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Abstract

Bridging the Gap in Distributed Energy Resource Operations: Advancements in Tariff
Designs and Load Optimization for Congestion Management

by

Phillippe K. Phanivong

Doctor of Philosophy in Energy and Resources

University of California, Berkeley

Professor Duncan Callaway, Chair

Customers are adopting new technologies, fundamentally changing their relationship with
the electrical grid. These technologies, known as distributed energy resources (DERs), allow
customers to control their consumption. They give customers the flexibility to purchase
energy when prices are lower and sometimes sell electricity back to the grid when prices are
high. While DERs can benefit the individual customer and potentially contribute to de-
carbonization, they also require electrical utility companies to change how they operate the
grid, especially in the distribution system. This dissertation examines the relationship be-
tween DER operations and the electrical distribution system. We first explore how “business
as usual” approaches to DERs could negatively impact the grid. Specifically, how current
electricity tariffs provide an incentive structure for customers to optimize their DERs and
how their optimized consumption could lead to congestion issues on the distribution system.
Then, we explore data-driven tools for addressing this congestion. We collect data from
simulated smart meters and develop a voltage estimator to manage congestion through a
centralized optimized DER dispatch approach. Finally, we propose an electricity tariff de-
sign that provides the benefits of centralized congestion management, but instead through
price signals sent to customers.

In Chapter 1, we explore the relationship between current electricity tariffs and future DER
operations. We model commercial customers optimizing their electric vehicle (EV) charging
under different Pacific Gas and Electric (PG&E) tariffs, including a new tariff (BEV tariff)
with a novel subscription-based power charge. We model customers optimizing their load
across different seasons to capture the prices in each tariff and compare the total annual
costs. Once we calculate the optimal charging strategy for each customer, we model them in
an open-source grid simulation software using a feeder model based on a PG&E distribution
feeder, measuring voltage and wholesale energy costs. We find that undervoltage would
occur in our distribution feeder under all four tariffs we examine. This result indicates that
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current tariff designs are insufficient for congestion management, and additional measures
are required. We also find that customers could see nearly a 15% reduction in costs by
switching from one tariff to another. This cost savings for the customer is also reflected in a
potentially problematic revenue gap for the utility when customers change tariffs. Finally, we
show that subscription-based tariffs are less efficient than traditional demand charge-based
tariffs, but the lower prices in the BEV tariff mask its inefficiency.

In Chapter 2, we explore ways to add a voltage constraint to the same EV charging coor-
dination problem as Chapter 1 for distribution system operators (DSOs) to perform direct,
centralized control of DERs. This chapter presents a novel three-phase data-driven linear
voltage magnitude estimator based on past smart meter and substation data. This estima-
tor is trained offline solely on data readily available for the distribution system operator and
reduces the size of the voltage constraint by only estimating voltage at customer service con-
nections. We show that our voltage estimator can prevent undervoltage in the EV charging
coordination problem and is faster and more accurate than three-phase linearized voltage
approximations, requiring less computational memory and no knowledge of the distribution
system network connectivity.

In Chapter 3, we examine price-signal control methods for congestion management of DERs.
We describe a new pricing scheme for day-ahead congestion management of DERs, referred
to as Load Responsive Prices (LRPs). Using the LRP method, we can determine the opti-
mal load profile of customers from offline analyses and then use day-ahead prices (potentially
taken from the wholesale market) to calculate prices that customers can independently opti-
mize for without additional communication from the DSO beyond the prices themselves. We
find that customers optimizing using LRPs consume the same way as customers following
direct load control methods but without knowing the load levels the system operator re-
quires. We end the chapter with a discussion of various implementation considerations. We
discuss ways to reduce customer cost increases, methods for addressing incorrect forecasts,
and other important issues for practitioners.

We conclude with a summary of findings, policy recommendations, and future research
directions.
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Introduction

Background and motivation

For most of the 141-year history of the U.S. electrical grid, customers purchased energy that
was generated by large power plants and transmitted from vast distances to their homes and
businesses [1]. However, a rise in new technologies has changed this paradigm in the past
several decades. With energy storage systems, solar photovoltaics (PV), electric vehicles,
and a host of “smart” devices, customers who were once passive consumers are becoming
active participants, shifting their consumption patterns based on prices and sometimes sell-
ing electricity back into the grid. The technologies behind this change, known collectively
as distributed energy resources (DERs), have the potential to provide substantial economic
and environmental benefits, but they also can cause major disruptions to electricity service if
mismanaged [2]. Importantly, this fundamental change in customer behavior impacts the dis-
tribution system—the last leg of the electric grid that supplies energy to the customer—more
than any other section of the network.

The research presented here focuses on how regulators and distribution system operators
should adapt in this evolving paradigm. The balance between costs and reliability prevents
us from rebuilding the electric grid from the ground up for DERs, and instead, we must find
ways to integrate them into our existing system. To make a high DER adoption future work,
we must change how we operate the grid.

Distributed Energy Resources

The Federal Energy Regulatory Commission (FERC), in Order 2222, defines distributed
energy resources as

“‘. . . any resource located on the distribution system, any subsystem thereof or
behind a customer meter.’ These resources may include, but are not limited to,
resources that are in front of and behind the customer meter, electric storage
resources, intermittent generation, distributed generation, demand response, en-
ergy efficiency, thermal storage, and electric vehicles and their supply equipment
– as long as such a resource is ‘located on the distribution system, any subsystem
thereof or behind a customer meter.’”[3]
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For an individual customer, installing DERs can bring benefits such as cost reductions
in their utility bills, increased resilience during outages, and potential sources of income by
selling energy back into the electric grid [4]. While at a societal level, aggregated DERs
can participate in energy markets to reduce social costs and increase system resilience [5].
In addition, DERs can substantially contribute to decarbonization by electrifying carbon-
intensive heating and transportation while also providing carbon-free energy to the electric
grid from solar PV and small-scale wind [6]–[8]. U.S. lawmakers have prioritized electrifica-
tion by investing billions of dollars into DER and electrification programs. Recent examples
include $7.5 billion invested in electric vehicle charging stations in the Bipartisan Infrastruc-
ture Law of 2021 [9], and tax credits for electric vehicles and home energy storage systems
in the Inflation Reduction Act of 2022 [10].

However, parts of the electric grid, specifically the distribution system, were not designed
for the levels of DER adoption necessary for decarbonization. Large deployments of DERs
can lead to grid congestion, requiring new approaches to power systems operations and
regulation [11], [12]. While it is possible to overbuild the electrical distribution system to
meet the peak demand of newly electrified loads and prevent negative consequences of DERs,
controlling their real-time operation may be a lower-cost path to mitigate their negative
impacts [13], [14]. An important area of research in this space is known as congestion
management.

Congestion Management in the Distribution System

Distribution system congestion can occur when coincidental power consumption from multi-
ple customers exceeds the system’s peak capacity, and electricity service is affected. System
congestion can lead to overcurrent conditions on distribution equipment, voltage excursions
at the customer service connection, or excessive power losses for the utility. All three have
been modeled or observed in the distribution system as a result of DER operations [15]–[19].
However, one area researchers have underexplored is the relationship between tariff designs
and congestion. As more DERs come onto the grid and customers become more flexible with
their consumption, they will have new optimization opportunities to minimize the costs as-
sociated with their electricity tariffs. Can customers cause congestion in the distribution
system when minimizing their costs? We explore this question in Chapter 1 and show that
current tariff designs (including tariffs with a price on peak consumption) are inadequate for
preventing system congestion and undervoltage conditions.

Researchers are actively exploring several ways to address distribution system congestion
from DERs. While distribution system operators (DSOs) can use devices such as capacitor
banks and voltage regulators to adjust system conditions or sometimes reconfigure distribu-
tion feeders through switching schemes, the primary way to address congestion is to reduce
load during times of peak coincidental consumption [20], [21]. DSOs can reduce load through
direct load control measures or indirect approaches through monetary incentives and prices.
Direct load control allows DSOs to determine how loads should operate and sends control
signals to those loads. In contrast, indirect approaches send price signals to customers to
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incentivize them to shift load. These indirect methods are popular in the U.S. because it
leaves control decisions up to the customer and can incentivize market innovations. We ex-
amine the literature on direct load control in Chapter 2 and develop a method to reduce the
data required for direct control of electric vehicles (EVs) in the EV charging coordination
problem. While in Chapter 3, we review indirect load control and propose a pricing structure
to address the same EV charging coordination problem.

Purpose of this Research

This dissertation examines the relationship between DER operations and the electrical distri-
bution system. We first explore how “business as usual” approaches to DERs could negatively
impact the grid. Specifically, we study how current electricity tariffs provide an incentive
structure for customers to optimize their DERs and how their optimized consumption could
lead to congestion issues on the distribution system. Then, we explore data-driven tools
for addressing congestion in the distribution system. We collect data from simulated smart
meters and develop a voltage estimator to manage congestion through a centralized opti-
mized DER dispatch approach. Finally, we propose an electricity tariff design that provides
the benefits of centralized congestion management, but instead through price signals sent to
customers.

The overarching questions for this dissertation are:

1. How does the relationship between tariff designs and future DER operations impact
customers, utilities, and the electrical distribution system?

2. How can we reduce congestion in the distribution system to increase the benefits from
DERs?

To answer these questions, we integrate ideas and concepts from three separate areas of
research: Power System Economics, Data Science and Statistical Methods for Power Systems,
and Electrical Distribution System Engineering.

Significance of this Research

At its core, our work examines the intersection of policy and power system design to find
the engineering and economic impacts when new technologies are adopted. This line of
research is significant from both a practical and academic perspective. We examine how
current DER operations and tariff designs can cause congestion issues for the electric grid
and several ways to address these issues. From a practical perspective, we develop policy and
engineering solutions for regulators and operators to implement without needing distribution
system upgrades. We limit our algorithms to using only data available from existing sensors
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and examine pricing structures that could be implemented with heuristics if more advanced
forecasts are not possible.

From an academic perspective, this work contributes to several research areas. We show
that the relationship between tariff design and DERs can have larger impacts on customers,
the utility, and the electrical distribution system than previously studied. We also contribute
to the literature on data science in power systems by showing how data collected only at me-
tered locations can be used to estimate system conditions for DER optimization. Finally, we
develop new ideas at the intersection of power system economics and control to incorporate
distributed congestion management into dynamic prices.

Scope and Limitations

The scope of this research is the deployment and operations of DERs in the electrical dis-
tribution system in the United States. As such, the feeder models, load models, and tariff
designs come from the U.S. and may not apply to power grids in other countries. Even in
the U.S., utility companies custom-build distribution feeders for the locations they serve.
Significant design differences exist from networked dense urban distribution systems to long
radial systems used in rural communities. Thus, the specific congestion issues or remedies we
show on one distribution feeder cannot apply to all. However, the analysis and algorithms
we develop in this work can be used for most distribution feeders and adapted to support
many more.

As for limitations, we approach the work presented in this dissertation through a modeled-
based framework using models created by the research community. While experts in their
respective fields meticulously built these models, each comes with its assumptions and sim-
plifications compared to the real world. Importantly, we acknowledge that the results from
the case studies in this dissertation are from modeled data and would differ from any results
from studies reproducing this work in the real world.

In addition, the vast number of combinations of DERs, customer types, feeder models,
and congestion issues necessitated that we limit our investigations to specific problem de-
signs. We focused on the EV charging coordination problem for commercial customers and
limited grid congestion to undervoltage conditions to allow for an in-depth analysis of DER
operations and grid congestion. While several other negative conditions can arise from grid
congestion, we found a gap in the literature around DER-related undervoltage. We hope
to build on our results to address overcurrent and overvoltage conditions from DER-related
congestion in the future.

Finally, a limitation that we do not address in this work is the issue of communication
delays. We assume that data collected from all meters are synchronized. While this as-
sumption is not realistic, it allowed us to explore the value of data-driven approaches and
applications of smart meter data. Other researchers have explored methods to deal with
communication delays in control algorithms in the distribution system [22]. Future work
would be to integrate their approaches into the work presented here.
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Overview of Chapters

Overview of Chapter 1

In Chapter 1, we explore the relationship between current electricity tariffs and future DER
operations. Across the country today, commercial customers can often choose between dif-
ferent electricity tariffs based on their needs and preferences. With the mass adoption of
DERs in the future, such as electric vehicles, commercial customers may also have better
control over their consumption patterns. If customers can control their DERs to minimize
costs, what current tariff designs would benefit them most? How would customer switching
tariffs affect utility revenue, and would any of these tariff designs lead customers to cause
congestion-related undervoltage in the distribution system?

To answer these questions, we modeled commercial customers optimizing their EV charg-
ing under different PG&E tariffs, including a new tariff designed specifically for commercial
electric vehicle customers, the BEV tariff. This tariff uses a novel subscription-based power
charge in its tariff design instead of the traditional demand charge used in other commercial
tariffs [23]. To our knowledge, subscription power charges have never been used before for
electricity tariffs.

We model customers optimizing their load across different seasons to capture the prices
in each tariff and compare the total costs for a customer with a large fleet of electric vehicles
and a smaller fleet. Once we calculate the optimal charging strategy for each customer, we
model them in an open-source grid simulation software using a feeder model based on a
PG&E distribution feeder, measuring voltage and wholesale energy costs.

This work addresses two gaps in the literature. First, it compares the economic value
of a subscription-based tariff to standard commercial customer tariffs with demand charges
for customers with flexible loads. Second, it compares the potential undervoltage effects on
the distribution system and wholesale costs that arise from EVs following different retail
tariffs as price signals. To our knowledge, neither of these issues has been examined in the
literature before.

We find that undervoltage would occur in our distribution feeder under all four tariffs
we examine. This result indicates that current tariff designs are insufficient for congestion
management, and additional measures are required. We also find that customers could see
nearly a 15% reduction in costs by switching from one tariff to another. This cost savings for
the customer is also reflected in a potentially problematic revenue gap for the utility when
customers switch tariffs. Finally, we show that subscription-based tariffs are less efficient
than traditional demand charge-based tariffs, but the lower prices in the BEV tariff mask
its inefficiency.

Overview of Chapter 2

In Chapter 2, we explore ways to add a voltage constraint to the same EV charging co-
ordination problem as Chapter 1. While the retail tariffs used in Chapter 1 have demand
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charges or a power subscription that limits peak consumption, in this chapter, we examine
how customers would respond to an hourly energy price without a price on power. There is a
growing interest in this type of pricing since it can better reflect wholesale energy costs [24],
[25]. We use these costs to determine the optimal EV charging strategy for each customer
taking into account system voltage.

In optimal powerflow analysis, voltage is a non-convex constraint and requires approxi-
mations or relaxations for efficient optimization. However, these techniques typically require
complete knowledge of the distribution system connectivity or periodic test injections to
measure the system conditions. This chapter presents a novel three-phase data-driven linear
voltage magnitude estimator based on past smart meter and substation data. This estima-
tor is trained offline solely on data readily available for the distribution system operator
and reduces the size of the voltage constraint by only estimating voltage at customer service
connections.

We train our estimator on data from a previous month without EVs and use it to predict
voltage for a constraint in our EV charging coordination problem over a simulated month with
potential undervoltage congestion. We then compare the performance results of our estimator
to a standard linearized voltage approximation. We show that our voltage estimator and
linear voltage approximations can prevent undervoltage in the EV charging coordination
problem. However, when used in this optimization, our estimator is faster and more accurate
than the linearized voltage approximation, requiring less computational memory and no
knowledge of the distribution system network connectivity.

Overview of Chapter 3

In Chapter 2, we prevented undervoltage situations in the EV charging coordination problem
with a centralized optimization. While effective, centralized optimizations require direct
control methods for controlling DERs, and some customers do not want to give up control
over their devices. In addition, direct control can interfere with the proper operation of
energy markets if the system operator does not consider market prices. As an alternative,
researchers have explored indirect methods to create price signals for DER control.

The most common approach researchers have used for creating indirect control price
signals is to send a time-varying scalar $/kWh energy price for customers each time period,
often by calculating distribution level locational marginal prices (DLMP) or determined by
transactive energy markets [24]–[26]. When optimizing load over a day, these scalar energy
prices create linear cost curves for customers to optimize their costs. However, past research
has shown that quadratic energy costs provide better results than linear energy costs since
quadratic cost curves create one solution when optimized compared to multiple solutions with
linear optimization [27]. A challenge with implementing this type of pricing is that in past
research, quadratic costs were calculated based on system conditions either from a modified
DLMP formulation or as part of a dynamic power tariff [27], [28]. These requirements
prevented quadratic pricing from being implemented with other pricing schemes, such as
real-time or day-ahead time-varying energy prices.
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In Chapter 3, we describe a novel method for calculating quadratic costs and introduce
a new pricing scheme for day-ahead congestion management of DERs, referred to as Load
Responsive Prices (LRPs). This approach calculates the minimum required quadratic price
for customers to optimize their load to match a desired load shape. Using the LRP method,
we can determine the optimal load profile of customers from offline analyses and then use
day-ahead prices (potentially taken from the wholesale market) to calculate LRPs. We also
develop an effective heuristic for system operators to implement LRP without calculating
optimal load profiles.

We find that customers optimizing using LRPs consume the same way as customers
following direct load control methods but without knowing the load levels the system operator
requires. We show this holds for both uni-directional and bi-directional DERs. In addition,
we show that customer cost increases from using LRPs can be less than 5% compared to
direct load control methods in our EV charging coordination problem. Finally, we end
the chapter with a discussion of various implementation considerations. We discuss ways
to reduce customer cost increases, methods for addressing incorrect forecasts, and other
important issues for practitioners.



