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Deep Learning Across Healthcare Spectrums: Genomic Insights, Social 

Determinants Analysis, and Imaging Diagnostics in Complex Diseases 

 

Shenghuan Sun 

 

Abstract 

 

The burgeoning interest in leveraging deep learning within the medical field heralds a promising frontier 

for enhancing disease understanding and patient care. Yet, this technological advance is not without its 

challenges. One significant issue is the underutilization of diverse data types; medical records and biological 

factors, while crucial, do not encompass the entirety of necessary information. Social Determinants of 

Health (SDoH), for instance, play a pivotal role in disease comprehension but are often neglected in research. 

Furthermore, while deep learning holds potential for diagnosis and aiding clinical decisions, the absence of 

rigorous external validation undermines its reliability. Many models, despite performing well in initial 

settings, falter under broader, real-world scrutiny. Additionally, the tendency to harness large datasets and 

maximize feature inclusion for disease analysis sometimes overshadows the value of engineered features. 

These more targeted, hypothesis-driven attributes can sometimes offer clearer insights into disease 

mechanisms, a nuance that is frequently overlooked in the rush towards big data approaches. 

 

These challenges manifest distinctly across different data modalities in medical research. In the realm of 

Electronic Health Records (EHR), the exploration of disease mechanisms often prioritizes medical data, 

inadvertently sidelining non-medical but equally vital Social Determinants of Health (SDoH) such as 

financial stability, mental health, and physical activity. This oversight can skew our understanding of 

disease etiology and patient outcomes. In medical imaging, the rapid development and deployment of deep 

learning models boast of enhanced diagnostic accuracy. Yet, this domain is particularly susceptible to the 
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pitfalls of insufficient external validation. Minor perturbations or "noise" within the imaging data can 

dramatically compromise the predictive reliability of these models, emphasizing the need for robust 

validation processes. Genomic studies, on the other hand, face the challenge of signal dilution amidst the 

vast array of genomic features. The pursuit of correlations across tens of thousands of genes often overlooks 

the critical influence of covariates and noise, potentially obscuring the true biological signals vital for 

understanding disease processes. Each of these issues highlights the complexity of medical data analysis 

and the need for nuanced approaches that consider the full spectrum of relevant factors. 

 

This dissertation is dedicated to the development and application of innovative computational strategies, 

employing practical deep learning techniques to address these prevailing challenges. Firstly, it underscores 

the necessity of integrating comprehensive and meaningful features in deep learning research, with a 

particular emphasis on the inclusion of Social Determinants of Health (SDoH) factors, to present a more 

holistic view of disease mechanisms. Secondly, it demonstrates the imperative role of high-quality data, 

coupled with human feedback and rigorous external validation, in enhancing the reliability and applicability 

of deep learning frameworks within the medical domain. Thirdly, the dissertation advocates for the strategic 

use of high-level feature engineering, as opposed to relying on an overwhelming volume of features, to 

decipher complex biological systems. 
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1 Chapter 1: Introduction 

 

This chapter provides an overview of the dissertation. The primary motivation and research need of this 

dissertation will be summarized followed by concise description of each following chapter.  

 

1.1 Dissertation Overview 

 

The integration of deep learning into healthcare represents a significant leap forward in our ability to 

diagnose, understand, and treat complex diseases. Yet, the transition from theoretical models to practical 

applications is fraught with challenges that span the collection and analysis of diverse data types, from 

electronic health records (EHR) and medical imaging to genomic data. Central to these challenges is the 

underutilization of critical data types such as Social Determinants of Health (SDoH), which are often 

overlooked in favor of more traditional medical data, despite their proven impact on health outcomes. 

Moreover, the reliance on large datasets and the drive to include as many features as possible can sometimes 

obscure rather than illuminate the underlying mechanisms of diseases. 

 

This dissertation contends with these obstacles by proposing innovative computational strategies that 

harness deep learning to improve our understanding and management of complex diseases. 

1) Comprehensive Data Utilization: It stresses the importance of integrating diverse data types, 

including Social Determinants of Health (SDoH), to provide a more complete picture of disease 

mechanisms and patient care. 

2) Human Expertise: The work highlights the invaluable role of human feedback and expertise in 

refining deep learning models, ensuring their relevance and reliability in clinical applications. 
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3) Strategic Feature Engineering: The dissertation advocates for careful feature selection, such as 

prioritizing cell type over gene enrichment, to improve model interpretability and efficacy in 

uncovering disease insights. 

 

1.2 The following chapters 

 

Chapter 2: "Topic Modeling on Clinical Social Work Notes for Exploring Social Determinants of Health 

Factors" - This chapter explores the use of topic modeling to analyze social work notes, highlighting the 

significance of Social Determinants of Health (SDoH) in understanding patient health and treatment 

outcomes. 

 

Chapter 3: "Revealing the impact of social circumstances on the selection of cancer therapy through natural 

language processing of social work notes" - It focuses on the practical application of SDoH information, 

demonstrating how social circumstances influence cancer therapy selection, underscoring the importance 

of a holistic view in treatment decisions. 

 

Chapter 4: "Aligning Synthetic Medical Images with Clinical Knowledge using Human Feedback" - This 

chapter illustrates the integration of human expertise with deep learning, particularly in enhancing the 

accuracy and clinical relevance of synthetic medical images through feedback. 

 

Chapter 5: "Spatial Cell Type Enrichment Predicts Mouse Brain Connectivity" - Highlights strategic feature 

engineering by employing spatial cell type enrichment to improve the understanding of mouse brain 

connectivity, showcasing the importance of focused and relevant feature selection in model development. 

 

Chapter 6: "DeepHeme: A High-Performance, Generalizable, Deep Ensemble for Bone Marrow 

Morphometry and Hematologic Diagnosis" - Demonstrates the value of extensive human annotation and 
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external validation in developing a deep learning ensemble that advances bone marrow analysis and 

hematologic diagnosis, ensuring model reliability and applicability. 

 

Chapter 7: “Conclusion: Summary And Future Work” provides a summary for the dissertation and put 

forward the exciting future work. 
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2 Chapter 2: Topic Modeling on Clinical Social Work Notes for Exploring 

Social Determinants of Health Factors 

 

Shenghuan Sun, B.S. 1, Travis Zack, MD, PhD1,4, Christopher Y.K. Williams, MD 1, Madhumita Sushil, 

PhD1†,  Atul J. Butte, MD, PhD* 1, 2, 3† 

 

1. Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, 

CA, USA  

2. Center for Data-driven Insights and Innovation, University of California, Office of the President, Oakland, 

CA, USA  

3. Department of Pediatrics, University of California, San Francisco, CA, 94158, USA  

4. Division of Hematology/Oncology, Department of Medicine, UCSF, San Francisco, California, USA. 

 

*Author to whom correspondence should be addressed. 

† Equal Contribution 
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2.1 ABSTRACT 

 

OBJECTIVE 

Existing research on social determinants of health (SDoH) predominantly focuses on physician notes and 

structured data within Electronic Medical Records (EMRs). This study posits that social work notes are an 

untapped, potentially rich source for SDoH information. We hypothesize that clinical notes recorded by 

social workers, whose role is to ameliorate social and economic factors, might provide a complementary 

information source of data on SDoH compared to physician notes, which primarily concentrate on medical 

diagnoses and treatments. We aimed to use word frequency analysis and topic modeling to identify 

prevalent terms and robust topics of discussion within a large cohort of social work notes including both 

outpatient and in-patient consultations. 

 

MATERIALS AND METHODS 

We retrieved a diverse, deidentified corpus of 0.95 million clinical social work notes from 181,644 patients 

at the University of California, San Francisco. We conducted word frequency analysis related to ICD-10 

chapters to identify prevalent terms within the notes. We then applied Latent Dirichlet Allocation (LDA) 

topic modeling analysis to characterize this corpus and identify potential topics of discussion, which was 

further stratified by note types and disease groups. 

 

RESULTS 

Word frequency analysis primarily identified medical-related terms associated with specific ICD10 

chapters, though it also detected some subtle SDoH terms. In contrast, the LDA topic modeling analysis 

extracted 11 topics explicitly related to social determinants of health risk factors, such as financial status, 

abuse history, social support, risk of death, and mental health. The topic modeling approach effectively 

demonstrated variations between different types of social work notes and across patients with different 

types of diseases or conditions. 
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DISCUSSION 

Our findings highlight LDA topic modeling's effectiveness in extracting SDoH-related themes and 

capturing variations in social work notes, demonstrating its potential for informing targeted interventions 

for at-risk populations. 

 

CONCLUSION 

Social work notes offer a wealth of unique and valuable information on an individual's SDoH. These notes 

present consistent and meaningful topics of discussion that can be effectively analyzed and utilized to 

improve patient care and inform targeted interventions for at-risk populations. 

  

LAY SUMMARY 

This study explored the untapped potential of social work notes to understand health-related factors shaped 

by our social and economic backgrounds. While past research often turned to doctor's notes or specific 

sections of medical records, the insights within social worker notes, which detail individuals' social 

challenges, remained largely uncharted. Analyzing close to a million such notes from the University of 

California, San Francisco, using standard and rigorously measured methods, we found 11 main discussion 

themes related to social and economic health risks. These themes covered areas like financial challenges, 

history of abuse, and mental well-being. Our findings suggest that social work notes provide valuable 

context about patients' life situations. Utilizing this information could be instrumental in creating more 

personalized care strategies for individuals navigating challenges stemming from their social and economic 

circumstances. 
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2.2 INTRODUCTION 

 

Social determinants of health (SDoH) are non-medical factors that influence health outcomes, including the 

conditions in which people are born, grow, work, live, and age, as well as the wider set of forces and systems 

shaping daily life, such as economic policies, development agendas, social norms, and political systems 

[1,2,3,4].  These factors contribute significantly to health disparities due to systemic disadvantages and 

biases [5,6]. Systemic disadvantages refer to unequal distribution of resources and opportunities, while bias 

refers to unfair treatment based on social, economic, or demographic characteristics. Health inequities, 

which are unfair and avoidable differences in health among population groups, can arise from these 

determinants and warrant ethical consideration [7]. For example, mental health during pregnancy plays a 

pivotal role in both the mother's and the unborn child's well-being [8]. In a similar vein, lifestyle choices 

and living environments are intricately linked to the health outcomes of diabetes patients, with significant 

correlations observed [9]. These examples illustrate how systemic disadvantages and biases contribute to 

health inequities, underlining the importance of addressing SDoH in medical treatments for these conditions 

[5,10,11,12].  

 

Social work notes written by social workers contain comprehensive information on social determinants of 

health (SDoH) compared to other common clinical note types documented by clinicians or medical 

professionals. Examples of social aspects covered in social work notes include living conditions, family 

support, access to transportation, employment status, and education level. While other types of notes such 

as nursing notes,  discharge summaries and hospital progress notes may include some SDoH-related 

information such as insurance status, and health related aspect such as food and physical environment, they 

typically focus on specific aspects of patient care and may not provide as extensive information on SDoH 

as social work notes, which are written to provide a more complete view of these factors [13,14,15]. 

However, our capacity to research sociodemographic and socioeconomic health outcomes is still quite 

constrained. Most assessments of SDoH are not present in structured data [16]. Instead, much of this 
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information is collected in unstructured notes, making the information largely inaccessible without 

advanced technical processing. The inability to easily extract this information limits research into the effects 

of SDoH on care delivery and success.  

 

To understand the information embedded in the social work notes and to characterize specific SDoH factors 

covered across nearly one million notes, we explored the use of unsupervised methods for topic modeling. 

Topic modeling methods based on Latent Dirichlet Allocation (LDA) have been previously successful in 

finding hidden structures (topics) from large corpora [17,18], the utility of which we further explored in 

this study. The large collection of social work notes analyzed in this study spanned a diverse cohort of 

patient demographics and disease groups. This allowed us to develop a comprehensive understanding of 

the underlying SDoH topics from different note types for a variety of disease chapters. We explored several 

methods to circumvent the inherent limitations of topic modeling approaches, such as pre-determining a 

fixed number of clusters, intrinsic randomness, and need for human-based interpretation.  

 

BACKGROUND AND SIGNIFICANCE 

Computational understanding of the free text in clinical notes is well known to be an open challenge, 

including the extraction of structured information from these documents [19].  Some progress has been 

made in extracting SDoH factors from clinical text using named entity recognition (NER), an NLP method 

of extracting pre-defined concepts from text [20,21]. Both machine learning-based and traditional rule-

based NER have been developed and tested [21-23]. While NER approaches have been shown to be 

effective, they can be time-consuming [24]. 

 

Topic modeling methods have been widely applied for unbiased topic discovery from large collections of 

documents [25-27] and have been used in the fields of social science[28], environmental science[29], 

political science[30], and in biological and medical contexts[13]. Recent studies, such as work by Meaney 

C et al[13], have begun to explore latent topics in clinical notes.  However, to our knowledge, LDA topic 
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modeling has not been heavily used to assess corpora of social work notes for SDoH factors, likely due to 

the general availability of sufficiently large corpora.   

 

Clinical social workers are licensed professionals who specialize in identifying and addressing social and 

environmental barriers experienced by patients. In particular, text notes documented by clinical social 

workers are an invaluable data resource for understanding SDoH information in patients. As such, the 

clinical notes written by social workers often include specific text capturing an individual’s SDoH.  Yet, to 

date, social work notes have been a relatively under-utilized data source and have not been extensively 

investigated for understanding SDoH[31].  

 

This study aims to explore the potential of social work notes as a rich source of data on social determinants 

of health (SDoH) by analyzing the most meaningful social work terminology across different disease 

chapters and applying Latent Dirichlet Allocation (LDA) topic modeling to identify robust topics of 

discussion within a large cohort of social work notes. By doing so, we seek to uncover clinically relevant 

SDoH information contained in these notes and their potential impact on patient and public health, 

demonstrating the value of social work notes in understanding SDoH factors.  

 

2.3 MATERIALS AND METHODS 

 

DATA SOURCES AND PATIENT DEMOGRAPHICS 

This study uses the deidentified clinical notes at UCSF recorded between 2012 and 2021[32]. The study 

was approved by the Institutional Review Board (IRB) of the University of California, San Francisco 

(UCSF; IRB #18-25163). Our cohort consists of the following demographic distribution: Gender - Male: 

95,387 (52.5%), Female: 85,635 (47.1%); Race - White: 22,839 (12.6%), Black: 21,120 (11.6%), Asian: 

47,723 (26.3%), Native American: 14,813 (8.2%), Other: 75,149 (41.4%); Age - Median: 33 years (Range: 

12-58); Ethnicity - Hispanic: 41,386 (22.8%), Non-Hispanic: 128,018 (70.5%). 
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DATA PREPROCESSING 

We initiated our research by collecting clinical notes from a de-identified dataset, specifically selecting 

those entries where the metadata contained the term 'social'—case-insensitive—within the encounter type, 

department name, specialty, or provider type, thus designating these as ‘social work notes’. From the 

extensive corpus of 106 million notes representing 1.2 million patients, this focused query yielded 2.5 

million social work notes attributed to 181,644 unique patients. To ensure the quality and relevance of our 

data, we excluded notes under 30 characters, anticipating they would not provide substantial content. 

Duplicate notes were also removed to eliminate redundancy and decrease computational demands. 

Following this stringent quality control process, we distilled the dataset down to 1 million notes 

corresponding to the same 181,644 patients, which formed the basis for our downstream topic modeling 

analysis, as depicted in Figure 2.1. 

 

TOPIC MODELING WITH LATENT DIRICHLET ALLOCATION (LDA) ANALYSIS 

While word frequency calculations can provide preliminary insights about term relevance, this view is too 

limited to understand what broader topics may be contained within social work notes. In contrast, topic 

modeling is a field of unsupervised learning that learns statistical associations between words or groups of 

words to identify “topics”: clusters of words that tend to co-occur within the same document. Latent 

Dirichlet Allocation (LDA) is a generative probabilistic model, that assumes that each document is a 

combination of a few different topics, and that each word's presence can be attributed to particular topics 

in the document. The result is a list of clusters, each of which contains a collection of distinct words. The 

combination of words in a cluster can be used for topic model interpretation. Python package gensim was 

used for the implementation [33].  We used gensim.models.ldamodel.LdaModel for the actual analysis. The 

core estimation code is based on Hoffman et al[34]. Python package nltk was used. As a preprocessing step, 

English language stop words and special characters including ‘\t’, ‘\n’, ‘\s’ were removed from note text. 

The resulting text from all social work notes were vectorized and topics were inferred with the LDA 

algorithm. In addition to the analysis on the complete cohort of social work notes, in order to investigate 
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the topic distribution across specific social work note categories, we additionally analyzed the four largest 

categories of social work notes: Progress Notes, Interdisciplinary, Telephone encounters, and Group Notes. 

We also extended the investigation to social work note subsets across 10 ICD-10 disease chapters. These 

subsets were determined by investigating encounter-specific ICD-10 diagnostic codes. The common stop 

words were also excluded, using stopwords.words('english') from nltk package[35]. To overcome the 

inherent stochasticity of topic modeling approaches and ensure the reliability of our findings, we ran five 

independent modeling analyses for each category of notes. This allowed us to capture consistent patterns 

and topics across different iterations, increasing our confidence in the identified topics and their relevance 

to the respective disease groups. Another critical step in LDA topic modeling was determining the optimal 

cluster number, which is further discussed in the next sub-section. Furthermore, when extending the 

analysis to different note types, we labeled the inferred topics using heuristics described further.  

 

DETERMINING THE OPTIMAL NUMBER OF TOPICS FOR NOTES 

One of the most important hyper-parameters for LDA analysis is the number of topics K. Generally, if K is 

chosen to be too small, the model will lack the capacity to provide a holistic summary of complex document 

collections; and returned topical vectors may combine semantically unrelated words/tokens[36]. 

Conversely, if K is chosen to be too large, the returned topical vectors may be redundant, and a 

parsimonious explanation of a complex phenomenon may not be achieved. We used two evaluation metrics, 

topic coherence [37,38] and topic similarity [39], to systematically determine the optimal number of clusters. 

Topic Coherence (C) quantifies the score of a single topic by measuring the degree of semantic similarity 

between high-scoring words in the topic[40]. The measure helps distinguish between topics that are 

semantically interpretable and those that are artifacts of statistical inference. The coherence metric we 

compute is based on a sliding window, one-set segmentation of the top words and an indirect confirmation 

measure that uses normalized pointwise mutual information (NPMI) and the cosine similarity[38]. 

Similarly, topic similarity (S) measures how similar two clusters are considering the words contained in the 

topics. The lower the values are, the less redundant the topic distribution is. For quantifying topic similarity, 
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we use Jaccard similarity[39]. Furthermore, there are alternative ways to evaluate the quality of topic 

discovery, such as assessing 'topic diversity'[41]. Considering these evaluation metrics in future work may 

provide further insights into the performance of our methods.An ideal solution would have a high topic 

coherence and low similarity metric. To decide the optimal number of clusters, for each analysis, we ran 

the LDA analysis with the number of clusters K ranging from 10 to 50, simultaneously computing C and S 

scores. The number having the ith highest C value, jth smallest S value, and the minimum i + j among all 

runs was selected as the final number of topics (Figure 2.3). We found that the best cluster number for 

analyzing the entire notes repository was 17. 

 

TOPIC MODELING PER NOTES WITH CERTAIN TYPE  

In order to investigate the topic distribution across specific note categories, we applied topic modeling on 

the four largest categories of social work notes: Progress Notes, Interdisciplinary, Telephone encounters, 

and Group Notes. This approach allowed us to gain insights into the prevalence of certain topics within 

these major categories and assess their potential impact on the overall topic modeling results. We used the 

same pipeline for identifying the optimal number of clusters as described earlier in the Methods section. To 

ensure robustness in our results, given the inherent randomness of the LDA method, we conducted each 

analysis across five different iterations for every category. This approach allowed us to capture a broader 

range of variability, thereby increasing the reliability of our findings. The results from these five iterations 

were then pooled together. This pooling strategy was instrumental in developing a well-grounded heuristic 

for labeling the topic clusters, ensuring our results were reflective of consistent patterns observed across all 

iterations, rather than being influenced by any single run’s anomalies. In our analysis, we determined that 

the optimal number of clusters for most of the analyses we conducted is approximately 20. This balances 

the trade-off between coherence and similarity metrics, ensuring that we obtain semantically interpretable 

and non-redundant topic clusters, which provide meaningful insights into the underlying document 

collection. Consequently, we used 20 clusters for the majority of our note analyses, including those focused 

on note subtypes or disease chapters. However, we found that the best cluster number for analyzing the 
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entire notes repository was 17, so we utilized 17 clusters for the topic modeling of all notes combined (See 

previous session). 

 

Topic labelling heuristics. Apart from labeling topics determined from the entire cohort of social work notes, 

our analysis screened 20 topic clusters (determined experimentally; see Results) for all 14 categories of 

notes (10 disease chapters and 4 social work note types) for 5 independent runs (to reduce stochasticity), 

thereby resulting in 1400 topic clusters that required further labeling. To assign labels to all 1400 topics, 

we developed a heuristic to automatically assign topic labels for subsequent analyses, the details of which 

are discussed next.We first constructed the dictionary of topic names and the corresponding words by 

manually analyzing the topic modeling results for one run on the complete corpus of 0.95 million social 

work notes at UCSF. Then we expanded the individual topic clusters by first retrieving 20 most similar 

words to the words comprising topic clusters based on the cosine similarity of their word embeddings[42]. 

Any words that were not relevant to the topic label, as determined through manual review, were not 

considered further. The final dictionary of topic labels and the set of words used to label the topics is shown 

in Table 2. In our approach, we automatically assigned topic labels to individual word clusters by 

calculating the intersection over union (IOU) ratio for the words in a cluster. This enabled us to assign 

labels to all 1,400 topic clusters from our analysis. The details can be found in the pseudo-code below. To 

address your professor's concerns, we used the IOU of word frequencies within each cluster. We assigned 

the label with the maximum IOU, but only if there was an overlap of at least two words. If none of the 

topics met this criterion, we did not assign a topic to the word cluster.  

 

Code for the paper is available on https://github.com/ShenghuanSun/LDA_TM 

 

WORD FREQUENCY CALCULATION 

To perform a preliminary investigation of disease-specific features in the social work notes, 10 disease 

chapters were identified with ICD-10 codes: (1) Diseases of the nervous system (G00-G99), (2) Diseases 
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of the circulatory system (I00-I99), (3) Diseases of the respiratory system (J00-J99), (4) Diseases of the 

digestive system (K00-K95), (5) Diseases of the musculoskeletal system and connective tissue (M00-M99), 

(6) Diseases of the genitourinary system (N00-N99), (7) Pregnancy, childbirth and the puerperium (O00-

O9A), (8) Congenital malformations, deformations and chromosomal abnormalities (Q00-Q99) (9) 

Neoplasms (C00-D49), (10) Diseases of the blood and blood-forming organs and certain disorders 

involving the immune mechanism (D50-D89). Chi-squared statistics was used to compare the frequency of 

words across different note categories (chi2 function from sklearn.feature selection was used to this end). 

After ranking the P values and removing stop words, the top five potential meaningful words were 

visualized by the word frequency calculation. Python package scikit-learn was used to conduct the 

analysis[43]. To embed and tokenize the unstructured notes, text.CountVectorizer function from 

sklearn.feature extraction package was used.  

 

2.4 RESULTS 

 

We retrieved a total of 0.95 million de-identified clinical social work notes generated between 2012 and 

2021 (see Methods) from our UCSF Information Commons[32] (Figure 2.1). The majority of notes were 

classified as Progress Notes, Interdisciplinary Notes, or Telephone Encounter Notes; other note categories 

included Patient Instructions, Group Note, Letter, which comprised fewer than 5 percent each. These notes 

covered 181,644 patients of which 95387 (52.5%) were female. The median age of these patients was 33 

years. Among them, 69,211 patients had only one note; 65,100 patients had between 2 and 5 notes, and 

47,333 patients had more than 5 notes (S. Table 1, S. Figure 2.2B). The demographics distribution is 

presented in Table 1. No demographic feature was statistically associated with the number of notes for each 

patient (S. Table 1). 

 

In addition to analyzing the number of notes, we were also interested in exploring the medical conditions 

associated with patients who received social work notes. This aspect can provide valuable insights into the 
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factors contributing to the need for social work intervention. To investigate this, we collected the ICD-10 

codes for the encounters during which social work notes were recorded for the patients.  These ICD-10 

codes were then mapped at the chapter level[34].  The three most frequent ICD-10 chapters found to be 

associated with a social work note were "Mental, Behavioral and Neurodevelopmental disorders", "Factors 

influencing health status and contact with health services”, and "Symptoms, signs and abnormal clinical 

and laboratory findings, not elsewhere classified" (S. Table 2). 

