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Abstract
Models of bottom-up visual attention such as the “saliency
map” predict overt gaze under laboratory conditions while sub-
jects view static images or videos while seated. Here, we show
that the saliency map model predicts gaze at similar rates even
when applied to video from a head-camera as part of a wear-
able eye-tracking system (Tobii Pro Glasses 2) while subjects
drive an automobile or are passively driven while sitting in the
front passenger-side seat. The ability of saliency to predict
gaze varies depending on the driving task (saliency better pre-
dicts passenger gaze) and external conditions (saliency better
predicts gaze at night). We further demonstrate that predictive
performance is improved when the head-camera video is trans-
formed to retinal coordinates before feeding it to the saliency
model.
Keywords: Visual Saliency; Wearable Eyetracker; Saliency
Map; Bottom-up Visual Attention

Introduction
Models of bottom-up visual attention such as the “saliency
map” (Itti, Koch, & Niebur, 1998; Itti & Koch, 2000) predict
overt gaze in humans freely viewing pictures (Bylinskii, Judd,
Oliva, Torralba, & Durand, 2018). While saliency predicts
looking even to dynamic video stimuli in humans and other
primates (Chen et al., 2021), previous research has generally
assumed that saliency is applied to a “visual stimulus” (an im-
age or video) which the subject is viewing on a fixed screen.
Under such conditions, different parts of the visual stimulus
compete to pull attention, and this is what visual attention
models predict. In contrast, under natural conditions, the vi-
sual stimulus is the subject’s entire visual field (and possibly
things outside the visual field, e.g. visual memories). Under
unconstrained natural conditions, subjects execute complex
gaze movements involving head, eye, and body movements,
to accomplish arbitrary and often implicit ecologically rele-
vant tasks, such as satisfying curiosity, searching for food,
appreciating beautiful vistas, navigating in the environment,
or hitting a baseball (Land, 2015, 2009). Even under free-
viewing conditions with simple (underconstrained) instruc-
tions such as “watch the video”, subject behavior reflects un-
known and idiosyncratic self-generated tasks depending on
the mood of the subject, his recent memories, and his per-
sonality and preferences (Borji & Itti, 2014; Koehler, Guo,
Zhang, & Eckstein, 2014).

We address the question of whether saliency map models
can successfully predict gaze using input from a head-fixed

camera (also known as “egocentric” view) even under real-
world and freely-moving conditions. Furthermore, we ad-
dress what kinds of preprocessing steps or modifications to
the model are necessary to ensure proper function. These pre-
processing steps address our uncertainty regarding the proper
coordinate system of bottom-up visual attention. Is the visual
input to attention best presented in retinotopic (eye-centered),
egocentric (head-centered or torso-centered), or allocentric
(world-centered) coordinates? Furthermore, should visual in-
put be degraded to match the reduction in visual acuity that
occurs at higher retinotopic eccentricities (“foveation”)? It is
known that the instantaneous drive for (voluntary) gaze shifts
is driven by cells in the deeper layers of midbrain superior
colliculus (SC), which represents both visual targets as well
as gaze targets in a retinotopic coordinate system (in other
words, centered on the retina) (Takahashi & Veale, 2023).

In this paper, we use a sedentary task involving little body
movement (driving a car, or riding in the passenger seat of
a car). Driving requires heavy concentration (looking where
the car is going, scanning for dangers, checking the rearview
mirrors and blind spots (Lappi, 2022)). Estimating driver
attention is not a new field. A plethora of attempted mod-
els including saliency have been applied to datasets (usually
collected in simulators) (Kotseruba & Tsotsos, 2022). While
driving, subject gaze behavior likely differs significantly from
“free viewing” conditions in the laboratory (Kübler et al.,
2015; Lappi, 2016). The nature of driving requires subjects
to look “straight ahead” often (towards the vanishing point)
(Palazzi, Abati, Solera, Cucchiara, et al., 2018).