8

Chapter 1

The impacts of retail tariff design on
electric vehicle charging for
commercial customers

Power engineers have examined the potential impacts on the electric grid of high elec-
tric vehicle (EV) adoption, while energy economists have shown issues with modern
electricity retail tariff design. However, little work has shown how customer decisions
regarding their tariff and optimizing EV charging costs could affect the utility and
the customer. If commercial customers can optimize their charging profile, how do
different tariff structures affect local distribution system voltage, utility cost recovery,
and customer bills? To answer this question, we model commercial customers optimiz-
ing their EV charging to minimize costs using real-world tariffs. Then, we model the
voltage impacts of customers charging EVs on a realistic distribution feeder. Finally,
we calculate the costs of EV charging for customers and the distribution utility. We
find that current tariff designs do not support large-scale deployments of EVs without
system upgrades or additional control measures. We also find that customers can re-
duce costs nearly 15% by switching retail tariffs, leading to a potential revenue gap for
the utility. Finally, we show that new power subscription-based tariffs are less efficient
than traditional demand charge-based tariffs, and instead, designing tariffs for load
optimization can reduce costs for both the customer and the utility.

1.1 Introduction

There is a growing interest in the workplace charging of electric vehicles (EVs) [29]. For
businesses with fleets of vehicles, this may become necessary with policy initiatives to reduce
their carbon footprint [30]. For companies with employees commuting to work in light-duty
vehicles, electric vehicle charging may become a service provided to employees [31]. For
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ISO/RTOs curtailing excess renewables during working hours, daytime charging of electric
vehicles is a possible approach to reduce curtailment [32]. Regardless of why commercial
electricity customers choose to install electric vehicle charging stations, customers need to
consider their electricity rates when building these charging stations.

Many retail tariffs for commercial customers charge a time-of-use (TOU) energy charge
for electricity [33]. For larger customers, that tariff can also include a demand charge that
captures the cost of peak power consumption [34]. With the addition of EV charging stations
or electric vehicle supply equipment (EVSE) to a customer’s site, a customer with many EVs
may find their electricity bill is significantly higher or lower if they choose a different tariff
than their current one [35]. In addition to standard commercial tariffs, some electricity
retailers are now introducing EV-specific tariffs. One such tariff uses a subscription-based
design instead of a demand charge[23].

In 2019, the California Public Utilities Commission CPUC approved Pacific Gas and
Electric (PG&E) to enact a new electric vehicle charging rate [36]. This rate was specifi-
cally designed to support the goals of California Senate Bill 350, which “codifies PG&E’s
obligation to help California attain widespread transportation electrification” by creating a
fuel-switching incentive for customers to switch from gasoline to electricity. The proposed
rate design that PG&E put forward, the BEV tariff, was one with a single TOU hour schedule
for all seasons of the year and a subscription plan for power consumption.

In the past, electrical utility companies have not used power subscription-based tariffs
in retail electricity pricing. As such, there is little research on their effects in the electricity
sector. However, there is growing interest in using subscription electricity tariffs due to the
decrease in marginal costs from renewable resources [37], [38]. Based on the literature on
subscription pricing in other industries, we know that these tariffs, sometimes referred to as
three-part tariffs, generate more revenue for sellers than two-part tariffs for the same goods
[39]–[42]. In the energy economics literature, there has been significant work on dynamic
pricing and demand charges in electricity tariffs [43]–[48]. However, until recently, this work
has not been connected to the power systems engineering work that examines the impacts
on the electric grid of electric vehicle adoption [49]–[51]. With the advent of smart energy
management systems and the load size that electric vehicles present, price-signal controlled
charging of electric vehicles can cause concerns not seen with other types of load.

The most significant work on this issue comes from Powell et al. [52]. They analyzed
the control strategies for EV charging at a commercial building under different retail tariffs
and the effects those EVs have on the local transformer and customer bills. They found that
when customers have a tariff that includes a price on power, such as a demand charge, the
best strategy for transformer health is for customers to optimize their charging to minimize
their own costs. In addition, Powell et al. is the only paper we know that modeled a power
subscription-based tariff. In their paper, they compare a draft version of the same power
subscription tariff that we examine in this chapter. They found that optimizing towards
the subscription tariff produced a similar charging profile and transformer health outcomes
to following a demand charge but with less of a response to the price on power since the
subscription price was less than the demand charge.
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While Powell et al. focused on local transformer loading and customer costs, we are un-
aware of any research on the impact of different EV electricity tariffs on distribution system
voltage and utility company cost recovery. Since the synchronized responses of electric ve-
hicles to time-varying prices may cause congestion, affect system-wide voltage and customer
power quality [20], different price patterns can drive different voltage impacts. Additionally,
because EV charging patterns are highly flexible and can be optimized against varying price
signals, different time-varying tariffs could significantly impact utility revenue.

Furthermore, since Powell et al. published their work, TOU hours have been updated for
the power subscription tariff and the demand charge-based tariff they used for comparison
[36]. The new TOU hours align peak pricing hours to better reflect peak prices in the
wholesale market in the region. The off-peak hours now coincide with high solar output in
the middle of the day. These new TOU hours have a significant effect on the price-signal
controlled workplace charging of electric vehicles because these vehicles will be able to charge
during off-peak hours in the morning and early afternoon. While other researchers have
examined these new TOU hours in the context of energy storage [53], [54], to our knowledge,
no other research has investigated the impact of these new TOU hours on electric vehicle
charging.

Researchers have also explored other tariff designs for smart EV charging [55]. However,
this work focuses on transformer impacts from EV charging. Other recent work has examined
the hosting capacity of distribution feeders for EVs and note voltage as a concern [56], [57].
However, this work does not examine the impacts of tariffs on EV charging behavior.

With the increase in EV adoption and smart charging, researchers need to better un-
derstand the relationship between electricity tariffs and impacts of optimized EV charging.
We explore how current electricity tariffs provide an incentive structure for customers to
optimize their DERs and how their optimized consumption could lead to congestion issues
on the distribution system. In our work, we model multiple commercial customers that
optimize their charging costs under different tariffs to determine the effects on customer
costs, distribution system voltage, and utility company revenue. For our simulations, we
use existing tariffs from Pacific Gas and Electric (PG&E) that a commercial customer could
choose between today. We optimize each customer’s EV load to minimize their costs and use
these load profiles with modeled customer data for a realistic distribution feeder to measure
the impact on system voltage and the costs to the utility to supply the EVs with energy.
We show that the relationship between tariff design and DERs can have larger impacts on
customers, the utility, and the electrical distribution system than previously studied.

The three main contributions of this work are

1. We find that none of the commercial retail tariff designs we investigate prevent under-
voltage or support large-scale deployments of price signal-controlled electric vehicles
without upgrading the distribution system or additional control measures.

2. We also find that customers can see a nearly 15% reduction in costs by switching from
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one existing tariff to another, leading to a potential revenue gap for the utility.

3. Finally, we show that new power subscription-based tariffs are less efficient than tradi-
tional demand charge-based tariffs, and instead, designing tariffs for load optimization
can reduce costs for both the customer and the utility.

The issues we study in this paper are relevant across many utilities. However because
tariff designs and distribution systems are strongly heterogeneous, we take a case study
approach, and generalize where appropriate. At the highest level, this paper provides gener-
alizable knowledge by (1) developing a framework for examining engineering and economic
impacts of different tariff designs in a system with significant EV loading and (2) highlighting
potential opportunities and challenges that should be considered in EV tariff design in any
context.

The organization of the rest of this chapter is as follows: The Methods section outlines
our analytical approach and describes the simulation models used for EVs, tariffs, buildings,
and the distribution feeder. Then in the results section we report our numerical results,
we first report the voltage effects of EV charging on the distribution system, followed by
the revenue to the utility company and the costs to individual commercial customers for
optimizing their charging for each tariff option. In the discussion section we analyze the
implications of our results and their potential policy impacts. Finally, we conclude with a
section summarizing our results and the policy implications of this work for rate-making and
electric vehicle charging policy.

1.2 Methodology

We used a three-step analysis approach to determine the effects of different retail tariffs on
the customer, the utility company, and the electrical distribution system. First, we solved
a cost-minimizing electric vehicle charging optimization problem for each retail tariff over a
billing month, assuming EV charging control and full knowledge of daily loading. We solved
this problem for three different months in the year, one in each of the retail pricing seasons.
Next, we extracted the EV charging profiles from the output of the optimization problem
and added them as loads in a distribution system feeder model for a time-series powerflow
analysis. In that analysis, we measured local voltages at each building location and total
feeder loading for every hour of the month. Finally, we used the total feeder loading from the
powerflow analysis to calculate the utility’s costs for the EV load. Each step of this analysis
is explained further in the following subsections.

Retail Tariffs

In this study, we modeled the following PG&E commercial tariffs: B-10 [58], B-19 [59],
and BEV [23]. Commercial customers in PG&E’s territory with up to 499 kW peak usage
can select the B-10 or B-19 tariff as their electricity tariff regardless of whether they have
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electric vehicles. In addition, commercial customers with electric vehicles can instead choose
the BEV tariff for EV charging at their location. However, they must separately meter
their EVs to use the BEV tariff and still use the B-10 or B-19 tariff for their other loads.
Therefore, we modeled BEV customers with a B-10 tariff for their building loads and the
BEV tariff for their EVs. In addition to the above tariffs, we created a fourth tariff model,
the TEST-EV tariff. This tariff uses the prices and TOU hours of the BEV tariff but the
power pricing structure of the B-10 tariff. The rest of this subsection describes the structure
of each tariff we modeled in more detail. See the Appendix for the dollar amounts used for
each price in the tariffs.

The retail tariffs in this work use volumetric energy and volumetric power costs in their
total monthly cost calculations. However, each retail tariff uses different prices or pricing
structures for the energy and power components. The literature on electric utility tariffs
interchangeably uses “parts” or “components” to describe these costs [60], [61]. However,
we strictly use the term “component” to differentiate between energy and power costs in a
tariff. In contrast, we use “parts” to describe the pricing structure for each component (e.g.,
the energy component of a tariff can have a fixed cost “part” and a volumetric cost “part”).
We use this language to align our terminology with the broader economics literature on
pricing structures for analysis of the subscription pricing model of the BEV tariff [39]. Since
the fixed costs are the same for the tariffs we examined, we describe but exclude the fixed
costs from our models to simplify calculations. Additionally, we only model the standard
secondary connection prices for each tariff. We do not model other PG&E specific programs
such as Peak Day Pricing, standby charges, or power factor correction. In the following, we
first describe the energy component in detail and then address the power component of each
tariff.

For the energy component, each tariff uses a two-part tariff design. In a two-part tariff
design, the first part is a fixed cost and the second part is a volumetric cost based on the units
of consumption. For the energy component, these volumetric costs are priced in $/kWh. In
addition, these tariffs use time-of-use (TOU) hours for the volumetric energy prices. These
hours are specific time intervals in which energy is cheaper or more expensive on a given
day. Each electricity retailer sets its TOU hours, which typically reflect average wholesale
energy costs at different times of the day.

The B-10 and B-19 tariffs use the same three-season TOU hour schedule, while the BEV
tariff uses a single schedule year-round. Each schedule has up to three different pricing
periods for a given day. For the Summer TOU hours, there are “Peak,” “Partial Peak,” and
“Off-Peak” hours (Figure 1.1). For the Spring TOU hours, there are “Peak,” “Off-Peak,”
and “Super Off-Peak” hours (Figure 1.2). The BEV tariff uses the same hours as the Spring
TOU schedule, but the BEV tariff hours apply all year. In addition, the Winter TOU hours
are the same as the Spring TOU schedule but without a “Super Off-Peak” period. Each of
these periods has different volumetric energy consumption charges, with “Peak” being the
most expensive and “Super Off-Peak” being the least.

For the power component of the retail tariffs, the B-10 and B-19 tariffs again use two-
part tariff designs, where the volumetric costs are known as demand charges with pricing



CHAPTER 1. THE IMPACTS OF RETAIL TARIFF DESIGN ON ELECTRIC
VEHICLE CHARGING FOR COMMERCIAL CUSTOMERS 13

Figure 1.1: The relative costs of energy in different TOU periods for PG&E’s Summer
Commercial Customer Hours. Note: The relative pricing levels shown here are only relative
to other TOU periods in this figure; they are not relative to the prices in Figure 2.

in $/kW. The B-10 tariff uses a fixed-level demand charge, in which a customer is charged
for their peak power consumption in a billing cycle. In contrast, the B-19 tariff has time-
differentiated demand charges instead of a fixed-level demand charge. These are a set of
multiple demand charges calculated for the maximum power consumption during different
intervals related to the TOU periods. In the B-19 tariff, a customer sees a separate demand
charge for their maximum power consumption in the “Peak” TOU period, their maximum
power consumption during “Partial Peak”, and a demand charge for the overall maximum
power consumption at any time in the billing period. This last demand charge may be for
the same period as the “Peak” or “Partial Peak” demand charge if the overall maximum
power consumption occurs during one of these TOU periods. For billing periods in months
where there is no “Partial Peak” TOU period, only the “Peak” and overall maximum power
consumption are billed. In practice, PG&E calculates the power used in demand charges by
averaging measured power over 15-minute periods. However, due to the hourly load profiles
of our data, we modeled all demand charges on an hourly time scale in our analysis.

Representative equations for the B-10 tariff and the B-19 tariff are provided below. In
Equation (1.1) the fixed costs are the non-volumetric components of each tariff. Equation
(1.2) represents the tariff volumetric energy costs, with xt representing power consumed at
time t in each of the different TOU time periods p,p2, p3 and TOU is the energy price for
the respective periods. While the structure is the same for both tariffs, the specific prices
differ, with the B-10 tariff having higher energy prices than the B-19 tariff. Equation (1.3)
represents the different demand charge formulations for B-10 and B-19. DC is the demand
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Figure 1.2: The relative costs of energy in different TOU periods for PG&E’s Spring Com-
mercial Customer Hours and BEV Tariff Hours. The Winter Commercial Customer TOU
schedule is the same but without the Super Off-Peak period. Note: The relative pricing
levels shown here are only relative to other TOU periods in this figure; they are not relative
to the prices in Figure 1.

charge price for either the time period (B-19) or overall (B-10). Xt1 represent the set of
power consumed at each hour in the first TOU period used in the tariff for a given season.
[Xt1 , Xt2 , Xt3 ] represent the combined set of power consumed at each hour in all of the TOU
periods used in the tariff for a given season. The sum of Equations (1.2)-1.3 creates the total
monthly cost for a commercial customer, Equation (1.4).

C1 = Fixed Costs (1.1)

C2 =
∑
t1∈p1

TOUp1 · xt1 +
∑
t2∈p2

TOUp2 · xt2 +
∑
t3∈p3

TOUp3 · xt3 (1.2)

C3 =


DC ·maxxt ∈ [Xt1 , Xt2 , Xt3 ], if tariff = B10

DC1 ·maxxt1 ∈ Xt1

+DC2 ·maxxt2 ∈ Xt2

+DC3 ·maxxt3 ∈ [Xt1 , Xt2 , Xt3 ],

if tariff = B19.
(1.3)

Total Monthly CostB10 or B19 = C1 + C2 + C3 (1.4)

In the BEV tariff, the power cost is designed as a subscription plan for EV charging. The
customer chooses a subscription level for the peak power their EV charging will consume in
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a given month, similar to the monthly allowances in American cell phone minute plans of
the 1990s and early 2000s. In the BEV subscription, customers buy their expected power
in 10kW blocks for a smaller EV charging load (BEV-1) or 50kW blocks for a larger EV
charging load (BEV-2). Customers pay the price of the blocks purchased regardless of the
amount of power EVs consumed in that billing period. At the end of the billing period,
the maximum EV power used is compared to the subscription level chosen by the customer.
If the customer’s maximum EV power is higher than the total power they bought in the
subscription blocks, they are charged a volumetric overage fee. This overage fee can be
seen functionally as a very high fixed-level demand charge for EV power that exceeded their
subscription level. If the customer’s maximum EV power consumption is less than or equal
to the subscription blocks they purchased, then they do not pay any additional fees. The
BEV tariff’s subscription mechanism is an example of a three-part tariff design. Lambrecht
et al. state that a “three-part tariff is defined by an access price, an allowance, and a
marginal price for any usage in excess of the allowance” [39]. The allowance level separates
a three-part tariff from a two-part tariff that has an access fee (fixed costs) and a marginal
price (volumetric cost) [62].

Comparing the BEV tariff to the B-10 or B-19 tariff, the BEV tariff has a significantly
lower equivalent demand charge, even if the consumer faces an overage fee. However, while
the B-10 and B-19 tariffs calculate costs based on measured consumption, the customer is
expected to estimate their load to select a subscription level when using the BEV tariff. To
separate the effects of this lower equivalent demand charge and the new pricing mechanism
of subscriptions, we created the artificial TEST-EV tariff. The TEST-EV tariff is identical
to the BEV tariff except for how the power costs are calculated. Instead of a subscription,
the TEST-EV rate uses a $/kW equivalent demand charge derived from the subscription
prices in the BEV tariff. See the Appendix for the dollar values of the BEV and TEST-EV
tariff.

Representative equations for the BEV and TEST-EV tariff are below in (1.5)-(1.9). x̂t

represents power consumed by EVs at time t in the set of power consumption values over
the different EV TOU periods p̂1, p̂2, p̂3. TOU is the Time-of-Use energy price, Φ is the
subscription rate cost, β is the size of the block for the subscription, and γ is the number
of blocks a customer purchased for their subscription. If a customer’s power exceeds their
selected subscription level, then they are charged for the excess energy at the overage rate
cost, Θ. Equation (1.7) represents the different power components formulations for the BEV
and TEST-EV tariff. In addition to the EV tariff costs, the total monthly cost for a customer
would include their building loads. Equation (1.9) represents this for a customer using the
BEV or TEST-EV tariff and model this as the B-10 tariff for the building loads.