 

USING LDA TO EXTRACT TOPICS IN SOCIAL WORK NOTES 

Looking at the word components of each topic (Table 1), we discovered a few diverse clusters that cover 

many different social aspects of patients including social service (Topic 11), abuse history (Topic 14), 

phone call/ online communications (Topic 12), living condition/ lifestyle (Topic 16), risk of death (Topic 

8), group session (Topic 7), consultation/ appointment (Topic 5), family (Topic 4, 6), and mental health 

(Topic 1). Many of these topics are consistent with topics covering social determinants of health; most 

importantly, most of the information potentially conveyed through these topics are absent in the structured 

data. Of note, in our parameter exploration, we found that increasing the number of clusters can lead to 

additional recognizable topics, such as food availability (data not shown), although we also obtain 

redundant topics.  

 

TOPIC MODELING ON SPECIFIC NOTE CATEGORIES 

Analyzing the topics appearance in each note subtype, we found that social work notes in the Progress 

Notes category contained a higher percentage of clinically related topics, such as Mental Health (4.32%) 

and Clinician/Hospital/Medication-related information (8.40%), along with a smaller proportion of SDoH-

related topics like Insurance/Income, Abuse history, Social support (10.46%), and Family (6.29%). 

Compared to Progress Notes, Telephone Encounter notes contained a larger proportion of topics related to 

Insurance/Income (3.93%), Phone call/Online (7.47%), Social support (11.56%), and Family (8.08%). 

Interestingly, telephone encounter notes lacked information about the Risk of death (0%), which may be 
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because the discussions on this topic are not appropriate for telephone encounters. Furthermore, Group 

Notes, which are the notes taken during group therapy, describe the group's progress and dynamics. As 

expected, Group Notes have a more uneven topic category distribution, with a higher percentage of Group 

session (24.69%) and Phone call/Online (12.71%) -related topics(Figure 2.2A). 

 

We also applied LDA analysis to the social work notes associated with 10 ICD-10 chapters described earlier 

(Figure 2.2B). We observed that most diseases have a similar topic proportion distribution, for example, 

most of them are enriched for Social support and Family topics. In particular, Social support is highly 

represented in notes related to Neoplasms (21.51%) and Diseases of the digestive system (22.47%). Family 

topics are also frequently mentioned in notes associated with Diseases of the nervous system (23.31%), 

Pregnancy, childbirth, and the puerperium (20.1%), and Congenital malformations, deformations, and 

chromosomal abnormalities (21.43%). However, some differences were identified between the ICD-10 

chapters. Notes associated with disorders of mental health and pregnancy contain a higher percentage of 

SDoH topics on mental health, as would be expected. Mental health topics are more frequently mentioned 

in clinical notes around pregnancy than even in nervous system disorders. Interestingly, the Family topic 

area was often mentioned in notes associated with congenital malformation abnormalities. In summary, the 

analysis demonstrated both the commonness and uniqueness of topics around social determinants of health 

covered across the various diseases and conditions which afflict patients.  

 

WORD FREQUENCY ON INDIVIDUAL DISEASE 

In addition to performing topic modeling on social work notes associated with 10 ICD-10 chapters, we also 

conducted a word frequency analysis. This analysis highlighted that note from each ICD-10 chapter 

contained both disease-specific terms and a limited number of disease-specific SDoH topics. For instance, 

notes from patients with neoplasms frequently mentioned terms like 'oncology', 'chemotherapy', and 'tumor', 

while those associated with musculoskeletal disorders often included words such as 'arthritis' and 

'rheumatology'. In addition to these disease-specific words, there were observable patterns in the prevalence 
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of certain SDoH-related terms. Words like ‘mindfulness’ appeared predominantly in chapters on Pregnancy 

and the Nervous System, and 'wheelchair' was a recurrent term in Musculoskeletal disorders. Notably, 

conditions related to pregnancy showed a significant presence of mental health topics, indicating a frequent 

assessment of this aspect in social work notes for pregnancy care (Figure 2.3). 

 

Overall, the word frequency analysis serves as a complementary tool to topic modeling. While topic 

modeling is adept at uncovering general patterns, predominantly SDoH topics, in social work notes, word 

frequency analysis, with its focused approach, tends to reveal features specific to particular diseases, 

especially when comparing different ICD-10 chapters. 

 

2.5 DISCUSSION 

 

We used an unsupervised topic modeling method called LDA modeling on our corpus of 0.95 million de-

identified clinical social work notes. We showed that topic modeling can be used to (1) extract the hidden 

themes from this huge corpus of clinical notes and identify the critical information embedded in the notes, 

namely social determinants of health (SDoH) factors; and (2) calculate the proportion of each theme across 

different susbets of the note corpus and systemically characterize notes of different types. Using simple 

term frequency methods on this large corpus, we found that specific SDoH terms tend to be enriched in 

notes from patients within different disease categories, including wheelchair for patients with 

musculoskeletal disorders and depression for patients with pregnancy diagnoses, suggesting that these 

populations may be more at risk for these SDoH features.  

 

We extracted several concrete SDoH-related topics, thus providing insight into the information that may be 

extracted from these corpora for facilitating future work around understanding how these topics correlate 

with health outcomes. During our comparison of notes of different subtypes, we found that the topic 

distribution of notes for specific types of diseases contains similar information but showed different levels 
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of enrichment, representing the unique features of each disease set. As one of many examples, our analysis 

shows how mental health issues are frequently documented around pregnancy (Figure 2.2B). This type of 

information can help us better understand the social determinants of most concern to patients when 

interacting with the health system.  

 

The specific topics identified in our study were in line with findings from a previous publication [13]. This 

recent research extracted information on physical, mental, and social health by applying the non-negative 

matrix factorization (NMF) topic modeling method to 382,666 primary care clinical notes. However, that 

study exclusively examined physician-generated notes, whereas our focus was on social work notes, 

enabling us to uncover a broader range of SDoH topics. In our paper, we identified several additional topics, 

including but not limited to Living Condition/Lifestyle, Family, Risk of Death, and Abuse History.  

 

Our research has several potential use cases. First, it aids computational sociology and epidemiology studies 

by identifying key factors that influence health outcomes. This extraction process lays the groundwork for 

in-depth analysis within these fields. Second, the findings from computational analyses can substantiate 

policy decisions. By providing empirical evidence, these findings can guide regulations and interventions 

aimed at health equity. Lastly, for participating healthcare providers, these extracted SDoH factors offer 

insights for effective resource allocation, particularly in supporting vulnerable groups. Overall, 

understanding the distribution of SDoH topics in patient records is crucial for developing targeted 

interventions and preventive strategies, aimed at addressing the root causes of health disparities. 

 

Our study has several strengths. We performed analysis on a large corpus of notes, which to our knowledge 

is the largest social work notes data set to be used in a similar study. Instead of focusing on a single disease 

category or specific medical topic, we aimed at comprehensively finding the potential SDoH topics in all 

types of clinical social notes for a variety of diseases. Furthermore, to obtain a thorough understanding of 

the information embedded in social worker notes and capture the richness and complexity of the rhetoric in 
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these notes, we conducted complementary analyses: a word frequency enrichment analysis allowed us to 

identify specific terms more frequently associated with particular ICD-10 chapters, which demonstrated the 

prevalence of disease-related terms in social work notes, providing a more granular view of the data. Second, 

the use of Latent Dirichlet Allocation (LDA) allowed us to identify broader topics of increased relevance 

in these disease groups. It helped us uncover patterns related to social determinants of health, offering a 

higher-level perspective on the data.  

 

Recognizing the intrinsic instability of LDA topic modeling methods, we enhanced the robustness of our 

results by independently searching for optimal hyperparameters to predefine topic numbers. Additionally, 

we ensured reliability by conducting each analysis across five iterations for every category (See methods). 

However, it is possible to still obtain different topic clusters with a different set of hyperparameters. 

Moreover, other topic modeling algorithms, such as NMF[13, 44] and BERTopic[45], could be explored to 

compare their performance and suitability for our specific task. In addition, we developed topic labeling 

heuristics that allow us to assign topics to the individual clusters. However, the heuristics may not cover all 

topic-related keywords, and in the future, it may be interesting to revisit our heuristic to expand upon the 

topic clusters further to make them more generalizable. State-of-the-art large language models like 

ChatGPT offer significant potential for improving our pipeline, particularly in the nuanced task of assigning 

topic labels[46-48]. With effective prompt engineering, these models could systematically extract patterns 

from social work notes, enhancing the depth and accuracy of our statistical analyses, and potentially 

uncovering new insights in social determinants of health. We also exclusively utilized ICD-10 codes, 

acknowledging the prospective merit of incorporating ICD-9 in future research. Another limitation of our 

study is the lack of structured EHR data for recording comorbidities, insurance, and living status. These 

factors are relevant to SDoH and could provide valuable insights into the relationships between health 

outcomes and social determinants. The absence of such data may limit our ability to fully capture the 

complex interplay of these factors and their effects on health. Finally, we did not explicitly exclude 

negations or the lengthy expression, as they still contribute to the overall discussion of certain topics. 
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However, we acknowledge that the consideration of negation is crucial for a more nuanced understanding 

of the information contained in clinical notes, and for more accurate analysis of the semantic meaning of 

the identified topics. 

 

Our study opens pathways for several key areas of future research. For data scientists and computational 

researchers, future research should focus on combining these identified themes with predictive modeling 

techniques to assess their correlation with future health outcomes. This integration would not only validate 

the relevance of the identified SDoH themes but also provide a more holistic understanding of patient care 

dynamics and health outcomes. For healthcare practitioners, the challenge lies in integrating SDoH insights 

into patient care and public health policies. This demands not only an understanding of clinical informatics 

but also an insight into health policy and administration. Collaborating with experts in these fields could 

lead to developing actionable strategies that utilize our findings to improve healthcare delivery and policy 

decisions. 

 

2.6 CONCLUSION 

 

Social work notes contain rich and unique information about social determinants of health factors, 

frequently only recorded in text notes. SDoH factors are critical for analyzing health outcomes, and this 

study identified detailed categories of SDoH information covered by social work notes. Furthermore, the 

study demonstrated that different categories of notes emphasize different aspects of social determinants of 

health, despite belonging to social work consultations. The findings from this study would form a basis of 

potential future research questions around this utilizing SDoH to uncover health disparities and SDoH-

associated disease trajectories, as well as methods to extract comprehensive SDoH-related information from 

clinical notes.  

 

 



 
21 

 

2.7 ACKNOWLEDGEMENTS 

 

We thank all researchers, clinicians, and social workers who help collect clinical notes data. We thank 

everyone in Dr. Atul J. Butte’s lab for helpful discussion and feedback. We thank staff members in the 

Bakar Computational Health Sciences Institute and UCSF IT Services who build and maintain the UCSF 

Information Commons. We thank the Wynton High-Performance Computing (HPC) cluster for making 

available the needed computation capacity. 

 

2.8 DATA AVAILABILITY 

 

The data that support the findings of this study are available from the Information Commons platform at 

UCSF, but restrictions apply to the availability of these data, which were used under license for the current 

study, and so are not publicly available. Data are however available from the authors upon reasonable 

request and with permission of UCSF. 

 

2.9 COMPETING INTERESTS STATEMENT  

 

AJB is a co-founder and consultant to Personalis and NuMedii; consultant to Mango Tree Corporation, and 

in the recent past, Samsung, 10x Genomics, Helix, Pathway Genomics, and Verinata (Illumina); has served 

on paid advisory panels or boards for Geisinger Health, Regenstrief Institute, Gerson Lehman Group, 

AlphaSights, Covance, Novartis, Genentech, and Merck, and Roche; is a shareholder in Personalis and 

NuMedii; is a minor shareholder in Apple, Meta (Facebook), Alphabet (Google), Microsoft, Amazon, Snap, 

10x Genomics, Illumina, Regeneron, Sanofi, Pfizer, Royalty Pharma, Moderna, Sutro, Doximity, BioNtech, 

Invitae, Pacific Biosciences, Editas Medicine, Nuna Health, Assay Depot, and Vet24seven, and several 

other non-health related companies and mutual funds; and has received honoraria and travel reimbursement 

for invited talks from Johnson and Johnson, Roche, Genentech, Pfizer, Merck, Lilly, Takeda, Varian, Mars, 



 
22 

 

Siemens, Optum, Abbott, Celgene, AstraZeneca, AbbVie, Westat, and many academic institutions, medical 

or disease specific foundations and associations, and health systems. AJB receives royalty payments 

through Stanford University, for several patents and other disclosures licensed to NuMedii and Personalis. 

AJB’s research has been funded by NIH, Peraton (as the prime on an NIH contract), Genentech, Johnson 

and Johnson, FDA, Robert Wood Johnson Foundation, Leon Lowenstein Foundation, Intervalien 

Foundation, Priscilla Chan and Mark Zuckerberg, the Barbara and Gerson Bakar Foundation, and in the 

recent past, the March of Dimes, Juvenile Diabetes Research Foundation, California Governor’s Office of 

Planning and Research, California Institute for Regenerative Medicine, L’Oreal, and Progenity. The authors 

have declared that no competing interests exist. 

 

2.10 FUNDING STATEMENT 

 

This research received no specific grant from any funding agency in the public, commercial or not-for-

profit sectors  

 

  



 
23 

 

 

 

Figure 2.1 Retrieval of clinical social work notes for the study 
The social work notes from the UCSF Information Commons between 2012 and 2021 were initially 
retrieved. Notes that were duplicated or extremely short were excluded, which resulted in a corpus of 0.95 
million notes. Later, the notes were analyzed using two methods: word frequency calculation (Bottom 
Left) and topic modeling (Bottom Right). Later, the word frequency was compared between different 
disease chapters. For topic modeling, Latent Dirichlet Allocation was used to identify the topics in 
individual social work notes. Topic coherence metric and Jaccard distance were implemented to decide 
the optimal clustering results. 
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Figure 2.2 Topic proportion comparison for different categories 
A. Topic proportion comparison for different note types. B. Topic proportion comparison for different 
disease chapters. Size and color of the circle represent proportion of each topic. 
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Figure 2.3 Word frequency calculation 
Word frequency calculation for social work notes associated with each ICD-10 chapter. The proportion of 
the words in social work notes associated with each ICD-10 chapter is shown by the heatmap. 
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Figure 2.4. Data exploration on social work notes 
A. Pie chart showing the proportions of patients in different categories. B. Boxplot and histogram 
showing the number of notes for the individual patients. The scale of x-axis is log10-transformed. The 
mode, mean, and median are 1, 5.8, and 2. 
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Figure 2.5 Topic modeling clustering on whole social work notes. 

 

 

 

 

 

 

 

 

 

 

 

A. Pipeline for determining the optimal number of clusters for the LDA method. The top: the plot of 
cluster number versus the topic coherence metric; The middle: the plot of the cluster number versus the 
topic overlap metric (measured by jaccard similarity metric); The bottom: the plot of the topic overlap 
metric versus the topic coherence metric. The number of clusters is chosen as 17 because it has the 
lowest topic overlap metric value while having the highest topic coherence metric value (see Methods) 
B. Inter-topic distance mapping for the individual cluster.  Each circle represents an inferred topic. The 
coordinates for each circle correspond to the first two Principal components. The radius size indicates 
the frequency of topic existence on each note.  
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Table 2.1 Topic modeling results for all social work notes 
Each row is an inferred topic, which is composed of 10 words. 

Clusters Key Words 
1 goal, anxiety, problem, term, depression, mood, therapy, symptom, long, treatment 
2 recommendation, wife, education, treatment, patient, form, appearance, ongoing, advocate, 

trauma 
3 hospital, self, day, pain, other, connection, recent, feeling, side, number 
4 mother, father, family, room, information, nurse, source, concrete, control, instruction 
5 session, consultation, telehealth, location, time, tool, objective, parking, other, treatment 
6 parent, family, school, child, sister, support, place, year, well, initial 
7 group, intervention, patient, discussion, response, time, summary, progress, participant, skill 
8 risk, chronic, thought, normal, imminent, status, testing, intervention, speech, suicide 
9 client, health, service, caregiver, mental, therapist, therapy, behavioral, individual, group 
10 well, when, time, week, also, able, state, more, friend, very 
11 social, service, support, family, assessment, medical, time, note, concern, ongoing 
12 care, home, plan, phone, contact, work, information, resource, call, support 
13 time, clinician, name, date, code, behavior, risk, number, plan, provider 
14 history, child, other, factor, current, none, substance, abuse, psychiatric, year 
15 donor, donation, potential, employment, understanding, risk, decision, independent, process, 

care 
16 night, morning, hour, sleep, house, already, less, past, aggressive, evening 
17 transplant, medication, post, support, health, insurance, husband, psychosocial, message, 

history 
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Table 2.2 Keywords for topic assignment 
The words in the Keywords column are the representative words used to define the topics. 

Topics Key Words 
Mental health mental, depression, anxiety, mood, psychological, physical, cognitive, 

emotional, mind, psychiatric 
Family family, parent, father, mother, child, children, sister, parents, relatives, 

clan, childhood, friends 
Consultation/Appointment appointment, consultation, consult, questionnaire, question, advice, 

biographical, Wikipedia, relevant, questions, know, documentation 
Group session group, intervention, session, interprets, community, class, 

organization, together, part, organization 
Risk of death suicide, suicidal, risk, crisis, homicide, murder, commit, bombing, 

murdered, murders, bomber, killing, convicted, victims 
Clinician/Hospital/Medication patient, medication, hospital, medical, clinic, clinician, treatment, 

therapy, surgery, symptoms, patients, drugs, diagnosis, treatments, 
prescribed 

Living condition/Lifestyle shelter, housing, house, living, sleep, bedtime, building, buildings, 
urban, employment, suburban, campus, acres 

Social support social, service, support, referral, recommendation, recommend, 
worker, resource, supports, provide, supporting, supported, allow, 

providing, assistance, benefit, help 
Telephone/Encounter/Online 

communication 
telehealth, phone, call, video, telephone, mobile, wireless, msg, 

cellular, dial, email, calling, networks, calls, messages, telephones, 
internet 

Abuse history abuse, history, addiction, alcohol, drugs, allegations, victim, violence, 
sexual, rape, dependence 

Insurance/Income insurance, income, coverage, financial, contracts, banking, finance, 
liability, private, pay 
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Table 2.3 Descriptive statistics for clinical social work notes corpus and contributing patient 
samples 
Few Notes: Number of notes <= 1; Several Notes: 2<=Number of notes < 5; Many Notes: Number of 
notes >= 5. 

 Few Notes 
(N=69211) 

Several 
Notes 
(N=65100) 

Many 
Notes 
(N=47333) 

Overall 
(N=181644) 

Sex      

Female 36372 
(52.6%) 

34285 
(52.7%) 

24730 
(52.2%) 

95387 
(52.5%) 

Male 32608 
(47.1%) 

30626 
(47.0%) 

22401 
(47.3%) 

85635 
(47.1%) 

Unknown 231 (0.3%) 189 (0.3%) 202 (0.4%) 622 (0.3%) 

Ethnicity      

Hispanic/Latino 14891 
(21.5%) 

14451 
(22.2%) 

12044 
(25.4%) 

41386 
(22.8%) 

Not 
Hispanic/Latino 

48758 
(70.4%) 

46011 
(70.7%) 

33249 
(70.2%) 

128018 
(70.5%) 

Unknown 5562 (8.0%) 4638 (7.1%) 2040 (4.3%) 12240 (6.7%) 

Race      

Asian 8651 
(12.5%) 

8578 
(13.2%) 

5610 
(11.9%) 

22839 
(12.6%) 

Black/African  7153 
(10.3%) 

7148 
(11.0%) 

6819 
(14.4%) 

21120 
(11.6%) 

Other 17594 
(25.4%) 

16922 
(26.0%) 

13207 
(27.9%) 

47723 
(26.3%) 

Unknown 6683 (9.7%) 5493 
(8.4%) 

2637 
(5.6%) 

14813 
(8.2%) 

White 29130 
(42.1%) 

26959 
(41.4%) 

19060 
(40.3%) 

75149 
(41.4%) 

Age      

median (Q1-
Q3) 

32 (11 - 58) 35 (13 - 
59) 

30 (10 - 
57) 

33 (12 - 58) 

Missing 111 (0.2%) 135 (0.2%) 175 (0.4%) 421 (0.2%) 
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Table 2.4 Most frequent ICD-10 codes for patients with social work notes 
ICD10 
code Diagnosis Notes Patients 

F01-F99 Mental, Behavioral and Neurodevelopmental disorders 106348 15388 

Z00-Z99 Factors influencing health status and contact with health services 36399 25995 

R00-R99 
Symptoms, signs and abnormal clinical and laboratory findings, 

not elsewhere classified 25011 18820 

E00-E89 Endocrine, nutritional and metabolic diseases 13307 8488 

S00-T88 
Injury, poisoning and certain other consequences of external 

causes 10508 5092 

I00-I99 Diseases of the circulatory system 9832 8450 

K00-K95 Diseases of the digestive system 7711 6267 

G00-G99 Diseases of the nervous system 7589 6187 

O00-
O9A Pregnancy, childbirth and the puerperium 7370 5628 

D50-D89 
Diseases of the blood and blood-forming organs and certain 

disorders involving the immune mechanism 6289 4598 

Q00-Q99 
Congenital malformations, deformations and chromosomal 

abnormalities 6041 4507 

C00-D49 Neoplasms 6025 4515 

N00-N99 Diseases of the genitourinary system 5570 4926 

J00-J99 Diseases of the respiratory system 5294 4690 

M00-
M99 Diseases of the musculoskeletal system and connective tissue 5018 4228 

P00-P96 Certain conditions originating in the perinatal period 4700 4426 

A00-B99 Certain infectious and parasitic diseases 2867 2536 

V00-Y99 External causes of morbidity 2104 2053 

L00-L99 Diseases of the skin and subcutaneous tissue 2023 1853 

H00-H59 Diseases of the eye and adnexa 889 841 

H60-H95 Diseases of the ear and mastoid process 562 516 

U00-U85 Codes for special purposes 85 84 
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3.1 ABSTRACT 

 

OBJECTIVE 

We aimed to investigate the impact of social circumstances on cancer therapy selection using natural 

language processing to derive insights from social worker documentation. 

 

MATERIALS AND METHODS 

We developed and employed a Bidirectional Encoder Representations from Transformers (BERT) based 

approach, using a hierarchical multi-step BERT model (BERT-MS), to predict the prescription of targeted 

cancer therapy to patients based solely on documentation by clinical social workers. Our corpus included 

free-text clinical social work notes, combined with medication prescription information, for all patients 

treated for breast cancer at UCSF between 2012 and 2021. We conducted a feature importance analysis to 

identify the specific social circumstances that impact cancer therapy regimen. 

 

RESULTS 

Using only social work notes, we consistently predicted the administration of targeted therapies, suggesting 

systematic differences in treatment selection exist due to non-clinical factors. The findings were confirmed 

by several language models, with GatorTron achieving the best performance with an AUROC of 0.721 and 

a Macro F1 score of 0.616. The UCSF BERT-MS model, capable of leveraging multiple pieces of notes, 

surpassed the UCSF-BERT model in both AUROC and Macro-F1. Our feature importance analysis 

identified several clinically intuitive social determinants of health (SDOH) that potentially contribute to 

disparities in treatment. 
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DISCUSSION 

Leveraging social work notes can be instrumental in identifying disparities in clinical decision-making. 

Hypotheses generated in an automated way could be used to guide patient-specific quality improvement 

interventions. Further validation with diverse clinical outcomes and prospective studies is essential. 

 

CONCLUSIONS 

Our findings indicate that significant disparities exist among breast cancer patients receiving different types 

of therapies based on social determinants of health. Social work reports play a crucial role in understanding 

these disparities in clinical decision-making. 

 

3.2 INTRODUCTION 

 

Clinical decisions biased by social disparities lead to significant discrepancies in outcome and pose 

significant public health concerns [1–3]. Clinical decisions are influenced not only by clinical criteria but 

also by non-clinical factors such as race, gender, perceived financial stability, and more, which are 

collectively referred to as social determinants of health (SDOH) [4–6]. There is growing evidence that many 

minority groups are less likely to receive standard of care [6,9,10]. One pressing example is the decision to 

initiate anti-neoplastic treatments, which are becoming increasingly expensive and associated with financial 

toxicities [7]. While new, targeted agents often are better tolerated and more effective than previous 

treatments, they can come with a high price tag not always fully covered by insurance, leaving clinicians 

with a moral decision when balancing efficacy and cost. Financial constraints are but one example of factors 

that can potentially influence the treatment decision [8].  

