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Network diffusion accurately models the relationship between
structural and functional brain connectivity networks

Farras Abdelnoura, Henning U. Vossa, and Ashish Raja
Farras Abdelnour: faa2016@med.cornell.edu
aDepartment of Radiology, Weill Cornell Medical College, New York, NY, USA

Abstract
The relationship between anatomic connectivity of large-scale brain networks and their functional
connectivity is of immense importance and an area of active research. Previous attempts have
required complex simulations which model the dynamics of each cortical region, and explore the
coupling between regions as derived by anatomic connections. While much insight is gained from
these non-linear simulations, they can be computationally taxing tools for predicting functional
from anatomic connectivities. Little attention has been paid to linear models. Here we show that a
properly designed linear model appears to be superior to previous non-linear approaches in
capturing the brain’s long-range second order correlation structure that governs the relationship
between anatomic and functional connectivities. We derive a linear network of brain dynamics
based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph.
We test our model using subjects who underwent diffusion MRI and resting state fMRI. The
network diffusion model applied to the structural networks largely predicts the correlation
structures derived from their fMRI data, to a greater extent than other approaches. The utility of
the proposed approach is that it can routinely be used to infer functional correlation from anatomic
connectivity. And since it is linear, anatomic connectivity can also be inferred from functional
data. The success of our model confirms the linearity of ensemble average signals in the brain, and
implies that their long-range correlation structure may percolate within the brain via purely
mechanistic processes enacted on its structural connectivity pathways.
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1. Introduction
Whole brain connectivity networks or “connectomes” come in two flavors: structural
networks extracted from tractography algorithms applied to diffusion MRI (dMRI) [32, 38];
and (resting-state) functional networks, inferred from the strength of long-range second
order temporal correlation structure of activation signals in various brain regions [14].
Subsequent analysis using ICA [16] or graph clustering techniques [56], indicate the
presence of distinct sub-networks, prominently the default mode and salience networks [33].
Diffusion tensor imaging (DTI) has been extensively used as an estimate of structural
connectivity [12, 13, 64]. Probabilistic tractography methods for estimating structural

© 2013 Elsevier Inc. All rights reserved.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2015 April 15.

Published in final edited form as:
Neuroimage. 2014 April 15; 90: 335–347. doi:10.1016/j.neuroimage.2013.12.039.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



connectivity from DTI have been adopted in the literature, e.g. [38, 39]. Both forms of
connectivity have experienced great interest from the neuroscience community, as shown in
[1, 8, 34, 36, 43].

A major goal of connectome research is to discover whether, and how, the structural and
functional networks of the brain are related - an active area with tremendous interest and
wide ramifications in neuroscience and computational biology [15, 21, 25, 30, 34, 36, 35,
46]. Previous investigations have relied on non-linear models of cortical activity which were
extended to model whole-brain behavior via coupling between regions based on structural
connectivity [36]. Other studies place non-linear oscillators at each cortical location and
likewise couple them using anatomic connectivity strength [15, 21, 25, 30]. Since these
powerful generative simulation models are only revealed through large scale, fine-grained
finite difference stochastic simulations over thousands of time samples, they present a
practical challenge for the task of inferring functional connectivity from anatomic. The field
has not actively considered linear graph-theoretic dynamic models for this purpose, with a
few exceptions described below. Although complex brain dynamics preclude completely
linear responses, ensemble-averaged behavior of large connected but individually non-linear
neural populations can be quite linear [59].

In this paper we (re)introduce a class of linear models capturing the correlation structure of
whole brain dynamics at low frequency BOLD levels [29, 34, 35]. We argue that while local
brain dynamics are not linear or stationary [8, 42, 37], the emergent behavior of long-range
steady state 2nd order correlations should be insensitive to detailed local dynamics, and
dependent only on the topology of structural networks. Thus, our hypothesis is that linear
macroscopic models are sufficient to infer the long-range correlation structure of brain
activity, without requiring detailed non-linear simulation models. Specifically, we present a
simple, low-dimensional network diffusion model producing accurate description of the
structure-function relationship. Network diffusion models random walks on a graph,
covering phenomena from image noise removal [67] to Markov random fields [57].
Interestingly, network diffusion successfully captured the progression of misfolded proteins
within brain networks, and recapitulated patterns of dementias like Alzheimer’s disease [53].
We hypothesize that resting-state functional relationships between brain regions can be
captured by a similar diffusion process applied to the structural network. While the proposed
model is linear, similar to [29], we impose constraints modeled after the interaction of the
various cortical regions by taking the Laplacian of the connectivity matrix. We test the
proposed model using dMRI and fMRI brain scans of healthy subjects, and demonstrate
higher structure-function correspondence than other competing methods including neural
mass models [23, 48, 11]. Our work could provide impetus for similar parsimonious
approaches in modeling other complex biophysical phenomena.

