

+f f > Gt 01 WIS (. D1V W) b W) . v2 Wy i dwy ..y
m C]

i>0 3)
m . .
" f ... Z Z Gutb i1, WS Vs, ... (vyw) .. (B1(Db,wp) .. .v)wiy .o widwy ... dwp,
m C1 =2 %0 @)

=+ +B3)+ ),

where C is a contour of w; surrounding 0, with all other variables lying outside. We need to
show that the sum of these integrals equals 0. i.e., (1) + 2) + 3) + (4) = 0.

Casel. wth; —i; — 1 <0.

Similar to (32219), we have fCl Gwip,.i(W1, z)wil' dw; = 0, for z = zx, w or w;. Thus we
have (2) = (3) = (4) = 0. We also have (1) = 0 because —wth; +i; > —1.

Case2. wth; —i; — 1> 0.
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Then —wtb;| + i < —1, which implies (1) = 0. Moreover, by (B2271) we have:

; wth) —2—j o - i+i
i th1—j—2— wthy+ 1+ j+i
f G, i(wi, 2w dwy = Resw1=0(_Z( ; A J ')
G 720

l

_ _(i})zil—i‘ (3.2.20)

for z = zx, w or w;. Apply (B2220) to (2), (3), and (4), and we have:

@) = - f ZZ(’l_l)z;';"'S(vg,...(bl(i)ak,zk)...(v,w)(bm,wm)...(bz,wz)vz)

€2 %=1 20

n .

l s ’ .

=->] Z( .l)zjj SO (@1, 21) - (b1 Dk 28) - (@, 2, WY),
k=1 >0 \!

where y = (b, ip) . .. (b2, i2)v2. Note that degy = deg x — (wtb; —i; — 1) < 0, and the length of

yis m — 1, then by the induction hypothesis we have (2) = 0. Similarly, (3) = 0.

m .
(4)=f f ZZ(l?)w;'l"’S(vg,...(v,w)...(bl(i)bl,w,)...vz)wf;;...wjldwl...dwm
Cm €193 o0
m

= Z Z (ll.l)S V5, (@1,21) - - . (an, 20) (v, WD),

=2 i>0

where y; = (b, i) ... (b1(Dby, i1 + i —0) ... (by, 12)v2. Note that
deg(b(D)by, iy + i — i) =wthy + wtb; —i— 1 —i; —i;+i— 1 =deg(by, i) + deg(by, iy).

Thus, degy; = XjL, wt(by, i) = degx < 0, and the length of y; is m — 1 for each /. Hence
(4) = 0 by the induction hypothesis.

Case3. wth; —i; —1=0.

In this case, we have: fCl thb,,i(whz)w’f dwi = 0 in view of (B32.19). Hence (2) =

(3) = (4) = 0. Moreover, since —wtb + i; = —1, we have:
(1) = f f S Vs, (a1,21) - o (0, W) By W) - .. 0(b)v2)Wie .. w2dws ... dwy
m C2
=S5, (ar,21) - . - (@ny Z0) (W, W)Y),

where y = (b, ip) ... (b2,i2)va. Since degy = deg x < 0, and the length of y is m — 1, we have
(1) = 0 by the induction hypothesis. Now the proof of (c) is complete. O
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Remark 3.2.6. Lemma B4 and B2 indicate that the properties of Rad(M) are actually en-
coded by the recursive formulas in Definition BZZ1. As we will see in the next Section, the
V-modules M? and (M?)’ can be characterized by the correlation functions on the bottom levels

M?(0) and M3(0)*, together with the recursive formulas (B224)) and (BZ26).

3.3 Extension from the bottom levels

Using the properties we proved in the previous Section, we will show that the re-
striction map ¢ in (B22Z9) has an inverse for certain V-modules M? and M?, with irreducible
bottom levels M?(0) and M>(0), respectively. Then for such V-modules M? and M3, we have
: : M3 o M3 - M3(0) . .
isomorphisms I(M1 M2) =] Cor( ¥ MQ) = Cor(Ml MZ(O))' Moreover, the second isomorphism
holds automatically if V is a rational VOA, and M? and M?> are irreducible V-modules. So
we can compute the fusion rules of rational VOAs by determining the dimension of spaces of

M3(0) )

. . 3
correlation functions Cor( MIIVI M2) or Cor( ML M2(0)

3.3.1 The V-modules constructed from bottom levels and correlation functions

M3(0)

Choose an element S in Cor( ML M2(0)

), then S is a system of multi-linear maps:
S MO XV XX M X X VX M*(0) = F (21, - s 20y W) (3.3.1)

We will extend the first and the last input vector spaces from M 3(0)* and M?(0) to some V-
modules M/RadM and M/RadM, which are certain quotient modules of the generalized Verma
modules M(M?3(0)*) and M(M?(0)), respectively.

We first extend M>(0), and we will proceed like the proof of Theorem 2.2.1 in [73].
In our case, however, the extended V-module is not necessarily irreducible like the extended
module in Theorem 2.2.1 [[73].

Define a vertex operator Y7, on the quotient space M? = M/Rad(M) as follows:

Yy 2(a,2) (b1, 1y) . .. (b, im)Vv2 = Z(a, n)(b1,i1) ... (B ig)vaz ", (3.3.2)

nez

where a € V, (b1,i1)...(by, in)v2 € MZ, and we use the same notation (b1, i1) ... (b, i;;)vs for

its image in the quotient space M?. We can express (B3372) in the component form:

a(n)(by,ir) ... (bm, imv2 = (a,n)(b1,i1) ... (b, im)Vv2, (3.3.3)
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forallae V, n€Z,and (by,i1)...(by,im)Vv2 € M.

Proposition 3.3.1. M2 = M/Rad(M), together with Y et Voo End(M?)([z,z 1] given by
B32) and (B33), is a weak V-module.

Proof. By (a) of Lemma BZZ3, we have a(n)Rad(M) C Rad(M). Hence Y,;, is well-defined.

Let x = (b1,i1)...(by,in)vy € 1\/_12, we claim that 1(—1)x = x and 1(n)x = O for any n # —1.
M3(0)
M M2(0)
(BZX18), together with the fact that 1(j)a = O for all j > 0, a € V, and 1(j)v = 0 for all j > 0,

Indeed, for any S € Cor( ), by the definition formula (B3212), the recursive formula

v € M', we have:
S5, (ar,z1) - .. (v, w)1(n)x)

:f f f S(vg,(l,wo)(al,zl)...(v,w)(bl,wl)...vz)wgwil'...wfq’;ldw]...dwmdwo

CO Cm Cl

:fff S(vgo(l),(al,zl)...(v,w)(bl,wl)...vz)wgwil‘...wf,’;’dwl...dwmdwo
CO Cm C]

=On+1,0° S(V;, (al’zl) R (V, W)X),

where the last equality follows from the fact that fCo wodwo = Op+1,0- Thus, (1(n)x — 6p+1,0%) €
Rad(M), and so 1(n)x = 8,41 0x in M2, Moreover, given homogeneous elements x € M and
a € V, by (B213) and (B33), deg(a(n).x) = wta —n — 1 + degx < 0 when n >> 0. Then by
part (c) of Lemma BZ23, we have a(n)x = 0 in M? when n is large enough. Finally, by Lemma

B4 and (B333), (M 2, Y,;») satisfies the Jacobi identity. Hence it is a weak V-module. O

Proposition 3.3.2. M2 has a gradation M? = DS, M2(n), where M2(n) is an eigenspace of
L(0) of eigenvalue A + n for each n € N, and M2(0) = M*(0). In particular, M2 is an ordinary
V-module, and if M*(0) is the bottom level of some ordinary V-module M?, with conformal

weight hy, then A = hy.

Proof. Let M2(n) be the image of M(n) under the quotient map M — M?. By Lemma B23,
we have M2 = 3,50 M2(n) and M?(0) € M2(0). We claim that

a(wta — 1)vy = o(a)vy, (3.34)

for all v, € M%(0) and homogeneous a € V. Indeed, we only need to show that (a, wta — 1)v, —
o(a)v, € Rad(S), for all S € COI‘(M]:/[;/;(Z)EO)). By (BZI2) and (BZ8),

S5, (ai,z1) . .. (an, 20) (v, w)(a, wta — 1))

77



:fS(vg,(m,Zl)...(an,zn)(v,w)(a,wl)VZ)Wtha—ldwl
c

= f S5, (a1,21) . . (ans )0, wo(@v2)wy ¥ w ™ dwy
C

+ ZZLtha,i(Wl,Zk)S(Vg’(ath)...(Cl(i)ak,Zk)...(an,zn)(v’ I

k=1 i>0

+Z f Gutai(wi, w)S (Vy, (@1,21) - . . (@, 2)(a(i)v, wyv)w} ' dwy,
C

i>0
where C is a contour of w; surrounding 0, with all other variables lying outside of C. Since

|z&l, [w| > |wy| for all k, where w is lying on C, then we have

W*Wta+1 dl’ wta—1
_ _ 1 Z
[Gusten i - [
C C !

dZ w1 —2

for z = z; or w. Hence (a, wta — 1)vo — o(a)v, € Rad(S). This shows (BE34).

Since L(0) = w(wtw — 1) on M2, it follows from (B34) that L(0) preserves M?*(0).
On the other hand, we have [L(0), a(n)] = (wta — n — Da(n) (see (4.2.2) in [271]). Then by
(B34) again, we have [L(0), o(a)]vs = [L(0), a(wta — 1)]vo = 0. Since M?(0) is an irreducible
A(V)-module which is of countable dimension, then by the Schur’s Lemma (Lemma 1.2.1 in
[I73]), there exists A € C such that L(0) = A - Id on M*(0). If M*(0) is the bottom level of M?,
with conformal weight /,, then L(0) = A, - Id on M?(0), and so hy = A.

Now for any spanning element x = (by,i1)...(by, im)v2 = b1(i1)...by(im)vo of
M2(n), we have L(0)x = (ZiL (Wb —ig— 1)+ )x = (n+ A)x. Therefore, M?2(n) is an eigenspace
of L(0) of eigenvalue n + A for every n € N, and M2 = EB:;O M2(n).

Finally, for any spanning element x = by(iy)...by,(i,)vy of Mz(O), it follows from

(B34) and an easy induction that x € M?(0), therefore 1\/_12(()) = M>(0). O

Remark 3.3.3. Unlike the construction of V-modules from the correlation functions in Theorem
2.2.1 in [[Z3], in our case, it is unclear whether M2 =M /Rad(M) is an irreducible V-module.
The reason is the following:

Assume N < M? is a submodule, by Proposition we have N = @;10 N(n), with
N(n) = N N M?(n) for each n. If N(0) # 0, then clearly N = M2. Thus, in order to show that
M2 is irreducible, we need to show that N = 0 when N(0) = 0.

This is true for the module M/Rad(M) constructed in Theorem 2.2.1 in [[73], wherein

the correlation function S (v, (a1,z1). .. (an, z,)N), wWith v € M?(0), is essentially the limit
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function of (/,Y(a,z1)...Y(a,,z,)N). It is zero because Y(a,z)N C N((z)), and the bot-
tom level of N is 0. Thus, N C Rad(S), and so N = 0 in M/Rad(M). However, in our
case, S(v},(a1,z1) ... (an, 22)(v, w)N) with v} € M3(0)* is essentially the limit function of
V5 I(v,w)Y(ar,z1) - .. Y(an, z0)N wh. Although the components of Y(a, z) still leave N invari-
ant, the intertwining operator /(v, w) could send some element in N to a nonzero element of

M3(0). Hence we cannot conclude that N C Rad(M) in general.
We give a sufficient condition under which M? is irreducible.

Lemma 3.34. Let S € Cor( le/[;;(z)go)). Suppose S satisfies the condition that

> (’:)(Vé,fb(i)v(vz» =0, (33.5)
i>0

forallb € V, n € Z such that wtb —n -1 > 0, v € M', v} € M*(0)*, and v, € M*(0). Then
S5, (v,w)y) =0 forany y € M(m) withm > 1, v € M3(0)*, and v e M.

Proof. 1t follows from an easy induction that y can be written as a sum of the elements of the
form (byy, i) - . . (b1, n1)va, where m > 1, vo € M%(0), and wth; —n;—1>0forall j.

Lety = (by, ny) . .. (b1, n1)v2. We use induction on m to show that S(vg, v,w)y) = 0.
For the base case m = 1 and y = (b, n)v,, with wtb — n — 1 > 0, by (B2212), (B3223), (B22H),
(BZX11), and the assumption (B33), we have:

S5, (v,w)y) = f S5, (v, w)(b, 2)v2)"dz
c

= f S(v’3,(v,w)o(b)vz)z_Wth“”dz+ f Zthh,i(z,w)S v, (b)), wivp)Z"dz
c c

>0
thb—2—7 o .
=0+ Z f - Z (W . .])wwtb—]—Z—lZn—wtb+l+]S (Vg, (b(l)v’ W)V2)dz
i>0 c 720 1
-7 Z (’?)O’é’ fb(i)vvz)w_Wtb—deg vlen _
i50 \!

Now let m > 1. Then by (B2XZ1J) and (BEZX6), we have
S(Vg’(v’ W)y) = f f S(V%,(V, W)(bm, Zm)...(b],Z])VQ)ZTl ...Z:l,;ndZ] ---dZm
Cnm C

= f f S (Vs 0, W) s zm) - - (b2, 22)0(b1)v)z ¥ L dzy . dzy
m CI
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R A R T R RS R e
m Cl

i>0
+f.

:0+f f
Cn Cy

3

. Z thb1 iz, 208 (V. v, w) . (b1(Dbg, zk) - - . (b2, 22)v2)Z)" . Zy'dzy - . . dzy
Ci =2 iz

f Z(Wtbl 2- .1) wth)—j—2— lan wthi+1+j
Cy !

)

>0 j=0
=S (v, b1V, W) By zm) - - - (2, 22)V2)25 -+ - 2y’ dZ2 - Az
+f f f Z(Wtbl 2 - ]) Zk+wtb1 —-j-2- lzllll —wth1+1+j
m C2 =2 >0 VO j=0

S (V3 Wby Zm) - - (b1(Dbr, k) - (b2, 22)V2)25 . 2 oy Az

f f ( ) NS (Vs 01DV, W) by 2) - - (B2, 2)V2)Z . Gtz . 2
€220

- f f ( _I)S (V/3, w,w)...(bi(Dbr,z1) ... Vz)Z; . Zzl+nk i .. Zz"dZZ ..dzy
Cm C2 k=2 i>0 !

- (nll )W”“"S V5, (b1 (D), W)y, i) - . . (b2, n2)v2)
i>0

= (”il)s (Vo (0 W) (b 1) - - (b1 (Db + 1 — i) .. (b m)V2)
=2 i>0

k=2 i

=0,

where the last equality follows from the induction hypothesis, together with deg(b;(i)by, n; +

np—i)=wthy —n; — 1+ wtby —n — 1 > 0, forany i > 0. O

Corollary 3.3.5. For any fixed v e M" and y € M? = M/Rad(M), let n € Z be an integer such
that n > degv + degy — 1. Then we have

fS(vg, v, wyw'dw = 0, (3.3.6)
c

for all v} € M?3(0), where C is a contour of w surrounding 0. In particular, for fixed v € M'

andy € M2, the power series expansion of S (v, (v,w)y) has a uniform lower bound for w

independent of v}, € M3(0)*,

Proof. 1t suffices to show (B38) for y = (b, ny) . .. (b1, n1)vo, where v, € M?*(0), m > 0, and

wth; —n; —1 > 0 for all j. Again, we use induction on m. When m = 0, we have y = v
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and degy = 0. Then by (323) and —degv + n > —1, we have: fCS(vg, (v, wvm)w'dw =
fc(vg,fv(vz))w_ degvin gy, = (0. Now let m > 0, and let n € Z be such that n > degv +degy— 1.

Since —wtb; + n; < —1, by the calculations in Lemma B34, we have:

ch 5, v, wyw'dw = — Z j; (nll )W”J'"]_iS V5, (b1, W)(Dy i) - . . (b2, n2)v2)dw

i>0 M
m n
-3 f ( .)w"S(vg,w,w)(bm,nm)...(b1<i>bk,n1+nk—i>...<b2,nz>vz>dw
k=2 50 YO\ @)

=D +@.

Since n > degv + degy — 1, we have n + ny —i > deg(b1(i)v) + Z’;’zz(wtbj —nj—1)—1forall
i > 0. Then by the induction hypothesis, (1) = 0 for all v} € M?3(0)*. On the other hand, since
deg(by(D)by,ny + ng — i) = wtby —n; — 1 + wtby — i — 1 for all i > 0, we have (2) = 0 for all

v, € M3(0)*. Thus [.S (v, (v, w)y)w"dw = 0. O

Proposition 3.3.6. Suppose every S € Cor( M],V[;;(z)zo)) satisfies the condition (B33), then M? =
M /Rad(M) is an irreducible V-module with bottom level M*(0). In particular, M2 is isomorphic

to L(M*(0)), the unique irreducible V-module with bottom level M>*(0).

Proof. Note that for any x € M, S (vg, (a1,z1) ... (an, z,)(v,w)x) is also a rational function in

Z1s .-+ 2Zn, w by (BZ2Z12) and (B373), and it has Laurent series expansion:

S5, (@1, z1) - - (@, 20)(V, WIX) = S V5, (v, w)(ar, 21) . . . (@n» 20)X)

N Gl i
(f f S5 0, W)@, 20) - - - (a1, 2002 - zdzr o dz |2z
n Cl

[15eees in€Z

gt (3.3.7)

I
%]
~~
<
WS
~~
=
=
N
N
3
=
™~
N
)
—~
~
N’
=
N
2
=1
I
—_

on the domain D = {(z1,...,2:,, W) : Wl > |z4] > -+ > |z1] > 0}. Let N be a submodule of M2
such that N(0) = 0, we need to show that N = 0. Let x € N, we have y = a,(i,) ...a1(ij))x € N,
and if y # O then deg(y) > 0. By Lemma B34, we have S (v}, (v,w)y) = 0. Thus, the rational
function S(vg, (ai,z1)...(an, 20)(v,w)x) is equal to 0 by (B337). i.e.,, x € Rad(S) forall § €
Cor(MyZ,ﬂ). Thus N = 0. O

Mﬁ;(z)zo)), the extended S in (BZZ12) factors though

an N-gradable V-module M2 =M /Rad(M) whose bottom level is M?(0). It is irreducible if the

In conclusion, given a § € Cor(
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condition (B33) is satisfied. Therefore, by (B2212) and (B33)), we have a well-defined system

of (n + 3)-point correlation functions:

S MO XV XXM X X VX M2 > F(z1,. .. 20 W),
S5, (a1,21) - - - (@ny 20) WV, Wb (A1) . . . by (im)v2) (3.3.3)

= f f Sy (@1,20) -« (s 2) s W1, W) <. By Wi VW Windwy .. dwp,
Cl Cm

for all b1(i1)...byu>I,)Vv2 € ]V_Iz, where Cj is a contour of wy, Cy contains Cyyq for all k, C,,
contains 0, and z, ..., z,, w are outside of Cj.

In particular, S in (338) satisfies the generating formula (BII2) with M? = M2,
since the extended S is defined by this formula. Moreover, by Corollary B33 and the fact
that the orginal S in (B31) belongs to Cor( Mﬂ”j;?go)), it is easy to see that the S in (B33R) also
satisfies the properties (1) — (6) in Definition BT1l, with v’3 e M3(0)* and v, € M2.

We adopt a similar method to extend the first input component of S in (B38) from
M3(0)* to a V-module by using the other generating formula (3_13). First, we let

M := T(L(V)) & M>(0)*.

Then M is spanned by elements of the form: y = (by, i) ... (b, im)v’3, where b; € V, i; € Z for
Jj=1,...,mand Vv, e M 3(0)*. Next, we extend S in (33R) by iterating the generating formula
(BET13). i.e., we define:
S MXVX-o XM X XVXM2 = F(ZhyennsZusW)
S((b1,i1) - .. by im)V5, (@1, 21) - - - (@ns 20)(V, W)X2) (3.3.9)
= f . f S (Vs by W) -« (b1 w1 (@1,21) .. 0, WIxIW, 2w 2wy . dwy,
C Cm

where (b, w)’ = (ewflL“)(—wz)L(O)b, w), Cy is a contour of wy s.t. Cy contains Cy_; for each k,

and C contains all the variables zy, ..., z,, w. For § in (B339), we similarly define
Rad(S) := {y € M : S(y,(a1,21) - . . (an, 22)(v, w)x) = 0,Ya; € V,v € M', x € M2},

and let Rad(M) := (Rad(S), where the intersection is taken over all S € Cor( M?%’zo)), with
the extension given by (339). Clearly, S factors though M /Rad(M).
Similar to our previous argument, one can show that M¥ =M /Rad(M) has a natural

N-gradable V-module structure M3 = EB:;O M3 (n), with M3 (0) = M3(0)*. Moreover, M3 =

82



M /Rad(M) is irreducible if the condition B33 is satisfied. Thus we have a well-defined system

of correlation functions S :

S M xVx-xM! X oo X VX M2 = F(Zhy s Zps W),
Sbi(i1) ... bu(im)vs, (a1, 21) - . . (@n, 2) (v, W)x2) (3.3.10)

:ff S (s by W) - (b1 w1Y (@, z21) ... oy X)W 2 win 2 dw, . dwy,
C C

m

for all b;(iy)... bm(im)v’3 e M3 and Xy € M2. Moreover, by Remark B4, we also have:

S\ (1) ... b, >im)V5, (a1, 21) - . . (@n, 20) (v, W)x2) (3.3.11)

:ff S(vg,(bm,wm)...(bl,wl)(al,zl)...(an,zn)(v,w)xz)wil'...wi;’;dwm...dwl,
C] Cm

where b'(i) = 2j50 %(—I)W‘b(L(l)jb)(Zwtb —i—j—2), Cy is a contour of wy such that Cy
contains Cy_; for each k, and zy, . .., z,, w are inside of C. Since (B3310) and (B311) are given
by iterating the generating formula (BT 13), it is clear that S in (B310) also satisfies (BT 13)
with M? = M2 and (M3) = M3'. Denote the contragredient module of M3’ by M>.

3.3.2 The correspondence between the space of correlation functions on the bot-

tom levels and the space of intertwining operators

Theorem 3.3.7. The system of extended correlation functions S in (B3310) lies in Cor( MIIW;;IZ).

3 3 13
Hence we have an isomorphism of vector spaces Cor( MIIVIA;(Z)EO)) = Cor( MlleMz) = ] ( Mlllez)‘

Proof. We have already proven that S satisfies (7) and (8) in Definition BT, with M? = M2
and (M3) = M3’ 1t remains to show that S in (B31T) satisfies the properties (1) — (6) in
Definition BT, with M2 = M? and M> = M3. In fact, by the definition formulas (338) and
(B3TT), together with the fact that the orginal S in (BZ3) lies in Cor( M’]”;;?go)), the properties
(2) — (6) are straightforward. To prove (1), we need an intermediate result first. We introduce

the following notation:

S(V'g,ln(nl)---bm(nm)(v,W)Xz)1=f f S5, (b1,21) - .. Dy 2m) (v, W)x2)
cn  Jo (3.3.12)

M

2y zdzy . dzg,
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where m > 0, x; € ZV_I2, by € V,n, € Z, Cy is a contour of z; s.t. Cy contains Cy,; for all k, and

w is inside of C,,,. Assume wtb; —n; — 1 < 0. We claim that:

S(V5,b1(n1) . .. () (v, w)x2)

M=
g

(”;)S (Vs ba(m) .. (by(Db) (1 + 1y = i) . .. By () (v, W)x2)
=2 >0

+ Z (nl)S(v3, bo(12) . . . b (1) (b1 (D)v, W)x2 )W ™ (3.3.13)

i>0

+ S (v3, b2(m2) . ... b () (v, W)(b1(n1)x2)).

Let x = c1(i1)...c(iy)v2, for some c; € V,i; € Z for all j, and v, € M?(0). Note that
bi(ny)v, = 0as wth; —n; — 1 < 0. For |z1| > |w|, by (B22Z3) we have:

Wtbl +J thi—j-1 n\ i
f wibs. z(Zl,W)lele Zf ( n1 “Wibi=j=1 wiby+j- ity = i Wi

Jj20
where C is a contour of z1, with w lying inside. Then by (B3 1), (B23R), the recursive formula
(BZ4), together with the fact that —wtb; + n; > —1, we have:

S (V3. b1(n1) . .. by () (v, W)x2)

= f fc ZZFW. 122D W, (b2,22) . (b1 Db 20) . (v, WP . 2z - 2

=2 i>0

+f f ZFwtbl,i(Z1,W)S(V’3,(bz,Zz)--.(bm,zm)(bl(i)v,W)Xz)z’f‘.--z%”dm--.dzm
m Cl

i>0

+fc j; [ff ZFwtbl,i(zl,Wz)S(V'g,(bz,Zz)---(bm,Zm)(V,W)(Cl,Wl)---

ri>0

(b1(i)ey, wt) (e W) W owhdw, . dw)Z L Zrdzy .z

f f ( .1)8 s (b2:22) .. (b1 (b1, 2) - - (Bons 2 (Vs W)x2)
G50\

. Z2 Z’l’ll l+nl ndeZ dZm

+ f f Z(n.l)S(v;,(bz,zz) (b Zm) (b1 DYy, W)WM T2 Lz, . dz
m C2 i>0 !

+f f Z(”})S(v;,(bz,m)...(v,w)(cl(il)...(bl(i)ct)(nl—i+it)...c,(i,)vz))
m C !
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(nl.l)S(Vé, by(nz) ... (b1(Db)(ny + ny — 1) ... by () (v, w)x2)
1=2 20

+ (nil)S (v’3, ba(n2) . . . by () (b1 (D), w)x)w™ ™
0

S5, ba(m2) . .. by () (v, W) (b1 (n1)x2)).

This proves (B313). Now let x; = by (ny) ... b1(m)vVj € M3’, with wtb; — n; — 1 > 0 for all i.

We use induction on m to show that
fS(bm(nm) by, (v, wxo)w"dw = 0, (3.3.14)
c

for any fixedve M', x, € M?2, and n € Z such that n > degv +degx, — 1. The base case m = 0
follows from the Corollary B3 3. Let m > 0, then by (3310) and (B3172), we have:

f S (bm(nm) . .. bi(n)vs, (v, w)x)w"dw
c

:f f f SV (b1,21) - (bs zn) o W)x)Z ™ 72 L 2 Wz . dzd
m Cl

( 1)wtb1+ -+wtb,,

S Y f f fc S (4, (L) b1, 21) .. (L1 "By, 20)(v, WD)

7120, jm=0 Jit.

dwitby—ny—2—j 2Wthy—tim—2—
-zlw ITITETIL g VO TIm T E my n dzy  dgdw.

j] ZO,...,ijO

(LAY "Dy ) QWb — 1y =2 = i) (v, W)X2).

(_ l)wtb1+---+wtbm

= — fS(vg,(L(l)jlb])(Zwtb] -np—=2-jp... (3.3.15)
JUsee o Jm: c

It suffices to show that each summand in (B3313) is 0. For simplicity, we denote the term

(L(1))ib))(2wtb; — n; — 2 — j;) by c¢i(r;) for each i, note that
wtci(ry) = Wt(L(l)jlbl)(2Wtb1 -n—-2—-jy)=-wthy+n;+1<0.
Then by (B313), together with the definition formulas (B2312) and (B311l), we have:

f S(Vé, Cl(i’l) e Cm(rm)(v, W)xz)w”dw
i Z Z( )fS(v3,c2(r2) Aer@epr +rp=10) ... Cm(rm)(v, wx2)w"dw
+ (rll) f S5, c(r) ... cm(rm)(ci1 (v, WX )W
>0 c
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+ f Sy, c2(r2) ... cu(rm) (v, w)(e1 (r)x2))w"dw

C
= ZZ(?) fC S(Cy(rm) .. (cr(er) (r1 + 11 = 1) ... (VS (v, wx)Wdw

=2 >0 @)

+ Z (rll) L S(C}/n(rm) cee C'z(rz)vg, (Cl(i)v’ W)X2)Wn+r1—idw

i>0 2)

+fS(c;n(rm)...c'z(rz)vg,(v,w)(cl(rl)xz))w"dw
c 3)

=(+@)+ 3.
Since wtc; —r; — 1 <0 and n > degv + deg x, — 1, we have

deg(ci(D)v) +degx, — 1 =degv+degxy —1+wtcy —i—1<n+r —i

degv +deg(ci(r1)x) — 1 =degv +degx; + wte; —r; — 1 — 1 <n,

for all i > 0. Then by the induction hypothesis, we have (1) = (2) = (3) = 0. This finishes the

proof of (B3714)). Hence S in (B3310) belongs to Cor( MI'W;P)' O

So far in this subsection, by abuse of notations, we used the same symbol S (B310)
for the extension of a system of correlation functions S in (3371). We denote the extended S
in (B310) by ¢(S) for the rest of this subsection. Then by the Theorem B374, we have a linear
map:

M3(0 M?
/88 Cor(M1 Z\EQEO)) - Cor(M1 Mz) S > Y(S), (3.3.16)

which is an inverse of the restriction map ¢ in (B329), with M2 = M? and M> = M>.

Corollary 3.3.8. Let S € Cor( M0 ) Then the linear functional f in Definition B2 is given

M M2(0) -
by f, = o(v) = v(degv — 1) = Res,I(z, W)W 1*" ywhere | € I(M’f/’;—lz) is the intertwining
operator corresponds to Y(S) in COT( M?/I;;,z)-

Proof. By (BZ3), we have S (v}, (v, w)v2) = (v}, fy(v2)yw™ 48", for all v, € M>(0)*, v, € M*(0),
and v € M'. On the other hand, by (31_19),

SV, (v, WIn2) = Y(S)(V, (v, wiva) = (v, 1(v, w)va) = (v, v(deg v — 1)vo)w™ 98,

since v(m)M?*(0) € M>3(degv —m — 1) for any m € Z. Thus, f, = v(degv — 1). O
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We finish this subsection by showing another property of the space of correlation

functions associated with three modules. By (B33R) and (B3110), the (S ) in (B3318) satisfies:

Y(S)c1(j1) - - - emUmvss (@1, 21) - . - (ap, 2p)(V, WIb1(i1) - . . bu(in)v2)

f , f f f05<v3’<cm’wm> et (@2 0B, 1) (b )V2)

xl. xnw1 . ]’” dx1 Ldx,dwy, .. .dwi, (3.3.17)

where v’3 € M3(0)*, vy € M*(0),ve M, a,,by,c, € Vforall r, s, t, C,’C is a contour of wy, C;is a
contour of x; for all k,/, suchthat C; c ---Cc C,, C C’1 C --- C (), (we use the subset symbol to
indicate one contour is inside of the other), and zy, . .., z,, w are outside of C 1 but inside of C,,.

By Proposition B3 and Theorem 6.2 in [[[X¥], we have an epimorphism of V-modules
1 M(M*0)) — Mz, where M(M?(0)) is the generalized Verma module with bottom level
M>(0). Similarly, there is an epimorphism 7 : MM3(0)*) — M3’ . More generally, let N? and
N3 be any V-modules that are generated by their corresponding bottom levels, and assume that
N?(0) = M?*(0) and N3(0) = M>(0). Suppose there exist epimorphisms 7 : N? - M2 and
7: N - M3 If we write Res.Yy(b,2)7/ = bjand Res Y y;(b, 2)z/ = b(j), then

(el .. AtV = (). Gy, and A .. B va) = b (i) .. b (in)va,

where X, b € V, Ji, iy € Z for all k, 1, v’3 € M3(0)*, and v» € M?(0). Thus, we have a linear

- Cor( Ml N2> that is given by:

map: 7" Cor(M] M2)

TS, - VE (an,21) - (s )V Wb D) (3.3.18)

=S G- "GV, (@1, 20) - (@ 2) 0, WD (1) - D" (i)V2).

M3(0)

Compose ¢ and 7, we have a linear map 7"y : Cor( M M20)

) — Cor( M N2) We claim that 7%y

is the inverse of the restriction map ¢ : Cor( lev jvz) - Cor( MIIVIZ/;(Z)EO)).
Indeed, for § € Cor( Mﬁﬁgm), by (B317) and (B3IR), we have:

e Y)(S)(V5, (a1, 21) - . . (s ) (v, WIva) = Y(S)((VY), (ar, 21) - . . (@ny 20) (v, WIT(v2))

= S(V;, (a17 Zl) e (am Zn)(v7 W)VZ)’

where v, € M?(0) and v3 € M3(0)*. Hence @(m ) = 1. On the other hand, for S € Cor( M NZ)
again by (B3117) and (BE31R), together with the fact that § satisfies (B3112) and (B113), we
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’
haveforanyc}l ...c’}fnvg €N3,bl.ll...b;?nvz€N2,a1,...,an€V,andveM1,

(ﬂ*w)(p(g)(c;l .. .c;f”nvg, (a1,z1)...(an, 7)), w)bill .. .b;fflvz)
= (@SN (1) - .. " GudVs, (a1,21) - - - (@ny 20) 0, WL (1) . .. B (i)V2)

:ffff PV (€™ W) . (s wi) (a1, z1) ... v, w)(B x1) .. (BT, x)v2)

1

-x’i‘ xﬁ;lwlj 2. —dm= 2dxy ...dx,dw,, ...dwy,

- [ f f f Sy (@ W (w1 (@) . row)(blx1) . (B )v)
; , n Cl

-x’i' xifwl Cwpim 2dxy ...dx,dw,, ...dwy,

= S(cj-1 ...c;.',’nv3, (ar,z1) ... (an, 2,)(v, w)bl-l1 ... b vo).

M3(0)

This shows (7*¥)¢ = 1, and so we have Cor( Mllv j\ﬂ) = Cor( M1 M20)

= M(M?*(0)) and N*> = M(M?>(0)*)’, then we have:

MM\ _ M3©0) '\ _ Ve
Cor(Ml M<M2(0>)) ) C‘”(M1 MZ(O)) = Cor(Ml Mz) (33.19)

Now by (B319), Corollary BT6, and Theorem B371, we have the following theorem:

). In particular, choose

Theorem 3.3.9. Let M' be a V-module, and let M*(0) and M?>(0) be irreducible A(V)-modules,
then we have the following isomorphism of vector spaces:
(M3 0V 3 13
(O8O ) o MO ) f ), 332
If the VOA V is rational, then the generalized Verma module M(U) is an irreducible
V-module for any irreducible A(V)-module U. Thus, M (M?(0)) = M2 = L(M?*(0)), and
M(M?(0)*Y = M? = L(M?(0)). On the other hand, by Theorem 2.2.2 in [73], if M? and
M? are irreducible V-module, then M2(0) and M>(0) are irreducible A(V)-module.

Corollary 3.3.10. Let V be an rational VOA, and let M, M?, and M? be V-modules. Suppose

2 3 : ; M (0)
M~* and M” are irreducible, then we have Cor( Iy (0)) 1 ( v M2)
By the argument above, we also have the following easy observation, which is useful
in the computation of fusion rules of general V-modules:

Remark 3.3.11. Let W? and W3 be any N-gradable V-module that are generated by their corre-
sponding bottom levels, and assume that W2(0) = M?(0) and W3(0) = M3(0). Then there exist
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epimorphisms: 7 : M(M?(0)) — W2, and 7 : M(M>(0)*) — W?'. Similar to (33IR), 7 induces
a linear map: n* : Cor( MYV;,Q) — Cor( 1\27'[ (%EIE/(I);Z()),)))’ which is injective since 7 are surjective.
Then by Corollary B8, (3319), and (B33720), we have the following estimate for the fusion

rule:
3

M W?

We will use this estimate in the next Chapter.

(3.3.21)

M3(0)
M M2(0))

dim /| ( ) < dim Cor(
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Chapter 4

A(V)-theory and correlation functions

In the last Chapter, we introduced two different notions of space of correlation func-
tions. The first one was the space of correlation functions associated with V-modules M, M2,
and M3, denoted by Cor( MIIW;IZ) in B The second one was the space of correlation functions
associated with V-module M, and A(V)-modules M?(0) and M?>(0), denoted by Cor( MIIVIZ;(Z)EO)) in
B2, We proved that Cor( Mﬂ”jﬁ) is isomorphic to /I ( M]f”;ﬁ) as vector spaces, see Corollary BT,
and Cor( Mﬁ;‘jgo)) is isomorphic to Cor( %%zﬁfl)z)(())»), where M(M?(0)) and M(M>(0)*) are the
generalized Verma module of V associated with A(V)-modules M>(0) and M>(0)*, respectively,
see Corollary B38.

LetS € Cor( M?”;;gzo)). By Definition T8, S is a system of (n + 3)-point functions,
with n € N, and the three-point function of S has the following form:

S (Vg (r, whva) = (v, fr(v2))w™ 98V, (f, € Home(M*(0), M?(0)), Yv e M").

Our goal in this Chapter is to show that S can be uniquely determined by the coeflicient
(vg, fv(v2)) of the three-point function of S, which can be viewed as the value of a linear func-
tional f on a tensor product space M 30)* ®awv)Br(M ! )®aw) M?(0), where M>(0) and M3(0) are
left modules over A(V), and B,(M") is an A(V)-bimodule, which is a quotient module of A(M 1
in 2. Therefore, we can compute the fusion rule of certain modules over VOAs by computing
the dimension of dual vector space: (M3 0)" ®a(v) Bn(M D) ®awvy M 2(O))*. This is the so-called
“fusion rules Theorem” claimed by Frenkel and Zhu in [BU]. In fact, if V is rational, we can
show that M>(0)* ®acv) Bu(M") ®4(v) M*(0) is isomorphic to M>(0)* ®4 vy AM") ®4cv) M*(0)

as vector spaces. Also, recall that any generalized Verma module associated with an irreducible
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A(V)-module U is irreducible; see B2. Thus, the original version of the fusion rules Theorem
in [B0] is true for the rational VOASs.