 

In this work, we demonstrated a strong association between specific features within social work (SW) 

clinical documentation and the choice of expensive, targeted therapy prescription for patients with breast 

cancer. Using a pretrained Bidirectional Encoder Representations from Transformers (BERT) model, we 
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showed that the unstructured SW notes, without detailed diagnostic or therapeutic information, can predict 

whether targeted therapy was prescribed for a given patient. Moreover, we developed a hierarchical 

language model for prediction over long sequences of clinical notes and successfully increased the 

predictability of the outcome. To understand which SDOH factors are used by the model for prediction, we 

measured the importance of SDOH factors by deleting words belonging to specific SDOH topics. Several 

critical contributors emerged, including socio-economic factors, abuse history, and risk of death. Our 

findings demonstrate that SW notes can reveal the impact of a patient's social environment on medical 

treatment prescription without requiring expensive and time-consuming manual annotation. Our 

hierarchical modeling approach will inform the development of models capable of leveraging multiple 

clinical notes for prediction. 

 

BACKGROUND AND SIGNIFICANCE 

A growing body of evidence indicates that SDOH factors significantly impact patient health and 

behaviors[5,6,11,12]. However, SDOH factors not only affect patients but also influence the clinical 

decision-making process recommended by physicians[4]. Ideally, clinical decision-making should be 

rooted in evidence-based practices, cognizant of the complex interaction between a patient’s background 

and SDOH that could affect both their trust in the medical system and their overall disease trajectory. In 

reality, though, physicians are inevitably influenced by a wide range of non-clinical factors, with many of 

these non-clinical factors rooted in unconscious bias[13,14]. Previous research showed that clinical 

management decisions can be influenced by socioeconomic status[8], race[15], gender[16], adherence to 

treatment[17], patient behavior[18], attitude[19], and even physician personal characteristics[20].  

 

Although it is well-known that SDOH-related, non-medical factors are crucial contributors to health and 

clinical outcomes, extracting non-medical and social factors from electronic medical records remains 

challenging. While information such as smoking, alcohol, and primary insurance status is increasingly 

accessible in structured fields, many social factors that are increasingly recognized as being important to 
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successful treatment are either not captured or are not a focus of structured physician documentation. 

Various aspects that physicians consider, including patient personalities, preferences, faith, concerns, 

professional interactions, family support, and living situations, can often be missing or improperly 

addressed within physician notes [4]. Due to this, our capacity to understand the relationship between these 

critical aspects of SDOH is constrained by the data we choose to focus on, as well as the accessibility of 

the information within. 

 

Compared to general clinical documentation, notes written by social workers (SW notes) contain 

comprehensive social information[21,22]. Social workers are professionals who specialize in navigating a 

patient through the barriers that may interfere with receiving adequate medical care[23,24]. They can 

evaluate the many aspects of patients’ life outside of medicine that can impact their ability to receive 

treatment. These include insurance concerns, financial concerns, social and daily living support, and 

ancillary support such as transportation, mental health, and housing. Because of this focus on the non-

medical barriers that may affect medical care, SW notes could be invaluable in understanding the non-

medical factors that influence medical decision-making.   

 

Demonstrating that social work notes, considered in isolation, can be predictive of complex clinical 

decisions would highlight the power that can be derived from understanding how SDOH affects clinical 

decision-making. Doing this requires the development of new methods in natural language processing (NLP) 

to transform the nuances within SW documentation of complex social topics into predictive features around 

the clinical decision-making for costly drugs.  
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3.3 MATERIALS AND METHODS 

 

STUDY DESIGN AND COHORT SELECTION 

This study used a deidentified clinical note corpus at UCSF available within the UCSF Information 

Commons. The research was conducted under the IRB #18-25163. Our corpus included the deidentified 

social work notes of all patients treated at UCSF for breast cancer between 2012 and 2021 (Figure 3.1). 

Breast cancer diagnosis was identified using the ICD9 code 174 and the ICD10 code C50 through the UCSF 

Clinical Data Warehouse. We obtained 2496 patients matching these codes, with available social work 

reports. We then retrieved the medications ordered or prescribed for these patients, then categorized these 

as  “targeted therapy” medications or not based on the definitions in the Targeted Cancer Therapies Fact 

Sheet from National Cancer Institute[25]. Patients in the cohort who received targeted therapy at least once 

were categorized into the 'Targeted therapy administered' group (TT-Yes); patients who did not receive any 

targeted therapy were categorized into the 'Targeted therapy not administered' group (TT-No). Though we 

are working with social work notes, we still found that drug information was mentioned in less than 10% 

of the overall social work notes. To prevent information leakage, we masked the drug information prior to 

any further processing. Specifically, in expressions like "Tamoxifen was administered to the patient", we 

replaced the drug name, here Tamoxifen, with the word "drug". The full list of drug names we masked are 

included as S. Table 12. 

 

DEEP LEARNING MODELS FOR SENTENCE CLASSIFICATION 

We used the latest and the longest social work note per patient to predict cancer therapy selection. Patient 

notes were randomly split in an 8:1:1 ratio into training, validation and test sets. We trained our algorithm 

on the training set, using the early stopping approach to help with parameter tuning on the validation set. 

We ran our algorithm 5 times for each model and evaluated the model performance using the validation set. 

The cross-entropy loss function was used for optimization. After training and hyperparameter tuning, the 
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model was tested on the held-out test set to compute model performance. Median scores over 5 runs are 

reported here.  

 

We compared several biomedical BERT models in this research, including: GatorTron-OG [41], a 

Megatron BERT model pre-trained on de-identified clinical notes from the University of Florida, the UCSF-

BERT model[26], which is a cased BERT model pretrained on the UCSF clinical notes publicly , 

SciBERT[28], ClinicalBERT[29], BioLM[30], and Biomed-Roberta[35]. All of these models have been 

pre-trained on a large corpus of scientific texts, PubMed, PMC, and/or clinical notes from the MIMIC-III 

corpus[36]. We fine-tuned each of these models for the classification task.  

 

To rule out the possibility of finding results at random, we implemented three distinct dummy classifiers as 

a control. Dummy (Prior): This strategy always predicts the most frequent class in the training set. Dummy 

(Stratified): This strategy generates predictions by respecting the class distribution of the training set. It 

randomly predicts class labels based on the distribution of the training set. Dummy (Uniform): This strategy 

generates predictions uniformly at random.  

 

EVALUATION METRICS 

Model evaluation results were reported for the testing dataset only. For the classification task, Area Under 

the Receiver Operating Characteristic curve (AUROC), F1 score, precision, and recall metrics are reported.  

In order to address the issue of data imbalance, which can impede the interpretation of model performance, 

we used macro-averaged format for F1, precision, and recall score. F1 score is the harmonic mean of 

precision and recall. 

 

Notably, macro-averaged computation uses the arithmetic mean of all the per-class scores, which provides 

equal weight to all the classes. We used sklearn.metrics from the scikit-learn python package for 

programming[32]. 
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CONSTRUCTING THE BERT-MS MODEL 

Although most patients in our dataset have several relevant SW notes (median = 11, Figure 3.2B), the BERT 

models used for classification are unable to accept more than a maximum of 512 tokens, which cannot 

handle more than one social work note piece. We were interested in knowing whether integrating more 

notes and thus more information about a patient’s social history would improve the prediction. However, 

retraining a language model with an input length several times longer would take considerable time and 

computation resources and is impractical in an academic environment[27]. Consequently, we developed a 

multistep, hierarchical BERT model that can integrate several notes named MS-n, where n refers to the 

maximum number of notes allowed by the model (Figure 3.3).  

 

The MS-n model was trained in two steps (Figure 3.3, and Supplementary Algorithm 1). First, all clinical 

notes for a single patient were treated as independent instances for phase 1 fine-tuning. Each note for a 

single patient was assigned the same binary patient-level label indicating whether targeted therapy was 

administered to the patient. The BERT model was fine-tuned in this setup and the validation loss was 

computed for backpropagation. Consequently, in the second phase, intermediate note-level representations 

were extracted from the resulting model of phase 1 finetuning and concatenated for phase 2 finetuning. The 

phase 2 BERT model was initialized with these concatenated note-level representations, the intermediate 

layer weights were frozen, and the classification layer of the model was fine-tuned further. Phase 1 fine-

tuning was critical because it could extract the lower-dimensional hidden representations of each note. In 

this manner, we were able to train a hierarchical language model that can integrate n-fold information 

without expending the model parameter n-folds. We built several UCSF BERT-MS-n models including 

MS-3, MS-5, MS-8, MS-10, that correspond to the use of at most 3, 5, 8 and 10 notes. 

 

FEATURE IMPORTANCE ANALYSIS  

To understand which SDOH factors are used by the model for prediction, we used feature ablation methods 

to measure the importance of different SDOH factors. We examined the effect on model performance of 



 
45 

 

removing keywords associated with the following topics: Mental health, Family, Consultation/Appointment, 

Group session, Risk of death, Clinician/Hospital/Medication, Living condition/Lifestyle/Social support, 

Telephone encounter/Online communication, Abuse history (all forms), and Insurance/Income. These 

categories, and keywords associated with each category, were selected following the LDA topic modeling 

analysis as described by Sun et al [33] (Supplementary Table 5). Specifically, we removed a set of words 

belonging to each SDOH topic iteratively from the test set only and compared the decrease in model 

performance represented by the decrease in F1 score. We conducted these experiments on MS-5 model 

which has the best predictive performance. 

 

To account for differences in the prevalence of various topics mentioned across patients (e.g 96% of notes 

contained keywords in the ‘Social support’ topic whereas only 10% of notes relate to the ‘Risk of death’ 

category), we normalize the importance of each topic by their frequency. We present both the raw feature 

important score and the important score normalized by topic frequency in Supplementary Figure 3.2. 

 

3.4 RESULTS 

 

PATIENTS STRUCTURED CHARACTERISTICS AND THEIR SOCIAL WORK NOTES 

We identified 2496 patients with breast cancer with available deidentified social work notes (Figure 3.1); 

97.9% of patients were female and 2.1% were male. There were 59.7% White/Caucasian patients, 18.1% 

Asian, 10.1% Hispanic/Latino, 6.5% Black/African, and 15.7% Other (S. Table 1). No obvious difference 

was observed when comparing the demographic information between patient with and without social work 

notes except an increase proportion of Asian population (S. Table 9).   Overall, 70% of patients in the cohort 

received targeted therapy at least once ['Targeted therapy administered' group] (TT-Yes), compared to 30% 

of patients who did not receive any targeted therapy ['Targeted therapy not administered' group] (TT-No).  
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First, we explored whether SDOH information within structured data alone could stratify these patients. 

For the 2496 patients identified, we found information regarding demographics, marriage status, and 

smoking history was present, but data on patient financial status, education level, and other important 

SDOH were absent from the structured data. Machine learning-based approaches leveraging all available 

demographic information, marriage status and smoking history failed to predict the administration of 

targeted therapy in patients (S. Table 3), which is not surprising given the sparsity of the available data as 

well as the difficulty of the task. 

 

In contrast, our prior research has demonstrated that social work notes possess a wealth of information 

relating to SDOH, including details on frequently discussed topics such as mental health, insurance status, 

and family support (Figure 3.2C, D)[33]. This qualitative observation suggested that social work notes 

encompass a wealth of SDOH factors, which may be captured by pre-trained language models when 

predicting the administration of therapy regimens to patients. 

  

GATORTRON-OG OUTPERFORMS OTHER LANGUAGE MODELS IN PREDICTING THERAPY  

We fine-tuned several pretrained biomedical BERT models to predict the targeted therapy administration 

directly from the social work notes of breast cancer patients [26-31, 41]. Given that the maximum sequence 

length supported by a regular BERT model is 512 tokens, we used the longest note for each patient to 

maximize the amount of information available for classification. Table 1 shows the prediction performance 

of different deep-learning classification models. To further ensure that related clues or other explicit 

medical information were not present in these notes, we additionally quantified model performance on a 

subset of notes that do not mention any drugs. This approach achieved similar performance, demonstrating 

the reliability of masking the drug names (Supplementary Table 7).  GatorTron-OG achieved the best result 

with a Macro F1 of 0.616 and AUROC score of 0.721. UCSF-BERT also held good classification 

performance with a Macro F1 of 0.599 and AUROC score of 0.675, although it did not outperform the 

GatorTron-OG model. This can be attributed to the fact that GatorTron model is larger in size and is trained 
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on a larger cohort of clinical data. RoBERTa models (BioLM and Biomed-Roberta) performed generally 

better than BERT-base models (SciBERT, ClinicalBERT) potentially because of their dynamic masking 

strategy during pretraining such that the masked token changes during each training epoch[31]. This 

suggests that pretraining BERT-based models with clinical data can be helpful for achieving superior 

performance on domain-specific tasks. We also ran our tasks on three random baseline models, each of 

which ruled out the random performance from different perspectives (See methods). Our model 

significantly outperformed the random baselines (Table 1).  

 

INTEGRATING MULTIPLE CLINICAL NOTES FOR PREDICTION 

Given that the median number of clinical social notes per patient in our cohort is 11, we built several multi-

step (MS-n) models including MS-3, MS-5, MS-8, MS-10, allowing the analysis of up to 3, 5, 8, and 10 

notes respectively. We used UCSF-BERT for this because it is smaller in size, and hence has lower training 

complexity than the GatorTron-OG model, while having comparable performance. Table 2 compares the 

prediction performance of UCSF BERT_MS-n models with the UCSF BERT model using a single social 

work note. Generally, the UCSF BERT_MS-n models achieved better results, demonstrating the advantage 

of incorporating more clinical notes. 

 

IDENTIFYING THE SDOH FACTORS THAT INFLUENCE MODEL DECISIONS 

To explore the role different SDOH factors may have in predicting utilization of targeted therapy, we 

assessed the importance of SDOH factors by feature ablation methods (See Methods). The 11 topics that 

we tested were mentioned with varying frequency in the social work notes (Supplementary Figure 3.1). The 

notes belonging in each topic have similar class proportions: 70% “TT-Yes” group and 30% “TT-No” group. 

Of note, simple machine learning frameworks leveraging the presence of SDOH topics as binary features 

were not sufficient to predict the administration of targeted therapy  (Supplementary Table 8).  
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We identified several SDOH topics, including Abuse History, Risk of Death, and Social Support, as the 

most significant influencers that the model leveraged in the prediction task (Figure 3.4). Other SDOH topics 

such as Family, Living Condition also had obvious impact in model decision making. However, besides the 

broad topic area “medical factors”, the common topics relating to medical aspects, Mental Health and Group 

Session, had a lower influence on the model prediction. As the neutral control, topic Consultation and 

TelephoneEncounter played a less important role in the prediction task. Interestingly, Finance, which 

represents the socioeconomic factor that likely influences patients’ decisions in therapy regimen, did not 

come up as an important regulator in the process. Overall, we successfully used model interpretability 

methods to analyze the trained language model to discover the SDOH factors that are not frequently 

considered to be influencers of the prescription of more financially toxic oncology medications. 

 

3.5 DISCUSSION 

 

This study demonstrated that clinical social work documentation, which focuses on social determinants of 

health rather than treatment plans, can be predictive of whether targeted therapies are administered to 

patients with breast cancer and highlights a potential SDOH-dependent disparity in therapy administration. 

Additionally, we developed a hierarchical modeling technique to incorporate the large volume of note data 

within any given chart, which often exceeds the processing capacity of the state-of-the-art NLP models. 

This technique can leverage multiple notes for prediction without adding a significant amount of 

computation burden. Finally, we performed a feature importance analysis by ablation of SDOH-related 

keywords to better understand which topics within social work notes have the greatest contribution to model 

performance. 

 

We found that pretraining a language model on similar data sources is important for better prediction 

performance in specialized domains, particularly from small datasets that are common in clinical studies. 
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Among all the transformer-based models we explored (Table 1), Gatortron-OG achieved the best prediction 

performance on our task. Moreover, with our hierarchical BERT model, we showed that integrating 

multiple notes, and consequently more information about a patient, improves model performance. It is 

generally accepted that including more comprehensive patient information, either from clinical notes 

written at different times during a health encounter or for a different purpose, will lead to better performance 

for prediction tasks. Although alternate methods that allow longer input text exist, such as the Longformer 

technique[38],  these approaches usually require retraining a large language model, which can be time-

consuming and computationally expensive.  

 

In our feature importance analysis, we found that financial factors are not the sole SDOH factors influencing 

therapy regimen decisions, as initially hypothesized. Our feature importance analysis revealed other 

significant factors, including "risk of death" and "abuse history", led to decreases in model performance 

when removed from social work note text. Notably, simply extracted the appearance, mentioning of these 

topics mentioning in the social work notes as the feature to perform an prediction failed to achieved ideal 

performance. This demonstrated it is important to consider the context of these mentions within sentences 

further emphasizes their importance (S. Table 8, S. Table 11.).  This study broadens our understanding of 

the various factors affecting therapy regimen choices, suggesting that a more comprehensive approach is 

needed when considering SDOH factors in clinical informatics. Future research should explore additional 

factors and their potential impact on therapy decisions to ensure a more holistic understanding of patient 

care. 

 

There are several limitations to this study. While our research showed that social work reports that 

encompass SDOH information are predictive of the administered breast cancer therapy regimen, integration 

of structured data and other types of text reports may both highlight other aspects driving the disparity in 

treatment choice and improve overall predictive performance. While the aim of our paper is to demonstrate 

the utility of social work notes, comprehensively predicting therapy regimen decisions is complex and 
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beyond the scope of the current paper. Systematically extracting and converting all SDOH factors from 

clinical notes to structured data may create additional opportunities for further analysis. In addition, our 

data was limited to cancer therapy treatment decisions at a single academic medical center. The driving 

forces behind treatment decisions for patients at other centers may differ, as may the overall distribution of 

SDOH factors themselves. Patients may already be preselected in unrecorded ways to receive a social 

worker consultation.  Future work should seek to integrate data across institutions with differing practices 

to further validate our findings. Regarding our BERT-MS-n method, our model used a MLP as the 

classification layer after integrating note-specific representations. The reasons for selecting MLP include 

its efficiency and simplicity, making it easy to manipulate and understand. However, we acknowledge that 

advanced layers like transformers might be better suited than MLP to aggregate note information. We leave 

the investigation of this possibility for future research. Finally, while our methods for model interpretability 

are able to uncover important social topics that are associated with the observed disparity, the methods for 

post-hoc interpretability may not be entirely faithful to the originally trained model, which is an inherent 

limitation of the current state-of-the-art methods in NLP[39].  

 

3.6 CONCLUSION 

 

In conclusion, our study demonstrates the potential of utilizing transformer-based deep learning approaches 

for predicting clinical outcomes using social work reports. Specifically, our findings indicate the presence 

of notable disparities in treatment regimens, which can be attributed to social determinants of health. By 

creating a hierarchical model that can incorporate additional notes, we observed an enhancement in overall 

model performance. Through the use of ablation methods to better understand model interpretability, we 

highlighted the variety of SDOH factors that can influence therapy regimen selection for patients with breast 

cancer. Future research should extend this analysis to explore the impact of SDOH on treatment selection 

at other institutions and for different types of cancer. 
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Figure 3.1 The overall workflow 
We implement an end-to-end BERT-base classification model to predict the category of treatment 
administration for breast cancer patients at UCSF. We first retrieved the patients’ social work notes from 
UCSF de-identified Caboodle Data Warehouse (DeID-CDW) between 2012 and 2021. We then annotated 
whether an individual patient has ever received targeted therapy based on the Targeted Cancer Therapies 
Fact Sheet from National Cancer Institute. In this manner, we obtained 2496 patients, of which 70% 
received targeted therapy. The dataset was further split into 8:1:1 ratio, corresponding to training, validation, 
and test sets. 
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Figure 3.2 Data exploration on social work notes 
A. Pie chart showing the different proportions of patients in the two categories. B. Histogram showing the 
number of notes for the individual patients (mode = 2, mean = 22, median = 11). C. Example deidentified 
social work notes. Top: Example patient who did not have any targeted therapy administration. Bottom: 
Example patient who received at least one dose of targeted therapy. 
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Figure 3.3 Illustration of BERT-MS-n model 
To use long sequences of clinical notes for prediction, we built a hierarchical BERT model (BERT-MS), 
where the first step divides a long sequence of notes into multiple independent instances and then trains the 
single BERT classifier on the individual chunks in the training set. In the second step, we concatenate the 
BERT representations of all notes of the same patient and further fit them into a multilayer perceptron for 
the training. FC: Fully connected Layer; MLP: Multi-layer perceptron. 
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Figure 3.4 Feature importance analysis for SDOH factors in ablation study 
The radar chart shows the feature importance of SDOH topics, represented by the decrease of F1 score. 
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Figure 3.5 Pie chart showing the different proportions  
The percentage on the right of each topic indicates the frequency of whether words in the topics existed in 
individual social work notes. Orange: Patients who did not receive any targeted therapy. Blue: Patients who 
received at least one dose of targeted therapy. 
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Figure 3.6 The radar chart shows the feature importance of SDOH topics 
Feature importance is defined to be the decrease in the F1 score of Targeted therapy not administered class 
across the entire test set overall (Raw: Blue), and across the notes that actually contain these words 
(Normalized: Orange). 
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Figure 3.6 Example deidentified social work notes contain abusive history information 
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Table 3.1 Model performance of different classifiers 
GatorTron-OG achieved supervisor performance in AUC, MACRO F1, as well as MACRO RECALL. 

Model AUC MACRO F1 
MACRO 

PRECISION 
MACRO 
RECALL 

Gatortron-OG  0.721 0.616 0.624 0.611 

UCSF BERT 0.675 0.599 0.604 0.596 

ClinicalBERT 0.627 0.578 0.584 0.576 

SciBERT 0.616 0.532 0.606 0.533 

BioLM 0.671 0.583 0.615 0.580 

Biomed-RoBERTa 0.667 0.584 0.592 0.581 

Dummy (Prior) 0.500 0.412 0.350 0.491 

Dummy (stratified) 0.504 0.525 0.529 0.603 

Dummy (Uniform) 0.500 0.509 0.522 0.602 
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Table 3.2 BERT MS model achieved superior performance in AUC, MACRO F1, as well as 
MACRO RECALL. 

 AUC MACRO F1 
MACRO 

PRECISION 
MACRO 
RECALL 

UCSF BERT 0.675 0.599 0.604 0.596 

UCSF BERT MS-3 0.707 0.620 0.660 0.612 

UCSF BERT MS-5 0.702 0.624 0.637 0.615 

UCSF BERT MS-8 0.718 0.623 0.645 0.616 

UCSF BERT MS-10 0.706 0.596 0.665 0.594 
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Table 3.3 Demographic characteristics for breast cancer patients in our cohort 

 Targeted therapy not administered 
(TT-No, N=597) 

Targeted therapy administered 
(TT-Yes, N=1899) 

Overall 
(N=2496) 

Sex    
Female 572 (95.8%) 1871 (98.5%) 2443 (97.9%) 
Male 25 (4.2%) 28 (1.5%) 53 (2.1%) 

Ethnicity    
Hispanic/Latino 72 (12.1%) 180 (9.5%) 252 (10.1%) 
Not Hispanic or 

Latino 497 (83.2%) 1646 (86.7%) 2143 (85.9%) 

Other 28 (4.6%) 73 (2.0%) 101 (2.2%) 
Race    
Asian 110 (18.4%) 341 (18.0%) 451 (18.1%) 

Black/African 33 (5.5%) 129 (6.8%) 162 (6.5%) 
White or 

Caucasian 355 (59.5%) 1136 (59.8%) 1491 (59.7%) 

Other 99 (17.6%) 283 (15.4%) 382(15.7%) 
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Table 3.4 Summary characteristics of social factors (smoking and marital status) for breast cancer 
patients extracted from structured data 

 Targeted therapy not 
administered (TT-No, N=597) 

Targeted therapy administered 
(TT-Yes, N=1899) 

Overall 
(N=2496) 

 
Smoking status    

Current Everyday 
Smoker 11 (1.8%) 39 (2.1%) 50 (2.0%) 

Current Some 
Day Smoker 6 (1.0%) 21 (1.1%) 27 (1.1%) 

Former Smoker 177 (29.6%) 569 (30.0%) 746 (29.9%) 
Never Assessed 2 (0.3%) 9 (0.5%) 11 (0.4%) 
Never Smoker 395 (66.2%) 1232 (64.9%) 1627 (65.2%) 
Passive Smoke 

Exposure - Never 
Smoker 

5 (0.8%) 17 (0.9%) 22 (0.9%) 

Smoker, Current 
Status Unknown 1 (0.2%) 1 (0.1%) 2 (0.1%) 

*Unknown 0 (0%) 6 (0.3%) 6 (0.2%) 
Light Tobacco 

Smoker 0 (0%) 3 (0.2%) 3 (0.1%) 

Unknown If Ever 
Smoked 0 (0%) 2 (0.1%) 2 (0.1%) 

Marital status    
*Unspecified 1 (0.2%) 0 (0%) 1 (0.0%) 

Divorced 65 (10.9%) 212 (11.2%) 277 (11.1%) 
Legally 

Separated 4 (0.7%) 15 (0.8%) 19 (0.8%) 

Married 286 (47.9%) 909 (47.9%) 1195 (47.9%) 
Registered 

Domestic Partner 7 (1.2%) 9 (0.5%) 16 (0.6%) 

Significant Other 14 (2.3%) 37 (1.9%) 51 (2.0%) 
Single 164 (27.5%) 480 (25.3%) 644 (25.8%) 

Unknown/Declin
ed 18 (3.0%) 43 (2.3%) 61 (2.4%) 

Widowed 38 (6.4%) 193 (10.2%) 231 (9.3%) 
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Table 3.5 Model performances of common machine learning classifiers using SDOH related 
structured tabular data on targeted therapy administration. 