Our key idea is that functional signals at the spatial and temporal resolution of BOLD
signals in brain regions are an ensemble average of millions of neurons, and are therefore
governed mainly by the number of neurons firing at any time rather than by the complex
behavior of individual neuronal activity. The non-linearities associated in neurons’
individual firing patterns are largely obliterated in the ensemble signal. Thus, the signal
correlation between two large connected regions ought to be governed dominantly by linear
processes. We show that the simplest linear and purely mechanistic process enacted on the
network can reproduce the functional relationship between brain regions. Since functional
relationships appear to be enacted on a physical substrate the brains structural connectivity
our work implies that the former is a derivative property of brain structure rather than an
independent property.
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2. Theory
2.1. Network notation

In a brain network each node represents a gray matter region located on either the neocortex
or in deep brain subcortical areas. We define a network  = ( , ) with a set of N nodes  =
{vi | i ∈ 1, …,N} and a set of edges given by an ordered node pair  = {(i, j) | i ∈ , j ∈ }
[2]. Between any two nodes i and j there is a fiber pathway whose connectivity weight ci,j ∈
[0,∞) can be measured from dMRI tractography. The structural connectivity matrix C =
{ci,j |(i, j) ∈ } is obtained via anatomical connection probability (ACP), where the matrix
elements are obtained as a function of weighted fiber densities between nodes [39].
Although some individual neurons are known to be directional, dMRI does not allow
measurement of directionality. Major fiber bundles resolvable by dMRI, especially cortico-
cortical pathways are generally bidirectional, having roughly equal number of connections
in either direction [3]. We define the connectivity strength or the weighted degree of a node i
in this graph as the sum of all connection weights: .

2.2. Linear network models
A previous implementation of a linear model for achieving the structure-function
correspondence by [36] is used in this paper as a comparison, following [29] where an i.i.d.
Gaussian noise source ξ(n) drives a discretized multivariate autoregressive linear system
given as:

(1)

Here vector u(n) is the activation signal at time point n of all network nodes corresponding
to regions of the brain. The matrix A serves to relate the mixing between signals at different
nodes, as per A = (1−α)I+C, where α is some leak parameter from the activity of each node,
and C is the anatomic connectivity matrix described earlier. Since a single “mixing”
parameter α cannot access many interesting regimes in the space of linear models, here we
modify A via two parameters:

By allowing two degrees of freedom instead of one, we obtain a broader range of linear
models than the one proposed by Galán. In order for the simulation to be stable, the matrix
A is normalized to have unit norm, or ||A|| = 1. Following [36], resting state functional
connectivity was obtained via stochastic discrete-time simulation over a range of α ∈ [−3, 3]
and β ∈ [0, 6] in steps of 0.1 for both parameters. At each point (α, β), the ℓ1 error with
respect to true functional connectivity was computed. We chose the (α, β) pair that gives the
smallest error for final computation of functional connectivity.

2.3. Non-linear neural mass models (NMMs)
NMMs model neural activity in localized populations (minicolumns) in terms of second
order state-space differential equations, where the post-synaptic potential (PSP) of neuronal
populations is the hidden state, and the activation signal, whether measured via EEG, MEG
or BOLD, is the output variables. The model gives rise to systems of coupled second order
non-linear differential equations, whose coupling coefficients are determined by the amount
of connectivity between them, which is not known a priori. Since no closed-form solution
exists for these equations, the model is a simulated generative model, whose behavior is
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accessed via large-scale simulations over thousands of time points, starting from stochastic
endogenous and exogenous signals representing mean firing rates.

An NMM defined in terms of voltages and conductances was utilized [11], and applied to
networks ranging from 66 to 1000 nodes. In a more complex recent model, a set of coupled
NMMs were instantiated at each node of a connected brain network, with inter-regional
couplings determined by anatomic connectivity [36]. In the proposed model, inter-regional
coupling is modulated by a single coupling parameter c, whose chosen value greatly affects
the behavior of this highly non-linear coupled system. Here we implement this approach
using original computer code used in [36]. Values of c were varied over a range c = {0.02,
0.07, 0.12, 0.17, 0.22, 0.27, 0.32} for each subject and the value yielding the highest match
with empirical functional connectivity was chosen.

2.4. Proposed network diffusion model
We now introduce from first principles a physically realistic linear dynamic network model
of functional connectivity relying on its emergent linearity, and obtain a closed-form
solution which obviates the need for generating simulated signals. Consider first an isolated
cortical region R1. We assume that the average activation signal over all neurons in this
region, denoted by x1(t), is proportional to the number of firing neurons per voxel (rather
than to the actual action potentials thereof). Although the internal dynamics of this isolated
neural population is complex and likely chaotic, in keeping with our emphasis on simple
linear models, we allow the simplest possible dynamic behavior of a damped system, given
by dx1(t)/dt = −βx1(t). This behavior is consistent with a highly damped system whose
impulse response to transient signals dies away as an exponential decay, whose rate is
controlled by the decay rate β. This behavior could arise by a number of mechanisms; for
instance the refractory period after neural discharge which effectively acts as a damping
function on the neural activation signal.

Now we expand the model to cover an isolated pair of cortical regions R1 and R2 connected
by a single fiber population, whose connectivity weight is given by c1,2. The number of
firing neurons in R2 is V2x2, where V2 is the number of voxels in R2. Of these, the number

of axonal projections from R2 to R1 is proportional to , where we divide the
connectivity by the degree of R2, δ2, to get a ratio. The proportion of neurons in R1 which
experience a firing afferent from R2, assuming uniform mixing of afferents, is then given by

. If there are no other afferents into R1, the number of neurons which undergo
activation secondary to depolarization due to the enervating active neurons from R2,
followed by super-threshold post-synaptic integration, will in general depend in a highly
complicated and non-linear fashion, well-characterized by the neural mass equations.
However, under the emergent linear assumption, the net change in the number of firing
neurons in R1 may be considered a linear proportion of the number of active enervating
neurons from R2. After accounting for the internal first order dynamics of R1, this gives

(2)

There is, of course, no reason why the rate constant β should be identical for both the
internal and external signals contributing to the dynamics of R1, but in the interest of
simplicity and in the absence of evidence to the contrary we have assumed identical rates.
This then is the first order dynamics of an isolated pair of neuronal populations. For multiple
afferents into R1, we modify this to
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(3)