In this Chapter, we again assume that M?(0) and M?(0) are irreducible A(V)-modules.
By Proposition B32, L(0) = o(w) = hy - Id on M?(0), and L(0) = k3 - Id on M>(0), for some

hy, h3 € C. Moreover, h; and h3 are the conformal weights of M2 and M 3, respectively.

4.1 A(V)-bimodules and construction of correlation functions

We will construct a new A(V)-bimodule B;(W) in this Section, where A is an arbitrary
complex number, and W is a V-module. To construct B,(W), instead of mod out the terms given
by left module actions Yy as in (Z2220), we also mod out the terms given by right modules
actions YV‘?,’V. Then the L(—1)-derivation property of an intertwining operator / € [ ( Mz}w;/ﬂ) is
encoded within Bj,(M"), where we choose A = h = hy + hy — h3.

Although A(W) is not isomorphic to B(W) in general, we will show that M 30y ®a(v)
Bu(M")®4v) M2(0) = M3(0)* ®a) AM")®4(v) M*(0) when A(V) is semisimple, which is guar-
anteed if V is rational, see [IX, [/3]. Finally, before proving the general fusion rules Theorem in

the next two Sections, we will discuss some easy consequences of the fusion rules Theorem for

rational VOAs, which are related to the tensor product of modules over VOAs.

4.1.1 The A(V)-bimodule B,(W)

Let W be a V-module with conformal weight #’. A sequence of Ay(V)-bimodules
An(W) was constructed by Huang and Yang in Section 4 of [27]. In particular, the Aop(V) =
A(V)-bimodule Ag(W) is defined as follows:

Ag(W) = W/Op(W), where Oyg(W) = span{aou, L(—1)u+(L(0)-h")u : Ya € V,u € W}.
It is proved (see Theorem 4.7 in [&2]) that Ag(W) is an A(V)-bimodule under the left and right

(1+Z)deg u

(1+Z)wta
< Z

actions: axqu = Res,Yy(a, 2)u and vxoa = Res Y} (u,2)a , where Y} is defined

by the skew-symmetry formula (5.1.5) in [27]:
Yy, 2)a = e“V¥y(a, —2)u. 4.1.1)

Now let 4 € C be a fixed complex number, we construct another A(V)-bimodule

B (W) that is similar to Ag(W) in the following way:

91



Definition 4.1.1. For homogeneous elements u € W and a € V, define:

degu+A4
%), (4.1.2)

uo w a:=Res, (Y&,VV(M, 2)a 5
Z

wv

then extend o bilinearly too : W xV — W. Let O%V(W) be the vector space spanned by
elements (EI12) for all a € V and u € W, and let B,(W) := W/(O(W) + va(W))’ where
O(W) = span{a o u = Res, (YW(a, z)u(lz;z)wm) YaeV,ue W}

Lemma 4.1.2. Let u € W and a € V by homogeneous elements, and m > n > 0. Then

(1 + Z)deg u+A+n

Res. Yy, (1, 2)a € Oy (W). (4.1.3)

Z2+m

Proof. Since YXV/V(L(— Du,z) = d%va(u, 7), the proof of (E13) is almost the same as the proof

of Lemma 2.1.2 in [[/3], we omit the details. O

Recall that the module actions of A(V) on its bimodule A(W) are given by:

(1 + Z)Wtbfl

1 wth
& , and v=b=Res, (YW(b,z)v— ,
z

b+v = Res, (YW(b, )V
where b € V is homogeneous and v € W (see Definition 1.5.2 in [30]).
Lemma 4.1.3. b« O} (W) C Oy (W) and Oy,,,(W) * b € Oy (W), forallb € V.

Proof. Letu € W and b € V be homogeneous, and let a € V. By Definition BT, Lemma

BT, and the Jacobi identity of the intertwining operator Y. , we have:

wv>

1+z2 wtb 1+z deg u+A4
bx@o w a)= ReszlYW(b,zl)ﬁResZZYVVVVV(u, zz)a%
wv 1 2
1+z deg u+A4 14z wth
—Res,, Yy, (u, zZ)%ReSZ, Yy (u, zl)a% (mod Oy}, (W))
2

(1+ 22+ 200" (1 + zp)deeut

= Resg,Res,, Vi, (Yw(b, 20), 22)a

2
22 +20 2
wtb deg u+A+wth—i
W wib) (L +2)
= ReSZORCSZZ Z Z YWV(YW(b’ ZO)u, Z2)a( l )(_l)jzo ! 2+j+1
i=0 j>0 293
wtb deg(biy ju)+A+(j+1)
Wtb W (1 + ZZ) egl i+] J
=22, ( i )ResZ2 Yy Pijt, 2)a G
i=0 j>0 <y

0 (mod Oy, (W)),
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where the last congruence follows from Lemma BET7. By a similar computation, we have:

wtb—1 (1 +Z2)deg(b,-+ju)+/l+j

wth — 1
(uow a)xb= Z Z( . )ResZz Y&,’V(bl-”u, )a D)
wv iz 50\ ! 2,

=0 (mod Oy, (W)).
w w w w
Hence we have b = Oy, (W) C Oy, (W), and Oy, (W) x b C Oy, (W). O

By Lemma B3 and Theorem 1.5.1 in [B0], By(W) = W/(O(W) + OVWVV(W)) has an
A(V)-bimodule structure with respect to b * v and v * b. Moreover, B,(W) is a quotient module

of A(W). In particular, we have the following formula holds in B (W):

axu-ura=y (ij_ 1)a( Ju (mod O, (W) + O(W)), (4.1.4)
720

where a € V homogeneous, and u € W. Let
0,(W) :=spanfaou, L(—Du+ (L(0) —h" + Du:Ya e Vue W} C W. 4.1.5)
Lemma 4.1.4. For any u € W, we have L(—1)u + (L(0) — A’ + Du € OV%V(W).

Proof. Let u € W be homogeneous. Since degu = (L(0) — /&’)u, we have:

1 deg u+1 j .deg utd d A\
wow 1= ReszeZ”‘”YW(l,—z)u% — Res, Z L -1y Z ( egu+ )Z,_z
wv Z —i jl - i
Jj=0 i=0
d 1 d Pl
_ ( egg - )L(—l)u + ( egbl’ " )L(—UOM = (L(=1) + L) = I + Du.
Hence (L(~1) + (L(0) — k' + )u € O (W). 0

Lemma 4.1.5. We have O(W) + O%V(W) = 0,(W). In particular, By(W) = W/O(W).

Proof. By Lemma BET4, we only need to show that O%V(W) C O (W). Similar to the proof
of Lemma 2.1.3 in [[73], for any homogeneous u € W and a € V, we have: Y;VVV(u, )a =

(1 + g)~ degu-d-wtay (a _—Z)u (mod O,(W)). It follows that

> 14z

(1 +Z)degu+/l B z (1 +Z)—Wta
u OV‘VVV a= ResZY‘XVVV(u, z)az—2 = Res, Yy (a, " Z)u 2 (mod O (W))
1 + wta
= _Res, Yi(a, w)u% (mod O,(W)).
Henceuo w a=—aou (mod O(W)), and so O‘V;V(W) + O(W) = O(W). O
wv
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Now let W = M', and A = h = h| + hy — h3. Then by (B13) and Lemma BETT,
By(M"y = M"' /O, (M"), where Op(M") = span{faou, L(—1)u+(L(0)+hy—h3)u : Va € V,u € M'}.

M3

Lemma 4.1.6. Let I € I(M] 02

), then the linear map
0: M" - Homc(M*(0), M*(0)), o(v) = v(degv — 1) = Res I(v, )z %"+
factors through By(M") = M']O,(M").

Proof. By Lemma BEI3, we need to show that o(O,(M"')) = 0. By Lemma 1.5.2 in [30], we
already have o(aou) = Oforalla € Vandu € M ! Furthermore, by the L(—1)-derivation

property of I, we have:
d
o(L(-1)v) = Res I(L(-1)v, 7)z3€ 1=+ = Res, (d—l(v, z)) Zdegvth
v4

= Res I(v, z)(— deg v — h)z%€V*h=1 = _((L(0) — iy + h)v)(degv — 1)
= —0o((L(0) + ha — h3)v).

Hence 0(0;,(M")) = 0, and so o factors through B,(M h. O

Proposition 4.1.7. There exists an injective linear map:

M>(0)
M! M2(0)

S e fs, fs(Vy®@vevy) = (v, (1)),

v COI‘( ) — (M?(0)* ®acvy Bu(M") ®4(v) M*(0))* (4.1.6)

where we use the same symbol v for its image in B(M").

Proof. First, we have f, = o(v) by Corollary B3R, where o(v) = Res, J(v, w)wde"" 1+ and

lel ( MZIVIZ/-IQ) is the intertwining operator corresponds to ¢/(S) in Cor( MZ,W;/}Z), see Theorem B39.
Moreover, it follows from Lemma BETA that o(O,(M')) = 0. Hence v is well-defined. The

injectivity of v follows from Lemma B723. ]

Remark 4.1.8. Although our definition for B,(M 1) is similar to the A(V)-bimodule Ag(M")
constructed by Huang and Yang in [27], they are not isomorphic as A(V)-bimodules. We will

give a counter-example in the last Section.
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4.1.2 The A(V)-bimodules for rational VOAs

We will explore the relations between the A(V)-bimodules A(M 1y and B, (M") in this
subsection. First, we recall some basic facts about the semisimple associative algebras over V.

The following results and definitions can be found in [63]:

Lemma 4.1.9. Let A = M,,,(C) X M,,,(C) X --- X M, (C) be a semisimple algebra over C. Up
to isomorphism, the modules Vi = C",V, = C"2,...,V, = C" on which the matrix elements
act as left-multiplications with column vectors are all the irreducible left A modules. The dual
spaces VT,V;,...,V;", with (f.a,v) := (f,a.v), foranya € A, f € Vl.*, veV,andl <i<vr, are
all the irreducible right A modules.

Let A be an associative algebra over C. The enveloping algebra of A is defined by

A¢ := A ®c A°P. Denote the product on A by a - b = ab, then the product on A¢ is given by:
(@®b)- (a1 ®by):=a-ay®b-op by =aa; ®byb,
for any a, ay, b, b; € A. We have the following fact regarding enveloping algebra:

Lemma 4.1.10. An A-bimodule M is the same as a left A° module, with the left A°-module
action given by (a ® b).m = (a.m).b, for any a,b € A, and m € M. If A is semisimple, then A° is
also semisimple, and all the irreducible left modules of A€ are V; ®c V;.‘, 0<i,j<r

In particular, if A is a semisimple algebra, then any A-bimodule M can be written as

a direct sum of certain copies of V; ®c V; 0<i,j<r

Corollary 4.1.11. Let V be a VOA such that A(V) is semisimple, and let MY, M?, ..., MP be all
the irreducible A(V)-modules up to isomorphism. Then any A(V)-bimodule U is also semisim-

ple, and U is a direct sum of copies of M'(0) ®c M/(0)*, 0 < i, j < p.
Proposition 4.1.12. If A(V) is a semisimple algebra, then we have the isomorphism
M(0)" ®aw) Bu(M") ®4v) M*(0) = M*(0)* ®av) AM") ®4v) M*(0) 4.1.7)

of vector spaces, where M U M2, and M? are V-modules of conformal weights hy, hy, and h3,

respectively. In particular, (B11) is true if 'V is rational.

Proof. By Lemma BT and B8, B,(M") = A(M")/span{[(L(=1)+L(0)+ho—h3)u] : u € M"'}.
Observe the following fact in A(M"'): [w] * [u] — [u] * [w] = Res Yy (w,2)u(l + )V~ =
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[L(—=1)u + L(O)u], for all u € M". Hence [(L(—1) + L(0) + hy — h3)u] = [w] * [u] — [u] * [w] +
(hy — h3)[u], for all u € M". Let

J = span{[w] * [u] — [u] * [w] + (hy — h3)[u] 1 u € Ml} C A(Ml).

Recall that [w] € A(V) is a central element, and A(M") is a bimodule over A(V), see Section

2. Then for each spanning element a = [w] * [u] — [u] * [w] + (hy — h3)[u] of J, we have:

lal. = [w] = ([a] * [u]) — ([a] * [u]) * [w] + (ho — h3)([a] * [u]) € J,
a.la] = [w] * ([u] = [a]) — ([u] * [a]) * [w] + (ha — h3)([u] = [a]) € J.
Thus, J < A(M") is a sub-bimodule over A(V), and we have B,(M') = A(M")/J. Since A(V)
is semisimple by assumption, then by Corollary BT, A(M Disa semisimple A(V)-bimodule,
and so AMM') = J® (A(M")/J) = J & By(M"') as A(V)-bimodules.
We claim that M3(0)* ®4cv) J ®avy M*(0) = 0 in M3(0)* ®a¢v) AM") ®a(v) M?(0).
Indeed, for any v} € M3(0)* and vy € M?(0), we have:
vy ® ([w] * [u] = [u] * [w] + (ha — h3)[u]) ® 2
=vi(o(w) — h3) @ [u] ® v — v; ® [u] ® (o(w) — h)v2
= V5(L0) — h3) @ [u] ® vo — v} ® [u] ® (L(0) — ho)v>
=0,
since (V;L(0),v3) = (v§, L(0)v3) = h3(v},v3), for all v3 € M?3(0), by the definition of right
module actions on M3(0)*. Then by the decomposition of A(M 1, we have:
M3 (0)* ®aqv) AM") ®av) M*(0) = M?(0)* ®av) (J ® By(M")) ®acv) M*(0)
= (M3(0)" ®aqv) T ®av) M*(0)) & (M(0)" ®acv) Bi(M") ®av) M*(0))

= 0@ (M>(0)" ®av) Bi(M") @1v) M*(0)).
This proves (E171). O

Remark 4.1.13. In general, the A(V)-bimodule A(M") do not have the decomposition A(M') =
J @® (Bp(M")) into sub-bimodules. Therefore, we do not have M>(0)* ®acv) Bn(M h ®A(v) M>(0)
isomorphic to M3(0)* ®avy AM D) ®av) M?(0) for general VOAs. We will give an example in
Section B2, Thus, the construction of B,(M") in this Section is necessary for the formulation

of the fusion rules Theorem for general VOAs.
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As we will show in Section B2, if V is a rational VOA, and M? and M? are irreducible
V-modules, then Frenkel and Zhu’s original fusion rules Theorem holds true. i.e., there is an
isomorphism of vector spaces:

M3 .
I(Ml Mz) = (M3(0)* ®a) AM") @5 v) MX(0)) . (4.1.8)

By the Hom-tensor duality, we can compute the fusion rules as follows:

NM

M = dim Homyy) (AM") ®av) M?(0), M3(0)). (4.1.9)

It was observed by Li in [51] that the fusion rule NM ot M2 is finite if A(M") is a finitely generated
A(V)-bimodule. Later it was proved by Huang that NAA/’II1 , is finite if the modules M', M?, and
M? are C;-cofinite, see Theorem 3.1 in [BA]. We proved in [57] that NAA/ﬁMZ is finite if V is

C|-cofinite as a VOA, and M is C;-cofinite as a V-module.

Section The construction of correlation functions on bottom levels by recursive for-

M3(0)
M M2(0)

Bi(M") ®Av) M?(0))* via v in (B28). Our goal next is to construct an inverse map of v.

mulas By Proposition BE172, Cor( ) can be embedded in the vector space (M3(0)* ®A(v)

Givena f € (M? 0)* ®a0v)Br(M 1)®A(V) M?(0))*, we need to construct a corresponding

M3(0)
M M2(0)

(BZ4) and (BZZH) and construct the system of functions S inductively. The key is to show the

system of correlation functions S in Cor( ) Our strategy is to use the recursive formulas

locality ((2) in Definition BTl) in each step, which can be achieved by the properties of the
A(V)-bimodule B, (M"), together with the formula (32.8).
From now on, in this Section, we fix a linear function f € (M 30)* ®av) Brn(M D) ®AV)

3
M?(0))*. We will construct a system of correlation functions S € Cor( M%;gzo)) from f.

4.1.3 Construction of 4-point and 5-point functions
Definition 4.1.14. Define S : M3(0)* x M' x M?*(0) — F(w) by

Su(V, v, W) = fOL@v@v)w degv, (4.1.10)
where on the right-hand side we use the same symbol v for its image v + O(M") in B,(M b.

Define SL, - M3(0)* x V x M' x M*(0) - F(z,w) by

—wta

Sy (@, 2, wIva) © = S y(Vso(a), (v, w)va)z

D Futailzw)S (v, @iy, wiva),

>0

4.1.11)
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Finally, define S® |, : M?(0)* x M' x V x M?(0) — ¥ (z,w) by

SRy, (v, w)(a, 2)v2) : = S u (v, (v, wo(a)vy)z ™

+ 7 Gutai(z, WS (%, (aliyy, wiva),

i>0

(4.1.12)

The upper index L (resp.R) in the 4-point functions S indicates that we use the expan-
sion formula for the left (resp. right) most term, namely, (B3224) (resp.(BZ2f)) to construct the

new S from the 3-point function. We will denote the 3-point function Sy, by S'.

Proposition 4.1.15. As rational functions in F (z, w), we have:

S ‘L,M(vg, (a,2)(v,w)vp) = Sf,,v(vg, v, w)(a, 2)v2).

Proof. By Definition BE-TT4, (B2R), and the property of M>(0)* ®4(vy Bu(M') ®4vy M?(0),

SE 5, (@, 2)(v, wva) = SK (%, (v, w)(a, 2)va)
= f(Vio(@) @ v @ vo)w™ degv —wia _ ¢ (V@ v®olayvr)w™ degv —wia

+ Z(F wia,i(Z W) = Guwia,i(z, w)S m(vV5, (a(i)v, w)vp)

i=0
= f(Vy@axv@v)w™ degv —wia _ fOL®@vsa@v)w™ degv,—wia
wta — 1 . .
_ Z ( . )f(\é ® a(i)v ® Vz)w_ deg v—ww+1+1Z—Wtawwta—1—z
A
wta — 1
= f(Vy®@@xv—-vxa)@v)w" degv -wia _ Z ( . )f(v'3 ® a(i)y ® vy)z Wy~ deey,
=0 \
By (B14), we also have a + v — v+ a = ;50 (4" )a(i)v holds in the A(V)-bimodule By(M").

Hence S, (v}, (@, 2)(v, w)v2) =S¥, (V;, (v, w)(a, 2)v2) = 0. =

By Proposition EZT T3, the 4-point functions S&,, and SX . in definition ETT4 give

rise to one single 4-point function S that satisfies
S (5, (@, 2)(v, whva) = S (v3, (v, w)(a, 2)v2), (4.1.13)

and this function can be defined either by (E1_11]) or (E112).
We adopt a similar method to construct 5-point functions. As long as the term (v, w)
does not appear at the left-most place, we use the formula (B224) to construct S from the 4-point

function; if (v, w) appears at the left-most place, we use (B3-28) to construct §.
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Definition 4.1.16. Define the 5-point functions with the upper index L,

Sy (Vs (@nz)(v,wi(a2,22)v2),  and - STy (04, (a1,21)(@2, 22)(v, W)v2),
by expanding (ay, z1) from the left, which is given by the common formula:

Syo(ar), (v, w)(az, 22)v2)z; " + Z Futar,j(z1, WS (v, (a1 (v, w)(az, 22)v2)

720 4.1.14)
+ D Futan j(z1,22)8 0%, (v, W)@ ()aa, 22)2).
Jj=0
Define the 5-point functions with upper index R,
ST v (@2, 22)( wiar, z1)va), and - Sfy (v, (v, w)(az, 22)(ar, 21)v2),
by expanding (aj, z;) from the right, which is given by the common formula:
S (v}, (a2, 22)(v, wholan)vo)z; " + Z Gwtay.j(21, W)S V3, (a2, 22)(@1 (j)v, w)va)
i>0
- (4.1.15)
+ Z Gwiay,j(21,22)S (V5 (a1 (az, 22)(v, w)vy).
720

The function S in (B114)) and (E-T139) is the (common) 4-point function in Definition
ETT4. By (BTT13), it makes sense to define S ‘L,MV and S ‘L,VM by the same formula, same

for § 6 yy and § RI{,IW. We will show that all the 5-point functions in Definition ETTd are the

same. First, we observe that the term S VMV(vg, (ay,z1)(v,w)(az, z2)v2) has the following two

expressions: ST, (V4. (a1,21)(v, W)@z, 22)v2) and ST o (V4. (a1, 21)(v, W)@z, 22)v2).
Proposition 4.1.17. [f (B114)=(B1T3), then we have:
Sy (Vs (@1, 20, w)az, 22)v2) = Sy Vs, (@1, 20)(v, w)(az, 22)2).

Proof. Note that (B2114) is a generalization of the function (2.2.6) in [[Z3]. By a similar calcu-
lation, it is easy to see that the formula (2.2.11) in [[Z3] also holds for our case. i.e., we can swap

the terms (ay,z;) and (a2,2,) in S%,, -
STy, (@1, 20(@2, 2)(v, wiva) = S Gy (Vs (@2, 22)(@r, 20)(v, wiva). (4.1.16)
By the assumption that (E114)=(ET113), Definition E1T8, and (E1-18), we have:
S Uy (Vs (a1, 200, W)@z, 2)v2) = S Gy (Vs (a1, 21)(a2, 22)(v, w)va)
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= S Ly (Vs (@2, 22)(@r1, 21)(v, wva) = STy (5, (a2, 22)(v, w)(ar, z1)va)

= S5 (Vs (@1, 20)(v, w)(az, 22)v2),
where the last equality follows from the assumption that (B114)=(E113). O

Next, we show that (B T4)=(ET15). We use symbols (1), (2), and (3) to denote the
difference of the three summands in the term (E1T14) — (ET19):

S (oar), (v, w)@az, 22)v2)z, ™" = S (v}, (a2, 22) (v, wholap)va)z, . (1
D Futar, 121,) = Gutay (21, WS (5, (@1 (v, )@z, 22)va). 2)
720
Z(mel,j(m ,22) = Gwiayj(21,22))S V3, (v, w)(a1 (az, 22)v2). (3)
720

So we need to show that [TJ+[2Z)+[3)=0.
By (BETT13), we may use the formula (ET1T) and expand both terms in [T) with

respect to (az, zp) from the left. Then [T] can be expressed as:

S(yo(ar), (v, w)(az, 22)v2)z; " = S (v}, (a2, 22)(v, who(a o)z,

= S (Wyo(ano(@r), (v, W)z ™ 5N + 3 Fuiay ilza, WIS (Vho(ar), (aa i)y, wyva)z, ™
>0

—wt —wt . —wta
— S (Vio(az), (v, wolai)va)z, "z, + Z Fytay i(z2, w)S (v, (a2 (i)v, who(ar)va)z;
i>0
_ ’ —degv_—wta; —wtap ’ —degv_-wta; _—wtap
= f(V3®a; xax *v@va)w Z 2, - f3®az *vxa; ®vyw Zy 2,
(11 (12)

3 Fatar iz, W) @ (@1 # (@x(i)V) = (aa(i)v) * ay) @ vy)w~e-degveivl vt
i>0 (13)

=D+ 12)+(13).

For the term [Z), we use the formula (BET_TT) agian and expand each summand in [Z] with

respect to (ap, zp) from the left. Then by (B2X8), [Z] can be expressed as:

@ =Y Fuar 1. mS (olar). (@ (v, wivp)z;

Jz0
#° Futar, 121 W)Futar i(z2, WIS (5, (@a(Dar (j)v, wyva)
720 >0
= > Gutar (21, W)S (Vy0(@r), (@1 (), wiva)z ™
j=0
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=D D Gwtan, j@1 W) Pt (22, W)S (4, (@a(Dar (v, wiva)

j=0 B3>0

wta —1-7
=Y ( i )S(V30(az) (@1 (v, whva)g, M2y e
720 21

t. —wiar W , N
£ (W “ ) NI 0022, WIS (V, (a2(D)ar (), w)va)

j=0 >0 (22)

= (21) + (22).

Finally, for the term [3], we expand each of its summand with respect to (a;(j)a, z2)

from the left, so [3) can be expressed as:

B = D Futa,j(z1,2)S (yo(@r(az), (v, wyva)z, ™ !

j=0
+ Z Z Futar /(215 22) Fytay +wiar—j-1.1(z2, w)S (v, (a1 (/az)(@)v, w)va)
j=0 i>0
_ Z Gwiay,j(z21,22)S (Vyo(ai(j)aa), (v, W)Vz)zgww' —wtay+j+1
Jj=0
+ Z Z thal,j(Zh ZZ)FWta1+Wta2—j—1,i(Z2, w)S (V%, ((a1(Na2)@v, w)vz)
j=0 i>0
ta; — 1\ _ L o .
= Z _(W Cllj )letalzzvtal 1 JS(véo(al(j)az), (V, W)Vz)zzwtal wta+j+1

Jj=0 (€29)

wta; — 1\ _ _1-i . .
> —( . )zlwm]z‘;wl I Futar swian- j-1.1z2, W)S (v, (@1 ()az)()(v, w)v2)
720 20 J (32)

= (31) +(32).

We need to show that (11)+(12)+(13)+(21)+(22)+(31)+(32) = 0. In fact, since a*v—v*a =
Res:¥(a, (1 + 2" = %10 (" ")a(j)v in By(M"), see (ETE), and a) * as - az * a1 =
220 (Wm}_l)al(j)az in A(V), we can rewrite (21) and (31) as:

wtay — 1 ; ;
(21) - _ Z ( 1. )W—wtal—deg v+j+lz\1V[u1thazwwtal—j—lf(vgo(az) ® al(j)v ® V2)

j20

= —w_degvz?m‘Z‘Z’Vt"zf(v'3 (ar*a; *v—ay*v*ay) @Vv);

wta; — 1\ _ _ _ , .
(31) = — Z ( 1] )Zl Wtalzzwtazw deg vf(v30(al(])a2) ®V® V2)
720

= —g MV W IRY F(V @ (a) + ap % v — ay x4y # V) @ V).
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Then by the bimodule property of B,(M'), we have:

anH+Jd2)+2nH+@3nH

= f‘(v/3 ® apxday *v ® VZ)W_ deg Vzl—Wtalzgwtaz _ f(v/3 ® a *v*a ® VZ)W_ deg VZ]—Wtalzgwtaz

—degv_—wta;

—-w zZ Z;mzf(v'3®(a2*a1*v—az*v*al)@)vz)

— ZI_WW]Z;WtLIZW—deg vf(v% ® (a] ¥ %V — o % ay v) ® vz)
=0.
It remains to show that (13) + (22) + (32) = 0.

Lemma 4.1.18. Let M be a V module, and let a;,ar € V, v € M, and n € N. We have:
wta; — 1\(wtas + n . . . )
> ( ! )( ; )(almaz(z)v — ax(i)ar (j)v)

izo\ J i
| t 1\(wta; + wt i—1+ (.1.17)
wta; — 1\(wta; + wtar, — j — n ) )
_ Z( s )( LW )(al(J)az)(l)V
£ J i
i,j>0

Proof. Choose complex variables z;, zo in the domain |z;]| < 1, |z2] < 1, |21 — 22| < |1 + 22|.

By the Jacobi identity in the residue form, the left-hand side of (B1-12) can be written as:

wta; — 1\[wtap +n\ ; ;
Res;, 2, Z ( i )( ; )Z{ZIQ(Y(QI’ZI)Y(QZ’ZZ)V - Y(az,22)Y(a1, 21)v)
1,720

= Res,, ., (1 + )V 711 + 22)M2*"(Y(ay, 21)Y (a2, 22)v — Y(a2, 22) Y (a1, 21)v)

= Res,Res;, o, (1 + 22 + (z1 = 207 H(1 + 2)V ™Y (Y(ay, 21 — 22)az, 22)V

wta; — 1 ) .
= Res;,Res;,—, Z( g’ )(1 + gyt Y Y(Y(a1, 21 — 2)az, 22)V

720
wta; — 1\(wta; + wtar — j— 1 +n . .
=y ( ' )( rre s )(alo)azxz)v,
im0\ !
which is the right-hand side of (B1-17). O

We use the formula (B4} again and rewrite (13) as:
wta; — 1\ _ .
(13) = Z ( “ )zlwmlw_mz‘deg " ta,i(z2, W) f(V ® a1 (az(i)y @ va).
i,j20
Since the map ¢, ,, is injective (see Section 3 in [27]), we only need to show that ¢, ,,((13) +

(22) + (32)) = 0. By (B23), 1z, w(Fwta,.i(z2, w)) can be written as:

wtay +n i —wtar—n—1
Lzz,w(Fwtaz,i(ZZa w)) = Z( ; )wwta2+n lZZW 2

n>0
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To simplify our notation, we denote z}“!w™deg v+l z> wa=n=1 vy By Lemma BEIIR,
Lo w(13) + 15,w(22)
_ Z (Wta1. - l)z\]vtalw—wtaz—deg v+i+1 [Z (wta% + n)wwta2+n—iZ£Wta2—n—1}
i,j=0 J n=0 !

(fO5 @ ar(faz(i)y ® v2) — (V3 ® az(i)ai(j)v ® v2))

-1
= Z (Wtalj )(wtazi + ”)y - fO ® (a1 (Dax i)y — ax(Dar (j)v) ® v2)

i,j,n>0

= Z (wtalj— 1)(wta1 + Wtazi +n—j-— l)y - fOV ® (@1()ax) (@) ® v2)

i,jn>0

= —t;, w(32).

Now the proof of (B1T14)=(E113) is complete.
Therefore, the 5 point functions in Definition EET-T6 give rise to one single 5-point

function S that satisfies:

S (5, (a1, z1)(az, 22)(v, w)va) = S (v5, (a2, 22)(a1, z1)(v, w)vz)
= S (v3, (a1, 21)(v, w)(az, 22)v2) = S (v, (@2, 22)(v, w)(ar, 21)v2) (4.1.18)
= S (v5, (v, w)(ar, z1)(az, 22)v2) = S V5, (v, w)(az, z2)(ar, 21)v2).
In particular, the 5-point function S satisfies the locality in Definition BT, with v} € M?3(0)*

and v; € M?*(0). Moreover, S(vg,(al,zl)(az,a)(v, w)vp) also satisfies both of the recursive

formula (B3224)) and (BZXZ8) by its definition.

4.1.4 Construction of (n + 3)-point functions

We construct the general (n + 3)-point function S using induction on n. We have
finished the base cases n = 1,2 in the previous subsection. Now assume that the (n + 2)-
point functions § : M30)* X Vx --- X M' X --- x V x M>(0) = F(z1,...,Zn-1,W) exist
and satisfy the following two properties: Let {(b1, wy), (b2, w2), ..., (b,, w,)} be the same set as

{(a1,z1), .-, (@n-1,20-1), (v,w)}. The first property is the locality:

S(v5, (a1,21)(a2,22) - . . (@1, Za-1) (v, Wv2) = S V3, (b1, wi)(b2, w2) . .. (B, wu)v2), (D)
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that is, the terms (ay, z1),(a2, 22), - - . , (@n—1, Zn—1), and (v, w) can be permutated arbitrarily within
S. Denote by S* (resp. S®) the expansion of the (1 + 1)-point function S with respect to the left
(resp. right)-most term using (B3224)) (resp. (B226)). The second property is that

S, (b1, w1 (b2, w2) . ... (b wa)v2) = ST, (b1, w1)(B2, w2) ... . (b wa)V2)

R (1D
= SE(W5, (b1, wi)(b2, w2) . . . (b, Wi)V2),

where (b1, w;) in S is not (v, w), and (b,, w,) in SX is not (v, w).
Note that properties I and [ are satisfied by the 4-point and 5-point functions (see
(E113) and (B1T1R).) We construct (n + 3)-point functions as follows:

oy . . . L R
Definition 4.1.19. Assume the number of V in the sub-indices of S, , | andSy ., are

both equal to n, the sub-index M in S’ is not at the first place, and the sub-index M' in S¥ is

L
not at the last place. Define S VMV by

Sy (5 (@20 o W) v2) = S(Vho(ar), (a2,22) - - (s 2) (v vz, ™

n
+ D Futar, jz21,208 (%, (a2, 22) .- (@1())ak %) - - (@, 20) (v, WV2) (4.1.19)
k=2 j>0
+ Z Futay,j(@1, WS (v, (a2, 22) . . . (an, zp) (@1 ()v, w)va).
j20
R
Define § V.M'.VV by
SN vy (Vs W) (@, 20)v) 1= S (5, (a2, 22) - - (@ny 20) (v, Who(a@rva)z ™!
n
0 Gt (21,28 (0, (a2, 22) - (@1 ()i, 20) - - (@, 20) (v, WIV2) (4.1.20)
k=2 j>0
+ 3 Gutan j (@21, W)S (4, (a2, 22) .. (@, 2)ar (v, w)v2),
j=0
where the S on right-hand sides of (EE1.T9) and (E-1-20) is the (n + 2)-point function.
The definition above indicates that S ‘L,MV._.V =S ‘L,VM._.V =...=F ‘L,V._.VM, which is

reasonable because the (n + 2)-point function S on the right-hand side of (EET-T9) satisfies the

locality property (Il). For a similar reason, we can also expect that S§4v...vv = S’é Moyy ==
S Ié...VMV' We need to show that
SV @,z . (W) (a2, 22)v2)
v.m..vV3 4.121)

= SR vV @, z1) ... (v, w). .. (a2, 22)v2),
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Indeed, as we mentioned in Proposition E-TT3, since (B21-19) is the generalization of
(2.2.6) in [[73], by a similar argument as the proof of (2.2.11) in [[73], we have:

Svv.m.v% (@,2)(@2, 22) .. (v, ) ... v2) (4.1.22)

=Sty v04, (a2, 22)(ar,z1) ... (v, w) ... v2).

Proposition 4.1.20. IfS‘L,V._AMWV(vg,(al,m)...vz) = S’émMmW(v;,...(al,zl)vz). i.e., if the
right-hand side of (BE119) is equal to the right-hand side of (B120), then (BE121)) holds.

Proof. The proof is similar to the proof of Proposition ET-T7. By (B1T22) and the assumption,

L R
=Svv. vV (a2, 2)(@,z1) ... (v, w)...v) =Sy 4 v, (@ z1) ... (v,w). .. (a2, 22)v2)
as asserted. O

Now we are left to show that (-1 19) = (E120). i.e.,

Sty v @z .. (uw).vm) =S8 s, (W)L (ar, z)va). (4.1.23)

Similar to the previous subsection, we use the symbols (1), (2), (3), and (4) to denote the fol-

lowing summands on the right-hand side of the difference (E119) — (E120):

—wtay

S (vyo(ar), (az,z2) ... (v, W)z - S5, (a2,22) - .. (v, w)olar)vp)z ™. (1)

Z(mel,j(m, 22) = Gwiay, (21, 22)S V5, (a1()az, 22) - . . (@, 22) (v, W¥2). ()
720

DD Futa j@1,20) = Gty (21, 2S04, (@2,22) - (@1 (Dag 20) . s wva). - (3)

k=3 j>0

Z((F wiar,j(Z1, W) = Gwiay, j(@1, WIS (V5, (a2, 22) . . . (an, 20) (@1 ()v, wva). 4
j=0

Then we need to show that (1)+(2)+(3)+(4)=0. Our strategy is to apply the expansion formula
(BZZ4) and expand each summand of [T] — [4] with respect to the left-most term. Then we add

them all up and show that the sum equals O.
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Remark 4.1.21. Since we will be using the recursive formula (3224) twice and the 3-point
function cannot be further expanded, the construction of the 5-point function in the previous

subsection is necessary for our induction process.

Start with [TJ, note that S (vjo(a1), (a2,22) - - - (@n, 20)(V, w)p)z W% can be written as:

S (Vyo(a)o(ar), (a3, 23) . . . (an, 2) (v, whva)z, "2, ™ (%)

+ 0 Futar iz, 2)S (Vo(@r), (@3,23) ... (@2(i)ar, 21) . . (@, 2a)(v, w)v2)z, ™
=3 i>0

+ 3 Futar i(z2, W)S (o(ar), (a3, 23) ... (@n, )@ (v, wva)z, ™.
i>0

S (v, (a2, 22) - . . (@n, 20) (v, w)o(al)vz)zIWt”‘ can be written as

S (Vy0(a2), (a3, 23) - . . (@ns 20) (v, who(a vz, "1 25 (%)

n
+ Z; Z(; Futa (22,208 Vs, (@3,23) - . (@2()atgs 21) - - - (ay 20) (v, wholap)va)z;
=3 1>

+ Z Fuay i(z2, W)S V3, (a3, 23) - . . (an, 2a)(@2(i)v, wholar)va)z; .

i>0
We denote the first, second, and third corresponding terms in () — () by (11), (12), and (13),

respectively. In particular, (11) is

S (Vyo(a1)o(az), (a3, 23) . . . (an, 2a)(v, W)z, "4 2, ™

1D

~S (V40(a2), (a3, 23) - . . (@n, 20) (v, wholap)va)z; "1 2, ™.