We compare the performance of a model of bottom-up vi-
sual attention (the saliency map model) under various ex-
perimental conditions (driver versus passenger, night ver-
sus day), as well as various stimulus preprocessing condi-
tions (head-centered versus eye-centered, foveated versus un-
foveated). Previous models of visual attention while driving
(e.g. (Palazzi et al., 2018)) have implicitly assumed that at-
tention is described in “car-coordinates” (i.e. from the point
of view of a fixed forward-facing camera attached to the top
of the car), without describing how an attention model might
handle other coordinate systems or whether performance is
improved or reduced by transformations of the visual input.
(Adeli, Vitu, & Zelinsky, 2017) showed that transformation
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of the visual stimuli into SC-coordinates (Ottes, Van Gis-
bergen, & Eggermont, 1986) improved the performance of
a saliency map model in predicting the endpoints of saccades
during free viewing or search tasks, although they included
several additional steps in the model. Other research into
egocentric visual attention (Schumann et al., 2008) shows
that while human head and eye positions are aligned, salient
(high-contrast, high-entropy) regions tend to be centered in
retinal coordinates but not necessarily in head coordinates.
However, acute neural recordings from monkey hippocam-
pus and entorhinal cortex, related to e.g. place cells de-
scribed in rodent, have confirmed that mental-map orientation
(for e.g. navigation) is primarily couched in terms of head-
direction in contrast to torso-direction or eye-direction (Mao,
2023; Mao et al., 2021), implying that spatial decisions such
as overt attention may occur in a head-centered coordinate
system, even if the final output for gaze is achieved retino-
topically (Takahashi & Veale, 2023). However, the visual in-
formation available to the brain arrives with self-motion and
blur removed by the counter-rotation of the eyes caused by
the vestibulo-ocular reflex (VOR), suggesting that gaze tar-
gets are not influenced by perceived motion caused by self-
movement.

Previous approaches to gaze prediction of egocentric video
have all use use head-centered video (albeit with deep neural
networks which apply unknown transformations of the input).
Several studies have investigated the application of saliency
to predicting gaze of a wearable eyetracker, beginning with
(Yamada et al., 2012). The field of egocentric gaze predic-
tion has advanced significantly, albeit with a focus on inte-
grating additional cues such as hand location (detected in the
subject’s own egocentric view) to predict gaze better, or to
identify tasks, which are highly predictive of gaze. The ad-
ditional cues are combined with visual information to predict
gaze (Huang, Cai, Li, Lu, & Sato, 2020). (Tavakoli, Rahtu,
Kannala, & Borji, 2019) performed several tests including a
test regarding vanishing point in predicting gaze in a driving
game, which is relevant for this study. Furthermore, the task-
specific features (such as vanishing point) are only predictive
while the subject is performing the task (a problem addressed
by e.g. (Peters & Itti, 2007), using scene gist to estimate
task). At this point, we are in danger of attempting to build a
full cognitive model of all behavior (which would of course
be necessary to fully model gaze behavior, which is part and
parcel of the overall behavior of a subject). Thus, we first
address the simpler issue of how bottom-up circuits influence
gaze during an arbitrary (real-world) task. Future work will
address the isolation of these bottom-up factors from other
parallel and interacting factors such as task, subject experi-
ence, or memory, which likely have a much stronger effect
on gaze in most situations but which will require more so-
phisticated models and experiments.

In this research, we apply a simple conventional model of
bottom-up visual attention (the IK saliency model) and find
that saliency does predict gaze better than chance even under

top-down task conditions such as during driving. However,
gaze is better predicted by saliency under conditions with
fewer top-down constraints (riding in passenger seat). Fi-
nally, surprisingly, prediction performance is better at night,
possibly due to the higher contrast of artificial lighting in the
dark. Indeed, the purpose of (safety) lights at night is largely
to draw attention to important things. Thus, this result may re-
flect a higher correspondence/correlation between important
things and visually salient (lit up) things at night.

Pre-processing of visual stimuli to project them into retino-
topic space slightly improved prediction performance. This is
likely due to this method taking advantage of subjects’ VOR
and OKR to stabilize the visual image on the retina. This can-
cels out distracting perceived motion and blur due to move-
ment of the subject or the outside world. We were surprised
that this did not improve performance better. In hindsight,
this is unsurprising given that human adults (unlike e.g. cats)
tend to keep their heads relatively stable and upright even un-
der dynamic natural conditions (Einhäuser et al., 2009, 2007;
Holt, Ratcliffe, & Jeng, 1999).

