Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title Treatment of Human Cancer Using Relativistic Hadron Beams

Permalink https://escholarship.org/uc/item/54s4c3q4

Author Chu, William T.

Publication Date 2003-08-09

Treatment of Human Cancer Using Relativistic Hadron Beams

August 9, 2003

William Tongil Chu Lawrence Berkeley National Laboratory Berkeley, California

Hadron Beam Therapy*
Rationale and History

Berkeley Lab legacy

An Overview of Proton Therapy Facilities.
Future Development

Beam scanning (IMpT)
pCT, pPET, etc
Carbon-ion therapy

* Proton and light-ion beam therapy.

E. O. Lawrence and Cyclotron (1930)

and a strate fit.

The first cyclotron- Lawrence and M. S. Livingston (1930).

The single dee is 12 cm in diameter.

E.O. Lawrence placed strong emphasis on medical uses of his cyclotrons.

His brother John H. Lawrence, M.D., became the Father of Nuclear Medicine.

August 9, 2003 LBNL-53507

Cornelius A. Tobias 1918–2000

1956- Pioneered proton therapy Clinical trials to 1986 1500 patients treated

Stereotaxic Apparatus for Humans).

August 9, 2003 LBNL-53507

Accelerator and Fusion Research Division

Slide 6

Depth-Dose Curves for Proton and Photon Beams

rererer

BERKELEY L

lui)

Dose Sparing: Protons vs. Photons

rererer

BERKELEY LA

Proton Beam

Photon Beam

Proton vs. Photon Beams

• protons– lower entrance dose; no exit dose

Intensity Modulated Radiation Therapy (IMpT vs. IMRT)

- proton beams always produce superior dose distribution (protons provide higher cure rate with lower complication rate)
- fewer proton ports are needed than for a comparable photon treatment (the cost per cure is lower for proton therapy)

Example: IMRT with photons Use 9 fields to construct a highly conformed dose distribution with good dose sparing in the region of the brain stem. (T. Lomax, PSI)

Example: Proton therapy planning using 4 dose fields. The advantage compared with photon IMRT is the general reduction of dose burden outside of the target volume. (T. Lomax, PSI)

August 9, 2003 LBNL-53507

Accelerator and Fusion Research Division

Photons vs. IMRT vs. Protons– Example

Cervix Cancer

Clinical Specifications (LBNL/UCD/MGH)

ITEM	SPECIFICATIONS
Range in Patient	$max = 32 \text{ gm/cm}^2$, min = 3.5 g/cm ²
Range Modulation	continuously adjustable
Range Adjustment	continuously adjustable
Average Dose Rate	2 Gy/min for 25 x 25 cm ² field
	at 32 g/cm ² full modulation
Spill Structure	scanning ready
Field Size	fixed: 40 x 40 cm ² , gantry: 40 x 30 cm ²
Dose Uniformity	~2.5% over treatment field
Effective SAD	scattering: 3 m from the first scatterer
	wobbling: 2.6 m from the center of magnet
Lateral Penumbra	<2 mm over penumbra
	due to multiple scattering in patient

Medical Synchrotron, Loma Linda / Fermilab

rererer

Accelerator and Fusion Research Division

Rotating Gantries for 4π Treatment

August 9, 2003 LBNL-53507

Accelerator and Fusion Research Division

August 9, 2003 LBNL-53507

Accelerator and Fusion Research Division

Slide 19

The Loma Linda University Medical Center Proton Therapy Facility was commissioned in 1991, and has successfully treated more than 7200 patients.