Lemma 4.1.22. As (n + 1)-point function, we have:
S (Vyo(ar), (a3,23) . . . (an, 22) (v, WIV2) = S (V3, (a3, 23) . . . (@n, 20)(v, w)o(ar)v2)

= >0, (Wt‘”j_ 1)z§§‘“l‘f‘1S<vg, @3,23) - (@ (D) - (@, ), Wv2) - (41.24)

k=3 j>0

-1 .
+ Z Z (Wtalj )thal—]—lS(v;, (a3, z3) ... (ay, z)(a1(jv, w)va)

720 j>0
Proof. By the induction hypothesis for the (n + 2)-point functions and (B228), we have:

0 =S85, (a1,21)(a3,23) . . . (@n, 20)(V, WIV2) = S (v3, (a3, 23) . . . (@, Z0)(a1, 21)(v, W)¥2)

= S(V40(a1)(@3,23) - . - (@ns 20) (v, W)z, """ = S (vV3(@3,23) - . . (@n, 20)(v, who(ar vz, "
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+ D7 D (Futar (21,5 = Gy j (21, 20)S (%4, (03,23) . (@1 (), 20) - - - (@, 20) (v, w)v2)

k=3 j>0

+ Z(F wtar,j (21, W) = Gutay,j(@1, WIS (V5, (a3, 23) . . . (@, 22) (@1 (j)v, w)va)
720

wta| wtag

= S (vV30(a1)(@3,23) - . . (@ns 20)(V, W)z, = S (v3(a3, 23) - - . (an, 20)(vs W)o(ar)v2)z,

+ZZ (wtm ) wiai=j= 1S(v3,(€l3 23) (a1 (Nag, zx) - - - (@n, 20) (v, W)r2)

k=3 j=0

+ Z _(Wtal. - l)wwtal—j—IS(vg, (a3,23) ... (an, Z)(@1(j)v, w)).

=0 J

This proves (E124).

It follows from the Lemma BT that (12) and (13) can be written as:

n
wta; — 1\ _ -
(12)= )" Z Zmez,(zz,z»( L )zlwt‘“z;"‘“ -

t=3 k=3,k#t1,j>0

S (V5. (a3, 23) ... (a1(fax, 2x) - - - (@2(D)as, 20) - . . (Any 20)(V, WIV2)
(121

Wtal 1\ _wtar _wa —1-j
+22mezl<@,z,>( Jeezre

=3 i,j>0

S (V5. (@3,23) . .. (a1(faz(Das, z0) - . . (A, 20) (v, WIv2)
(122)

wta1 1\ _
+ Z Z Fwtazz(ZZ,W)( )letal wtaj—1-j

=3 i,j>0

S (3, (a3,23) ... (a2(Dar, 21) . . . (an, ) (a1 (v, w)va)

(123)
= (121) + (122) + (123),
wta; — 1\ _ o
(13) = Z Z FWtazl(ZZ,Zk)( a1 )letalzzvtal 1-j
k=3 i,j>0
S (V5 (a3,23) - . - (@1 (Nak, 2) - - - (an, )@ (()v, w)va)
(131)
wtay — 1\ _ o -
' Z FWMZI(ZZ’W)( i )lemwwml IS (V) (a3, 23) - - - (s 20)(a1 ()aa(i)v, w)va)
o (132)
= (131) + (132).

Then [D=11)+(121)+(122)+(123)+(131)+(132).
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Now we expand [Z], [3], and [4] with respect to their corresponding left-most terms.

By (BZXR), they can be expressed as follows:

-1
@=) —(Wt‘”j )z[wt”'z;““zswgo(al ()a2), (@3,23) - - - (ans 20)(V, W)V2)

720 @
a wta; — 1 i
+ Z Z —( . )ZIWWIZ;}WI_I_jFWta.+wta2—j—1,i(12vZk)
k=3 i,j=0 J
S (V5 (a3, 23) - .. ((a1(Na2)(Dag, zk) - . . (an, 20) (v, W)V2)
(22)
wta; — 1) _ —wtai—1—j
+ Z _( 1. )Z]Wta1Z2Wta1 : JFWta1+Wta2—j—l,i(Z2>W)
0,70 J
S (3, (a3, 23) - - - (an, z0)(@1()a@)(@D)v, w)v2)
(23)
= (21) + (22) + (23).

- wiay — 1 —wta; _wta;—1—j ’ . —-wta
3) =ZZ—( 1] )21 IS (Vo(an), (a3, 23) - (ar(Das ) - . v2)z; ™

k=3 j>0 (€20)
n
wtar — 1\ _wia, _wtaj—1-j
3 3 A T e e
=3 ji>0 J

S (V5. (a3, 23) ... (@1 (Nar, 2x) - - - (@n> 20)(a2(i)v, w)vz)
(32)

S wta; — 1
1= —wta; _wtaj—1—j
DI I I (e e
k=3 t=3,t#k j,i=0 J

S (V5 (a3, 23) .. . (@2(Da, z1) - . . (@1(ak, z) - - - (@, 20) (v, W)v2)
(33)

n
wtay — 1 —wta; _wta;—1-j
3 AT e Pt
k=3 j,i>0 J

S (v3,(a3,23) . .. (aa(Dar(ax, z) - - - (@n> 2) (v, W)v2)
(34)

=31)+(32)+ (33) + (34).

wta; — 1\ _ . . _
“4) = Z —( ; )Z1 My WIS (Vio(as), (@3,23) - . (ans 2a)(@r (v, wiva)z, ™
720 @)

n
wta; — 1) _ -1-j
N L

=3 j,i0

+S (V5. (a3, 23) - . . (@2(Dag, 2) - . (an, 20)(@1 (v, w)v2)
“2)
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wta; — 1\ _ i . .
+ Z _( . )Zl Wi mel ! ]FWtaz,i(Zz’ W)S (V%, (613, Z3) o (arh Zn)(az(l)al(])va W)VZ)
7,0 J 43)

= (41) + (42) + (43).
By Lemma BTTH and the formula (B223) of ¢, ; Fi(z2, 1), we have:

Z (Wtalj )Fwtaz,i(ZZaZt)al(j)a2(i)a, + Z _(Wtalj )FWtaz,i(ZLZt)al(j)az(i)a,

i,j=0 i,j>0
wta; — 1 . .
> —( ; )mel+wm2_ 12 @ (a)ia, (4.1.25)
720 J
= 0,

and the same equation holds if we replace z; with w and a; with v. Using (B1-23), we have the
cancelations (122) + (22) + (34) = 0, and (132) + (23) + (43) = 0. Moreover, it follows directly
from the expressions of the terms (123), (42), (121), (33), (131), and (32) that

(123)+ (42) =0, (121)+(33) =0, and (131)+ (32) =0.
Now it remains to show [TT}+(21)+(31)+(41)=0, or equivalently,

S (vVzo(ar)o(az), (a3,23) - . . (an, 7)) (v, WIv2) = S (V30(a2), (@3, 23) - . - (an, 20) (v, W)o(ar)v2)

-1
- Z (Wtalj )S (Vyo(ai(j)az), (a3, z3) . .. (an, 20)(V, W)r2)

720

Y =1\ wea-1- , )
+ Z Z (Wtalj )Zkt -1 IS (Vyo(az), (az, z3) . . . (a1 (Dak, zx) - - . (v, w)v2) (4.1.26)

k=3 j>0

£y (W“”. ) 1)wwml—l‘f's (V40(@2), (@3,.23) .. (an, )@ ()v, WIV2),
=

but this is a consequence of Lemma BT, In fact,

L.H.S. of (BEIZA)
= S(vjo(ar)o(a2), (a3, z3) . . . (@n, 22)(v, W)v2) = S (Vio(az)o(ay), (a3, 23) . . . (@n, 22)(V, W)v2)

+ S (vjo(ax)o(ar), (a3,23) . . . (an, ) (v, WV2) = S (Vz0(a2), (a3, 23) . . . (@, 20)(v, w)o(ap)v2).
Since S 1is linear in the place M?3(0)*, we have
S (vyo(a)o(az), (a3, 23) . .. (an, 2)(v, wv2) = S (Vio(az)o(ar), (a3, z3) . . . (An, 2)(V, W)V2)
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= S(ilo(ay), o(a)], (a3,23) . . . (an, 20)(V, W)V2)

-1
= Z (Wtalj )S (Vyo(ai(Haz), (a3, z3) . .. (an, 2) (v, wv2),

Jz0

which is the first term on the right-hand side of (EZI_26). Moreover, by Lemma ET272,

S (Vyo(az)o(ar), (a3, z3) - . . (@n, 2) (v, WIv2) = S (V30(az), (a3, 23) . . . (An, ) (v, W)O(a1)V2)

. -1 wta;—1—j ’ .
= Z Z (wta} )Zkt IS (Wolan), (a3,23) - - (a1()ars zi) - . . (v, w)va)

k=3 j=0
) (W““. B l)wwml‘l‘fswgo(az), (a3,23) ... (@n, 2)(@1()v, w)v2),
70 J
which gives us the last two summands on the right-hand side of (BT26). This proves (E12A).
Hence [T] + [2) + 3] + [4) = 0, and so (EE123) holds.
Then by Proposition 121, all the (n + 3)-point functions S&,, ,  and S®
defined by (B1-19) and (E1-20) give rise to one single (n + 3)-point function:

S MO XVX- XM X X VXM0) > F(z1,...,20W), (4.1.27)

where M' can be placed anywhere in between the first and the last place of V. Moreover, by
Definition BTT9 and (B2, S in (B1-X7) satisfies the locality [l and the expansion property

[, with n replaced by n + 1. Therefore, the induction step is complete.

4.2 The general fusion rules Theorem

M3(0)
M M2(0)

(M3(0)* ®av) Bp(M 1 ®Av) M?*(0))*. Using this isomorphism, together with the isomorphism

In this Section, we will show that Cor( ) can be identified with the vector space
given by Theorem B-39, we can prove the fusion rules Theorem for general VOAs.

However, there are counter-examples showing that this identification is false if one
replaces By(M D) by the A(V)-bimodule A(M 1 constructed in Theorem 1.5.1 in [B0] or Ag(M")
constructed in Section 4 of [47]. The reason is that the correct L(—1)-derivation property of the
intertwining operators cannot be captured by A(M') nor Ag(M"), and this property cannot be
dissolved by taking the tensor product with bottom levels as in Proposition for general

VOAs neither. We will give more details and examples in the last subsection.
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4.2.1 The correspondence between correlation functions on the bottom levels and

functions on A(V)-modules

Theorem 4.2.1. The system of (n + 3)-point functions S we constructed by Definitions BE1 14,

3
B TTd, and in this subsection lies in Cor( M’f’ﬁﬁgo)).

Proof. Since S is constructed inductively by the recursive formulas (3224)) and (B=X8) in view
of Defintions ETT4, BT T8, and ETT9, it obviously satisfies (B224) and (B226). By (E1110),
we have S (v}, (v, w)n) = f(V;®Vv® vo)w™ 98V for any v} € M3(0)*,v € M', and v, € M*(0).
By the Hom-tensor duality, we have a well-defined element f, € Home(M2(0), M3(0)) such that
5, fu(2)) = f(V;®v®ny) foreach v € M". Hence S satisfies (B23).

In view of Definition [LT6, it remains to show that S satisfies (2) — (6) in Definition

B for v, € M%(0) and v’3 € M3(0)*. Indeed, the locality follows from (), and by (ET-19),

S, (L, 2) (@i, 21) - - - (@, 2)(V, Wv2) = S (Vs0(1), (@1, 21) - - - (@, 2)(V, WIv)z™™
+ 0 Fan j@ 2S04 @, 20) . (1(Daxs 26) - - (@, 2)(v, w)va)
k=1 j>0

+ D Fua j@ WS 0, (@1,21) .- (@, 2)AG), w)va)
720

=S5, (@1, z1) ... (@n, 20)(V, WV2),

since 1(j)ay = 1(j)v = 0 when j > 0, and o(1) = Id.
Again because S in (B1X7) satisfies (B119), it is easy to verify the following asso-

ciativity formulas by a similar argument to the proof of (2.2.9) in [[73]:

fS(v;,(al,m)(v, W) ... (@, 20)v2) (21 = W)'dzy = S (v5, (a1 (k)v, w) . .. (an, 2)V2),
¢ (4.2.1)

fS(vg,(al,a)(az,zz)---(v, w)(z1 = 22)"dz1 = SV, (a1(k)az, 22) . .. (v, w)v2),
C

where in the first equation of (B211), C is a contour of z; surrounding w with z5, . . ., z,, outside of
C; while in the second equation of (B2XTl), C is a contour of z; surrounding z, with z3, ..., z,, w

outside of C. We also have:

d
S5, (L(=Day,z1) . . . (@n, 2)(V, WIv2) = ES(VQ, (a1,21) ... (@n, 2)(V, W)v2),

J (4.2.2)
S (Vs (L(=1)v, w)(a1,21) - - - (an, Z)v2)w ™" = (s Vs 0y w)(a1,21) ... v)w ™).
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The first equation in (BE227) is similar to (2.2.8) in [[Z3]. We omit the details of the proof. To
show the second equation in (B227), we use induction on n. When n = 0, by (B13) and Lemma
BT, we have: L(—=1)v + (L(0) + hy — h3)v =0 mod O,(M") for all v € M'. Then

S (Vs (L(=1)v, wva)w™ = f(1 ® L(—=1)v ® vp)w™ 9€V=17"

d
= —f(Vy ® (L(0) + hy — h3)v @ vp)w™ 48171 = £ @ v ® v2) (W degv=hy (4.2.3)

= %(S (Vs 0 wv2)w ™).

Now assume the second equation of (BE222) holds for the (n + 2)-point function, then by the
properties (I) and () of S, we have:
S (V5 (L(=1)v, w)(@1,21) - - . (@ 2a)v2)W ™" = SEW, (@1.21) - - (@ns 20) L= 1)y, whvp)w ™"

= S(Vjo(ar), (a2,22) . . . (an, 2p) (L(=1)v, W)VZ)ZIWW] wh

+ ;; ZO Futay /(21,2008 (V}, (2, 22) . . . (@1()a@k> 28) - - - (s 2) L= D)y, wv)w™  (4.2.4)
= ]Z

+ Z Futar, j(21, W)S V5, (a2, 22) - . - (an, 20)(@ (HL(=1)v, whvo)w ™.
=

Note that we can apply the induction hypothesis to the first two terms of (B224). Moreover, by
the L(—1)-bracket formula (4.2.1) in [2/], we have:

ar(DL(=Dv2 = L(=Da1(j)vz2 = [L(=1), a1(D]v2 = L(=Dai(j)v2 + jai(j — Dva.
It follows from the induction hypothesis and (B223) that

Z Fwtal,j(Zla w)S (V,37 (a2,22) ... (an, za)(ar1 (HL(—1)v, W)VZ)W_h

70
d
= Z Fytay,j(z1, W)d_(S (V3 (@2, 22) - - (@ns 70) (a1 ()v, wvo)w™)
>0 w
Z—wta1 d Jj Wwta , ) _
3 Gomilan) Comp 50t @2, @ = Do

d , : -
= E Z FWIa1,j(Z19 W)S (V37 (a29 ZZ) e (an, Zn)(al(])v9 W)VZ)W h'
=0

This proves (B22). Finally, let v, € M>(0)*,v € M', v, € M*(0), and ay, ..., a, € V be highest
weight vectors of the Virasoro algebra. By property (I) and (B222) of S, we have:

S5 (@, )W, x1) ... (@, xp)(a1,21) - . . (@n, 20)(v, WIV2)
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=Sy, (W, x1) ... (an, 20) (v, W)o(W)v2) x>

0 G, xS (, (@, 31) . (@), X5) . . (s 2) (¥, W)V2)

k=1 j>0

# 0 G (x2S 0, (@, X1) . (@)A1 26 - - (s 20) (v, W)2)

k=1 j=0

+ Z G (X, W)S (Vi (@, X1) . .. (s 20) (@, W)V2).
720

By the definition formula (BZX1), it is easy to verify that:

xIz 1 1
G b = _’ G b = —’ G b = -
20(6,2) = —— - 2,1(x,2) gy 2,3(x, 2) P

Then by using the properties of the Virasoro element w (see Section 2.3 in [27]), we have:

S(v'3, (w, X)W, x1) ... (W, xx)(a1,z1)...(v,w)...(an,2)V2)

d < t -1 d t
_Zx Zk Z wilay S+x w h—(S W )+ wty s

-2 dzk (x — zx)? xX—w (x —w)?
x hwxg d - 2
S —S
Z X — Xk dxk kZ:‘ (x — xz)?

*3 kZ‘ (x- xk)zsw;,(w, x1). - (@.30) . (@, X)(@1,21) - (VW) (@ Z)V2),

where § = SV}, (w, x1) ... (W, xm)(@1,21) - - - (@n, 20)(v, w)v2). This shows that the § in (334)

also satisfies (BE21_11), with vg e M3(0)* and v, € M?(0). Therefore, S € Cor( Mﬁ;ﬁ’zo)). O

Remark 4.2.2. By equation (B2273), we see that it is necessary to have the equality L(—1)v +
(L(0)+hy —h3)v = 0 hold in the bimodule B,(M") to show the L(—1)-derivation property (BE2)
of S. However, in general, such equality does not hold in the bimodule A(M") in [30] by its
construction. This partially explain the reason why ( is not isomorphic to (M>3(0)* ®a(v)

A(MY) ®4v) M?(0))* in general.

M3
M! M2

Theorem BTl indicates that we have a well-defined linear map:

M3(0)

2 (MP0)* ®ay) Bu(M") ®av) M(0)* — Cor(Ml M2(0)

), feS;, (4.2.5)

where S 7 is the S we constructed in this subsection by Defintions ETT4, ETT6, and ET.T9.
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Since we have S (v, (v, w)v2) = f(V; @ v @ vo)w™ degv by (B110), and fgf(v’3 VR
vy w—degv = S r(v}, (v, w)v2) by (B18) and Definition [T, then fs, = f. i.e., vu = 1. On the

other hand, for S € Cor( M/}/]Z/;(Z)ZO))’ again by (E110) and (E1-6), we have:

S (Vs (v, wIn2) = fs (1 @ v @ va)w™ %8V = S (v}, (v, w)va).

Moreover, S ¢, and S satisfy the same recursive formulas by (E1T19), (E120), (B224), and
(BZZ8), then it follows from an easy induction that S5 = §. i.e., uov = 1, and so u is an

isomorphism. Now we have our main result for Chapter 3 and Chapter 4:

Theorem 4.2.3. Let M, M2, and M? be V-modules, with conformal weight hy, hy, and hs, re-
spectively. Assume M*(0) and M>(0) are irreducible A(V)-modules. Then we have the following
isomorphism of vector spaces:

( M(M3(0)"y )

M3 * *
R0y = 1( ) = (M*(0)" @av) Bi(M") ®av) M*(0)),

M M2 (4.2.6)

I fr, fiV;®v®v) = (vj,0(M2),

for all v, € M?(0)*, v € M, and v, € M*(0), where h = hy + hy — h3, and M* = M/Rad(M)
and M? = (M/RadM)’ are quotient modules of the generalized Verma module M (M?(0)) and
M(M?3(0)), respectively.

Proof. This is a direct consequence of Corollary BT, Theorem B39, and Theorem B2,
together of which give us the isomorphism: I( A%(EZJ(&;)Z)(())))) = I( MIIWZZZ) = Cor( M]]‘/I;;gzo)) =~
(M3(0)* ®aqv) Bi(M") ®acvy M*(0))*, such that I — f; as in (ZZH). O
Recall that V-modules M2 and M3 are irreducible if condition (B33) is satisfied (see
Proposition B3:6). By the isomorphism (E223), condition (B233) translates to the following:

For any f € (M>(0)* ®a(v) Bi(M") ®a(v) M*(0))*, one has:
> (rl’) £, ® b(i)y ®v,) =0, 4.2.7)
i>0

forallb € V,n € Zsuch that wtb —n—1>0,v e M',v; € M?(0)*, and v, € M*(0).

Corollary 4.24. Let M U M2, and M3 be V-modules, with conformal weight hy, hy, and hj,
respectively. Suppose M*> and M> are irreducible, and condition (B21) is satisfied, then we

have an isomorphism: I(MIIVI;IZ) = (M3(0)* ®av) Bu(M"Y) ®AV) M?*0))*.
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Suppose M? and M? are V-modules (not necessarily irreducible) that are generated by
their corresponding bottom levels M?(0) and M>(0), respectively, which are irreducible A(V)-

modules. Then by (B33211) and (BEZZH), we have the following estimate of the fusion rule:
3

M M?
Finally, if V is rational, by Theorem BE=23, Corollary B30, and Proposition BT172, the original

dim 1( ) < dim(M>(0)* ®acv) Bi(M") ®avy M*(0))". (4.2.8)

version of the fusion rules Theorem in [30] is true:

Corollary 4.2.5. Let V be a rational VOA, and let M U M2, and M? be V modules, with confor-

mal weight hy, hy, and hs, respectively. Suppose M? and M? are irreducible, then

M3
I(Ml Mz) = (M(0)" ®av) AM") ®4v) M*(0))". (4.2.9)

4.2.2 Examples

In this subsection, we will use (B226) and the estimating formula (BZ2) and compute

the fusion rules for certain modules over the Virasoro VOAs and the Heisenberg VOAs.

Example 4.2.6. A counter-example that shows I( Mllwi,ﬂ) is not isomorphic to (M3(0)* ®AV)
AMY) ®A(V) M?*(0))* was presented in Section 2 in [49]. It was given as follows:

Recall that the (universal) Virasoro VOA M. = M(c,0)/{L(—1)v. o) defined in [30]
has Zhu’s algebra A(M,) = Clt], with [w]" — ¢*. Let M(c, h) be the Verma module of highest
weight & and central charge c over the Virasoro algebra, then M(c, k) is a module over M., and

we have the following equalities held in A(M(c, h)):
[b] * [w]" = [(L(=2) + L(=1))"b], [w]" * [b] = [(L(=2) + 2L(=1) + L(0))"b],
for all b € M(c, h) and n € N. Hence there is an identification of C[¢] = A(M_.)-bimodules:

Clt1, ] = A(M(c, h))
(4.2.10)
[t 1) = f(L(=2) + 2L(=1) + L(0), L(=2) + L(=D)ve,n,

where C|[t1, 1] is a bimodule over C[¢] on which the actions are given by:

" f(t, 1) = 1] f(t1, 1), flt, )" =6 f(t, ).
For hy, hy € C such that M(c, h;) and M(c, hy) are irreducible, it is proved (see (2.37) in [2Y])
that 7( "¢} ) = 0, while dim(M(c, h2)(0)* ®a,) AM(c, h1)) ®acu,) Mc(0)" = 1.

M(c,hy) M.
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Although M? = M, is neither a generalized Verma module nor irreducible, we can
still use (B22-6) and (EZZX) to obtain the correct fusion rules. Indeed, since M. and M(c, h;) are

both generalized by their bottom levels, by (B228), we have:

Moreover, since h = hy + 0 — hy, it follows from Lemma T4 and Lemma BT that
By(M(c, h1)) = A(M(c, hy))/span{(L(=1) + L(0) — h)[b] : b € M(c, h1)}.
Then [L(—1)b] = —[(degb + hy — hy)b] in By(M(c, hy)). It follows from (EZ210) that
By(M(c,h)) = Clzol,  with  [(L(=2) = L(O) + ho)"ven, ] 13,
and Cl#y] is a C[#](= A(M.))-bimodule on which the actions are given by:
J(0).1" = 15f(t0), and  1.f(10) = (to + h2)" f(t0).
Hence we have B,(M(c, h1)) ®awm,) M:(0) = C[ty] ®csy M(0) = M.(0), and so
(M(c, h2)(0)" ®am,) Bu(M(c, h1)) ®am,) Mc(0))" = Homa,)(M(0), M(c, 12)(0)) = 0,
since o(w)veo = 0, 0(W)WVen, = havep, and hy # 0. Thus, I(M]Z(;f)”])m) = 0 by (E21D).

We give another example that shows that the bimodule Bj,(M 1 in (B2HA) cannot be
replaced by the A(V)-bimodule Aq(M 1Y defined in [22] either.

Example 4.2.7. Let V = ME(I,()) be the Heisenberg VOA of level 1 associated to a one-
dimensional vector space ) = Ca with (a|a) = 1. By Theorem 3.1.1 in [30], one has A(Mg(l, 0)) =
Clx], with [a(=i1 = 1)...a(=i, — D1] > (=1)1+Finx",

Let A € §), we have a V-module Mg(l,/l) = ME(I,O) ®c Ce?, with conformal weight
h = @ Note that MIA)(I, A) is the Verma module over the Heisenberg Lie algebraf)\. Since
be{l, A) is irreducible, it is automatically a generalized Verma module associated with its bot-

tom level Ce’. By Theorem 3.2.1 in [B0], we have:
AM(1,0) = Ce' ®c Clxl,  with  [a(=i; = 1)...a(=ip = De'] = (1)1 et @ 2,

where the bimodule actions are given by x.(e!® x") = el @ x"*! + (a)e' ® x”, and (e! @ x").x =

e!' ® x*! for all n € N. By definition in Section 4 of [42],
Ao(Mg(l, ) = A(Mg(l, A)/span{[(L(—1) + L(0) — (A1)/2)b] : b € M?)(l, D}
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Choose A € b such that (1|a) # 0. Recall that w = %a/(—l)Zl, and so
L(-1)e* = Res, Yy (w, 2)e' = Z a(—-1 = Ha()et = Aa)a(=1)e’.
i>0
Then we have [(Ala)a(-1e'] = [L(=1)e'] = ~[(L(0) — (AUD)/2)e'] = 0 in Ag(Mg(1, 1)), and
[a(=1)e'] = 0 in Ag(Mg(1,2)). For any spanning element [a(~ii — 1)...a(~i, — 1)e'] of
Ao(M5(1, D)), we then have [a(~i; = 1)...a(=iy - Det] = (=11 +in[a(=1)"e?] = 0 for n > 0.
Thus, AO(M[A)(l, 1)) = C[e'], with the module actions given by:

x[e*] = Ua)let], and [e'].x=0. (4.2.12)

M(1,4+0)

Now choose u € b such that (u|a) # 0, it is well-known that dim /i ( ML) ML)
pA) Myl

): 1. But

Ao(M(1, 1)) ®am(1.0) My(1, 1)(0) = Cle'] ®cpy Cet = 0,

since it follows from (EZT2) that [e'] ® ¢ = 15 [e']1 ® o(a(-DDet = pisle'lx® e = 0 in

the tensor product above. Then we have:
dim(My(1, A + 1)(0)" ®acar(1.0) Ao(M5(1, 1)) @aqar1.0) My(1,10(0))" = 0 # 1.

This shows that the isomorphism (EZX8) is not true if one replaces Bj(M 1y with Ag(M™).
Now we verify (B228) in this case. Indeed, since ) = Ca, then (1|a) # 0 and (ula) # 0
imply that A = ma and y = na, with m # 0 and n # 0. Hence

(A1) N W) — A+pd+p) _
2 2 2

h= —(Au) = —mn £ 0.
By definition E111, we have the following equality holds in Bh(MIA)(l, A):

[(Ae)a(-1)e'] = [L(-1)e'] = =[(L(0) - % + el = —(Awle']

Then for any spanning element [a(—i; — 1)...a(—i, — De'] of Bh(Mg(l, A)), we have:

. . ; A=A\
[a(=i1 = 1)...a(=iy = De'] = (=11 i[a(=1)"e!] = (= 1)+ (M) [e"].
(Aa)
Thus Bh(Mg(l, 1)) = C[e'], with the module actions given by
[e'].x = (Alu)[ 10), and x.[e']= —“ "‘) e+ Aa)[et (4.2.13)

(Aa) () )
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Then by (BZXT13), we have Bh(Mg(l,/l)) BAM(1.0)) M[A)(l,,u)(O) =~ Cle'] ®crx] Ce* is a one-
dimensional vector space, with xlell®@ e = [e!]lx® e + (Aa)e!] ® e = (A + pla)[e!] ® .

On the other hand, x.e*** = (1 + ula)e*™ . Thus we have:

dim Homaaz1,0)) (Ba(Mi(1, 1)) @410 My(1,1)(0), My(1, 2 + 1)(0)) = 1.

This shows (E28) is true for M' = My(1,2), M*> = My(1, 1), and M> = M(1, A + ).
Furthermore, the argument above also shows that Bh(MIA)(l, A1) ®A(W1’O)) Mf)(l, 1)(0)
is a one-dimensional vector space spanned by an eigenvector of f) of eigenfunction (4 + ul-).

Hence we have:

Hom 1,00 (Ba(Mg(1, 1)) @am(1.0) M1, 1)(0), Mi(1,7)(0)) = 0,

. .. i Mi(1y) _
if y # A + u. On the other hand, for y # A + , it is well-known that I(Mg(l,ﬂ) Mr,(l,u)) 0. Thus,
the rank one Heisenberg VOA verifies (E226).

Remark 4.2.8. For irrational VOAs, the previous examples indicate that the vector spaces

(M30)* ®av) BUM") @4y MX(©0)) . and  (M>(0)" @av) AM") @4v) M2(0))

maybe still be isomorphic to each other. For the universal Virasoro VOA, Example EZ2d indi-
cate that these two spaces are not isomorphic. For the rank one Heisenberg VOA in Example
BT, it is easy to see that these two spaces are isomorphic. We suspect that this isomorphism

is also true for the vacuum module VOA V;(k, 0) with positive integral level k € Z,.

4.2.3 The fusion tensor of modules over rational VOAs

The notion of the tensor product of modules over VOAs is defined by the universal
property, which is a generalization of the universal property of the tensor product of modules

over compact Lie groups or their Lie algebras, see [38, 53]:

Definition 4.2.9. Let V be a VOA, and M, N be two V-modules. The tensor product of M and
Nisapair (MR N, ), where M® N is a V-module, and / is an intertwining operator of the form
(AIII,IE]C’ ), satisfying the following universal property:

For any V-module W and any intertwining operator Y € [ ( MWN), there exists a unique
homomorphism of V-modules f : M ® N — W such that f(I(u,z)v) = Y(u,7)v, forany u € M

and v € N. If a tensor product exists, then it must be unique up to isomorphism.
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The tensor product of modules over VOAs was constructed by Huang and Lepowsky
in [BR, 39, 40], and later generalized into the logarithmic tensor product by Huang, Lepowsky,
and Zhang in [41]. For any two strongly graded generalized V-modules W; and W, they
proved the existence of tensor product Wi R,y W» that satisfies the universal property in Defi-
nition B279. They also proved the associativity of their Q(z)-tensor product.

Let V be a rational and C,-cofinite VOA, and M!, M2, ..., MP be all the irreducible
modules over V up to isomorphism. We may denote the Q(z)-tensor product M’ ®g;) M/ simply
by M’ ® M/, and denote the fusion rules N%f )
by Abe, Buhl, and Dong in [I] that all the irreducible V-modules are also C,-cofinite. Thus,

simply by N{“j, for1 <1, j k < p. It was proved

all the fusion rules ij are finite. Then the tensor products of irreducible modules have the

following decomposition into a direct sum of irreducible V-modules:
. op
Mg M = @N@M", V1<i,j<p. (4.2.14)
k=0

For rational and C,-cofinite VOAs, one can also construct the tensor product M’ ® M/
by defining it to be the direct sum of modules on the right-hand side of (BZ2XT4), then this direct
sum satisfies the universal property in Definition 229, and we call M’ ® M/ the fusion tensor
of V-modules M' and M/, see [53] for more details.

However, if we construct a tensor product in this way, then one can only prove the
associativity of the tensor product by showing the following equality of the fusion rules, see
[61]:

)4
kI=1 k=1

Indeed, by (B2214)), we have:

)4 )4
(M'm M)r M* = Z NE(M* & M*) = Z NENE M,
k=1 k=1

p p
Mm (M g M) =M=y NEM = NLNEM.
k=1 k=1

It was conjectured by Dong (cf. [24]) that (EZ219) can be proved by the fusion rules Theorem
of rational VOAs (B19), together with an isomorphism of certain A(V)-bimodules. Indeed,
we can use (B219) and translate the associativity of tensor product into an isomorphism of

A(V)-bimodules.
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From now on, we assume that V is a rational and C,-cofinite VOA, with irreducible
modules M', M?, ..., MP up to isomorphism, and the tensor product of M’ and M/ is given by
the fusion tensor (E2_14)).

Lemma 4.2.10. As left modules over A(V), we have the following isomorphism:
(M & M7)(0) = A(M") ®acv) M?(0). (4.2.16)

Proof. Since A(MY) ®A(V) MJ(0) is a direct sum of irreducible left A(V)-modules, then by the
definition formula (B22T14), Lemma E-T-117, and the Schur’s lemma, we have:

P P
(M & M7)(0) = 5 NEMK(0) = (5 dim Hom ) (A(M") @av) MY(0), M*(0))M*(0)
k=1 k=1
= A(M") ®vy M’(0)

as left A(V)-modules, where we have used the fact that the admissible level (M! ® M7)(n) coin-

cides with the admissible level @5:0 leij(n), forany 1 <i,j < p,andn € N. O
Proposition 4.2.11. Suppose we have the following isomorphism of A(V)-bimodules:
AM) @ayy AMY) = AMY) @4y AMY), V1<i,j<p, (4.2.17)
then the fusion tensor (BE2214) satisfies the associativity.
Proof. Note that (B2218) can be generalized to
(M ®N)(0) = A(M) ®4v) N(0), (4.2.18)

where M, N are finite direct sum of irreducible V-modules. This is clear because the tensor
operators - R - and - ® - preserve finite direct sum (colimit) of modules, and A(M @ N) = A(M) &
A(N), where the second isomorphism follows from O(M & N) = O(M) ® O(N) in M @ N, see
Section 2. Let W be an irreducible V-module. By (BE2218) and (E217), we have:

(M'® (M’ & W))(0) = A(M") ®acv) (M! ® W)(0) = A(M") ®av) (AM?) ®4cv) W(0))
= A(MY) @4y (AMY) @4y W(0) = (M/ ® (M'® W))(0).  (4.2.19)

On the other hand, by (BEZT9) and M ® N = N ® M, we have:
(M7= (M'& W))(0) = (M =& (W& M))0) = (W& (M & M))©0)
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= (M' ' M) & W)(0) = (M' 1 M) & W)(0).

Since irreducible A(V)-modules are in one-to-one correspondence with irreducible V-modules
(cf. [0, [73]), it follows that two admissible V-modules M and N are isomorphic if they have
isomorphic bottom levels. Therefore, M/ ® (M@ W) = (M/ a M) = W. O

There is an easy way to show that A(M) ®4(y) A(N) is isomorphic to A(N) ®4(v) A(M)
as vector spaces, where M, N are two irreducible V-modules. Recall that A(V) has an anti-
involution ¢ : A(V) — A(V),[a] — [“D(=1)!O0q], for all [a] € A(V), see Section 2 in [73].

Similarly, we can define anti-involutions of A(M) and A(N) as follows:

by 2 AM) = AM), [u) — ["D(=1)F Oy,
én : A(N) = A(N), [v] > [eL(l)(_l)L«))vL

for all [u] € A(M) and [v] € A(N). Similar to the computation in [30] (see also [[IY]), it is easy

to show the following compatibility properties of ¢, ¢ys, and @y:

dm(lal * [ul) = pu([ul) * ¢([al), Pm([ul * [a]) = ¢([a]) * pu([u]),
on(lal = [v]) = en([v]) * ¢([al), on([v] * [a]) = ¢([al) * en([VD),

for all [u] € A(M), [v] € A(N), and [a] € A(V). Define
¢ : A(M) ®acv) AN) = AN) ®4v) AM), [u] ® [v] = ¢n([v]) ® ppr([u). (4.2.20)
We observe that ¢ is well-defined since for any [u] * [a]®[v] = [u]®[a] *[v] € A(M) ®av)A(N),

¢([ul * [a] ® [vV]) = ¢n([v]) ® pum([u] * [a]) = s (VD) @ B([al) * par([ul)
= on(V]) * B([al) ® pu([u]) = gn([al * V) ® pm([u]) = ¢([u] ® [a] * [V]),

and similarly ¢([u] ® [a] * [v]) = ¢([u] * [a] ® [v]). Clearly, ¢ satisfies ¢*> = Id, thus ¢ is a linear

isomorphism. However, ¢ is not a homomorphism of A(V)-bimodules in general. Indeed,

¢([al.(u] ® VD)) = ¢ ([v]) ® pm([al * [u]) = dn (VD) ® dur([ul) * ([al)
= ¢([u] ® [v]).¢([a)),

which is not equal to [a].¢([u]®[v]) in general. In fact, by Lemma BE_I_I0, we have a decomposi-
tion A(N)®av)A(M) = EB? =1 m;iM (0)®c M/(0)* into irreducible A(V)-bimodules. However,
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the left action of [a] is not necessarily the same as the right action of ¢([a]) on each irreducible
pieces M'(0) ®: M/(0)*.

Therefore, we need to find another way to show the isomorphism between these two
bimodules. By studying the filtration on A(M) and the associated graded modules grA(M) over
grA(V), we proved (B22T7) under an extra condition, see Theorem 3.17 in [57].

There is another sufficient condition for the associativity of the fusion tensor given by

certain isomorphism of A(V)-bimodules.

Proposition 4.2.12. The fusion tensor (B214) satisfies the associativity if AM' & M/) =
A(M?) ®4vy A(MY) as A(V)-bimodules, for any 1 < i, j < p.