Methods
Behavioral Experiments
Subjects drove (or were driven in) a consumer automobile
(Mazda CX5) on a fixed public course in Hiroshima, Japan.
The course required roughly 15 minutes per loop. Four em-
ployees of Mazda Motor Co. voluntarily participated in the
experiments (Tab. 1), all being experienced drivers. The ex-
periments were approved by the ethics and safety board at
Mazda Motors Corporation. Each subject completed one
trial under each experimental condition. Each trial included
two back-to-back loops around the course. Trials took place
between 2PM and 5PM (“day”, which sometimes included
dusk) or between 6PM and 9PM (“night”) in late February
(22-24) in Hiroshima, Japan. All subjects completed one trial
for each task condition (driver versus passenger) and each
time condition (day versus night), i.e. a total of four trials.
However, data collection was only possible for two subjects at
night. Weather conditions were clear or cloudy for all exper-
iments. Subjects memorized the course before each trial, and
were intimitely familiar with the area containing the course
and the roads comprising the course.

Table 1: Subject properties
Subject Age Sex
A 30s M
B 40s M
C 50s F
D 60s M

Equipment and Analysis
Subjects wore a Tobii Pro Glasses 2 (TG2)1 wearable eye
tracker, secured via a safety band around the back of the head.

1Tobii AB, Stockholm, Sweden, https://www.tobii.com/
products/discontinued/tobii-pro-glasses-2
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The TG2 connected wirelessly to a laptop computer running
eyerevealer2 to stream and save video (h264 1920x1080 at 25
Hz), eye (100 Hz), and inertial (IMU – 100 Hz) data.

The streamed TG2 data (stored as MPEG-TS video and
JSON files) was resampled and eye and IMU data synchro-
nized with head-camera video. Gaze samples were converted
from 3D Euclidian vectors provided by TG2 into visual an-
gles (Euler angles: yaw and pitch).

Gaze Preprocessing/Saccade Detection
Gaze signals were smoothed and interpolated using a median
filter and Savitzky–Golay filter (0.039 seconds width) accord-
ing to the preprocessing steps of the remodnav model (Dar,
Wagner, & Hanke, 2021). We furthermore reimplemented
the eye movement and event detection algorithms, but found
TG2’s gaze sample rate of 100 Hz to be too low/noisy for
effective saccade detection. This may be especially true due
to the large number of small eye movements under the driv-
ing conditions. As such, all further analyses in this paper use
instantaneous gaze position, rather than saccade endpoints.
This has the advantage of not masking situations where gaze
continues at a location due to it having high saliency, whether
it does so due to a local (micro)saccade, or simply a fixation
of increased duration.

Isometric Visual Angle Coordinates

Figure 1: Conversion from raw video to isometric visual an-
gle coordinates. 1) Raw video image. 2) Lens distortion re-
moved (pinhole camera coordinates). 3) Isometric visual an-
gle pixel coordinates. 4) Embedded in mean luminance back-
ground and reduced contrast of interface.

Raw head camera videos were transformed so that pixel co-
ordinates correspond to (head-centric) isometric visual angles
(Fig 1).

Head-camera video was undistorted based on lens and
camera intrinsic parameters to represent a theoretical pinhole
camera’s image. We then constructed an image representing
isometric visual angles by sampling pixels from the pinhole

2https://github.com/flyingfalling/eyerevealer

camera image on a regularly spaced grid of visual angles (Eu-
ler yaw and pitch angles) projecting outwards from the pin-
hole. We used a grid of spacing 0.010 degrees of visual angle
(dva).