C1 = Fixed Costs for EVs (1.5)

C2 =
∑
t1∈p̂1

TOUp̂1 · x̂t1 +
∑
t2∈p̂2

TOUp̂2 · x̂t2 +
∑
t3∈p̂3

TOUp̂3 · x̂t3 (1.6)
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C3 =


Θ ·max (max x̂t ∈ [X̂t1 , X̂t2 , X̂t3 ]− γβ, 0)

+Φγβ, if tariff = BEV

DCEV ·max x̂t ∈ [X̂t1 , X̂t2 , X̂t3 ], if tariff = TEST-EV.

(1.7)

C4 = Fixed Costs for non-EVs loads (1.8)

Total Monthly CostBEV or TEST-EV = C1 + C2 + C3 + C4 (1.9)

Building Models

To model the building loads at each EV charging location, we used commercial and industrial
building models from the Department of Energy’s Commercial Reference Building models
[63]. We selected two prototypical commercial buildings as EV site hosts: the medium-sized
office building model and the warehouse model. We assumed nearly full electrification of
transportation at each site, motivated by the announced phaseout of gas powered vehicles
in California [64]. Each building model provided hourly electric load profiles that responded
to changes in modeled temperature and occupancy [65].

The warehouse building model represents a 52,045 sq. ft, single-floor industrial building
with charging hours from 8 am to 5 pm, and a max non-EV load of 82 kW. We modeled each
warehouse with a fleet of 10 EVs to model a small fleet of delivery vehicles. Although delivery
vehicles are typically active during the day, advocates in the postal industry are exploring
night-time deliveries [66]. In addition, the BEV tariff incentivizes customers to charge during
the day-time Super Off-Peak Period. We modeled the BEV tariff at the warehouse buildings
as BEV-1, with 10kW block size increments in the subscription.

The medium-sized office building model represents a 53,628 sq. ft, three-story office
building with charging hours from 7 am to 8 pm, and a max non-EV load of 238 kW. While
this charging window is large, we selected it maximize load flexibility while reflecting the
occupancy of the DOE Commercial Reference Buildings. We modeled each medium-sized
office building with 250 EVs to model a full parking lot of employee vehicles. We modeled
the BEV tariff at the medium-sized office buildings as BEV-2S, a building with a secondary
distribution connection and 50kW block size increments in the subscription.

EV Models

We modeled each EV as a stationary load during charging hours with a maximum charging
rate of 7.2 kW. We also modeled each EV to require 20 kWh of daily energy. This energy
is equivalent to 1/3 of a full charge of a 60kWh battery on a light-duty vehicle or 1/9 of a
full charge for a medium-duty electric vehicle [67], [68]. We assumed this amount of energy
as an extreme case in which vehicles only charge at each workplace and EV owners do not
charge their vehicle at home or other locations. We modeled all EVs to be connected to
EVSEs and assumed they could charge at any point the optimization dispatched them.
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Electric vehicle charging optimization problem

To measure the potential impacts of controlled electric vehicle charging, we developed a
linear programming model to minimize the cost of charging a fleet or collection of electric
vehicles at customer locations (1.10). f (x̂(t), x(t)) is a time-varying cost function over time
t = 1:24 hours, where equations (1.5)-(1.9) were used to model each of the different tariffs.
x̂(t) are the EV loads and x(t) are the non-controllable building loads.

The mathematical program minimizes the total cost to the customer for their building
loads and the charging of all the electric vehicles at the customer’s site. In our analysis, we
only optimized the EV charging; the building loads were treated as exogenous to the opti-
mization and only included because several retail tariffs use a customer’s combined maximum
power consumption to calculate the demand charge component of the tariff.

min
x̂

Cost =
24 hours∑

t=1

f(x̂(t), x(t)) (1.10)

s.t. (x̂(t) + x(t)) ≤ Local loading limit

x̂(t) ≤ EV operating constraints

24hrs∑
t=1

x̂(t) = charging energy required for

EVs at the building

We ran the optimization daily for each retail tariff, keeping the constraints the same but
using the objective function in each case to reflect the cost components of the tariffs. For
tariffs with a demand charge, we communicated peak load values across subsequent days
in the month for the optimization to consider the potential increase in monthly demand
charge. For the BEV tariff, ran the optimization twice over the month to calculate optimal
subscription levels. Since the subscription levels are discrete blocks, we first determined
the optimal subscriptions by formulating the problem as a mixed-integer linear program.
Then we re-ran the optimization as a linear program with the maximum subscription level
calculated from the mix-integer linear program.

We modeled each customer site to schedule EV charging at the building with perfect
daily foresight of total EV energy required but we assume no knowledge of demand on
future days. While perfect daily foresight is a strong assumption, we used it to keep the
problem a tractable linear program and provide a lower bound on the costs following each
price signal.

We performed this analysis over the simulated months of May, July, and December.
We selected these months to capture the costs from following the TOU hours of the three
different seasonal periods PG&E uses. Each month is the same number of days in length
and does not include daylight-savings time shifts.
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Electrical distribution system powerflow analysis

Once we solved the dispatch problem for the retail rates as price signals, we extracted the
hourly charging profiles for each EV and used them as additional loads in an electrical
distribution time series powerflow analysis. We performed two different analyses from this.
First, we determined the effects of the optimized charging profiles on the local electrical
distribution system voltage. ANSI C84.1 requires customers on the distribution system to
receive a normalized voltage of 1.05 to 0.95 of the expected system voltage [69]. We measured
voltage at all customer locations to determine if and when voltage was outside of the ANSI
limits. For this analysis, we only examined the distribution system impacts in July because
it had the highest demand from other loads and put the feeder most at risk for undervoltage.
For the second analysis, we measure the losses in the distribution system to capture the full
amount of energy required to charge the EVs bulk power grid. We applied this analysis for
all three months we simulated.

Grid Model

For the powerflow analysis, we modeled a single electrical distribution system feeder in
Gridlab-D [70]. We modified a three-phase, unbalanced feeder model created by PG&E to
model an existing 12.47 kV urban distribution feeder in the inland area Northern California
[71]. The feeder is 17 miles long, with overhead and underground power lines supplying
2,894 residential customers, 270 commercial customers, and 91 industrial customers (Fig.
1.3). To provide load diversity, we modified the feeder model to incorporate 10 different
building models from the Department of Energy’s Commercial Reference Building models
and Building America House Simulation Protocols for the residential building models [63],
[72]. We modeled all 91 industrial customers on the feeder as warehouse buildings and
five of the commercial customers as medium-sized office buildings. The feeder originally
was modeled with a single large solar resource that we disaggregated into distributed solar
at customer locations to more accurately represent the solar resources on the grid. For
ambient temperature and solar insolation, we modeled building and solar PV models using
TMY3 climate data for the Sacramento Area [73]. We modeled a total of 2,160 EVs on the
distribution feeder, 10 EV at each of the 91 warehouses and 250 EVs at each of the 5 office
buildings, for a combined load of 43.2 MWh per day or 1.34 GWh per month. We assumed
the EV load was balanced across all three phases at each building. In addition, we increased
the size of the capacitor banks to correct for the new load models and replaced the originally
incorrectly modeled underground line models with 15kV concentric neutral underground line
models from the IEEE 13-node feeder [74]. Before running our powerflow analysis, we also
verified that the feeder could support charging the total number of EVs we modeled without
voltage constraint violations.



CHAPTER 1. THE IMPACTS OF RETAIL TARIFF DESIGN ON ELECTRIC
VEHICLE CHARGING FOR COMMERCIAL CUSTOMERS 19

Figure 1.3: Graph representation of the distribution feeder model with 678 nodes in a force-
directed layout (identified as Feeder D0001 in [71]). The red star indicates the distribution
substation and orange triangles are the 221 load locations identified in the original feeder
model.
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Wholesale cost calculations

Once we completed the powerflow analysis with the additional EV loading, we used the
measured loading at the feeder substation to calculate the wholesale cost of providing energy
to the entire distribution feeder. We measured this cost for the feeder with and without the
modeled buildings and EVs to determine losses from charging the vehicles and measure the
additional power needed from the transmission system to supply the EVs under different
charging strategies. We assumed any changes in loading on the distribution system feeder
were too small to affect the wholesale price.

For wholesale prices, we use hourly electricity prices from the Avoided Cost Calculator
[75]. This calculator, developed by the energy consulting firm E3, is used by the California
Public Utilities Commission to determine the benefit of distributed energy resources [76].
The ACC calculates the avoided cost of energy for every hour of the year by modeling
the combined costs of wholesale energy, system capacity, and environmental damages from
greenhouse gases. The ACC is updated yearly and projects costs for 30 years into the future.

Specifically, we use the 2022 ACC electricity prices for the PG&E climate area 12 in the
year 2023. We selected this climate area after discussions with PG&E modelers about ideal
locations to model their electric distribution feeder model. See the Grid Model subsection
for more details on this distribution feeder model. In addition, we selected 2023 for pricing
data to match the days of the week and the calendar of our building model data.

Computation

All calculations and simulations were performed on an AMD Ryzen 7 3700X desktop PC with
64GB of RAM, running Windows 10. Linear programs were solved in MATLAB R2020a [77]
using YALMIP [78] with Gurobi [79] as the solver. Distribution system powerflow simulations
were modeled in Gridlab-D [70].

1.3 Results

EV optimization load results

We first examined the EV load profiles from the optimizations. We found that Warehouse and
Medium Office customers both optimize their EV charging in a similar manner to minimize
costs for the month. When optimizing under a tariff with a demand charge, such as the B-10,
the demand charges are much larger than TOU energy charges. As a result, the optimal
load profile for customers is to maximize EV charging at all hours up to the peak load level
of the month. This creates a flat load profile for the customer on the peak energy-consuming
day of the month (Fig. 1.4). However, to simulate the uncertainty of building loads, we
assumed the customer would not know what this peak level was or when it would occur.
As such, the customer would optimize each day, determining their demand charge as the
maximum of the peak loading and the peak loading of all previous days that month. This
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resulted in the customer resetting their peak load level throughout the month. In days after
the peak load day, customers will consume each hour up to the load level set by the demand
charge and avoid peak TOU hours if possible (Fig. 1.5). Customer load shapes showed the
same behavior over July and December. However, the temperature increased throughout
May, with peak loading occurring on May 30th (Fig. 1.6). Since our customers did not have
a prediction of their peak load, they would optimize throughout the month with only the
peak they had already experienced. This results in customers flattening their load to peak
load levels below the peak they are paying for by the end of the month. Customers in this
situation pay more in TOU energy charges in the first 29 days of the month compared to a
customer that would know their peak.

Optimized Medium Office Load Using B-10 for 250 EVs
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Figure 1.4: The optimized hourly load profile of customers when optimizing under the B-10
tariff on the maximum load day of the month. (a) Medium Office Customer in July (b)
Warehouse Customer in July

Unlike the B-10 tariff, the B-19 tariff has time-differentiated demand charges. When
a customer optimizes load under this tariff, the customer follows similar demand charge
behavior as B-10 but will have two separate flat load levels in the Summer, one for Summer
Peak periods and one for Summer Off-Peak/Partial Peak periods (Fig. 1.7). The customer
will not optimize for the the Summer Partial Peak demand charge because it is significantly
smaller than the Summer Max demand charge. Similarly, in Winter or Spring months,
customers optimizing their load under the B-19 tariff will ignore the Winter Peak demand
charge because the Winter Max demand charge is greater than ten times the cost. Customers
also ignored the TOU costs for the Winter Super Off-Peak Period to create a flat load profile
across all TOU hours within the EV charging window.
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Optimized Medium Office Load Using B-10 for 250 EVs
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Optimized Warehouse Load Using B-10 for 10 EVs
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Figure 1.5: The optimized hourly load profile of customers when optimizing under the B-10
tariff on a typical load day of the month. (a) Medium Office Customer in July (b) Warehouse
Customer in July
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Figure 1.6: The Peak load measured at each (a) Medium Office Customer and (b) Warehouse
Customer throughout May used for determining demand charge costs. The maximum load
hour would not occur until May 30th.
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Optimized Medium Office Load Using B-19 for 250 EVs
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Optimized Warehouse Load Using B-19 for 10 EVs

0 5 10 15 20

Hour (Peak July Day)

0

10

20

30

40

50

60

70

80

90

100

k
W

Warehouse Load

EV Load

(b)

Optimized Medium Office Load Using B-19 for 250 EVs
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Optimized Warehouse Load Using B-19 for 10 EVs
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Figure 1.7: The optimized hourly load profile of the (a) Medium Office Customer and (b)
Warehouse Customer on the peak load day in July under the B-19 tariff. The load profiles
for the same (c) Medium Office Customer and (d) Warehouse Customer on a typical load
day in July under the B-19 tariff. Unlike the B-10 tariff, the time-differentiated demand
charges in the B-19 tariff limited EV load in Off-Peak and Partial Peak hours separately.
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Customers optimizing for the BEV tariff also primarily optimized for the power costs
based on their subscription level (Fig. 1.8). However, the BEV tariff is only for the electric
vehicles at each customer location. As such, the BEV tariff has an identical load profile for
each day of the month and a similar load profile for all three months in this test. The May
and December load profiles for the Medium Office customer are slightly different than the
July load profile due to both being valid optimal solutions to the problems. As seen in the
next section, the costs were the same for customers for all three months.

Customers optimizing for the TEST-EV tariff showed a similar load behavior to the BEV
tariff (Fig. 1.9). However, level under the TEST-EV tariff was determined by the power
consumed by the customer instead of a block subscription program, the customer was able to
save money by increasing their power consumption to reduce consumption during the Peak
TOU hours (Table 1.1). EV load profile results were identical across all three months we
tested.

Table 1.1: The optimized peak load for each building type under the BEV and TEST-EV
Tariffs

Tariff
Peak

Medium Office
EV Loading

Peak
Warehouse
EV Loading

BEV 550 kW 20 kW

TEST-EV 555.6 kW 25 kW
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Optimized Medium Office Load Using BEV for 250 EVs
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Optimized Warehouse Load Using BEV for 10 EVs
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Optimized Medium Office Load Using BEV for 250 EVs
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Optimized Warehouse Load Using BEV for 10 EVs
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Figure 1.8: The optimized hourly load profile of the (a) Medium Office Customer and (b)
Warehouse Customer on a typical day in July under the BEV tariff. The load profiles for
the same (c) Medium Office Customer and (d) Warehouse Customer on a typical load day
in May or December under the BEV tariff. Unlike the B-10 or B-19 tariff, the BEV tariff
only applies to EV loads.
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Optimized Medium Office Load Using TEST-EV for 250 EVs
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Optimized Warehouse Load Using TEST-EV for 10 EVs
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Figure 1.9: The optimized hourly load profile of customers when optimizing under the TEST-
EV tariff on a typical load day of the month. (a) Medium Office Customer in July (b)
Warehouse Customer in July

Cost to the customer

We extracted the volumetric EV costs for each tariff and reported them for buildings we
modeled in Table 1.2. We also calculated a “seasonal weighted sum” to reflect the three
spring months, four summer months, and five winter months in a billing year. Note that
these seasonally weighted sums approximate a billing year but do not exactly match the
total costs because we are using 31-day months for our analysis.

We found that the hypothetical TEST-EV tariff was the cheapest for customers to follow.
For existing tariffs, the B-19 was the cheapest tariff to optimize against for the smaller
warehouse customer, while the BEV tariff was cheaper for the larger medium-sized office
customers. In both cases, the B-10 tariff was the most expensive tariff for customers to use
as a price signal.

Voltage effects on the distribution feeder

We distributed the load profiles generated in the optimization above across our feeder model
to examine system voltage in July. The peak loading on the feeder prior to adding the EVs
was 17.76MW at 3pm on July 10th. This is due primarily to July 10th having the highest
temperature of the year in our TMY3 data. With the EVs on the feeder, peak loading
increased to between 20.86 MW and 23.26 MW, depending on the tariff used as a price
signal for the EVs. Table 1.3 summarizes these results along with the voltage impacts for
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Table 1.2: EV volumetric costs for Medium-Sized Office and Warehouse building models by
month, and seasonally weighted sum.

Building
Type

Tariff May July December
Seasonally
Weighted

Sum

Medium-
Sized Office

B-10 $ 28,094.24 $ 35,937.60 $ 29,863.91 $ 377,352.67

B-19 $ 23,518.29 $ 30,560.85 $ 25,636.52 $ 320,980.87

BEV $ 19,153.69 $ 19,153.69 $ 19,153.69 $ 229,844.28

TEST-EV $ 18,804.97 $ 18,804.97 $ 18,804.97 $ 225,659.64

Warehouse

B-10 $ 973.95 $ 1,296.88 $ 1,159.07 $ 13,904.72

B-19 $ 769.69 $ 1,1693.18 $ 980.53 $ 11,888.44

BEV $ 1,000.53 $ 1,000.53 $ 1,000.53 $ 12,006.36

TEST-EV $ 747.98 $ 747.98 $ 747.98 $ 8,975.76

each retail tariff.
We measured the minimum voltage at load locations on the feeder and counted the

hours where the voltage was below the 0.95 pu ANSI minimum to determine the number of
undervoltage events associated with each price signal. We found that all four tariffs caused
congestion across the feeder and voltage to drop below 0.95 pu during multiple hours in the
month. However, we did not observe a trend in the relationship between voltage impacts
and tariff design or feeder peak loading.

Table 1.3: The minimum voltage measured across all customer locations in July, and the
number of hours in the month the voltage is below the ANSI C84.1 lower limit for voltage.

Tariff
Peak Feeder

Loading (MW)
Minimum Voltage

(Per Unit)

Number of
hours voltage is
below 0.95 pu

B-10 20.86 0.88 4

B-19 23.04 0.92 4

BEV 22.74 0.93 6

TEST-EV 23.26 0.90 11
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Costs to the utility

In Table 1.4, we calculated the seasonally weighted costs in ACC 2023 dollars and revenue
for the utility. We calculated the total volumetric revenue a utility would receive as the
summation of the costs the customers would pay for charging all the electric vehicles on the
distribution feeder. We also calculated the difference between this revenue and the ACC
2023 costs as the net revenue for the utility.