Proof. Let W be an irreducible V-module. By (B22IR), we have the following isomorphisms:

(M'= M) = W)(0) = A(M' & M7) @) W(0),

(M'= (M) & W))(0) = A(M') ®(v) (M) 8 W)(0) = A(M") ®@4v) A(M) ®4v) W(0).

for any 1 < i, j < p. By assumption, A(M' ® M/) ®4(yy W(0) is isomorphic to A(M’) ®(v)
A(Mj)®A(v) W(0) as left A(V)-modules, hence (M'RM)RW = MIR(M/®RW) as V-modules. O

Remark 4.2.13. We suspect that A(MY ®Av) A(MY) might have some further connections with
the correlation functions on the bottom levels in Section BZ2. We might be able to construct a

more general version of the correlation function from a space like
(M*(0)" ®av) ACMY) @av) AMY) ®av) M(0)),

and use the properties of such correlation functions to prove the isomorphism (BE2217). We will

study this problem in the future.
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Part 11

Rota-Baxter operators and the
classical Yang-Baxter equations of

vertex operator algebras
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Chapter 5

Borel-type sub-algebras of the lattice vertex

operator algebras

This Chapter begins this thesis’s second part, which is dedicated to studying analogs
of Rota-Baxter operators (RBOs) and the classical Yang-Baxter equations for vertex operator
algebras. We study some special types of sub-algebras Vp of the lattice VOAs V;, constructed
in [29] in this Chapter. They are similar to the Borel algebras b = n, @ b of a Lie algebra
g that has a triangular decomposition g = 11y @ b @ n_. We call such sub-algebras of lattice
VOA the “Borel-type sub-algebras”. Similar to the Lie algebra case, we will also introduce
a notion of parabolic-type sub-algebras of the lattice VOA based on their relations with the
Borel-type sub-algebras. We study this particular type of sub-algebras because they can give
rise to natural (projection) Rota-Baxter operators on the lattice VOAs. Finding examples of
Rota-Baxter operators on VOAs is a challenging task. It amounts to solving the vertex operator
analog of the classical Yang-Baxter equations, which is quite intrinsic. We will see this in
the next two chapters. Therefore, a natural example of RBO on VOA could also justify our
definition axioms for Rota-Baxter operators on VOAs in the next Chapter.

In the first Section of this Chapter, we will give the definitions of Borel and parabolic
type sub-algebras of the lattice VOAs and study their basic properties. In particular, we will
show that these VOAs are of CFT-type, irrational, and some special Borel-type sub-algebras are
C-cofinite. In the second Section of this Chapter, we will be focusing on the easiest nontrivial
case of the Borel-type sub-algebra Vz_, of the rank one VOA Vz,. We will show that Zhu’s

algebra A(V) of Vz,,, is a one-dimensional non-abelian nilpotent extension of the polynomial
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algebra C[x]. Then we will use this result about A(Vz,,) to classify the irreducible modules
over Vz .. We will show that the complete list of irreducible modules over Vz_, is the same
as the complete list of irreducible modules over the Heisenberg VOA Mi(1,0). We will also

propose a way to extend a module over a Borel-type sub-algebra Vp to a module over V.

5.1 The Borel-type and parabolic-type sub-algebras of V;

In this section, we first review the construction of lattice VOAs in [29] and some
related results, then we give the definitions of Borel-type and parabolic type sub-algebras of
a lattice VOA V;, based on the decomposition of V, as irreducible modules over the Heisen-
berg sub-VOA. We will prove that these sub-algebras are irrational, and some Borel-type sub-

algebras are C-cofinite.

5.1.1 Sub-algebras of V; associated to abelian sub-monoid

Let L be a positive definite even lattice of rank d > 1, equipped with Z-bilinear form
(:|) : LXL — Z. Let} := C®zL, extend (:|) to a nondegenerate C-bilinear form (:|-) : hxh — C,
and let Mg(l, 0) be the level-one Heisenberg VOA associated to/b\ =heCl1,r '@ CK.

We give a brief recap of the construction of the Heisenberg VOA MIA)( 1,0) and its
irreducible modules M?)(l, A), which will be used later in this and the next Chapter. Recall that

the Lie bracket on the affine algebra’b\is given by:
[h1(m), ha(n)] = mOymsnoK, Yhi,hy €D, andm,n € Z, (5.1.1)

where we denote h ® " € /b\by h(m). Then’b\ = (/b\)+ ® (/b\)o @ (E)_, where (’b\)i = EBneZi h® Cr",
and ()y = h ® C1 ® CK. Let (h)s0 = (h); & (h)o, which is a Lie sub-algebra of b.

For each A € I, let et be a formal symbol associated to 1. Then Ce* is a module over
(D)0, with the module actions given by h(0)e! = (hl)et, K.e* = ¢, and h(n)e! = 0, for all
h € bhandn > 0. Then define MIA)(I, A) to be the induced module:

Mi(1,2) := Ind% Cet = UD)®, ~ . Ce. (5.12)

U(b20)

Then we have Mg(1, ) = U(h<o) ® Cet = span{hi(—ny)...h(—n)et < k >0, hy,... I €
b, ny > -+ > ng > 0} as vector spaces. It was proved in [2Y] that Mg(l, 0) is a VOA called the
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level-one Heisenberg VOA, and MIA)( 1, 1), with different A € b, are all the irreducible modules
over MIA)(I, 0) up to isomorphism.

Write C¢[L] = EBQGL Ce®, where e¢® is a formal symbol associated to a for each
a € L (e” is denoted by ¢(a@) in [2Y]), and € : L X L — (1) is a 2-cocycle of the abelian group
L such that e(a, B)e(B, @) = (=1)“P, for any @, 8 € L. Let Vy, = M(1,0) ®c C*[L], then by the

discussion above, we have the following spanning set of V;:
Vi = span{hy(-ny) ... hp(—np)e® : k>0, €L, hy,...,hg €D, ny = --- > ny > 0},

where we omit the tensor sign ® in the term hy(—np)...hg(—n;)e®. Let the vertex operators

Y : Vi — End(Vy)[[z,z7']] be given as follows on the spanning elements:

Y(h(-1)1,2) = h@) = » hmz™""" (h(me® := 0, h(O)e" = (hla)e"), (5.1.3)
nez

Y(e".2) 1= E" (-, DE (~@.9)eaz”  (2%(ef) 1= £V, e(ef) 1= e(a. fe™F),  (5.1.4)

Y(hi(=ny = 1) ... hp(=np = 1)e?, 2) := "V hi(2)) . .. (T hi(2)Y (€%, 2)', (5.1.5)
forany k > 1, ny = -+ 2 n =2 0, h,hy,...h € b, and a,8 € L, where E* and 62") in

(BI3)-(RT3) are given as follows:

. —a(n) _, w1
E—(—a,z):exp[z %z }, 8§)=E.

neZ.

The normal ordering in (ET3) rearranges the terms in such a way that the right hand side of

(B13) is given as follows:

DD emmim)  (mOE (0, Dead EY (—a, DRy (m) . ().
m1>0,...,m>0 n>0,...,n>0

(5.1.6)
Let {a1, ..., a4} be an orthonormal basis of ), and let w = % Z?:] ai(-1)?1 € Mg(l, 0)cV..

It is proved in the appendix A.2 in [2Y9] that (VL, Y, w, 1) is a VOA with Mﬁl,O) a
sub-VOA. In particular, V; has the same Virasoro element w and the vacuum element 1 with
the Heisenberg sub-VOA Mg(l, 0). Recall that V} has the following decomposition as a module
over the Heisenberg VOA Mg(l, 0) (cf. [I3, I2]):

V, = @ M(1, @), (5.1.7)

a€el
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where MIA)(I, ) = Mg(l, 0) ® Ce® for each a € L.

Let L° = {h € b : (hla) € Z, Ya € L} be the dual lattice of L. For each element
A € L°. It was proved in [29] that V., = Mg(l,O) ®c C¢[L + A] is a module over V;, with the
module vertex operator Yy, : Vi — End(Vi4)[lz, 1 given by similar formulas as (E1T3)—
(513), the only differences are h(0)eP* := (h|B+1)ePH1, z2(eP1) 1= (B+D B+ and e P =
e(a,B)e® P foranyhebh,a,f € Land 1 € L°.

Furthermore, Dong classified the irreducible modules over V; in [13]. The main result
is the following: Let L°/L = |—|ip=l (L + 4;) be the coset decomposition of the subgroup L in L°.
Then{VL4a,, ..., Vi+a,} are all the irreducible module over V,, up to isomorphism. Furthermore,
V1 is a rational VOA.

Observe that a lattice L is an abelian monoid, with the commutative associative prod-
uct given by its addition, and the identity element given by 0. An abelian sub-monoid of L is

a subset M C L such that 0 € M, and M is closed under the addition of L.

Proposition 5.1.1. Let M < L be an abelian sub-monoid, with identity element O € L, and let
Vi = @%M Mfl;(l, a@). Then (Vy, Y, w, 1) is a CFT-type sub-VOA of (V., Y, w, 1).

Proof. By (513) and (&T4), for any «, € M, we have

Y%, 2)é® = E~(—a, ) ET (-, 2)ea%(éP) = E-(—a, 2)Et (-a, z)e(a/,,B)z(“LB)e“B,

= exp(Z —aTn)z_")e(a/, B)Z 1B P

n<0

which is contained in Mg(l, a + B)((2)) € Vyu((2)), in view of the decomposition (5171). More
generally, for any hy(—n; — 1) ... h(—n; — 1)e® € Mg(l,a) and h|(-my —1)... hy(-m, — 1)éf e
Mg(l, B), with @, 8 € M, it is easy to see from (B13) and (E1-6) that

Y(hi(=n1 = 1) ... (—ng — De®, 2)h (=my — 1) ... h.(—m, — )P e MIA)(I,a/ + B)((2))

Since M is closed under addition and Mg(l, 0) C Vy, it follows that V), is a sub-VOA of V.
Since Vj; has the same Virasoro element as V;, we have (Vy), € (V;), for each n > 0, and

(Vao = (Vi)o = C1. Thus Vy, is of the CFT-type. O
The proof of Proposition BTl essentially depends on the fact that
Y(a,2)b € Mi(l,a +B)((z)), Vae M(l,a), b e M(1,p), anda, € L, (5.1.8)
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where Y is the vertex operator of the lattice VOA V. We will use this fact multiple times in
the next subsection. We call (Vy, ¥, w, 1) in Proposition BT the sub-algebra of V; associated
to M. We will use Proposition BTl and give the definition of Borel-type and parabolic-type
sub-algebra in the next subsection by choosing suitable abelian sub-monoid of L.

Similarly, by (ETR), if § < L is a sub-semigroup. i.e., S is only required to be closed

under the addition of L, then it is easy to show that Vg = EB ME(I, @) C Vi is closed under

a€S
the vertex operator Y of V. Such a sub-structure is called a vertex Leibniz sub-algebra, see

[66] for the definition of vertex Leibniz algebra.

Remark 5.1.2. When L is a rank one lattice: L = Zq, it is observed by Dong (see Proposition
4.1 in [3]) that Vi, is a sub-VOA of Vz,. Proposition Bl is a generalization of this result,

noting that Ne is an abelian sub-monoid of Za.

5.1.2 Definition and first properties of Borel-type and parabolic-type sub-algebras

In the Lie theory, recall that a Borel subgroup B of a connected linear algebraic group
G is defined to be a closed connected solvable subgroup of G that is maximal subject to these
conditions. A parabolic subgroup can be equivalently characterized as a closed subgroup P that
includes a Borel subgroup. See Chapter 21 in [33] for more details. The Lie algebra b of B is
called a Borel sub-algebra of the Lie algebra g = Lie(G), and a parabolic sub-algebra p is just a
Lie sub-algebra of g that includes a Borel sub-algebra b.

If a Lie algebra g is simple, then it has a root space decomposition g = ) & @aeqn Ga»
where ) is a Cartan sub-algebra of g, and @ is the root system associated to §. In this case, a
Borel sub-algebra can be given by b = h & (P aco, Sa» Where @, is the set of positive roots, see
[B4] for more details. Furthermore, the positive roots in @, can be written as a positive integral

linear combination of the simple roots «j,...,@,, and the root lattice Q = Za; @ ... ® Za,.

Inspired by these constructions from Lie algebras, we introduce the following notions:

Definition 5.1.3. Let L be a positive-definite even lattice of rank », and let V;, be the lattice
VOA associated to L.

(1) An abelian sub-monoid B < L is called a Borel-type sub-monoid if there exists a basis
{ay,...,a,;} of L suchthat B = Zsoa1 @ ... ® Zso,. An abelian sub-monoid P < L is
called a parabolic-type sub-monoid if there exists a Borel-type sub-monoid B < L such

that B C P (Any parabolic-type sub-monoid is automatically of the Borel-type).
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(2) A Borel-type sub-algebra (or sub-VOA) of the lattice VOA V| is a sub-algebra associ-

ated to a Borel-type sub-monoid B < L: Vg = EBQE B Mg(l, ). A parabolic-type sub-
algebra (or sub-VOA) of V is a sub-algebra associated to a parabolic-type sub-monoid

P<L:Vp =P, My, ).

Observe that both the Borel-type and parabolic-type sub-algebras are of the CFT-type,
non-simple (any sub-semigroup S < P gives rise to an ideal Vg of Vp by (E1R)), and share the
same vacuum element 1 and Virasoro element w with the lattice VOA V.

For a Borel-type sub-VOA Vg = @aeB MB(I, a), where B = Zsoa1 @ ... ®Zsoay, We
may view MIA)(I, 0) < Vp as an analog of the “Cartan sub-algebra” and @Hnj>l Mf)(l,nlal +

-+ + npa,) < Vp as the an analog of the “positive-roots part” of a simple Lie algebra g.

Example 5.1.4. Certain parabolic-type sub-algebras can give rise to the decomposition of the
lattice VOA V| into a direct sum of two vertex Leibniz sub-algebras, which can further give rise

to Rota-Baxter operators in the next Chapter. We give some examples of them as follows:

(1) Let L be the rank one positive definite even lattice L = Za, with (a|a) = 2N for some
fixed N € Z¢. Clearly, B = Za>g is a Borel-type sub-monoid, Za g is a sub-semigroup
of L,and L = B| |Za . Then it follows that Vz,,, = @mezzo Mg(l, ma) is a Borel-type
sub-algebra, Vz_o = @mEZ<0 Mg(l,ma/) is a vertex Leibniz sub-algebras of Vz,, and

Vza = VZZOQ @ VZ<0a-
(2) Let L be a positive-definite even lattice of rank r, with a basis {a1, ..., @,}. Let
P:=Za1®.. ®Za,_1 ®Zsoa,, and P~ :=Za1 ®...0Zar—1 ®Zpa,, (5.1.9)

then P is a parabolic-type sub-monoid of L since it contains a Borel-type sub-monoid
Zsoa1 ®...®Zspa,, and P~ is a sub-semigroup of L. Moreover, we also have L = PU P~

and PN P~ = (. Therefore, Vp = P Mg(l, @) is a parabolic-type sub-algebra of Vp,

aeP

and Vp- = @ﬁep, Mfg(l, B) is a vertex Leibniz sub-algebra of V;. Moreover, we have a

decomposition V, = Vp & Vp-.

Unlike the lattice VOA itself, the Borel-type and parabolic-type sub-algebras that are
not equal to V. are irrational. Their representations are more like the Heisenberg sub-VOA
Mi(1, 0) instead of V. For the rest of this subsection, we fix a positive-definite even lattice L

of rank r.
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Theorem 5.1.5. The proper Borel-type and parabolic-type sub-algebras of a lattice VOA Vi

are all irrational.

Proof. By Definition 5173, it suffices to show a proper parabolic sub-VOA Vp < Vy isirrational.
Assume P contains a Borel-type sub-monoid Zsga| &. ..®Zsoa,. First, we note that there must
exist some index 1 < j < r such that for any n; < 0, the element mya +--- + nja; +--- + n,a,,
with n; € Z for any k # j, is not in P since otherwise, P must be the whole lattice L. Without
loss of generality, we assume j = 1, then elements in P are of the form ma| + npas + - - - + n,a;,

for some m > 0, and ny, . ..,n, € Z. In particular, Zsoa; C P. We let
P = {may +nmyar +---+na, €P:-m>1,neZ}U{0+may+---+n,a, € P:n; €7Z}.

Itis clear that P! is a sub-monoid of P. i.e., P+P' C P', then by (BTR), Vp1 := P, cp M5(1, @)
is a submodule of the adjoint module Vp, and Vp/Vpi = Mg(l, 0), which is an irreducible Vp-

module. Similarly, if we let
P? = {ma; +mar+---+na, € P-m>2,n, €2 U{0+nap +---+na € P:n; €2},

then P? is a sub-monoid of both P! and P, and V2 C Vi is Vp-submodule such that Vpi /Vp: =
Mg(l,aq), which is an irreducible Vp-module. Proceed like this, and we can construct a com-

position series of Vp-modules:
VPD Vpl D sz D ...me D me+1 D...,

such that the consecutive quotient are Vpm/Vpmi1 = Mf){l, ma), which is an irreducible Vp-
module, for all m > 0. Note that Mg(l, may) is not isomorphic to M?)(l, m’aq) if m # m’, since
they are not isomorphic as Mg(1,0)-modules. Thus, Vp has infinitely many non-isomorphic

irreducible modules, and so Vp is irrational, see [[IX, [3]. |

Although the Borel-type and parabolic-type sub-algebras are irrational, we can show
that some Borel-type sub-algebras are strongly finitely generated, or equivalently, C-cofinite,

see Proposition Z273.

Proposition 5.1.6. Let B = Zsoa| @ ... ® Zsoa, be a Borel-type sub-monoid of L such that
(@jlaj) 20, forall 1 <i+# j<r. Then Vg is strongly generated by U := {1,a;(=1)1,e% : 1 <

i < r}. In particular, Vg is Cy-cofinite.
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Proof. Let W be the subspace of Vz_, spanned by the following elements:

uly i, b, (5.1.10)
where u',...,u¥,u e U,andn; > ny > --- > n; > 1. We need to show that each Mg(l,nlal +
---+n,a,) is contained in W, for all non-negative integers ny, ..., n, > 0. Clearly, the Heisenberg

sub-VOA MT)(I, 0) is contained in W. Since M?)(l, o) = MT)(I, 0)®cCe?, and Mﬁ( 1,0) is strongly
generated by {a;(—1)1,...,a,(—1)1}, we only need to show that ¢"1¥1+ 4 ¢ W,

Indeed, first we observe that if ¢* € W and €# € W, with (a|B) = 0, then

¢ 1€’ = Res.z PTE (—a, DE" (-, D)eg 2"
_ —(a|B)-1 p—(_ (@|B) a+p
- Z s ) I 0N
Res,z E (—a,2)7" e(a, B)e (5.1.11

= e(a,f)e*P =0 (mod W).

Furthermore, since (a;la;) > 0 forall 1 <i# j <r, and (ajla;) = 2N; > 0 for all i, we have:

p
(maq + -+ meama; + - +npay) = Z minj(aila;) > 0,
ij=1

for any non-negative integers my, ..., my,ni,...,n, > 0. In particular, if ™1+ ¢ W and
Mt ¢ Wowe have et +n4miar ¢ W by (82I). Then it follows from an easy

niay+--+n,

induction that e @ e W for any non-negative integers np,...,n, > 0. |

Remark 5.1.7. We believe that certain Borel-type (as well as parabolic-type) sub-algebras that
do not satisfy the condition in Proposition B8 can also be proved to be C;-cofinite. We will
study this problem in the future. However, the Borel-type sub-algebras are not C,-cofinite. We

will see this in the next Section.

5.2 The Borel-type sub-algebra V;_,

In this Section, we will be focusing on the Borel-type sub-algebra V7, of the rank
one lattice VOA Vi, where L = Za, with (a|la) = 2N for some N > 1. In this case, the 2-
cocycle € : Za x Za — (+1) satisfies e(ma, na)e(na, ma) = (1)@ = (_1)2Nmn — 1 for any
m,n € Z. We may assume that e(ma, na) = 1 for all m,n € Z.

We will show that Zhu’s algebra A(Vz,) is isomorphic to the associative algebra:
Cx, )/, yx + Ny, xy = Ny),
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where C(x, y) is the tensor algebra of Cx® Cy. In particular, A(Vz,,) is a one-dimensional non-
abelian nilpotent extension of the polynomial algebra C[x]. We will also show that grA(Vz,)
is isomorphic to R(Vz,,) as commutative Poisson algebras.

Finally, we will use the A(Vz_,) and give a complete list of irreducible modules over
V7. 0a> and show that the irreducible modules are the same as the irreducible modules over the
Heisenberg VOA Mﬁl ,0). Then we will be focusing on the special case when (a|a) = 2. This
case gives us more evidence to justify our choice of the name “Borel-type sub-algebra”, and it

also leads to an alternative way to construct induced modules over VOAs (cf. [22]).

5.2.1 The Zhu’s algebra of V;_,

For the clearness and conciseness of our cross-references, we rewrite the formulas

about Zhu’s algebra A(V) in Section 7 at the beginning of this subsection. Recall that

1 wta t
aob=Res Y@ = % (W,")a j-2b, (5.2.1)
Z -
Jj=0
1 wta t
axb=Res ¥ 2 = (W.“)a -1, (5.2.2)
< =0

O(V)=span{laob:a,b eV}, and A(V) = V/O(V). We have:
ax0V)cOV), and OV)=xac O(V), (5.2.3)

for any a € V, and A(V) is an associative algebra with respect to *, with the unit element [1].

Furthermore, we have the following formulas:

1 wtb—1
a*b = Res,Y(b, 2a8F (mod 0(v), (5.2.4)
Z
axb—bxa=Res,Y(a,2)b(l+2)" " (mod OV)), (5.2.5)

for any homogeneous a, b € V. Finally, if m > n > 0, we have:

(1 + Z)wta+n

Res,Y(a,z)b 5 =0 (mod O(V)). (5.2.6)
<

+m
Proposition 5.2.1. There exists an epimorphism of associative algebras:

F: Cx, y)/(yz,yx + Ny, xy — Ny) — A(V), (5.2.7)
such that F(x) = [a(—1)1] and F(y) = [¢“].
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Proof. By the definition of Y(e%, z), it is easy to see that for any n > 0, we have:
e =0, €% =--=e"e” =0, and e%,, ¥ = e (5.2.8)

Since wte” = N, by (8272) and (B2XR) we have: e® = e” = 35 (/}/)e?‘_
[e?] = 0in A(V). By (B228), we have

e* = 0. Hence [e”] *

a(-n—-2u+a(-n—DHu=0 (mod O(V)),
and [a(—1Du] = [u] * [a(=1)1], for all n > 0 and u € V. Thus we have:
[a(=n1 = Da(=ny = 1)...a(=n = Du] = (=1 [u] * [a(=1)1] * - - - % [a(=1)1]

in A(V), for any ny,...,n; > 0 and u € V. Thus, A(V) is generated by [a(—1)1] and [¢"**], for
all m > 1. We claim that [¢**] = O for any k > 2.

Indeed, for m > 1, since e?,, =~ e"" = em+he e?,e"* = 0 for any n < 2Nm, and
m
2Nm + 1 > 2 then by (E226), we have:
N N
b = e onm-r€"" + ( 1 )egZNmema L (N)et—ysz—nNema
(1+2)"
= ResZY(e“,z)emaW e O(V),

for any m > 1. Hence [¢*] = 0 in A(V) for all k > 2, and A(V) is generated by [a(—1)1]
and [e¢“]. Then we have an epimorphism F : C{x,y) — A(V), such that F(x) = [a(—1)1] and
F(y) = [¢”]. Moreover, by (5221) and the definition of Y(e?, z), we have:
. N N
e"ol=e?1+ (l)e‘fll + Z (j)e?_zl
22
= Res,z 2 exp(— Z @1_”)6" + Ne* +0
n
n<0
=a(-1)e” + Ne®* =0 (mod O(V)),
hence [e?] * [a(—1)1] + N[e*] = 0 in A(V). By (EE23), we also have:

[a(=D1] * [¢"] = [e"] = [a(=1)1] = [Res;Y(a(-D1,2)e"] = [a(0)e*] = 2N[e"],

and so [a(—1)1] = [e*] — N[e“] = 0 in A(V). Therefore, the epimorphism F : C{x,y) — A(V)
factors through the algebra C{x, y)/(y?, yx + Ny, xy — Ny). O
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Our next goal is to show that epimorphism (82277) is an isomorphism. We can achieve
this goal by determining O(V).
Let O’ be the subspace of V spanned by the following elements:
a(-n—-2)u + a(-n — Du, ueV,andn >0,
a(-1)v + Nv, V€ @mzl M?)(l, ma), (5.2.9)
Mi(1, ka), k>2.

We want to show that O(V) = O’. First, we prove the easier part: O’ C O(V). By (E2X8), clearly

we have a(—n —2)u + a(—n — 1)u € O(V), forallu € Vand n > 0.
Lemma 5.2.2. For any k > 2, we have MIA)(I, ka) C O(V).
Proof. By the proof of Proposition 5211, we have ek¢ € O(V), for any k > 2. By (824), we
have u * a(—-1)1 = a(-1)u (mod O(V)). Now by (E226) and (E2Z3), we have:
a(-n; = 1)...a(=n, — Dk = (=1 (=1)  (mod O(V))
= (=1 s (@(=1)1) -+ - % (@(=1)1)  (mod O(V))
=0 (mod O(V)),
for any k > 2, r > 1, and ny,...n, > 0, where the last congruence follows from (8273). Thus

we have Mg(l, ka) Cc O(V), for all k > 2. O

Lemma 5.2.3. Foranyv € B

m>1

be{l, ma), we have a(—1)v + Nv € O(V).
Proof. f m>2andv e Mg(l, ma), then by Lemma B2, we have v € O(V), and
a(-1yw+Nv=vx*(a(-1)1)+ Nv=0 (mod O(V)),
by (B223). Now let m = 1, by the proof of Proposition B2, we have a(—1)e® + Ne® = e*ol1 = 0
(mod O(V)). Let v = a(—n; — 1)...a(—n, — 1)e”* be a general spanning element of ME(I, ),
where r > 1, and ny,...n, > 0. Since [a(-1), a(—p)] = 0 for all p > 1, we have:
a(-1v+Nv=a(-n —-1)...a(-n, — )(a(=1)e” + Ne%)

= (=) ra(=1) (a(=1)e® + Ne®) (mod O(V))

= (=) (@(=1)e” + Ne®) = (a(=1)1) # - - * (a(=1)1)  (mod O(V))

=0 (mod O(V)),

where the last congruence follows from (E223) and the fact that a(—1)e® + Ne® € O(V). O
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By Lemma B2 and Lemma B23, we have O’ € O(V). Conversely, we need to show
that a o u = Res.Y(a, 2)u((1 + 2)"*%/z%) € O, for any homogeneous a, u € V. First, note that if

ac Mg(l, ma) and u € Mﬁl ,na) for some m,n > 1, then by (52277) and (B2X4), we have:

wta
Res. ¥, i & (1, + (@) € (@),

since m +n 2 2, and My(1, ka) C O’ for any k > 2 by (829). Thus, we only need to show:

ace Mg(l,a) and u € ME(I,O),
aouecO, for or (5.2.10)

ae M[A)(I,O) and u € Mg(l,a).

First, we consider the case when a € M'b{l, a)and u € Mg(l, 0). Our strategy is to
show Res.Y(e?, 2)u((1 + 2)N/2%™) € O’ first, where u € MIA)(l, 0) and n > 0, and then prove

Res.Y(a, 2)u((1 + 2)V/?) € O', fora = a(-n) ... a(—n,)e® € MIA)(I,a) by induction.

Lemma 5.2.4. For any m > 1, we have a(-m)O’ c O’. For any u € M[A)(l,a/), we have

L(-Du+ LOu e O'.

Proof. Since [a(—m), a(—n)] = 0 for any m,n > 1, and a/(—m)Mﬁl,ka) C Mﬁl,ka/), for any
k > 0, we have a(-m)O’ C O’, in view of (E229).
Let u = a(-ny)...a(-n,)e* € Mg(l,a/), where r > 0 and ny,...,n, > 1. Since

L(-1e? = (e*)_»1 = a(-1)e%, and [L(-1), a(-m)] = ma(—m — 1), we have:
L(-Da(=ny)...a(-n)e" + LO)a(-ny)...a(-n,)e”

=a(-ny)...a(-n)a(-1)e* + Z nj-a(-np)...a(-n;=1)...a(-n,)e”
j=1

+(ng + - +ng + Na(-ny) ...a(-n)e”
=a(-ny)...a(—n)a(-1)e* + Ne%)
+ D a(=n; = D)+ a(-np)a(-n)...a{-n))...a(-n)e" =0 (mod 0,
=1
since a(—1)e* + Ne* € O’, a(-m)O’ c O’ for any m > 1, and a(—n — 1)v + a(—n)v € O’ for all

veMg(l,a) and n > 1 by (B29). O
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Proposition 5.2.5. Let u € Mg(l, 0), and n > 0. We have:

(1+2)"
Z2+n

Res,Y(e%, 2)u €O (5.2.11)

Proof. We use induction on the length r of a spanning element u = a(-ny)...a(-n,)1 of

M?)(I,O), where ny,...,n, > 1. The base case is u = 1. Note that efj_ll = %(L(—l)je“)_ll =

%L(—l)/e", for any j > 0, and since e“_”j_ll € My(1,a) for any j > 0, by Lemma 624, we have:

L(-1)/e® = —L(O)L(-1)"'e* (mod O")
= (=N + j— DHL(-1)/"e”

=(-1))(N+j-DWN+j-2)...(N+1)Ne® (mod O’).
Then it follows from the definition of binomial coefficients that

; 1 .
Y(e”, 21 = Ze(_lj_llzf = Z FL(_l)jZ]ea

720 720
= Z(—l)j(N - DV j.,_ 2. WA DN o (mod O")
>0 o
5 (-N - j+ 1)(—N—jT2)..-(—N— DEN) e (5.2.12)
720 a
S hemanae
=R

Now by (B27TT) and (E22T12), and the assumption that n > 0, we have:

(1+2)"

1+z)V
ReszY(e“,z)lz— = Res,(1 + z)‘N( I e
z +n

1 (04 /
Zn e :Reszﬁe =0 (mod O").

This finishes the proof of the base case. Assume the conclusion holds for smaller r. Note that
for any m > 1, we have:
[a(-m), Y(e",2)] = ) (‘;”)Y(a(i)e“, " = 2NY(e®, )"
>0
Then by the fact that a(—m)O’ C O" in Lemma B4, the base case and the induction hypothesis,
we have:

1+
Z2+n

Res,Y(e”, 2)a(-ny)...a(-n,)1
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( Z)N

= Res;a(-ny)...a(-n,)Y(e% 2)1

¢! +Z)N

+n

—ZRGSZG( ny)...a(-nj-la(-n), Y, )lam) ... a(-n)1
j=1

¢! +z)N
2+ +n

E—ZZNRCSZO’( ny)...a(=nj-)Y(", a(-nj1)...a(-n)1 (mod O)

j=1

=0 (mod O,
where the last congruence follows from the induction hypothesis. This shows that
Res.Y(e®, 2)a(-njs1) . .. a(-n)1((1 + 2)M) /2 e O
Hence (522.11) holds for any u € MIA)(I, 0)andn > 0. O

Consider an arbitrary spanning element a of M(1, @), we can write
a=a(-ny)...a(-n,)e", (5.2.13)

for some r > 0 and ny,...,n, > 1. We want to show that a o u € O’, for any u € ME(I,O). If
r =0, we have a = ¢?, and a o u € O’ by Proposition B23.
Assume r > 1, and we will use induction on the length r of a to show thataou € O’.

The base case a = a(—k)e®, with wta = N + k, is given by the following Lemma:

Lemma 5.2.6. Foranyk > 1,n >0, and u € Mg(l, 0), we have:

( )N+k

Res, Y(a(—k)e®, 2)u €0, (5.2.14)

+n

Proof. Note that by the Jacobi identity of VOA, it is easy to derive the following formula:

Ya(-1v,2) = Y a(=j— DY, + Y Y. 9a(z ™, (5.2.15)

720 720

for any v € Vz,. Now we prove (2214 by induction on k. When k = 1, by (E2213) we have:

( )N+l
Res, Y(a(-1)e*, 2)u —
N+1 N+1
= Res, Z al(—j— l)Y(e“,z)uzJ% + Res; Z Y(e® Z)Q(J)M%
7=0 Jjz0
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N
= Res, Za( j=1DY(e” Z)MZ](Z 2) +Z a(=j - DY(e% 2) Z]+1(1+z)

j>0 Jj=0
N N
+ Res, Z Y(e® Z)Q(J)”(;:f)n + Res Z Y(e® Z)a(])u(lztn?]
j=0 Jj=20
N
= Res,a(~1)Y(e%, 2u ( r Z)
+ 3 (@~ 2) + al=j — D)Res. ¥ (", uz/*! # 0 (mod 0)
720 .
N
= Res,a(-1)Y(e%, z)u ( Z) (mod O’),

where the first congruence follows from Proposition 8279, as n + j > 0, and the second congru-

ence follows from (8229). Furthermore, by Proposition B2 again, we have:

N
Res,a(-1)Y(e%, z)uu

N N
=Res, | Y(e*, 2)a(-1)u a +Z) +Z( 1) Sy (a(j)e?, Z)u( +Z)
J

720

¢! +Z)N

=0+ Res,2NY (e, Z)”W

(mod O")

=0 (mod O).

This proves (E214) for k = 1. Assume (82714) holds for k, then by (82213), and the facts that
[L(-1), a(-k)] = %a(—k — 1) and a(=k)L(-1)e” = a(—-1)a(—k)e*, we have:

N+k+1
Res Y (a(—k — 1)e?, Z)M%
z
N+k+1 N+k+1
= %ResZ (Y(L(—l)oz(—k)e“,z)u( Z2)+n = Y(a(=k)L(-1)e", 2)u s )+n )
b4 z?

(1 + Z)N+k+1

(1 + Z)N+k+1 )

:—%ReSZ(Y(CY( ke, ( )+Y(a<—1)a<—k>e“,z>u

Z2+n Z2+n
N+k 1 N+k
= DR Res. Y(a(=k)e®, 2)u #
k Z2+n
N+k 2 N+k
ResZY(a( k)e® z)u( +) + n ResZY(a( k)e® z)ug
Z n +n

( + Z)N+k+1
z 2+n

—%Reszga( j— DY(a(=k)e®, 2yuz’
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( )N+k+]

— _Resz Z Y(a(—k)e", 2)a(j)u

2+n+]+1
Jjz0
1 ) . 1 N+k
=0 - —Res; Z a(—j—1) (Y(a(—k)eo’,z)uzf + Y(a(—k)e“,z)uz“l) d+277
k =~ Z2+n
Jj=
« (1+ Z)N+k(1 +2) ’
- —Reszz Va(-Re', a(pu—— (mod 0")
Jjz0
1 N+k
= —Resa(-DY(@(—ke”, u &
: (1 + Z)N+k

- I Res, ]Z(; (a(=j = 2) + al=j = D) V(a(-ke", " =5
(1 + 2V +2)

2+n+l+]

_ _ResZ Z Y(a(=k)e®, 2)a(j)u

Jj20

1 ( Z)N+k ,
= ——Res,a(—1)Y(a(-k)e®, 2 )u—————— (mod O"),
k z 2+n
where the first congruence follows from the induction hypothesis (8214}, and the second con-
gruence follows from (B229) and the induction hypothesis. By the Jacobi identity and the
Heisenberg relation [a(j), a(=k)] = 6 xkK, for any j > 0, we have:

( Z)N+k

llcResza( DY (a(=k)e*, 2)u

N+k _
& - lResZ ( 1) iy (a(j)a(-k)e, 2u
2 k AN

1+

2+n+1+k

N
_ —ResZ(—l)kZ( ) Y. 002" 20 (mod 0,

2+n+l+z
i>0

( Z)N+k

=—%ReszY(a/( k)e®, 2)a(—1)u

(mod O)

1
=0 - 2 Res(- DFkY (e, 2u(l + 2)*

where the first congruence follows from the induction hypothesis, and the second congruence

follows from Proposition B273. Therefore we have:

(1 + Z)N+k+1
Z2+n

Res,Y(a(—k — 1)e%, 2)u e0.

So (B2214)) holds for k + 1, the inductive step is complete. O

Proposition 5.2.7. Forany u € Mg(l, 0)anda € Mg(l, a), we have:

( )wta

Z+I’l

Res,Y(a, z)u €0, (5.2.16)
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for any n > 0. In particular, we have aou € O'.