BERKELEYLAB

	Brain and Spinal Cord	Gliomas (intermediate and low-grade) Isolated brain metastases Pituitary adenomas Arteriovenous malformations	
	Base of Skull	Meningiomas Acoustic neuromas Chordomas	
	F	Chondrosarcomas	
	Eye	Uveal Melanoma	
	Head and Neck	Nasopharynx (primary and recurrent) Oropharynx (locally advanced)	
	Chest and Abdomen	Stage A lung cancer (medically inoperable)	
	Pelvis	Prostate Unresectable pelvic cancers Chordomas and chondrosarcomas	
	Pediatrics	Brain and spinal cord tumors Orbital and ocular tumors Sarcomas of the base of skull and spine Abdominal and pelvic malignancies	
xt 0, 0000			

Demographics of Patients (1990-2000, Loma Linda)

Diseases Treated at Loma Linda (to 6.01)

LOMALINDAUN WERSTYMEDICALCENTER COMPLETED PROTON PATIENT SUMMARY FROM I NCEPTION THROUGHJUNE 2001

DLAG NOSI SCATEG OR Y	1990	1991	1992	1993	1004	1995	1996	1997	1998	1999	2000	2001	τοται	%
	1350	1331	1332	1333	1334	1333	1330	1331	1330	1333	2000	2001		
Choroidal M elanoma	3	7	13	4	13	8	8	13	9	1	10	9	98	1.6%
Pituitary		10	17	6	5	1	7	2	2	7	6	8	71	1.1%
Acoustic N e.roma		3	3	0	3	3	4	2	2	9	7	5	41	0.7%
Meningioma		8	16	8	8	7	7	19	12	9	17	4	115	1.8%
Astrocytoma		4	26	4	6	5	17	9	7	10	13	10	111	1.8%
Other Brain		6	6	7	9	15	3	17	31	36	41	19	190	3.0%
Head & Neck		3	26	20	26	27	49	41	43	55	65	30	385	6.2%
Prostate		4	198	234	234	308	476	507	631	447	491	344	3874	61.9%
Other Pelvis		1	8	10	4	0	8	3	8	5	7	8	62	1.0%
Craniopharyngioma		0	3	0	1	1	2	4	4	2	2		19	0.3%
Orbital		3	2	0	0	1	2	11	13	12	0	4	48	0.8%
Paraspinal Tumors		1	11	8	6	4	7	7	12	15	14	4	89	1.4%
Chordoma/Chordrosarcoma		0	13	26	21	25	28	38	51	44	34	22	302	4.8%
Sarcoma		3	3	3	12	2	4	8	15	9	17	2	78	1.2%
Other Chest		0	0	7	11	34	16	34	44	27	49	20	242	3.9%
AVM				1	31	17	14	6	21	12	12	6	120	1.9%
O ther Abdominal					5	7	9	4	9	23	13	14	84	1.3%
SN VM					21	29	20	35	30	57	101	37	330	5.3%
TOTAL BY YEAR	3	53	345	338	416	494	681	760	944	780	899	546	6,259	100.0%

August 9, 2003 LBNL-53507

Accelerator and Fusion Research Division

Slide 23

Clinical Outcome of Prostate Treatments (Loma Linda)

			Photon	Proton Beam
		Prostatectomy	Radiation	Treatment
			(75 Gy)	(75 CGE)
Clinical Outcome	Survival @ 5 years	>95%	>95%	>95%
	Incontinence	≤8%	≤5%	≤1%
Morbidity	Grade III/IV GI/GU Toxicity	0	≤10%	≤1%
	Impotence	≤60%	≤31%	Under study Expected ≤30%
Quality of Life		Requires hospital stay; treatment of side effects	Often requires treatment of side effects	Typically return to home or work

Proton Therapy Scientific Milestones

Proton Therapy Facilities Around the World (2001)

Growth of Proton Treatments

rerrer

BERKELEY LA

lui)

- Needs for clinical proton facilities in the US*
 - ~375,000 cancer patients will turn to radiation therapy (conventional) for curative treatments
 - ~130,000 of the above will benefit if treated using 3D conformal radiation therapy (which is best delivered using proton beams)

,	IMRT	Proton
# pts trreated per year	250	1000
# fractions treated per year	8000	16000
Treatment per day	32	64
Facilities needed	520	130

* Based on the **Final Report of a Select Panel** (chaired by Lester J. Peters, Univ. Texas, M.D. Anderson Cancer Center, 1992; no proton advocators in the panel) to the **National Cancer Advisory Board**.