 AUC MACRO F1 
MACRO 

PRECISION 
MACRO 
RECALL 

KNeighborsClassifier 0.497 0.491 0.496 0.497 

SVM Classifier 0.500 0.434 0.383 0.500 

RandomForestClassifier 0.519 0.483 0.592 0.517 

GradientBoostingClassifier 0.509 0.458 0.635 0.509 
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Table 3.6 The properties of notes for breast cancer patient’s cohort. (Measure the tokes length and 
compare with 512 tokens). 

Percentage of notes 
longer than >300 words 

Percentage of notes 
longer than >400 words 

Percentage of notes 
longer than >2000 

characters 

Percentage of notes 
longer than >2500 

characters 

34.0% 22.2% 26.1% 17.9% 
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Table 3.7 The words in the Keywords column are the representative words used to define the topics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Topics Keywords 
Family family, parent, father, mother, child, children, sister, parents, 

relatives, clan, childhood, friends 
Consultation/Appointment appointment, consultation, consult, questionnaire, question, 

advice, biographical, Wikipedia, relevant, questions, know, 
documentation 

Group session group, intervention, session, interpers, community, class, 
organization, together, part, organization 

Risk of death suicide, suicidal, risk, crisis, homicide, murder, commit, 
bombing, murdered, murders, bomber, killing, convicted, 

victims 
Medical factors patient, medication, hospital, medical, clinic, clinician, 

treatment, therapy, surgery, symptoms, patients, drugs, 
diagnosis, treatments, prescribed 

Living condition/Lifestyle shelter, housing, house, living, sleep, bedtime, building, 
buildings, urban, employment, suburban, campus, acres 

Social support social, service, support, referral, recommendation, 
recommend, worker, resource, supports, provide, supporting, 

supported, allow, providing, assistance, benefit, help 

TelephoneEcounter/Online 
communication 

telehealth, phone, call, video, telephone, mobile, wireless, 
gsm, cellular, dial, email, calling, networks, calls, messages, 

telephones, internet 
Abuse history abuse, history, addiction, alcohol, drugs, allegations, victim, 

violence, sexual, rape, dependence 
Insurance/Income insurance, income, coverage, financial, contracts, banking, 

finance, liability, private, pay 
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Table 3.8 Model performance of different classifiers 
External big language model Gatortron achieved the state-of-the-art performance, demonstrating the 
reliability of our discovery. 

Model AUC MACRO F1 
MACRO 

PRECISION 
MACRO 
RECALL 

UCSF BERT 0.675 0.599 0.604 0.596 

Gatortron-OG 0.721 0.616 0.624 0.611 

ClinicalBERT 0.627 0.578 0.584 0.576 

SciBERT 0.616 0.532 0.606 0.533 

BioLM 0.671 0.583 0.615 0.580 

Biomed-RoBERTa 0.667 0.584 0.592 0.581 

Dummy (Prior) 0.500 0.412 0.350 0.491 

Dummy (stratified) 0.504 0.525 0.529 0.603 

Dummy (Uniform) 0.500 0.509 0.522 0.602 
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Table 3.9 The removal of notes drug mentioning in the prediction pipeline.   

Model AUC MACRO F1 
MACRO 

PRECISION 
MACRO 
RECALL 

UCSF BERT (with Drug 
info masked) 

0.675 0.599 0.604 0.596 

UCSF BERT excluding 
notes mentioning Drug 

0.696 0.585 0.622 0.562 

 
 
  



 
69 

 

Table 3.10 Model performance of leveraging SDOH topics appearance on regimen prediction, 
without semantic meanings. 

 F1 Precision Recall Accuracy 

SVM 0.408 0.345 0.500 0.690 

Logistic 
Regression 0.408 0.345 0.500 0.690 

Random Forest 0.513 0.516 0.514 0.603 

Multilayer 
perceptron 0.456 0.598 0.51 0.690 

Naive Bayes 0.401 0.406 0.399 0.466 
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Table 3.11 Demographic characteristics for all breast cancer patients 
 Overall (N=30631) 

Sex  
Female 30026 (98.0%) 
Male 589 (1.9%) 

Ethnicity  
Hispanic/Latino 1913 (6.2%) 

Not Hispanic or Latino 23407 (76.4%) 

Other 5311 (17.4%) 
Race  
Asian 2809 (9.2%) 

Black/African 1411 (4.6%) 
White or Caucasian 18744 (61.2%) 

 
Other 7667 (25.0%) 
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Table 3.12 Summary characteristics of social factors (smoking and marital status) for all breast 
cancer patients 

Smoking Status Overall (N=30631) 

*Not Applicable 1 (0.0%) 

*Unknown 10416 (34.0%) 

*Unspecified 1425 (4.7%) 

Current Every Day Smoker 135 (0.4%) 

Current Some Day Smoker 43 (0.1%) 

Every Day 210 (0.7%) 

Former 3336 (10.9%) 

Former Smoker 1724 (5.6%) 

Heavy Smoker 5 (0.0%) 

Heavy Tobacco Smoker 1 (0.0%) 

Light Smoker 24 (0.1%) 

Light Tobacco Smoker 5 (0.0%) 

Never 8053 (26.3%) 

Never Assessed 925 (3.0%) 

Never Smoker 3533 (11.5%) 

Passive Smoke Exposure - Never Smoker 129 (0.4%) 

Smoker, Current Status Unknown 36 (0.1%) 

Some Days 78 (0.3%) 

Unknown 70 (0.2%) 

Unknown If Ever Smoked 38 (0.1%) 

Maritalstatus  

 3 (0.0%) 

*Not Applicable 1 (0.0%) 

*Unknown 1 (0.0%) 

*Unspecified 35 (0.1%) 

Divorced 2506 (8.2%) 

Legally Separated 197 (0.6%) 

Married 16229 (53.0%) 

RDP-Dissolved 3 (0.0%) 
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Smoking Status Overall (N=30631) 

RDP-LG SEP 1 (0.0%) 

RDP-Widowed 38 (0.1%) 

Registered Domestic Partner 74 (0.2%) 

Significant Other 225 (0.7%) 

Single 6284 (20.5%) 

Unknown/Declined 2069 (6.8%) 

Widowed 2965 (9.7%) 
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Table 3.13 
The drug names that we masked. 

Carboplatin Intravenous RiTUXimab Carfilzomib CARBOplatin 
Trastuzumab-
anns 

Etoposide Brigatinib Hydroxyurea Cisplatin Ruxolitinib Inotuzumab 
Ibrutinib Irinotecan Ciloleucel Anastrozole Copanlisib Dabrafenib 
Mechlorethamine Venetoclax Acalabrutinib Procarbazine Larotrectinib Triptorelin 
Flutamide Mitotane Melphalan Methoxsalen Midostaurin InFLIXimab 
Abiraterone Avelumab Cytarabine VinCRIStine Lapatinib Ifosfamide 
FluorouraciL Erlotinib DAUNOrubicin DOCEtaxeL Ramucirumab VinORELBine 
Thioguanine Alpelisib Decitabine IDArubicin Encorafenib Capecitabine 
Trastuzumab Goserelin Pemetrexed Ivosidenib Cladribine MetHOTREXate 
SORAfenib Interferon Alemtuzumab Daratumumab Elotuzumab Tamoxifen 
MitoMYcin Certolizumab Intrathecal Vemurafenib Bicalutamide MegestroL 
Axitinib Gemtuzumab Durvalumab Enasidenib Ipilimumab CabazitaxeL 
Emtansine Olaparib PACLitaxeL Temozolomide Hyaluronid Bevacizumab 
Doxorubicin Lenvatinib PEMEtrexed DOXOrubicin Cabozantinib Osimertinib 
Mercaptopurine Cetuximab Etanercept Bleomycin Rituximab Hyaluronidase 
Intravesical Deruxtecan EpiRUBicin Siltuximab Epirubicin Everolimus 
Neratinib Trastuzumab Bevacizumab Enzalutamide Vedotin Gilteritinib 
Eribulin Panitumumab Fludarabine Vandetanib Topotecan Megestrol 
Exemestane Niraparib Adalimumab Trifluridine Tipiracil Regorafenib 
PAZOPanib Fulvestrant Ceritinib Lenalidomide Afatinib CISplatin 
Pomalidomide Laherparepvec Tucatinib Mebutate Sorafenib Clofarabine 
Thiotepa Bortezomib Ixazomib Fluorouracil Dasatinib Trastuzumab 
Talimogene Nilotinib Obinutuzumab Cyclophosphamide Sipuleucel-T Panobinostat 

Carmustine EriBULin Toremifene Trioxide 
Govitecan-
hziy Diclofenac 

Dacarbazine Leuprolide Binimetinib Betadex Methotrexate Letrozole 
ChlorambuciL Rucaparib Pazopanib Atezolizumab Paclitaxel Crizotinib 
PACLitaxel-
protein Aminolevulinic Pembrolizumab Infliximab Ribociclib Hyaluronidase 
SUNItinib Abemaciclib Trametinib Sunitinib Ixabepilone Lorlatinib 
Sacituzumab Vorinostat     
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4.1 ABSTRACT 

 

Generative models capable of capturing nuanced clinical features in medical images hold great promise for 

facilitating clinical data sharing, enhancing rare disease datasets, and efficiently synthesizing annotated 

medical images at scale. Despite their potential, assessing the quality of synthetic medical images remains 

a challenge. While modern generative models can synthesize visually-realistic medical images, the clinical 

validity of these images may be called into question. Domainagnostic scores, such as FID score, precision, 

and recall, cannot incorporate clinical knowledge and are, therefore, not suitable for assessing clinical 

sensibility. Additionally, there are numerous unpredictable ways in which generative models may fail to 

synthesize clinically plausible images, making it challenging to anticipate potential failures and manually 

design scores for their detection. To address these challenges, this paper introduces a pathologist-in-the-

loop framework for generating clinically-plausible synthetic medical images. Starting with a diffusion 

model pretrained using real images, our framework comprises three steps: (1) evaluating the generated 

images by expert pathologists to assess whether they satisfy clinical desiderata, (2) training a reward model 

that predicts the pathologist feedback on new samples, and (3) incorporating expert knowledge into the 

diffusion model by using the reward model to inform a finetuning objective. We show that human feedback 

significantly improves the quality of synthetic images in terms of fidelity, diversity, utility in downstream 

applications, and plausibility as evaluated by experts. We also show that human feedback can teach the 
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model new clinical concepts not annotated in the original training data. Our results demonstrate the value 

of incorporating human feedback in clinical applications where generative models may struggle to capture 

extensive domain knowledge from raw data alone. 

 

4.2 INTRODUCTION  

 

Diffusion models have recently shown incredible success in the conditional generation of highfideltiy 

natural, stylized and artistic images [1–6]. The generative capabilities of these models can be leveraged to 

create synthetic data in application domains where obtaining large-scale annotated datasets is challenging. 

The medical imaging field is one such domain, where there is often a difficulty in obtaining high-quality 

labeled datasets [7]. This difficulty may stem from the regulatory hurdles that impede data sharing [8], the 

costs involved in getting experts to manually annotate images [9], or the natural scarcity of data in rare 

diseases [10]. Generative (diffusion) models may provide a partial solution to these problems by 

synthesizing high-fidelity medical images that can be easily shared among researchers to replace or 

augment real data in downstream modeling applications [11, 12]. 

 

WHAT SETS MEDICAL IMAGE SYNTHESIS APART FROM IMAGE GENERATION IN OTHER 

FIELDS?  

Unlike mainstream generative modeling applications that prioritize visually realistic or artistically 

expressive images, synthetic medical images require a different approach. They must be grounded in 

objective clinical and biological knowledge, and as such, they leave no room for creative or unrestricted 

generation. Given that the ultimate goal of synthetic medical images is to be used in downstream modeling 

and analysis, they must faithfully reflect nuanced features that represent various clinical concepts, such as 

cell types [13], disease subtypes [7], and anatomies [14]. Off-the-shelf image generation models are not 

capable of recognizing or generating clinical concepts, rendering them unsuitable for generating plausible 

medical images without further adaptation [15, 16]. Therefore, our aim is to develop a framework for 
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generating synthetic medical images that not only exhibit visual realism but also demonstrate biological 

plausibility and alignment with clinical expertise. 

 

One way to generate synthetic medical images is to finetune a pretrained “foundation” vision model, such 

as Stable Diffusion, that has been trained on billions of natural images (such as the LAION-5B dataset [17]), 

using real medical images. With a sufficiently large set of medical images, we can expect the finetuned 

model to capture the clinical knowledge encoded in medical images. However, the sample sizes of 

annotated medical images are typically limited to a few thousand. When a large vision model is finetuned 

on such a dataset using generic objective functions (such as the likelihood function), the model may capture 

only the generic features that make the medical images appear visually realistic, but it may miss nuanced 

features that make them biologically plausible and compliant with clinical domain knowledge (see 

examples in the next Section). Designing domain-specific objective functions for finetuning that ensure a 

generative model adheres to clinical knowledge is challenging. The difficulty arises from the numerous 

unpredictable ways in which these models can generate images that lack clinical plausibility. As a result, it 

is impractical to anticipate every possible failure scenario and manually construct a loss function that 

penalizes such instances. 

 

SUMMARY OF CONTRIBUTIONS 

 In this paper, we develop a pathologist-in-the-loop framework for synthesizing medical images that align 

with clinical knowledge. Our framework is motivated by the success of reinforcement learning with human 

feedback (RLHF) in aligning the outputs of large language models (LLMs) with human preference [18, 19], 

and is directly inspired by [20], where human feedback was used to align the visual outputs of a generative 

model with input text prompts. To generate clinically-plausible medical images, our framework (outlined 

in Figure 4.1) comprises 3 steps:  
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Step 1: We train a (conditional) diffusion model using real medical images. We then sample a synthetic 

dataset from the model to be evaluated by a pathologist. Each image is carefully examined, and the 

pathologist provides feedback on whether it meets the necessary criteria for clinical plausibility. 

 

Step 2: We collate a dataset of synthetic images paired with pathologist feedback and train a reward model 

to predict the pathologist feedback, i.e., clinical plausibility, on new images. 

 

Step 3: Finally, the reward model in Step 2 is utilized to incorporate expert knowledge into the generative 

model. This is achieved by finetuning the diffusion model using a reward-weighted loss function, which 

penalizes the generation of images that the pathologist considers clinically implausible. 

 

Throughout this paper, we apply the steps above to the synthetic generation of bone marrow image patches, 

but the same conceptual framework can generalize to any medical imaging modality. We gathered 

pathologist feedback on thousands of synthetic images of various cell types generated by a conditional 

diffusion model. Then, we analyzed the impact of this feedback on the quality of the finetuned synthetic 

images. Our findings suggest that incorporating pathologist feedback significantly enhances the quality of 

synthetic images in terms of all existing quality metrics such as fidelity, accuracy of downstream predictive 

models, and clinical plausibility as evaluated by experts. Additionally, it also improves qualities that are 

not directly addressed in the pathologist evaluation, such as the diversity of synthetic samples. Furthermore, 

we show that human feedback can teach the generative model new clinical concepts, such as more refined 

identification of cell types, that are not annotated in the original training data. These results demonstrate 

the value of incorporating human feedback in clinical applications where generative models may not be 

readily suited to capture intricate and extensive clinical domain knowledge from raw data alone. 
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PATHOLOGIST-IN-THE-LOOP GENERATION OF SYNTHETIC MEDICAL IMAGES 

In this Section, we provide a detailed description of our synthetic medical image generation framework. 

We will use a running example pertaining to single-cell images extracted from bone marrow aspirate whole 

slide images. Details of this setup and the dataset used in our study are provided in Section 4. 

 

Step 1: Pathologist feedback collection. The first step in our framework starts with training a generative 

model to synthesize medical images through the standard training procedure. As we discuss in more detail 

in Section 4, we utilized a dataset of 2,048 bone marrow image patches to train a conditional diffusion 

model [6]. The model was trained to generate class-conditional images, where an image class corresponds 

to a cell type. We conducted an exploratory analysis where we found that neither latent diffusion nor Stable 

Diffusion models yielded superior results compared to a customized diffusion model that we employed in 

this study (See Appendix A). We opted for using a class-conditional model rather than a text-conditional 

model as we found that existing pretrained vision-language models were not fit for capturing the scientific 

jargon related to bone marrow cell types. 

 

Given a dataset of real images Dr = {(x i , ci )} nr i=1, where x is a medical image and c ∈ C is an image 

class, we train a diffusion model to generate class-conditional images through the forward process: 

 xt+1 = xt − αt · ∇x log(pθ(xt|x, c)) + ϵt, (1) 

 

where ϵt ∼ N (0, ρ2 ) is the noise term at time-step t, xt is the data point at time-step t, αt is the step size at 

t, θ is the model parameters and ∇x log(p(xt|x, c)) is the gradient of the log probability distribution with 

respect to x, conditioned on the original data x and class c. Once the model is pretrained, we sample a 

synthetic dataset Ds = {(xe j , ec j )} ns j=1 by first sampling a class ec from C, and then sampling a medical 

image xe conditioned on the class ec through the reverse diffusion process. 

Pathologist evaluation. Each image in the synthetic dataset Ds = {(xe j , ec j )} ns j=1 generated by the 

pretrained model is inspected by an expert pathologist to assess its clinical plausibility. The objective of 
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this evaluation is to identify the specific inaccuracies in the synthetic data that can only be identified by an 

expert, and provide feedback for the model to refine its synthesized images in the finetuning step. When a 

model is trained with only a modest number of real image samples, it may generate bone marrow image 

patches that look visually appealing but are not biologically plausible. In Figure 4.2, we present 8 synthetic 

images sampled from the conditional diffusion model, which correspond to four different cell types. Each 

of these images achieves high precision and fidelity scores individually, but they also have biological 

implausibilities such as inaccurate cell coloring or nucleus shapes. Therefore, models that prioritize visual 

features without considering biological knowledge may miss important clinical features required for 

synthetic images to be useful for downstream analysis. Generic evaluation scores (e.g., [21, 22]) cannot 

diagnose these failures because they also lack biological domain knowledge. By incorporating feedback 

from pathologists, we can refine the generative model by identifying biological information that is missed 

by the pretrained model. 

 

The expert pathologist examined each synthetic image and provided a feedback score on its biological 

plausibility. The evaluation typically involved inspecting the image and checking 7 aspects that contribute 

to its perceived plausibility (Table 1). These aspects pertain to the consistency of the shapes, sizes, patterns 

and colors of the contents of a synthetic bone marrow image with the cell type etc. Among the determinants 

of plausibility is the cell size—different cells have different sizes, e.g., Lymphocytes are generally smaller 

than Monocytes or Neutrophils. Nucleus shape and size also depend on the cell type, e.g., Band Neutrophils 

have a horseshoe-shaped nucleus, whereas Segmented Neutrophils have a multi-lobed nucleus. Chromatin 

patterns within the nucleus are dense and clumped in Lymphocytes, while in Myeloid cells they are diffuse 

and fine. The number, size and color of granules also contribute to plausibility. Detailed explanation of all 

criteria is provided in the Appendix. 

 

Among the determinants of plausibility is the cell size—different cells have different sizes, e.g., 

Lymphocytes are generally smaller than Monocytes or Neutrophils. Nucleus shape and size also depend on 
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the cell type, e.g., Band Neutrophils have a horseshoe-shaped nucleus, whereas Segmented Neutrophils 

have a multi-lobed nucleus. Chromatin patterns within the nucleus are dense and clumped in Lymphocytes, 

while in Myeloid cells they are diffuse and fine. The number, size and color of granules also contribute to 

plausibility. Detailed explanation of all criteria is provided in the Appendix. Note that we have full control 

over the number of synthetic images ns, i.e., we can sample an arbitrary number of synthetic images from 

the conditional diffusion model. The key limiting factor on ns is the time-consuming nature of the feedback 

collection process. To enable scalable feedback collection, we limited our study to binary feedback, i.e., 

the pathologist flagged a synthetic image as “implausible” if they found a violation of any of the criteria in 

Table 1 upon visual inspection. We collected these binary signals and did not pursue a full checklist on all 

plausibility criteria for each synthetic image. The output of Step 1 is an annotated dataset Ds = {(xe j , ec 

j , ye j )} ns j=1, where ye j ∈ {0, 1} is the pathologist feedback on the j-th synthetic image, where ye j = 1 

means that the image is implausible. 

 

Step 2: Clinical Plausibility Reward Modeling. We conceptualize the pathologist as a "labeling function" 

Γ: X × C → {0, 1} that maps the observed synthetic image xe and declared cell type (class) ec to a binary 

plausibility score. In Step 2, we model the "pathologist" by learning their labeling function Γ based on their 

feedback annotations. 

 

To train a model Γ that estimates the pathologist labeling function, we construct a training dataset 

comprising a mixture of real and synthetic images as follows: 

 

- Synthetic images: We construct a dataset DΓs = {(xej, ecj, yej)}^ns_j=1 comprising the synthetic 

images and corresponding pathologist feedback collected in Step 1. 

- Real images: We build a dataset DΓr = {(xi, eci, yi)}^nr_i=1 comprising the real images and 

pseudo-labels defined as yi = 1{ci ≠ eci}, where eci ~ Uniform(1, 2, ..., |C|). 
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We combine both datasets DΓ = DΓr ∪ DΓs to construct a training dataset for the model Γ. The real dataset 

DΓr is built by randomly permuting the image class and assigning an implausibility label of 1 if the 

permuted class does not coincide with the true class. We use the real dataset to augment the synthetic dataset 

with the annotated pathologist feedback. By augmenting the datasets DΓr and DΓs, we teach the model Γ 

to recognize two forms of implausibility in image generation: 

 

Instances where the synthetic image looks clinically plausible but belongs to a wrong cell type (i.e., training 

examples in DΓr). Instances where the synthetic image is visually consistent with the correct cell type but 

fails to meet some of the plausibility criteria in Table 1 (i.e., subset of the training examples in DΓs). We 

call the resulting model Γ a clinical plausibility reward model. Using the augmented feedback dataset DΓ, 

we train the reward model by minimizing the mean square error as follows: 

 

LΓ(ϕ) = Σj∈DΓs(yej - Γϕ(xej, ecj))^2 + λrΣi∈DΓr(yi - Γϕ(xi, eci))^2, (2) 

 

where λr is a hyper-parameter that controls the contribution of real images in training the reward functions, 

and ϕ is the parameter of the reward model. 