Since the regional parcellation in fMRI-based functional networks is somewhat arbitrary, the
regional volumes Vi are not germane to the model, and must be replaced by graph quantities
since our goal is a graph model for this dynamics. Clearly, the regional degree δi are closely
related to the volumes Vi, and for cortical sheets, the relationship will be roughly linear.
Unfortunately, limitations of connectivity and regional volume measurements, combined
with the need to integrate both cortical and subcortical nuclei, precludes a straight-forward
relationship. Thus, for the purpose of this paper we propose two simple alternatives: linear:

Vi ∝ δi, and sub-linear: . The former is preferable if considering only the cortical
sheet, the latter if considering subcortical nuclei as well (since their size is disproportionally
lower than their inter-regional connectivity would suggest).

After substituting regional volumes by their respective degree and concatenating over i, Eq.
3 easily expands to the entire network with arbitrary topology:

(4)

where the matrix L is the well-known network Laplacian, whose exact form will depend on
which of the above two definitions of regional volume is used. For the former definition, we
obtain  = I − Δ−1C, where Δ is the diagonal matrix with δi = Σjci,j as the ith diagonal
element. For the latter definition, we have

(5)

In the remainder of this paper we use the second definition because it is preferable when
including subcortical regions, and empirically gives networks with a closer match to resting
state data. On numerical grounds too it is preferable, since it is symmetric and nonnegative
definite, as described in previous graph studies [2]. The corresponding eigenvalues are all
between 0 and 2.

The network diffusion equation 4 has an explicit solution

which defines the evolution of the initial configuration x0 under subsequent graph diffusion
process on .

2.5. A closed form solution of the graph diffusion model for functional brain networks
At time t the effect of an initial configuration, with only region i active, is given by x(t) =
exp(−β t)ei, where ei is the cardinal unit vector in the ith direction. Collecting the
configurations due to all regions we obtain
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We hypothesize that the configuration at time t of an initial configuration involving only
region i is simply the functional connectivity of i with all other regions. Therefore we obtain

Here the functional connectivity matrix  is shown as a function of network diffusion time.
Note that due to the eigen-decomposition of  described above, we have (0) = I, and (∞)
= 0. That is, regardless of the underlying structural network (as long as it is not
disconnected), if no time is allowed for diffusion, there are simply no connections between
brain regions; and in the steady state, all regions are connected to all other regions equally.
Between these two extremes, a spectrum of functional networks exist. We hypothesize that
the network diffusion time necessary to match the observed functional network will depend
on the signal being interrogated (whether BOLD, EEG or MEG) and various details
regarding action potentials and their speed of propagation through various neuronal
populations. Rather than minutely modeling these parameters, we simply hypothesize that at
a critical time constant tcrit, to be determined experimentally, the network (tcrit) will match
the observed functional network, or we have

(6)

Since the eigen decomposition  = U∧Ut is dominated by a few very small eigenvalues, the
hypothesized functional networks should also be similarly dominated by these eigenmodes.
At small diffusion time, only the first eigenmode will be present, giving

where λ1 and u1 are known from  = U∧Ut.

2.6. Model inversion: inferring structural from functional connectivity
An intriguing possibility raised by our proposal is that due to linearity it may be inverted, i.e.
to partially (due to the presence of noisy eigenvectors) obtain structural connectivity C from
functional connectivity matrix , as follows

(7)

where it is understood that log( ) is the principal logarithm of the matrix , and where
structural connectivity matrix C is obtained from

(8)

or

(9)
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whichever is appropriate. The inversion is specified only up to the normalized Laplacian,
and going from there to connectivity matrix would require knowledge of node degree.
However, this can be obtained a priori, either from the given functional matrix or prior
structural matrices. Although a detailed investigation of this application will warrant a
separate study, here we provide a sketch of preliminary results and show two estimated
structural connectivity matrices obtained from the functional connectivity. First the
functional connectivity matrix  is regularized by factoring it into its SVD components, or

We next apply a threshold to the singular values λk, keeping the values above the threshold,
obtaining

where  is the regularized functional connectivity matrix and  is the set of all singular

values λk exceeding a given threshold. Matrix  is then used in equations (7–9) to obtain an
estimate of the structural connectivity. Threshold is defined as αλmax, where λmax is the
largest singular value in , and α (0 < α ≤ 1) is chosen by the user.

3. Methods
3.1. Subjects and MR imaging

T1-weighted structural MR and High Angular Resolution Diffusion Imaging (HARDI) data
were collected on 8 healthy adults on a 3 Tesla GE Signa EXCITE scanner (GE Healthcare,
Waukesha, WI, USA). HARDI data were acquired using 55 isotropically distributed
diffusion-encoding directions at b = 1000 s/mm2 and one at b = 0 s/mm2, acquired at 72 1.8
– mm thick interleaved slices with no gap between slices and 128 × 128 matrix size that was
zero-filled during reconstruction to 256×256 with a field of view (FOV) of 230 mm. The
structural scan was an axial 3D inversion recovery fast spoiled gradient recalled echo
(FSPGR) T1 weighted protocol (TE = 1.5 ms, TR = 6.3 ms, TI = 400ms, flip angle of 15)
with 230 mm FOV and 156 1.0 – mm contiguous partitions at a 256 × 256 matrix.