Proof. Write a = a(-ny)...a(-n,)e* as (A213), where r > 0 and ny,...,n, > 1. We prove
(BE22T8) by induction on r. By Proposition 525 and Lemma 57276, (82°Td) holds when a = e

or a = a(—k)e®. Now let r > 2. The induction hypothesis is the assumption that

(1 + Z)N+n2+-~~+n, ,

Res,Y(a(-ny)...a(-n)e%, u
forny,...,n,>1,n>0,and u € MT)(I,O). First, we claim that

1+ N+ny+--+n,+1
Res.Y(a(=Da(=ny). .. a(-ne®, ot

€0 (5.2.18)

Z2+n

Denote N +njy + - - - + n, by m, note that wt(a(—n») . . . (—n,)e®) = m. Then by (B2213), (E29),

and the induction hypothesis, we have:

1+m
Res. Y(a(-1)a(-ny)...a(-n,)e?, Z)”%
b4
1+m
= Res, Z a(—j— DY(a(-n2)...a(-ny)e", z)uzj%
Z 72+n
N ' (1 + Z)1+m
+ Res;, ; Y(a(—ny)...a(—n,)e ,Z)(a(J)M)—Z2+n+j+1
= Res, Z a(—j—DY(a(—ny)... a(-n,)e”, Z)sz (1 42— )™M
£ 72+
+Res; Y a(—j - DY(axa(-n)...a(-n,)e", Juz’*! ﬂ;—Z)m (mod 0")
=0
N 1+2™
= Resa(-DY(a(-n) ... a(-np)e", Ju—7—
Z
+ Res, Z a(—j—2)Y(a(—ny)...a(-n,)e?, z)uzj+l U';—Z)m
£ Z2+n
+ Res, Z a(=j - DY(a(-n)...a(-ny)e, uz’*! a ;Z)m
= e
= Resila(=1), V(at-ns) .. a2
+Res. Y(a(-n)...a(-n,)e", Z)a(—l)u(l ;i)m
Z
FRes, Y (a-] = 2) + (=] = DY) ... aonet, uct 1 2
=0
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= (_il)z‘l_iReszY(a(i)a(—ng) . ..a(—n,)e“,z)u(l ;?m (mod O)
i>0 <
= Res,2Y(a(-ny)... a/(—n,)e")u(1 ;i)m
Z
" (-1 . o« o (1+2"
+ Z Z( i )ResZY(a(—nz) o lat, alny) - a(=n)et, Qu s
i>0 s=2

= Z(—l)”"nsResZY(a(—nz) . ..61/(/—7;)...a/(—nr)e“,z)uM (mod O).
s=2

z2+”+">'+1

Denote a(—n»). .. a/(/—E) ...a(—n;)e” by as. Then m = wta; + ng, and by the induction hypoth-
esis (R2XT2), with r replaced by r — 1, we have:

Z(—l)ns.nsResZY(a(—nz) a(=ny)...a(-n)e, z)uﬂ

=2 Zz+n+"‘+1
Y (1 + Vs
= Dyl nRes.Y(an ull + 2"
§s=2
r ng (1 +Z)Wtas
= Z Z ( j )(_1)’13-nsReszY(as, Z)MW =0 (mod O,

5=2 j=0
since ng + j+ 1 > 1. This proves (522IR). Now assume that

1+ N+k+ny+--+n,
o €0, (5.2.19)
Z

Res, Y(a(—k)a(-n) ... a(-n)e®, u

for some fixed k > 1, and any n,,...,n, > 1 and n > 0, we want to show that

(1 + Z)N+k+1+n2+~-~+n,

Res,Y(a(—k — Da(-ny)...a(-n)e*, 2)u 5T €0 (5.2.20)
Z n

Indeed, by a similar argument as the proof of Lemma B2f, we have:

1 N+k+1+np+-+n,
Res.Y(a(—k — Da(—my) ... a(-n,)e®, 2

Z2+n

(1 + Z)N+k+1+n2+~-~+n,.

= Res, % Y(L(-Da(=k)a(-ny)...a(-n)e%, 2)u

Z2+n

(1 + Z)N+k+l+n2+...+n,

+ ResZ% Y(a(=k)[L(-1),a(-ny) ...a(-n,)]e%, 2u

Z2+n
1 1 N+k+1+ny+-+n,
+ ResZ%Y(a(—l)a/(—k)a/(—ng) ... a/(—nr)e“)u( *2) o (5.2.21)
1 1 N+k+1+ny+-+n,
= —ResZ%Y(cx(—k)a/(—nz) ...a(-n,)e”, z)u%Z d+2) o
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(1 + Z)N+k+“.(1+n,)~~-+n,

Yy Resz%Y(a(—k)a(—nz) a(=ny = 1)...a(=n)e®, Du

2+n
s=2 Vé

(1 + Z)N+k+l+n2+-~-+n,

+ ResZ% Y(a(-Da(=k)a(-ny)...a(-n,)eu

Z2+n

(1 + Z)N+k+n2+--~+n,

= —ReSZ%(N +k+1+--+n)Y(a(=ka(-n)...a(-n)e", )u

Z2+n

(1 +Z)N+k+n2+---+n,(1 +Z)
Z2+n+1

+ Reszz%Y(a/(—k)a/(—ng) ...a(-nye%, u

(1 + Z)N+k+...(1+ns)~~-+n,

+ Z_; ReSZ%Y(a(—k)a/(—nz) oa(-ng—1)...a(-n)e%, )u

Z2+n
1 1 N+k+1+ny+--+n,
+ Res, - Y(a(=Da(—k)a(=n) ... a(=np)e®yu 2
k Z2+n
1 (1 +Z)N+k+1+n2+~~-+nr
=0+ Resz£Y(a(—1)a(—k)a(—n2) ..a(-n)e%u o (mod O"),

where the congruences follow from the induction (on & > 1) hypothesis (8219). Moreover,
by adopting a similar argument as our previous proof of (B2TX), with the given assumption

(B22177), we have:

N-+k+1+ny+--+n
1+2 2 r
€0,

Reszl Y(a(-Da(=k)a(-ny)...a(-n)eu
k Z2+n

with the given assumption (2219). Thus, (E220) is true, and the induction step on £ > 1 and

the induction step on the length r > 1 of a € M[A)(l, a) are both complete. O

Now we have finished the proof of a o u € O’ for the first case in (52210). The second

case when a € Mg(l, 0)and u € Mg(l, a) follows from a similar induction process as Lemma
B7d and Proposition 8277 (see also (5.2.1.5) and (5.2.1.6) in [B0]), we omit the details of the
proof. In particular, for the Borel-type VOA V = Vz_,, we have:

oV)=0"= span{a(—n —u+a(-n— Du, a(-=1)v+v, Mg(l,ka) :

(5.2.22)
n>0,ueV,ve @Mf)(l,ma/), k22}.

m>1

Theorem 5.2.8. For V = Vz_,, with (ala) = 2N, the epimorphism F given by (8271) is an

isomorphism of associative algebras. In particular, we have A(V) = C[x] & Cy, with

y2 =0, yx=-Ny, xy=Ny. (5.2.23)



Proof. We construct an inverse map of F in (8277). Define a linear map:

G : V - Clx,y)/(y*, yx + Ny, xy — Ny),
a(-n; —1)...a(-n, — D1 (=1)"*"x", (5.2.24)
a(-ny = 1)...a(=n, — 1)e® > (=1)"1+"ryx" = (=1)*m*"ry,
Mi(1, ka) - 0,
where r > 0, ny,...,n, > 0, and k > 2, and we use the same symbols x and y to denote
their image in the quotient space. Note that G is well-defined, since V = EBkzo Mg(l, ka), and
a(-ny —1)...a(-n, — D1 and a(-n; — 1)...a(—n, — 1)e® are basis elements of ME(I,O) and
Mg(l, a), respectively. We claim that G(O(V)) = 0.
Indeed, it suffices to show that G vanishes on the spanning elements of O(V) in
(B22722). By Definition (52774, we already have G(M[A)(l,ka)) = 0 for any k > 2. In par-
ticular, we have G(a(-n—-2)u+a(—n— 1u) = G(a(-1)v+Nv) =0ifu,v € MIA)(l, ka) for some
k>2.Ifu=a(-n1—-1)...a(-n,—-1)1€ ME(I,O), then by (2224, we have:
Gla(—n - 2)u + a(-n — Du)
= G(a(-n -2)a(-n; - 1)...a(-n, — D1) + G(a(-n — Da(-n; — 1)...1)

— (_1)n+1+n1+~-~+nrxr+l + (_1)n+n1+-~+n,-xr+1 — 0

fu=a(-n —-1)...a(-n, - 1)e” € Mg(l,oz), by (B274) we have:

G(a(-n — Du+ a(-n — Du)
=G(a(-n-2a(-n; = 1 ...a(-n, — De") + Gla(—n — Da(-n; = 1)...e%

— (_1)n+l+n|+---+n,yxr+l + (_1)n+n1+---+n,yxr+1 =0.

Thus, G(a(-n—2)u+a(—n—1)u) = 0 for any u € V. Finally, if v = a(-n;—1)...a(-n,—1)e* €
M?)(l, a), then by (B224)), we have:

Gla(=1v + Nv) = Gla(-Da(-n; = 1)...a(-n, — 1)e*) + NG(a(-n; = 1)...a(-n, — 1)e%)
— (_1)n1+...n,yxr+l + (_l)l’l|+...nrNyxr

= (=1)"*"r(yx + Ny)x" =0,
since yx + Ny = 0. Thus, G in (22224)) induces a linear map
G : A(V) = VIO(V) = C{x,y)/{y*,yx + Ny, xy — Ny), such that
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G(la(-ny = 1)...a(=n, — D1]) = G(=D)" " [a(=D1]) = (=1 rx, - (5.2.25)
G(la(-n1 = 1)...a(=n, = De]) = G((=1)" """ [e"] * [a(=D1]") = (=D yx,

for any r > 0, ny,...,n, > 0, and k > 2. Since A(V) is spanned by elements of the form
[a(=n;=1)...a(-n,—1)1] and [@(-n; —1)...a(—n, —1)e?] because of (2X27), it is clear that
GoF =1Idand F o G = 1d, in view of (272) and (B223). O

Recall the definitions of graded algebra grA(V) and the C,-algebra R(V) in Sec-
tion 2. We examined some examples of C;-cofinite VOAs and proved that grA(V) is iso-
morphic to R(V) for these examples in Section 2. For the Borel-type sub-algebra Vz_,, by
Theorem B2R, we also have the isomorphism grA(Vz,.) = R(Vz,yqe)-

Corollary 5.2.9. grA(Vz,.,) is isomorphic to R(Vz,,q) as commutative Poisson algebras. As
associative algebras, they are both generated by two elements X and Y, subject to the relations:

XY =YX = Y? = 0. Furthermore, {X,Y} =2NY.

Proof. We consider grA(Vz,,,) first. With the notations in Theorem 22X, we denote the equiv-
alent classes of x and y in grA(Vz,) by ¥ and y, respectively. Note that x = [a(-1)1] €
F1A(Vz 40), y = [€?] € FNA(Vz,4q), and by Lemma 22T and (8223), we have X * y = x*y =
2NY =0 in grA(Vz,,q) since x x y € Fy41A(Vz o) but 2Ny € FyA(Vz,,). Moreover, we have
j* %=Xy =0and (X7} = [@(0)e?] = 2Nj by Lemma I_ZT.

Denote X and y in grA(Vz ) by X and Y, respectively. Then by Theorem B2, we
have grA(Vz ) = C[X] ® CY, with XY = YX = ¥? = 0, and {X, Y} = 2NY.

Now we consider the Cs-algebra R(Vz,,). By Proposition BT8, V7, is strongly
generated by {a(—1)1, e“}. Then by Proposition 223, R(Vz,,) is generated as a commutative
algebraby X = a(—1)1+ C2(V) and Y = e* + Co(V). By the proof of Proposition B2, we also
have XY = a(—1)e” + Co(V) = e?,1+ C2(V) = 0, and e e” + Co(V) = 0 + C2(V) = 0 in R(V).
Moreover, {X, Y} = a(0)e® + C2(V) = 2N(e® + C2(V)) = 2NY. Thus, R(Vz,,) = C[X] & CY,
with XY = YX = Y2 = 0, and {X, Y} = 2NY. Therefore, as commutative Poisson algebras.

Therefore, grA(Vz, o) = R(Vz,,o) as commutative Poisson algebras O

5.2.2 Irreducible modules of V;_, and the induction

Lemma 5.2.10. If U # 0 is an irreducible module over A(Vz,,o) = C[x] @ Cy, then we must
have y.U =0, and U = Cet for some A € ) = Ca, with x.et = (a]d)el.
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Proof. By (R22273), Cy is an ideal of A(Vz,,,). Hence y.U < U is a submodule, and y.U is
either U or 0. If y.U = U, then we have 0 = y>.U = y.U = U, a contradiction. Thus, y.U = 0
and U is an irreducible module over C[x]. We have U = C[x]/m, for some maximal ideal m of
Cl[x]. By the Hilbert’s Nullstellensatz, we have m = (x — u) for some u € C. We may choose
A € b so that (@]d) = u. Then U = C[x]/{x — (a]d)) = Ce?, with x.e* = (a]d)et. O

Lemma 5.2.11. For any irreducible module W = Mi(1, 2) over the Heisenberg VOA Mi(1,0),
W is also an irreducible module over the Borel-type sub-algebra V7, where Yy : Vz_ o —
End(W)[[z, z~ 1] satisfies Yw(a,z) = 0, for any a € MIA)(I, na) and n > 1, and Yy| M(1.0) is given
by the action of the Heisenberg VOA MIA)(I, 0).

Proof. By (BCIR), (W = Mg( 1, 1), Yw), with Yy defined by the assumption is a well-defined

module over the Borel-type sub-algebra Vz_,. It is clear that W is irreducible. O

Theorem 5.2.12. X = {(W = Mi(1, 1), Yw) : A € b = Car}, with Yy defined by Lemma 5211, is
the complete list of irreducible modules over the rank-one Borel-type sub-algebra Vz_q.
Moreover, the fusion rule of the irreducible V7 ,-modules M;){l,/l),Mg(l, w), and

be{l, v) is the same as the fusion rule of the Heisenberg VOA. i.e., N(M%ﬁ(;’;)(l ﬂ)) = 04py-
[ hroo

Proof. Given a module (W = Mg(l, A), Yw) in I, the bottom level is W(0) = Ce?, which is an
A(Vz,,o)-module, with the actions of x = [a(—1)1] and y = [e?] given by

x.e® = o(a(-DDet = (al)et,  y.et = o(e)et = Res. 2V Yy (e®, z)et = 0.

By Lemma B2T0, such A(Vz,,)-module W(0), with W varies in X, are all the irreducible
modules over A(Vz,,q), up to isomorphism. Then by Theorem 2.2.2 in [[/3], X is the complete
list of irreducible modules over Vz_,.

Finally, note that any intertwining operator of modules over the Heisenberg VOA
el ( (1) ) can be naturally lifted up to an intertwining operator I of Vz_, since the

Me(1.4) M(1.)
Jacobi identity of [/ is

—22+21

_ 21 — 2 _
zolé( IZO 2)YW3(a,Z1)I(v,12)u—1015( )I(V,Zz)sz(a,Zl)u

(5.2.26)

(71 -z
21215( 1Z2 O)I(YWI(Q’ZO)V’ZZ)M,

and Yyi(a,z) = 0fori =1,2,3,ifa € Mg(l,na) with n > 1. Therefore, we can replace [ in

(52228) by the intertwining operator I of Vz.4a- Conversely, we can also view any intertwining
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M5(1.y)
My(1,0) Mi(10)
over the Heisenberg VOA. Therefore, the fusion rules of the Borel-type sub-algebra Vz_, is the

operator Y € I ( ) of Vz,,e to an intertwining operator Y of the same type of modules

same as the fusion rules of the Heisenberg VOA M(1, 0). O

Remark 5.2.13. We can also prove the claim about the fusion rules of V7 by the general
fusion rules theorem in Section BEZ2. Theorem B2717 is also similar to the simple Lie algebra
case. Note that a Borel sub-algebra b = n, @1 of a simple Lie algebra g has the same irreducible
modules as the Cartan part ), and the irreducible modules over (the abelian Lie algebra) b are

all one-dimensional.

Now we consider the special case of the rank-one Borel-type sub-algebra. Let L = Za,
with (a|a@) = 2. Then L is the root lattice of type A;. Then V| is isomorphic to the affine VOA
LEIZ(LO)’ where sly = Ce+Ch+Cf ,and e® — e, a(—-1)1 — h, e — f, see [2R, B0].

Recall thatA(L;l;(l, 0)) = U(sh)/{e?), where (¢?) is the two-sided ideal of A(L;l;(l, 0))
generated by €2, and [a(~=1)1] — a + (€2) for all a € sk, see [B0]. By applying the Lie bracket
[a, -] to €? repeatedly, it is easy to show that the following relations hold in A(LEE(I’ 0)):

eh+e=0;, W —h-2fe=0; fh+f=0;, & =f>=0, (5.2.27)

where we used the same symbol to denote the equivalent classes. It follows that A(L;l;(l, 0))
has a basis {1, e, f, h, fe}.

Now let A be a sub-algebra of A(Lsfl;(l, 0)) generated by the Borel sub-algebra b =
Ce +Ch < g. Then by (B221), we have A = (1, e, h, fe). Moreover, by Theorem 628, we have

an epimorphism of associative algebras:
A(Vze) » A=(1,e,h,fe), x> h, yrse, x* — x> fe. (5.2.28)

Since A has more relations than A(Vz,,), not all irreducible modules over A(Vz,,) in Theo-
rem B2 T2 can factor through A.

Let Ce? be an irreducible module over A(Vz,pa), with x.e! = (a]d)e! and y.e! = 0.
Suppose it can factor through A. Then by (5228), we must have e.e? = 0, h.e* = (a|d)e?, and
(22 = x).e* = ((@l1)? = (@|d))et = fe.e! = 0. Thus, we have (a|1)*> = (a|1), and so A = 0 or o/2.
In other words, the only A(Vz,,)-modules that can factor through A are C1 and Ce?/?.

It is an interesting question to investigate the induced modules
Ui :=Ind;"WC1=A(V))®4 C1, and U, := Ind}""Ce’? = A(V;) ®4 Ce?.  (5.2.29)
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More generally, we can introduce a notion of induced modules based on our observations above.

Definition 5.2.14. Let (V, Y, 1, w) be a VOA, and (U, Y, 1, w) be a sub-VOA of V. Suppose there
exists an epimorphism A(U) - A < A(V), where A is a sub-algebra of A(V).

Let W = @:;0 W(n) be an admissible module over the VOA U such that the A(U)-
module W(0) can factor through A. Define the induced module IndZW as follows:

Ind}/JW = LA(V) ®4 W(0)), (5.2.30)
where L is the functor defined in [IX].

A natural example of the setups in Definition 214 is the Borel-type sub-algebra
V700 < Vza, with (ala@) = 2 in this subsection. By (B222R) and (229), we have induced
modules L(U1) and L(U,) of the lattice VOA Vyz,. Since U; and U, are not necessarily irre-
ducible A(Vz,)-modules, an interesting question is to find the irreducible module decomposition

of L(Uy) and L(U»).

Remark 5.2.15. On the other hand, an alternative way of constructing induced modules over
VOAs was given by Dong and Lin in [2Z]. They proved that the induction functor Ind con-
structed in their paper satisfies the usual Frobenius reciprocity. It is natural to compare their
inducted modules with our construction (2230). We will take a closer look at this induced

module problem in the future.
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Chapter 6

Rota-Baxter operators on vertex algebras

This Chapter and the next are the core of this thesis’s second part. In this Chapter, we
will study in detail the Rota-Baxter operators (RBO) on vertex (operator) algebras as a natural
generalization of the Rota-Baxter operators on classical Lie and associative algebras.

In the first Section of this Chapter, after reviewing some basic concepts, we will give
the definition and first examples of the (index m) Rota-Baxter operators for vertex (operator)
algebras. We call a vertex algebra (V, ¥, 1), equipped with a Rota-Baxter operator P : V — V,
a Rota-Baxter vertex algebra (RBVA), and denote it by (V, Y, 1, P). Since there are infinitely
many products on a vertex algebra, the natural generalization of RBO needs to satisfy a quite
strong condition. Hence examples of such operators are scarce. Even though the Borel-type
sub-algebras from the previous Chapter can provide us with a nontrivial natural example, some
other classical examples of vertex algebras, like the rank-one Heisenberg VOA and the Virasoro
VOA, only admit trivial examples of such Rota-Baxter operators. Therefore, we use the A-
differential we introduced in Section and give a relatively weaker notion of RBO on vertex
algebras, which has many examples even on a single vertex algebra. Then we will discuss some
basic properties of our definition of RBVAs.

In the second Section of this Chapter, we will study the substructures underlying a
Rota-Baxter vertex algebra. In particular, similar to the associative algebra case, we have a so-
called dendriform vertex algebra structure (V, <, >,, D) associated with each RBVA. We will
justify our proposed axioms for the dendriform vertex algebra by showing that (V, <;, >, D)
can give rise to a representation of the vertex algebra (without vacuum) (V, Y, D) on itself, and

a dendriform vertex algebra can also give rise to the relative Rota-Baxter operators for vertex
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algebras, which is closely related to the classical Yang-Baxter equation for VOAs in the next

Chapter. This Chapter is based on the paper [[Z].

6.1 The Rota-Baxter vertex algebra

We will study the basics of Rota-Baxter operators on vertex algebras in this Section.
Similar to Section B2, for the sake of the clearness of our cross-references, we will first write
out some of the basic formulas and notions of vertex algebras. Some of them can be found
in Section 11, while the others were given in different literature. We will give the definitions
and examples of ordinary Rota-Baxter operators as well as weak local Rota-Baxter operators
for vertex algebras. Then we will study the basic properties of these concepts. We will show
that the level-preserving RBOs on a VOA can only be of a special form, and the ordinary RBO
on rank-one Heisenberg VOAs and Virasoro VOAs are all trivial. Finally, we will show that
an RBVA V can give rise to a new vertex Leibniz algebra (or vertex algebra without vacuum)

structure on V.

6.1.1 Definition of Rota-Baxter operators on vertex algebras
Let (V,Y,1) be a vertex algebra. Recall that it satisfies the following properties:
(1) (weak commutativity) For any a, b € V, there exists some integer k € N such that

(z1 — 2)"Y(@,21)Y (b, 22) = (z1 — 22)"Y(b, 22)Y (@, 21). (6.1.1)

(2) (weak associativity) For any a, b, ¢ € V, there exists some integer k € N (depending on a

and c¢) such that

(20 + 22)*Y(Y(a, 20)b, 22)c = (20 + 22)"Y (@, 20 + 22)Y (b, 22)c. (6.1.2)

Moreover, if Y : V — (EndV)[[z,z"']] is a linear map that satisfies the truncation property, then
the Jacobi identity of Y in the definition of vertex algebra is equivalent to the weak commuta-
tivity together with the weak associativity.

Define a translation operator D : V — V by letting Da := a_;1, for all a € V. Then
(V. Y, D, 1) satisfies the D-derivative property:

d
Y(Da,z) = d_zY (a,2) (D — derivative property), (6.1.3)
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d

[D,Y(a,z2)] = d_Y (a,2) (D — bracket derivative property), (6.1.4)
Z

Y(a,z)b = ¢PY(b, —2)a (skew-symmetry), (6.1.5)

where a,b € V. (B13) and (B14) together are called the D-translation invariance property.
We need the following weaker notions of vertex algebras for our later discussion. The

following notion was introduced in [B6]:

Definition 6.1.1. A vertex Leibniz algebra (V,Y) is a vector space V equipped with a linear

map Y : V — End(V)[[z, z 1], satisfying the truncation property and the Jacobi identity.

In particular, a subspace U of a vertex algebra (V, Y, 1) is a vertex Leibniz subalgebra
with respect to the restricted vertex operator Y|y if it satisfies a,b € U, for all a,b € U, and

n € Z. A related notion is the vertex algebra without vacuum (see [B7]):

Definition 6.1.2. A vertex algebra without vacuum is a vector space V, equipped with a
linear map Y : V — (EndV)[[z,z~']] and a linear operator D : V — V satisfying the truncation
property, the Jacobi identity, the D-derivative property (B13), and the skew-symmetry (E13).

We denote a vertex algebra without vacuum by (V, Y, D).
The following fact is proved by Huang and Lepowsky in [B7], see also [56]:

Proposition 6.1.3. Let V be a vector space, equipped with a linearmap Y : V. — End(V)[[z,z~'1],
satisfying the truncation property. If D : V. — V is another linear map that satisfies the D-
bracket derivative property (B1L4) and skew-symmetry (B13), then the weak commutativity
(BID) of Y follows from the weak associativity (B12).

Since the vertex operator Y can be viewed as the product on a vertex algebra V, and
there are infinitely many binary operations corresponding to Y(—, z), we introduce the notion of

Rota-Baxter operators on vertex algebras as follows:
Definition 6.1.4. Let (V, Y, 1) be a vertex algebra, A € C be a fixed complex number, and m € Z.

(1) An m-ordinary Rota-Baxter operator (RBO) on V of weight A is a linear map P : V —
V, satisfying the following condition for all a,b € V:

(Pa),(Pb) = P(a,,(Pb)) + P((Pa),,b) + AP(a,;b). (6.1.6)
We denote the set of m-ordinary RBOs by RBO(V)(m).
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(2) An ordinary RBO on V of weight A is a linear map P : V — V satisfying (B18) for

every m € Z. In other words, P satisfies the following condition for all a,b € V:
Y(Pa,z)Pb = P(Y(Pa,z)b) + P(Y(a,2)Pb) + AP(Y(a, z)D). (6.1.7)
We denote the set of ordinary RBOs on V by RBO(V) = M,,,cz RBO(V)(m).

(3) An (m-)ordinary RBO P on V is called translation invariant if PD = DP, where D is

the translation operator: Da = a_;1.

(4) Let Vbe a VOA, and let P be an (m-)ordinary RBO. P is called homogeneous of degree
N if P(V,) C V,4n for all n € N. Degree zero RBOs are called level preserving.

A Rota-Baxter vertex algebra (RBVA) is a vertex algebra (V, Y, 1), equipped with an ordinary
RBO P : V — V of weight 1. We denote such an algebra by (V, Y, 1, P). We can similarly define
a Rota-Baxter vertex operator algebra (V, Y, 1, w, P).

Remark 6.1.5. Although the condition of an m-ordinary RBO on V is very weak and does not
have many connections with the substructures of V, it is closely related to the tensor form of
Yang-Baxter equations for VOAs, see [B] for more details. In the rest of the paper, we will be

focusing on the properties of ordinary RBOs.

It is clear that for any vertex algebra V, P = —Aldy satisfies (B1-2). Hence any vertex
algebra can be viewed as an RBVA trivially in this way.

Let (V,Y,1, w, P) be an RBVOA of weight 4, recall that (cf. [I?]) the first level g = V|
is a Lie algebra, with the Lie bracket [a, b] = agb, for all a,b € g. Then it follows (B112) that
(g, Plg) is a Rota-Baxter Lie algebra. Conversely, if p : g — g is an RBO of the Lie algebra
g, and g is the first level V| of a VOA V, then p can be easily extended to a 0-ordinary RBO
P :V — V by letting Ply, = p and P(V,) =0, for all n # 1, see Example 6.1.10 in [6].

Our definition of the Rota-Baxter operators for vertex algebra is similar to the R-
matrix for VOAs in [69]. An R-matrix for a VOA (V,Y,1, w) is defined to be a linear map
R : V — V such that [R,L(-1)] = 0, and Yz : V — End(V)[[z,z"']] defined by Yz(a,z) =
Y(Ra, z) + Y(a, z)R satisfies the Jacobi identity. The following is proved by Xu in [BY]:

Proposition 6.1.6. If a linear map R : V — V satisfies [R, L(—1)] = 0 and the relation:
Y(Ra,z)R — RYg(a,z) = AY(a, 2), (6.1.8)
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the so called “modified Yang-Baxter equation”, where A = 0 or —1, then R is an R-matrix for V.

Note that R satisfying (B-T-8) with A = 0 is the special case of a Rota-Baxter operator
of weight 0 in view of (BI1). Hence a translation invariant RBO P of weight O on a VOA V is
an R-matrix of V in the sense of [0Y].

Let (A,d, 14) be a commutative unital differential algebra, recall that A is a vertex

algebra (cf. [T2]) with the vertex operator Y given by
Y(a,2)b = (¢“a) - b, (6.1.9)

for all a,b € A, and 1 = 1,4. The differential operator d of A is the translation operator D in
(BI4). In particular, let V = C[¢] be the polynomial algebra with variable ¢, then V is a vertex
algebra with the vertex operator:
n L m n M\ m+n—j_j
Y@ = (e = )| (6.1.10)
=0 \J

for all m,n € N. Then (C[¢], ¥, 1) is an ordinary RBVA.

Proposition 6.1.7. Let P : C[t] — Clt] be the usual (integration) Rota-Baxter operator on C[t]:

t tm+1
P(™) :f s"ds =
0

m+1’

forany m € N. Then (C[t], Y, 1, P) is an RBVA of weight 0

Proof. For any m,n € N, by (-T_T0) we have:

Y(le Z)Pl‘n = ! LY(["H'I Z)ln+1 — 1 1 m+1 tm+n+2—jzj
’ m+1n+1 ’ m+1n+14 j ,
=0
1 1 +1 1 o
P(Y(Ptma Z)tn) = —P(Y(t’n+l,z)[n) = m . —.tm+n+2—jzj
m+1 m+1j>O j Jm+n+2-j

+
—

1 1 ! -
PY(", )PP = —— P(Y (", )™ 1) = (’")— i
n+1 n =

We need to show:

1 I (m+1\ 1 (m+1 1 N 1 (m 1
m+ln+1\ j | m+1\ j Jm+n+2-j n+1\j)m+n+2-;
or equivalently,

m+1-—j (m+1) m+1 m
m+n+2—-j\ j | m+n+2-j\j/)

152




for all j > 0. But this follows directly from the definition of the binomial coefficients. Thus, for
any m,n € N we have: Y(Pf", ) Pt* = P(Y(Pt",2)t")+ P(Y(¢", ) Pt"). Hence (C[¢], Y, 1, P) is an
RBVA of weight 0. O

Note that both (CJz], %, P, 1¢p) and (A = @::0 Cty, d, P, 1,4) are special cases of the
commutative unital differential Rota-Baxter algebras (A,d, P, 14). By definition, (A, P) is an
RBO of weight 0, and d o P = Id4, see [32] for more details. We have the following fact in

general:

Proposition 6.1.8. Let (A, d, P, 14) be an unital commutative differential RBA, and let Y (a, 2)b =

(e*a) - b. Then we have:
Y(Pa,z)Pb — P(Y(Pa,z)b) — P(Y(a,2)Pb) € (ker d)[[z]],
foralla,b € V. In particular, (A, Y, 14, P) is an RBVA of weight 0 ifkerd = 0.

Proof. First we note that P(a)-1P(b) = P(P(a)-1b) + P(a—-1P(b)) for all a,b € A, since the
product of A is given by x -y = x_jy forall x,y € A.
Now assume n > 1. By (BI4) we have d(a_,b) = (da)-,b + a_,db and (da)_, =

nda_,_1. Moreover, a — Pd(a) € kerd for all a,b € A as d o P = Id4, hence we have:

nP(a)-n-1P(b) — nP(P(a)-p-1b) — nP(a_n—1 P(b))

= (dP(a))-nP(b) — P((dP(a))-nb) — P((da)-,P(D))

= a_,P(b) — P(a-yb) — P(d(a-,P(D)) — a_,dP(b))

=a_,P(b) — Pd(a_,P(b)) =0 (mod kerd).
This finishes the proof because Y(a, 2)b = },50(a—n-10)7". O

We will give another sufficient condition under which (A, Y, P, 14) becomes an RBVA

of weight O in the next subsection.
6.1.2 The A-differentials and weak local Rota-Baxter operators

Proposition BI7 indicates that the “right inverse" P of the translation operator D on

certain commutative vertex algebras can give rise to ordinary RBOs of weight 0.
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However, in the case of non-commutative VOAs, the translation operator D = L(-1)
and most of the derivations are not invertible globally. They only admit local inverse. On the
other hand, by the definition formula (B172), if P : V — V is an ordinary RBO, then we
must have P(a),,P(b) € P(V), forall a,b € V and m € Z. i.e., P(V) C V is a vertex Leibniz
subalgebra (see Definition BTT). This is also a strong condition imposed on P. If we weaken
these conditions, we can construct examples of the Rota-Baxter type operators from the “right

inverse" of the A-differentials on vertex algebra V (see Section I3) on a suitable domain.

Definition 6.1.9. Let (V, Y, 1) be a vertex algebra, A € C be a fixed complex number, and U C V

be a linear subspace.

(1) A weak local Rota-Baxter operator (RBO) on U of weight 1 is a linear map P :
U — V, satisfying the following condition: Whenever a,b € U and m € Z such that
P(a),,P(b) € P(U), one has a,,(Pb) + (Pa),,b + Aa,,b € U, and

(Pa)u(Pb) = P(ay(Pb) + (Pa),b + Aanyb). (6.1.11)
If, furthermore, U = V, then P is called a weak global RBO of weight A.

(2) An ordinary local RBO on U of weight A is a weak local RBO P : U — V of weight A
such that P(U) is a vertex Leibniz subalgebra of V. In other words, P : U — V is a linear

map satisfying:
Y(Pa,z)Pb = P(Y(Pa,2)b + Y(a,z)Pb + AY(a, 2)b), (6.1.12)

for all a,b € U. In particular, if U = V, then an ordinary local RBOP : U =V — Vs
the same as the ordinary RBO in Definition bT4.

A local RBO (weak or ordinary) P : U — V is called translation invariant, if
DU C Uand PD = DPon U. Let Vbea VOA, andlet P: U — V be a local RBO. Then P is
called homogeneous of degree N, if U C V is a homogeneous subspace: U = EBZO:O U,, and

P(U,) CV,,y foralln e N.

Remark 6.1.10. In equations (B1T11l) and (ET12), we do not require P(a),,b and a,, P(b) to be
contained in the domain U of P, and so their right-hand sides cannot separate into the forms of

(BT8) and (B172).
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The following properties of weak and ordinary local RBOs are straightforward:
Proposition 6.1.11. Lezr (V, Y, 1) be a vertex algebra, and U C V be a linear subspace.

(1) If P : U — V is a weak (resp. ordinary) local RBO on U of weight A # 0, then —P/A
is a weak (resp. ordinary) local RBO on U of weight —1. If P : U — V is a weak (resp.
ordinary) local RBO of weight 1, then AP is a weak (resp. ordinary) local RBO of weight
A

(2) Let P be an ordinary local RBO on U of weight A, then P = —Aldy — P is an ordinary
local RBO on U of weight A.

Proof. (1) Let P: U — V be a weak local RBO of weight 1 # 0. Let a,b € U and n € Z satisfy
(=P/D)(a),(=P/A)D) € (=P/)(U) = P(U), then P(a),P(b) € P(U), and by Definition bT4,
we have a,P(b) + (Pa),b + Aa,b € U, and (Pa),(Pb) = P(a,(Pb) + (Pa),b + Aa,b). It follows
that a,(—P/A)(b) + (—P/)(a))nb — ayb € U and

(=P/D)(@)a((=P[)(b)) = (=P/ D)(an(=P/ )(b) + (=P/)(@)n — anb).

Thus, —P/A : U — V is a weak local RBO of weight —1. The proof of the rest is similar, and
we omit the details.

(2) Since P : U — V is an ordinary RBO, by Definition BT 4, we have a,(Pb) +
(Pa),b + da,b € U for all a,b € U and n € Z. It follows that

a,(—1 — P)(b) + (-1 — P)(a),b + Aa,b = —a,Pb — (Pa),b — da,b € U,
and it is easy to check that
(=4 = P)(@n(=A = P)(b) = (=1 = P)(an(=A = P)(b) + (=1 = P)(@),b + Aa,D),

for all a,b € U and n € Z. Thus, (-1 — P)(a),(-4 — P)(b) € (-4 — P)(U) for all a,b € U and
n € Z, and (AID) is satisfied for P = —1 — P. This shows P = —1 — P is an ordinary local RBO
on U of weight A. O

The local inverse of a weak A-differential (see Definition ZZ372T) of a vertex algebra

gives rise to weak local Rota-Baxter operators of weight A:
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Proposition 6.1.12. Let (V, Y, 1) be a vertex algebra, and letd : V — V be a weak A-differential.
Suppose there exists a linear map P : U(:= dV) — V such thatdo P = Idy. Then P : U —» V
is a weak local RBO on U of weight A.

Proof. Assume a,b € U and n € Z such that (Pa),,(Pb) = P(c) € P(U). Then we have:

dP(c) = d((Pa),(Pb)) = (dP)(a),(Pb) + (Pa),(dPb) + A(dPa),(dPb)
= a,(Pb) + (Pa),b + Aa,b,

and dP(c) = c since dP = Idy. Thus, a,(Pb) + (Pa),,b + da,b = c € U, and
(Pa),(Pb) = PdP(c) = P(a,(Pb) + (Pa),b + Aa,b).
Hence P : U — V satisfies (BI6), and so P is a weak local RBO on U of weight A. O

Corollary 6.1.13. Let (A, d, P, 14) be an unital commutative differential RBA. Then (A, Y, 14, P)
with Y given by (B219) is an RBVA of weight 0, if P satisfies P(a)- P(b) € P(A) and (d"a)-P(b) €
P(A), forall a,b € Aandn € N.

Proof. By (B14) and Definition 23721, d = D : A — A is an O-differential of the vertex algebra
(A, Y, 14). Since d o P = Id4 by the definition of differential RBA, P : A — A is a weak global
RBO of weight 0 on the vertex algebra A by Proposition BTT2. If P satisfies the last condition,
then Y(P(a), 2)P(b) = P(a) - P(b) + X j»1 %(dj‘la) -P(b) € P(A)((z)),andso P : A — Ais an
ordinary RBO of weight 0. m]

By (BT0), it is easy to check that the conditions in Corollary are satisfied
by (Clz], %,P, Ie) and (A = @:::0 Cty,d, P, 14). This provides us with another proof of
Proposition BT72.

There are many examples of weak O-differentials on vertex operator algebras. We
can use them and construct examples of weak local Rota-Baxter operators on general VOAs by

Proposition BTT2:

Example 6.1.14. Let (V,Y, 1, w) be a CFT-type vertex operator algebra. By the main Theorem
in [23], the operator L(—1) : V — V is injective on V,. Moreover, we have L(-1)1 =1_,1 =0,
and L(-1) is a weak O-differential by (613) and (B1-4).
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Let U = L(-1)V = L(-1)V,. Define P : U — V by letting:
P(u) := L(-1)""u, (6.1.13)

for all u € L(—1)V,. Clearly, P is well-defined and L(—1)P = Idy. Then by Proposition BTT12,
P : U — V given by (BI1I8) is a weak local RBO on U = L(-1)V, of weight 0, and it is
homogeneous of degree —1 and translation invariant.