We found that the B-10 tariff generated the the highest costs and largest net revenue
for the utility. The TEST-EV tariff had the lowest cost and lowest revenue. For the tariffs
currently available to customers, the B-19 tariff had the lowest cost for the utility, but it
generated more revenue and more net revenue for the utility than the BEV tariff.

Table 1.4: Total seasonally weighted sum of costs, revenue, and net revenue for an electricity
distribution utility to supply commercial EVs across the distribution feeder.

Tariff ACC 2023 costs Volumetric revenue Net revenue

B-10 $ 769,832.51 $ 3,152,096.08 $ 2,382,263.57

B-19 $ 542,842.67 $ 2,686,752.79 $ 2,143,910.12

BEV $ 552,734.36 $ 2,241,796.08 $ 1,689,061.72

TEST-EV $ 428,255.42 $ 1,945,089.72 $ 1,516,834.30

1.4 Discussion

Undervoltage from Price-Signal Control

We found that if a large number EVs on a distribution feeder followed any of the retail tariffs
we modeled as a price signal and background loading was already high, the distribution feeder
could experience congestion leading to undervoltage situations. These voltage excursions
highlight that customers with flexible loads following current retail tariffs can negatively
impact the local distribution system and affect neighboring customers. While these tariffs
were not designed explicitly to “protect the grid,” the volumetric power cost components
were designed to capture the cost of demand on the grid and incentivize the reduction of
peak load. We found that the different load shifting incentives and prices on power of these
tariffs are not effective in mitigating network impacts. In addition, we examined highly
flexible daytime charging scenarios in both buildings, less flexible scenarios would increase
power consumption during charging hours and exacerbate the voltage magnitude effects we
observed.

In future scenarios with many EVs, either other mechanisms will need to be employed to
ensure EV charging load does not exceed system constraints, or upgrades to the distribution
system will be required. Since the number of hours in the month where voltage is violated
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is relatively low, finding a strategy that does not require upgrades to the feeder could be
more cost-effective than installing new equipment. These strategies could be adding engi-
neering constraints to the optimizations, adjusting pricing values of the current volumetric
power costs, designing other pricing mechanisms, or employing price signals that include
information about the status of the distribution system like a D-LMP [80].

Costs to the Customer vs. the Utility

We found the most expensive tariff for both customers and the utility was the B-10 tariff.
In Table 1.5, we show that customers with the ability to optimize their EV load would save
money if they switched away from the B-10 tariff to the B-19 or BEV tariff. We found that
both customer types we modeled would save nearly 15% by switching from the B-10 tariff
to B-19. We also found significant savings for customers to switch from the B-10 to the
BEV tariff; however, we find the other issues in the BEV tariff design that we address in the
“Subscription Pricing” subsection below.

We also examined the cost savings for the utility for customers switching tariffs. In Table
1.5, we show that the utility would save over 28% in ACC 2023 cost if customers selected
the BEV or B-19 tariff, with more savings if customers selected the B-19 tariff. However,
the cost savings of the utility does not offset the loss of revenue from customers, and the
resulting loss of net revenue ranges from 10 to 29 percent. Customer switching today could
lead to a revenue shortfall; however, in the future, these differences should be examined by
regulators. The loss in revenue incentivizes the utility to keep customers on the higher-cost
tariff even though the lower-cost tariff is better for the customer and reduces ACC costs. If
incentives were properly aligned, a reduction in ACC costs would not result in a net loss of
revenue for the utility.

Table 1.5: Percentage savings from switching tariff designs.

From B-10 to
B-19

From B-10 to
BEV

Savings for a
Medium-Sized
Office Customer

14.94% 39.09%

Savings for a
Warehouse
Customer

14.50% 13.65%

Cost Savings
for the
Utility

29.49% 28.20%

Change in Net
Revenue for
the Utility

-10.01% -29.10%
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In both the subscription pricing tariff and demand charge-based tariffs, the customer
experiences a higher per unit cost of power compared to energy (see appendix for specific
charges). This higher per unit cost makes power costs the dominant component of the
bill when it comes to optimizing load. Instead of shifting load to follow lower cost TOU
energy hours, the optimal action for customers with large power costs is to reduce their
consumption as much as possible across all hours in a time period. With a fixed-level
demand charge or flat subscription level, customers are incentivized to have a completely
flat load profile at all hours of the day. In contrast, customers with time-differentiated
demand charges are incentivized to limit their power consumption in different period to
create different flat periods of load. However, customers are also sensitive to the relative
cost of demand charges. If the Max demand charge is significantly larger than a TOU period
demand charge, the optimal behavior may be to ignore the TOU period demand charge
and flatten load to minimize the impact of the Max demand charge. Unfortunately, this
”load flattening” strategy does not help the utility. The utility would see a cost reduction
if customers followed their TOU hours because the TOU hours for these tariffs generally
capture the peak prices on the wholesale market [81]. While we only modeled EV charging
in this analysis, we expect that this would also hold true for any other flexible loads that a
customer could optimize to minimize their costs. The optimal scenario would be one where
customers with flexible loads followed prices that reflected the lowest cost energy available
on the wholesale market while also keeping load at a level to not cause network impacts in
the local distribution system.

A way to increase load shifting would be to lower power costs and increase the time
granularity of prices. Customers would make decisions based more on the cost of energy
instead of power and could consume energy when it is cheaper for the utility to purchase.
More granular prices on power and energy would result in reduced costs for both the utility
and the customer. Other groups have proposals for real-time pricing (RTP) tariffs that
include dynamic pricing for distribution system capacity [43], and the California Public
Utilities Commission ordered PG&E to look into RTP for future EV tariffs [36]. However,
with the extreme price shocks related to the 2021 Texas Power Crisis, direct exposure of
real-time prices to customers is less politically feasible [82].

Subscription Pricing

We designed the TEST-EV tariff to examine the subscription mechanism of the BEV tariff
and to explore the efficiency of power subscription plans. We found that EVs following
the TEST-EV tariff led to lower costs for both the customer and the utility company as
compared to the BEV tariff. The subscription plan in the BEV tariff was more expensive
for customers because customer demand did not perfectly align with the subscription block
sizes. As a result, optimal customer behavior oversubscribes for the capacity they did not
need or use.

When we assume that customers can buy their power in continuous kW increments (as in
TEST-EV), the optimal charging strategy has slightly more load during off-peak hours than
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if customers buy power in 10 or 50kW blocks (as in BEV). Using TEST-EV’s equivalent
demand charge results in a slightly higher power cost than BEV, but a lower volumetric
energy cost that more than offsets the higher power component of the bill. Switching from the
BEV tariff to the TEST-EV tariff would result in a 2% decrease in total monthly volumetric
costs for an office building owner and a 25% decrease in cost for a warehouse building owner.
We also note that ACC2023 costs for the utility are 22% lower for TEST-EV than for BEV.

The difference between TEST-EV and the BEV tariff is likely to be even larger than
we modeled, due to our assumptions about customer capacity to forecast demand. Our
optimization model assumes knowledge of the EV load for the month to chose the best
subscription level. Even with perfect knowledge and cost optimization, we found BEV
customers will likely over-subscribe or under-subscribe and face an overage fee. We expect
that, due to forecast errors, BEV customers would tend to make sub-optimal decisions when
choosing their subscription level, or a subscription level would become sub-optimal due to
changes in their charging requirements throughout a billing cycle.

Researchers in other fields have identified that subscription pricing schemes like the one in
the BEV tariff are problematic for customers to make optimal decisions [40] and have found
that “three-part tariffs can increase customer usage and firm revenues” [41]. In addition,
customers who experience overage fees from under-subscribing in one billing cycle are more
likely to overpay for excess subscription allowances in the future to avoid overage fees, even
when this strategy costs more [39]. Even with an optimized charging management system,
a BEV customer would need to determine their subscription block size ex-ante. While some
more sophisticated customers may be able to design predictive algorithms to optimize their
consumption, it would be more efficient for customers to use an ex-post calculation of costs
based on actual consumption data.

1.5 Conclusion

Our analysis examined how retail tariffs impact optimal commercial customer electric vehicle
charging profiles and the resulting impact on customer bills, utility revenue, and distribution
system voltage. We compared three time-differentiated retail tariff designs in use today
as well as a hypothetical tariff that mirrors a demand-subscription tariff, but without the
requirement to pre-purchase demand in fixed increments.

We found that none of the retail tariff designs we examined prevented congestion related
undervoltage events on a modeled distribution feeder. The pricing incentives for power
were insufficient for keeping voltage in range; demand charges alone will be insufficient to
prevent distribution system upgrades. Our results highlight the importance of modeling
electricity tariffs when simulating distribution system powerflow. As customers become
more price responsive, tariff designs can have an effect on system voltage and impact safe
grid operations.

We also found significant cost savings for customers to switch away from a fixed-level
demand charge to a time-differentiated demand change. Following a time-differentiated
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demand charge also reduced utility costs. However, the cost savings the utility would expe-
rience did not make up for the loss in revenue, causing an overall loss in net revenue when
customers switched tariffs. We recommend regulators examine tariff options for customers
to ensure the price incentives for all parties are aligned with the ACC costs.

Finally, we found that the real-world subscription plan design examined in this study was
less efficient than the existing demand charge-based tariffs. Other researchers have already
shown demand charges are not efficient pricing mechanisms [83]. Our findings indicate that
the three-part subscription-based power charges in the BEV tariff are even less efficient.
Based on these results, we recommend that utilities do not use power subscription-based
tariff designs.

There are several areas of future research that can build from the work we describe here.
First, while we modeled our loads on the three-phase unbalanced distribution feeder, we
balanced the EV loading across the phases at each customer location. One area of future
work would be to examine the impacts of unbalanced EV charging. While we focused on
three-phase charging for commercial customers, residential customers and smaller commercial
customers may have single or two-phase connections to the distribution system and their
aggregate EV charging could lead to phase imbalance. Another area of related research
would be the congestion impacts of bi-directional charging of EVs. We focused solely on
unidirectional charging of EVs but other researchers have explored vehicle-to-grid approaches
for demand charge management and as virtual power plants [84], [85]. A current gap in the
literature is the distribution system impacts of widespread vehicle-to-grid adoption.
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Chapter 2

Data-Driven Linear Three-Phase
Voltage Estimations for Optimal
Electric Vehicle Charging
Coordination

Market analysts project that the number of electric vehicle chargers in the US will in-
crease eight times compared to 2022. In aggregate, electric vehicle charging can create
congestion management issues for distribution system operators (DSOs). In this chap-
ter, we present a data-driven linear voltage magnitude predictor to estimate voltage
based on past smart meter and substation data. We compare our voltage predictions
to linearized voltage approximations and the measurements from a nonlinear power-
flow solver. We then use the voltage magnitude predictor as a linear constraint for
EV charging coordination in a large, three-phase unbalanced distribution feeder case
study. The predictor provides a better estimate of customer voltage than linearized
voltage approximations at a reduced computational requirement.

2.1 Introduction

By the year 2030, market analysts project that there will be an estimated 28 million electric
vehicles (EVs) in the United States and more than eight times the number of EV charg-
ers compared to 2022 [86]. These electric vehicles will add a significant load to the power
grid that will require system upgrades, especially on the distribution system [19], [56], [57],
[87], [88]. Some of these upgrades can be deferred if utilities and distribution system opera-
tors (DSOs) implement EV charging coordination strategies. However, employing charging
coordination that takes into account local distribution system conditions requires either sig-
nificant deployment of sensors or computationally burdensome algorithms that may not scale
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with the number of distribution feeders utilities own. In this chapter, we propose a data-
driven voltage estimator for EV charging coordination that significantly reduces sensor and
computation requirements for DSOs compared to the state-of-the-art.

There has been extensive work in DER optimization and EV charging coordination. Many
of the approaches assume that the network configuration is known and that voltage can be
measured across the distribution feeder for Optimal Power Flow (OPF) formulations to set
prices or directly dispatch DERs [89]–[93]. Some approaches assume less network knowledge
and measurements are available, and instead use state/model estimation approaches [94]–
[97].

As an alternative, several research groups have examined data-driven or measurement-
based approximations [98]–[103]. In [98], the authors use an Extremum Seeking control
approach with injected sinusoidal perturbations for distributed energy resources control and
extend their work to a three-phase unbalanced system in [99]. The authors of [100] develop a
data-driven linearization method for powerflow models. While in [101], the authors leverage
the LinDistFlow equations to estimate the full impedance matrices of a balanced radial
distribution system. In [102], the authors implement an iterative online estimation approach
using PMU data and a recursive weighted partial least squares algorithm and extend their
work to a distributed algorithm in [103]. In each of these approaches, additional sensors
(such as PMUs) must be installed, or probing signals need to be injected into the system.

In this chapter, we propose a linear three-phase voltage magnitude estimator trained on
recently captured smart meter and substation data. The estimator is trained offline and does
not assume any knowledge of the system configuration. We use this estimator as a voltage
constraint for a large-scale EV charging coordination problem and compare the results to
standard linear powerflow approximations and measure voltage performance in a nonlinear
powerflow simulation.

What separates our approach from the state-of-the-art is (1) our approach does not
require additional sensors or injections into the distribution system, and (2) we do not
attempt to estimate all voltage measurements in the distribution system; we only estimate
voltage at the customer’s service connection. This reduces the size of the problem and the
computational requirements.

The main contribution of this work is a three-phase linear voltage magnitude estimator for
unbalanced radial distribution systems. The estimator is trained solely on power and voltage
measurements from smart meters and the distribution substation. To examine the accuracy
of this estimator, we compare voltage estimations to time-series voltage measurements of the
IEEE-13 Node Test Feeder from an industry-standard nonlinear powerflow solver. We then
use the voltage estimator as a linear voltage constraint in a large EV charging coordination
problem. We compare the computational efficiency of the voltage estimator to other lin-
earized voltage constraints for the optimization and verify the constraint’s effectiveness by
modeling the optimization output in the same nonlinear powerflow solver. In our tests, we
find our voltage estimates prevent undervoltage while also reducing costs and computational
requirements compared to the linearized voltage constraints.

The rest of this chapter is organized as follows: Section 2.2 introduces the voltage re-



CHAPTER 2. DATA-DRIVEN LINEAR THREE-PHASE VOLTAGE ESTIMATIONS
FOR OPTIMAL ELECTRIC VEHICLE CHARGING COORDINATION 35

quirements for utilities and reviews the DistFlow equations for calculating voltage in radial
distribution systems. Section 2.3 details the data-driven model we train to estimate voltage
and examines the accuracy of the estimations. In Section 2.4, we apply the voltage estima-
tor in an EV charging coordination case study to explore the estimator’s performance as a
voltage constraint. We then provide concluding remarks and discuss potential directions for
future work in Section 2.5.

2.2 Preliminaries

ANSI C84.1

The national voltage standard in the U.S. is defined by ANSI C84.1 [69]. Originally published
in 1954, the standard was based on work by both the Edison Electric Institute and the
National Electrical Manufacturers Association to develop a list of standard voltage ranges
for the electric grid. The standard provides acceptable minimum and maximum voltage
values for both the service connection to the electric grid and at the utilization point for
devices. For low voltage service, 120V-600V, the standard service range is ±5%. While
the standard provides other ranges for higher voltage systems, according to Short in [20]:
“...most utilities do not follow these as limits for their primary distribution systems (utilities
use the ANSI service voltage guidelines and set their primary voltage limits to meet the
service voltage guidelines based on their practices)”. It is important to note here that the
focus of ANSI C84.1 is voltage at the service connection and downstream to the customer
devices. From that perspective, the voltages at other points in the system are not important
to the standard if customer service connection voltage is in range.

DistFlow Equations

In 1989, Baran and Wu proposed the now well-known DisFlow equations for calculating
powerflow in radial distribution systems [104]. Equations (2.1)-(2.3) were solved recursively
to calculate real power, reactive power, and voltage respectively. In the same paper, Baran
and Wu show that in (2.3) if the squared impedance and current values are neglected, the
squared voltage magnitude exhibits a linear relationship with real and reactive power. This
relationship, originally described as the ”simplified DistFlow model” in the paper, is more
commonly referred to as the LinDistFlow equation (2.4) today and has been extended into
three-phase versions in [105] and [106]. Detailed discussions of each of these formulations
are described in [107].

Pi+1 = Pi −
Ri+1(P

2
i +Q2

i )

V 2
i

− P̌i+1 (2.1)

Qi+1 = Qi −
Xi+1(P

2
i +Q2

i )

V 2
i

− Q̌i+1 (2.2)
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Figure 2.1: One-line diagram of the DistFlow equation variables.

|Vi+1|2 =|Vi|2 − 2(Ri+1Pi +Xi+1Qi) (2.3)
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|Vi+1|2 ≈ |Vi|2 − 2(Ri+1Pi +Xi+1Qi) (2.4)

In (2.1)-(2.4) node i ∈ {1, 2, . . . , n}, where n is the number of nodes on the feeder. Pi

and Qi are the real and reactive powers flowing into the branch from node i and P̌i, Q̌i are
the loads being consumed in parallel at node i. The line resistance and reactance are Ri, Xi

respectively, and |Vi| is the node voltage magnitude. Fig. 2.1 shows a one-line diagram of
the DistFlow equation variables.

2.3 Data-Driven Model

From 2.2, we use the following two facts as the basis for our data-driven model design
decisions: (1) most utilities only use ANSI C84.1 for voltage at customer service connections
and (2) the voltage squared across a radial feeder can be modeled linearly with respect to
power. As such, we trained a voltage estimator to approximate voltage measurements only at
customer service locations for a radial distribution feeder. This reduces the need to compute
voltage at all nodes in the system and creates a linear voltage constraint for DSOs to perform
load optimization.