Resting state fMRI was performed, together with anatomical MRI, with an eight-channel
head coil using echo-planar imaging based functional MRI pulse sequences (repetition time
TR = 2 s, echo time TE = 30 ms, flip angle 70, matrix size 64 × 64 × 28, axial field of view
24 cm, 5 mm slice thickness; rs-fMRI was acquired with 180 samples. 10 samples at the
beginning were discarded. Before rs-fMRI, the subject was instructed to think of nothing in
particular. The subjects’ ages range from 23 to 60, with three females and five males.
Subjects were scanned under normal subject protocol approved by the institutional review
board (IRB).

3.2. Extraction of structural and functional brain networks
Diffusion tractography processing closely followed established pipelines [40, 53]. Briefly,
structural and diffusion MR volumes were co-registered using SPM tools in MATLAB [4,
28], then parcellated into 90 cerebral cortical structures as per [60]. Parcellated regions were
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used to seed probabilistic tractography in co-registered diffusion MRI volumes.
Connectivity weight between any two regions was given by a weighted sum of tracts going
between them, as per [38]. Simple statistical thresholding was performed to remove spurious
weak connections, defined as those below the p = 0.001 level of significance.

The SPM-based package DPARSF [58] was used to perform the standard resting-state
preprocessing steps. For all subjects the first 10 out of 180 time points each were discarded.
Spatial resolution was set at 2×2×2mm3. The images were realigned, then normalized using
DARTEL [7]. The images were next smoothened with Gaussian smoothing kernel with full
width half max FWHM = [4 4 4]mm. This was followed by detrending the images over the
range 0.01–0.08Hz. Finally, the noise covariates were regressed out. The functional
connectivity networks and resulting matrices were obtained from resting state fMRI scans
using the CONN functional connectivity toolbox [66]. Weak functional connectivity,

defined as smaller than , is set to zero, with  the largest absolute value of
interregional functional connectivity matrix .

Both the linear and non-linear generative models were evaluated by comparing the similarity
between the functional connectivity predicted by the model and the empirical functional
connectivity measured from resting state fMRI data. The measure of similarity we chose is
the simple Pearson correlation coefficient, evaluated only over thresholded node-pairs, in a
manner similar to [36]. This avoids the noise introduced by the spurious connectivity
between weakly connected or non-connected regions.

4. Results
4.1. Performance of model depends on global connectivity coupling parameter

Fig. 1 (left) depicts the Pearson correlation between true FC and the nonlinear model
prediction for all subjects over the values of c in the nonlinear model. The resulting curve
takes on a bell shape. A strikingly similar behavior is seen in the linear network diffusion
model (Fig. 1, right), whose agreement with true FC also varies with the global
“connectivity coupling” parameter βt, follows a bell shape, similar to the non-linear model.
In Discussion we explain how this behavior is observed in almost all computational models
of brain dynamics, including coupled oscillator models [22].

4.2. Correlation of rsFC with FC predicted by each model
We compare the performance of the linear Galán and non-linear Honey et al. [36] models
with the proposed functional connectivity estimates by evaluating the Pearson coefficient of
the correlation between each model prediction and the true functional connectivity matrix
rsFC. Fig 2 reflects the scatter plot of each of the mean functional connectivity estimates
over all eight subjects relative to the empirical matrix. The figure suggests that in the case of
the linear model estimate of functional connectivity the estimate is poor, while the alternate
methods nonlinear and Laplacian models offer a tighter scattering of the estimates relative to
the true functional connectivity. For the nonlinear model, the estimated FC is evaluated at
the value of the parameter c yielding the highest correlation with true FC. Table 1
summarizes the performance of each approach over all eight subjects. Clearly, FC predicted
by the network diffusion model is more closely correlated to the true FC matrix than
possible with the other models. In order to statistically validate this, we performed Fisher’s
R to z transformation, and obtained its p-value. The Fishers R to z transformation is a tool
that measures whether two given values of Pearsons R are statistically different or not (quite
apart from whether each R is by itself significant). Here we used it to report the significance
of the difference in R between two correlations: empirical FC versus FC predicted by the
nonlinear model, and empirical FC versus FC predicted by the network-diffusion model.
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The reported Fisher statistic is therefore a measure of the incremental value of the network
diffusion model over the non-linear model. This allows us to test the statistical significance
of the correlation between estimated FC and the empirical FC. These are tabulated in Table
1. All improvements are highly significant statistically compared with the non-linear model.
From the table it can be seen that in general the non-linear model provides higher
correlations with measured data than the Galán linear model, but lower than the network
diffusion model. Fig. 3 depicts group means of structural and functional networks, both
empirical and model predictors. Galán linear model appears to miss the frontal lobe
connectivity.

Inter-hemispheric connections are clearly underestimated by all models considered, which
we attribute to the well known distance bias in tractography [36]. When inter-hemispheres
are omitted (Fig. 3, ‘Intrahemi FC’), the estimated networks begin to match empirical data
quite well.

The network diffusion model has a global a priori unknown parameter βt. The above results
correspond to maxima over a range of βt (Fig. 1, right). Here we show that we can replace
the per-subject optimal parameter with a global “learned” parameter given by the median of
βtcrit over eight subjects, since the maximum correlation occurs approximately at the same
point for all cases (Fig. 1, right). Table 2 contains those results. The loss of performance is
minimal, as suggested by the high (hence non-significant) p-values associated with Fisher’s
R to z transformation listed in the same table. This emphasizes the value of the proposed
model for predictive purposes, with parameter value learned from group analysis.