After the preprocessing step described above, the isomet-
ric head-camera images represent visual angle in head co-
ordinates, with the center of the image corresponding to
straight forward from the head. Head-coordinate images
were then embedded in a mean-luminance gray background
((r+ g+ b)/3) using a mask specifying isometric visual an-
gles which hit the image plane and thus contain useful vi-
sual information. We next reduced the contrast of image pix-
els near the interface between the contentful embedded im-
age and the gray background based on their distance to the
edge using a Gaussian taper (standard deviation 2.0 dva). A
pixel on the image/background interface will have a max-
imum contrast of zero (100% gray background, 0% image
data) and a pixel three standard deviations (6.0 dva) from the
image/background interface will have a maximum contrast of
99.7%.

Conversion to Retinotopic Coordinates

Figure 2: Head- and eye-centered isometric visual angle co-
ordinate images, with (+fov) or without (-fov) foveation. The
dark red circle represents the present gaze position in the im-
age.

In a retinotopic (eye-center) image, the center of the image
corresponds to the current gaze position. We produced retino-
topic (eye-centered) images by counter-rotating isotropic vi-
sual angle images based on the subject’s gaze-in-head posi-
tion at the time the video image was captured (Figure 2, bot-
tom). Specifically, pixels in each head-space isotropic visual
angle video frame were translated in a direction opposite the
average angle of the gaze-in-head for all gaze samples dur-
ing that video frame, with missing values filled with the same
default mean gray luminance.
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We furthermore applied a foveation model to the visual im-
ages. A foveation model resamples the image to mimic the
reduced acuity observed in subjects as a function of visual
eccentricity (and, in complex models, angle). Parts of the im-
age further away from the current gaze location are blurred
more. We constructed foveated versions of both the head-
space and the eye-space (isometric) videos (Figure 2, right) to
dissociate the effect of foveation from that of eye-centering.
We specifically implement the foveation method of (Perry &
Geisler, 2002), with the blur wavelength (degrees per cycle
= dpc) rising linearly from the center of gaze in every direc-
tion with a constant slope of 0.020 dva blur per additional dva
eccentricity, and an intercept of 40.0 cpd.

For video frames without corresponding gaze samples (due
to blinks, etc.), the entire output frame is a constant gray with
the mean luminance of the (unshown) video frame.

Saliency Methods

Figure 3: Top-left: Input image (isometric visual angle coor-
dinates). “fin”: combined saliency, “ori”: orientation feature
channel, “col”: color, “mot”: motion, “lum”: luminance.

Visual saliency was computed via an implementation of
the Itti-Koch saliency map model (IK) (Itti & Koch, 2000)
implemented in salmap rv 3. Attention models and saliency
maps often operate in image (pixel) space, with the assump-
tion that subjects will dynamically modify the parameters of
the saliency maps in their brain to adapt to the relative prop-
erties and size of the content. While this has yet to be proved,
subjects are known to dynamically adapt other aspects of be-
havior (saccade amplitude) based on stimulus and task prop-
erties (Rothkegel, Schütt, Trukenbrod, Wichmann, & Eng-
bert, 2019). This assumption is not problematic when sub-
jects view clearly-delineated visual stimuli (images, videos)
on a computer screen, but does not hold up when one consid-
ers that a subject moving around in the natural world will have
the full visual field as their “content”, and the size of the re-
gion on which they focus may depend upon the task or other
considerations. We computed the saliency map model with
luminance, orientation (4 angles), color (combined RG/BY),
and visual motion (4 directions, starting at 2.0 dva/sec ve-
locity at level 0), with the first level having frequency of 1.2
cpd, and every subsequent level half that (4 centers starting at

3https://github.com/flyingfalling/salmap rv

level 1, 2 surround level per center, offset starting at 3 levels
from center). Map competition was accomplished via iter-
ative Difference-of-Gaussian winner-take-all method (Itti &
Koch, 2000) (center gaussian sigma 1.0 dva, excite weight
0.5, surround sigma 12.0 dva, inhib weight 1.5, 4 iterations,
constant inhibition 0.01).

Figure 4: Visualization of the method to compute the per-
centile (i.e. AUROC) for each gaze sample. Each of the three
inserts shows a visual input (left) and saliency map (right).
This example visual input is eye-centered, and the current tar-
get of gaze is shown by the large GREEN circle at the center
of each image. Random draws from this subject’s other look-
ing locations in head-coordinates are shown as RED circles.
The gaze position of the NEXT look (100 ms later) is shown
in BLUE. Saliency AUROC is the percentile (scaled to [0,1])
of the saliency values within the BLUE circle within in the
set of saliency values within the RED circles.