Model Design

Our approach to creating the voltage magnitude estimator was to leverage the LinDistFlow
voltage equation. Let V be the vector of voltage magnitude estimates |V̂metered|2 at each
phase of the metered nodes in a radial distribution feeder (2.5). The vector V has size γ× 1,
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where γ is three times the number of metered nodes nmetered (2.6). For nodes with only single
or two connected phases, the corresponding elements in V for unconnected phases are zero.

V = |V̂metered|2 (2.5)

γ = 3 · nmetered (2.6)

Since the LinDistFlow equation is linear in real and reactive power for squared voltage
magnitude, we trained a linear model on real and reactive power to estimate V (2.7).

V = α1[P ;Q] + α0 (2.7)

Let P and Q be vectors of size γ× 1. As with V for single or two phase nodes, the corre-
sponding elements in P and Q for unconnected phases are zero. We vertically concatenate
P and Q as denoted as [P ;Q], such that the new vector has size 2 γ × 1. A γ × 2 γ matrix
of coefficients (α1) and a γ × 1 vector of intercepts (α0) are trained from a linear regressor
to map the P and Q measurements to the V estimates. To extend (2.7) for time-series
estimates, V can be estimated as a γ× t matrix for times t if P and Q are measured at γ× t.

For our linear regressor, we use the least absolute shrinkage and selection operator
(LASSO) linear model (2.8). The LASSO algorithm was designed by Tibshirani to increase
the prediction accuracy of ordinary least squares and provide feature selection by allowing
some of the feature coefficients to be reduced to zero [108]. In the context of the three-phase
voltage estimation problem, power consumed on different phases of distant nodes have near
zero impact on local voltage compared to nearby power consumption. Since we assumed no
knowledge of the distribution system design, we used past data and the LASSO algorithm’s
feature selection capacity to determine which power measurements are the most important
for estimating voltage at a location. The general form of the LASSO model is:

min
β

1

2
∥y −Xβ∥22 + λ∥β∥1, (2.8)

where y is the response, X is the vector of predictor variables, β is the vector of predictor
coefficients, and λ is a tuning parameter. In our simulations, we tune λ using cross-fold
validation.

Model Accuracy

To examine the accuracy of our LASSO data-driven voltage estimator, we used Gridlab-D
[70] to simulate power and voltage measurements of a modified IEEE-13 Node Test Feeder
and compared our estimation accuracy against the out of sample voltage measurements of
the nonlinear powerflow solution. The LASSO estimator was trained in Python using SciKit-
Learn. All calculations and simulations were performed on an AMD Ryzen 7 3700X desktop
PC with 64GB of RAM, running Windows 11.
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We calculated the root mean squared error (RMSE) and max error of the voltage esti-
mations compared to Gridlab-D measurements at the load nodes of the IEEE-13 Node Test
Feeder [74]. We did not modify the feeder parameters, however, since the original test feeder
has static loads, we replaced those loads with hourly time-series loads as described in the
next subsection. Fig. 2.2 is the one-line diagram of the test feeder as presented in [74]. The
test feeder is a 4.16kV, three-phase unbalanced distribution feeder with single phase and two
phase laterals.

646 645 632 633 634

650

692 675611 684
671

652 680

Figure 2.2: One-line diagram of IEEE-13 Node Test Feeder [74]

Design

To generate the data for this analysis, we replaced the standard spot loads on the IEEE-13
Node Test Feeder with an equivalent number of building loads using the Building America
House Simulation Protocols for the residential building models [72]. Each building model
has an hourly load profile for a generic year in different climate zones. Specifically, we placed
Mid-Sized House models from the Sacramento Climate Zone on each phase of the load nodes
such that the peak load of the houses was equivalent to the load originally on the IEEE-
13 Node Test Feeder. Table 2.1 lists the number of houses at each node and peak power
measurements compared to the original real power loads on the test feeder. We modeled each
building with a power factor of 0.9. For this analysis, we also excluded the distributed loads
on the original feeder from our model. In addition, to ensure conformity, the IEEE-13 node
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feeder does not model the secondary network of the distribution system for the majority of
the nodes, with the exception of Node 634.

Table 2.1: Modifications to the IEEE 13 node load data for each node

Node
Name

Number of
Houses

Peak Real
Load (kW)

Original Real
Load (kW)

load611 phase A 0 0.0 0.0
load611 phase B 0 0.0 0.0
load611 phase C 41 168.6 170.0
load634 phase A 39 160.4 160.0
load634 phase B 29 119.3 120.0
load634 phase C 29 119.3 120.0
load645 phase A 0 0.0 0.0
load645 phase B 41 168.6 170.0
load645 phase C 0 0.0 0.0
load646 phase A 0 0.0 0.0
load646 phase B 56 230.3 230.0
load646 phase C 0 0.0 0.0
load652 phase A 31 127.5 128.0
load652 phase B 0 0.0 0.0
load652 phase C 0 0.0 0.0
load671 phase A 94 386.6 385.0
load671 phase B 94 386.6 385.0
load671 phase C 94 386.6 385.0
load675 phase A 118 485.3 485.0
load675 phase B 17 69.9 68.0
load675 phase C 71 292.0 290
load692 phase A 0 0.0 0.0
load692 phase B 0 0.0 0.0
load692 phase C 41 168.6 170.0

We simulated two months of load on our distribution feeder in Gridlab-D, measuring
power and voltage at each load node and the feeder head. These measurements simulate
the data that could be gathered from smart meters and substation telemetry. Fig. 2.3 show
the distributions of load hours for June (2.3a) and July (2.3b) respectively. While similar,
June has more hours at a lower power and July has a higher peak. To create our voltage
estimation model, we trained a LASSO model on only the June hourly power and voltage
measurements, with 3-fold cross validation. We then extract the α1 matrix and α0 vector
from the trained model to use as our estimator. Finally, We use the measured power data
for July to estimate the voltages for the month and compared these estimations to what
was measured using the powerflow solutions from Gridlab-D. Fig. 2.4 shows the data flows
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between the models.
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Figure 2.3: Distribution of load hours for a single Mid-Sized House model in (a) June (b)
July.
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Figure 2.4: Data flows between feeder models
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Results

Table 2.2 lists the voltage magnitude RMSE and max error for each phase and node over the
744 hours in the month of July. The max error for the month was less than 0.005pu with
a max RMSE of less than 0.002pu. The node with the highest error were Phase C of Node
645. The estimate was least accurate here because the load affecting the voltage on Phase
C of Node 645 is the delta connected load from phase B to C on Node 646. However, the
LASSO estimator selected the real and reactive measured at phase C of Node 646 as the only
non-zero α1 coefficients for this estimate. The resulting average difference in the estimated
vs. measured voltage at the node over the month was 1.05 × 10−4pu with a mean absolute
difference of 0.0015pu. These simulation results show that the linear voltage estimator was
able to closely estimate the voltage measurements from the Gridlab-D simulation.

Table 2.2: Test Error and RMSE (per unit) for voltage magnitude of each load node

Node Name Max Error (per unit) RMSE (per unit)
load611 phase A — —
load611 phase B — —
load611 phase C 1.78× 10−3 5.41× 10−4

load634 phase A 1.08× 10−3 4.22× 10−4

load634 phase B 2.93× 10−3 1.18× 10−3

load634 phase C 4.25× 10−3 1.64× 10−3

load645 phase A — —
load645 phase B 2.43× 10−3 9.81× 10−4

load645 phase C 4.58× 10−3 1.87× 10−3

load646 phase A — —
load646 phase B 3.09× 10−3 1.24× 10−3

load646 phase C 4.58× 10−3 1.87× 10−3

load652 phase A 1.26× 10−3 5.16× 10−4

load652 phase B — —
load652 phase C — —
load671 phase A 4.02× 10−4 1.18× 10−4

load671 phase B 3.89× 10−4 1.54× 10−4

load671 phase C 9.82× 10−4 1.71× 10−4

load675 phase A 1.61× 10−3 6.65× 10−4

load675 phase B 4.84× 10−4 1.92× 10−4

load675 phase C 1.03× 10−3 3.10× 10−4

load692 phase A 4.04× 10−4 1.18× 10−4

load692 phase B 3.89× 10−4 1.54× 10−4

load692 phase C 9.82× 10−4 1.71× 10−4

In addition to the high estimation accuracy, it should be noted that the matrix of model
parameters the LASSOmodel generates for the voltage estimator are sparse and much smaller
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than the original admittance matrix of the feeder. Since the LASSO voltage estimator is
the linear approximation of the DistFlow voltage equation (2.7) with feature selection, the
voltage estimator uses a sparse vector of coefficients and an intercept to estimate the voltage
at each phase of the load nodes. Table 2.3 lists the number of non-zero coefficients used
by the voltage estimator for each phase and node. In total, the model required 59 non-
zero coefficient values and 24 intercept values to estimate voltage at each load node. For
comparison, the combined 39× 39 impedance matrix for the IEEE-13 node has 216 complex
non-zero values. This smaller voltage model reduces memory requirement for systems and
can result in faster computation, especially when used as constraints in larger models.

Table 2.3: Number of non-zero coefficients per phase of voltage estimator

Node Name Non-Zero Coefficients
load611 phase A —
load611 phase B —
load611 phase C 4
load634 phase A 3
load634 phase B 2
load634 phase C 3
load645 phase A —
load645 phase B 2
load645 phase C 2
load646 phase A —
load646 phase B 2
load646 phase C 2
load652 phase A 3
load652 phase B —
load652 phase C —
load671 phase A 5
load671 phase B 4
load671 phase C 4
load675 phase A 3
load675 phase B 4
load675 phase C 4
load692 phase A 4
load692 phase B 4
load692 phase C 4
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2.4 Case Study

In this section we examine the accuracy of our LASSO data-driven voltage estimator model
as a voltage constraint in the same electric vehicle (EV) charging coordination problem from
Chapter 1. However, in this case study we are using day-ahead retail prices. We summarize
the distribution system, building, and EV model design here but refer the reader to Section
1.2 for more details on the models.

The LASSO voltage model was trained in Python using SciKit-Learn and voltages were
compared to powerflow simulations performed in Gridlab-D [70]. All calculations and simu-
lations were performed on an AMD Ryzen 7 3700X desktop PC with 32GB of RAM, running
Windows 11.

Design

We optimized the EV charging of two types of three-phase customers, medium office build-
ing customers and warehouse customers, each with fleets of electric vehicles operating as
flexible, price-optimizing loads. These customers are connected to a 17-mile, three-phase,
unbalanced distribution feeder with overhead and underground power lines supplying 2,894
residential customers, 270 commercial customers, and 91 industrial customers. To provide
load diversity, we modified the feeder model to incorporate 10 different building models from
the Department of Energy’s Commercial Reference Building models and Building America
House Simulation Protocols for the residential building models [63], [72]. We modeled all 91
industrial customers on the feeder as warehouse buildings and five of the commercial cus-
tomers as medium-sized office buildings. We modeled a total of 2,160 EVs on the distribution
feeder, 10 EV at each of the 91 warehouses and 250 EVs at each of the 5 office buildings,
for a combined load of 43.2 MWh per day or 1.34 GWh per month. Before running our
optimization, we also verified that the feeder could support charging the total number of
EVs we modeled without voltage constraint violations.

For prices, we used hourly prices from the Avoided Cost Calculator developed by the
energy consulting firm E3 for the California Public Utilities Commission to determine the
benefit of distributed energy resources [75]. Although most commercial customers are not
able to adopt an hourly pricing tariff, there is growing interest in real-time or day-head hourly
pricing for retail customers [24], [25]. The ACC calculates the avoided cost of energy for
every hour of the year by modeling the combined costs of wholesale energy, system capacity,
and environmental damages from greenhouse gases. Specifically, we use the 2022 edition of
ACC electricity prices for the PG&E climate area 12 in the year 2023 [76].

To simulate the charging coordination problem, we developed a linear programming
model to minimize the daily cost of charging a fleet or collection of electric vehicles at
customer locations (2.9). In this model, πt is the ACC price at time t, x̃i,b,t is the sum of
all EV loads and xi,b,t is the sum of all non-controllable building loads at building b in set
of Bi buildings at node i in the set of nodes I at time t. The local loading limit prevents
coincidental load from exceeding the circuit breaker limit of each customer. Real power
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from a single EV, l, in the set of all EVs, Lb, at a building is represented by wl,i,b,t and is
constrained by the EV operating constraints, which are the maximum charging rates of each
EV (7.2kW) with only unidirectional flow from the grid to charge the EV. We modeled each
EV requiring 20kWh per day to model an extreme case for EV charging. We also required
each EV to be fully charged at the end of each day.

The linear program minimizes the total cost to the customer for their building loads
and the charging of all the electric vehicles at the customer’s site. In our analysis, we only
optimized EV charging; the building loads were treated as exogenous to the optimization
and only included for their impact on the voltage constraint and costs. We repeated this
daily optimization for every day in the month of July.

min
x̃

Cost =
24 hours∑

t=1

I∑
i=1

Bi∑
b=1

πt · (x̃i,b,t + xi,b,t) (2.9)

s.t. (x̃i,b,t + xi,b,t) ≤ Local loading limit

x̃i,b,t =

Lb∑
l=1

wl,i,b,t

wl,i,b,t ≤ EV operating constraints

24hrs∑
t=1

x̃i,b,t = charging energy required for

EVs at the building

To keep voltage within ANSI limits, we used the LASSO voltage estimator as a constraint
in the linear program (2.10).

α1[(Pt + P̃t); (Qt + Q̃t)] + α0 ≥ |Vmin|2 ∀t ∈ 24 hours, (2.10)

where Vmin is the Range A ANSI C84.1 voltage minimum value for delivered energy (0.95pu),
α1 is the matrix of coefficients for each power measurement and α0 is the intercept. P and
Q are the vectors of uncontrollable building load real and reactive power at each phase ϕ of
the load nodes respectively, while P̃ and Q̃ are the vectors of controllable EV load real and
reactive power. Building loads were assumed to have a power factor of 0.9 and EVs were
assumed to have unity power factor. All loads were modeled as constant power loads and all
loads at three-phase connected buildings were modeled as balanced three-phase loads across
each phase ϕ (3.18).

Pϕi,t =
1

3

B∑
b=1

(xi,b,t), Qϕi,t = Pϕi,t × tan(cos−1(0.9)) (2.11)

P̃ϕi,t =
1

3

B∑
b=1

(x̃i,b,t), Q̃ϕi,t = 0
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We ran the powerflow simulation for two months, first in the month of June to create
training data and then month of July with the EV load to test the results of our optimization
model. For the LASSO estimator, we assume we have no historical data of how the EV load
impacts voltage. As such, we trained the LASSO voltage estimator on only the building
loads measured in June. While it is not realistic to assume over 2,000 electric vehicles would
appear on a distribution feeder at the beginning of a single month, this provides an extreme
scenario for the estimator to predict out of sample voltages from load significantly higher
than the training data. Once we trained the estimator we extracted the coefficients and
intercepts to use in the constraint.

To compare the results of the LASSO voltage estimator, we also solved the optimization
model constrained by the LinDistFlow voltage magnitude equation for unbalanced three-
phase networks (2.12), (2.13) derived in [105], [106]. The model is:

|Vϕk,t|2 ≈ |Vϕi,t|2 − 2(Rϕk
(Pt + P̃t) +Xϕk

(Qt + Q̃t)) ∀i, k ∈ I (2.12)

|Vϕk,t|2 ≥ |Vmin|2 ∀k ∈ I,∀t ∈ 24 hours, (2.13)

where |Vϕi,t|, |Vϕk,t| are voltages at each phase ϕ at node i and k respectively at time t, and
i, k denote nodes in set I of all nodes for the feeder. The matrices of line resistance and
reactance for each phase ϕ from i to k are Rϕk

, Xϕk
respectively.

However, the LinDistFlow constraint requires significantly more memory than the voltage
estimator constraint and caused the computer running the simulation to run out of memory
when running the optimization for a full 24-hour day. To produce comparable results, we
limited the LinDistFlow constraint to only apply during the 12 expected operating hours of
the EVs. To further reduce the size of the problem, we only modeled the minimum voltage
constraint for both the voltage estimator and the LinDistFlow constraint. We justified this
relaxation due to modeling EVs only as loads, no vehicle to grid discharging was allowed. In
addition to the voltage constrained models, we also model the optimization without a voltage
constraint for comparison purposes. For each of the three optimization models, we perform
a daily optimization for each day in the month of July. We then model the optimized EV
charging profiles and building loads on the distribution feeder in Gridlab-D to determine the
number of voltage violations.

Results

Table 2.4 lists the number of voltage violations over the month and maximum violation
for each of the optimization scenarios. As expected, the limited LinDistFlow constraint
and the data-driven constraint kept voltage above 0.95pu while the optimization without a
voltage constraint created multiple violations. However, the LASSO constraint allowed the
minimum voltage measured on the feeder to drop further in the acceptable range than the
LinDistFlow constraint. This indicates that more of the acceptable range was used during
the dispatch and should allow for a lower cost. We verified that total cost was lower by
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examining the total cost of charging all of the EVs on the feeder in Table 2.5. The LASSO
constraint reduced the total costs compared to the LinDistFlow constraint. We believe the
the LASSO constraint performed better because the linear approximation captured some of
the non-linear effects that the LinDistFlow equation ignores.

Table 2.4: The minimum voltage measured across all customer locations in July, and the
number of hours in the month the voltage is below the ANSI C84.1 lower limit for voltage.