 

Step 3: Clinically-informed Finetuning. In the final step, we refine the diffusion model by leveraging the 

pathologist feedback. Specifically, we incorporate domain knowledge into the model by utilizing the reward 

model Γ in the finetuning objective. Following [20], we use a reward-weighted negative log-likelihood 

(NLL) objective, i.e., 

 

L(θ, ϕb) = E(x, eec)∼Ds[−Γϕb(x, eec) · log(pθ(xe|ec))] + βr · E(x,c)∼Dr[− log(pθ(x|c))], (3) 

 

to finetune the conditional diffusion model, where βr is a hyper-parameter and ϕb is the reward model 

parameters obtained by minimizing (2) in Step 2. The finetuning objective in (3) incorporates the 
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pathologist knowledge through the reward model, which predicts the pathologist evaluation of the synthetic 

images that the model generates as it updates its parameters θ. The reward-weighted objective penalizes the 

generation of images that do not align with the pathologist preferences; hence we expect that the finetuned 

model will be less likely to generate clinically implausible synthetic images. 

 

BONUS STEP: FEEDBACK-DRIVEN GENERATION OF NEW CLINICAL CONCEPTS 

Besides refining generative models for clinical plausibility, pathologist feedback can be used to incorporate 

novel clinical concepts into the generative process that were not initially labeled in the real dataset. This 

could allow generative models to continuously adapt in changing clinical environments. For instance, in 

our bone marrow image generation setup, pathologist feedback can refine image generation by introducing 

new sub-types of the original cell types in C, as illustrated in Figure 4.3. Instead of collecting pathologist 

feedback that is limited to clinical plausibility, we also collect their annotation of new cell sub-types (e.g., 

segmented and band variants of Neutrophil cell types). Next, we train an auxiliary model Γρ(x) with 

parameter ρ to classify the new sub-types based on the pathologist annotations. Finally, we finetune the 

conditional diffusion model through a combined loss function, ithat incorporates the two forms of 

pathologist feedback, i.e., annotations of new cell types and clinical plausibility. 

 

PATHOLOGIST FEEDBACK VS. AUTOMATED FEEDBACK 

To assess the added value of human feedback, we consider a baseline where the generative model is 

supplemented with automatically generated feedback on clinical plausibility. To this end, we implement a 

baseline based on classifier-guided diffusion, where a classifier serves as an automatic feedback signal that 

deems a synthetic image implausible if it does not match the corresponding cell type. For this baseline, we 

train an auxiliary classifier to predict the cell type �c of an image �x, and then we incorporate the gradient 

of the log-likelihood of this classifier in the training objective as described in the referenced literature (See 

the Supplementary material for implementation details). 
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4.3 RELATED WORK 

 

Before delving into the experimental results, we discuss three strands of literature that are related to our 

synthetic data generation framework. These include generative modeling for synthetic clinical data, 

evaluation of generative models and learning from human feedback.  

 

GENERATIVE MODELING OF SYNTHETIC MEDICAL IMAGES 

The dominant approach for synthesizing medical images is to train or finetune a generative model, such as 

a Variational Autoencoder (VAE) [24], a Generative Adversarial Network (GAN) [25], or a diffusion model 

[6, 23], using a sufficiently large sample of images from the desired modality. Owing to their recent success 

in achieving state-of-the-art results in high-fidelity image synthesis [23], diffusion probabilistic models 

have become the model of choice for medical image synthesis applications [12, 26–29]. In [12], the Stable 

Diffusion model—an open-source pretrained diffusion model—was used to generate synthetic X-ray 

images, and in [28] it was shown that diffusion models can synthesize high-quality Magnetic Resonance 

Images (MRI) and Computed Tomography (CT) images. [27] used latent diffusion models to generate 

synthetic images from high-resolution 3D brain images. All of these models are trained with the standard 

likelihood objective and the synthetic images are typically evaluated through downstream classification 

tasks or generic, domain-agnostic metrics for image fidelity. To the best of our knowledge, none of the 

previous studies have explored a human-AI collaboration approach to synthetic image generation or 

incorporated clinical knowledge into generative models of medical images.  

 

EVALUATION OF SYNTHETIC IMAGES IN THE MEDICAL DOMAIN AND BEYOND 

Unlike discriminative modeling (i.e., predictive modeling) where model accuracy can be straightforwardly 

evaluated by comparing the model predictions with ground-truth labels in a testing set, evaluating the 

quality of generative models can be quite challenging since we do not have a “ground-truth” for defining 

what makes a synthetic sample is of high or low quality. Devising a generic score to evaluate a generative 
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model can be tricky since there are many potential modes of failure [22]. Consequently, it is essential to 

design robust multidimensional scores that capture the most relevant failure modes for a given application. 

Recently, there have been various attempts at defining domain-specific scores [30–32] as well as generic 

scores for evaluating the quality of synthetic images. Examples include the FID score which is based on a 

distributional distance between real and synthetic images [33]. Other examples for sample level evaluation 

metrics include the precision and recall metrics [21] which check if synthetic data resides in the support of 

the real data distribution. However, these scores do not encode clinical domain knowledge, which is critical 

for identifying failures in generating clinically meaningful images. Traditional scores of medical image 

quality include signal- and contrast-to-noise ratio [34–36], mean structural similarity [37]. These scores are 

typically applied to real images and cannot be repurposed to judge the generative capacity of a synthetic 

data model in a meaningful way. The lack of an automated score for detecting clinically implausible 

synthetic medical images is a key motivation for our work. We believe that the most reliable way to assess 

the quality of a synthetic image is to have it evaluated by an expert pathologist. From this perspective, the 

reward model Γ in Section 2.2 can be thought of as a data-driven score for image quality trained using 

pathologist evaluations.  

 

LEARNING FROM HUMAN FEEDBACK 

 The success of many modern generative models can be attributed in part to finetuning using feedback 

solicited from human annotators. The utilization of human feedback in model finetuning is very common 

in natural language processing applications, particularly in finetuning of large language models (LLMs). 

Examples for applications were human feedback was applied include translation [38], web question-

answering [39] and instruction tuning [40–42]. The key idea in these applications is that by asking a human 

annotator to rate different responses from the same model, one can use such annotations to finetune the 

model to align with human preference. Similar ideas have been applied to align computer vision models 

with human preferences [20, 43–46]. In the context of our application, the goal is to align the outputs of a 

generative model with the preferences of pathologists, which are naturally aligned with clinical domain 
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knowledge. Our finetuning objective builds on the recent work in [20] and [45], which use human feedback 

to align text-prompts with generated images using a reward-weighted likelihood score. 

 

4.4 EXPERIMENTS 

 

In this Section, we conduct a series of experiments to evaluate the utility of pathologist feedback in 

improving the quality of synthetic medical images. In the next Subsection, we start by providing a detailed 

description of the single-cell bone marrow image dataset used in our experiments. 

 

BONE MARROW CELLS DATASET  

In all experiments, we used a dataset of hematopathologist consensus-annotated single-cell images 

extracted from bone marrow aspirate (BMA) whole slide images. The images were obtained from the 

clinical archives of an academic medical center. The dataset comprised 2,048 images, with the images 

evenly distributed across 16 morphological classes (cell types), with 160 images per class (Table 2). These 

classes encompass varied cell types found in a standard bone marrow differential. The dataset covers the 

complete maturation spectrum of Erythroid and Neutrophil cells, from Proerythroblast to mature 

Erythrocyte and from Myeloid blast to mature Neutrophils, respectively. The dataset also differentiates 

mature Eosinophils with segmented nuclei from immature Eosinophils and features Monocytes, Basophils, 

and Mast cells. Bone marrow cell counting and differentiating between various cell types is a complex task 

that poses challenges even for experienced hematologists. Hence, we expect pathologist feedback to 

significantly improve the quality of bone marrow image synthesis. 

 

SYNTHETIC DATA GENERATION AND PATHOLOGIST FEEDBACK COLLECTION 

We used a conditional diffusion model trained on real images (64×64 pixels in size) to generate synthetic 

image patches. Training was conducted using 128 images per cell type, with 32 images per cell type held 

out for testing and evaluating all performance metrics. For the reward model Γ(x, c), we used a ResNeXt-
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50 model [47] pre-trained on a cell type classification task to obtain embeddings for individual images, and 

then concatenated the embeddings with one-hot encoded identifiers of image class (cell type) as inputs to a 

feed-forward neural network that predicts clinical plausibility. Further details on model architectures and 

selected hyper-parameters are provided in the Appendix. 

 

We collected feedback from an expert pathologist on 3,936 synthetic images generated from the diffusion 

model. The pathologist identified most of these images as implausible—the rate of implausible images was 

as high as 85% for some cell types (e.g., Basophil cells, see Table 2). After training the reward model using 

pathologist feedback, we finetune the diffusion model as described in Section 2. 

 

4.5 RESULTS 

 

EXPERT EVALUATION OF SYNTHETIC DATA QUALITY 

To evaluate the impact of pathologist feedback on the generated synthetic data, we created two synthetic 

datasets: a sample from the diffusion model (before finetuning with pathologist feedback) and a sample 

from the finetuned version of the model after incorporating the pathologist feedback. Each dataset 

comprised 400 images (25 images per cell type). An expert pathologist was asked to evaluate the two 

samples and label each image as plausible or implausible (in a manner similar to the feedback collection 

process). Table 3 lists the fraction of clinically plausible images per cell type for the two synthetic datasets 

(before and after finetuning using the pathologist feedback) as evaluated by an expert hematopathologist. 

As we can see, the pathologist feedback leads to a significant boost in the quality of synthetic images across 

all cell types, increasing the average rate of clinical plausibility from 0.21 to 0.75. Note that in this 

experiment, the human evaluator emulates the reward function Γ(x, c). Hence, the improved performance 

of the finetuned model indicates success in learning the pathologist preferences. Evaluating synthetic data 

using fidelity & diversity scores. In addition to expert evaluation, we also evaluated the two synthetic 

datasets generated in the previous experiment using standard metrics for evaluating generative models. We 
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considered the Precision, Recall and Coverage metrics [21, 22]. Precision measures the fraction of synthetic 

samples that resides in the support of the real data distribution and is used to measure fidelity. Recall and 

Coverage measure the “diversity” of synthetic samples, i.e., the fraction of real images that are represented 

in the output of a generative model. In addition to the two synthetic datasets (with and without feedback) 

generated in the previous experiment, we also evaluated a third synthetic dataset finetuned using the 

automatic feedback (classifier-guidance) approach described in Section 2.5. The results in Table 4 show 

that pathologist feedback improves the quality of synthetic data compared to the two baselines across all 

metrics under consideration. Interestingly, we see that feedback not improves fidelity of synthetic images, 

but it also improves the diversity of samples, which was not one the criteria considered in the pathologist 

feedback. 

 

DOWNSTREAM MODELING WITH SYNTHETIC DATA 

 Morphology-based classification of cells is a key step in the diagnosis of hematologic malignancies. We 

evaluated the utility of synthetic medical images in training a cell-type classification model. In this 

experiment, we train a ResNext-50 model to classify the 16 cell types using real data, synthetic data from 

the pretrained model with no feedback, and synthetic data from the model finetuned with pathologist 

feedback. To ensure a fair comparison, we created synthetic datasets consisting of 128 images per cell type, 

matching the size of the real data. The classification accuracy of all models was then tested on the held-out 

real dataset, containing 32 images per cell type. Results are shown in Table 5. Unsurprisingly, the model 

trained on real data demonstrated superior performance across all accuracy metrics, exhibiting a significant 

gap compared to the model trained on synthetic data without human feedback. However, incorporating 

pathologist feedback helped narrow this gap and improved the quality of synthetic data to the point where 

the resulting classifiers only slightly underperformed compared to the one trained on real data. To evaluate 

the marginal value of human feedback, we also considered two ablated versions of our synthetic data 

generation process. These included a synthetic dataset generated using automatic feedback (Section 2.5) as 

well as a reward model trained using the pathologist feedback on synthetic data only (i.e., dataset D Γ s ) 
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without real data augmentation (Section 2.2). The results in Table 5 show that automatic feedback only 

marginally improves performance, which aligns with the results in Table 4. Real data augmentation (i.e., 

finetuning on D Γ s + D Γ r ) slightly improves classification accuracy, but most of the performance gains 

are achieved by finetuning on the pathologist-labeled dataset D Γ s . 

 

IMPACT OF THE NUMBER OF FEEDBACK POINTS 

How much human feedback is necessary to align the generative model with the preferences of pathologists? 

In Figure 4.4, we analyze the effect of different amounts of pathologist-labeled synthetic images on training 

the reward model. We explore four scenarios: 0%, 10%, 50%, and 100% of the 3,936 synthetic images 

labeled by the pathologist. For each scenario, we fine-tune the pretrained model using a reward model 

trained with the corresponding fraction of synthetic images. We then repeat the cell classification 

experiment to evaluate the accuracy of the classifiers trained using synthetic data generated in these four 

scenarios. Figure 4.4(a) shows that as the number of pathologist-labeled synthetic images increases, all 

accuracy metrics increase to improve over the pretrained model performance and become closer to the 

accuracy of training on real data. Additionally, we see that even a modest amount of feedback (e.g., 10% 

of pathologist-labeled synthetic images) can have a significant impact on performance. Figure 4.4(b) also 

show the qualitative improvement in the quality of synthetic images as the amount of human feedback 

increases. 

 

INCORPORATING NEW CLINICAL CONCEPTS USING PATHOLOGIST FEEDBACK 

Finally, we evaluate the feedback driven generation approach outlined in Section 2.4. Here, our goal is not 

only to leverage pathologist feedback for rating the plausibility of synthetic images, but also to harness their 

expertise in providing additional annotations that can enable the conditional diffusion model to generate 

more refined categories of bone marrow image patches, e.g., abnormal cell types that develop from 

preexisting normal cell types. Hence, refining the generative model to synthesize new cell subtypes can 

help continuously update the model to capture new pathological cells and build downstream diagnostic 
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models. In this experiment, we focus on finetuning the model to distinguish between band Neutrophils and 

segmented Neutrophils (Figure 4.5(c)). These two sub-categories are often lumped together in bone marrow 

cell typing, as was the case in our dataset (see Table 2). However, in many clinical settings, differentiating 

between the two subtypes is essential. For instance, a high percentage of band Neutrophils can indicate an 

acute infection, inflammation, or other pathological conditions. We collected pathologist annotations of 

band and segmented Neutrophils and trained a subtype classifier to augment the plausibility reward as 

described in Section 2.4. The finetuned model was able to condition on the new classes and generate 

plausible samples of the two Neutrophil subtypes (Figure 4.5(c)), while retaining the classification accuracy 

with respect to the new classes (See Appendix for detailed results). 

 

4.6 CONCLUSIONS 

 

Synthetic data generation holds great potential for facilitating the sharing of clinical data and enriching rare 

diseases datasets. However, existing generative models and evaluation metrics lack the ability to 

incorporate clinical knowledge. Consequently, they often fall short in producing clinically plausible and 

valuable images. This paper introduces a pathologist-in-the-loop framework for generating clinically 

plausible synthetic medical images. Our framework involves finetuning a pretrained generative model 

through feedback provided by pathologists, thereby aligning the synthetic data generation process with 

clinical expertise. Through the evaluation of synthetic bone marrow patches by expert hematopathologists, 

leveraging thousands of feedback points, we demonstrate that human input significantly enhances the 

quality of synthetic images. These results underscore the importance of incorporating human feedback in 

clinical applications, particularly when generative models encounter challenges in capturing nuanced 

domain knowledge solely from raw data. 
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Figure 4.1 Overview of our pathologist-in-the-loop synthetic data generation framework 
 (1) Step 1, a synthetic dataset is sampled from a generative model pretrained using a dataset of real medical 
images. The dataset is then inspected by a pathologist who examines each image to determine its plausibility 
based on a set of criteria. For each image, the pathologist provides binary feedback, labeling a synthetic 
image as ̀ `1'' if it fails to meet all the plausibility criteria.  (2) In Step 2, the synthetic images and pathologist 
feedback obtained in Step 1 are used to train a reward model that predicts human feedback on new images. 
(3) Finally, the generative model is finetuned via an objective function that uses the reward model to 
incentivize the generation of clinically plausible images.  
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Figure 4.2 Samples for biologically implausible synthetic images 
On the bottom panels, we show pathologist evaluations detailing the reasons for their implausibility.  

Mast cell (B1) Mature Eosinophil (E4) Neutrophil (M5) Red blood cells (ER6)

Nucleus should have two 
lobes

Nucleus should be band 
or multilobed-shaped

Not red enough to be 
recognized as ER6

Darker than 
expected
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Figure 4.3 Generation of refined cell sub-types.  
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Synthetic Neutrophils
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Figure 4.4 Quantitative and qualitative impact of pathologist feedback on synthetic images 
 (a) Accuracy of cell-types classifiers trained on synthetic data with varying amounts of pathologist 
feedback. (b) Visual inspection of random synthetic samples from diffusion models finetuned with varying 
amounts of pathologist feedback. (c) Feedback-driven conditional generation of new (segmented and band) 
subtypes of Neutrophil cells. 
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Figure 4.5 Representative samples from different baseline models 
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Figure 4.6 Representative samples from the conditional diffusion model before (left) and after (right) 
incorporating pathologist feedback. 
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Figure 4.7 Representative samples from the conditional diffusion model. 
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Figure 4.8 Representative samples from the finetuned model with 10% of the pathologist feedback 
points. 
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Figure 4.9 Representative samples from the finetuned model with 50% of the pathologist feedback 
points. 
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Figure 4.10 Representative samples from the finetuned model with 100% of the pathologist feedback 
points   
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Table 4.1 Pathologist Evaluation Criteria 
Criteria 
1. Cell size 5. Chromatin pattern 
2. Nucleus shape and size 6. Inclusions 
3. Nucleus-to-cytoplasm ratio 7. Granules 
4. Cytoplasm color and consistency   
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Table 4.2 Breakdown of bone marrow image patches by morphological cell type and pathologist 
feedback. 

  

Morphological cell type Code Training Testing Synthetic data Plausible Implausible 
Mast Cell B1 128 32 213 72 141 
Basophil B2 128 32 214 29 185 
Immature Eosinophil E1 128 32 213 49 164 
Mature Eosinophil E4 128 32 224 53 171 
Pronormoblast ER1 128 32 256 97 159 
Basophilic Normoblast ER2 128 32 256 49 207 
Polychromatophilic Normoblast ER3 128 32 256 129 127 
Orthochromic Normoblast ER4 128 32 256 118 138 
Polychromatophilic Erythrocyte ER5 128 32 256 141 115 
Mature Erythrocyte ER6 128 32 256 120 136 
Myeloid Blast M1 128 32 256 138 118 
Promyelocyte M2 128 32 256 107 149 
Myelocyte M3 128 32 256 131 125 
Metamyelocyte M4 128 32 256 88 168 
Mature Neutrophil M5 128 32 256 80 176 
Monocyte MO2 128 32 256 83 173 
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Table 4.3 Expert evaluation of synthetic data. 

 
 
 
 

 
 

  

 Clinically Plausible 
 No feedback Path. feedback 
B1 0.40 0.92 
B2 0.16 1.00 
E1 0.12 0.80 
E4 0.24 0.52 
ER1 0.44 0.96 
ER2 0.28 0.64 
ER3 0.24 0.68 
ER4 0.20 0.84 
ER5 0.20 0.76 
ER6 0.20 0.96 
M1 0.20 0.84 
M2 0.20 0.64 
M3 0.08 0.56 
M4 0.20 0.84 
M5 0.08 0.68 
MO2 0.12 0.40 
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Table 4.4 Evaluation of synthetic data using fidelity and diversity metrics. 

 
 
 
 
  

Training data Precision Recall Coverage 
Synthetic (no feedback) 68.06 52.00 56.98 
Synthetic (auto. feedback) 74.80 43.90 61.33 
Synthetic (with feedback) 81.01 56.74 84.57 
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Table 4.5 Accuracy of classifiers trained on real and synthetic data. 
Training data F1 Accuracy Precision Recall 
Synthetic (no feedback) 60.33 95.17 61.33 65.56 
Synthetic (auto. feedback) 63.47 95.58 64.64 65.68 
Synthetic (with feedback, $\mathcal{D}^\Gamma_s$) 71.80 96.41 71.29 74.51 
Synthetic (with feedback, $\mathcal{D}^\Gamma$) 75.80 96.95 75.59 76.51 
Real 79.03 97.39 79.10 79.47 
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Table 4.6 Performance comparison for baseline generative models in the cell classification task. 
Training Data Test Data AUC F1 Precision Recall 
Conditional diffusion model Real 0.929482 0.567672 0.604237 0.604146 
Conditional GAN model Real 0.413551 0.003225 0.002186 0.015804 
Conditional Latent diffusion model Real 0.566388 0.008565 0.048372 0.051456 
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Table 4.7 Model finetuned with the new subtypes of Neutrophil cells. 
AUC score Accuracy Precision Recall 
81.90 71.88 67.95 82.81 
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5.1 ABSTRACT 

 

A fundamental neuroscience topic is the link between the brain’s molecular, cellular and cytoarchitectonic 

properties and structural connectivity (SC). Recent studies relate inter-regional connectivity to gene 

expression, but the relationship to regional cell-type distributions remains understudied. Here, we utilize 

whole-brain mapping of neuronal and non-neuronal subtypes via the Matrix Inversion and Subset Selection 

(MISS) algorithm to model inter-regional connectivity as a function of regional cell-type composition with 

machine learning. We deployed random forest algorithms for predicting connectivity from cell type 

densities, demonstrating surprisingly strong prediction accuracy of cell types in general, and particular non-

neuronal cells such as oligodendrocytes. We found evidence of a strong distance-dependency in the cell-

connectivity relationship, with layer-specific excitatory neurons contributing the most for long-range 

connectivity, while vascular and astroglia were salient for short-range connections. Our results demonstrate 

a link between cell types and connectivity, providing a roadmap for examining this relationship in other 

species, including humans. 
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5.2 INTRODUCTION 

 

The structural connectome, which represents the density of physical projections between brain regions and 

is measured by such techniques as viral tracing and diffusion tensor imaging, is a coarse wiring diagram of 

the central nervous system (CNS)[1–4]. Complex molecular processes during embryonic development 

encourage the formation of connections between brain regions, and later postnatal pruning results in 

structural connectomes with a remarkable degree of conservation between healthy individuals. There is a 

strong interest in gaining a rigorous measure of how gene expression and cell type composition of brain 

regions relate to connectivity[5, 6], which can deepen our understanding of how brain circuits mature during 

the development of the CNS and how they are disrupted in neurodegenerative diseases, among other areas 

of inquiry. While the correlation between regional gene expression and connectivity is well established in 

mice[5], [7–9] and humans[10–12], the methods used to determine this association are mainly correlative 

or analytic. Correlation or regression with high- dimensional input feature spaces carries a risk of overfitting, 

and, as a result, often fails to generalize to unseen data[13]. As an alternative approach, Ji, et al.[14] applied 

random forest methods to predict the presence or absence of brain connectivity from gene expression with 

high accuracy, but did not attempt to predict the amount of connectivity density. Other groups[5], [14] 

report that connected regions tend to have higher correlated gene expression patterns than regions that are 

not, which naturally raises the question of whether the connected brain regions share common cell types. A 

step in this direction was taken by Huang et al., who demonstrated BRICseq, a powerful technique capable 

of mapping individual axonal projections along with the neuronal subtypes to which they belong[15]. 

However, their methodology has not yet been scaled up to produce a dataset of comparable spatial coverage 

to the Allen Mouse Brain Connectivity Atlas (AMBCA)[2], which is perhaps the most thorough mesoscale 

connectome currently available. Therefore, it is not yet clear how distributions of different types of cells - 

the fundamental units of connectivity - relate to the whole-brain connectome, nor have any unbiased, data-

driven methods been applied to attempt to reconstruct the mouse connectome from regional cell type 

densities. Although the success of prior studies in using gene expression-based markers to predict 
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connectivity suggests that cell type distributions will also be predictive of the connectome, the paucity of 

available whole-brain cell type distributions has made it difficult to test the hypothesis. Indeed, before the 

advent of spatial transcriptomics and single cell gene profiling the question would have been impossible to 

answer quantitatively on the whole brain level. 

 

Here, we take advantage of these emerging technologies to develop a comprehensive data-driven 

computational machinery needed to address this question. We first implemented an algorithm to produce 

regional cell type enrichment from spatially resolved gene expression data, following a specialized method 

we have recently developed called Matrix Inversion and Subset Selection (MISS)[16]. This method is 

essentially a cell type deconvolution algorithm that was shown to faithfully reproduce cell type distributions 

in the mouse brain using Allen Gene Expression Atlas (AGEA)[17] and publicly available single-cell RNA 

sequencing data[18], [19]. Then, using inferred cell type enrichment distributions as input features, we 

applied a number of machine learning methods to reconstruct the mesoscale mouse structural connectome 

from AMBCA2. Among all the models tested, the random forest (RF) algorithm outperformed other 

approaches at predicting both the presence or absence of a connection between any given region pair as 

well as the actual connectivity density values.  

