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CLINICAL RESEARCH ARTICLE OPEN

Defining and distinguishing infant behavioral states
using acoustic cry analysis: is colic painful?
Joanna J. Parga1, Sharon Lewin2, Juanita Lewis2, Diana Montoya-Williams1, Abeer Alwan3, Brianna Shaul4, Carol Han3,
Susan Y. Bookheimer3, Sherry Eyer5, Mirella Dapretto3, Lonnie Zeltzer2, Lauren Dunlap3, Usha Nookala3, Daniel Sun3,
Bianca H. Dang3 and Ariana E. Anderson3

BACKGROUND: To characterize acoustic features of an infant’s cry and use machine learning to provide an objective measurement
of behavioral state in a cry-translator. To apply the cry-translation algorithm to colic hypothesizing that these cries sound painful.
METHODS: Assessment of 1000 cries in a mobile app (ChatterBabyTM). Training a cry-translation algorithm by evaluating >6000
acoustic features to predict whether infant cry was due to a pain (vaccinations, ear-piercings), fussy, or hunger states. Using the
algorithm to predict the behavioral state of infants with reported colic.
RESULTS: The cry-translation algorithm was 90.7% accurate for identifying pain cries, and achieved 71.5% accuracy in
discriminating cries from fussiness, hunger, or pain. The ChatterBaby cry-translation algorithm overwhelmingly predicted that colic
cries were most likely from pain, compared to fussy and hungry states. Colic cries had average pain ratings of 73%, significantly
greater than the pain measurements found in fussiness and hunger (p < 0.001, 2-sample t test). Colic cries outranked pain cries by
measures of acoustic intensity, including energy, length of voiced periods, and fundamental frequency/pitch, while fussy and
hungry cries showed reduced intensity measures compared to pain and colic.
CONCLUSIONS: Acoustic features of cries are consistent across a diverse infant population and can be utilized as objective markers
of pain, hunger, and fussiness. The ChatterBaby algorithm detected significant acoustic similarities between colic and painful cries,
suggesting that they may share a neuronal pathway.

Pediatric Research (2020) 87:576–580; https://doi.org/10.1038/s41390-019-0592-4

INTRODUCTION
All infants cry to motivate their caregivers to respond to their
needs.1 As a result, caregivers tend to interpret a baby crying as a
signal of distress or need. Infants follow a predictable cry curve
with a peak in intensity at around 6–8 weeks, and persistence after
3 months may be considered pathologic.2 The ability to
distinguish pathological cries in infants using acoustic feature
extraction and classification algorithms is validated in the
literature; 27 prior studies were able to discriminate pathological
infant cries (Down’s syndrome, brain damage, Cri du Chat) with an
average accuracy rate of 96.9%.3

Acoustic analyses of an infant’s cry could be instrumental in the
home setting. Despite caregivers’ best intentions, interpretation of
infant cries can be difficult. The perceptions of the listener can be
influenced by their sleep habits, mental state, their own
physiologic response to the cry, and other sociodemographic
factors.4,5 Machine learning could offer an objective assessment of
the acoustic features of infant cries to translate their behavioral
states.6 This would contribute significantly to infant care by
distinguishing if an infant was experiencing pain or if they were
responding to another behavioral state (i.e., hunger or being
fussy).
It is not only in the home environment that machine learning

could aid in infant care. Clinical care and especially hospital
settings focus on mitigation of infant pain. Historically, it was

believed that infants were incapable of feeling pain.7 However,
recent research into the developmental physiology of nociception
indicates that the opposite is true. Untreated pain in neonates can
leave a lasting neurophysiological footprint associated with
decreased brain8,9 and body growth,10 altered neural connections
and organization,11,12 poorer cognitive and motor function,13

impaired visual–motor integration, and poorer executive function-
ing skills.14,15 To assess pain, providers rely upon rating scales such
as the Neonatal Infant Pain Scale,16 premature infant pain
profile,17 Face, Legs, Activity, Cry, and Consolability scale,18 and
Crying, Oxygenation, vital signs, facial Expression, and Sleepless-
ness scale,19 among others. Most estimates of inter-rater reliability
of infant scales are high16,20,21 with some studies showing poor
agreement across these scales in measurements,22,23 suggesting
that both clinical factors and the choice of scale may strongly
influence the magnitude and the reliability of these pain
measurements. In addition to measurement of pain using
subjective infant pain scales, smaller-sample studies have found
that infants in pain cry differently from infants who are not
experiencing pain—with algorithms showing between 74% and
90% accuracy, as discussed further in the Supplementary Material.
These small-sample algorithms were not portable by nature; this