Optimization
Constraint

Minimum Voltage
(Per Unit)

Number of hours
voltage is below 0.95 pu

No Constraint 0.9265 13

LinDistFlow (24 hour) — —

LinDistFlow (12 hour) 0.9575 0

LASSO 0.9536 0

Table 2.5: Total cost to charge all EVs on the distribution feeder for the month of July

Optimization
Constraint

Total Cost
(in ACC Dollars)

No Constraint $52,190.90
LinDistFlow (24 hour) —

LinDistFlow (12 hour) $53,340.43
LASSO $52,681.10

In addition to reducing total cost, the LASSO constraint required significantly less com-
puting time and memory compared to the LinDistFLow constraints. Table 2.6 shows the
number of non-zero elements in each optimization and the solver time. While both voltage
constraints created significantly larger optimization problems that took longer to solve, the
LinDistFlow constrained optimization took over 5x longer to solve than the voltage estimator
constraint and more than double the number of elements in the optimization.

2.5 Conclusion

In this chapter we describe a data-driven voltage approximation based on the LASSO algo-
rithm that can be used for distribution system operations. The approximation can be trained
offline and can be deployed as a linear constraint in load optimization problems. We show
though an EV charging coordination case study that a LASSO based voltage approximation
can perform better than linear three-phase voltage approximation as a voltage constraint,
leading to faster computation time and lower costs.
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Table 2.6: Solver time and non-zero elements for the EV charging dispatch optimization
with and without a minimum voltage constraint. Note, no time was measured for the 24
hour LinDistFlow due to running out of system memory.

Optimization
Constraint

Average Solver Time
(per simulated day)

Number of
non-zero elements

No Constraint 0.5946s 354,520

LinDistFlow (24 hour) — 294,373,288

LinDistFlow (12 hour) 83.56s 172,046,158

LASSO 15.09s 69,040,504

Although the LASSO constraint reduced the cost of charging EVs on the feeder com-
pared to using the LinDistFlow constraint, individual customers are not guaranteed cost
reductions. Centralized charging coordination strategies that take into account distribution
system constraints shift customer load depending on system conditions. If customers have
time-varying electricity rates, some customers may see increased costs compared to other
customers in the area because of dispatch from the centralized coordination. These cost
differences between customers may lead to equity concerns and should be examined by poli-
cymakers when utilizing any tariff that uses price-signal controls on the distribution system.
One solution could be to add a cost-equalizing measure to the optimization for customers
in the same customer class. A future area of research would be to explore equity-aware
algorithms for price-signal control. In addition, we plan to extend this work to current
estimations for specific lines in the distribution feeder.
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Chapter 3

Load-Responsive Pricing for
Congestion Management in
Day-Ahead Retail Energy Markets

Regulators and utilities have been exploring real-time retail electricity pricing, with
many existing “real-time pricing” programs providing day-ahead hourly pricing sched-
ules. At the same time, customers are deploying distributed energy resources and
smart energy management systems that can optimally follow price signals. In ag-
gregate, these optimally controlled loads can create congestion management issues for
distribution system operators (DSOs). In this chapter, we describe a new linear pricing
mechanism for day-ahead retail electricity pricing that provides a signal for customers
to follow to mitigate over-consumption while still consuming energy at hours that are
preferential for system performance. We show that by creating a small linear pricing
mechanism designed for price-signal control of cost-optimizing loads, we can shape cus-
tomer load profiles with minor increases in customer bills that can later be returned
for revenue neutrality or used in a subscription mechanism.

3.1 Introduction

As more flexible loads and distributed energy resources (DERs) are being adopted by cus-
tomers, there is a growing interest in retail tariffs that provide real-time pricing [24], [25]. In
practice, most of these tariffs are day-ahead hourly pricing schemes [26]. This type of pric-
ing mechanism incentivizes customers to shift load to better follow prices on the wholesale
market, reduce peak load on the system, and reduce costs. However, these pricing systems
often do not take into account the effects on the distribution system.

As more customers install smart energy management systems and price-responsive loads,
system operators may start to see new potential issues for the power grid, especially at
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the local distribution level. Sufficient distribution system capacity is already a concern for
electric vehicle adoption and other distributed energy resources (DERs) today [56]. Under
day-ahead prices, customers are given a schedule of time-varying volumetric energy prices
for the following day. These volumetric prices are usually set at the hourly level, however
some markets may change sub-hourly. The price schedule allows customers to optimize their
load profile to minimize costs. If enough loads optimize towards the same day-ahead prices,
in aggregate they may create new system peaks causing system congestion, undervoltage, or
overloading of system equipment.

Essentially, regulators and utilities are exploring day-ahead energy pricing so that cus-
tomers can respond to prices. However, when enough customers shifting load to optimize
for their prices causes grid congestion, prices will need to respond to load. At the wholesale
level, this is done by using real-time markets in addition to the day-ahead market. Some
researchers have proposed similar markets for the distribution system [109]. However, real-
time market prices can be more challenging to optimize against because there is less time for
customers to solve their optimization problems, and there is more uncertainty about prices
in future hours. In addition, market operators need real-time visibility into grid conditions
and fast algorithms to compute prices are spatially differentiated to address distribution
system congestion. A 2021 ERPI analysis of the 55 available real-time and day-ahead retail
pricing programs in the US found that only four of the programs use spatially differentiated
real-time or day-ahead prices [26].

While most utility companies in the U.S. do not use day-head or real-time pricing, they
do use other pricing mechanisms to reduce customer peak load that could be integrated with
day-head or real-time pricing. Some utility tariffs use demand charges (monthly costs based
on the peak power consumption of a customer) to recover capacity costs from customers
[34]. These charges can cause customers to reduce their peak load [52]. However, demand
charges were not designed for congestion management and are criticized for their economic
impact, since individual customer peaks may not correlate with times of system peaks [83].
In addition, at high adoption levels of price-optimizing loads, customers are incentivized
by demand charges to flatten their daily load profile instead of responding to time-varying
energy prices [110].

Another way utilities can reduce peak load is through Critical Peak Pricing (CPP) pro-
grams. These programs alert customers to conserve energy during certain hours on specific
days, called CPP days. However, CPP programs are typically designed to address trans-
mission level congestion and are limited in the number of CPP days they can call per year
[111].

Researchers have examined several ways to perform congestion management outside of
demand charges and CPP, both through direct load control and market based approaches.
In the context of day-ahead energy pricing, direct load control may interfere with customer
decisions and those of third party aggregators. However, market methods for DER congestion
management focus on changing customer behavior and decision making based on costs and
price signals.

A rich area of research has been transactive energy markets [112]-[115]. First popularized
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in [112], transactive energy markets provide prices to customers and producers to trade
energy as needed to maximize net benefits. The authors of [113] use transactive control to
provide demand response with commercial building loads. While in [114], the authors extend
a transactive framework to provide distributed control of distribution networks. A thorough
review of transactive energy markets for residential customers is provided in [115]. State of
the art transactive markets work includes [116], where the authors develop a decentralized
energy market for coordinating between transmission system operators, distribution system
operators (DSOs), and the individual distributed energy resource (DER) owner.

An equally mature research area has been the development of Distribution Locational
Marginal Pricing (DLMP) approaches to congestion management [117]-[120]. While nodal
pricing in the distribution system has been discussed for many years, the authors in [117]
developed one of the first formulations. DLMP has since been examined for EV charging
management [89], co-optimization of power and reserves [118], and management of markets
under uncertainty [120].

Other market-based mechanism that are actively being researched include incentive mech-
anisms such as dynamic subsidies paid by the DSO to customers [121]. Similar incentives
are proposed as a Stackelberg game for bi-level optimization of the DSO and customers in
[122] and as a Nash-Stackelberg-Nash game for EV coordination in [123].

Although researchers have explored many different price-signal calculation mechanisms,
each of the price signals in the papers referenced above lead to a total customer cost that is
linear in quantity, and this problem can be solved by each customer via a linear program.
However, in [27], Huang et. al. identify quadratic programming as a superior approach to
linear programming due to the multiple solutions a customer or aggregator may arrive at.
They extend this work to provide a dynamic power tariff (DPT) in [28]. In both papers,
the DSO is required to calculate the volumetric price of energy based on system conditions,
either as a DLMP [27] or as part of the DPT [28]. However, calculating a spatially granular
volumetric energy price can be time consuming for a DSO or might not be possible if the
DSO does not have measurements of system conditions.

To address this problem, we separate the calculation of quadratic costs into a volumetric
energy price, similar to conventional day-head prices, and a pricing component that is linearly
dependent on quantity. This composite price, referred to in this chapter as Load Responsive
Pricing (LRP), is then communicated to customers as the slope and intercept of a linear
pricing curve for each pricing period in the day-ahead schedule. This creates a quadratic
cost curve for the customer to optimize against in the day-ahead market, building in a cost
for congestion management similar to the quadratic pricing used in [27]. What separates our
LRP approach from earlier work is that our quadratic costs are supplemental to traditional
volumetric energy prices, and we do not need to take into account real-time system conditions
to construct these prices. This approach allows DSOs to determine day-ahead energy prices
and optimal load profiles of price-responsive loads independently. Then, once both have been
determined, the DSO can use LRP as a price-signal to drive customers to the desired load
shape as a target load profile under any volumetric energy price. In addition, for situations
in which DSOs have insufficient information to construct distribution-system-optimal load
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profiles, we provide a heuristic method to utilize LRP for congestion management without
communication between the customer and the DSO beyond transmitting meter data. It
should be noted that LRP, as with all price-signal control approaches, increase costs for the
customer compared to direct control. As such, we describe several ways to minimize these
cost increases and to reimburse the customer for this control scheme if necessary.

The three main contributions of this work are:

1. We propose a quadratic cost mechanism, Load-Responsive Pricing (LRP), for price-
signal control of flexible loads and we demonstrate its performance for distributed
congestion management in a large, three-phase unbalanced distribution feeder.

2. We derive an optimal pricing strategy for LRP and show how it can shape customer
load profiles to match target load profiles under any day-ahead pricing schedule.

3. We also develop a heuristic pricing algorithm for congestion management using LRP
without the need for optimal powerflow analysis.

The organization of the rest of this chapter is as follows: First, Section 3.2 describes
the linear pricing mechanism we propose. Next, in Section 3.3, we derive a formula for
LRP price-setting based on load profiles generated by the DSO. Then we present a heuristic
pricing algorithm in Section 3.4. Next, we examine the effectiveness of the LRP mechanism
through case studies in in Section 3.5. We then discuss considerations a DSO or regulator
would need to consider to use an LRP tariff in the real world in Section 3.6 and conclude
the chapter in Section 3.7.

3.2 Load Responsive Pricing

Concept

We assume a DSO provides hourly or sub-hourly volumetric prices for energy in a 24-hour
day-ahead schedule, shown in (3.1). In this equation, xt is the load in kWh, βt is the
volumetric price in $/kWh, and Ct is the volumetric cost of energy in dollars at time t, and
where t is the interval used for the day-ahead price. The most common time interval duration
is hourly. Less common time intervals include 5-min and 15-min. We make no assumptions
on the source of the βt prices; these prices can be calculated through DLMPs, scaled wholesale
prices, or any other means. Customers may also be exposed to other fixed charges in this
tariff. Since fix charges would not impact the response of price-signal controlled loads, we
exclude these costs from the analysis in this chapter to focus on volumetric costs.

Ct = xt · βt (3.1)
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We propose adding a linear pricing component to the dynamic tariff, where the linear
component depends on the energy consumed in the given period t. This new combined price
becomes a linear pricing curve πt with a slope component αt that controls the rate of price
increases based on consumption, and an intercept βt that is the time-varying price of energy
(3.2). The purpose of this αt component is to place a price on congestion in a given period.
Equation (3.3) is the total volumetric LRP cost of energy consumption at time t. Fig. 3.1
shows πt pricing curve and Ct cost curve for a single time t.

πt = αt · xt + βt (3.2)

Ct = xt · πt = xt (αt · xt + βt) = αtx
2
t + βtxt (3.3)
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Figure 3.1: A LRP curve for energy at time t with βt intercept and αt slope. The value for
αt is exaggerated here for visual clarity. (a) The πt pricing curve. (b) The total volumetric
cost Ct for the time period.

Setting α in LRP

In this chapter we assume that customers will adjust the timing of their controllable load
to minimize their total cost Ct and that βt prices are greater than zero. Under these as-
sumptions, by choosing αt, a DSO can manage how much a customer will consume at time
t. In a system without grid congestion, αt = 0 and the customer would just experience
the volumetric energy price βt. However, if congestion is a concern, the DSO can limit the
consumption at time t of a customer by setting αt > 0. The simplest way to set αt for
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LRP is to set a constant αt for all hours of the day (Fig. 3.2). However, using dynamic αt

values for different pricing periods allows the DSO to designate times when congestion is a
concern and minimize cost increases at other times. In the following sections we propose
two approaches to calculating αt values based on βt prices and system conditions. The first
is an optimal-α approach that can be used if a DSO can determine optimal load profiles for
its customers. However, if this is not feasible for the DSO, we also present a heuristic based
system pricing in Section 3.4.
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Figure 3.2: A Constant-α, hourly LRP. The intercept at each hour is the βt (red asterisk)
while the price is calculated with a slope of α for all times t

3.3 Optimal-α LRP

Concept

If the DSO can accurately forecast each customer’s total energy demand over an optimization
horizon, they can use the their results to calculate α coefficients in the LRP. For example, the
DSO use an optimal powerflow analysis to determine the optimal load profile for controllable
loads on a distribution feeder. This “optimal-α LRP” method uses the these load profiles as
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a target profile for LRP customers and sets αt values for each customer that will cause the
customer to optimize to the target load levels given any set of βt prices.

The optimal-α LRP shares some similarities to the Dynamic Power Tariff (DPT) proposed
in Huang et al. [28], though the prices are constructed in different ways. Huang et al. build
on their quadratic DLMP pricing work [27] by proposing a quadratic power tariff with prices
determined through an iterative process between the distribution system operator (DSO) and
customers (in their paper these customers are DER aggregators), where customers propose
load profiles and the DSO updates the DPT prices with marginal network costs calculated
from an OPF using dc powerflow. In this approach, the day-ahead prices are calculated
concurrently in the same process as the load profiles are negotiated.

In the optimal-α LRP, we separate the calculation of αt prices to occur after target load
profiles and βt energy prices are calculated. This decoupled approach allows the DSO to use
any OPF strategy they wish to identify the desired load profile. At the same time, βt prices
can be determined via DLMP, directly using wholesale prices, or some other novel method.
Optimal-α LRP is agnostic to the approach to calculating load profiles and βt prices.

Formula

The optimal-α LRP calculates αt values for each pricing period t given a set of target load
profiles for customers (x̂t). For clarity, in the following we assume all of the customer load
is controllable and separately metered from non-controllable loads. We address issues for
customers with both controllable and non-controllable loads on a single meter at the end of
this subsection.

The βt values can represent wholesale market costs, and they could also include additional
time-varying costs DSOs wish to pass on to customers, with the considerations described in
Section 3.6. Using the βt prices, each customer is assumed to solve their own cost minimizing
quadratic optimization and the x̂t values calculated by the DSO are assumed to be feasible
solutions given each customer’s local constraints. Equation (3.4) represents the quadratic
problem customers must solve to minimize their costs, where x1...n is their load at times
t = 1...n such that their total load is equal to X.

min
x

α1x
2
1 + β1x1 + α2x

2
2 + β2x2 + ...+ αnx

2
n + βnxn (3.4)

s.t. x1 + x2 + ...+ xn = X

Since the customer’s optimization is quadratic, there is a set of αt values that produces
a unique solution for the customer’s optimal load profile given the βt prices, as proven in
the similarly formulated quadratic DLMP in [27]. By using Lagrange Multipliers, we can
calculate these optimal αt values (3.5)-(3.9).

L = α1x
2
1 + β1x1 + α2x

2
2 + β2x2 + ...+ αnx

2
n + βnxn (3.5)

+ λ(X − x1 − x2 − ...− xn)
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∂L
∂x1

= 2α1x1 + β1 − λ = 0 (3.6)

∂L
∂x2

= 2α2x2 + β2 − λ = 0 (3.7)

...

∂L
∂xn

= 2αnxn + βn − λ = 0

∂L
∂λ

= X − x1 − x2 − ...− xn = 0 (3.8)

We can solve for any αt in terms of its βt and the α, β, and x values from any other
interval. For example,

α1 =
2α2x2 + β2 − β1

2x1

(3.9)

Equation (3.10) generalizes (3.9) to calculate optimal α̂t values – that is, values that
cause customers to reproduce the pre-computed optimal x̂t values – using a selected seed
load value x̂tseed , associated βtseed price, and αtseed value. We can select tseed and αtseed to
minimize the cost to the customer. To do this, we select the time period t with the highest
βt and non-zero load (3.11). For αseed, since the other α̂t values are calculated from αseed,
we select a value that is as small as practical. In our analysis, we used αseed = 0. However,
there may be issues with using αseed = 0 if the DSO incorrectly forecasts customer load. We
discuss forecasting issues in Section 3.6.

α̂t =
2αtseedx̂tseed + βtseed − βt

2x̂t

(3.10)

tseed = argmaxt(βx̂t>0) (3.11)

Due to the structure of (3.10) and the non-negativity requirement of the quadratic op-
timization, we place two constraints on α̂t to ensure feasibility. In times t when there is no
load (x̂t = 0), then α̂t would calculate to ∞. If the α̂t < 0, then the optimization would
become non-convex. In these situations, we replace α̂t with a finite, non-negative θ value set
based on type of controllable load the customer owns using Eq. (3.12).

αt =


θ, if α̂t = ±∞,

θ, if α̂t < 0,

α̂t else.

(3.12)

If the controllable load the customer is optimizing is separately metered, then θ must
be larger than the finite α̂t values calculated in (3.10) to ensure the customer follows the
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target load profile x̂t. In this case we set θ to an arbitrarily high value of 10 to ensure finite,
non-negative α̂t values. (We examined performance for other high values of θ and did not
observe meaningful differences in the solution.)

x̂t = xt + x̃t (3.13)

However, a high value for θ can cause a control issue for the DSO when customers have
non-controllable loads (xt) on the same meter as controllable loads (x̃t) (3.13), and those
controllable loads are bi-directional. If the DSO requires customers to inject energy (x̂t < 0)
at times when βt ̸= max(βt), then the DSO needs to ensure that injections (x̂t < 0) also
occur at t = argmaxt(βt). Otherwise, in those times αt = θ and customers will optimize to
x̂t = 0.