 

We were able to predict the structural connectome with a surprisingly high level of accuracy, despite that 

the fact that the construction of fiber connectivity is a highly complex and iterative biological process with 

many determinants not strictly captured by constituent cell types. We replicated our findings with a second, 

different set of cell type distributions inferred by MISS. Despite the two datasets having a widely different 

number of individual cell types, both achieved almost identical performance on the connectivity prediction 

task, indicating that our approach is not an artifact of a particular input feature set. Our results quantitatively 

demonstrate that regional cell type distributions can explain most of the variance in inter-regional 

connectivity. 
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To uncover the individual actors in this process, we undertook a thorough feature importance (F.I.) analysis, 

with both confirmatory and surprising outcomes. Strikingly, oligodendrocytes were implicated as the most 

important cell type feature for recreating connectivity. Oligodendrocytes are the brain’s myelin and fiber 

maintenance cells; their role in predicting connectivity is not unexpected, but their prominence in this role 

has not received adequate attention. A deeper dive also uncovered that non-neuronal cells generally 

dominate neuronal cells as predictors of connectivity, another surprising finding. Additionally, we 

identified a strong distance-dependency in the cell-connectivity relationship, with layer-specific excitatory 

and medium spiny neurons contributing most for predicting long-range connectivity, while non-neuronal 

cells were more salient for short-range connections. Indeed, the cell types necessary for reconstructing long-

range connections are generally different from those most useful for predicting local connectivity, 

suggesting that these may be maintained by distinct biological pathways. Together, our findings suggest a 

hitherto under-explored role of specific cell types that play outsize roles in forming and/or maintaining 

connections. 

 

5.3 RESULTS 

 

OVERVIEW OF THE STUDY PIPELINE 

A schematic of the analytic pipeline is displayed in Figure 5.1. We used previously computed regional 

densities for 200 neuronal and non-neuronal cell types from publicly available single-cell RNA-sequencing 

(scRNAseq) data from Zeisel, et al.19 and in situ hybridization (ISH) data from the Allen Institute for Brain 

Science (AIBS)17 using the Matrix Inversion and Subset 

Selection (MISS) algorithm16 (Figure 1-i). For confirmatory analyses, we also utilized the densities of 25 

cell types from the Tasic, et al. scRNAseq dataset[16], [18], [20]. We normalized these raw MISS-inferred 

densities to create enrichment scores to prevent the scale of these features from artificially influencing the 

machine learning algorithms’ outputs (see Methods). The 
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connectivity data we attempted to reconstruct was derived from the AMBCA (http://connectivity.brain-

map.org)[2], which we normalized by volume of the source region, resulting in a 424 × 424 matrix of 

normalized connection strengths (Figure 5.1-ii; see also Methods). Our choice of normalization is motivated 

by the observation by Abdelnour, et al. and others that connectome degree is correlated with region 

volume[21]; therefore, we marginalized out the effect of source-region volume prior to all analyses. As we 

were only interested in connectivity between disparate regions and not self-connectivity, we set all diagonal 

entries of the connectivity matrix to zero. Finally, several machine learning methods were implemented to 

infer the whole-brain connectome from the regional cell type enrichment scores, which we evaluated 

quantitatively (Figure 5.1-iii). We also note that we considered the enrichment scores within regions 

sending out connections (“source”) and within regions receiving connections (“target”) as separate features, 

resulting in models with 400 total features for the Zeisel, et al. dataset and 50 total features for the Tasic, et 

al. dataset. 

 

PREDICTING THE EXISTENCE OR ABSENCE OF CONNECTIVITY 

We first addressed whether regional cell-type enrichment features can be used to predict the existence or 

absence of connectivity between any given pair of regions, because the underlying biological difference 

between zero connectivity and non-zero connectivity is qualitatively different from any differences in 

degree of connectivity between region pairs (see Methods). Figure 5.1A shows the proportions of zero and 

non-zero values within the ABMCA, indicating that the mouse brain connectome is approximately 64% 

sparse. To perform this binary classification task, we began with common unsupervised clustering methods 

Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE). Neither 

approach could distinguish region pairs that form connections from those that do not (Figures 5.2A and B, 

respectively). However, the random forest (RF) algorithm produced excellent classification results (Figure 

5.2C; Table 5.1)22. The confusion matrix in S. Figure 2A shows that the RF model predicted the existence 

of connectivity between pairs of regions with an accuracy of 0.80 for the Zeisel, et al. dataset (see also S. 

Data Table 2). AUROC (Area Under the Receiving Operator Characteristic) and AUPR (Area Under 
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Precision-Recall curve) values for RF were 0.87 and 0.80, respectively (Figure 5.2C). Thus, regional cell 

type enrichment profiles can predict the presence of connectivity, paralleling prior findings based on gene 

expression [14]. 

 

PREDICTING CONNECTIVITY DENSITY 

We next turned to the task of predicting the connectivity density[2], [15], [23], [24], which we define to be 

a measure proportional to the number of axonal tracts per unit of source region volume between any region 

pair. We first examined whether region pairs with similar cell type compositions were likely to be more 

densely connected. Figures 5.2D and E (left panel) depict heat maps of the ipsilateral regional cross-

correlation matrix with respect to cell-type enrichment scores and the mouse connectome, respectively (see 

also S. Figure 3). While there is a degree of visual similarity, the two measures are only weakly correlated 

(Pearson’s R = 0.32; Figure 5.2F). This agrees with previous work suggesting that coupled regions tended 

to have higher levels of gene expression similarity[5], [14]. We conclude that inter-regional similarity in 

cell type enrichment profile is related to, but insufficiently predictive of, the whole brain connectome. Given 

that the connectivity density distribution is mostly comprised of very small values with a number of 

prominent outliers (Figure 5.6B), we hypothesized that nonlinear predictive models would be more 

appropriate. Similar to the binary classification task, we found that the RF model recreated connectivity 

from cell-type enrichment with a high degree of accuracy (Adjusted R2 = 0.60, Root-mean-square deviation 

= 0.60, 10-fold cross-validation; Table 1; S. Data Table 3). Excellent visual similarity between the 

connectivity predicted by RF using cell types and the ground truth can be observed in matrix heatmaps 

(Figure 5.2E, right) and scatter plots (Figure 5.2G), with a Pearson’s correlation of 0.79. 

 

To more thoroughly explore the significance of these results, we constructed five collections of randomly 

generated null models, each of which had the same number of input features as the Zeisel, et al. dataset (i.e. 

200 each for source and target region). Figure 5.2H displays distributions of R2 values from each type of 

null distribution representing 500 random model instances, and the red vertical line indicates the 
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performance of the cell-type-based model (Table 1; see also Methods). As expected, the least informative 

models incorporate no gene-expression information. The purely random models (purple curve), which 

involved assigning regional cell-type-enrichment scores from a uniform random distribution, were 

completely uninformative. When these regional values were randomly assigned using distributions whose 

means depended on the anatomical parcel to which each region belonged (green curve; see also Methods), 

the predictions improve markedly, reflecting key biology of the anatomical relationships between regions, 

but remain poor. Performance further improves when scrambling the values of the AGEA before applying 

MISS on the highly informative MRx3 gene subset (yellow curve; see Methods and Mezias, et al.16 for 

details), but it is much lower than the true cell-type distributions. We also explored the performance of gene 

expression directly with two different sampling methods: 1) randomly selecting 200 genes within the 4083-

gene AGEA (red curve), and 2) randomly selecting 200 genes within the 1360-gene MRx3 subset (blue 

curve). The model using cell-type features significantly outperforms those using fully random gene 

sampling, indicating that cell types contain key information for predicting connectivity that is not uniformly 

reflected in the expression of individual genes. We achieved comparable prediction accuracy using subsets 

of informative MRx3 genes and cell types; given that MRx3 specifically selects genes based on how well 

they discriminate between cell types transcriptomically[16], the agreement between these two types of input 

features is expected. 

 

In the above analyses, we separated the tasks of predicting the presence or absence of connectivity (binary 

classification) and predicting the density of connections among connected region pairs (regression). From 

both biological and machine learning perspectives, these are distinct questions and therefore we chose to 

address them individually. Nevertheless, we also implemented a RF algorithm to predict connectivity 

density in the AMBCA without first removing unconnected region pairs (Figure 5.9). As expected, we 

found that agreement was not as strong between ground truth and predicted connectivity when the zeroes 

were not first filtered out; however, the adjusted R2 of 0.42. We also achieved strong performance (R2 = 

0.50) when 
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we split our training and test sets by source region rather than purely randomly (S. Data Table 4). Several 

other common machine learning algorithms were implemented to reconstruct both the binary connectome 

and predict connectivity density, which, however, fail to achieve superior performance over random forest 

(S. Data Tables 2 and 3). 

 

CONFIRMATION WITH AN INDEPENDENT CELL TYPE DATASET 

We tested whether the random forest algorithm could also recreate whole-brain connectivity using an 

independently curated collection of cell types to form the input feature space. For this purpose we used 

MISS-inferred distributions of the scRNAseq dataset from Tasic, et al., which sampled 25 cell types within 

the mouse neocortex and thalamus[18],[20]. A natural question to ask is whether the lack of sampling 

outside of the neocortex and thalamus may bias the whole-brain predictions of cell-type density from this 

dataset. To address this concern, we have previously shown that the prediction error within unsampled 

regions is comparable to that within sampled regions (reproduced from Mezias, et al. in Figure 5.10)[16]. 

t-SNE and PCA were also unable to separate region pairs that share a connection from those that do not 

using the Tasic, et al. dataset (5.11A and B). But when we used this less expansive set of cell types, we 

were still able to produce an accurate recreation of the binarized connectome (AUROC = 0.85, AUPR = 

0.78; Table 1; Figure 5.11C – only a modest decrease from the 200-type Zeisel, et al.-derived results (Figure 

2C; Table 1). The matrix of cell-type similarity is, again, only weakly correlated to the connectome 

(Pearson’s R = 0.21, p-value = 0.0; S. Figures 5.6D–F;  Figure 5.12). Notably, the two cell-type similarity 

matrices created with 25 and 200 features, respectively, are strongly correlated with each other (Pearson’s 

R = 0.79, p-value = 0.0; S. Figure 8), which we expected given the reliability of the MISS algorithm. The 

machine learning models were similarly successful in predicting the connectome with the Tasic, et al. 

dataset, only modestly underperforming relative to the 200-type Zeisel, et al. dataset (Table 1; Figure 5.11H; 

Data Tables 5 and 6). Notably, only RF was able to perform both the classification and regression tasks 

successfully (Tables 5 and 6), reinforcing that RF is uniquely suited to this problem. 
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FEATURE IMPORTANCE ANALYSIS TO IDENTIFY KEY CELLULAR MEDIATORS OF 

CONNECTIVITY. 

We next asked which cell types contribute the most to predictions of inter-regional connectivity. Unlike 

other machine learning models that give outputs whose dependencies are difficult to discern, RF models 

are amenable to feature importance (F.I.) analysis22, 25(see also Methods). F.I. can be thought of as a 

measure of how much information is contributed by a given feature relative to all other features. Therefore, 

for each RF model we determined the importance of each cell-type feature, and grouped them by “supertype” 

as determined by their scRNAseq-based taxonomies. Please refer to S. Data Tables 7–10 for the list of cell-

type names and the supertypes to which they belong. We show these as box plots for the Zeisel, et al. 

connectivity density RF model in Figures 3A–C, where each data point represents the average F.I. score for 

each cell type across the 10 cross-validation test sets. We considered the salience of each cell type in terms 

of its source-region (Figure 3A) and target-region (Figure 3B) F.I., as well as its overall salience as an 

average of source-region and target-region F.I. scores (Figure 3C). The corresponding results for the Tasic, 

et al. connectivity density RF model (S. Figures 6E and G) and the classification RF models (Figure 2C; S. 

Figure 6C) are shown in S. Figures 9A–C and S. Figure 10, respectively. Overall, we found that that 

oligodendrocytes (Oligo) were the most important contributors to both binary connectivity and connectivity 

density prediction at the whole-connectome level for both the Zeisel, et al. and Tasic, et al. datasets (Figure 

3C; S. Figures 9C and 10). On a more granular level, the source-region cell-type F.I. scores strongly 

resembled the averaged values, with oligodendrocytes again having the highest scores in both the Zeisel et 

al. and Tasic, et al. datasets (Figure 3A; S. Figure 9A). However, when considering only the target regions’ 

cell-type compositions, we found that a number of neuronal cell types had higher F.I. scores than 

oligodendrocytes, with medium spiny neurons (MSN) being a notable outlier for Zeisel, et al. (Figure 3B). 

We found qualitatively similar results when we retrained the RF model to predict the connectivity densities 

from neocortical to non-neocortical regions and vice versa (S. Figure 11). We elaborate upon the 

implications of the divergence between source and target cell-type compositions in Discussion. 
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More generally, the non-neuronal supertypes were more salient in the RF models than neuronal supertypes. 

We show the voxel-wise distributions of these non-neuronal Zeisel, et al. and Tasic, et al. supertypes in 

Figure 5.3D and Figure 5.14D, respectively. Overall, the apparent consistency of these feature importance 

results between the two independently curated scRNAseq datasets suggests a true biological connection 

between these non-neuronal support cells and connectivity at a whole-brain level. 

 

THE EFFECT OF INTER-REGIONAL DISTANCE ON PREDICTING CONNECTIVITY DENSITY 

Although adult cell-type distributions are highly informative for reconstructing the mouse connectome, the 

unexplained variance in the data likely comes from other biological factors. For instance, we found that 

there is a strong inverse relationship between inter-regional center-to-center distance and connectivity 

density (Pearson’s R = -0.33, p-value = 0.0; Figure 5.4A), indicating that there is a bias towards short-range 

connections in the mouse brain. Using spatial distance as a sole predictor of connectivity density produced 

an RF model with an average R2 of 0.12, indicating that distance contributes modest but significant 

information (Figure 5.4B). Further, including it along with the cell-type distributions produced RF models 

with higher R2 values (∆R2 = 0.09; Figure 5.4B). By contrast, using the taxonomic distance matrix as a 

predictor, where distance is defined in terms of how early each region-pair separated anatomically during 

development26, contributed less information than spatial distance and did not provide an improvement over 

cell-type enrichment scores (Figure 5.4B; see also Methods). These results indicate that inter-regional 

spatial distance contributes information that is at least partly independent of that contributed by regional 

cell-type composition, while the information from taxonomic distance is fully captured by differences in 

regional cell-type composition. When we looked at the distance dependence of connectivity density within 

major anatomical region groups, we found that each set of regions generally has a broad distribution of 

connection lengths (overall interquartile range = [2.2 mm, 4.6 mm]; Figure 5.4C). However, while each 

distribution is left-skewed, indicating that shorter-ranged connections predominate, we found that 

neocortical regions mediate a disproportionate number of the long-range connections in the brain. 

Consequently, we were interested in whether there was a distance dependence to cell-type F.I., as has been 
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suggested previously[27], [28]. We therefore trained the RF algorithm on the upper and lower quartiles of 

connections by distance separately and determined the F.I. scores per cell supertype as above (Figures 5.4D 

and E). The RF models achieved similar fits regardless of distance bin (R2 = 0.61 and 0.58 for short-range 

and long-range connectivity, respectively) and performed comparably well to the model of whole-brain 

connectivity (Table 5.1). However, clear differences emerged at the level of F.I. between short-range and 

long-range connectivity. Although oligodendrocyte distributions from the Zeisel, et al. and Tasic, et al. 

datasets were not the strongest contributors to the RF model of short-range connectivity as they were for 

whole-brain connectivity, they remained among the top features, and generally non-neuronal cells had 

stronger source-and-target-averaged F.I. scores than neurons, as above (Figure 5.4D; Figure 5.17A). In 

particular, immune cells (Immune) and vascular cells (Vasc) exhibited the strongest contributions to short-

range connectivity for the Zeisel et al. and Tasic, et al. datasets, respectively. Of the neuronal supertypes, 

forebrain glutamatergic neurons (Neo Glu, Thal Glu, Hip Neo Glu) had particularly weak F.I. scores. 

Interestingly, this trend is reversed for reconstructing long-range connectivity: for both datasets, we found 

that these three neuronal cell-type distributions were consistently among the most salient features (Figure 

5.4E; Figure 5.17B). As with the target-region cell-type F.I. analysis for Zeisel, et al., the supertype with 

the highest F.I. score was striatal medium spiny neurons (MSN), which are unique to that dataset (Figure 

5.4E). We summarize these results in Figure 4F, which shows that, for both the Zeisel, et al. and Tasic, et 

al. datasets: 1) non-neuronal cell types, and in particular vascular and immune cells, contribute 

predominantly to predicting short-range connectivity as opposed to long-range connectivity; and 2) 

telencephalic glutamatergic neurons contribute little to models of short-range connectivity, but they are 

over-represented among types that predict long-range connectivity. In short, while cell-type-based RF 

models can reconstruct short-range and long-range connectivity with a similar degree of accuracy as the 

whole-brain connectome, the saliency of the cell-type features markedly differs between these models. A 

more nuanced picture emerged when we considered the source- and target-region cell-type contributions to 

short- and long-range connectivity prediction separately (Figures 5.18 and 5.19). The contributions of 

individual source- and target-region non-neuronal cells were variable; as a class, they generally exceeded 
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neuronal supertypes when considering only source-region supertypes in predicting short-range connectivity. 

In other words, consistent with the above analyses, while non-neuronal contributions predominated when 

considering overall connectivity prediction (Figure 5.3C; Figure 5.14C), this was driven predominantly by 

their source-region F.I. scores and the prediction of shorter-distance connectivity densities. The medium 

spiny neuron and telencephalic glutamatergic supertypes also exhibited interesting trends when separating 

source- and target- region features. As mentioned above, MSN was the strongest contributor among target-

region features to overall connectivity prediction (Figure 5.3B) and among source-and-target-averaged 

features to long-range connectivity prediction (Figure 5.4E). However, we found that, among only target-

region features, MSN was in fact was the strongest contributor to both short- and long-range connectivity 

prediction (Figures 5.18B and D) and did not strongly contribute as a source-region feature to long-range 

connectivity prediction (Figure 5.18C). For both the Zeisel, et al. Hip Neo Glu and Tasic, et al. Neo Glu 

supertypes, there was no effect of separating out source-region from target-region supertype features, 

providing similarly weak contributions to short-range connectivity prediction (S. Figures 5.18A–B and 

5.19A–B) and similarly strong contributions to long-range connectivity prediction (S. Figures 5.18C–D and 

5.19C–D). In summary, while medium spiny neurons and telencephalic glutamatergic neurons both 

disproportionately contributed to predicting long-range connectivity, the contributions between source- and 

target-region enrichment scores markedly differed between them. To further examine the underpinnings of 

the discrepancy between the supertypes most critical for predicting short-range and long-range F.I., we 

examined whether there was a relationship between how variably distributed the Zeisel, et al. supertypes 

were across the brain and F.I. We hypothesized that more spatially homogeneous cell types would 

contribute less to the RF model’s predictiveness. As shown in Figure 4G, we indeed found that, for the RF 

models predicting all connectivity (left panel) and short-range connectivity (center panel), there was a 

statistically significant negative association between each supertype’s average F.I. score and its spatial 

coefficient of variation (CoV), with Pearson’s R values of -0.67 (p-value = 3.5 × 10−3) and -0.69 (p-value 

= 2.0 × 10−3), respectively. However, while the association trended negative for the long-range RF model 

(Figure 4G, right panel), it was weak and not statistically significant (Pearson’s R = -0.10, p-value = 0.72). 
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The two outliers with especially high long-range F.I. scores, MSN and Hip Neo Glu, have intermediate 

CoV values (Figure 5.4G, right panel), which agrees with their distributions being highly specific to a 

relatively large set of regions (Figure 5.5A and B). Therefore, we conclude that the contributions of 

supertypes to long-range connectivity density predictions in particular cannot be simply explained by spatial 

heterogeneity. 

 

NEURONAL CONTRIBUTIONS TO LONG-RANGE CONNECTIVITY 

To explore some of the relationships between cell-type distributions and connectivity qualitatively, we 

show the distributions of Hip Neo Glu and MSN, the two supertypes from the Zeisel, et al. dataset with the 

highest average F.I. for predicting long-range connectivity (Figure 5.5A and B). The Hip Neo Glu supertype 

comprises twenty-four individual cell types, all of which are excitatory and located within neocortical and 

hippocampal regions, and the MSN supertype comprises six types of striatal medium spiny neuron19. As 

expected, based on their taxonomy, Hip Neo Glu cells are confined to the neocortex and hippocampus, 

while MSN cells are entirely within the striatum. Given the high degree of regional specificity of these cell-

type supertypes, we also show the strongest long-range connections to and from the neocortex (Figure 5.5C) 

and the striatum (Figure 5.5D). More specifically, for the neocortex, these include projections to hindbrain 

nuclei and contralateral neocortical-neocortical connections (Figure 5.5C). The main long-range projections 

from the striatum originate in the olfactory tubercle and terminate in the periacqueductal gray of the 

midbrain, while it receives its strongest long-range inputs primarily from contralateral neocortical regions 

(Figure 5.5D). In this way, we can link the anatomical distributions of cell types to specific subsets of inter-

regional connections. 
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5.4 DISCUSSION 

 

SUMMARY OF KEY RESULTS 

Our results constitute practical applications of data-driven machine learning models for reconstructing 

whole brain inter-regional connectivity using spatial cell type enrichment distributions. We split this 

reconstruction into two tasks: a classification task to predict the existence and absence of connections 

between each region pair, and a regression task to predict the values of connectivity density between all 

connected region pairs. We find that using the comprehensively sampled Zeisel, et al. cell-type 

distributions[16], [19], random forest models are able to perform both tasks with a high degree of accuracy 

(Figure 2; Table 1), which we replicate using the smaller Tasic, et al. dataset (Figure 5.11; Table 5.1)[16], 

[18], [20]. Post hoc feature importance analyses implicate oligodendrocytes as especially critical in 

correctly recreating the whole brain connectome (Figure 5.3; Figure 5.14). We further consider inter-

regional distance as an important predictor of the density of brain connectivity (Figure 5.4). When feature 

importance is evaluated separately for short-range versus long-range connections, we find that medium 

spiny neurons and telencephalic glutamatergic neurons appear to be far more important for recreating long-

range connectivity than for short-range connectivity, while non-neuronal cell types are more important for 

recreating short-range connectivity. We discuss below the implications of our findings, some confirmatory 

and some unexpected, in the context of current literature. 

 

PREDICTING BINARY AS WELL AS WEIGHTED CONNECTOMES 

We divided our ML prediction tasks by separately predicting the absence or presence of a connection and 

the connectivity density between any given region pair two reasons. First, the connectivity data are quite 

sparse (36% nonzero region pairs), which can significantly impact the the ability of the model to generalize. 

Second, a zero connectivity density value might not necessarily mean there is no connectivity between two 

regions at all; rather, it might only mean the intensity was not able to pass the threshold of observability 

imposed by the mesoscale connectome methodology[2]. Nevertheless, when we attempted to predict 
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connectivity density for the whole connectome (including region pairs with zero connectivity density), the 

RF model exhibited strong agreement with the ground-truth connectome, although not nearly as high as 

that with the zero values removed (Figure 5.8). 

 

MODEL PERFORMANCE IS REPLICATED ACROSS TWO DIFFERENT SCRNASEQ DATASETS 

We were able to replicate the results of our primary dataset - the 200-type Zeisel, et al. dataset[19 ]- using 

a separate, 25-type dataset from Tasic, et al.[18, 20] (Figure 5.2; Figure 5.11; see also Methods). 