Proton Therapy Facilities Built by Industries

					Beam Courses				
Name of Institution	Main Accelerator	Particle	Energy MeV/u	Oper.	Horizon	Vertical	45?	Rotating Gantry	Research
Loma Linda	Synchrotron	proton	250	1990	1			3	1
HIMAC / NIRS Chiba	Synchrotron D~40 m x 2	p∼Xe	800 (q/m=1/2)	1994	2 ¹² C	2 ¹² C			5 p~Xe
PTF/ NCC-HE Kashiwa	Cyclotron D ~4 m	proton	235	1998	1			2	
HARIMAC Hyogo	Synchrotron D~30 m	proton 12C	230 320	2001	1 ¹² C	1 ¹² C	1 ¹² C	2	1
PTF, PMRC U. Tsukuba	Synchrotron D~7 m	proton	250	2001				2	2
W-MAST Wakasa-Bay	Synchrotron D~10 m	proton	200	2001		1			1
NPTC / MGH Boston	Cyclotron	proton	232	2002	1			2	
PTF / CC Shizuoka	Synchrotron D~6 m	proton	235	2002	1			2	
Zibo, China	Cyclotron	proton	232	2002	1			2	
Ilsan, Korea	Cyclotron	proton	232	2002	1			2	
MDACCr, Houston, TX	Synchrotron	proton	250	2006	1			5	1
HUP, Philadelphia	Bids accepted	proton	250	2006	1			3	1
Palermo, Sicily	RFP	proton	250	2006	1			1	1

Planned: ETOILE, Lyon (France); Yokohama City University; Kanagawa Cancer Center; Kyushu University; Ibaraki-ken; Gifu-ken; Aichi-ken CanceR Center; Hukui-ken Hospital (Japan); Iksan, Jeonbuk (Korea)

August 9, 2003 LBNL-53507

Construction Costs of Proton Therapy Facilities*

Proton Therapy Facility	Major Contractor	Facility Descriptions -accelerator	-gantry	· -fixed	Tech Comp Cost	Tech + Bldg Cost
Loma Linda (1991)	SAIC/FNAL	250 MeV synchrotron	3	2/3		\$76M
NPTC, Boston (2001)	IBA	232 MeV cyclotron	2	2 empty	\$24M	\$49M
NCC, Kashiwa, Tokyo (1999)	Sumitomo	235 MeV cyclotron	2	1		\$60M
Tsukuba (2001)	Hitachi	250 MeV synchrotron	2	1/2		\$67-70M
Wakasa Bay (2002)	Hitachi	200 MeV synchrotron	0	1 H/V	acc \$20M beam \$15M	\$43-45M
Shizuoka (2003)	Mitsubishi	210 MeV synchrotron	2	1		

* Based on data supplied by James Slater (Loma Linda); Michael Goitein (MGH); and Sadayoxhi Fukumoto (Japanese facilities

Cost Analysis for Protons vs. Photons – 1

	Proton	IMRT	Multiplicative factor for photon facilities to equal the capability of one proton facility
BASIC COST Tech. components Conventional facility Facility TOTAL	~ \$37M ~ \$35M ~ \$72M	~ \$3M ~ \$5M ~ \$8M	Wrong conclusion: Proton cost ~ 9 X IMRT cost
# of therapy rooms # of ports for conformal therapy	4 – 5 2 - 3 ports	1 5 - 10 ports	X4 - 5 The length of time to finish
Conformal therapy delivery per hour per room	3 (capable now)	2	each fraction X1.5
# of fractions per treatment	potentially fewer than 32 fx/tx	~ 32 fx/tx	X1.2
Useful life of the accelerator(s)	Useful life of synchrotron facility ~ 25 - 35 years	Useful life of linacs ~ 10 - 12 years	X2
NET MULTIPLICATIVE FACTOR			X14 - 18, take X16 as a nominal figure

Conclusion: A proton facility may cost as much as 9 IMRT facilities; but, it can treat 16 times as many patients during its lifetime. Protons are cost-effective!