P is not ordinary since P(U) = V. is not a vertex Leibniz subalgebra of V.

Example 6.1.15. Let V = Mg(k, 0) be the level k£ # 0 Heisenberg vertex operator algebra of
rank r (cf. [29], see also [30]). Recall that |) is an r-dimensional vertex space, equipped with a
nondegenerate symmetric bilinear form (-|-), and Mg(k, 0) is the Verma module over the infinite-

dimensional Heisenberg Lie algebra: ’I)\ =hC[t,r '] ® CK, with

[a(m), B(m)] = m(a|B)om+n 0K, (6.1.14)

for all m,n € Z, where a(m) = a ® . We haveg = ’Ezo EB?LO, where Zzo =h®C[t] ® CK and
b0 = h® +'C[!], and M5 (k,0) = U®) ® C1, with a(n).1 = Oforalln > 0and @ € b,
and K1 = k1.

In particular, a(0) € ’b\is a central element by (B114), and @(0).u = 0 for all u €

U(bs0)

Mg(k, 0). Fix a nonzero element @ € b, consider the operator d = a(1) : V — V. For any

u,vevs= be{k, 0) and n € Z, we have:

1
(1)) = y(a(1)) + [a(1), ]y = up(a(lv) + ) (j)<a<j>u>1+n_,,-v

=0

= up(a(1)v) + (@(Du),v,

since a(0)u = 0. Thus, d = a(1) is a weak O-differential on Mg(k, 0). By (&114), it is also easy

to see that d = (1) acts as = kﬁg_l) on Mg(k, 0). Hence a(l)Mg(k, 0) = Mg(k, 0). Define a

linear map P : a(1)V =V — V as follows:

P = %f(-)da/(—l)l s Mk, 0) — Mi(k,0),
(6.1.15)

' (=ny) ... K(=npa(-1)"1 — W (=ny). .. K(=np)a(-1)""11,

k(im+1)
where S = {a = a1, aa,...,}is abasis of h, and h',..., h* € S are not equal to . Clearly, we

have dP = Idy,and so P : V — V is a weak global RBO on Mﬁ(k’ 0) of weight 0 by Proposition
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BTT2. P in (BTT3T) is also homogeneous of degree 1, however, it is not an ordinary RBO since
P(V) = a/(—l)ME(k, 0) is not a vertex Leibniz subalgebra.

Example 6.1.16. Let V = V;(k, 0) be the level k vacuum module vertex operator algebra as-
sociated with g = sl(2,C) = Ce® Ch @ Cf (cf. [BO]). V5(k,0) = U(g) ®u(,) C1 is the Weyl
vacuum module over the affine Lie algebrag = ¢ ® C[t,1"!] ® CK
Since h = h(—-1)1 € V|, d = o(h) = h(0) : V — V is a O-differential of V (cf. [[I4]).
Moreover, V5(k, 0) is a sum of i(0)-eigenspaces ([25]):
V(k, 0) = EP) Vitk, 0)(),

€27

where V5(k, 0)(1) = {v € V5(k,0) : h(0)v = Av} for all A € 2Z.

Let U be the sum of nonzero eigenspaces of #(0): U = @ A€27\(0) V5(k, 0)(1), and let
P : U — V be given by: P(u) = %u, for all u € Vi(k, 0)(1), with A4 # 0. Then dP = Idy, and so
P : U — Visaweak local RBO on U of weight 0. Moreover, P is homogeneous of weight 0,
and it is not ordinary since P(U) = U is not a subalgebra.

Letd; := ¢"® —1:V — V, then d, is a I-differential by Proposition Z373. Let
Py : U — V be given by P(u) = ﬁu, for all u € Vg(k, 0)(1), with 4 # 0. Then d; Py = Idy,
and by Proposition BTT2, Py : U — V is a weak local RBO of weight 1.

6.1.3 Properties and further examples of Rota-Baxter vertex algebras

The next theorem generalizes Theorem 1.1.13 in [B31] and gives us a systematic way

to build examples of RBVA.

Theorem 6.1.17. Let (V,Y,1) be a vertex algebra, and P : V — V be a linear map. Then P is
an idempotent RBO of weight —1, if and only if V admits a decomposition: V = V' & V2 into
a direct sum of vertex Leibniz subalgebras V' and V?, and P : V. — V! is the projection map
onto V':

P(a1 + az) = al,
for all al e Viand a®> € V2, in particular, vl = P(V) and V2 = ker P.
Proof. Let P : V — V be an idempotent RBO of weight —1. Then V! = P(V) C V is closed
under the vertex operator Y, since we have:

(Pa),(Pb) = P(a,P(b) + P(a),b — a,b) € P(V),
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for all a,b € V by (6B17). Hence (V',Y]}1) is a vertex Leibniz subalgebra of V. By Proposi-
tion BEIL1, V2 = (1 — P)(V) is also a vertex Leibniz subalgebra. Since P?=P by assumption,

we have V = V! @ V2. Moreover, for any a € V, we have
a=P(a)+(1-P)a) =a' +d*,

where a! = P(a) and a? = (1 — P)(a). Note that a' and a2 are unique as the sum is direct. Then
P(a' + a*) = P(a) = a' is the projection onto vl

Conversely, suppose V has a decomposition V = V! @ V? into vertex Leibniz subal-
gebras, and P : V — V! is the projection. Then for any a = a' + a> and b = b' + b% in V, with

a,b' € Vifori=1,2, we have:

P(@),P(b) = a,b',
P((Pa),b) = P(a'b' + alb?) = alb' + P(alb?),
P(a,P(b)) = P(a\b' + a?b") = alb' + P(a?b"),

P(apb) = P(alb' + alb? + a2b' + a’b*) = alb' + P(alb?) + P(a?b).

It follows that P(a),P(b) = P((Pa),b) + P(a,P(b)) — P(a,b), for all a,b € V. Moreover, clearly
we have P(Pa) = P(a') = a' = P(a). i.e., P: V — V is an idempotent RBO of weight —=1. O

Example 6.1.18. Let V = V| be the lattice vertex operator algebra associated with the rank one
positive definite even lattice L = Za, with (a|@) = 2N for some N € Z.(. By Examples B T4
(1), Vzo = V740 ® Vz_a is a decomposition of Vz, into vertex Leibniz sub-algebras. Then by
Theorem BTT7, the projection P : Vz, — Vzq,, along Vz,_, is an ordinary RBO of weight —1.
Moreover, P is obviously level-preserving and translation invariant (PL(—1) = L(—1)P) since
L(0) and L(—1) preserve each Mg(l, ma).

For the higher rank case, let L = Za; & ... ® Za,, then by Example 14 (2), we can
choose a parabolic-type sub-monoid P :=Za| @ ... ® Za,—1 ® Zsoa,. Then L = P L P!, where
P =Za1®...®2Za,—1 ®Za,, and V[ has a decomposition into vertex Leibniz sub-algebras:
Vi = Vp® Vp-. By Theorem BT 17 again, the projection P : Vi — Vp along Vp- is an ordinary

RBO of weight —1, and P is level-preserving and translation invariant.

Example 6.1.19. Let (V,Y,1,w) be a vertex operator algebra, and let (W, Yy) be a weak V-

module. It is observed in [50] (see also [27]) that V @ W carries a structure of vertex algebra,
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with vertex operator given by
Yvew(a +v,2)(b+w) = (Y(a,2)b) + Yw(a,z)w + YVV“,/V(V, 2)b), (6.1.16)
forall a,b € V and v,w € W, where Y‘YVVV is defined by the skew-symmetry formula:
Yy (v, 2)b = XDy (b, —2)v. (6.1.17)

We can think of V @ W as the semi-direct product V = W of the vertex operator algebra V with
the weak-module W. Since Yygw (v, 2)w = 0 for v, w € W, it follows that (V, Y) and (W, Yyew|w)
are vertex Leibniz subalgebras of V < W. Then by Theorem B117,

P:V<W->Va+vi a, (6.1.18)

is an RBO of weight —1 on the vertex algebra V >~ W.
If W only has integral weights, then (V =< W, Yygw, 1, w) is a vertex operator algebra
(cf. [B0]). Then P in (BIIX) is a level-preserving RBO of weight —1. This example will be

used in the discussion of the next section.

Although it is not easy to classify all the Rota-Baxter operators on an arbitrary VOA,
we will show that the homogeneous Rota-Baxter operators of non-positive degree on certain

CFT-type vertex operator algebras only have very limited choices.

Lemma 6.1.20. Let (V,Y, 1, w) be a VOA of CFT-type, and P : V — V be a homogeneous RBO
of degree N < 0. Then we have P(1) = 0 or P(1) = —A1, and P> + AP = 0.

Proof. Since V, = 0forn <0, Vy = C1, and PV, C Vy for some N < 0, we have P(1) = ul for
some u € C. Recall that 1_;1 = 1, then by (BI2) we have:

P(1)-1P() = P(P())11) + P P(1)) + AP(1_1)

= 121 = 1®1 + 4*1 + Aud.
Hence p is either O or —A. i.e., P(1) = 0 or —A1. Furthermore, again by (&1_7) we have:
P(a)-1 P(1) = P(P(a)-11) + P(a_1 P(1)) + AP(a_11) (6.1.19)
forall a € V. If P(1) = 0 then (&ET-T9) becomes:
0 = P(P(a)) + P(a-10) + AP(a),
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and so P?*(a) + AP(a) = 0 for all @ € V. On the other hand, if P(1) = —11, then
—AP(a) = P(P(a)) — AP(a) + AP(a),
which also implies P?(a) + AP(a) = 0, for all a € V. Therefore, P2+ P =0. O

Proposition 6.1.21. Let (V,Y, 1, w) be a VOA of CFT-type, and P : V — V be a homogeneous
RBO of degree N < 0 and weight 1 # 0. Then' V = V! ® V2, where V' and V? are graded vertex
Leibniz subalgebras of V, with V,, = V) ® V2 for each n € N, and

P:VoVidi+ad e -ad,

foralla' € Vi, i = 1,6.1. Moreover, we have P(1) = 0 if and only ifVé =0, and P(1) = -A1if
and only if Vg =0.

Proof. Since P? + AP = 0 by Lemma BI20, and A # 0 by assumption, the linear map —P/1 is
an idempotent. Then by Proposition BTTT, —P/ A is an RBO on V of weight —1. By Theorem
BRI 17, we have V = V! @ V2, where V! = (-P/A)(V) = P(V) and V? = ker(—P/2) = ker P are

vertex Leibniz subalgebras, and —P/A is the projection:

1 V- Vl,al +d v a.

Hence P(a! + a*) = —Aa'. Moreover, since P(V,) c V,.y for all n € N, we have V! =
PV =D, yPVw) = D, Vs, and V2 = P, ker(Ply,) = D, Vi, where V} is an
eigenspace of L(0) of eigenvalue n, and V,, = V! @ V2 for each n € N. Now the last statement is

also clear as Vg <) Vg =Vy=Cl. O

Corollary 6.1.22. Let V be the level one Heisenberg VOA Mg(l, 0) associated with b = Ca or
the Virasoro VOA L(c,0)(see [30]), and let P : V — V be a homogeneous RBO of degree N < 0
and weight A # 0. Then P is either 0 or —Aldy.

Proof. Let V = Mg(k, 0) or L(c,0). By Proposition BT 21, V = V! @ V? for some graded
vertex Leibniz subalgebras V', V? ¢ V. But V is generated by a single homogeneous element:
V = Mg(k, 0) is generated as a vertex algebra by a(—1)1 € V| and V| = Ca(-1)1 = V]1 & Vlz,
and V = L(c,0) is generated by w € V, = Cw = Vzl ® V22. Then the single generator u of V is
contained in either V' or V2 for both cases. If u € V! then V = V! and P = —Aldy; if u € V?
then V = V2 and P = 0. O
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Definition 6.1.23. Let (V, Y, 1, P) be an RBVA of weight A. Define a new linear operator Y*” :
V — (EndV)[[z,z"']] as follows:

Y*?(a,z)b = Y(a,z)Pb + Y(Pa,z)b + 1Y (a, 2)b. (6.1.20)
Note that Y** is a generalization of Y in (ELR).

Lemma 6.1.24. Y*? satisfies the truncation property and the skew-symmetry (B13). If, fur-
thermore, P is translation invariant (DP = PD), then Y** also satisfies D-derivative property

(B13) and the D-bracket derivative property (B14).

Proof. Given a,b € V, since Y(a, z)Pb, Y(Pa,z)b, and 1Y (a, z)b are all truncated from below,
we have Y*?(a, 2)b € V((z)). Moreover, by (&120) and the skew-symmetry of Y,

Y*?(a,2)b = €PY(Pb, -7)a + €LY (b, —7)Pa + 1¢PY(b, —7)a = €PY*? (b, —7)a.

Hence Y** also satisfies the skew-symmetry. Now assume that DP = PD, by (R120) and
(-T3) and (B4 of Y, we have:

Y*?(Da,z)b = Y(Da,z)Pb + Y(PDa, z)b + 1Y (Da, 2)b
d d d
= —Y(a,2)Pb + Y(DPa,2)b + 1—Y(a,7)b = —Y**(a, 2)b,
dz dz dz
[D,Y*?(a,z)]b = DY(a,z)Pb — Y(a,z)PDb + [D, Y(Pa, )b + A[D, Y(a,z)]b
d
=[D,Y(a,z)|Pb+ [D,Y(Pa,z)|b + A[D, Y(a,z)]b = d—Y*”(a, 2)b,
Z
then Y*? satisfies the D-derivative and D-bracket derivative properties. O

The next theorem is the vertex algebra version of Theorem 1.1.17 in [BT]. It shows
that Y*7 gives a new structure of a vertex Leibniz algebra (see Definition BT or a vertex

algebra without vacuum (see Definition BI2) on an RBVA (V, Y, 1, P).

Theorem 6.1.25. Let (V, Y, 1, P) be an RBVA of weight A, and Y** be given by (&120). Then

we have:
(1) P(Y*?(a,z)b) = Y(Pa,z)Pb, foralla,b € V.

(2) (V,Y*P) is a vertex Leibniz algebra. If, furthermore, P is translation invariant, then

(V,Y*P, D) is a vertex algebra without vacuum.
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(3) P is an RBO of weight A on the vertex Leibniz algebra (V, Y*?).
Proof. () By (B16) and (R T20), we have:

Y(Pa,z)Pb = P(Y(a,z)Pb) + P(Y(Pa,z)b) + AP(Y(a, 2)b)
= P(Y(a,z)Pb + Y(Pa, )b + AY(a,2)b) = P(Y**(a, 2)b).

(D) By Lemma BT24, to show (V, Y*F) is a vertex Leibniz algebra, we only need to
show that Y** satisfies the Jacobi identity, or equivalently, the weak commutativity and weak
associativity, in view of Theorem IZT2. For the weak associativity, given a, b, c € V, we need

to find an integer N € N such that
(z0 + 22N Y* (@, 20 + 22)Y*" (b, 22)c = (z0 + 22)NY*" (Y*"(a, 20)b, 22)c. (6.1.21)
Indeed, by (B120), we have the following expansions:

Y*P(a,zo + 22)Y* (b, 22)c

= Y**(a,z0 + 22)(Y(b, 22)Pc + Y(Pb, 23)c + 1Y (b, 22)c)

= Y(a,20 + 22)P(Y(b, 22)Pe) + Y(Pa,z0 + 22)Y (b, 2)Pe + AY (@, 20 + 22)Y (b, 22) Pe
+Y(a.20 + 2)P(Y(Pb.22)c) + Y (Pa,z + 22)Y(Pb.22)c + A (a,20 + 22)Y(Pb, 22)c
+ A¥(a, 20 + 22)P(Y (b, 22)c) + AY(Pa, 20 + 22)Y (b, )¢ + 1Y (a,20 + 22)Y (b, 22)c,

Y*P(Y**(a, z0)b, 22)c

= Y**(Y(a,20)Pb, 22)c + Y**(Y(Pa,z0)b, 22)c + AY*"(Y(a, 20)b, 22)c

= Y(Y(a,z0)Pb, z2)Pc + Y(P(Y(a, z0)Pb), z2)c + AY(Y(a, 20)Pb, z2)c
+ Y(Y(Pa, zo)b, 20)Pc + Y(P(Y(Pa, 20)b), z2)c + AY(Y(Pa, z0)b, z2)c

+ AY(Y(a, 20)b, 22)Pc + AY(P(Y(a, 20)b), 2)c + A*Y(Y(a, 20)b, 22)c.
From equation (B16), we have

Y(a,zo + 22)P(Y(b,z2)Pc + Y(a, zo + 22) P(Y(Pb, 22)c) + AY(a, zo + 22)P(Y (D, 22)c)
=Y(a,zo + 22)Y(Pb, 22)Pc,
Y(P(Y(a,z9)Pb),z0)c + Y(P(Y(Pa, z0)b), z2)c + AY(P(Y(a, z0)b), 20)

=YY (Pa,zy)Pb,z)c.
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Now, using the original weak associativity with respect to Y, we can find a common number

N € N, such that the following weak associativities hold at the same time:
(20 + 22)"Y(a, 20 + 22)Y(Ph, 22)Pc = (20 + 22)V Y (Y (@, 20)Pb, 22) P,

(20 + )" Y(Pa,z0 + 22)Y(Pb, 22)c = (20 + 22)" Y(Y(Pa, 20)Pb. 2)c,
(z0 + 22)VY(Pa, z0 + 22)Y (b, 22)Pc = (20 + 22)" Y(Y(Pa. z0)b. 22) Pc,
(z0 + 22)VY(a, 20 + 22)Y(b, 22)Pc = (zo + 22) Y (Y(a, 20)b, 22) Pc,
(z0 + 22)NY(Pa, 20 + 22)Y (b, 22)c = (20 + 22)" Y(Y(Pa, 20)b, 22)c,
(z0 + 22)NY(a, 20 + 22)Y (b, 22)c = (20 + )V Y (Y (a, 20)b, 22)c.

This shows (BI_Z1l) by comparing the expansions. The weak commutativity of Y*# can be

proved by a similar argument. We omit the details of the proof. O

Example 6.1.26. Let V = V; be a lattice VOA, L = Za; @ ... ® Za,—1 ® Zsoa, < L be the
parabolic-type sub-monoid. Then L = L; LI Ly, where L, = (L})” =Za1 ®...®Za,—1 ® Zo,.
Let P : Vi — Vp, be the projection RBO in Example BTTS. Fora = a; + a; and b = by + b,

in V;, where a', b’ € Vi fori = 1,2, we have
P(a;) =a1, P(b1)=0b1, and P(ay) = P(by) = 0.
Then by (B120), with A = —1, we have

Y**(a,z)b = Y(a,z)Pb + Y(Pa,z)b — Y(a,z)b
=Y(a1 + ax)by + Y(a1,2)(b1 + ba) = Y(ay + az,2)(b1 + by)

= Y(a1,2)b1 - Y(az,2)b.

Since P is translation invariant, by Theorem BT23, (V, Y*?, L(—1)) is a vertex algebra without

vacuum, with Y*” given by
Y**(a,2)b = Y(a1,z)b1 — Y(az, 2)b. (6.1.22)

Note that the vacuum element 1 of V. is contained in M?)(l, 0) c V1, and it cannot be the vacuum

element of (V, Y*?, L(—1)) since Y*P(1,z)a; = 0 for all a; € V, by (BT 22).
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6.2 Dendriform vertex algebras and Rota-Baxter vertex algebras

In this Section, we will study the substructure underlying a Rota-Baxter vertex algebra
(V, Y, 1, P). The substructure is what we call “dendriform vertex algebra”. The usual notion of
a dendriform algebra was introduced by Loday (cf. [89]). It is a vector space V over a field &,

equipped with two binary operators < and >, satsifying

x<y)<z=x<{y<z+y>2), (6.2.1)
(x>y)<z=x>(y<2), (6.2.2)
xX<y+x>y)>z=x>(y>2), (6.2.3)

for all x,y,z € V. Given a dendriform algebra (V, <, >), one can define
X-yi=x<y+x>y, Vx,yeV (6.2.4)

This is an associative product on V (cf. [89]). Furthermore, the following theorem (Theorem

5.1.4 in [BT]) shows that Rota-Baxter algebras can give rise to dendriform algebras:

Theorem 6.2.1. [B1] (a) An Rota-Baxter algebra (R, P) of weight 0 defines a dendriform alge-
bra (R, <p,>p), where x <p y = xP(y), and x >p y = P(x)y, for all x,y € R.

(b) An Rota-Baxter algebra (R, P) of weight A defines a dendriform algebra (R, <}, >), where
x <py=xP(y)+ Axy, and x >}, y = P(x)y, for all x,y € R.

The dendriform axioms are the axioms underlying the usual associativity. Note that
the associative analog of vertex algebras is the notion of field algebra (cf. [9]), or the nonlocal
vertex algebra (cf. [63]). A field algebra (V, Y, 1, D) is a vector space V, equipped with a
linear map Y : V — End(V)[[z,z"']], a distinguished vector 1, and a linear map D : V — V,
satisfying the truncation property, the vacuum and creation properties, the D(-bracket) derivative
properties (B13) and (B4, and the weak associativity (B12).

Inspired by the definitions (B21)-(B=23)), we expect to decompose the vertex operator
Y(.,7) into a sum of two operators: Y(-,z) = Y<(:,2) + Y- (-, z), whose properties are consistent
with both the Rota-Baxter type axiom and the weak associativity axiom (BT2).

On the other hand, we also expect to have the Jacobi identity from this underlying
structure. Since the Jacobi identity follows from weak associativity, together with the D-bracket
derivative property and skew-symmetry (see [37]), we will use D and add some additional

axioms into our underlying structure so that it leads to the Jacobi identity.
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6.2.1 Dendriform field and vertex algebras

Since the axioms of a dendriform are extracted from the associativity axiom, the weak
associativity axiom (BT2) of a field algebra is enough for our purpose. We introduce the fol-
lowing notion, which can be viewed as a weaker version of both field algebra and vertex Leibniz

algebra:

Definition 6.2.2. A field Leibniz algebra is a vector space V, equipped with a linear map
Y : V — (EndV)[[z, z~']], satisfying the truncation property and the weak associativity (B12).
We denote a field Leibniz algebra by (V, Y).

An ordinary Rota-Baxter operator on a field Leibniz algebra (V, Y) of weight 4 € Cis
a linear map P : V — V, satisfying the compatibility formula (B17).

Definition 6.2.3. Let V be a vector space, and D : V — V be a linear map. Let

Y<(" Z) V- Hom(‘/’ V((Z)))9 a— Y<(Cl, Z),
Y.(,2) : V= Hom(V,V((2))), a = Y.(a,2)
be two linear operators associated with a formal variable z. For simplicity, we denote Y.(-, z) by

- <, -,and Y. (,z) by - > -, respectively, and write Y(a,z)b = a <, b and Y. (a,z)b = a >, b, for
alla,b € V. Then

(1) (V,<;,>,) is called a dendriform field algebra if for any a, b, c € V, there exists some

N € N depending on a and c, satisfying:

(zo + zg)N(a < D) <, c=(20+ zg)Na <z4z (b >z c+b <y, 0), (6.2.5)
(20 + 22)M(a@ >4 b) <z, ¢ = (20 + 22)Va >40, (b <, ©), (6.2.6)
(2o + 22)M(a > b +a <4 b) >, ¢ = (20 + 22)Va >4, (b >, ©). (6.2.7)

(2) (V,<,,>;,D) is called a dendriform vertex algebra if (V, <,,>,) is a dendriform field

algebra, and D, <;, and >, satisfy the following compatibility properties:

ePla<_,b)y=b>,a, and ePa>_,b)=b<,q; (6.2.8)
D(a <. b) —a <. (Db) = di(a <.b), and D(a>,b)—a>,(Db)= di(a > b).
4 4

(6.2.9)
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We can regard (B22R) as the analog of skew-symmetry (B1T3) satisfied by the partial
operators <, and >,. (B2X9) can be viewed as the D-bracket derivative property (614 for the

partial operators. Similar to Lemma 2.7 in [66], we have the following:

Lemma 6.2.4. Let V be a vector space, equipped with two operators <;,>;: VXV — V((2))
and a linear operator D : 'V — 'V, satisfying the skew-symmetry (B228), then the D-bracket
derivative property (6229) is equivalent to the following D-derivative property:

(Da) <. b = di(a <. b), and (Da)>,b= di(a >, b), (6.2.10)
Z Z

for any a,b € V. In particular, a dendriform vertex algebra (V, <,,>,, D) can be defined as a
dendriform field algebra (V, <;,>;), satisfying (6-28) and (B2Z10).

Proof. Similar to the proof of Lemma 2.7 in [56], for any a, b € V, we have:
d zD zD zD d
(Da) <, b——(a<,b)=e¢"b>_, Da— De""(b >, a)— e~ —(b>_; a)
dz dz
d
= &P (b >_.Da—Db >_, a)— d—(b >_, a)),
Z
d zD zD zD d
(Da) >, b— —(a>, b)=e"b<_, Da— De*"(b <, a)—e"—(b<_;a)
dz dz
d
=P (b <_.Da—-Db <_, a)— d—(b <, a)).
z
Thus, (B29) is equivalent to (B210). O

The axioms of the dendriform are closely related to the properties of Rota-Baxter
operators. The following Theorem shows that a weight 4 RBVA can give rise to dendriform

field algebra, and a weight 0 RBVA can give rise to dendriform vertex algebra:
Theorem 6.2.5. Let (V,Y,1, P) be an RBVA of weight A.
(1) If A =0, then (V, Y, 1, P) defines a dendriform field algebra (V, <., >,), where
a<;b:=Y(a,2)POb), a>; b:=Y(P(a),z)b, (6.2.11)

forall a,b € V. If, furthermore, P is translation invariant, then (V, <., >, D) is a dendri-

form vertex algebra.

167



(2) If Ais arbitrary, then (V, Y, 1, P) defines a dendriform field algebra (V, <., >’), where
a <, b=Y(a,2)Pb)+ AY(a,2)b, a >, b=Y(P(a),2)b, (6.2.12)
foralla,beV.
Proof. We first prove part (2). For equation (&22F), we have:
(20 +2)V(a < b) <l ¢ = (20 + 2)" (Y(Y(a, 20) P(D) + AY (@, 20)b, 22) P(€))
+ (20 + 22)V(AY(Y(a, 20) P(b) + AY(a, 20)b, 22)C).
On the other hand,
(zo + ZZ)Na <;0+z2 b >;z c+b <;2 c)
= (20 + 22N (Y(a, 20 + 22)P(Y(P(b), 22)c + Y(b, 22)P(c) + AY (b, 22)c))
+ (20 + 22)V(A¥ (@, 20 + 22)(Y(P(b), 22)c + Y (b, 22)P(c) + AY (b, 22)c))

= (20 + 22)" (Y(a, 20 + 22)Y(P(b), 22) P(c)

+ AY(a, zg + 22)(Y(P(b), z2)c + Y (b, 20)P(c) + AY (b, 2p)C)).

Take a common N such that the weak associativity for (a, P(b), P(c)), (a, b, P(c)), (a, P(b),c),
and (a, b, c¢) are satisfied simultaneously, then equation (E23) holds. For equation (E226),
(z0 +22)"(a >, b) <., ¢ = (20 + 22)" (Y (Y(P(a), 20)b, 22)P(c) + AY(Y(P(a), 20)b, 22)C),
(o +22)Va >l ., (b<l, ¢) = (20 +22)"Y(P(), 20 + 22)(Y (b, 22)P(c) + AY (b, z1)c).
Take a common N such that the weak associativity are satisfied for (P(a), b, P(c)) and (P(a), b, ¢),
then equation (-2-6) holds. Finally, for equation (E221), we have:
(o +22)M(a >l b+a <) b) >, c=(o+2)"Y(P(Y(P(a),20)b + Y(a,20)P(b) + Y (a,z0)b), 22)c
= (20 + 2V Y(Y(P(a), 20)P(b), 22)c,
@0 +2)Va >4, (b >, ©) = (0 + 22)" Y(P(a), 20 + 22)(Y(P(b), 22)C)
We again take a common N such that the weak associativity is satisfied for (P(a), P(b), ¢), then

equation (B277) holds. This proves (2), and by taking 4 = 0, we see that (V, <;, >,) given by
(B=2TT) is a dendriform field algebra. If P is translation invariant (PD = DP), then by (B21T),

ePa <_, b) = ¢PY(a, —-2)P(b) = Y(P(b),2)a = b >, a,
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ePla>_, b) = ePY(P(a), —2)b = Y(b,2)P(a) = b <; a.
Moreover, by the D-derivative and bracket derivative properties (E13) and (B14),
D(a <; b) —a <, (Db) = DY(a,2)P(b) — Y(a,z)P(Db) = [D, Y(a, z)|P(b)
d d
= d_zY(a’ 2)P(b) = d_z(a <, b),
D(a >; b) — a > (Db) = DY(P(a),2)b — Y(P(a),z)Db = [D, Y(P(a),2)]b
d d
= d—Z(Y(P(a), 2)b) = d—z(a > b).
Hence (V, <;, >;, D) is a dendriform vertex algebra, in view of (B2XX) and (629). O

Dendriform field and vertex algebras can also give rise to field Leibniz algebras (see

Definition B27) and vertex algebras without vacuum (see Definition B17).

Theorem 6.2.6. Let (V,<.,>,) be a dendriform field algebra. Define a linear map Y : V —
End(V)[[z,z~']] by

Y(a,20b :=a<,b+a>; b, (6.2.13)
for all a,b € V. Then (V,Y) is a field Leibniz algebra. If, furthermore, (V,<,,>.,,D) is a

dendriform vertex algebra, then (V, Y, D) is a vertex algebra without vacuum.

Proof. Clearly, Y defined by (B213) satisfies the truncation property. We claim that Y satisfies
the weak associativity (B12). Indeed, for any a, b, c € V, we have

(20 + 2" Y(Y(a,20)b, 22)c

= (20 + 22)"Y(a <z b+ a >, b,22)c

=(@o+2)Na<yb+a>,b) <, c+(@<ybra>,b)>,c

= (z0 + 22)V((a <o b) <, ct(a>, b)<,c+(@<y b+a>y, b)>, o),

(20 +22)"Y(a,20 + 22)Y (b, 22)c

= (20 + 22)"Y(a, 20 + 22)(b <5, ¢ + b >, ¢)

= (20 + 22)V(a <1z (b <, C+ b >4, ) +a >4, (b <y c+b >, 0)

= (20 + 2)"(@ <gp1e (b <z €+ Db >4, ) + @ >4, (b <z €) + @ >gp1z5 (b >4, ©)).

We take a common N > 0, such that equations (B29), (B226), and (BX1) are satisfied at the
same time, then equation (B12) holds. Hence (V, Y) is a field Leibniz algebra.
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If (V, <;, >;, D) is a dendriform vertex algebra, then by (228) and (B29), we have:
LY, -2b=ePla<_,b)+ePa>_,b)=b>,a+b=<.a=Yb,2)a,
for all a,b € V. Hence (V, Y, D) satisfies the skew-symmetry (BT3). Moreover,
D(Y(a,z)b) — Y(a,z)Db = D(a <; b) + D(a >, b) — a <, (Db) — a >, (Db)
= diz(a <, Db) + diz(a >, b) = diZY(a, 2)b,

for all a,b € V. Hence (V, Y, D) satisfies the D-bracket derivative property (B1°4). Then by
Proposition B3, Y also satisfies the weak commutativity, and by Theorem IZ172, (V,Y, D)

satisfies the Jacobi identity. This shows that (V, ¥, D) is a vertex algebra without vacuum. O

6.2.2 Equivalent characterization of the dendriform vertex algebra

Theorem BZH shows that the vertex operator Y(a,z)b = a <; b+ a >; b givenby a
dendriform vertex algebra (V, <;, >., D) satisfies the Jacobi identity. But <, and >, are operators
underlying the vertex operator Y(-,z), it is natural to expect some additional properties to be
satisfied by these operators on a dendriform vertex algebra (V, <., >,, D).

First, we note that <, and >, satisfy an analog of the weak commutativity axiom

(BI22) of the vertex operators:

Proposition 6.2.7. Let (V,<,,>., D) be a dendriform vertex algebra. Then for any a,b,c € V,

there exists some N € N depending on a and b, such that

(z1 —22)Va >, (b <z, ¢) = (21 —22)Vb <, (a>; c+a <, o), (6.2.14)

(z1 —22)Va >, (b >, ¢) = (z1 —22)"b >, (a > o). (6.2.15)

Conversely, if V is a vector space, equipped with a linear map D : V — V and two
linear operators <;,>,: V. — Hom(V, V((2))), satisfying (62T14), (b2X13), (BXR), and (29),

then (V, <;,>., D) is a dendriform vertex algebra.

Proof. Let (V, <., >,, D) be a dendriform vertex algebra, then it follows from (B229) that

ePa<,e®Pb=a<,, b, and ePa> e Ph=a>,, b, (6.2.16)
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for all a,b € V. The proof of (B2Z18) is similar to proving the conjugation formula the vertex
operator e®PY(a,z)e P = Y(a,z + z9) from the D-bracket derivative property (A1), see
[272, B5], we omit the details.

By (BXT8) and (BXX), we can express each side of (ABXT) as:

(zo +22)Va <0tz > c+b <, 0)=(z0+ 2)Ve?Pa <z e 2Pp >, C+b <, 0)
= (z0 + 22)Ve?Pa <p (Cc<_p b+c>_, b), (62.17)

N N 2D
(ZO + ZZ) ((l <z b) <p €= (ZO + ZZ) e c >z (a <2 b),

where N € N depends on @ and ¢. Hence (z9 +z2)"a <y (e <_z, b+ec>_;, b) = (20 +22)Ve >_z
(a <, b), and by replacing (zo, z2) with (z2, —z1), and replacing (c, a, b) with the ordered triple

(a, b, ¢) in this equation, we have:
@—2)Vb <y @<y cta>, o) =(-z)Va>, (b=, o),

where N depends on a and b. This equation is equivalent to (52214 since N > 0. Similarly, we

can express each side of (B28) as:

(20 + 22)Va > 10 (b <y, ©) = (20 + 22)Ve?Pa >, 2P (b <, ©)
= (z0 + 22)Ve?Pa >, (c >, b), (6.2.18)

N N D
(ZO + ZZ) (a >0 b) <p €= (ZO + ZZ) e?*c >_z (Cl >0 b),

where N depends on a and c¢. Then (zo + 2)Va >z (€ >_z D) = (20 + 2)Ve >_g, (a >4 b),
and by replacing (zo, z2) with (z1, —z2), and (a, ¢, b) with (a, b, ¢), we have N depends on a and
b, and (z1 — 22)Na >, (b >, ¢) = (z1 — 22)Vb >,, (@ >,, ¢), which is (R2Z13). Finally, we can

express each side of (B2X) as:
@0 +22)Na >z (0>, ©) = (20 + )V e?Pa >, 2P (b >, ©)
= (z0 + 22)Ve?Pa >, (c <_,, b), (6.2.19)
(2o + 22)M(a > b +a <z b) >, ¢ = (20 + 22)Ve?Pc <, (a >, b +a <, b),
where N depends on a and c. Then (zo +20)Va > (€ <—z, b) = (20 +22)Ne <y (@>z, bt+a<y
b), and by replacing (zgp, z2) with (z1, —z2), and (a, ¢, b) with (a, b, ¢), we have N depends on a

and b, and (z1 — 22)Va >, (b <, ¢) = (z1 —22)Vb <, (a >, ¢ +a <, ¢), which is (E2Z1d). The

second statement follows by reversing the processes of (B211) and (B2IX). O
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Corollary 6.2.8. A dendriform vertex algebra is a vector space V, equipped with a linear map
D : V — V and two linear operators <;,>,;: V — Hom(V, V((2))), satisfying (6214), (EX13),
(BZ2R), and (£29).

Remark 6.2.9. Conditions (B214) and (B213) together can give rise to the weak commuta-
tivity (BT2) of the vertex operator Y defined by (B213): Y(a,z)b := a <; b + a >, b. Indeed,
by Proposition B2, there exists N € N depending on a and b, such that

(z1 — 2)VY(a,21)Y (b, 22)c
=(z1 - ZQ)N(a <y b<m,c+b>,0)+a>;, (b<,c)+a>; (b>; )
=21 =2V (b >, (a<g )+ (@ =2V (b <, (a>; c+a<g o)+ —22)Vb >, (a> ¢

= (z1 — 22)"Y(b, 22)Y(a, z1)c.

We can also obtain an analog of the Jacobi identity for the operators <, and >,. We

recall the following Lemma 6.1.2 in [54]:

Lemma 6.2.10. Let U be a vector space, and let A(z1,22) € U((z1))((z2)), B(z1,22) € U((22))((z1)),
and C(zo,22) € U((22))((z0)). Then

— —_ + —_
z(;l(s(z‘ Zz)A(zl,ZZ) - zgla( 27 ) B(z1,22) = zglé(z‘ ZO) C(z0,72)  (6.2.20)
20 20 22
holds if and only if there exists k,l € N such that

(z1 — 22)}Az1, 22) = (21 - 22)"B(z1, 22), 6.2.21)

(20 + 22)'A(z0 + 22, 22) = (20 + 22)'C(20, 22). (6.2.22)

Theorem 6.2.11. Let (V, <;,>;, D) be a dendriform vertex algebra. Then we have three Jacobi

identities involving the operators <, and >:

—22 + 21

_ 1 — X _
zo‘a( IZO 2)a > (b <., c)—zold( )b <oy (@>, c+a=<, c)

(6.2.23)

—1{21—20
=z215( > )(a>20b)<22c,

=22t 21

zalé(zlz_ozz)a > (b > c)—z5‘5( )b >0, (@ >y, ©)

(6.2.24)

_ 1 — 20
:zzld( - )(a > bta<g,b)>,c,

172



—22+21

zalé(zl _Zz)a <5 b<,c+b>y, c)—z(_)lé(

)b >z, (a <z ©)
20

(6.2.25)

1 <[R%1—20
=2, 6( - (a <4 b) <, ¢,

where a,b,c € V, and zy, z1, 20 are formal variables.
Furthermore, (6223), (6224)), and (B2223) are mutually equivalent. We call (B2224)

the Jacobi identity for the dendriform vertex algebra (V, <,, >, D).