leaves room for a universally applicable machine learning program
to help home caregivers and medical providers accurately assess
infant cry and determine when the infant is experiencing pain vs.
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another behavioral state. On the basis of finding a quantitative
measure of infant cries, we created a free phone app,
ChatterBabyTM, as an accessible and portable algorithm deploy-
ment to predict whether a baby’s cry was due to one of the three
behavioral states: pain, hunger, or fussiness. The algorithms were
then applied to infant cries where parents reported their infants as
having colic. This process simulates an initial clinical visit where
the parent has complaints of colic and a workup for conditions like
reflux esophagitis or infantile migraine may be initiated and
diagnosed. We hypothesized that colic cries would be acoustically
similar to pain cries, a finding that would explain and validate
caregiver distress regarding caring for an infant with colic.

METHODS
This ChatterBaby study was conducted according to and approved
by the UCLA Institutional Review Board (IRB#15-000931). Painful
stimuli were defined by needles: routine vaccinations (without
analgesia) and elective ear-piercings. Because audio was recorded
in the natural environment, infants were in a variety of settings
while being recorded, with ambient occurring background noise
(adult voices, etc.) using different recording devices (e.g., cell-
phones). Full details on data acquisition and statistical methodol-
ogy are provided in Supplementary Material. In Supplementary
Material, we also present a secondary cry detection algorithm that
screens out cries from baby neutral/baby laughing/nuisance
sounds.

Data
After quality control, the study population for the primary cry
states (Fussy, Hungry, Pain) included 691 infants (36% female) who
were between the ages of 0 and 24 months (average age
3 months) for the primary training dataset of pain/hungry/fussy.
Approximately 55% of infants’ ages were missing due to the
voluntary submission of this variable. In all, 75% of the infants
assessed were <6 months of age. All primary cries were from
unique episodes and users. The colic population included 64
infants between the ages of 2 days and 4 months, with a median
age of 2 months.

Pain cries (n= 353) were captured during two acutely painful
stimuli (vaccinations, ear-piercings). Caretakers characterized other
cries as “fussy” and “hungry,” followed by two independent
characterization of each cry sound by two multiparous raters
(authors A.E.A. and & B.S.). No cries in the ChatterBaby training
database were from any of the authors’ children. Cries without
unanimous agreement among the three-member rating panel
(11.8%) were excluded from further analyses and were not
reclassified. This process resulted in 171 fussy cries, 167 hungry
cries, and 353 pain cries in the final training cohort. Colic cries
were nominated by the parent/caretaker. Multiple colic cry
samples (n= 380, 64 babies) were acquired across each cry
episode, including ending periods where whimpering/fussing may
have been present, to avoid selection bias in sample collection
and assessment. This method of data acquisition yielded roughly
30 s (6 samples) of cry time from each child, a process that
provided a wider range of time than is typically seen in most
studies. Spectrograms for a single cry from each type are
presented in Fig. 1.

Modeling
Infant cries were summarized using the acoustic feature set
previously used to identify pathological vocal patterns in
neurological disorders such as Parkinson’s Disease24 and Amyo-
trophic Lateral Sclerosis,25 extracting >6000 acoustic features from
each cry. Supra-segmental (utterance-level) acoustic features were
extracted from 5-s cry clips26–28 using IS13_ComParE.conf in
OpenSmile.29

To create the cry translation algorithm, a probabilistic random
forests classifier was used to predict the category of a cry (fussy,
hungry, pain) given its acoustic features using default parameter
settings in R (500 trees, 1/3 of features sampled with replacement
as possible predictors to construct individual trees).30 The random
forests out-of-sample classification accuracy, analogous to the
cross-validation error, was computed to estimate the testing
accuracy of the algorithm on new data (Table 1). Further technical
details are presented in Supplementary Material.
Using only the 200 most predictive features, the algorithm was

retrained on the primary cries and tested on the colic cries, with
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Fig. 1 Spectrograms from 5-s audio samples of each cry type showing the distribution of frequencies across time for four different infants.
Acoustic features were used to train a machine learning algorithm to predict across three primary cry states: hungry, fussy, pain. This
algorithm was tested on infant cries from colic to assess whether acoustic features of pain were present in cries from infants with parental-
assessed colic
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roughly 6 colic cries obtained from the same cry episode per child
(~30 s). Testing longer cry segments from the colic infants reduces
the probability of selection bias; acoustic sample included segments
of milder fussiness and whimpering following extreme bouts of
crying, when available. The average pain probability from colic cries
was compared with the out-of-sample pain-level predictions from
the primary cries (fussy, hungry, pain) to test the hypothesis that
colic cries were more closely associated with pain than the hungry
or fussy states. We additionally assessed for longitudinal/age effects
by testing for temporal drift within a single child who was not used
for algorithm training, using cry recordings collected six separate
times during routine vaccinations between 87 and 618 days of age,
without the usage of analgesic.