Cost of Protons vs. Photons –2

	Proton	IMRT						
Cost of Proton vs. IMRT Facilities								
Technical Components in 25 years	Useful life time is ~ 25 years: ~ \$37M	8 linacs ~ \$3 X 8 = \$24M to be replaced after 10 to 12 years ~ 48M						
Cost of conventional facility	For one: \$35M	To house 8 linacs ~ \$40M						
Total cost of the therapy facility in 25 years	~ \$72M	~ \$88M						
Labor Cost								
Maintenance	1 proton facility	8 linac facilities						
Therapy planning	Proton conformal therapy requires 1-5 ports	IMRT requires 5-10 ports						

Conclusion:

Setup

Patient Preparation and

• Costs per treatment for protons and IMRT are comparable.

Fewer ports and possibly fewer

fractions

- "Cure / no complication" probability- lower for protons than IMRT.
- Cost-benefit ratio is advantageous for protons over IMRT.

Larger number of ports and larger number of fractions

- The most important attribute of hadron therapy --
 - •Dose localizing characteristics
- To take a full advantage of this characteristics --
 - •Three-dimensional dynamic conformal therapy delivery
 - Intensity Modulated Proton Therapy

(IMpT) \leftarrow compare \rightarrow IMRT

- •Raster-scanning-LBNL
- •Pixel scanning- PSI, GSI

Accelerator and Fusion Research Division

Accelerator and Fusion Research Division

The GSI beam-scanning technique allows any shape to be irradiated. Here, plastic sheets immersed in water have been irradiated in a doughnut shape.

GSI, carbon beam

Accelerator and Fusion Research Division

August 9, 2003 LBNL-53507

Accelerator and Fusion Research Division

Slide 38

Bevalac (1971-1993) and Hadron Therapy

Press conference announcing the acceleration of heavy ions in the Bevatron (August 1971).

rerrer

BERKELEY

Hadron Energy vs. Range

Accelerator and Fusion Research Division

Scattering & Straggling of Hadrons

Accelerator and Fusion Research Division

Growth of Beam Size by Multiple Scattering

rerrer

BERKELEY

Beam Spots vs. Depth- protons and carbon ions

rerere

BERKELEY LAB

Accelerator and Fusion Research Division

RBE Values of Modulated Carbon-ion Beams

Modulated 290-mev/u Carbon-Ion Beams

		RBE Values					
a.	LET*	Single	Fraction	Four Fractions			
Position	(KeV/μ)	Cell Culture	Skin Reaction	Skin Reaction			
Entrance	22	1.8	2.0				
SOBP (6 cm)	(C)		1.				
Proximal	42	2.1	2.1	2.3			
	45	2.2	2.2				
Middle	48	2.2	2.3				
	55	2.4	2.3				
Distal	65	2.6	2.3	2.9			
	80*	2.8	2.4	3.1			
Distal fall-off	100	•••	···	3.5			

*Linear energy transfer (LET) value of fast neutrons used in cancer treatment at the National Institute of Radiological Sciences is also 80 keV/m.

recerci

BERKELEY LA

lui)

Local Control After Carbon-ion Therapy

	Dose	Period		
Site	GyE/Fractions	6 mo	12 mo	
Head and neck	48.6/18	3/3 .	3/3	
	54.0	2/3	2/2	
	59.4	3/4		
Brain				
Astrocytoma	50.4/24	3/3	3/3	
Malignant glioma	66.8/33	3/7 ·	1/3	
Lung	59.4/18	6/6	2/5	
	64.8	4/4	1/1	
a 2	72.0	3/3		
Liver	49.5/15	2/2		
	54.0	2/3		
Prostate	54.0/20	2/2		
Uterine cervix	52.8/24	3/3		

Tsujii et al., 1997

August 9, 2003 LBNL-53507

Accelerator and Fusion Research Division

RBE and OER

Relative Biological Effectiveness (RBE) and Oxygen Enhancement Ratio (OER) of various hadrons.