Interestingly, we found that the Zeisel, et al. dataset performed only modestly better despite containing a 

far more diverse array of cell types sampled from a more comprehensive set of brain regions. One possibility 

is that, because training accuracy is close to 1 even for the Tasic, et al. dataset, there is a limit to how well 

cell type features in the test set can reconstruct connectivity using machine learning. This observation is 

supported by the results from the RF models using subsets of genes (Figure 5.2H, red and blue curves), 

whose performance also did not exceed that of either cell-type model. It is possible that a subset of the 

Zeisel, et al. cell types might outperform the 25 cell types from Tasic, et al., but the current study design is 

not well-suited for exploring all combinatorial possibilities. Alternatively, it may be that the 25 cell types 

inferred from the Tasic, et al. dataset, despite representing only a subset of mouse neuronal diversity, 

provide close to maximal information content for reconstructing brain connectivity. For example, the four 

non-neuronal supertypes (astrocytes, oligodendrocytes, immune cells, and vascular cells) from the two 

datasets are qualitatively very similar in spatial distribution (Figure 5.3D; Figure 5.13D) and consistently 

have higher F.I. scores than most neuronal supertypes (Figure 5.3C; Figure 5.14C). Further, for the more 

regionally specific long-range connections (Figure 5.4C), both datasets have robust supertypes of the 

telencephalic glutamatergic neurons that were especially important in reconstructing the long-range 

connectome (Figure 5.4E; Figure 5.18B). Nevertheless, that we were able to create models with high 

predictive accuracy with two sets of cell type enrichment scores coming from independently sampled 

scRNAseq datasets reinforces the central claim that adult cell type distributions strongly reflect the brain 

connectome. 
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COMPARISON WITH PREVIOUS WORK 

Our work is preceded by several previous attempts to model the wiring diagram of the brain. Henriksen, et 

al. modeled the mouse mesoscale connectome with graph-theory-based approaches[7], and Reimann, et al. 

built a null model for the micro-connectome integrating the macro- and mesoscale connectomics9. 

Although these studies are not directly related to our current effort, they highlight the importance of graph-

theoretic features and generative models in studying the mesoscale mouse connectome. In the present study, 

we have focused almost exclusively on molecular or cellular signatures of connectivity, but these studies 

indicate that future work incorporating additional graph theoretic contributors for predicting brain wiring 

diagram could be fruitful. An approach much closer to ours was taken by French, et al., who built statistical 

models correlating the gene expression signatures of 17,530 genes in 142 anatomical regions from the Allen 

Brain Atlas, and identified a subset of genes that are statistically correlated with the brain’s wiring diagram5. 

They found a strong association between transcriptomic data and the connectome, which motivated us to 

create a predictive model of whole-brain connectivity from spatially distributed biological features. Ji, et 

al. went a step further by performing machine learning to predict the existence or absence of brain 

connectivity 

 

from gene expression, using a previous version of the AMBCA as a target[14]. Their approach yielded a 

very similar predictive accuracy and AUC as the classification results we present here, and their results 

underscore that random forest appears to be an excellent approach whether the features are based on 

regional gene expression or cell type distributions. However, in addition to predicting the existence of 

connectivity, here we also demonstrate that cell-type densities can be used to recreate the actual connectivity 

density values with high accuracy.  

 

An alternative, experimental approach linking cell types to connectivity is BRICseq, which allows for the 

high-throughput mapping of axonal tracts alongside the transcriptomic profiling of the projecting 
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neurons[15]. However, BRICseq has not yet been scaled up to produce a connectivity map of comparable 

spatial resolution and coverage as the AMBCA[2, 15]. Therefore, to our knowledge, no prior approach has 

been able to computationally link regional cell-type composition and whole-brain connectivity. 

Cell-type density versus gene expression as predictors of connectivity. We propose here that cell type 

features are a valuable alternative to gene expression for recreating the brain connectome for the following 

reasons:  

 

1) Cells are the most fundamental unit responsible for inter-regional connectivity.  

2) Most neural cell types have roughly fixed functions and spatial locations in the adult brain, whereas 

expression for many genes is highly temporally variable.  

3) Using gene expression requires informed feature selection given the sheer number of mammalian genes 

and gene variants. While previous authors have reported such feature selection procedures, they necessarily 

rely on prior assumptions or knowledge.  

4) The larger the feature set (e.g., using the entire mouse transcriptome), the higher the risk of overfitting 

and non-generalizability.  

 

Throughout our study, we have taken care to address these challenges, and the use of a small number of 

cell type features, particularly for the confirmatory Tasic, et al. dataset, was considered a means of avoiding 

these pitfalls. Compared with the thousands of gene features used in prior studies[5], [14], the sets of 25 

and 200 cell types should form a more parsimonious input feature space.  

 

That being said, tremendous effort has been invested in obtaining gene profiles of cell-type-specific marker 

genes as well as genes involved in processes related to the formation and maintenance of projections 

between brain regions. Our work both complements those efforts and also shows that we can obtain cellular 

signatures from genes using the MISS algorithm which are not necessarily single-cell markers but 

nevertheless contribute significant information for predicting connectivity. 
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Oligodendrocytes are disproportionately associated with whole-brain connectivity patterns 

Our analysis demonstrated the importance of oligodendricyte cell types in recreating the whole-brain 

connectome. Oligodendrocytes are the most predictive feature in the random forest model for both datasets 

(Figure 5.3A–C; Figure 5.14A–C), and are also among the highly predictive features when analyzing the 

feature importance for the classification task (Figure 5.15). 

 

Biologically, oligodendrocytes produce the myelin sheath insulating neuronal axons[29,30]. They help 

protect the vulnerable axons from parenchymal chemokines and cytokines, and ensure the fast and efficient 

movement of action potentials[29–31]. Dysfunction of oligodendrocytes can interfere with normal micro-

structure and functional connectivity in the mouse brain[32]. 

 

Oligodendrocyte myelination was also shown in previous work to be able to regulate the loss of synapses33. 

Moreover, recent work from Buchanan, et al. showed that oligodendrocyte precursor cells can prune axons 

in the mouse neocortex[34]. When we modeled short-range and long-range connectivity separately, we 

found that while oligodendrocytes contributed strongly to short-range connectivity, they were somewhat 

less informative for reconstructing long-range connectivity for the Zeisel, et al. dataset (Figure 5.4D–E). 

Overall, our results underscore the critical role this cell type plays in maintaining white matter integrity. 

 

Non-neuronal cells contribute to whole-brain and short-range connectivity. Non-neuronal cell types 

also had high feature importance and we highlight them below.  Brain vascular cells compose the blood-

brain barrier, which protects the vulnerable central nervous system (CNS), and they interact with the CNS 

for supporting neuronal cells with nutrients, energy, and oxygen[35–39]. Their breakdown is strongly 

correlated with brain connectivity disruption and cognitive defects[35,39]. Brain endothelial cells are 

involved in the process of neurovascular coupling[40,41], whereby local neural activity stimulates 

subsequent blood flow changes in the corresponding downstream locations[41,42]. That endothelial cells 

are more important for short- and medium-range connections but not for long-range ones supports a role in 
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local circuit maintenance rather than long projections. We also found that immune cell and astrocytes play 

an outsize role in predicting connectivity compared to neuronal cell types. Previous studies have indicated 

that there is an association between inflammation and functional brain connectivity[43, 44]. Similarly, 

astrocytes, the most abundant glial cells in the CNS, have critical impact in maintaining many physiological 

functions of neurons. Germane to this investigation, previous experimental work has shown the existence 

of bidirectional interactions between astrocytes and synapses[45].  

 

Further, we found that non-neuronal cell types contribute disproportionately to predicting short-range 

connectivity. Of these, immune cells were the most important supertype for the Zeisel, et al. dataset and 

vascular cells were the most important supertype for the Tasic, et al. dataset, although all non-neuronal 

supertypes tended to have higher F.I. scores than most of the neuronal supertypes (Figure 5.4D; Figure 

5.17A). There are multiple reasons why these non-neuronal cells have higher F.I. scores for predicting 

short-range as opposed to long-range connectivity. Generally, many non-neuronal cell types are thought to 

impact and interact with neighboring neuronal cell bodies in the gray matter, which may result in the 

mediation of more local, short-range connectivity. Alternatively, it is possible that non-neuronal cells, in 

their various roles supporting neuronal function, are important in the formation and maintenance of all 

connections in the CNS (Figure 5.3A–C; Figure 5.14A–C). However, given that F.I. is a relative measure 

of the model information provided by a given feature, non-neuronal cell types contribute at most moderately 

to the long-range models of connectivity because certain neuronal cell types have an outsize distance-

dependent effect (see below; Figure 5.4E; Figure 5.17B). The distance dependence of cell-type 

contributions to connectivity is an important line of inquiry for future studies. 

 

NEURONAL SUBTYPES DIFFERENTIALLY MEDIATE LONG-RANGE CONNECTIVITY 

In addition to oligodendrocytes, we found that telencephalic glutamatergic neurons and striatal medium 

spiny neurons were among the most salient classes of cell types, but only for predicting long-range 

connections (Figure 5.4E; Figure 5.17B). The former are well known to project to remote locations within 
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and outside of the neocortex (Figure 5A,C), and therefore their prominence in long-range but not shorter 

connections is consistent with their neurobiology. It is particularly striking that the telencephalic 

glutamatergic cell supertypes in both the blue, et al. and Tasic, et al. datasets (Neo Glu and Hip Neo Glu, 

respectively) are also among the least important features for predicting short-range connectivity (Figure 

5.4D; Figure 5.17A), suggesting that these neurons predominantly engage in long-range connections. 

Similarly, the high F.I. of medium spiny neurons is concordant with their function, as these are long-range-

projecting, inhibitory neurons. Medium spiny neurons comprise a significant fraction of neurons in the 

striatum and are involved in dopamine signaling; notably, these neurons selectively exhibit altered behavior 

in several psychiatric disorders46. When we look at the F.I. of individual cell types between the two datasets, 

we see a similar pattern as we do at the supertype level (Figure 5.4G). In particular, telencephalic 

glutamatergic neurons contribute weakly to predicting short-range connectivity and are overrepresented 

among types with high F.I. scores for predicting long-range connectivity. Since telencephalic glutamatergic 

neurons comprise many of the long-range, inter-regional connections of the brain, the distance dependence 

we observed is biologically plausible. One interesting difference in the ways in which these two classes of 

cell types contribute to connectivity density prediction emerges when examining the contributions of 

source-region and target-region cell-type features separately. The Neo Glu and Hip Neo Glu supertypes 

were disproportionately informative for predicting long-range connectivity when considering either source 

or target (Figures 5.18C–D and 19C–D), whereas the target-region MSN supertype had more relative 

importance for predicting both short- and long-range connectivity and was only moderately informative as 

a source-region feature (Figure 5.18). As shown in Figure 5A, the distribution of Hip Neo Glu is entirely 

telencephalic; these regions are involved in a disproportionate fraction of long-range connections (Figure 

5.4C), the strongest of which tended to be contralateral and intra-neocortical (Figure 5.5C). That source- 

and target-region F.I. were both high for Hip Neo Glu reflects the intra-cortical nature of these connections. 

By contrast, the striatum, and caudoputamen in particular, have many more incoming long-range 

connections than outgoing long-range connections (Figure 5.5D), and therefore there should be a large 

difference between source- and target-region F.I. for MSN, which we observed (Figure 5.17B, D). Taken 
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together, these results suggest that the formation and maintenance of brain connections requires a wide 

array of cell types. However, we caution that this kind of feature importance analysis will benefit from 

further experimental work to elucidate in more detail the biological roles of the identified cell types with 

respect to connectivity. 

 

5.5 FUTURE DIRECTIONS 

 

One extension of the current method would be to apply feature selection on either of the cell type datasets 

used here, which may facilitate the development of more predictive models. Additionally, machine learning 

models that integrate both cellular features and anatomic/morphological features can be expected to 

improve current predictions. Creating cell-to-cell or even voxel-to-voxel level connectivity and 

benchmarking against known neuronal cell-type-specific signaling pathways would be beneficial for future 

research but will require higher-resolution data. Given the conservation of central nervous system properties 

in mammals, we may also be able to apply these data-driven methods to the human brain. 

 

LIMITATIONS OF THE STUDY 

The primary limitation of the current work is that cell type enrichment does not accommodate other factors 

critical for determining brain connectivity, including Neural polarity, cell maturation and migration. Further, 

despite their ability to produce F.I., random forest models are less interpretable than generalized linear 

models. RF models, an ensemble of decision trees, can also suffer from overfitting, since any constituent 

decision tree may be sensitive to data variations and noise. However, we note that the issue of overfitting 

cuts across almost all machine learning methods and is not specific to RF. In this study we have taken great 

care at various steps to minimize this risk, starting from the basic design of using only the cell-type features 

from the two connecting regions, and eschewing full brain or neighboring regional features. Also, as 

mentioned above, we have not explored feature selection to produce a minimal set of informative cell types, 

either for the 25-type Tasic, et al. or the 200-type Zeisel, et al. dataset, and therefore it is possible that the 
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model performance demonstrated here could be further enhanced. Finally, we were still limited by the 

resolution of both the mouse brain connectome and cell type density maps, and therefore did not attempt to 

separately predict additional features of keen interest, such as cell polarity.  

 

Several caveats are worth mentioning in regards to the input features used here. First, we used the coronal 

series of the AGEA, which contains far fewer unique genes (4083) than the sagittal series and has a neuron 

and hippocampal bias17 for the MISS pipeline and the null models of Figure 5.2H. The coronal series, 

however, has a superior spatial resolution of 200-μm; ultimately, we decided that higher accuracy in 

regional quantification of gene expression was more important than the limitations inherent to the gene set. 

Similarly, our choice to use cell densities inferred using the MISS algorithm was motivated by its 

comprehensive spatial coverage. Within the MISS pipeline, we apply a gene selection algorithm called 

MRx3 to filter out thousands of uninformative genes for the purpose of reconstructing cell-type densities16, 

so having a more expansive gene set may not necessarily lead to significantly better predictions. However, 

we note that several promising technologies are emerging that have demonstrated single-cell-level 

resolution of brain tissue, such as STARmap[47], osmFISH[48], and merFISH[49], [50]. While the spatial 

resolution and direct transcriptomic mapping of cell types using these methods is impressive, they have not 

yet been scaled up beyond single regions. More recent work using BARseq mapped approximately 1.2 

million individual cells within the mouse forebrain and labelled them using 107 marker genes51; however, 

the authors biased their sampling towards neocortical glutamatergic neurons and so this dataset lacks the 

breadth of transcriptomic diversity captured within the Zeisel, et al. dataset used here. Therefore, for 

exploring the architecture of the whole-brain connectome at a mesoscopic scale as it relates to cell-type 

distributions, we chose to use MISS for its breadth of spatial coverage and amount of cell-type diversity. 

Many questions about whole-brain microarchitecture, which would require mapping cell types and 

projections at a single-cell level to answer, remain the subject of future work in this area. 
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5.6 CONCLUSIONS 

 

We report a data-driven approach that successfully predicts whole-brain connectivity from regional cell 

type information in the mouse brain. We report quantitative evidence of the vital importance of interareal 

distance and non-neural cell types in recreating connectivity, especially of oligodendrocytes and other non-

neuronal cell types. Our results may provide guidelines for future experimental analysis, and can be 

extended to other mammals, including humans. 
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5.9 METHOD DETAILS 

 

We use two primary sources of data: MISS-derived cell type enrichment scores, which are themselves a 

function of gene expression data and serve as our models’ input features, and the Allen Mouse Brain 

Connectivity Atlas (AMBCA), which serves as our empirical ground truth for training and testing our 

models. These data are available at the DOI listed in the Key Resources Table above. 

 

NOTE ON MISS 

We developed the Matrix Inversion and Subset Selection (MISS) algorithm to deconvolve spatially resolved 

gene expression data, such as those provided by the AGEA, into cell type densities using cell-type-specific 

gene expression signatures from scRNAseq. The fundamental problem can be stated as: E=C × D, where E 

is the genes-by-voxels matrix from the AGEA, C is the genes-by-cell-types matrix from scRNAseq, and D 

is the unknown cell-types-by-voxels matrix to be determined. 

 

MISS-DERIVED CELL TYPE FEATURES 

Although the Allen Gene Expression Atlas (AGEA) contains spatially resolved gene expression 

information for thousands of genes, a similar dataset directly mapping a comprehensive set of cell types in 

the mouse brain has not been produced. The MISS pipeline is capable of deconvolving the spatial gene 

expression data from the AGEA into cell type densities with cell-type-specific single-cell RNA-seq 

(scRNAseq) data. 

 

MOUSE CONNECTIVITY 

We use the AMBCA as the source of the mouse connectome we reconstruct from cell type features, which 

was assembled using viral tracing. The resulting mesoscale connectome, C, is represented as a matrix, with 

C(i, j) representing the total connectivity from region i to region j. 
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MACHINE LEARNING METHODS 

We implemented several machine learning methods for predicting brain connectivity, dividing our ML 

prediction tasks by separately predicting the absence or presence of a connection and the connectivity 

density between any given region pair. 

 

CELL TYPE INPUT FEATURES 

For both the prediction tasks, we used the cell-type enrichment vectors from both the source and target 

regions, resulting in a comprehensive set of features for our models. 

 

NULL MODEL INPUT FEATURES 

To benchmark the performance of our model, we used several types of "null" input features, including 

purely random, region-coupled, scrambled MISS, random genes, and random MRx3 features. 

 

RANDOM FOREST 

The main findings were obtained from random forest models, known for generating a number of decision 

trees on various sub-samples of the dataset and using averaging to improve predictive accuracy and control 

overfitting. 

 

OTHER ML MODELS 

In addition to random forest, we tested several common machine learning algorithms including linear 

models like ridge and LASSO, support vector machines (SVMs) with a Radial (RBF) kernel, and other 

models implemented by Scikit-learn. 
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NEURAL NETWORK MODELS 

We explored the performance of modern neural-network-based models, including shallow and deep 

learning models like the multilayer perceptron (MLP), and more advanced neural network models using a 

Pytorch-based multi-layer perceptron. 

 

MODEL PERFORMANCE EVALUATION 

All model evaluation results are reported for the testing dataset only, after 10-fold cross-validation, with 

metrics such as precision, recall, Root Mean Square Error (RMSE), and R-squared score used for evaluation. 

 

3D BRAIN VISUALIZATION 

We used Brainframe, an in-house MATLAB package, to generate the 3D mouse brains, the distribution of 

gene expression and cell-type patterns within, and the brain connectome. 

 

INTER-REGIONAL DISTANCE MATRIX CALCULATION 

To calculate the distance between each region-pair in the mouse CCF, we determined the center of mass of 

each region and used the pairwise Euclidean distance between these regional centers of mass as a proxy for 

the lengths of the white matter tracts connecting them. 

 

FEATURE INTERPRETATION FROM RANDOM FOREST MODELS 

To decompose the random forest model and calculate the importance of each input feature, we used the 

Scikit-learn Python package, calculating a node’s importance for each decision tree and averaging the 

importance across all trees. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Statistical analyses were performed using Python and MATLAB programming languages. Machine 

learning approaches were assessed and averaged over ten-fold cross-validation, with the Standard Error of 
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the Mean (SEM) computed for precision and dispersion. Statistical significance was defined based on p-

values, and appropriate techniques were used for randomization, stratification, and sample size estimation. 

Accuracy and AUROC for the classification tasks were obtained directly from the Python implementation 

of random forest. R2 and Pearson’s R values were obtained using standard linear regression. Two-sample 

t-tests following Fisher’s R-to-Z transformation were used to compare model performance. Preliminary 

analyses were conducted to ensure data met the assumptions of the chosen statistical methods, addressing 

any deviations through data transformation or non-parametric alternatives. 
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Figure 5.1 Study design 
Top left: The spatial quantification of cell type enrichment was computed with the computational pipeline 
MISS16 from publicly available gene expression data. Bottom Left: The brain connectivity graph was 
measured by Allen Mouse Brain Connectivity Atlas (AMBCA) using viral neuronal tracing techniques. 
Right: Machine learning algorithms were then implemented to predict the connectivity between each two 
regions.  
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Figure 5.2 Machine learning applied to regional cell type distributions predicts both the existence of 
connectivity and connectivity density 
A. Principal component analysis (PCA) of the cell type spatial quantification array. B. t-distributed 
stochastic neighbor embedding (t-SNE) of the cell type spatial quantification array. Neither method shows 
distinct clusters based on the presence or absence of connectivity. C. Performance evaluation of the 
classifier model using ten-fold cross-validation. Left: The receiver operating characteristic curve (AUROC 
= 0.87). Right: The precision recall curve (AUPR = 0.80). D. Cellular similarity matrix (quantified using 
Pearson correlation) of spatial cell type enrichment quantification across brain regions, ipsilateral only. E. 
Left: Brain connectivity matrix (log2-transformed). Right: RF prediction without splitting the training and 
test set. The depicted matrices’ rows and columns represent individual regions, and the connectivity 
between regions is denoted by the matrix entries. The random forest model was able to qualitatively 
reconstruct the whole brain connectome. F. Scatter plot of pairwise cellular similarity (as depicted in D) 
between two regions’ cell type distribution vectors versus the log-transformed connectivity strength 
between the two regions (as depicted in E, left), and the fitted linear regression curve (Pearson’s R = 0.32, 
p-value = 0.0). G. Scatter plot showing the correlation between the ground truth connectivity strength 
between all regions pairs with non-zero connectivity and their predicted values for connectivity using cell 
types as predictors in the RF model (test set only), along with the fitted linear regression curve (Pearson’s 
R = 0.79, p-value = 0.0). H. Distributions of R2 values from null models using five types of inputs in the 
figure below, each with the same number of features as the Zeisel, et al. dataset (i.e. 200): purely random 
white noise (purple); region-coupled white noise (green); cell-type “distributions” obtained from MISS 
after scrambling the regional gene expression values in the AGEA (yellow); randomly selected genes from 
the 4083-gene AGEA (red); and randomly selected genes from the 1360-gene “high-information” subset 
used to infer the Zeisel, et al. cell-type distributions in MISS (blue)16. The red vertical line indicates the 
performance of the cell-type-based model presented in the manuscript. Each distribution represents 500 
random model instances.  
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Figure 5.3 Interrogating the individual contributions of cell types 
 A.Box plots showing the feature importance values of all source-region cell-type features in the random 
forest model for the Zeisel et al, with the Standard Error of the Mean (SEM) computed as the average across 
ten-fold cross-validation. cell types, grouped by supertype. B. F.I. values for target region cell-type features, 
with the SEM computed as the average across ten-fold cross-validation. C. F.I. values for all cell-type 
features, with the SEM computed as the average across ten-fold cross-validation. D. Sagittal views of cell 
type densities at the voxel level as inferred by MISS for the corresponding Zeisel, et al. cell-type classes. 
Please refer to S. Data Tables 7–10 for the full cell type names and description. 
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Figure 5.4 Most important cell type contributors vary depending on inter-regional distance 
A. Scatter plot of inter-regional distance and connectivity, showing that distance has a weak correlation 
with connection strength. B. Box plots of R2 values following ten-fold cross-validation using different 
combinations of input features. From left to right: spatial distance matrix, taxonomic distance matrix, cell-
type enrichment scores, cell-type enrichment scores with spatial (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) distance, cell-type enrichment scores with taxonomic 
distance. C. Kernel density estimate (KDE) plot of the probability of two regions being connected as a 
function of inter-regional distance. The individual lines represent the subregions comprising the neocortex 
(red), the combination of subregions within the amygdala, cortical subplate, hippocampal formation, 
olfactory bulb, pallidum, and striatum (green), the combination of subregions within the hypothalamus, 
thalamus, and midbrain (cyan), and the combination of subregions within the cerebellum, pons, and medulla 
(purple). Interquartile range is shown with the black dashed and dotted lines. D. Box plots showing the 
importance of cell-type classes in the random forest model for the lower 25th quartile of connections by 
distance for the Zeisel, et al. dataset, with the SEM computed as the average across ten-fold cross-validation. 
E. Box plots showing the importance of cell-type features in the random forest model for the upper 75th 
quartile of connections by distance for the Zeisel, et al. dataset, with the SEM computed as the average 
across ten-fold cross-validation. F. Scatter plot of long-range versus short-range for all of the individual 
cell types within both datasets. We highlight in color the most important cell types: telencephalic 
glutamatergic neurons (Tel Glu; a combination of the Tasic, et al. Neo Glu and Zeisel, et al. Hip Neo Glu 
cell supertypes), oligodendrocyte subtypes (Oligo), vascular cell types (Vasc), immune cell subtypes 
(Immune), and astrocyte subtypes (Astro). G. Scatter plots of the Zeisel et al. supertype for all connections 
(left), short-range connections only (center), and long-range connections only (right), regressed against the 
regional coefficient of variation (CoV) of the cell-supertype densities. There is a strongly negative and 
statistically significant negative relationship between F.I. and CoV for all connections and short-range 
connections, but not long-range connections. Please refer to S. Data Tables 7–10 for the full cell type names 
and descriptions.  
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Figure 5.5 Distribution of top contributors to long-range connectivity (from Zeisel, et al. data) 
A. Glass-brain representations of the first principal component of Hipp Neo Glu neuronal distributions 
(number of types = 24). B. Glass-brain representations of the first principal component of MSN neuronal 
distributions (number of types = 6). C. Glass-brain representations of the long-range connectivity from 
(Left) and to (Right) neocortical regions. For clarity, only the upper 95th percentile of connections by 
connectivity density are depicted. D. Glass-brain representations of the long-range connectivity from (Left) 
and to (Right) striatal regions. For clarity, only the upper 50th percentile of connections by connectivity 
density are depicted. The colors correspond to the following major region groups: Amy – amygdala; Cer – 
cerebellum; Sub – cortical subplate; Hip – hippocampus; Hyp – hypothalamus; Neo – neocortex; Med – 
medulla; Mid – midbrain; Olf – olfactory; Pal –pallidum; Pons – pons; Str – striatum; Tha – thalamus. 
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Figure 5.6 AMBCA connectivity matrix properties 
A. Pie chart showing the sparsity of the connectome. B. Histogram showing of the log-transformed 
connectivity distribution.  
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Figure 5.7 Confusion matrices for binary connectome prediction. Performance is shown for both the 
Zeisel, et al. 
 (A.) and Tasic, et al. (B.) datasets. 
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Figure 5.8 Zeisel, et al. similarity and connectome prediction, ipsilateral and contralateral. 
A. Heatmap of the Zeisel, et al. regional cell-type similarity matrix, where both ipsilateral and contralateral 
hemispheres are shown. B. Full ground-truth connectivity matrix (left) and the RF model prediction using 
the Zeisel, et al. dataset (right). These panels correspond to the ipsilateral-only views in Figure 2D and E, 
respectively. 
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Figure 5.9 Random forest predictions with and without zero-filtering. 
Box plots of the test-set performance on predicting connectivity density across 10 cross-validation iterations 
using all region pairs in the mouse brain (left) and only region-pairs with nonzero connectivity density 
(right).  
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Figure 5.10 MISS in-sample and out-of-sample error for the Tasic, et al., dataset. 
Box plots of the sum of squared error (SSE) for the MISS predictions for the Tasic, et al. datasets in voxels 
within regions that were sampled for cell types (left) and all others (right). Reproduced from Mezias, et al.2 
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Figure 5.11 Connectivity prediction using the Tasic, et al. dataset 
A. Principal component analysis (PCA) of the cell type spatial quantification array. B. t-distributed 
stochastic neighbor embedding (t-SNE) of the cell type spatial quantification array. C. Performance 
evaluation of the classifier model using the receiver operating characteristic (ROC) curve (AUROC = 0.85, 
left) and the precision recall curve (AUPR = 0.78, right). D. Cellular similarity matrix (quantified using 
Pearson correlation) of spatial cell type enrichment quantification across brain regions. E. Brain 
connectivity matrix (log2-transformed, ipsilateral only, left) and the RF prediction without splitting the 
training and test set (right). The depicted matrices' rows and columns represent individual regions, and the 
connectivity between regions is denoted by the matrix entries. F. Scatter plot of pairwise cellular similarity 
(D) between two regions' cell type distribution vectors versus the log-transformed connectivity strength 
between the two regions (E, left), and the fitted linear regression curve (Pearson's R = 0.21, p = 0.0). G. 
Scatter plot showing the correlation between the ground truth connectivity strength between all regions 
pairs with non-zero connectivity and their predicted values for connectivity using cell types as predictors 
in the RF model (test set only), along with the fitted linear regression curve (Pearson's R = 0.77, p = 0.0). 
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Figure 5.12 Tasic, et al. similarity and connectome prediction, ipsilateral and contralateral 
A. Heatmap of the Tasic, et al. regional cell-type similarity matrix, where both ipsilateral and contralateral 
hemispheres are shown. B. Full ground-truth connectivity matrix (left) and the RF model prediction using 
the Tasic, et al. dataset (right). These panels correspond to the ipsilateral-only views in S. Figure 6D and 
E, respectively. 
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Figure 5.13 Correspondence between Zeisel, et al. and Tasic, et al. similarity matrices, ipsilateral and 
contralateral 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
158 