RESULTS
The primary cry algorithm achieved overall accuracy in classifying
among the three states as 71.5%, with the confusion matrix shown
in Supplementary Material. The primary cry algorithm, trained as a
multivariate classifier, was then treated as a binary classifier for
obtaining Pain accuracy rates by pooling the Fussy and Hungry
predictions as a “No Pain” category. The predictive accuracies for
painful cries are shown in Table 1: sensitivity/recall of 0.91 (95%
confidence interval (CI)= 0.876, 0.937), specificity= 0.68 (95% CI
= 0.628, 0.727), positive predictive value= 0.75, negative pre-
dictive value= 0.87. The prevalence of Pain was 0.51, with the
algorithm performing significantly above chance (p < 0.001). The
area under the curve (AUC)= 0.88 as shown in the receiver
operating characteristic curve in Supplementary Material. The AUC
measures how effective the algorithm is at separating true
positives and false positives over a range of decision thresholds.
Although the random forests algorithm had access to >6000

features, many of these features had low importance values and were
not useful to discriminate among the different cry states, as shown
in Supplementary Material. When testing the algorithm on colic cries,
the probability of pain was significantly different across the three
predictive states (p< 0.0001, analysis of variance), with the typical
colic cry being predicted as 73% chance of painful. When comparing
colic cries to fussy/hungry cries, the pain levels in colic were
significantly greater than the pain levels seen in fussy and hungry
cries (p< 0.001, 2-sample t test, Bonferroni corrected). As shown in
Fig. 2, the average pain rating in colic was 0.73 (sd= 0.21), while the
average out-of-sample predicted pain rating for fussy was 0.30 (sd=
0.18), hungry= 0.38 (sd= 0.19), and pain= 0.67 (sd= 0.20).

Previous literature demonstrated an increased pitch (funda-
mental frequency) in both pain and colic31 cries compared to fussy
and hungry states, which we confirmed here (p < 0.05; 2-sample t
test with Bonferroni correction, see Supplementary Material). The
pitch did not significantly differ between colic and pain (p > 0.05,
2-sample t test with Bonferroni correction; see Supplementary
Material). For many acoustic features such as loudness, energy,
and pitch, the ordinal values fell in a spectrum ranging from fussy,
hungry, pain, to colic. This spectrum suggests that colic cries are
more intense acoustically than vaccination cries, although the
clinical interpretation of this acoustic relationship is unknown.
Fussy cries were the mildest acoustically across many acoustic
metrics.

DISCUSSION
It is possible to use mobile recording methods to provide accurate
and usable clinical information on an infant’s cry and behavioral
state. With 70–90% accuracy, an easily accessible mobile app was
built off of prior knowledge of the acoustical features of
pathological cries in infancy. It was used to further explore a
common diagnosis of infancy affecting one in five neonates and
defined entirely by excessive crying: colic.
The acoustic markers of pain were multiple and complex,

extending far beyond changes in pitch as was reported previously
in the literature.31 The colic cries were not different from pain cries
in their fundamental frequency (2-sample t test, p > 0.05), but the
colic fundamental frequency was significantly elevated compared
to hungry and fussy vocalizations (p < 0.05, Bonferroni corrected).
This confirms the earlier findings of Lester et al. and St. James-
Robert,32,33 which relied on significantly smaller-sample sizes than
those assessed here.
Our work demonstrated that colic cries are more similar to pain

cries than to either fussy or hungry cries, suggesting that colic
could be a painful condition for infants or share similar source
processes.34 Often colic occurs in the evening and clinicians do

Table 1. Predictive accuracy of the random forests classifier for
identifying pain cries vs. hungry vs. fussy cries, assessed using the out-
of-sample accuracy