Comparison between the (A) CT-PET image and (B) treatment planning at the center slice of the treatment volume.

Radioactive Nuclei Production Cross-Sections vs. Ep

The simulation results of linear production densities of ¹¹C, ¹³N and ¹⁵O vs. depth. The absorbed energy by the tissue is superimposed using a rightside vertical scale for depth comparison.

August 9, 2003 LBNL-53507

Accelerator and Fusion Research Division

PET Image of Hadron Beams

Carbon-ion beams in a phantom. High pixel counts are recognized (A) at the narrow Bragg peak of a monoenergetic carbon-ion beam and (B) at the 6-cm–SOBP.

5 cm

Proton beams in a phantom. High pixel counts are recognized throughout the proton beam track (A) in the monoenergetic beam and (B) also in the 6-cm–SOBP proton beam.

В

Tissue Ranging Using Radioactive Beam

Stopping Region Determined by PEBA

The PEBA camera was used primarily to verify the stopping point of light-ion beams in phantoms and a few animals and to verify positioning of a few patients by low intensity irradiations with the patient in place.

PEBA was also used to demonstrate the possibility of treating patients using radioactive beams.

Pattern Test 63x63 mm, 20 mm apart, 3 mm step

An example of ¹¹C distribution measurements with a 3D spot scanning system.

Patient Treatments at Bevalac

August 9, 2003 LBNL-53507

Accelerator and Fusion Research Division

Slide 58

High-LET Particle Therapy– Milestones

August 9, 2003 LBNL-53507

Accelerator and Fusion Research Division

Slide 60

Heavy Ion Medical Accelerator at Chiba (HIMC)

Karolinska Institute (Sweden), and Heidelberg-GSI (Germany).

Proton vs. Light-Ion Therapy

	x ray	protons	Light ions			
Bragg peak	none	+	++ (sharper)			
Scattering (penumbra)	—	—	+			
RBE*	—	_	+			
	(1.0)	(1.0-1.1)	(~1.8-2.4)			
OER [†]	—	—	+			
	(3)	(3)	(~1.4)			
Number of fx	—	—	+++			
per tx [‡]	(32)	(32)	(16, 8, 4, 2)			
Capital investment	~\$10M	~\$50-100M	~\$250-350M			
* Relative Biolog	* Relative Biological Effectiveness – standard or no advantages					
[†] Oxygen Enhan	cement Ratio	+ good, ++	better, +++ best			

[‡] Number of fractions per treatment

- Protons- Commercialization by private sector
- Light-Ion Therapy
 - HIMAC, operating since 1994, has treated 1000 patients using carbon ions
 - Harima Facility in Hyogo started treating patients with carbon ions since 2001
 - GSI treating complex head/neck fields with advanced 3-d scanning system
- Exciting new developments add more solid evidence for Light-Ion Therapy
 - Hypofractionation studies at HIMAC can have significant impact on economic modeling
 - Effectiveness of precision treatments at GSI indicate maturity of advanced delivery technology for widespread application
 - Several new initiatives in carbon-ion therapy-
 - Heidelberg-GSI, Germany-- ground breaking, 2001
 - Karolinska Institute, Stockholm, Sweden
 - TERA Project, Milan, Italy
 - Gunma University, Kyushu, Ibaraki, Gifu (Japan)-- design
 - Busan, Korea– a proposal

August 9, 2003 LBNL-53507

Accelerator and Fusion Research Division

Slide 69