The IK saliency map computes regions of an image which
are locally conspicuous based on difference between features
present at fine-grained central regions versus coarse-grained
surround regions at multiple spatial scales. Separate maps are
computed for each feature channel aspect (each orientation
angle, each motion direction, each color opponency channel)
at multiple center-surround spatial scales, then combined via
spatial competition into a map representing the conspicuous
regions in that feature channel (i.e. most conspicuous areas
of motion, orientation, color, regardless of the direction, an-
gle, or opponency that caused it) (Fig. 3, “mot”, “lum”, “col”,
“ori”). Finally, the feature channels are combined again via
spatial competition into a final map (Fig. 3, “fin”) represent-
ing the regions of the image which differ most from their sur-
roundings in general.

We apply this saliency map model to every frame of the
isometric visual angle coordinate space videos produced for
every foveation/centering condition (head+fov, eye-fov, etc.).
The results are output as 1.0 dva/pixel images. We then de-
termine whether the image locations where a subject looked
have have higher saliency values than locations where the
subject did not look (drawn from a null model which is the
subject’s prior distribution of looking locations across all tri-
als, see Fig. 4). This is the “shuffled AUC (sAUC)” method
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(Bylinskii et al., 2018). Note that to account for visual pro-
cessing and motor coding and execution delay, we sample
the visual saliency of the corresponding retinotopic location
from a timepoint δt = 100 milliseconds before the timepoint
of the gaze sample. This is especially important for the eye-
centered condition, since the video location specified by the
current gaze location will change depending on how the sub-
ject moves their eyes. 100 ms is a safe value which takes into
account the maximum time for executing a saccade (20-50
ms) as well as other factors such as visual propogation (50-
70 ms to superior colliculus or primary visual cortex, where
saliency is thought to be computed/represented (White, Berg,
et al., 2017; White, Kan, Levy, Itti, & Munoz, 2017; Veale,
Hafed, & Yoshida, 2017)).

In reality, we determine the percentile of the gazed loca-
tion’s saliency value within the null model of all gazed lo-
cation’s saliency values, which corresponds to the AUROC
when one has only one true positive value. The mean of
all such percentiles corresponds to the overall AUROC of all
gaze positions (i.e. true positives). An AUROC of 0.5 means
that the saliency map model predicts gaze no better than the
null model (i.e. the subject’s prior looking distribution). An
AUROC over 0.5 indicates that subjects looks are on aver-
age better predicted by saliency than the null model. And
AUROC less than 0.5 mean that the subject is intentionally
looking away from salient targets.

Results
Behavioral Phenomenology

Figure 5: Left: Gaze position over the time course of a single
trial represented separately as horizontal and vertical angle
in head. Right: Density of head-centric gaze positions – a
tendency for the eyes to look straight ahead is clear.

Subjects tend to keep their eyes focused within the central
15°, although some looks occur up to about 40°horizontally
(the limit of our measurement) and 25°vertically (Fig 5). Pre-
vious reports have established that large gaze shifts are of-
ten accomplished by a combined head-eye (and sometimes
trunk/torso) movement along with counter-rotation of the eye
in the head, and that humans prefer to keep the eyes in a com-
fortable position relative to the head (Radau, Tweed, & Vilis,
1994; Crawford & Vilis, 1991; Land, 2006). Our observed
gaze distributions lie comfortably within this region.