To verify that the estimated functional connectivities were not obtained by chance, the mean
structural matrix as well as the means of the estimated functional matrices from the three
methods were each randomly scrambled. The Pearson correlation of each scrambled matrix
with the true functional connectivity shown in Fig. 4 indicates that our correlation results are
extremely unlikely to be due to chance.

In order to further characterize the performance and robustness of each model, they were
recomputed for progressively sparse (pruned) mean structural connectivity, and their
correlation with measured functional network was determined at each sparsity level (Fig. 5).
The graph diffusion network shows a consistent Pearson correlation up to a thresholding
level of about 0.3 of the maximum edge weight while remaining superior to the linear and
non-linear models. This result also demonstrates the superior stability of the proposed
approach with respect to connectivity measures.

4.3. Summary network measures
Next we demonstrate that the proposed model recapitulates the main summary network
statistics of functional brain networks. For this experiment the same level of sparsity (15%)
was maintained in all predicted networks obtained from the pruned structural network whose
sparsity was 10%. Using the Matlab toolbox Brain Connectivity Toolbox [54], and
following [54], the diagonal and negative elements of the matrices are excluded. We note
that the negative elements of the mean connectivity matrices discussed in this work have a
small mean when compared with the positive elements. Additionally, the statistics are
computed only for the largest 15% elements of each matrix, since this is where Pearson
correlation achieves a maximum (Fig. 5, black vertical line). Very few negative elements
survive, if any.

The metrics used were mean path length, global efficiency, maximized modularity, and
optimal community structure. For all networks the statistics were obtained at the same level
of sparsity. For mean path length and efficiency, the distance between nodes was modeled as
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a Gaussian with respect to connectivity strength. The non-existing edges were assigned a
distance of infinity. As shown in Fig 6, the summary metrics from the proposed model
closely resemble those from the measured functional network, to a somewhat higher extent
than other models considered. The results provide additional means of validating the graph
diffusion model; and while the mapping from a network to these summary metrics is not one
to one, these results demonstrate that the model gives networks with the same kind of
statistical behavior as expected from real functional networks.

4.4. Seed-based connectivity analysis
We now investigate seed-based connectivity of some specific regions with interesting
functional roles (Figs 7–9). Fig 7 shows functional connectivity out of the right posterior
cingulate and suggests a strong connectivity with the frontal lobe and the precuneus, regions
with known strong resting state functional connectivity to the posterior cingulate cortex [62,
63].

Fig. 8 shows the functional connectivity out of the right frontal superior gyrus. We observe
correlation with the right precentral, the right middle frontal, and the middle temporal lobe.
Mantini et al. report correlation between superior frontal sulcus and ventral precentral as
well as middle frontal sulcus [45].

We now show that the proposed model matches true FC for region pairs with and without
known SC. We give examples of the proposed model’s estimation of function from structure
by considering two functional nodes with non-existing structural connectivity, and two
nodes with both functional and structural connectivities. In the first case we consider the
nodes of right superior motor area and the right rectus over all eight subjects. The goal is to
highlight the model’s ability to estimate function in absence of structural connectivity edge.
The resulting connectivity coefficients are given in Fig. 9 left. Since the two regions are only
functionally connected, the structure vs. function plot is all zeros. On the same figure, the
estimated FC remains close to the empirically obtained FC for all eight subjects. The model
was able to capture the functional connectivity even in absence of corresponding structural
connectivity. In the second case we consider two regions that are both structurally as well as
functionally connected. Fig. 9 right shows the connectivity of the superior medial and the
right rectus. The red plot gives the correlation of SC and the empirical FC over all eight
subjects. With the exception of subjects 5 and 6, the estimated functional connectivity is
nearly consistent with the empirical FC.

4.5. Model inversion: examples
We evaluate the estimated structural connectivity matrix  for α = 0.1 (where α is as defined
in Section 2.6) and α = 0.3 given the mean functional and structural connectivity matrices.
The smaller value of α leads to a Pearson correlation with the actual structural connectivity
of 0.4901 (Fig. 10c), while for α = 0.3 the corresponding Pearson correlation is 0.4199 (Fig.
10d). For reference, Fig. 10a shows the mean functional connectivity of all eight subjects,
while Fig. 10b depicts the corresponding structural connectivity of the eight subjects. The
matrices’ elements have been arranged in such a way that they are ordered by lobes (frontal,
parietal, temporal, occipital, cingulate, and subcortical) and the various regions are listed on
the figures. Additionally, The nodes are arranged such that the left and right hemispheres’
nodes alternate in an odd-even fashion.

Although these results are preliminary, they conclusively show that plausible structural
connectivities can be inferred from functional connectivity using the inverse inference
approach proposed here. Clearly, there is room for improvement in this process, and we are
currently investigating sparsity-inducing inversion algorithms to overcome the ill-
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conditioning and non-uniqueness of the network diffusion operator which will be reported in
a future paper.

5. Discussion
5.1. Summary and significance

We have shown that the correlation structure of BOLD functional brain networks is well
represented by a simple network diffusion process on the underlying structural brain
network. Such a linear graph model admits a closed form deterministic and testable solution
of macroscopic interactions of brain activity without requiring any details of neural coding
or their biophysical substrates. The presented correlation numbers (Table 1) demonstrate
improved performance over existing linear and non-linear models. However, the gap
disappears after group averaging of networks, as shown by the nonsignificant p-value of
Fisher’s transform in the last row of the table. This indicates that while non-linear models
are good for canonical brain networks, they may be equally or less accurate for individual
subjects than the presented linear model. We demonstrated preliminary evidence for
invertibility of our model, which can enable reverse inference from functional to structural
connectivity - an intriguing possibility with new potential applications. Philosophically, our
work could motivate the field to look for simple models in explaining brain-related
phenomena. Although validation was performed using a limited number of subjects, our
results are unlikely to be statistical artifacts because no learning of model parameters is
necessary - there is only one global diffusivity parameter, whose values are readily
estimated from each dataset directly, and which was found to be highly consistent between
subjects.