Proof. By Proposition B2 and the formulas (B235)-(B21), we have:

k k
(2o +22)"a >4z, (b <, ©) = (20 + 22)"(a >4 b) <, ¢,

I I
(@Z1—22)a>;, b<,0)=@1—22)b<, (@>; c+a< o),

for some k,/ € N. Then A(z1,22) = a >;, (b <, ©), B(z1,22) = b <, (a >, ¢+ a <, ¢), and
C(z0,22) = (a >z b) <, c satisfy the conditions (E22Z21l) and (B2277) in Lemma 62T, then
the Jacobi identity (E2223) follows from (B221).

Similarly, the Jacobi identity (B2224)) follows from Lemma B2ZT0 and

k k
(20 +22)"a >z4z, (b >z, ) =20+ 22)(@>;, b+a <, b) >, c,

@ —)a>, (b>;, ) =@ —2)b>, (@>, o),
for some k, [ € N. The Jacobi identity (B2223) follows from Lemma 6210 and

(ZO + ZZ)ka <z20+22 (b > € +b <z C) = (ZO + ZZ)k(a <20 b) <z G
(z1 —22)a <y, (b <y c+b >, ¢) = (21 — 22)'b >, (a <, ©),
for some k,/ € N. The equivalency of these Jacobi identities essentially corresponds to the

S 3-symmetry of the Jacobi identity, see Section 2.7 in [’/], and the proof is also similar.

Assume (BX73) is true. By the skew-symmetry (B22R), we have:

121 —22 D 1.2+ 21) .p
2 6( = a>; e (c>_,b)—z, 06 T e (a>, c+a<,0)>_, b

21 — 20

- Z515(Z1Z_2Z0)(a >0 b) <g, € = zglé( )ezch >, (a >y b).

Then by (BZXT18) and properties of the formal §-functions (see Section 6.1.2 in [7]),

_ 22+ Z _ 21 — %
1115( 221 O)c >_z, (@ > b):1216( 122 O)C >_z, (@ >z b)
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“1¢(%1—22 - 2+ 21
= 1015( - )a >21—z (€ >z b) — la(T)(a > cta<g,¢)>_, b

=22+ 21

+
= ZII(S(ZO ZZ) >ZO (C >—22 b) - ZO 6(

)(a >, CH+a<g ) >4 b
2

Change the formal variables (zg, z1,22) — (w1, wg, —w7) in the equations above, we have:

_ —Ww2 +w

)c >, (@ >y, b)
Wo

w2 + Wy

- wi —wp _
:wolé( 1W0 )a>w1 (C>W2b)—w115(

)(a >wo €+ a <y €) >y, b.

This equation is the same as (E2224)) when we change (c, b) into (b, ¢). This shows the equations

(X 73) < (BZ2Z4). Similarly, assume (B2Z73) is true. Then

z;la(z‘

_1 22+ 20 D
(5( p Ve >_, (b>_y a)

1c(%2+20 zDzD—zD 20D
)( a<g,b)<,c=27/ 6( p eV e e >_, (e7h >_ a)

—22+21

-15( ZZ) e1P(b <y, ¢+ b >y, €)=y a— 1615(
20 20

)b >, &P(c>__, a).

Hence by the properties of -functions, we have:

17120 20
Zzl‘s(T) > (b>_pa)=2z] 6(T)c >z (b>_g a)

“1.[%1—22 122+ 27
= 1015( )(b <pCHb>,0) >, a- 2016(—)b >z (€ > @)
<0
“1¢[%0 + 22 20 + 21
=7 16( )(b <pC+b>,0)>_ a+z, 6(—)!) >_z (€ >_7, a).
21 22

Change the variables (zo, 21, 22) — (—=w1, =Wz, Wp), the equation above becomes:

_ —wp + wq

)c >y (O >y, a)
wo

= —wgld(wlw;zwo) b <y, c+b>y, ) >y, a+ wold( Wz)b >, (€ >y, @).

wo
It is obvious that this equation is the same as (B224)). Hence the equations (B21H) —

(B224). Thus (B273), (B274), and (BX729) are equivalent. O

Remark 6.2.12. By adding up the three Jacobi identities (B22Z23)-(62275), we can derive the
Jacobi identity for the vertex operator Y(a,z) = a <; b + a >, b. This provides us with an

alternative proof of Theorem B2 f
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Corollary 6.2.13. A dendriform vertex algebra is a vector space V, equipped with a linear map
D : V — V and two linear operators <;,>,: V. — Hom(V, V((2))), satisfying (62R), (629),
and the Jacobi identity (6224).

Theorem BXTT also indicates that a dendriform vertex algebra (V, <., >,, D) defines
a module structure on V over its associated vertex algebra without vacuum (V, Y, D) in Theorem

BA. First, we recall the following definition, see Definition 2.9 in [56]:

Definition 6.2.14. Let (V, Y, D) be a vertex algebra without vacuum. A V-module (W, Yy) is
a vector space W, equipped with a linear map Yy : V — End(W)[[z,z"']], satisfying the
truncation property, the Jacobi identity for Yy in Definition T35, and

Yw(Da,z) = d%YW(a, 7) forallaeV. (6.2.26)

Proposition 6.2.15. Let (V,<,,>,, D) be a dendriform vertex algebra, and let (V, Y, D) be the
associated vertex algebra without vacuum, where Y is given by (B213): Y(a,z2)b = a <; b+a >,
b. Let W =V, and define:

Yw : V — End(W)[[z, 211, Yw(a,2)b :=a >, b, (6.2.27)
forallaeVandb e W. Then (W, Yw) is a module over (V, Y, D).

Proof. By Definition 23, clearly Yy satisfies the truncation property. By the Jacobi identity
(BX234) of (V, <;, >,, D), (B2X1), and (B2 13)), we have:

-2+ 21

%'s (Zl Z_ Zz) Yw(a, 21)Yw(b, 22)c — za‘a( ) Yw(b, 22)Yw(a.z1)e
0

_ 21 — %
=26 (%) Yw(¥(a, 20)b, 22)c,
2

forall a,b € V, and c € W = V. Finally, by Lemma b24, we have Yy (Da,z)b = (Da) >, b =

4
dz

vacuum (V, Y, D), in view of Definition B2_T4. O

a>, b, foralla € Vand b € W. Thus, (W, Yy) is a module over the vertex algebra without

Remark 6.2.16. Since we define Yy by one of the partial operators >, in (&27X7), it is natural
to consider the vertex operator Y defined by the other partial operator Y(a, 2)b = a <; b.

By the skew-symmetry (B2XX), we have:
Y(a,2)b=a<,b=ePb>_,a=ePYyb,~2)a =Yy, (a2b, (6.2.28)
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in view of (RRI_I1). i.e., Y = YV‘?,/V. It is easy to see that the Jacobi identities (B2223) and
(B223) correspond to the following equation:

—22+21

z516 (%) Yw(a, zl)YV‘?,/V(b, )C — 1516( ) YV‘?,/V(b, )Y (a,z1)c

1 (z1—20
=20 's (T) vagv(Yw(a, 20)b, 22)c,

for all a,b,c € V = W. Moreover, Y%V(Da, b = (Da) <; b = d%a <, b by Lemma 24,

Thus, if the vertex algebra without vacuum (V, Y, D) is an underlying structure of some VOA

(V,Y,1, w), with D = L(-1), then YV‘?,/V(a, 7)b = a <; b is an intertwining operator of type (WWV)'

The notion of relative Rota-Baxter operator is introduced in [6], as the operator form
of the classical Yang-Baxter equation for VOAs. Let (V,Y,1,w) be a VOA, and (W, Yy) be a
weak V-module. A relative RBO is a linear map 7 : W — V such that

Y(Tu,2)Tv =T(Yw(Tu,z)v)+ T(Y‘YVVV(M, 2Tv), forallu,ve W. (6.2.29)

Corollary 6.2.17. Let (V,Y,1,w) be a VOA. Assume the underlying vertex algebra without
vacuum structure (V,Y,D = L(-1)) is induced from a dendriform vertex algebra structure
(V, <z, >2, D) by Theorem BZ8. Let (W, Yy ) be the weak V-module given by Proposition B22T3,
then the identity map T =1d : W — V is a relative RBO.

Proof. By (&213), (e2X1), (E27H), and the assumption that 7 = Id, we have:

YTu,2)Tv=u<,v+u>,v="Yy,z)v+ YVV“,/V(M, 2)v

= T(Yw(Tu,2)v) + T(Yypy (u, 2)TV),

forall u,v € W. So T = Id is a relative RBO, in view of (B229) m|
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Chapter 7

Vertex operator analog of the classical

Yang-Baxter equation

In this last Chapter of the thesis, we will study the analog of the Yang-Baxter equa-
tion and its relations with the Rota-Baxter operators on vertex operator algebra as a natural

generalization of the classical Yang-Baxter equation for Lie algebras.

7.1 Vertex operator Yang-Baxter equation

In this section, we first recall the background on contragredient modules over VOAs
and completed tensor products. We then give the notion of the vertex operator Yang-Baxter
equation (VOYBE), followed by the notion of relative Rota-Baxter operators for VOAs as the
operator form of the VOYBE.

We will prove that the skew-symmetric solutions to the VOYBE in a VOA U are
in one-to-one correspondence with skew-symmetric relative Rota-Baxter operators associated

with the coadjoint module U’.

7.1.1 The vertex operator Yang-Baxter equation

Definition 7.1.1. Let M = P,  M(n), W = B, W(n), and U = B, be N-graded vector

spaces, with dim M(n) < co, dim W(n) < oo, and dim U(n) < oo, for all n € N.

177



(1) Define the complete tensor products M@W and M@WU by

MW := 1_[ M(p)®W(g),  MIWRU := ]_[ M(p)eW(@Q e U®r). (1.1.1)
P,q=0 P-q.r=0

(2) Let D(URU) = 12, U(t) ® U(t) € UBU. An element a in URU is called diagonal, if
a=Y2 3N at®pl e DWUKU), where o, B € U(r) forall 7 > 0 and i > 1.

(3) A diagonal element « is called skew-symmetric, if o(a) = —, where o : UgU — UQU
is defined by o°(3, 2, @} ® 8)) = 3, ¥ 8; ® a}; a skew-symmetric diagonal element & can

be written as

Mg

~
I
(=]

P
D (lep - pead),
i=1

where of,! € U(f) forallt > O and i > 1

Let (V, Y, 1, w) be a vertex operator algebra, and (W, Yy ) be an ordinary V-module,
with conformal weight 4 € Q. We can construct a semi-direct product vertex algebra V = W (cf.
[B0], see also the last section in [274].) As a vector space, V < W = V & W, the vertex operator

Yy.w is given as follows:
Yvaw(a + u,2)(b +v) = (Y(a,2)b) + Yw(a,z)v + ngvv(u, 2)b), (7.1.2)
forall a,b € V and u,v € W, where Yv‘?//v is defined by the skew-symmetry formula:
Yy, 2b = eX DYy (b, —2)u. (7.1.3)

If W only has integral weights, then (V = W, Yy.w, 1, w) is a vertex operator algebra. In general,
V > W is only a vertex algebra, and it satisfies all the axioms of a VOA except that L(0) only
has integral eigenvalues (see Proposition 2.10 in [50]).

Recall the contragredient modules of a VOA in Section Z1l. Let W be an admissible
V-module, and let W’ be the graded dual of W: W’ = @20:0 W()*. Then (W, Yy») is an

admissible V-module, where
(Yw(a,2) fruy = {f, Yw(eH D (=72 Oq, 77Ny, (7.1.4)

foralla e V, f € W and u € W, see (5.2.4) in [21]. Moreover, the action of s/(2,C) =
CL(-1) + CL(0) + CL(1) satisfies the following properties:

(L=Df,u) = (f, L(Du), and  (LO)f,u) = (f, LO)u). (7.1.5)
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In particular, if (W, Yy ) is an ordinary V-module of conformal weight A, then (W', Yy)
is also an ordinary V-module of the same conformal weight A, and we can construct the semi-
direct product vertex algebra V < W’.

In order to properly define the matrix form of VOYBE, we introduce some new
notations of vertex operators based on the definition of contragredient module (T4). Let

(U, Yy, 1,w) be a VOA, we define two vertex operators Y7, and YZJO P as follows:

Yj(a,2)b : = Yy D (=7 0, 77, (7.1.6)
Y (@, 2)b : = Yy(e V(=772 Oq, —z7he Dp, (7.1.7)

for any a,b,c € U.

Definition 7.1.2. Let (U, Yy, 1, w) be a VOA, and m € Z. We first introduce three m-dot prod-

ucts as follows:

@ B:=Res,7"Yy(B,2)a = Bua,

’ ’ (_I)Wta i
@, B =Res.?"Y (@, 0B = )| ——— (LY wia-m-j2B,
j=0
o o ( 1)wt,8+m+t+l
@i Bi=Res VB0 = ) ) ) (L) B 2L (e
i>0 j>0

where @, € U. These products are bilinear.
We denote the grading of the VOA U by U = EB:;O U(n) and extend the bottom level

U(0) by a one-dimensional vector space with a basis element denoted by /, and let
U:=UecCI,

where U(0) = U(0) ® CI, and U(n) = U(n) for all n > 1. We let I be the identity element with

respect to the three m-products:
apl=Ipa=al I=1)a=aI1=1,"a=a.

Remark 7.1.3. For homogeneous elements a € U(s) and 8 € U(t). We observe that a-,,3, @/, 3,
and a-,," B are all homogeneous elements in U, and -, € U(s+t—-m—1), a-, B € U(t+m+1-s),

anda " BeU(s+m+1-1).
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Let (U, Yy, 1, w) be a VOA, and r be a diagonal skew-symmetric two-tensor:

Pt

o (59
=), 7= ) cies -pied,

t=0 =0 i=1

where ! = p’ a’. ®ﬁf. —ﬁ’. ® a/f. € U(t)® U(¢) for every ¢t > 0. For any ¢, s, r € N, we define the

elements ’"129 1 2 and r23 in U®3 as follows:

Pr

=) (depiel-piedel), (7.1.8)
i=1
Ps

ryi= ) (@ elep -pielea), (7.1.9)
k=1
Pr

=Y (I®a] 8- 188 ®a)). (7.1.10)

=1

Then we define r1p := 3,2, 7|, € U%3, r3 = Yol € %3, and 3= 2l Thy € Ue3.

1op
Fort,s,r € N, and m € Z, we define the products r 12 m r13, r23 . 12, and r 13m T3

by the distribution rule, with respect to the three products in Definition [T, respectively:
Pyl = Z((af) m @, ®BOB — (@) mBLOUOB, — (B) ma,@ai®B;  (7.1.11)

+(B) m B ®a; ® @y,
Py iy = Y (@@ () 4 B8 B~ BL®(a]) -, &} 8 —ai & (B)) -, Bi@a)  (T.1.12)
Li

+Bi®(B)) 7, i ® ),

7 / / 7
3 "?pr£3_z(ak®a'l®(ﬁk m Bl = ®B @B w" ] —Br®a;® (@) w B

rop
+ﬂk ®:Bl ®(a/k) ). (7.1.13)
Then we define:
(o) (o) (o]
- 1 s ’ - ror ot rop . Jop _r
T2 m ri3 = Z Flo'mTizs 123y F12 = Z 3 m Fps and ri3 -, 123 := Z r13 m T3
s,t=0 rt=0 s,r=0

Lemma 7.14. ri3 - 113, 123 -, 12, and r3 2P ra3 are well-defined elements in U®3. Let
X =r1 mhr3—1r3 ;n rip +ri3 .;:lip 3 € U®3. Then we have:

(o]
r_t+s—m—1 t+s—m—1 rop

s ‘ ‘
= Z (riy 'm i3 = a3 " 113 T3 ‘m 733)s (7.1.14)

5,t=0, s+r>m+1
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—— —_ 1 — 10
where a5y = (1}, r’13 - r§3 . r’l;S m-1 4 r’lgs m=1 /9P ry;) EU(E+s—m—1)®U(s)® U(t) for

each pair of (s,t) € NX N such that s +t > m + 1.

Proof. By Remark [ T3, we have:

Fymris €U(s+1—-m—=1)@U®) & U(s), (7.1.15)
Py eUO@UE+m+1-r)eU(r), (7.1.16)
rym rh €US)@UN@U(s+m+1-r). (7.1.17)

By Definition [T, we have rp -, 113 = ZZ’;ZO rt12 ‘mtiy € HZ"SZO Uis+t-m—-1)U(@®)®U(s),
which is a linear subspace of U®*. Thus, ri5 'm {5, and similarly 5, -, r{, and r}, P rhs, are
well-defined elements in U®°.

Note that U(s+¢t—m—1) = 0if s+¢#—m—1 < 0. Change the variable (z, s) in (LT 13) to
(s, 1), then we have ri3-,r13 = ZC:IZO, siismael Tomgr and v s € U(t+s—m—=1)®U(s)®U (1)
for each pair of (s, 7). Moreover, we observe that there is a one-to-one correspondence between

the following sets:

{t,rVeNXN:t+m+1—-r>0} - {(s0,50)) e NXN:sg+tg—m—1> 0},

(t,r) - (so,t0) =(t+m+1-r7r),

whose inverse is given by (so, fg) > (£, 7) = (so+fo—m—1,1y). Change the variables in (T_18),

(o)
t L to+so—m—1
Py = ) Ty = > P ool (7.1.18)
r,t=0, t+m+1-r=>0 50,10=0, so+tg—m—1=>0
and r'2°3 g ri‘?so_m_l € Uty + so —m— 1) ® U(sp) ® U(tp) for each pair of (s, fp). Finally, there

is a one-to-one correspondence between the following sets:

{((r,s) e NXN:s+m+1-r>0} > {(s1,f1):s1+t1 —-m—1> 0},
(r,s)— (s1,1) =0, s+m+1-r),

whose inverse is given by (s1,#1) = (7, s) = (s1, t; +s1 —m—1). Change the variables in (_T17),

[oe] (o)

-m-1
riz w3 = Z s P rhy = Z ri‘;“ moL P s, (7.1.19)
r,s=0, s+m+1-r>0 s1,41=0, s1+1;—-m—1>0
and r’l‘;“"_m_1 ol oy € Ut +51—-m—1)®@U(s1)®U(11). Now (I13) follows after we replace
the variables (5o, tp) in (IIX) and (s1, #1) in (LT19) with (s, 7). O
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Now we give the definition of the Yang-Baxter equation for VOAs:

Definition 7.1.5. Let (U, Yy, 1, w) be a VOA, and r be a diagonal skew-symmetric two-tensor
in UQU.
(1) Letm € Z be a fixed integer. r is called a solution to the m-vertex operator Yang-Baxter

equation (m-VOYBE) if

’ rop _
F2mT13 =723 2+ 13y s =0. (7.1.20)

(2) ris called a solution to the vertex operator Yang-Baxter equation (VOYBE) if it is a

solution to every m-VOYBE for m € N. In other words, we have:

P23 =13 ra+ris;rs =0, (7.1.21)

1

- —-m—1 - —m—
where we let r12 ;713 1= X ez(F12 m 113)27" 7, 123 2 112 1= Dmez(r23 -, F12)27" 0, and

10 — -
132 123 0= Yomez(F13 ! 123)27"

7.1.2 Relative Rota-Baxter operators

Now we introduce the notions of relative Rota-Baxter operators for VOA. It is a gen-
eralization of the ordinary Rota-Baxter operators for VOA in Chapter B. It serves as the operator
form of the Yang-Baxter equation for VOA, as in the case of the CYBE for Lie algebras. We
first fix some notations. Let (V, Y, 1, w) be a VOA, and (W, Yy ) be an admissible V-module. Let

m € Z be a fixed integer. For a € V and u € W, we write:

anu = Res,7"Yw(a,2)u, and u(m)a = Reszz’"ng(u, 2)d. (7.1.22)

Definition 7.1.6. Let (V,Y,1,w) be a vertex operator algebra, and (W, Yy) be an admissible
V-module. Let T : W — V be a linear map.

(1) Letm € Z be a fixed integer, T is called an m-relative Rota-Baxter operator (m-relative

RBO) or an m--operator if
T (), T(v) = T(T(u),,v) + T(u(m)T(v)), (7.1.23)

for any u,v € W, where T'(u),,T(v) = Res " Y (T (u), 2)T (v), and T (u),,,v and u(m)T (v) are
defined by (1222).
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(2) T is called a relative Rota-Baxter operator (relative RBO) or an -operator if it is a

m-relative RBO for every m € Z, or equivalently, the following equation holds:
Y(Tu,2)Tv = T(Yw(Tu, 2)v + Yy, (u, 2)TV), (7.1.24)
for any u,v € W, where vi/v is given by the skew-symmetry formula (Z13).

(3) An m-relative Rota-Baxter operator 7 : W — V is called homogeneous of degree N € Z

if T(W(n)) C V,.n foreach n € N. A degree 0 relative m-RBO is called level preserving.

Example 7.1.7. Let V = Vy & V, be a CFT-type VOA, and let P : V; — V| be an RBO of the
Lie algebra V; of weight 0. Extend Pto 7 : V — V as follows:

TA):=pul, Tly,:=P, and Tly, :=0, Vn>2, (7.1.25)

where ¢ € C is a fixed number. We claim that 7 : V — V is a level-preserving 0-relative RBO.

Clearly, T is level-preserving. For any a € V, we have:

T(1)oT(a) = 0 =T(T(M)oa) + T(1oT(a)),
T(a)oT(1) = 0 =T(aoT(1)) + T(T(a)l),

since 1pa = apl = 0. On the other hand, for any homogeneous elements a,b € V., if either
wta > 1 or wtb > 1, then by (Z1T73) and the fact that T'(a)ob and a¢T(b) are contained in
Vtaswib—1, We have:

T(a)oT(b) = 0 = T(T(a)ob) + T(aoT (b)).
Finally, if a, b € Vi, then clearly we have T (a)oT (b) = T(T (a)ob) + T(aoT (b)) since T = P on
Vi. Thus T : V — V is a level-preserving O-relative RBO.

Example 7.1.8. Let V = MIA)(I, 0) be the rank-one Heisenberg VOA (cf. [29]), where h = Ca
and (ala) = 1. Recall that V| = Ca(-1)1 and V; = Ca(-1)a ® Ca(-2)1. Define T : V — V as
follows:

T =T((-1H1)=0, Ty, =0, Vn >3,

T(a(-Da) = a(-Da+a(-2)1, and T(a(-2)1)=-a(-)a— a(-2)1.

For any a,b € V5, since T'(a)1b and a;T () are contained in V,, then by a similar argument as

the previous example, we can easily show that 7 : V — V is a level-preserving 1-RBO.
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Example 7.1.9. Let V = Mg( 1,0) be the rank-one Heisenberg VOA, and let W = MIA)(I,/I).
Recall that W = M(1,0) ® Ce*, with W(0) = Ce! and W(1) = Ca(=1)e!. Define T : W — V
as follows:

T(e" =0, T(a(-DeY)=1, and Tlyu =0, Vn > 2. (7.1.26)
Then T is homogeneous of degree —1. If u,v € W are homogeneous, then (Tu)ov and u(0)T (v)

are contained in W(degu — 2 + degv), and by (ZTZf), we have:
(Tu)o(Tv) =0 =T{(Tu)yv + u(0)Tv).

Thus, T : W — V is a degree —1 homogeneous O-relative RBO.

7.1.3 From solutions of the VOYBE to the relative RBOs

The Yang-Baxter equation for VOA is formulated from the axiom of a relative RBO
for VOAs. Indeed, let (U, Yy, 1, w) be a VOA, and let U’ = EB:;O U(#)* be the dual adjoint mod-
ule of U (cf. [7]). By the notations in Definition [T, we have the following identifications

of vector spaces:

D(URU) = l_l UHe U@ = 1_[ Hom(U(1)*, U(t)) = Hom p(U’, U), (7.1.27)
=0 t=0
where Hom, p(U’, U) € Hom(U’, U) is the subspace of level-preserving linear maps.
Letr= Y2 r =320 ¥ ol@p—pi®a; € D(URU) be a diagonal skew-symmetric
element, and let 7, be the corresponding element in Homyp(U’, U) under the isomorphism

(L120),by definition, T, is given by
Pt
TAf) = ) &8 = BKF ), (7.1.28)
i=1

for any r € N and f € U(r)".

Theorem 7.1.10. With the settings as above, for a given m € Z, r is an skew-symmetric solution
to the m-VOYBE if and only if T, : U’ — U is a level-preserving m-relative RBO, that is, for
any f,g € U’, the following equation holds:

T (ImTH(g) = THT(fImg) + Tr(f(m)T-(g)). (7.1.29)

Inparticular, T, : U" — U is a level-preserving relative RBO if and only if r is a skew-symmetric

solution to the VOYBE.
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Proof. For given a, b, c € U, with b, c homogeneous, define a linear functional

a®b®c:U' U - U, @®b®c)(g® f):=alg,b)f,c),

for any homogeneous f,g € U’.

Let f € U(n)* and g € U(s)", by (L), T,(g) := 372, a(g.}) — B(g. @}). Fora
given m € Z, by Definition [ T2 and (I13), we have:

TA(FnTHE) = ) (@K F. B = BKS em(@g. B — Biig, @)
i.j
= > @@L BN = D (@S BN @)
ij ij
= D Bma a8 B + D BB S AiXg, )
Lj L.j
= > (@) i @B@BYE® )~ ) (B) mai®a; @B ® f)
ij ij
=D (@) B @B @)@ ® )+ D (BY mBi®ai®adg® )
Lj Lj

= (rivz ‘m rt13)(g®f)-

By Definition T2 and (Z124), we have (an.f, b) = (f,a,,b) = (f,a-,, b), for any a,b € U and
feU. Since T(T-(f)mg) € U(t + s — m — 1)*, then by Remark [LT3, (ZTZT), and (ZI118),
we have:

T(T (f)mg) Zal+.§ m— 1<T (f)mg ﬁl+s m— 1> Zﬁt+? m— 1<T (f)mg,alﬂ'q m— 1>
- ZQ’H-S m— l<g,(at) mﬂt+s m— l><fﬂ> Zal‘+s m— 1<g’(ﬁ) mﬁt+s m— 1>(f,at)

Zﬂf“m1<g,<a’> ’“’”1><fﬁ>+2ﬂ’”ml<g,(ﬂ) " (fal)

_Z((al‘+Y m— 1®(Q’) mﬁt+ﬁ m— 1®B) (a,t+ﬁ m— 1®(ﬂ) mﬁt+s‘ m— 1®a{))(g®f)

_Z((ﬂHA m— 1®(a,t) t+s m— 1®IB)+(ﬁt+s m— 1 (Bi) ,/na,]t:s m— 1®Q’1))(g®f)

t+s—m—1
(”23 m s

)& ® f).

Finally, by Definition 172, (L13), (124), and the fact that (L(—1)f,a) = (f, L(-1)a), for
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any f € U’ and a € U (see (5.2.10) in [277]), we have:

(fm)a, by = Res 2"(YY,,(f, 2)a, b) = Res 2" (e“ VY (a, —2) f, b)
= Res, 2"(f, Yy(e V(7)1 O0q, —z71e Dy = Res, 2"(f, Yzjo”(a, 2)b)

= (fbl @

forany f € U’ and a,b € U. Since Yg,'U is an intertwining operator (see Section 5.4 in [27])

and T, is level-preserving, we have T,.(f(m)T,(g)) € U(t + s —m — 1)*, then
TWWN@—Z¢”“WMH@H”“UBmmWWW®M”mU
t+s—m—1 t+s—m—1y /0p _s t+s—m—1 t+s—m—1y /0P s s
—Zk B P ai)e. B - Z% (B T BN @)

_Zﬁﬁ-sm 1<f( t+s—m— 1) Zpa><gﬁ>+2ﬁt+sm 1<f( t+s—m—1 Iopﬁ><g,a/>

k.j

_Z(( t+s—m— 1®ﬁ ®(ﬁl‘+§‘ m—1 /017 ) (a,t+? m— 1®a/ ®(ﬂt+s‘ m—1 ’OP)ﬂ )(g®f)
_Z((,BHS m— l®ﬁ ®(al+s m— ]) rop S)+(ﬂt+s m— 1®G’ ®(a,l‘+s m—1 'Opﬁ ))(g®f)

(rt+s m—1 ’OP r§3)(g®f)
Thus, for f € U()* and g € U(s)*, we have:

T ()T (&) — TH(Tr(fmg) — T(f(m)T(8))

— ’t+ 1 1+ 1 rop
=y m3 =T m AT (e ® f),

(7.1.30)
which is contained in U(t + s — m — 1). Now T, satisfies (LT 29) if and only if T,(f),,T(g) —
T(T,(f)mg) — T-(f(m)T(g)) = 0forany s, >0and f € U(#)", g € U(s)*, and by (I30), this

is true if and only if

<Tr(f)mTr(g) - Tr(Tr(f)mg) - Tr(f(m)Tr(g))e h)
= ((ry m Pl = Py o T TN ) (g ® ),
=((rlym s = iy T AT R ) g feh),

forany s,t >0, f € U()*, g € U(s)*, and h € U(t+s—m~1)". Since the element r}, -, 7|3 ~7r5; -1,

rsme 1+r’§5 m=1.79P ry; € € U®3 is homogeneous and contained in U(s+t—m—1)®@ U(s)@ U(f)
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by Lemma ([ZT4), and the space U(s+t—m —1)® U(s) ® U(¢) is finite dimensional, it follows

: q) ; e . b ot t+s—m—1 t+s—m—1 /0P s _
that T, satisfies (CT29) if and only if 7}, m i3 — 53 W 15 +r5 m Ty =0, for every
pair of (s,7) € NX N, with s + ¢ > m + 1, and this is true if and only if
rop _
FI2m P13 =123 1 P2 + 713 723 =0
by Lemma [ 14, O

The following Corollary follows immediately from the proof of Theorem I 1T10. It

will be used in Section 4.

Corollary 7.1.11. With the settings as above, for fixed integers m € Z and s,t € N, the restric-
tion of T, onto U(s)* and U(t)* satisfies (LI 29), with f € U(s)* and g € U(t)*, if and only if
the homogeneous components of r = 3,° r' satisfies

s t t 7 _t+s—m—1 t+s—m—1 r0p s _
Pl m T3 = T3 'm T + 713 m T3 =0 (7.1.31)

in the homogeneous subspace U(s +t—m — 1)@ U(s) @ U(¥) of U®s,
When U’ = U asa U-module, let ¢ : U — U’ be an isomorphism, then by Proposition
5.3.6 in [7]], there exists a non-degenerate symmetric invariant bilinear form () : U X U — C

such that
(¢(a),b) = (alb), Va,beU. (7.1.32)

Moreover, since ¢(Yy(a, z)b) = Yy (a, z)e(b) and ¢L(—1) = L(-1)p, if T : U’ — U is arelative
RBO, then for any a,b € U, we have:
Yu(Te)(@), )(T@)b) = T(Yu (Te)a), 2)¢b)) + T(Y (@), )T e)(b))
= Te(Yy(Te)a), 2)b) + T (X" VY 1 (Te)(b). ~2)¢(a))

= (Te)Yu(Te)a),2)b) + (Te)(Yu(a, 2)(Te)(b)).

Thus, Ty : U — U is an ordinary RBO of weight 0. Clearly, the converse is also true, and by
taking Res,z”, we have T : U’ — U is an m-relative RBO if and only if Ty : U — U is an
m-ordinary RBO of weight 0 (see []). Moreover, for T, : U" — U given by (ZI21l), denote
T, by T, then by (ZI32) we have:

4
Ti@) = ) al(alp)) - Bitalar), (7.133)
i=1
for any a € U(¢) and ¢ € N. Hence we have the following:
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Corollary 7.1.12. Let ¢ : U — U’ be an isomorphism of modules over the VOA U, m € Z be
an integer, and let r = 3 °, Zl[.’:’] a®p -pieal e D(URU) be a diagonal skew-symmetric
element. Then r is a solution to the m-VOYBE if and only if T, : U — U defined by (I.I33) is
an m-ordinary RBO on the VOA U of weight 0.

In fact, Theorem [ZTT0 gives rise to a one-to-one correspondence between the solu-

tions to the VOYBE and certain relative RBOs. We end the section by making this precise.

Definition 7.1.13. Let (U, Yy, 1, w) be a VOA. We call a level-preserving linear map 7' : U’ —

U skew-symmetric if 7 satisfies

(T(f).8)==/;T®), teN,fgeU@)".

Let HomSLkP(U ", U) denote the subspace of skew-symmetric level-preserving linear maps.

It is easy to check that T, : U’ — U from (LI28) is skew-symmetric. We also state

the simple fact:

Lemma 7.1.14. The linear bijection (LX) restricts to a linear bijection
® : SD(URU) = Homil}(U’, U), re>T, (7.1.34)

where T, is defined by (LI 2R). The inverse of ® is given by
. sk ’ 7N l N 1y r ot I
¥ : Hom{ly(U", U) — SD(UBU). T - - DT evi—vie T()Y), (7.135)

where {vtl, e ’V;/} is a basis for U(t), and {(v’l)*, . (v;t)*} is the dual basis of U(t)* fort € N.
Then by Theorem [ZT10, we obtain

Corollary 7.1.15. For m € Z, let SDo)(URU)(m) denote the set of skew-symmetric solutions
to the m-VOYBE, and let RBOikP(U ", U)(m) denote the set of level-preserving skew-symmetric
m-relative RBOs. Then @ in (LI34) restricts to a bijection

@ : SDy(UBU)(m) & RBOK(U, U)m), 1> T, (7.1.36)
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7.2 Solving the vertex operator Yang-Baxter equation

Theorem [ZT10 indicates that we can construct a m-relative RBO T, : U’ — U from
a solution of the m-VOYBE in the VOA U. In fact, we can also use some special m-relative
RBOs to reconstruct solutions to the m-VOYBE, just like the case of Lie algebras (cf. [4]) and

associative algebras (cf. [8]).

7.2.1 Some actions on the contragredient modules

Let (V,Y,1,w) be a VOA, and (W, Yy ) be an ordinary V-module of conformal weight
A € Q. Since our focusing point is to solve the VOYBE from some special relative RBOs
T : W — V, we assume that the conformal weight 4 = 0. Then the contragredient module
(W', Yw) is an ordinary V-module of the same conformal weight 0.

Then the semi-direct product (V><W’, Yy..y, 1) we recalled in section [T is a vertex

operator algebra, where Yy.y is given by (LT2), and we can write it as:
Yysawe(a + f,2)(b + ) = (Y(a, 2)b) + (Yw:(a, 2)g + Yy (f, 2)b), (7.2.1)

forany a,b € V and f, g € W’. Denote the vertex algebra (V< W', Yy..w, 1, w) by (U, Yy, 1, w).
We denote the VOA (VxW’, Yy.w, 1, w) by (U, Yy, 1, w). Since the conformal weight
of W’ is 0, the admissible gradation W’ = @:’20 W(n)* is the same as the L(0)-eigenspace

gradation, and the gradation on U is given by
Un)=V,®Wn)*, neN.
Then U = @20:0 U(n). Observe that for a given level n € N, the homogeneous space U (n)®U (n)
can be decomposed as
UneUm) =V, V)&V, Wn))e (Wn)* @V, & (W(n)*® Wn)"). (7.2.2)

Then we have V,, ® W(n)* c U(n) ® U(n).