Saliency Prediction of Gaze
While the AUROC of saliency at predicting gaze varies from
moment-to-moment (sample-to-sample), the average over the

Figure 6: AUROC predicted by saliency model for each of
the centering/foveation conditions for each time point of an
example trial (Day, Passenger). Saliency sampled 1.25 dva
Gaussian around gaze location. Right: marginal distribu-
tion of AUROC of all samples in this trial. Note it is simi-
lar among the different foveation/centering conditions (mean
and standard deviation shown in inset for each condition).

trial is greater than chance (Fig. 6 for example trial). Prepro-
cessing conditions (centering and foveation) have a weak ef-
fect on saliency prediction performance, with the largest ob-
served improvement over the default head-fov being eye+fov,
which improves on AUROC by 0.014 in night driving con-
ditions (Fig. 7). Taking the average improvement over all
conditions, we find that applying the eye+fov preprocessing
causes significantly improved AUROC over head-fov condi-
tion (right-tailed t-test(df=3, t=3.1779), p = 0.025087).

Figure 7: Mean and variance of AUROC among sub-
jects for each task condition, driving condition, and
foveationg/centering condition.

Similarly, environmental conditions (day/night) and task
condition (driver/passenger) have a significant effect on mean
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AUROC (Fig. 7). In general, passenger gaze is better pre-
dicted by saliency than driver gaze (especially during the day,
+0.024). Saliency better predicts gaze during the night (max
of +0.054 AUROC for driver night over day).

Figure 8: Marginal distributions of per-sample percentiles
(AUROC).

Digging into the cause of this, we see the marginal distri-
bution of the percentiles of individual gaze samples is highly
skewed towards extreme values (1.0) in the night (Fig. 8, right
two plots), whereas in the day it is more balanced (left two
plots). The large number of high-percentile samples indicates
that a highly salient thing drew gaze, and that there were not
many other salient things in the visual field to look at (at least
around where the subject usually looked).

Note that the large peak at exactly 0.5 AUROC in all
marginal plots corresponds to gaze positions predicted by an
all-gray visual stimulus (due to being in blink or losing track-
ing 100 milliseconds before the current gaze sample). These
samples could be removed to improve mean AUROC. This
is analogous to a situation where a subject looks to a spatial
position for which we have no visual data (lying outside the
camera field of view, e.g. looking to a target at 50 degrees ec-
centricity). We do not exclude these large looks even though
the target location has artificially reduced saliency due to our
not having access to the visual stimulation available to the
subject at the time of choosing to look there.

While task and environmental conditions cause different
predictivity of saliency, there is also variance between sub-
jects even within the same task and environmental conditions
(Fig. 9). For example, subject A gaze was predicted better by
saliency than subject B while driving at night (+0.075 AU-
ROC).

Figure 9: AUROC of best model (eye+fov) shown separately
by subject, task, and driving condition.

Discussion
The ability of a bottom-up visual attention model (IK saliency
map) to predict gaze is maintained even under real-world nat-
ural task conditions such as operating or being a passenger
in a vehicle, albeit the predictivity of the model changes de-
pending on task conditions. Predictive ability is on par with
previously reported values for IK saliency prediction in the
laboratory (from 0.53 to 0.65 in human adults depending on
the visual stimulus and report) (Bylinskii et al., 2018; Chen
et al., 2021).

Recently, more performant models use information theo-
retic (Bruce & Tsotsos, 2007) or (pre-learned) statistical prin-
ciples to determine which features draw gaze (SUN (Zhang,
Tong, Marks, Shan, & Cottrell, 2008)), or learn arbitrary
function approximators (convolutional neural networks such
as DeepGaze or SalGan (Pan et al., 2017)). Such models have
achieved high performances up to 0.77 AUROC (human in-
terobserver models achieve 0.81, i.e. this is the theoretical
maximum for a model which does not adapt based on be-
havior and which represents the average subject’s behavior,
rather than a specific subject). These models are trained on
human adult behavior and thus encode not only bottom-up vi-
sual features, but also social, cultural, and ecological norms,
as well as learned experiences of subjects about the world
(e.g. gravity, statistical regularities in modern architecture)
(Hayes & Henderson, 2021). The IK model is simple and
mimics basic visual processes in early visual areas (White,
Berg, et al., 2017). We have shown that it can be extended
to real-world data from wearable eye trackers in naturalistic
conditions, rather than stimuli presented in the laboratory. We
hope that the study of embodied behavior will continue to ex-
pand and that models will be evaluated under more realistic
conditions such as those presented here.
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