Calculated diagnostic accuracy parameters

Sample size 691

Prevalence 0.51

Sensitivity 0.91

Specificity 0.68

PPV 0.75

NPV 0.87

LR+ result 2.81

LR− result 0.14

The primary algorithm was trained on these three cry states that were not
developmentally dependent, to assess whether pain ratings differed in
babies with colic and without colic. Roughly 51% of cries were painful, but
the ChatterBaby algorithm performed significantly above chance and
correctly flagged 91% of pain cries
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Fig. 2 The ChatterBaby algorithms were trained initially using three
cry states: Fussy, Hungry, and Pain. The algorithms were validated
both internally using the out-of-bag testing accuracy as well as
externally; the algorithms were tested on a separate subset of baby
cries from Colic (as defined by the parent). Colic cries had
significantly higher acoustic measures of Acute Pain compared to
Fussy and Hungry (p < 0.001)
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not observe it and have to rely on caregivers’ reports of the crying.
Positive reinforcement and support for caregivers is considered
the standard of clinical care in colic2 and focuses on helping
caregivers through a stressful period. In 95% of cases of colic, a
thorough workup for underlying medical disorders fails to uncover
a definitive explanation for the infant’s presentation, and these
infants will develop normally once they “outgrow” their colic.
Despite treatment through reassurance from providers, infantile

colic is associated with increased rates of maternal anxiety and
depression.35–39 Our results suggest that parents may be
distressed by the cries of infants with colic because they may
hear acoustic signatures indicative of pain as demonstrated in the
algorithm. As such, clinicians might consider pain control (i.e.,
appropriate Tylenol dosing or behavioral pain control methods) as
part of the management of colic.
There are several limitations to this study. Not all infants may

respond to pain with a cry, thus a subset of infants experiencing
pain may not have been reviewed. Our pain cries were in response
to acutely painful stimuli; chronic pain may not show the same
acoustic features. This could be elucidated with more pain
samples from infants experiencing chronic pain (i.e., hospitaliza-
tion with need for multiple procedures, such as intravenous access
and lumbar punctures). Pain is also a subjective feeling, and
degree of pain experienced by infants in the study could not be
assessed. In addition, colic cries were labeled using parental
assessment. It is not known whether these infants carried a clinical
diagnosis of colic or whether they ever underwent any treatment
for underlying medical conditions. Future studies will focus on
clinically determined colic, rather than relying solely upon parental
assessment. Of note, the diagnosis of colic is often based on
history; so despite this being a limitation, it is likely a technique
used diagnostically in the pediatrician’s office. The environment of
the data collection was varied because it was performed by the
caretakers: infants were in a variety of positions while vocalizing
with naturalistic background noises present including adult voices
and small children and were collected using a variety of recording
devices such as cell-phones. However, the absence of a controlled
environment simulates the variability of the testing environment
in which these algorithms ultimately will be used, providing a
more realistic estimate than previously published work on how
these algorithms will fare when applied to new infants in new
environments. Finally, we did not optimize the machine learning
parameters within this algorithm intentionally, in order to avoid
biasing the testing accuracy estimate. Our results are likely a lower
bound for predictive accuracy, which we will refine with new data
using deep learning algorithms.
Cry profiles may differ by age, which was unlikely to affect our

results in secondary testing. Within the longitudinal vaccination
recordings from a single child who was not used to create the
algorithm, the Fussy/Hungry/Pain algorithm predicted similarly
and consistently that the baby was experiencing pain for all six
trials (average pain probability= 0.63, sd= 0.04). This suggests
that the algorithm was not sensitive to aging effects within the
age range evaluated (Fig. 3, also see Supplementary Material for
Spectrograms of vaccine cry across age). Five-s audio clips from
this child’s vaccinations over an 18-month period are available
online at https://www.youtube.com/watch?v=eu332YZFTkA.
Infant age and demographics were voluntarily provided, resulting
in missing data. Because of this, we could not determine whether
the predictive accuracy of our algorithm depends upon an infant’s
age or whether our algorithm performs differently on preterm
infants or those with developmental disorders. However, for a
single infant not contained in the algorithm training dataset, six
vaccination cry recordings were examined for age-related varia-
tion in pain ratings. These cry recordings were taken between
87 days and 618 days. Overall, the cry patterns were consistent
across age (Fig. 3), but because this was for a single child, we
cannot rule out different growth patterns in other children.

CONCLUSION
Although infant pain has both short- and long-term consequences,
previously there was no automated quantitative device for pain or
behavioral assessment in the home environment where most crying
occurs. We developed a solution as a free smartphone app,
ChatterBaby, available at https://chatterbaby.org. The measurements
derived from the ChatterBaby algorithm may have in-hospital
functions as well- a direction for future research. Passive acoustic
pain assessment could serve as a complement to infant pain scales
or a baseline metric for comparison of existing infant pain scales.
With machine learning, we explored the acoustical features of
excessive crying or colic. Future work will explore further evidence of
whether colic is painful or whether colic merely shares similar
neuronal connections as pain sensations. Such distinction would
identify whether pain control merits as a part of colic treatment. The
benefits and utility of a cry-translation algorithm have yet to be
executed in clinical practice but are promising and wide-reaching,
meriting further investigation.
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