In contrast, a special case occurs if the controllable load is unidirectional (x̃t > 0) and
on the same meter as non-controllable load (3.13). In that situation, the DSO can reduces
costs by ignoring xtseed in x̂tseed when calculating α̂t in Eq. (3.11). Then setting θ = 0 reduces
α̂t for times t where the optimal solution would not place controllable load (x̃t = 0) due to
the βt price. This reduces the price for energy in times where only non-controllable load is
consuming (xt > 0) to βt. This does not work with bi-directional loads (x̃t < 0), since they
would not inject energy at the times prescribed in the target load profile (x̂t < 0).

By calculating α̂t from Eq. (3.10) – (3.13), we produce the minimum feasible vector of
αt prices that can produce the vector of load profiles xt given the βt prices and the αtseed .

3.4 Inverse-Rank LRP

Concept

While the Optimal-α LRP is the minimum cost formulation of Load Responsive Pricing,
it requires a target load profile for customers to optimize towards. DSOs can still utilize
LRP for congestion management with other formulations as well. The “inverse-rank LRP”
(IR-LRP) is a variation of the LRP tariff that manages congestion via a heuristic method to
set αt. It works by increasing αt inversely to the βt energy price.

Method

The method for calculating αt values for IR-LRP assumes that price-optimizing controllable
loads are most likely to cause congestion management issues at times when energy prices are
the lowest in the day.

First, the DSO defines an n-length τ as vector of evenly spaced values on an interval
[τmin, τmax]. They then re-index the τ vector such that the index of the smallest entry of τ
equals the index of the largest β entry, the index of the second smallest entry of τ equals
the index of the second largest entry of β, and so on.
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For our case studies and in preliminary load control testing, we found an effective linear
range for τ is [0.1, τmax] with τmax ∈ [1, 3] depending on how much load shifting is required by
the DSO. The larger the value of τmax, the more load will be shifted away from the minimum
βt period.

Then the αt values are set by:

αt = τt · η, (3.14)

where η is a customer scaling factor corresponding with the size of their combined controllable
and non-controllable load on the same meter. Each customer or customer class can have an η
set for their controllable load size at the time of adoption of the IR-LRP tariff. Without η or
with a single η value, larger customers would see higher prices than smaller customers because
they consume more non-controllable load. For example, a DSO can have an η = 0.001 for a
customer class up to 100 kW and η = 0.0001 for a separate customer class up to 1000 kW.
By using different η values for different customer sizes, the DSO can control how much each
customer is shifting their load and also ensuring costs rise at a rate commensurate with the
customer’s relative shift in load.

Once a DSO has assigned an η, τt can be calculated each time period and multiplied by
η to produce the set of αt prices (3.14). Fig 3.3 shows a hypothetical set of IR-LRP prices
with a constant controllable load.
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Figure 3.3: Hypothetical hourly IR-LRP example with constant load. The intercept at each
hour is the β (red asterisk) while the α is the slope of the blue line. In this example, 10am
is the lowest β price and has the highest α, α = 3η. While 8pm has the highest β price and
lowest α, α = 0.

3.5 Case Study

To compare the LRP approaches, we modeled two case studies. The first case study is a
single building to examine the effectiveness of LRP to shape a customer’s load profile. The
second case study measures the effects of LRP for congestion management on a test system
with high potential of network congestion. To show the diversity of applications for LRP, we
use different βt price sources, load type (bi-directional vs. unidirectional), and connection
(separately metered vs single meter) in each case study.

Case Study I

This first case study shows how LRP can be used for price-signal control of a single customer.
We model a customer’s optimal load profile under a day-ahead energy pricing tariff, the IR-
LRP, and the Optimal-α LRP. We performed the optimizations in MATLAB R2020a [77]
using YALMIP [78] with Gurobi [79] as the solver. All calculations and simulations were
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performed on an AMD Ryzen 7 3700X desktop PC with 32GB of RAM, running Windows
10.

In this model, we assume the customer has their controllable loads separately metered
from their other building loads. Specifically, we assume the customer requires 60 kWh of
energy at a maximum of 20 kW. The customer also has an energy storage system they want
to use to sell 10 kWh of energy to the DSO at a maximum power of 10 kW. However, for this
case study we assume the DSO wants to limit peak power for this customer to 15 kW. We
also assume the DSO does not have any means of communication or control of the customer
except the ability to send a set of αt and βt prices.

Table 3.1 lists the βt prices for this customer. We used a set of hourly volumetric energy
prices designed by Lawrence Berkeley National Laboratory (LBNL) to provide full cost
recovery to the utility [124]. These prices are the hourly prices from the LBNL study for
March 1st, 2019 in the San Diego Gas and Electric (SDG&E) territory. We use these βt prices
both for LRP tariffs and in the day-ahead energy pricing tariff to compare the customer’s
load profile in a hourly pricing program without LRP.

Table 3.1: βt values for Case Study I

Hour βt($/kWh)
0 0.2198
1 0.2074
2 0.2044
3 0.1945
4 0.2081
5 0.2632
6 0.3349
7 0.3226
8 0.2318
9 0.1773
10 0.1479
11 0.1397

Hour βt($/kWh)
12 0.1455
13 0.1630
14 0.1711
15 0.1839
16 0.2739
17 0.4124
18 0.5185
19 0.4680
20 0.4213
21 0.3841
22 0.3393
23 0.2833

We model the customer behavior and energy billing at the 15-min timescale to match
the measuring frequency of an SDG&E business smart meter. However, since the prices in
the case study are hourly, we report our results in hourly intervals.

IR-LRP Parameters

For this case, we assume the DSO has set η = 0.001 for the the IRP-LRP for this customer’s
customer class. Using these parameters for this customer and the βt prices, the IR-LRP first
creates a set of τt values which then generate a set of αt prices with the largest αt at 11:00
and the smallest αt at 18:00 (Table 3.2).
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Table 3.2: IR-LRP τt values in [0.1, 1.5] and αt (10
−4$/kWh2) values for Case Study I

Hour τt αt

0 0.83 8.30
1 0.95 9.52
2 1.01 10.13
3 1.07 10.74
4 0.89 8.91
5 0.71 7.09
6 0.47 4.65
7 0.53 5.26
8 0.77 7.70
9 1.20 11.96
10 1.38 13.78
11 1.50 15.00

Hour τt αt

12 1.44 14.39
13 1.32 13.17
14 1.26 12.57
15 1.13 11.35
16 0.65 6.48
17 0.28 2.83
18 0.10 1.00
19 0.16 1.61
20 0.22 2.22
21 0.34 3.43
22 0.40 4.04
23 0.59 5.87

Optimal-α LRP Design

In contrast to the IR-LRP where the DSO creates prices to curtail load at its peak, the
Optimal-α LRP allows a DSO to incentivize a customer to follow a specific load profile. In
this case, we assume the DSO knows the customer’s energy needs and wants the customer
to consume and discharge energy at the levels in Table 3.3. We make no assumptions on
the approach the DSO took to calculate these values and the DSO does not communicate
this target load profile to the customer. Instead, the DSO uses this target load profile to
calculate αt values for the customer to use in their optimization to recreate this load profile
as their optimal solution.

Using the Optimal-α formula, we calculate the optimal αt prices for the customer (Table
3.3). Note that αt = 10 for hours when there is no load in the target load profile. As such,
the customer’s cost in those hours is $0 when they optimize their load.

Results

Using the day-ahead pricing, IR-LRP, and Optimal-α LRP, we model the customer minimiz-
ing their costs in a 24-hour optimization. Figure 3.4 shows the resulting load profiles for this
customer following these three tariffs. Under day-ahead pricing, the customer maximizes
their consumption up to their local load limit (20 kW) for the three lowest βt hours of the
day. In contrast, under the IR-LRP tariff, the customer’s load was spread across more hours.
Finally, under the Optimal-α LRP tariff, the customer followed the target load profile of the
DSO to within 0.06 kWh accuracy. This accuracy can be improved to 0.002 kWh when the
optimization is performed in watt-hours instead of kilowatt-hours. These results show that
LRP can effectively shift customer load.
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Table 3.3: Optimal-α LRP target load profile (kWh) and αt (10
−4$/kWh2) values for Case

Study I

Hour kWh αt

0 0. 10
1 0. 10
2 0. 10
3 0. 10
4 0. 10
5 0. 10
6 0. 10
7 0. 10
8 10. 1× 10−13

9 2. 0.0136
10 12. 0.0035
11 15. 0.0031

Hour kWh αt

12 13 0.0033
13 3. 0.0115
14 5. 0.0061
15 0. 10
16 0. 10
17 0. 10
18 -10. 0.0143
19 0. 10
20 0. 10
21 0. 10
22 0. 10
23 0. 10

Figure 3.5 shows the total marginal $/kWh price at each hour for the three different
tariffs. We calculate the IR-LRP and Optimal-α LRP $/kWh at the resulting load levels
from Figure 3.4. The IR-LRP had a maximum hourly price increase of $0.0227/kWh over
the day-ahead pricing tariff, and the Optimal-α LRP had a maximum price increase of
$0.0461/kWh. However, the price the customer would receive for the energy they sold back
to the grid fell by $0.1425/kWh. Over the course of a billing period, these changes would
result in increased bills for the customer. We explore monthly billing effects of LRP in Case
Study II and discuss several strategies a DSO could employ to mitigate these cost increases
in Section 3.6.
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Hourly Load Profiles for Controllable Loads
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Figure 3.4: Case Study I - Load profile for a customer following the day-ahead pricing tariff,
IR-LRP, and Optimal-α LRP
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Hourly Prices for Controllable Loads
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Figure 3.5: Case Study I - Prices for a customer following the day-ahead pricing tariff, IR-
LRP, and Optimal-α LRP
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Case Study II

To examine the congestion management capabilities of LRP, we use the same test system
we described in Chapter 1. We summarize the distribution system, building, and EV model
design here but refer the reader to Section 1.2 for more details on the models. In this
model, we compared commercial customers optimizing their EV charging in a centralized
optimization to a decentralized LRP approach where customers optimized only for their
costs. We modeled the centralized optimization as a cost minimizing linear program under
day-ahead hourly prices.

We performed the optimizations in MATLAB R2020a [77] using YALMIP [78] with
Gurobi [79] as the solver and the distribution system powerflow simulations were modeled in
Gridlab-D [70]. All calculations and simulations were performed on an AMD Ryzen 7 3700X
desktop PC with 32GB of RAM, running Windows 10.

Model Design

For our distribution feeder, we used a 17-mile, three-phase unbalanced distribution feeder
created by PG&E to model an existing urban distribution feeder in the inland area of North-
ern California [71]. The feeder has overhead and underground power lines supplying 2,894
residential customers, 270 commercial customers, and 91 industrial customers. To provide
load diversity, we modified the feeder model to incorporate 10 different building models from
the Department of Energy’s Commercial Reference Building models and Building America
House Simulation Protocols for the residential building models [63], [72].

We optimized the EV charging of two types of three-phase customers, medium office
building customers and warehouse customers, each with fleets of electric vehicles operating
as flexible, price-optimizing loads. We modeled all 91 industrial customers on the feeder as
warehouse buildings and five of the commercial customers as medium-sized office buildings.
We modeled a total of 2,160 EVs on the distribution feeder, 10 EVs at each of the 91
warehouses and 250 EVs at each of the 5 office buildings, for a combined load of 43.2
MWh per day or 1.34 GWh per month. Before running our optimization, we verified that
the feeder could support charging the total number of EVs we modeled without voltage
constraint violations if the vehicles did not all charge in the same time period.

For prices, we used the same hourly prices from Chapter 2. These prices come from the
Avoided Cost Calculator developed by the energy consulting firm E3 for the California Public
Utilities Commission to determine the benefit of distributed energy resources [75]. The ACC
calculates the avoided cost of energy for every hour of the year by modeling the combined
costs of wholesale energy, system capacity, and environmental damages from greenhouse
gases. Specifically, we use the 2022 edition of ACC electricity prices for the PG&E climate
area 12 in the year 2023 [76]. We used the ACC prices as both a measure of the total social
cost and as a day-ahead hourly price for the office building and warehouse customers.
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Centralized Optimization

To simulate the centralized optimization, we use the same linear programming model de-
veloped in Chapter 2 to minimize the daily cost of charging a fleet or collection of electric
vehicles at customer locations (3.15). Where πt is the ACC price at time t, x̃i,b,t is the sum
of all EV loads and xi,b,t is the sum of all non-controllable building loads at building b in
set of Bi buildings at node i the set of nodes I at time t. The local loading limit prevent
coincidental load from exceeding the circuit breaker limit of each customer. Real power from
a single EV l in the set of all EVs Lb at a building is represented by wl,i,b,t and is constrained
by the EV operating constraints, which are the maximum charging rates of each EV (7.2kW)
with only unidirectional flow from the grid to charge the EV. We modeled each EV requiring
20kWh/day to model an extreme case for EV charging. We also required each EV to be
fully charged at the end of each day.

min
x̃

Cost =
24 hours∑

t=1

I∑
i=1

Bi∑
b=1

πt · (x̃i,b,t + xi,b,t) (3.15)

s.t. (x̃i,b,t + xi,b,t) ≤ Local loading limit

x̃i,b,t =

Lb∑
l=1

wl,i,b,t

wl,i,b,t ≤ EV operating constraints

24hrs∑
t=1

x̃i,b,t = charging energy required for

EVs at the building

The linear program minimizes the total cost to the customer for their building loads
and the charging of all the electric vehicles at the customer’s site. In our analysis, we only
optimized EV charging; the building loads were treated as exogenous to the optimization
and only included for their impact on the voltage constraint and costs. We repeated this
daily optimization for every day in the month of July.

We performed the centralized optimization first without a voltage constraint and then
with a linearized voltage magnitude constraint (3.16) and (3.17) based on the LinDistFlow
equations developed by Baran and Wu [104] and extended into three-phase versions in [105]
and [106]. This LinDisFlow (LDF) constraint ensured voltage magnitude at all nodes in the
centralized optimization was kept at or above 0.95pu as required by ANSI C84.1 [69].

|Vϕk,t|2 ≈ |Vϕi,t|2 − 2(Rϕk
(P t + P̃ t) +Xϕk

(Qt + Q̃t))

∀i, k ∈ I (3.16)

|Vϕk,t|2 ≥ |Vmin|2 ∀k ∈ I,∀t ∈ 24 hours, (3.17)
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where |Vϕi,t|, |Vϕk,t| are voltages at each phase ϕ at node i and k respectively at time t, and
i, k denote nodes in set I of all nodes for the feeder. The line resistance and reactance for each
phase ϕ from i to k are Rϕk

, Xϕk
respectively. P t and Qt are the vectors of uncontrollable

building load real and reactive power at each phase ϕ of the load nodes respectively, while P̃ t

and Q̃t are the vectors of controllable EV load real and reactive power at time t. Building
loads were assumed to have a power factor of 0.9 and EVs were assumed to have unity
power factor. All loads were modeled as constant power loads and all loads at three-phase
connected buildings were modeled as balanced three-phase loads across each phase ϕ (3.18).
Vmin is the ANSI C84.1 voltage minimum value for delivered energy (0.95pu).

Pϕi,t =
1

3

B∑
b=1

(xi,b,t), Qϕi,t = Pϕi,t × tan(cos−1(0.9)) (3.18)

P̃ϕi,t =
1

3

B∑
b=1

(x̃i,b,t), Q̃ϕi,t = 0

However, customers in a central optimization with a voltage constraint would experience
different costs based on their location in the distribution feeder. Customers in more congested
areas might need to shift more load into higher cost hours than customers in less congested
areas. While we leave equity considerations of this to policymakers, in our optimization all
EV load of the same building model type are optimized to have the same load profile to
allow for a simple comparison of customer bills across the distribution feeder.

LRP Designs

For the LRP tariffs, we had each customer optimize against their αt and βt prices. The βt

prices were the same ACC prices used in the centralized optimization. While the αt was
calculated using the IR-LRP and Optimal-α LRP formulas.

Table 3.4 lists the IR-LRP values used in this case study. Note that η scaling factors for
medium office building and warehouse building models are equivalent to $0.0001/100kWh
and $0.0001/10kWh. These η values were based on the order of magnitude of the non-
controllable load at each building model.

Table 3.4: IR-LRP τt and η values for Case Study II

τt range Office Building η Warehouse η

[0.1, 3] 1× 10−6 1× 10−5

For the Optimal-α LRP, we used the EV load profiles from the centralized optimization
with the LDF constraint as target load profiles. The maximum absolute difference between
the target load profiles and those generated by the optimal-α LRP was 3.57×10−4 kWh. The
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resulting voltage profiles when modeled in Gridlab-D had a maximum absolute difference of
8.97 × 10−6 V. Since the EV loads were modeled as unidirectional loads and on the same
meter as the building loads, we used the maximum βt hour with EV load from our target
load profiles when calculating the αseed using (3.11). This allowed αt = 0 for all hours t
where x̃i,b,t = 0.

Results

Table 3.5 lists the number of voltage violations over the month and maximum violation for
each of the optimization scenarios. Table 3.6 shows the volumetric cost to an individual
customer for following each of the different tariffs and social cost of all customers on the
feeder optimizing against each tariff (measured in ACC costs).

As expected, the ACC optimization without a voltage constraint caused severe voltage
violations multiple times throughout the month. While the 9 days of voltage violations might
be mitigated with CPP programs, since most CPP programs limit CPP events to less than
20 per year, it may not be possible to control voltage over the entire year with CPP programs
only. However, the costs of the ACC optimization provides a cost basis to compare the other
tariff designs.