Recall that a linear map T : W — V is called level-preserving if it satisfies 7(W(n)) C
V, for n € N. We let Hom p(W, V) denote the space of level-preserving linear maps from W to
V. Forn €N, let {V{,v),..., vgn} be a basis of W(n), and let {(v])*, (v))", ..., (vgn)*} be the dual
basis of W(n)*. Similar to (_I_20), there is a natural isomorphism of vector spaces

Homy p(W, V) = ]_[ Hom(W(), V,) = ]_[ V,®@ W(t)* C ]_[ UOBU(t) = DIUSU),
t=0 t=0 t=0
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where T € Homyp(W, V) corresponds to 3.~ f):tl T ® (Vi)

From now on, we fix a level-preserving linear map 7 : W — V. By Eq. (C’X2), we
have T = 372 X T(v)) ® (v))* € V; ® W(1)*. Hence we have of(T) = 220 2.7, (vV)* @ T(V) €
W(@#)* ® V;. Therefore we take the skew-symmetrization

o Pi
ri=rp=T—o(M)= ) 3 TEH® M) = 1) @ T() € SDI(V = WIB(V = W)). (7.2.3)
t=0 i=1

In order to relate that m-VOYBE for such r with certain axioms satisfied by 7T, we

need the following Lemmas:

Lemma 7.2.1. With the setting as above, for homogeneous a € V, we have:

Z T(Vf) ® a;,n(vf)* - Z T(amv;+’n+1_wm) ® (v;+m+l—wta)*, (724)
i J
Dlal e @ TR = Y (I @ T m)a), (7.2.5)
i J
D an()r @ T} = Y (Y @ T(a e, (7.2.6)
k J
DD mae Ty = > (1) @ T(a v+, (7.2.7)
k J
Proof. Note that a;n(vf.)* e W(t+m+ 1 - wta)*, then by (18), (ZI2), and Definition [T,
we have:
Z TV ®a,(v))*
i

= Z Z T(V?) ® (Cl,’n(vﬁ)*’ V;frm+l—wta>(vz_+m+1—wta)*
i

= Z Z T(Vf) ® ReSZZm<YW/ (eZL(l)(_Z—Z)L(O)a’ Z_l)(VE)*, vt.-i—m+1—thl>(v;+m+l—wta)x<
i

- Z Z T(v) ® Res2"((v)", Yw(a, Z)V;'+m+1_Wta>(V}+m+1_Wta)*
i

= E § TG, amvT’"“_WW)vﬁ) ® (v?’””‘wm)*
i

— Z T(amV3-+m+]_Wta) ® (V;+m+1—wta)*.
J

This proves (ZZI_I9). Since we also have a,,” (v?)* e Wt +m+1-wta)*, then

Dla ) e T

i
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— Z Z<all’;t]p(v;)*’ v;+m+l—wta>(v5+m+l—WW)* ® T(Vf)
i

— Z RCSZZm<YW'(E_ZL(I)(_Z_2)L(O)CI, _Z—l)ezL(l)(v;)*, Vt_+m+l—wta>(v;+m+l—wta)* ® T(Vﬁ)

i7j
— Z RCSZZm«Vﬁ)*, eZL(_l)Yw(a, _Z)v;+m+l—Wta>(v§+ln+l—wta)* ® T(V?)
ij

— Z Reszzm((v;)*, vagv(v;+m+l—wta’ Z)a>(v;+m+l—wta)>k ® T(Vi)
ij

— Z(v;+m+l—wta)* ® T(((Vf)*, (V3~+m+l_wm)(m)a>\/§)
ij

— Z(v;+1n+l—wta)* ® T((v;+m+l—wtu)(m)a)_
J

This proves ((ZZ5). The proof of (”28) and ((ZX71) are similar, just observe that a,(v,)" and

(v{)*(m)a are both contained in W(wta —m — 1 + 5)*, we omit the details of the proof. O

Lemma 7.2.2. With the setting as above, for any homogeneous a € V, we have:

Z((v;‘)*)/(m)a ® T(V;) — Z ReSZZ—m—2—4/1(_1)m+1(v;vta+m+1—r)*®
1 i

(7.2.8)
T (YVV‘l//V(ez’lL(l)(_ZZ)L(O)v\j)_Vta+m+1—r’ Z)e—z’lL(l)a) ’
where ((v))*) (m)a = Reszsz&,V,’V(eZL(l)(—z_z)L(O)(vlr Y,z Da.
Z T(V;) ® ((V;‘)*)IOP(m)a - Z Reszz—m—2—4/l(_1)m+l(V;Vta+m+l—r)>k®
! J (7.2.9)

T (Y‘YVVV(e—Z"lL(1)(_Z2)L(O)v;vta+m+l—r’ —z)a) )
where (V/)*)°P(m)a = Res 2" Y}y, (e KD (=27 HHO(v)*, —z71)ettDg,
Proof. We prove (IZ38) first. Since the conformal weight of W is 0, we have:

(_ZZ)L(O) (v}vta+m+1—r) = (-1 )Wta+m+ 1 —r+/lZ2wta+2m+2—2r+21v§vta+m+ 1 -
(_Z—Z)L(O) (v;’)* — (_ 1 )r+/lz—2r—2/l(v£)* ,

where we fix a root of unity to define (—=1)*. Moreover, ((v; )Y (m)a € W(wta +m + 1 — r)* for

any r > 0, then we have:

DD ma@ TO)) = > ()Y (m)a, v+ ! iyt oraviays @ 7y
l Wl
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= Z Res:2" (V177 @ (Y (M D (=0, 77 Ha, v T (v))
7l
—F\% -1 - - * B
_ Z Res, 2" ( v;vta+m+1 Y@ (et MDYy, —z eV (=2 DOy, V;Vta+m+ =ryT ()
l’l
_ Z Reszzm(v;ﬁa+m+l—r)* ® ((—Z_z)L(O)(Vlr)*,
7l
-1 ~
eZL(_])YW(e—z L(])(_ZZ)L(O)Q’ _Z)ez lL(l)ijta+m+1—r>T(v;’)
= D Res.2" (WY @ (<1 M2
7l
Yipy(es HDasmel=r o= LD ywia2wiagy ()

= Z Reszz—m—2—4/l(_1)m+l(v;vta+m+1—r)* ® <(V;)*,
il

Y“//VVV(ez'lL(l)(_ZZ)L(O)v;vta+m+]—r’ Z)e—z"L(l)aﬂw(v;)

— Z Reszz—m—2—4/l(_1)m+1(v}vtu+m+1—r)* &T (Y“//VVV(ez*IL(l)(_ZZ)L(O)v}yta+m+1—r, Z)e_z—lL(l)a’ ) )

J

This proves (_XX), the proof of (ZZ9) is similar, we omit the details. O

7.2.2 Strong relative RBO and the solutions in the semi-direct product

The level-preserving linear map 7 : W — V has the coadjoint map:
TV > W, (T*(f),uy:={f,T(w), (7.2.10)

for any homogeneous f € V' and u € V. Clearly, T* is also a level-preserving map between the
contragredient modules W’ and V’.

We define an intertwining operator Yv‘{/,w' € I(WV‘;V,) (see Section 5.4 in [71]) as fol-
lows: forue W,u* € W,anda € V, let

Yo ", @y 2= 2w, Yoy (D (=27 Ou, 27 M), (7.2.11)

where A is the conformal weight of W. Then we use it to define Y, V’,W €l (WY,W) by the skew-

symmetry formula:

Yo u = eHVYY L (u, —2u. (7.2.12)

We define the intertwining operators Y, and Y., by the adjoint formulas (see (5.5.4) in [27]),

1414 Vv
then define Y“,?,/’ yandY “,/ v by the skew-symmetry formula.
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Definition 7.2.3. Let (V, Y, 1, w) be a VOA, and (W, Yw) be an ordinary V-module of conformal
weight 1 € Q. Let T € Homzp(W, V), and T* : V' — W’ be given by (Z10).

(1) Let m € Z. T is called a m-strong relative Rota-Baxter operator, if 7 is a level-
preserving relative RBO, and T and T~ satisfy the following compatibility axioms for

anyu € Wand f e V":

Res:2" (Yw (T (), )T (f) = T*(Yyy (Tw), 2)f) = T* (Vi (0, DT () = 0, (7.2.13)

Res 2" (Y (T (), T ) = T* Yy, (f. T @) = T* (¥ (T*(f), ) = 0. (7.2.14)

(2) T is called a strong relative Rota-Baxter operator, if 7 is a m-strong relative Rota-

Baxter operator.

Remark 7.2.4. (1) In Definition X3, if 7* : V' — W’ is commutative with the operator

L(-1), then (ZZZT13) follows from (Z-Z13) since Yy, .., Y1\,

and Y}, are defined by the skew-
symmetry formulas.

(2) If W =V the adjoint V-module and V = V’, then we have A = 0, and all of the intertwining
operators in (Z2XT3) and (214) are Yy. In this case, a m-strong relative RBO T : V — Vis

just an ordinary m-RBO on the VOA V.

The following Theorem shows that a strong relative RBO can give rise to solutions to

the VOYBE.

Theorem 7.2.5. Let V be a VOA, W be an (ordinary) V-module, U = V x W’ be the semi-
direct product vertex algebra, T € Hompp(W, V) be a level-preserving linear operator, and r be
T -T2 € U®? g5 (LX3). Define r1y, r13, and rr3 as in (CIR),(L19), and (C110):

o Pr

=y Y Tehew) el-0) eTw)el,
t=0 i=1
0 Ps

rai= ) Y TOD@I® M) - () @18 T()),
s=0 k=1

©  Pr

3= ) Y ITON® W) 18 W) @ T()).

r=0 I=1
Let m € Z. Then r satisfies the m-VOYBE (L) in the vertex algebra U =V <~ W' if and only
if T : W — Vis a strong m-relative RBO.
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In particular, r is a solution to the VOYBE in the vertex algebra U if and only if
T : W — V is a strong relative RBO.

Proof. By Definition [12, (Z21l), formulas (Z26) and (LX) in Lemma 27T, and the fact
that (vf.)* “m (vlsc)* =0in U for all ¢, s, i, k, we have:

(9]

2wz = ) ) (TODRTOD® 0 ® (1) = TP 8 TOH ® ()"

s,1=0 i,k

=) MTE) @ (V)" ®T(V))

= Z > TOpnT ) ® )" @ ()" - Z DY @ T,V @ ()

5,t=0 ik 5,t=0 k,j (12)
B ZZ< T e ) @ T v
5,t=0 i,j (13)
=(11) + (12) + (13).

By Definition T2, (ZXR) in Lemma 272, (ZX4) in Lemma [T, and the fact that ((v)))* -,
(V)" = 0in U for all ¢, r,i, 1, we have:
—r3 12

= 3 D U(=TOHRTO,0D @) + () @ TO), T ® ()"

tr=0 il

— () ()Y TV @ T(KV)))

— Z Z T(T(v;‘)mv;+m+1—r) ® (V;-+m+1_r)* ® (V;)*

tr=0 jil @D
£ Y oy S TO)T0D® 0] - 3 >
t,r=0 1,1l t,r=0 1i,j
Resz(—l)m+lz_m_2_4/l(v§)* ® (v;+m+l—r)* QT (vagv(ez_lL(l)(—ZZ)L(O)V?erl_r, Z)e_Z_IL(l)T(VE)))
(23)
=21+ (22) + (23).

Finally, by Definition T2, (Z2Z9) in Lemma 27, (Z3) in Lemma (X)), and the fact that

V)" m TP (v))* = O for all s,1,k, [, we have:

r0p
F13m T23
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= D U=TOD @) @ TENP WY = ) ® TO) & ()Y P (mT(v)

s,r=0 kI
+ () @) @ T ' T(W))
— Z Z T((vj:+m+1—r)(m)T(v;‘)) ® (V;)* ® (Vj:+m+1_r)* _ Z Z(
s,r=0 jl 3D 5,r=0 k,j
—m—2— N 7! 3 -r Y 3 —ry\*
ReSZ(—l)m+1Z m—2 4/{(VZ) ® T(Y“;?//V(e Z L(])(_ZZ)L(O)Vj+m+1 a_Z)T(V}i))®(V;+m+1 ) )
(32)

+ 2,000 e TN T)

5,7=0 k,l (33)

=31 +(32) +(33).

Then we have r12 mri3 —13 ;n rip+ri3 -,Izp 3 = (1 1) + (12) + (13) + (21) + (22) + (23) + (31) +
(32) + (33), and we have:

an+@2n+@n

= D DI TEPWTED @Y @D = Y. ) T O™ ™) @ 0f™ 77y @ ()"

s,t=0 k,i rt=0 1j

= S T mTEN) @ () @ (5

r,s=0 jl

Change the variables as in proof Lemma [Z1T°4, and observe that T(vi)mT(vg) € Ve_m_141 = 0 for

all s,kif s+t <m + 1, then we have:

an+@n+@31
= D DTepWTOHey ey - > Y TTeHHew) 8w
5,t=0,s+t>m+1 k,i s,t=0,s+t>m+1 k,i

= D D ITORMTO) @ () @ ()

s,t=0,s+t>m+1 k,i

D D UTODWTO) = TT D) - TOmTE)) @ 05 & (v,

s,t=0,s+t>m+1 k,i

Virem—1 ® W()* ® W(s)* € U, Since ()"

and (v;)" are basis elements of W(7)* and W(s)", respectively, then we have:

which is contained in the subspace [15,_¢ cirome1

AD+ Q2D+ @BD =0 < TODWTO) - T(TEDWV) — T(V)m)T (V) = 0,
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forall s,te Nyand 1 <k < p;, 1 <i < p,. Since (vf), 1 <i < p,, are basis elements of W(¢) for

each ¢ > 0, it follows that

AH+2H+3C) =0 & TWwuTW) =TT W)+ Twm)T({)), (7.2.15)

forall u,v € W.ie., T : W — V is an m-relative RBO.

We perform a similar examination for the other terms in 712+, 713 =723, F12+713 -;,‘,’p 3.

First, we note that

12) + (22) + (32)

0

== i D O @ T, V) @ () + i DN ®TE, TN =

s,t=0 k,j t,r=0 1, s,r=0

Z Resz((_1)m+lz—m—2—4ﬂ(v}i)* ® T (YWW//V(e—Z—]L(l)(_zz)L(O)v;‘Fm-Fl—r’ _Z)T(vi)) ® (v;+m+l—r)*).
k.j

Change the variables (t—m—1+s,s) — (¢t,r)in (12) and (s, s+ m+ 1 —r) — (¢,r) in (32), and
observe that T(v;);nT(vg) € Viams1—r =0if r—t > m+ 1, so we have:

(12) + (22) + (32)

[ee)

== D> D eTaOpheey + Y > 0 eTe, T e ()
tr=0,r—t<m+1 1i t,r=0,r—t<m+1 1,

_ Z Z (RCSZ(—1)m+1z_m_2_4/l(\};)* QT (Y‘YVVV(e—z*IL(l)(_z2)L(0)V;" _Z)T(Vf)) ® (V;)*),
t,r=0,r—t<m+1 1

which is contained in the subspace H;X;:O,r—ISm WO ® Vi1 @ W(r)* C U®3. Then

(12)+(22)+(32) =0 < - TTW),V)+ T, T() - Res, (— 1)+ ;7m=2-44(
T(Y“;VVV(e_Z‘lL(])(_ZZ)L(O)V;’ —)T())) = 0in Vigrpmo1,

forallr,teN,and 1 <I<p,, 1 <i<p,.
Let f e V? c V’, we apply (-, f) to the terms on the right-hand side. Then by

t+m+1-r

(L118), (LZ10), and (ZZZ11), we have:

(TTENV, £ = (TOLTH()) = Res 2V (eXD(—z P07 00, 77w, T(f))

= Res. 2"V}, Yy (T(V), 2T*(f)),
TENTON, ) = Xy O HOTE), HT O, £) = (T, Y (TN
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= (L T* Yy (TODI)).
Recall that Res,,g(w) = Res.g(h(z))l (2), see (1.1.3) in [3]. Let i(z) = —z', then by (ZZZZ1),

Res.(—1)" 1z 24T (vl (e HO(=2D)EOu AT (), f)
= Res.(—=1)""' 27" (T V), Yy V], =2 DT ()

= Res. — h(@)" W )V}, T* Yy V) )T (f)))

= —Res, " (v, T* (Y (v, WT* ().

Since an element @ € Vi;,_,,—1 is 0 if and only if (@, f) =0 forall f e V we have:

t+r m—1°
(12)+(22)+(32) =0 =

Res,2" (), = Yw (T}, DT*(f) + T* Yy (TO0, ) + T* Yoy V5, DT ())) = 0

forallr,teN,1<I<p,1<i<p,andfeV But v, 1 < i < p;, are basis elements

t+rml

of W(t), so we have:
12)+(22)+32) =0 =
Res:2" (Y (T(u), OT*(f) = T* (Y (T@), 2)f) = T* (V. DT*(f))) = 0

forallu e Wand f € V’'.ie., T and T* satisty (L.Z13).

(7.2.16)

Finally, we examine the sum (13) + (23) + (33), note that

(13) + (23) + (33)
- _ ;);(Vs m— 1+t) ® (Vt) ® T(T(Vt)mpvé m— 1+t) trZ:Ole:(

o " - -1 _ _ -1
RGSZ(—l)mHZ m—2 4/1(‘)5) ®(Vl-+m+1 r) ®T(Y“2//V(€Z L(l)(—zz)L(O)vaH r,Z)e 4 L(I)T(Vf)))

+ Z DD @) @ TOP T,

s,r=0 k,l
Change the variables (s—m—1+1,1) — (s,r)in (13) and (t,t+ m+ 1 —r) — (s,r) in (23), and

observe that T(v;)'OPT(v;) € Veoma1—r =0if r— s > m+ 1, we have

13)+(23) + (33)
_ Z DD @) @ Ty - i Z(
s,r=0,r—s<m+1 k., s,r=0,r—s<m+1 k,l
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Resz(_l)m+lz—m—2—4/l(v;c')* ® (v;‘)* ® T (va“,/v(ezilL(l)(—Zz)L(O)V;, Z)e—ZilL(l)T(vz)) )

O N e @ TONTMY,

s,r=0,r—s<m+1 k,l

which is contained in the subspace []’ W) @ Wir)* ® Vipsom—1 C U®3. Then

5,r=0,r—s<m+1
(13)+(23)+(33) =0 &= =TT + TODP T — Res: (1" 1224
T(Y‘i}/VVV(ez‘]L(l)(_ZZ)L(O)er7Z)e—z“L(l)T(vlsc)) = 0in Vesypi.
Let f €V

r+s—-m-1°

by (L172), (210), we have:

and apply (-, f) to the terms on the right-hand side of this equivalency, then

(T OV £) = TNV T ()
= Res.2"(Yw(e V(=0T =z He v, T*(f))
= Res, 2" (v}, e DYy (T(V)), =) T*(f))
= Res. 2" (v}, Yy (T* (1), DT (V))
(TODW' T, ) = Res 2" Yy (e V(=2 HHOT()), 2 He T (), f)
= Res 2" (vs, T* (e VYV (T O], =2 ))
= Res.2" (v}, T* (Y}, (f- DT (V))).
By (ZZZ1), (217, and (1.1.3) in [I73], we have:
Res, (=)™ "2 4T (e 02OV e K0T, )
= Res, (- )™ 122 EOT (), Yy, 0. DT ()
= Res (= 1) 728, T (Vi (T* (), =2 W)
= —Res, " (v}, T* Yy (T (), w)V))).
It follows that
(13)+(23)+(33) =0
Res:2" (v}, =Yy (T (). DT W) + T* Yy, (£, T O)) + T* Xy (T* (). 2v))) = 0,

forallr,s e N, 1 <k<ps,1<I<p,and f eV

rs_m_1- Again because v;, 1 < k < py, are

basis elements of W(s)*, we have:
13)+(23)+(33) =0

, , ) (7.2.17)
Res.2" (Yo (T*(f, DT @) = T* (Y3, (f, DT W) = T* Yy (T (), D)) = 0,
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forall f e V' andu € W.i.e., T and T* satisty (2Z14).

Note that for given p, g, r € N, the subspaces V,®@ W(g)*"®@ W(r)*, W(p)* ®V,@ W(r)*,
and W(p)* ®@W(g)*®V, are in direct sum within the vector space U(p)®U (q)®U(r). Furthermore,
by Definition [T we have U = H;fq’rzo U(p)® U(g) ® U(r), and by our discussion above,

an+@2n+@31e l_l Vist-m—1 @ W(1)* @ W(s)" C U@,

5,1=0,s+t>m+1

(12) + (22) + (32) € ]_[ W) ® Visyome1 ® W(r)* c U,

t,r=0,r—t<m+1

IH+@H+Ge [ W @Wn) @ Vypr c U

s,r=0,r—s<m+1

Then it is easy to see that

/ op . _
P2 mT3 =123 pr2+r3 oy 3 =0

— (1D)+ 21+ @1)=(12)+(22) + (32) = (13) + (23) + (33) = 0,

and by (Z2Z13), (ZZI8), and (ZI1Z), we see that 11y -, 713 — 123 o F12 + 113 m! 123 = 0 if
and only if T : W — V is an m-relative RBO, and T and its coadjoint 7™ satisfy (ZZ13) and
(CxT3). i.e., T : W — V is a strong m-relative RBO. Now the proof is complete. O

Remark 7.2.6. If we want to drop the condition that the conformal weight 4 of W is 0, then
U = V=W is a Q-graded vertex algebra. We have to adjust the definitions of « -, 8 and
a 7P B in Definition 172 to accommodate the appearance of the term z > in ¥ yW,)a =
Y‘XVV:V(eZL(l)(—z‘Z)L(O)u*,z‘l)a, where u* € W’ and a € V. Although we might still be able to
find a way to make things work, this is not our focusing point for solving the VOYBE, so we

make the assumption that A = 0.
With notations similar to those in Corollary [.TTH, we obtain an embedding
StrRBOLp(W, V)(m) < SDoi((V < W) < (V < W'))(m), m € Z. (7.2.18)

Here StrRBOp(W, V)(m) is the set of level-preserving strong m-RBO from the V-module W to
V, and the set on the right-hand side is the set of skew-symmetric solutions to the m-VOYBE in
the VOA V < W’.
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7.2.3 The coadjoint case

In this subsection, we let (U, Yy, 1, w) be a VOA. Consider the case when (W, Yy) is
the coadjoint module (U’, Yy-), and T is a level-preserving map 7' : U’ — U. By (ZZ10) we
have:

T* : U’ i (U/)/ = U’ <T*(f)’g> = <f’ T(g)>’ f’g € U/'

In particular, by Definition T3 and (Z210), if T is symmetric (resp. skew-symmetric), then
we have T* =T (resp. T* = -T).

Lemma 7.2.7. The intertwining operator MZ y &iven by (LXT) is the same as the vertex

operator Y g,/ y that is given by the skew-symmetry formula with respect to Yy.

Proof. Leta,b € U and f € U’ be homogeneous elements. Then by (Z_ZTT) we have:

Y Da,b) = a, Y,y (@ V(=M f,27)b)

— (ez‘lL(l)a’ Yy (b, _Z—l)ezL(l)(_Z—Z)L(O)f>

_ <ezL(—l)YU(e—z‘1L(l)(_ZZ)L(O)b, _Z)ez‘lL(])a’ (_Z—Q)L(O)f>
- (_1)Wt(f)+wt(b)Z2wt(h)—2wt(f)<YU(eZ’lL(l)a’ Z)e—z*‘L(l)b’ I

1) st(h)n W)= wi(b)-wi(a) . ) _
= (=MD 22D NN e (LD @iy wisr-wipr-i-j-1 (LY D), )
j=0 i>0 ©J:
_ Z—wt(a)+wt(b)—wt(f) » W) jwi(D) 1 ; 0 jb
= = =D (LD @)wiay+wib)-wi(f)—i— j-1 (L(1)'b), f)
j20 >0 v

— (_1)wt(a)z—2wt(a)<f’ YU(e_ZL(l)a, _Z_l )eZL(l)b>

= (f, Yy (e D (720 g =1yl

= (Yur(a,~2)f, e Vby = (YY) ,(f, 2)a, b).
Hence Y9, ,(f.2)a = Y, ,(f.)afor f € U anda € U, and so Y9, =YY, .. o

It is also easy to check that the rest of the intertwining operators appearing in (Z2T3)

and (IZ13), with V = U, satisfy Yy = Yy, Y5, = Yy, Yi, = Yy, and Y5, = Yy, In

particular, if 7 is skew-symmetric: T = —T*, then both (_213) and (214)) become

Res.2" (~Yu(T(f). 2T(8) + Ty (T(f). 2)) + TV, (f. T (g) = O,
which is the condition that T is an m-relative RBO. Hence we have the following conclusion.
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Lemma 7.2.8. For m € Z, any level-preserving skew-symmetric m-relative RBOT : U — U

is strong.

Furthermore, given a symmetric linear map 7 : U’ — U, we note that the skew-
symmetrization r = T — o(T) given by (ZX3) is a nonzero element in (U =< U )@, due to the fact
that the tensor form of 7 and o(7T') are in linearly independent subspaces, in view of (Z272).
Then by ("XIX), we have an embedding:

RBOK(U’, U)(m) < SDsi(U  UYS(U = U))(m), (7.2.19)

where RBOil}(U ", U)(m) is the set of skew-symmetric level-preserving m-relative RBOs T :
U’ — U. Combining (ZT19) with (I36), we have an embedding

SDyoi(UBU)( = RBO}L(U'’, U)(m)) > SDyoi(U = U)B(U = U))(m), (7.2.20)
which leads to the following conclusion.

Corollary 7.2.9. Let (U, Yy,1,w) be a VOA and m € Z. Every skew-symmetric solution r of
the m-VOYBE in U is a skew-symmetric solution to the m-VOYBE in U = U, via the embedding
(Z7m).

7.3 Relations with the classical Yang-Baxter equation

Theorems [Z110 and 29 are generalizations of the classical results about the rela-
tionship between relative RBOs (also known as -operators) and the CYBE for (finite-dimensional)

Lie algebras (cf. [@], see also [45, 64]).

7.3.1 Solutions of CYBE and relative RBOs

We first observe some facts about the first-level Lie algebra of a VOA and its modules.
Let V be a VOA, W be an admissible V-module, and 7 € Homp p(W, V) be a level-preserving
linear operator.Recall the first level V| of the VOA V is a Lie algebra with respect to the Lie
bracket
[a,b] = aph, a,b e Vy,

and W(1) is a module over the Lie algebra V;, with respect to
p: Vi —=agl(W()), pla)u=apu=Res,Yw(a,2)u, aecVi,uecW(). (7.3.1)
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Suppose that V| consists of quasi-primary vectors, that is, L(1)V; = 0 (see [27] as
well as [60]). Then by (Z3), for u* € W(1)*, v € W(1) and a € V|, we have

% % (_ 1 )Wt(a) i * *
Gagu*,vy = (u*, )" = (L) @iy j-2v) = (W, —agv) = —(u", pl@)y).
j=0 J:
Therefore, the first level W(1)* of the contragredient V-module W’ is the dual module of the Lie
algebra Vi-module W(1):

pr Vi > gl(W)"), p'(au” =apu” =Res, Yy (a,2u”, aeViu" € W) (7.3.2)

Let (U, Yy,1, w) be a VOA such that U(1) consists of quasi-primary vectors and let
r=Yeort = N2, X al®pl— B @ a be a diagonal skew-symmetric two-tensor in D(URU).
Let

P1
R:=r'= Za} ®B -Bl ®al € U U, (7.3.3)
i=1

Then R is a skew-symmetric two tensor in the Lie algebra U(1).

Lemma 7.3.1. If r is a skew-symmetric solution to the 0-VOYBE in U, then R is a skew-

symmetric solution to the CYBE in the Lie algebra U(1).

Proof. For any «, € U(1), since L(1)a = L(1)B = 0, by Definition (Z12), we have

aoB=IBal, a(B=(DaB=IBal, a-’B=pa=I[Bal (7.3.4)

By Lemma [ T4, if r is a solution to the 0-VOYBE, then taking the projection of 7y -9 r13 —

3 -6 ria + ris -g)p 3 onto the homogeneous subspace U(1) ® U(1) ® U(1), we obtain

1 1 171 1 rop 1 _
Fla 0Tz =T ora+trzg 13 =0

By (IZ34) and the definitions in (Z111)—(IZ113), we have
1 1 _ 17 1 _ 1 rop 1 _
ool = [R13, R12], Izl = [R23, R12], Fiz'o Tz = [R23, R13],

where R, R13, and Ry3 are elements in the universal enveloping algebra ¢/(U(1)) defined from
R in (I33) in the conventional way. Hence we have [R}>, Ri3] + [R12, Ro3] + [R13, R3] = O,
which is the CYBE (see (I'2Z3)). O
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Let T, : U" — U be given by (LT28). Consider the restriction map
TR = TrlU(l)* . U(l)* - U(l). (735)

Lemma 7.3.2. If T, : U' — U is a O-relative RBO, then Ty is a relative RBO of the Lie algebra
U(1) with respect to the module U(1)*.

Proof. Let f,g € U(1)*, and a,b € U(1). Since L(—1)af € U(1)*, and U(1) consists of

quasi-primary vectors, by (T3) we have (L(—1)(a;f), b) = {arf, L(1)b) = 0. Moreover, since
ajf € U(1 - j)* =0for j>2, by (LI22) and (L32) we derive

L

(f(O)a,b) = Res(e DYy (a,~2)f.by = Y (=125

Jj=0 J

1)/
Y @by

!

= (aof, b) = {L(=D)(a1 /), b) = {p"(a)(), b).

Hence f(0)a = p*(a)(f). If T, : U" — U is a O-relative RBO, then by (Z31) and the definition
formulas (L123) and ([Z33), we have

0 =T:(f)Tr(g) — T/Tr(f)og) — Tr(f(0)T-(g))
= [Tr(f), Tr(®)] = Tr(0"(TR(NE) — Tr(p™ (TrR()(S)),

for all f,g € U(1). Thus Tg : U(1)* — U(1) is a relative RBO. O

With the notations in this subsection, by Lemma 31, Lemma 372 and Theo-

rem [LTT0, we have the following diagram.

s.-S. r is solution to 0-VOYBE in UL%HS.-S. R is solution to the CYBE in U(1)

Thm. m:mﬁ ]I[aﬁ]

T, is a O-relative RBO of U ﬂ) Tg is a relative RBO of U(1)

where ““s.-s.” in this diagram is the abbreviation of “skew-symmetric”. In particular, the classical
result about constructing a relative RBO from a solution of the CYBE [43] can be viewed as a

corollary of Theorem [ T-T0.

7.3.2 Solving the CYBE from relative RBOs

We can also recover the process of using relative RBOs to produce solutions of the
CYBE in the semi-direct product Lie algebras [4] by restricting the corresponding process for

the VOYBE to the first levels.
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In this subsection, we let (V, Y, 1, w) be a VOA, and (W, Yy) be a V-module of con-
formal weight 0. Let U = V< W’. Let T € Homip(W,V). Forr = T — o(T) = 22,1 =
Yoo lP:tl T(vf) ® (vﬁ)* - (vlt.)* ® T(vﬁ) € U®?in (CZ3), we let

P1
R:=r = Z TOHO®W) =) @TW}) e (Vi@ W) )e (Vi ® W(l)") (7.3.6)
i=1

be the homogeneous part of r in U(1) ® U(1), where {v}, .. .,v},l} is a basis of W(1) while
{(vD*, ..., (v},)"} the dual basis of W(1)*.

Lemma 7.3.3. Assume that Vi, W(1) and W(1)* are spanned by quasi-primary vectors. Then

the operations -, -, and -;)Op in Definition L2 satisfy

aob = [a, b], apb = —[a, bl ay’b = [a, b];
apv* = p*(a)y’, agv' = —p*(ayv’, ay*v' = play’;
vi(0)a = —p*(a)v”, v (0)a = p*(a)v”, v)P0)a = —p*(a)”,

fora,b e Vi andv* € W(1)*, where p* is given by (L32).

Proof. Since wt(a) = wt(b) = 1, and L(1)a = L(1)b = L(1)v* = 0, the equations on first two
rows follow immediately from (Z112), (Z11IR) and (Z32). Let u € W(1). By assumption we
have L(1)u = 0, and wt(u) = wt(v*) = 1. Then

(v*(0)a, uy = Res(Yyy,, (v*, 2)a, u) = Res (Y (a, —2)v*, e"Du) = (=agv*, u) = (=p*(a)v", u),
(") (0)a,u) = Res (Y, (XD (=2 2v*, 27 Da, u) = Res, ()2 (Yo (a, ~z~ W, & H0u)

= Res:(—1)2 %) an" (=12 u) = (" @)V, w),
nez

((V*Y°P(0)a, u) = Resz(Y‘yVV/'V(e_ZL(l)(—Z_Z)L(O)v*, —z7 Het Vg, )
= Res, ()2 XYy (a, 2~ W', & L)

= Res: (-1 (Y anv'?"™ ) = (~p" @V, u).

nez

Since v*(0)a, (v*) (0)a and (v*)’°P(0)a are contained in W(1)*, we arrive at the conclusion. O
Recall (cf. [4]) that V| @ W(1)" carries a semi-direct product Lie algebra structure:
[a+u*,b+V*] =[a,b] +p" (@)W —p*(b)u*, a,beVy, u*,v:e W) . (7.3.7)
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Proposition 7.3.4. Assume that Vi, W(1) and W(1)* are spanned by quasi-primary vectors.
Letr =T —0o(T) € U®? be as in (IZ3), and let R = r! be as in (I3R). If r is a skew-
symmetric solution to the 0-VOYBE in V <~ W’ (see Definition Z13), then R € (V| x W(1 Y82 g

a skew-symmetric solution to the classical Yang-Baxter equation in the Lie algebra Vi <~ W(1)*
[Ri2, Riz] + [Riz, Ros] + [Ri3, Raz] = 0. (7.3.8)

Proof. Define a projection map on U®? by

piii UBUBU - U U e U(), pii( Y. Y elepiey)=> o epey,
q,5,t=0 i,j,k (A

where the sums over i, j, k are finite, and cy? e U(r), ,8; € U(s), and y,i e U(t), for g, s,t = 0,
and i, j,k > 1. By (IT19)-(1T1), the computations in the proof of Theorem 23, together

with Lemma 373, we derive

P1L11(r12 0 713) = Iy 0 T3

=Y (T(v,boT(v}) ® ()" @) =TV @ TEH® ()" = () (OT) ® () ® T(v,i))
ik

= 2 (- TOhTEe G @ () - P TEHED 8 TEH © 0
ik

' TEDEY ® 0N ©Trh) = IRz, Risl,

PLLI(=23 4 T12) = —T)3 6 T12

=) ( —TOD T @ (W) + ) @ TW)HT(K]) ® ()"
il
— 0D @ (DY OTEH e Te))

=>. (m;) ®p (T ® (V) + ) ® [T, TPl ® ()"
il
— O] @' TEDEN ©T)) = ~[Riz, Ras],

PL11(r13 ¥ 123) = 15 0¥ 123

=Y ( — TP ® V) @ T )" = () @ T @ (1)) P(OT ()
k,l
+oyer) e T(v})g)PT(v,i))

= ( ~ T ® () ®p TNV + )" ®T(v) @ p (T
k.l
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— )" @ (] @ [T, TDI) = ~[Riz, Rosl
Since the projection pj 1, is clearly a linear map, we have
0=prii(ri2-ors —r3-ori2+r3-o0r3) = —[Riz, Rizl = [Riz, Rzl — [Riz, Rasl.
Hence R € (V; = W(1)*)®2 is a solution to the classical Yang-Baxter equation. O

On the other hand, consider the restriction of the level-preserving linear map T €

Homy p(W, V) to the first level. We write
T = T|W(1) . W(l) 4 Vl. (739)

Proposition 7.3.5. Let V| and W(1) be spanned by quasi-primary vectors, and let T € Hompp(W, V).
If either one of the conditions (L123)), (LZX13), or (L2ZT4) with m = 0 holds, then T : W(1) —
Vi is a relative RBO. In particular, if T is a 0-strong relative RBO, then T is a relative RBO.

Proof. Letu,v € W(l) and f € V}. Assume that T satisfies (ZT23). Then we have

[T (), T W] =T )T () =T (T wov) + T ©)T (v))

(-t
!

= T (T W) +T( )

720

=T (T @)v) =T (p(T (v)w) + T(L(=DT (v)10).

L-1Y/(T(v))u)

Note that L(—1)7 (v)1u € W(1), and (L(-1)T (v)1u, w) = (T (v)1u, L(1)w) = 0, for all w € W(1).
Hence L(-1)7 (v)1u = 0. Then we have 7 (u(0)7 (v)) = =7 (o(T (v))u) and [T (w), T (v)] =
T (T (m)v) — T (o(7 (v))u). Thus 7 is a relative RBO.

Assume T satisfies (L213). Note that 7" = T*|V1* : Vi — W(1)". Then by (_XTT)

and the definition of YV

A and Yy~ in Section 5.4 in [27], we obtain

0 = Res (Y (T(w), )T (f) = T* (Y} (T (@), 2)) + T* Yy (1, DT (), v)
= Res. (T(f), Yw(e D (=0T (w), 2 )v) - Res; (£, Y(e V(= HHOT (), )T (v))
+Res (T(f), Yy (O (=M Ou, 27T (v))
= (LT (T o) + (f, T oT (v)) = {f, T (O (v))
= ([ [T @), TW] =T (p(T )wv) + T (o(T (")u)).

206



Hence 7 is a relative RBO. Finally, assume that 7T satisfies ("2ZT4)). Then

0 = Res, (Y, (T* (), T @) = T* (Y, (£ DT @) + T* Yy (T*(f), ), v
= Res; (Yw (T (w), =T (f).v) = Yy (T W), =) f. T W) + Yy 0, =T (). T ()
=T (T Wov)) — {f, T (oT W) + (fs T (wO)T (),

and so 7 is a relative RBO. m]

The proof of Proposition 373 immediately gives an easy way to construct 0-strong

relative RBOs like in Example [Z172.

Corollary 7.3.6. Let V| and W(1) be spanned by quasi-primary vectors, and let ¢ : W(0) —
Vo = C1 be an arbitrary linear map. Then a relative RBO T : W(1) — V| of the Lie algebra
V1 can be extended to a 0-strong relative RBOT : W — V by letting

T|W(0) = ¢, T|W(1) =97, and T|W(n) =0, n>2.

Now apply Propositions 34 and 739 and assume that Vi, W(1) and W(1)* are
spanned by quasi-primary vectors. Then we have another diagram that illustrates the relation-
ship between the 0-VOYBE and 0-strong relative RBO of VOAs on the one hand and the CYBE
and the relative RBO of Lie algebras on the other.

. . Prop. 33 . . .
T is a O-strong relative RBO of VOA 22 % 7 is a relative RBO of Lie algebra

Thm. [’D]I ﬂ[ a]

r=T—Tis asolution to 0-VOYBE ' > 5% = 7 — 72! is a solution to CYBE
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