Hence one of the most attractive features of our model is its low dimensionality, which
compares favorably with many existing non-linear generative models that can have tens of
unknown parameters whose specific values can greatly influence behavior. For instance, in
oscillator models completely different quasi-stable states can be realized by different
samples of parameter space. We do not claim that linear modeling will address detailed
questions regarding the nature and cause of oscillations in the brain - this is still best
explored via previously described large, non-linear simulation models. However, our linear
model is perfectly adequate for the limited purpose of deriving the correlation structure of
low frequency BOLD data, and hence for estimating the long-range functional connectivity
of the brain. It provides a simple closed form relating structural and functional networks - a
tremendously useful practical feature which could, in the future, obviate the need to obtain
resting-state functional networks or allow the merging of structural and functional networks.

5.2. Relationship to other linear and statistical graph approaches
The proposed network diffusion model is not a unique theoretical result since it arises
naturally from the graph Laplacian, a rather well-studied entity in graph theory [18]. Thus,
various flavors of known graph metrics are intimately related to our model, including
communicability [27], synchronizability [17], commute distance in random walks [10], and
effective resistance in resistive networks [26], to give only a few examples. Equations 4 and
5 define the classic network heat diffusion equation, which has been extensively investigated
in many network problems, and is the graph-analog of the classical heat equation whose
solution is given by the Laplace-Beltrami operator [67]. It is known that for random graphs
embedded in Euclidean space, the graph Laplacian approaches the Laplace-Beltrami
operator as the density of graph nodes approaches infinity [67]. Zhang and Hancock [67]
have used the Laplacian matrix exponentiation for graph-based image smoothing. A network
communicability measure on unweighted graphs was proposed [27] recently. Indeed, the
exponentiation of adjacency or Laplacian matrix is quite a common tool in graph theory, and
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has found multiple applications in various contexts [2, 57, 67]. However, to our knowledge,
the use of graph diffusion for modeling brain-specific phenomena is unique to our work,
with the exception of our previous publication on network diffusion models of
neurodegeneration [53].

We do not consider here prior linear modeling of isolated cortical regions [48, 49], instead
focusing on large connected networks for which the best known linear model was
implemented by [36] following Galán [29], both being examples of multivariate
autoregressive (MAR) models [61]. However, general MAR models involve hundreds of
unknown parameters whose estimation without prior knowledge is practically unfeasible for
the current task [61]. In some respects, our method could be thought of as a MAR model
with prior information supplied in the form of anatomic connectivity. In a certain sense, all
linear models involving the same graph, including the proposed and Galán models, are going
to share many common features, including the eigenspectrum and steady state behavior
given by the dominant eigenvector. However, in the context of the structure-function
relationship, which linear model one chooses matters, and steady state characterization is
insufficient: we need a model whose dynamics change with time, and at some time scale
reproduce the correct functional structure. Although previous authors have concluded that
linear models are not as good as non-linear ones, our results show that the problem is not
with linear models per se but which linear model is being used. The utility of linear graph
models is revealed after careful first-principles modeling. Plausible neuroscientific
constraints we have introduced appear necessary to access the appropriate regime in the
space of all linear graph models. Other differences between the Galán and proposed models
may be enumerated. Although the former obviously admits a closed-form solution, this has
not historically been explored for long-range brain networks. Our model explicitly employs
the Laplacian, whereas the Galán model uses the adjacency matrix. The two models become
directly comparable only for uniform node degree, which is unrealistic for the brain. The
Galán model must be explicitly normalized in order to guarantee stability, whereas the
diffusion model is always stable.

Model-free approaches should also be mentioned in the context of structure-function
relationship. Purely statistical tools like Pearson correlation are good examples, as is more
recent work on partial correlation or partial least squares. Partial correlation has been
suggested as a way of disambiguating direct versus indirect functional connections between
brain regions. A detailed study of the ability of various types of correlation and other
statistical measures to reproduce known anatomic connections in the visual cortex was
conducted in [20]. Partial correlation is a good candidate for inferring structure from
function. How these methods perform in comparison to the purely deterministic approach
using graph eigen-analysis suggested in this paper is an interesting question which will be
investigated in the future. However, we believe a model-based approach has a better chance
of constraining this inherently ill-posed problem compared to purely statistical methods.

5.3. Relationship to non-linear neural mass, field and oscillator models
The classic NMM did not consider large networked regions, but subsequent extension to
small networks connecting 3–4 distinct functional domains like memory, execution, vision,
etc., called Dynamic Causal Models (DCMs), were proposed. NMMs were extended to
spatially distributed neural fields using mean field steady state approximations, yielding a
traveling wave involving spatiotemporal convolution with spatially invariant connectivity
kernels modeled Green function [6, 19, 24, 50] - a kind of spatial Laplacian analogous to our
network Laplacian. Traditional field models, however, have generally employed spatially
invariant connectivity kernels, which are difficult to apply to long-range, inhomogeneous
cortico-cortical connections. An example where this was successful is in modeling thalamo-
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cortical connectivity [41, 52], but we are aware of no report on whole brain resting state
networks.