The centralized optimization with the LDF constraint and both LRP tariffs kept voltage
above 0.95pu. The centralized optimization with LDF constraint tariff resulted in the lowest
cost for a customer. However, from the social cost perspective, the IR-LRP cost less to
charge EVs across the entire distribution feeder. We believe this was due to the linear
nature of the LDF constraint limiting the acceptable voltage range. If the voltage constraint
in the centralized optimization could exactly model voltage in the distribution feeder, then
the centralized optimization with this voltage constraint would have a lower social cost.

Table 3.5: The minimum voltage measured across all customer locations in July, and the
number of days voltage is below the ANSI C84.1 lower limit for voltage in Case Study II

Tariff
Minimum Voltage

(Per Unit)
Number of days
voltage < 0.95 pu

ACC 0.9265 9

ACC w/ LDF Constraint 0.9524 0

Optimal-α LRP 0.9524 0

IR-LRP 0.9563 0

Table 3.7 lists the percent difference between these costs and the costs of optimizing
against the ACC tariff without constraints. While the LRP tariffs did increase costs, as
expected from a price-signal control approach, the cost increase were less than 10% when
compared to the centralized optimization that resulted in voltage violations. A question for
rate-makers would be if the value of a decentralized congestion management would more
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Table 3.6: The monthly volumetric costs when optimizing under each tariff for an office
building customer, warehouse customer, and the social cost (in ACC dollars) of all medium
office and warehouse customers on the distribution feeder in Case Study II

Tariff
Office

Building
Warehouse

Social
Cost

ACC $10,940.59 $1,638.69 $203,824.11
ACC w/ LDF Constraint $11,068.12 $1,649.60 $205,453.89

Optimal-α LRP $11,439.58 $1,712.87 $205,453.89
IR-LRP $11,538.82 $1,681.13 $204,455.22

than the precent increase in cost for customers. In the following Section we explore this
issue and provide recommendations for reducing costs to the customer.

Table 3.7: The percent difference between the ACC tariff monthly volumetric costs and costs
of other tariffs in Case Study II

Tariff
Office

Building
Warehouse

Social
Cost

ACC — — —

ACC w/ LDF Constraint 1.17% 0.67% 0.80%

Optimal-α LRP 4.56% 4.53% 0.80%

IR-LRP 5.47% 2.59% 0.31%

3.6 Real-world Considerations

While we have shown the LRP approach is an effective price-signal for congestion manage-
ment, there are several potential issues that a DSO would need to consider before adopting
this tariff. In this section, we discuss the real-world considerations of the LRP tariff design.
We start with general considerations of an LRP tariff and then discussion considerations of
both variations of the LRP tariff provided in this chapter.

First, the LRP tariff is complex compared to standard two-part tariffs with constant
marginal costs. The LRP tariff is designed to influence the behavior of automated devices
and works best when the customer is able to employ a quadratic optimization solver. This
tariff should not be used as the default tariff for customers unless they have a sophisticated
level of automation and control over their loads.

Second, this tariff assumes the βt prices are accurate price signals and that βt prices
would be sufficient signals if network congestion was not an issue. If customers are not
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consuming in the preferred time period of the DSO, the DSO should first adjust βt prices
to incentivize consumption during those hours. Only after the βt price is set for each time
period should the αt prices be set to create a soft cap incentive on consumption. The LRP
tariff can compensate if βt prices are incentivizing for times that are problematic for the DSO
but this comes at the cost of high αt prices for customers, leading to the next consideration.

Third, LRP can have important cost impacts. We propose that this tariff should not
capture more revenue than a real-time tariff and a well designed LRP tariff can minimize
the cost impacts on consumers. However, a poorly designed tariff can cause significant cost
increases for customers since the costs grow quadratically with load. The DSO or regulator
will need to carefully set α and β for each customer or customer class to prevent excessive
cost burdens. In addition, revenue balancing mechanisms may need to be deployed. Baseline
load profiles like those used in the real-time pricing scheme at Georgia Power, subscription
plans, or annual credits to return excess revenue to customers could all be explored as ways
to keep any sales generated by the α coefficient revenue neutral.

Fourth, we have shown two different ways to calculate αt prices for an LRP tariff. There
are potentially other methods as well. Prices could be set with a granularity as low as the
specific customer at a single location on a distribution feeder or as broad as a customer class
in a utility service territory. The one key consideration for calculating αt values is that they
should always be non-negative for unidirectional loads or positive for bi-directional loads to
preserve the quadratic formulation of the customer’s optimization problem.

Finally, the LRP tariff only provides a price for real power. In the future, DSOs may
want to incentivize customers to provide reactive power. The LRP tariff could be used to
incentivize reactive power but this would require putting a price reactive power and is beyond
the scope of this work.

Optimal-α LRP Considerations

The optimal-α LRP calculates the minimum α required at each time period for customers
to shift load to follow a target profile determined through the DSO’s optimization. However,
there are several issues that can arise with the optimal-α LRP. First, as seen in Case Study II,
optimal-α LRP does not guarantee the the total costs for the customer will be the minimum
cost possible. If the target load profile is not optimal, the results of Optimal-α LRP will not
be either.

Second, the optimal-α LRP depends on an accurate forecast to calculate αt values. The
structure of LRP ensures that customers will still optimize their load if the forecast is wrong
however different issues arise if the DSO overestimates vs. underestimates their forecast.

If the DSO overestimates customer load in their forecast, customers will follow the general
load shape the DSO intended with α at a lower energy consumption at each time period.
However, if a DSO underestimates load in their forecast, congestion issues can quickly arise.
One solution to this issue is to always overestimate the expected load in the forecast. From
a congestion management perspective, this is not a problem. Overestimating load will only
cause congestion if the overestimated load level would be enough to cause congestion.
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In cases where overestimating is not an option or if customer load exceeds the overes-
timated forecast, the customer a DSO underestimated will follow the load shape the DSO
intended unless in any time period αt = 0. In those periods customers only optimize against
βt and will consume energy without a linear price on quantity. As such, the majority of
overestimated load will occur when αt = 0. One way to mitigate this issue is to assign
any α̂t = 0 a nonzero value after the calculating the α̂t prices. For example, if a DSO uses
αtseed = 0, then after calculating the α̂t values, the DSO could set αtseed = min(α̂t). Then
overestimated load will not cluster at αtseed .

Third, the Optimal-α LRP calculates αt prices assuming that customers can accurately
follow their target load profiles provided by the DSO. If customers have binding constraints in
their optimization preventing this, the DSO’s optimization should be updated to endogenize
these constraints and recalculate the target profiles.

Finally, since the DSO calculates prices based on the optimal load profile for each cus-
tomer, the DSO could measure a customer’s deviation from this ideal profile. This deviation
could be the basis for performance metrics that compensate the customer for participating
in the LRP tariff.

IR-LRP Considerations

The IR-LRP is an effective heuristic pricing tariff for near communication-free congestion
management that does not require any additional sensing or control equipment to deploy.
However, it has several drawbacks and considerations that are important to highlight. First,
the algorithm is a heuristic that assumes the βt prices will cause congestion management
issues that need to be mitigated. The IR-LRP does not have knowledge of the status of the
grid or customer loads. Instead, the IR-LRP assumes that the worst congestion will occur
at the lowest βt prices.

Second, the IR-LRP algorithm is effective for over-consumption at low βt price times
but is not effective at controlling bi-directional loads at high cost hours. The αt calculation
does provide incentives to curtail solar or discharging of energy storage back onto the grid
during expensive βt price hours, and this could lead to over-voltage situations. In those
circumstances, changing the βt price is the best strategy to prevent over-voltage.

Finally, with more advanced sensing and grid awareness, a DSO could deploy IR-LRP
with dynamic τ and η values to improve load control and reduce costs. However, if a DSO
has this ability, other price setting algorithms may be more effective to use in the first place
(such as the optimal-α LRP).

3.7 Conclusion

In this chapter we describe a new linear pricing method, Load Responsive Pricing (LRP),
for congestion management of price-signal controlled loads. We detail two different methods
for calculating prices with LRP and show in case studies how customers would follow these
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price signals. We also show how this control method can alleviate network congestion. This
work provides an alternative to previous price signal control research by leveraging other
load optimization schemes beyond DLMP and provides a heuristic for deployment into the
real-world without bi-directional communication or control.

While we proposed the LRP tariff for day-ahead prices, an LRP approach could be
used in other applications. One application could be as a control signal for non-monetary
systems, such as an internal price-signal for a microgrid where decentralized optimization
would reduce the computational burden of the central energy management system. Another
application could be a sub-hourly α prices with hourly β prices. This would allow a DSO to
create a sub-hourly ramp to reduce hourly discontinuities in aggregate load that may occur
under hourly pricing. We intend to explore both areas in future research.

As DSOs and regulators explore real-time pricing options and customer loads become
more flexible with smarter optimization strategies, congestion management will become a
more important issue for grid operations. Traditional volumetric energy pricing cannot
alleviate congestion without real-time sensing, optimization, and communication of prices.
LRP provides an additional control vector that traditional volumetric energy pricing does
not have with a negligible increase communications and a potential revenue-neutral increase
in customer costs.
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Conclusion

DERs can unlock new economic potential and contribute significantly to decarbonization.
However, without proper management, mass adoption of DERs could lead to congestion
issues, such as undervoltage, on distribution feeders. Public utility commissions and regu-
lators in states like California are already looking to prepare for high DER adoption future
[125]. However, over 200,000 distribution circuits exist in the U.S., totaling over 6.5 million
miles [126], [127]. As such, there are limits to how much we can do with computationally
burdensome algorithms, system upgrades, and sensor installations. Scalable solutions to
congestion management are imperative to unlock the full potential of DERs and ensure the
safe, reliable operation of the electric grid.

This dissertation examined the DER congestion management problem and investigate
the relationship between tariff design and DER operations. Chapter 1 focused on measuring
the impact of this relationship in a high DER adoption future. In Chapter 2, we explored
data-driven methods to address congestion management to create computationally scalable
solutions for DER congestion. Then in Chapter 3, we return to tariff design to provide a
pricing mechanism for DER operations that integrates congestion management into electric-
ity tariffs. In the following section, we summarize the findings from each chapter, offer policy
recommendations, and suggest future research areas.

Summary of findings

In Chapter 1, we modeled commercial customers with fleets of electric vehicles, optimizing
their EV charging to minimize costs. We showed how retail tariffs impact electric vehicle
charging profiles and the resulting impact on customer bills, utility revenue, and distribution
system voltage. We also compared tariffs with different demand charges and a tariff with a
power subscription to determine the efficiency of power subscription pricing.

We showed congestion-related undervoltage occurred on our model distribution feeder,
regardless of the tariff choice. Both demand charge and power subscription plans would cause
customers to flatten their load profiles but at insufficient levels to prevent system congestion.
We also found that customers could significantly reduce their costs if they switched from a
fixed-level demand charge to a time-differentiated demand change. However, this cost savings
translated to lost revenue for the utility. While time-differentiated demand charges also
reduced utility costs, the loss in revenue was greater and caused an overall loss in net revenue
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when customers switched tariffs. Finally, we found that the power subscription examined in
this study was less efficient than the existing demand charge-based tariffs researchers have
previously criticized for inefficiency.

In Chapter 2, we explored data-driven approaches to congestion management. Specif-
ically, we developed a data-driven voltage estimator based on the LASSO algorithm for
distribution system operations. By training the estimator offline on measured smart meter
and substation data, we could deploy it as a linear constraint in load optimization problems.
We showed high accuracy in voltage estimation on standard test systems and measured its
performance on the same EV charging coordination problem from Chapter 1. We found that
the LASSO-based voltage estimator could perform better than linear three-phase voltage
approximations as a voltage constraint, leading to faster computation time and lower costs.

In Chapter 3, we described a new pricing method, Load Responsive Pricing (LRP), for
congestion management of price-signal controlled loads. We detailed two different methods
for calculating prices with LRP and showed in case studies how customers would follow
these price signals. We also showed how DSOs could use LRP to provide decentralized
congestion management and incentivize customers to follow optimal load forecasts by only
communicating day-ahead prices. We found this control method could alleviate network
congestion and described ways to minimize the cost increase customers would experience
from price-signal control.

Policy recommendations

We suggest several important policy recommendations from this work. First, policymakers
need to consider that our current tariff and market designs can impact DER operations in
the race to decarbonize and electrify loads. Poorly designed electricity pricing mechanisms
can not only be economically inefficient but can also perversely incentivize DER operations,
such as using energy storage for demand charge management [128]. We recommend that
policymakers and regulators move away from demand charge-based tariffs and avoid power
subscription tariffs. The price on peak power that these tariffs provide causes cost-optimizing
customers to flatten their load profile instead of responding efficiently to time-varying energy
prices [44], [83].

Second, policymakers should investigate the cost differences between retail tariff designs
and eliminate higher-cost options. We found that customers who cost-optimize their load
can save money by selecting one tariff over another. While the lower-cost tariff also reduces
wholesale costs for the DSO, the higher-cost tariff generates more net revenue. This revenue
difference incentivizes the DSOs to keep customers on the higher-cost tariff even though the
lower-cost tariff reduces overall costs for all parties.

Third, policymakers should consider optional tariffs designed for customers with smart
energy management systems and aggregators to control customer loads. However, pricing
mechanisms in these tariffs need to address congestion management. If all customers on a
distribution feeder receive the same schedule of day-ahead scalar energy prices, they will
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optimize their consumption towards the same lowest-cost hours and potentially cause grid
congestion. Providing pricing mechanisms like LRP would incentivize customers to follow
the day-ahead energy prices and incentivize customers to limit their peak consumption to
mitigate congestion. However, there are equity implications if DSOs give customers different
prices based on their location to address congestion. Policymakers should decide how they
want to address the equity and fairness impacts of distribution system congestion manage-
ment.

Areas for future research

There are several important areas of future research related to this dissertation. The first
area researchers could explore is to create a standard set of test cases for comparing electricity
tariffs. We created our test case by combining multiple load models across the research space.
A set of standard test cases would make future studies of existing and proposed tariffs easier
for researchers and allow us to provide better policy recommendations.

Another future research area would be to test data-driven voltage estimators on real-
world systems. While our results in distribution system modeling software are encouraging,
validating the performance on a physical system should be a priority before DSOs adopt any
data-driven estimator for control. To accomplish real-world testing, researchers would also
need to integrate work from others on communication delays [22].

In addition to further testing, researchers could extend the physics-informed approach
of our voltage estimator to other mathematical approximations. Future work could create
quadratic data-driven estimators to predict overcurrent conditions in distribution feeder
power lines. Other research could include exploring different congestion-related impacts on
the distribution system, such as mitigating overvoltage and excess power losses.

For LRP, there are several future areas to explore. First, researchers could examine how
DSOs could use LRP for multi-scale pricing. For example, the intercept price from LRP
could come from hourly energy prices, while the linear slope price could vary every five
or fifteen minutes to provide ramping control. In addition, researchers could explore LRP
for real-time energy markets or decentralized control in microgrids or multi-building energy
management systems.

An open question also remains in equity impacts of congestion management. Although we
recommend that policymakers address equity, researchers should explore different approaches
to ensure fairness and equity in electricity tariffs with congestion management. With direct
control approaches, DSOs could add price equity metrics to a centralized optimization. While
DSOs using indirect methods could ensure customers are given prices that enable equity and
fairness. However, further research should be conducted to determine what are the best
approaches and what the value of such mechanisms are.

Finally, we performed all of our research on radial distribution feeders. A future re-
search area would be to test the congestion management tools we developed here in meshed
distribution networks [129]. While engineers designed meshed networks to prevent under-
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voltage under high loads, there are significant gaps in the literature around meshed network
distribution systems and open questions on DER integration into these systems.
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Appendix A

Chapter 1 Retail Tariffs

The following are the costs for secondary connected customers from the B-10 [58], B-19 [59],
and BEV [23] tariffs used in this study. Dollar amounts and charges were taken from PG&E’s
electric rate schedule on December 1st, 2020. The tables on the left are the power charges
associated with each tariff, while the tables on the right are the energy charges. Customers
below 100 kW in EV demand are assigned to the BEV-1 rate, while customers over 100
kW are assigned the BEV-2-S rate. Customers with exactly 100 kW of EV load can choose
which BEV rate they want.
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B-10 Demand Charge B-10 Energy Charge

Season $/kW Season $/kWh

Summer 13.42 Summer Peak 0.26824

Winter 13.42 Summer Partial Peak 0.26824

Summer Off-Peak 0.17399

B-19 Demand Charge Winter Peak 0.19198

Season $/kW Winter Off-Peak 0.15650

Summer Peak 25.58 Winter Super Off-Peak 0.12016

Summer Partial Peak 5.23

Summer Max Demand 21.08 B-19 Energy Charge

Winter Peak 1.79 Season $/kWh

Winter Max Demand 21.08 Summer Peak 0.16285

Summer Partial Peak 0.13284

BEV-2-S Subscription Summer Off-Peak 0.11162

Block size 50 kW Winter Peak 0.14379

Subscription charge $95.56 / block Winter Off-Peak 0.11154

Overage fee $3.82 / kW Winter Super Off-Peak 0.06826
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BEV-1-S Subscription BEV/TEST-EV-2-S
Energy Charge

Block size 10 kW TOU period $/kWh

Subscription charge $12.41 / block Peak 0.34630

Overage fee $2.48 / kW Off-Peak 0.12740

Super Off-Peak 0.10413

TEST-EV-2-S Demand Charge

Season $/kW BEV/TEST-EV-1-S

Summer 1.9112 Energy Charge

Winter 1.9112 TOU Period $/kWh

Peak 0.32431

TEST-EV-2-1 Demand Charge Off-Peak 0.13230

Season $/kW Super Off-Peak 0.10564

Summer 1.2410

Winter 1.2410
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