Neural mass models are much more successfully applied to the current task, whereby
NMMs are deployed at the nodes of long-range networks, whose dynamics are then coupled
via anatomic connectivity [36, 51]. Our coupled NMM implementation based on [36]
matched our low-frequency BOLD correlations better than previous reports [36]. These
coupled NMMs behave chaotically or stably, depending on coupling strength and
propagation delays between regions.

For the practical task of inferring the correlation of the structure-function relationship,
however, they present some limitations vis-á-vis the proposed approach. First, these
generative models require large simulation runs, making them impractical for the purpose of
routine analysis. Second, while both the actuators (chaotic oscillators) and output metric
(phase synchronization) in these simulations have a long tradition [65], their abstract nature
makes them difficult to apply and interpret in practical connectome analysis. Although this
elegant theory is now finding its way to practical applications [22], its agreement with actual
measurements remains difficult to assess. The empirical data in [22] do not stand out
compared to [36] or the current results, although this could change with new analyses.
Another limitation is the need to fit a large number of model parameters, an area where a
linear model with a single global parameter has distinct advantages. Finally, much of the
oscillator modeling has been performed using simulated [44] or macaque [21, 31] networks;
hence further applications in human health and disease will be keenly awaited.

Our correlation numbers are consistently lower than those in [36]. Group averaged structural
and functional connectivity was used in [36], whereas we used individual subjects SC and
FC, which are typically more variable and challenging than group averages. Our SC
networks show lesser degree of inter-hemispheric connectivity than [36], partly due to the
limitations of tractography algorithms this could lower the SC-FC relationship. There are
other methodological differences which might account for the discrepancy, for instance their
use of 998 regions compared to 90 in our case. Although their results after reducing the data
to 66 regions shows a very high correlation (R = 0.70) compared to ours, this could simply
be a result of averaging, an impression reinforced by the fact that the authors’ original 998-
region correlation (R = 0.46) is much weaker. Finally, we do not perform the somewhat
controversial statistical rescaling of SC edge weights to fit a Gaussian distribution, as
reported in [36].

5.4. Why does graph diffusion work at all - Emergent linearity in brain dynamics
It may be puzzling that a linear model with no neuroscientific detail apart from a
macroscopic view of population dynamics is able to equal or outperform richly detailed non-
linear dynamic models described above. In motivating our work we recruit two
commonalities gleaned from them: a) practically any method of coupling local dynamics via
realistic anatomic connectivity is able to sustain the kinds of steady-state spatiotemporal
dynamic behavior observed in the brain; and b) the network effect given by anatomic
connectivity appears to dominate over local dynamics of the brain, especially at low
(BOLD) frequencies. Thus steady state correlation patterns at BOLD frequencies should be
insensitive to higher order non-linearities like multistable transient states driven by
stochastic noise. This impression is reinforced by comparing Fig. 1, which shows how long-
range correlations change with the global connectivity coupling parameter βt, with a similar
figure from the coupled oscillator paper [22] and indeed with computational models of
various vintages and frequency ranges [15, 31, 44]. Most of these models exhibit the
characteristic bell-shaped behavior with respect to the global coupling parameter. A
consistent finding of these investigations is a “quiescent” ground state characterized by low
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frequency correlations - we speculate that it is this regime that allows our linear model to
recapitulate second-order functional correlations from quasi-chaotic signals. This does not
imply that the previous non-linear oscillator models are approximately linear (they are not,
since they display multi-stable quasi-chaotic behavior), but that the gross behavior of
networked sites has a surprisingly consistent pattern over a range of models. Ultimately, the
best argument for our model is perhaps simply that it seems to work.

The literature on complex systems suggests that just as simple local interactions can give
rise to highly complex global effects; conversely, simple macroscopic behavior can emerge
from complex local processes. The emergent behavior of large scale complex systems can
be surprisingly linear within large phase domains bounded by (non-linear) phase transitions.
Indeed, the emergence of predictable and regular behavior from chaotic ensembles is
considered a hallmark of complexity [55]. For example, the admittance of large electrical
networks of capacitative and resistive elements is known to be chaotic, yet its frequency
response is essentially linear in large frequency ranges [5]. This kind of predictable, regular
emergent behavior is seen in complex systems as varied as the flocking of geese [47] and
complex biological signaling networks [9]. Our results similarly suggest that the
macroscopic consequence of the interaction of complex but coupled neuronal processes in
the brain are surprisingly amenable to coarse mechanistic modeling.

5.5. Limitations and future work
The second order correlation of the linear Galán model is computable in closed form via the
network’s eigen decomposition; however here it was investigated via stochastic simulations
in keeping with prior work to ensure effective comparison with earlier results. Network
extraction requires a lengthy, involved process [38] whose deficiencies are inherited by our
results. Our choice of the AAL atlas was motivated by its proven anatomic specificity and
widespread use in related network analysis work. With only 90 nodes, our network might be
considered “lumpy”; yet it is unclear if a finer scale network with more nodes will yield
improvements. While a coarse atlas precludes finer scales of functional patterning, it
improves the reliability of network connectivity. Variations in size and shape of cortical
regions was not accounted for in our model. We did not consider regionally varying model
parameters.

We note that the results reported in this work are limited by distance bias. Distance bias is
inherent to tractography from which the structural connectivity matrix is obtained, and is a
constrain of current technology. Another potential issue is the thresholding operation we
used to remove connections considered to be zero. Figure 5 suggests that the proposed
model is not very sensitive to edge thresholding - a strength of the linear approach. We
further employed a statistical significance threshold based on variance over all subjects, but
due to their small number a bootstrap resampling technique might be more effective, and
will be considered in future work. Our model does not possess oscillatory behavior, which
would require accurate knowledge of path delays - in systems terms the Laplace transform
has a real-valued pole - because the rich frequency content of neural populations is difficult
to access and interpret from low-frequency BOLD signals. Our results support the view that
frequency characterization is not necessary in capturing the whole brain correlation structure
of BOLD activation. However, a fuller characterization would require path delays, which we
will pursue in future work. This would be especially critical for modeling richer frequency
signals, for example from magnetoencephalograhy (MEG). MEG can facilitate an
investigation of the frequency response of the diffusion model and its eigenmodes - an
aspect we are unable to explore due to BOLD’s poor temporal resolution. Finally, we are
cognizant of inherent limitations of linear approximations of complex dynamic phenomena,
and the risks associated with overinterpretation.
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We emphasize that this work is only aimed at capturing the stationary correlation structure
of functional activation, i.e. its functional connectivity, and it has no ability to generate
actual time series of functional activity. The precise time series is neither germane nor
accessible by any other method either, since an infinite number of time-series can have the
same functional connectivity. A more serious limitation of our model is that it currently does
not provide frequency information of the kind a generative simulation model can deliver.
However, this is not a fundamental feature of linear modeling, and in future work we will
develop frequency-resolved network diffusion models. Low frequency BOLD data are not
adequate for that purpose, and this effort will necessitate EEG and MEG acquisitions.
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Highlights

• Resting state functional connectivity estimate obtained from structural
connectivity

• Proposed model is novel and linear, using the network Laplacian

• Comparison with published models suggest comparable or superior performance
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Figure 1.
Eight subjects’ Pearson correlation over two models. The left figure depicts the correlation
for all subjects over values of c in the non-linear model, and the right figure shows the
correlation behaviour of the proposed graph model as a function of diffusion time. Although
the scale on x-axis has a different meaning in each case, the former being a mixing
parameter whereas the latter is a diffusion time, both parameters serve a similar function.
This is clearly seen in the similar behavior of each curve.
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Figure 2.
Scatter plots. Clockwise from top left: structure connectivity, linear functional model,
network diffusion functional model, and non-linear functional model. Blue: frontal, cyan:
parietal, green: occipital, orange: temporal, red: subcortical.

Abdelnour et al. Page 21

Neuroimage. Author manuscript; available in PMC 2015 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Eight subjects’ mean networks. Clockwise from top left: structural, empirical functional,
empirical functional with intraconnected hemispheres, proposed network diffusion
functional connectivities, non-linear (Honey et al.) model [36], and the linear model
functional network.
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Figure 4.
Histograms resulting from randomizing structural and estimated functional networks. The
resulting Pearson correlations for the randomized matrices are negligible while those
obtained from the estimated network matrices are significant.
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Figure 5.
Pearson correlation resulting from sparsified structural connectivity matrix. Level of
thresholding denoted as a fraction of maximum edge weight. The percentage of surviving
edges varies from 39% (no thresholding) to about 1%. The proposed model maintains a high
correlation up to about 10% of the edges surviving thresholding. Network metrics (Fig 6) are
evaluated at 15% level
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Figure 6.
Various network measures of functional and structural networks evaluated at threshold level
15% (see Fig 5). Clockwise from top left: Mean path length, global efficiency, optimal
community structure, and maximum modularity. The matrices are identified by ‘Struct’
(structural), ‘Fnctn’ (functional), ‘Lin’ (linear), and ‘Graph’ (graph diffusion)
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Figure 7.
Eight subjects’ mean color maps resulting from a seed placed at right posterior cingulum.
Clockwise from top left: empirical functional, linear modeled functional, the proposed
network diffusion functional connectivities, and non-linear (Honey et al. [36]) functional
model.
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Figure 8. Eight subjects’ mean color maps resulting from a seed placed at right frontal superior
Clockwise from top left: empirical functional, linear modeled functional, the proposed
network diffusion functional connectivities, and non-linear (Honey et al. [36]) model.
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Figure 9.
Left: Estimate of the right superior motor area and right rectus connectivity from structure
compared with fMRI-obtained connectivity over all eight subjects. The two regions are only
functionally connected. The proposed model closely estimates the functional connectivity
between the two nodes. Right: Estimate of the regions right frontal superior medial and right
rectus connectivity from structure compared with fMRI-obtained connectivity over all eight
subjects. The regions are both functionally as well as structurally connected.
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Figure 10.
Estimating structural connectivity from empirical functional connectivity (Fig 10(a)).
Empirical structural connectivity is depicted in 10(b). Figures 10(c) and 10(d) show the
estimated structural connectivity at SVD thresholds of 0.1 and 0.3, respectively. The
connectivity matrices are arranged by lobes: ‘F’: frontal, ‘P’: parietal, ‘O’: occipital, ‘T’:
temporal, ‘S’: subcortical. The nodes are arranged such that the left and right hemispheres
nodes alternate in an odd-even fashion.
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Table 2

Correlations with global value βtcrit = 2

Subject Network diffusion FC Network diffusion FC, βtcrit = 2 Fisher’s p-value

1 0.41 0.41 0.94

2 0.45 0.45 1

3 0.37 0.37 0.98

4 0.41 0.41 0.83

5 0.42 0.42 0.98

6 0.38 0.38 0.90

7 0.42 0.42 0.95

8 0.43 0.43 1

Correlation coefficients for all subjects with the corresponding tcrit, and the proposed linear FC with a global value of βtcrit = 2. Last column lists

the Fisher’s p-value for all subjects.
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