 

 
Figure 5.14 Feature importance, Tasic, et al. dataset 
A. Box plots showing the feature importance values of source-region cell type features in the random forest 
model for the Tasic, et al. cell types, grouped by supertype. B. Feature importance values for target region 
cell-type features. C. Feature importance values for all cell-type features. D. Sagittal views of cell type 
densities at the voxel level as inferred by MISS for the corresponding Tasic, et al. cell-type classes. The 
error bars represent the standard error, calculated across ten-fold cross-validation. Please refer to S. Data 
Tables 7-10 for the full cell type names and description. 
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Figure 5.15 Feature importance, binary connectivity prediction 
A. Box plots showing the feature importance values of all cell-type features in the random forest model for 
the classification of region-pairs into connected and unconnected bins, grouped by supertype. B. 
Classification feature importance values for the Tasic, et al. cell types. The error bars represent the standard 
error, calculated across ten-fold cross-validation. 
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Figure 5.16 Feature importance for neocortical-to-other and other-to-neocortical connectivity density 
prediction, separated source and target cell-type features, Zeisel, et al 
A. Box plots showing the feature importance values of all source-region cell-type features in the random 
forest model for the prediction of the connectivity density values for all neocortical-to-other and other-to-
neocortical connections, grouped by supertype. B. Feature importance values for target region cell-type 
features and neocortical-to-other and other-to-neocortical connections only. The error bars represent the 
standard error, calculated across ten-fold cross-validation. 
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Figure 5.17 Feature importance, short- and long-range connectivity, Tasic, et al. 
A. Box plots showing the feature importance values of all cell-type features in the random forest model for 
predicting the lower quartile of connections by inter-regional distance, grouped by supertype. B. Feature 
importance values for predicting the upper quartile of connections by inter-regional distance, grouped by 
supertype. 
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Figure 5.18 Feature importance for short- and long-range connectivity prediction, separated source 
and target cell-type features, Zeisel, et al. 
A. Box plots showing the feature importance values of all source-region cell-type features in the random 
forest model for the prediction of the lower quartile of connectivity density values by inter-regional distance, 
grouped by supertype. B. Feature importance values for target region cell-type features and lower quartile 
of connectivity values by distance only. C. Feature importance values for source region cell-type features 
and upper quartile of connectivity values by distance only. D. Feature importance values for target region 
cell-type features and upper quartile of connectivity values by distance only.  
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Figure 5.19 Feature importance for short- and long-range connectivity prediction, separated source 
and target cell-type features, Tasic, et al 
A. Box plots showing the feature importance values of all source-region cell-type features in the random 
forest model for the prediction of the lower quartile of connectivity density values by inter-regional distance, 
grouped by supertype. B. Feature importance values for target region cell-type features and lower quartile 
of connectivity values by distance only. C. Feature importance values for source region cell-type features 
and upper quartile of connectivity values by distance only. D. Feature importance values for target region 
cell-type features and upper quartile of connectivity values by distance only. The error bars represent the 
standard error, calculated across ten-fold cross-validation. 
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Figure 5.20 Taxonomic distance 
A. Heatmap of taxonomic (hierarchical clustering tree distance) between the 212 AIBS regions. Each 
region-pair was assigned an integer value based on the number of branch points separating them in the 
hierarchical clustering tree, with 6 being the maximum tree distance. B. Hierarchical clustering tree for 
forebrain regions only (splits 2-6).  
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Table 5.1 Random forest model performance 
Summary of results for the different random forest models explored, broken up by cell-type dataset (Zeisel 
et al. or Tasic, et al.), model task (classification to predict binary connectivity or regression to predict 
connectivity density), and connectome subset (portion of the connectivity matrix being predicted). We 
report accuracy for classification models and mean R2 values for the regression models. See also S. Data 
Tables 2–6. 

Dataset Model task Connectome 
subset 

Accuracy R² 

Zeisel, et al. Classification All 0.864 -- 
Zeisel, et al. Regression All -- 0.604 
Zeisel, et al. Regression Short-range -- 0.614 
Zeisel, et al. Regression Long-range -- 0.577 
Zeisel, et al. Regression Neocortical 

to/from other 
-- 0.585 

Tasic, et al. Classification All 0.856 -- 
Tasic, et al. Regression All -- 0.587 
Tasic, et al. Regression Short-range -- 0.608 
Tasic, et al. Regression Long-range -- 0.581 
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Table 5.2 Dataset information for each of the three source datasets used 

  

Dataset Name Description Reprocessing 
Methods 

AMBCA2 

The Allen Mouse Brain Connectivity Atlas is a mesoscale 
connectome representing the whole-brain wiring diagram. 

Brain-wide, region-specific axonal projections were mapped 
into a common 3D space using viral tracing. 

See Methods 

Tasic, et al. 
scRNAseq 
dataset18, 20 

Single-cell RNA sequencing data obtained by the AIBS from 
three distinct brain regions (primary visual cortex, secondary 
motor cortex, and lateral geniculate complex), representing 

data from 25557 individual cells. 

Grouped into 25 
distinct cell types 
and mapped using 

MISS16 

Zeisel, et al. 
scRNAseq 
dataset19 

A single-cell RNA sequencing data consisting of 144147 
individual cells sampled from twelve regions throughout the 

mouse brain. 

200 cell types 
mapped using 

MISS16 
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Table 5.3 Model comparison for classification, Zeisel, el al 

  

Methods AUROC score Accuracy 

Random Forest 0.864 0.798 

Ridge 0.557 0.658 
Lasso 0.579 0.653 

Support Vector Machine 0.685 0.766 

MLP Classifier 0.702 0.744 
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Table 5.4 Model comparison for regression, Zeisel, et al 

   

Methods Adjusted R2 score RMSE 

Random Forest 0.604 0.575 
Ridge 0.043 0.919 

Lasso 0.088 0.926 

Support Vector Machine 0.377 0.791 
MLP Regressor 0.550 0.654 
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Table 5.5 Model performance of training and testing the random forest model using two different 
methods 
Model performance of training and testing the random forest model using two different methods of creating 
training and test sets: purely random (left, see also Table 1) and separating by source region (right). 

 
  

Dataset Purely Random (R2) Source-Region Separated (R2) 
Zeisel, et al. 0.604 0.502 

Tasic, et al. 0.587 0.465 
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Table 5.6 Model comparison for classification, Tasic, et al. 

  

Methods AUROC score Accuracy 

Random Forest 0.856 0.790 
Ridge 0.530 0.647 

Lasso 0.578 0.641 

Support Vector Machine 0.673 0.738 
MLP Classifier 0.712 0.759 

Decision Tree Classifier 0.704 0.727 

Gradient Boosting Classifier 0.605 0.694 
Extra Trees Classifier 0.687 0.711 

K-Neighbors Classifier 0.744 0.774 
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Table 5.7 Model comparison for regression, Tasic, et al. 

 
 
  

Methods Adjusted R2 score RMSE 

Random Forest 0.587 0.605 

Ridge 0.060 0.911 
Lasso 0.061 0.910 

Support Vector Machine 0.363 0.750 

MLP Regressor 0.515 0.654 
Decision Tree Regressor 0.121 0.881 

Gradient Boosting Regressor 0.328 0.770 

Extra Trees Regressor 0.599 0.595 
K-Neighbors Regressor 0.501 0.664 
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6.1 ABSTRACT 

 

Histomorphology analysis of the bone marrow aspirate (BMA) is pivotal for the diagnostic workup of a 

broad range of hematological disorders. However, this skill is time consuming, error prone, and highly 

complex, requiring years to master, as it is among the most technically challenging in the field of 

pathology due to the number of cell types involved. Convolutional neural networks-based models for the 

automatic classification of bone marrow cell morphology demonstrate significant potential in improving 

diagnostic efficiency and accuracy, however, existing deep learning approaches in this field fall short in 

expert-level performance and generalizability outside of a single dataset. Working with multiple 

hematologists, we curated an extensive dataset of 41,595 consensus-annotated single-cell images 

spanning 23 morphological classes from BMA whole slide images (WSIs) from two academic centers 

and trained DeepHeme-SE, a bone marrow classification tool based on a snapshot ensemble deep learning 

framework. DeepHeme-SE outperforms previous models across in accuracy while expanding the total 

number of differentiable cell classes. In addition, DeepHeme SE is the first to show generalizability across 

different medical centers. Finally, we conducted systematic comparisons with three medical experts from 

differing academic hospitals, demonstrating that DeepHeme-SE can match or surpass the diagnostic 

accuracy of human experts at cell classification while improving reproducibility. Accurate and 

generalizable cell classification represents a significant step towards automated analysis of 

hematopathology slides and the development of quantitative morphology predictive biomarkers. 

 

6.2 INTRODUCTION 

 

Bone marrow aspirates (BMAs) are pivotal in diagnosing a spectrum of hematologic diseases, accounting 

for approximately 10% of global cancer cases and deaths[1], [2]. The accurate categorization of 

morphologic cell types is essential for diagnostic accuracy, prognosis determination, and treatment 

planning[3], [4]. However, BMA analysis is technical complex, time consuming, and suffers from 

interobserver variability. This underscores an urgent need for advanced, automated approaches5, 6. Recent 

studies have demonstrated the potential of automated bone marrow cell classification using both whole 
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slide images (WSIs)[7–9] and microscope camera images[10], [11]. Specifically, Chandradevan et al. 

employed a combination of Faster R-CNN and CNN networks for the detection and classification of cells 

within manually-annotated BMA regions[7]. Similarly, Matek et al. and Tayebi et al. have contributed 

significantly by developing extensive expert-annotated datasets to train CNN-based models for cell 

classification[9], [11]. In their approach, Matek et al. collaborated with clinical laboratory staff to assemble 

their dataset, whereas Tayebi et al. worked closely with hematopathologists for dataset collection. More 

recently, Lewis et al. have advanced the field by introducing a fully automated pipeline for bone marrow 

cell counts8. However, a notable gap in the existing literature is the lack of external validation to 

demonstrate the generalizability of these models. While Matek et al. attempted such analysis, the results 

were not optimal[11]. External validation is essential to ascertain the reliability and robustness of these 

models, especially when faced with domain shifts. Moreover, to the best of our knowledge, few studies 

have reported an average F1 performance exceeding 0.8 in the context of automated bone marrow cell 

classification[8], [9], [11–13]. Two primary challenges impede progress in this area: the limited quality of 

datasets and the underutilization of advanced deep learning techniques. A significant limitation of most 

current datasets is their annotation, often not verified by a consensus among hematologists. For instance, 

Chandradevan et al.[7] utilized a dataset annotated through hematologist consensus, yet it comprised only 

9, 269 images. Another critical issue pertains to the predictive performance for rare classes, which is 

predominantly hindered by insufficient data. For example, the smallest class in the datasets of 

Chandradevan et al.[7], Matek et al.[11], and Tayebi et al.[9] contained only 62, 8, and 7 images, 

respectively. In such scenarios, regardless of the sophistication of the deep learning models employed, the 

performance tends to be suboptimal. Building on the theme of enhancing model performance, one effective 

strategy is the application of ensemble methods, which often outperform single models[14], [15] and have 

proven effective in multiple medical applications[16–18]. In the multi-class setting of bone marrow cell 

typing, a single network might not achieve optimal accuracy for all classes simultaneously. Standard 

learning rate schedulers typically focus on minimizing overall loss. However, even with strategies like 
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weighted loss functions and up/down sampling, a model cannot guarantee optimal performance for each 

individual class[19], [20].  

 

As the learning rate decreases, the model may improve predictions for certain classes, yet at the expense of 

others, leading to imbalanced performance. To date, ensemble methods have not been explored in the realm 

of bone marrow cell typing, potentially due to the increased computational demands of training multiple 

models. Ensemble methods are also analogous to the consensus conferences held by real world pathologists, 

who each day discuss the most difficult cases with their colleagues, thereby creating a diagnosis that is an 

ensemble of experts. It is methodologically intriguing to investigate whether ensemble techniques could 

offer a practical solution for improving bone marrow cell typing, while concurrently minimizing the need 

for additional computational resources. In this study, we sought to investigate how ensemble and consensus 

approaches may improve AI-based bone marrow classification. In collaboration with hematopathologists 

from various institutions, we have curated a dataset comprising 41,595 pathologist consensus annotated 

single-cell images, spanning 23 morphological classes. The method we developed, DeepHeme-SE, uses the 

snapshot ensemble technique to enhance the bone marrow cell classification without compromising on 

computational efficiency in terms of memory usage and processing time[21]. 

 

6.3 RESULTS 

 

DEEPHEME-SE: AI-POWERED BONE MARROW MORPHOMETRY 

To address the challenges of developing a reliable bone marrow cell classifier, we introduce the DeepHeme-

SE framework (Figure 6.1). DeepHeme-SE aims to achieve state-of-the-art performance by focusing on 

two key aspects: dataset quality and methodological innovation. One novelty we have is we curated a 

comprehensive library of 41,595 images, categorized into 23 distinct classes through a consensus among a 

panel of three expert hematopathologists (Figure 6.1A, Figure 6.7). This dataset is, to our knowledge, one 
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of the first in bone marrow cell typing to be annotated by a consensus of hematopathology specialists. To 

thoroughly test model adaptability, we included an independent cohort from an unrelated academic medical 

center. This external test set was purposefully designed to capture the broad variability typical across 

domains, reflecting differences in slide preparation, staining protocols, scanning equipment, populations 

and disease phenotype. We released a dataset for benchmark evaluation that will be available on the 

DeepHeme web application. Our approach diverges from traditional methods, which typically depend on a 

single, optimized deep learning model. By incorporating snapshot ensemble techniques, we enable the use 

of ensemble methods in deep learning-based predictions. This innovation allows us to bypass the significant 

computational expenses usually associated with such processes. (Figure 6.1 B). We performed 

comprehensive downstream analysis to show the capability of DeepHeme-SE including cell 

typing/counting, feature embedding and clustering as well as interpretability analysis (Figure 6.1 C). Last 

but not least, we built a web application to allow scientists to interact with DeepHeme algorithms (Figure 

6.1 D). 

 

SNAPSHOT ENSEMBLE ADVANCES BONE MARROW CELL CLASSIFICATION 

DeepHeme-SE, leveraging the snapshot ensemble technique, enhances model performance by harnessing 

the benefits of ensemble methods. This approach simultaneously avoids the high computational costs 

typically incurred, thanks to the efficient snapshot nature employed during training. The traditional learning 

rate scheduler generally decrease as the validation error decrease and the increase of iteration. Snapshot 

ensemble, on the other hand, has a cyclic learning rate scheduler (Figure 6.8). By increasing the learning 

rate dramatically in a periodic manner, we can obtain several models with different weights . The training 

loss increased every time we boosted the learning rate but the model will converged to a different local 

minimal when we decreased the learning rate again (Figure 6.8). After the training, we perform a set of 

analysis including Venn Diagram(Figure 6.9) and UpSet plot(Figure 6.10) to show that each model have 

their similarity but also share a noticeable level of diversity. This demonstrated snapshot ensemble, even 
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with the same architectures, is able to produce a set of models that are distinguishing from each other(Figure 

6.11). Given the diversity of insights from DeepHeme-SE’s models, the next step involves determining the 

most effective strategy to integrate these perspectives into one conclusive prediction. We proposed three 

different methods as shown in Figure 6.2A (See Methods for the details). The first method is weighted 

voting, where we weighted the model prediction by the SoftMax score for each cell type class. The second 

method is plurality voting, the final prediction is the prediction results with the most counts, regardless the 

actual probability scores. The third method is intended to the confidence of each model, overall prediction 

option as the one with the highest probability likelihood. Consequently, weighted voting methods have 

shown to be superior to other techniques in bone marrow cell typing, demonstrating a significant yet not 

dramatic edge(Figure 6.1D,E).  

 

When we compared the weighted voting methods performance with the individual snapshot models on all 

the cell types, we found that different individual has a varied performance and the pooled model achieved 

superior performance in almost all of them (Figure 6.11). One specific example is the performance for 

myeloblast, an critical cell type for determining the pathology conditions for most leukemia diseases. The 

best individual model only achieved F1 score of 0.71 but the snapshot ensemble model increase the model 

performance into 0.76 (Figure 6.11). Besides showing that snapshot ensemble improved the performance 

of ResNeXt50 model significantly. We also performed this analysis across several different popular 

conventional neural network model including Inception V3, EfficientNetV2, GoogLeNet and 

VGG19(Figure 2). As a more proper control, we trained all deep learning models with standard learning 

rate schedule for 50 epochs. We found snapshot ensemble outperformed the individual model with standard 

learning rate schedule even they were trained about the same epoch number and learning rate for the 

standard control is kept being optimized. When reviewing existing research on bone marrow cell 

classification, it’s important to note that certain studies have provided limited evaluation metrics, typically 

focusing on AUC. This context, combined with the fact that each study often employs different datasets 
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and a varied number of cell classes, makes direct comparison a nuanced task. However, DeepHeme-SE 

encompasses the most extensive array of cell classes compared to other published works and outperforms 

other models in performance based on mean F1-score, mean precision, mean recall and number of classes 

with F1-score about 0.8 (Figure 6.2F). 

 

MODEL LEARNS UNDERLYING HEMATOPOIETIC DEVELOPMENTAL RELATIONSHIPS 

Interested in whether our classifier has learned relevant and consistent information, we embedded the 

extracted features represented in the flattened final convolutional layer of the network with 1000 

dimensions into 2 dimensions using the Uniform Manifold Approximation and Projection (UMAP) 

algorithm[25]. This was done to visualize and explore how the different classes are being grouped together 

or separated from each other (Figure 6.3A). The UMAP has recapitulated much of the hematopoietic 

structure known to biologists. Notably, myeloblasts and proerythroblasts are linked at the UMAP’s top left, 

suggesting a shared origin from hematopoietic stem cells. This is followed by distinct pathways 

representing neutrophil and erythroid development. A significant morphological division is observed only 

between orthochromic erythroblasts and polychromatic erythrocytes, marked by the presence or absence of 

a nucleus. The transitions between other cell classes in these lineages are more subtle and subject to 

interpretation. Almost all related hematopoietic cell types are connected, except for lymphocytes and 

plasma cells, which mature outside the marrow. The algorithm also discerns morphological similarities 

across lineages, grouping cells with similar nuclear-to-cytoplasmic ratios and showing connectivity only 

among directly related cell clusters (Figure 6.14) The UMAP’s ability to mirror biological relationships 

indicates that the algorithm is effectively learning pertinent morphological features, rather than relying on 

confounders or shortcuts which would not reflect these relationships. 

 

Our findings show that classes further apart are more easily distinguishable, while those in closer proximity 

pose more separation challenges, as evidenced by the one versus one AUC (Figure 6.12). This observation 
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suggests potential for uncovering new biological relationships and cell classes through the integration of 

single-cell image datasets with dimension reduction techniques. 

 

MODEL GENERALIZABILITY 

Multi-site generalization has proven difficult to achieve in many areas of medical computer vision [26], 

[27]. In bone marrow classification, to our knowledge, no algorithm has demonstrated reliable multi-site 

generalization for this problem. To evaluate DeepHeme-SE’s ability to generalize to an external dataset, 

we next tested the classifier on images from a completely independent hospital system, Memorial Sloan 

Kettering Cancer Center (MSK). Images were scanned using either a Hammamatsu S360 or a Leica Aperio 

AT2, and then annotated using the same annotation strategy as the original dataset. Figure 6.2A summarize 

the performance of DeepHeme-SE on the external dataset. We see a mild decrease in the small of the cell 

types but overall, the DeepHeme-SE generalize well on external data set. Notably, the performance 

disparity between the external data and our in-house test set is significantly mitigated by the snapshot 

ensemble, improving average F1 score by 0.03 (Figure 6.2B). This suggests that the Snapshot ensemble 

approach holds great potential for enhancing model generalization on external datasets, making it a valuable 

technique for advancing the performance and applicability of deep learning models in various domains. 

 

COMPARISON WITH CLINICAL EXPERTS 

To assess whether DeepHeme-SE achieves clinical-level accuracy, we compared its performance with that 

of three subspecialty hematopathologists from well-established cancer centers (MSKCC, UCSF, and 

Brigham and Women’s Hospital). These experts performed the same classification task as the algorithm, 

blinded to each other’s assessments and the gold-standard labels, which were determined by consensus. A 

random selection of 25 images from each of the 23 classes (575 images) in the UCSF test set was chosen 

for review. DeepHeme-SE achieved hematopathologist-level or better performance across all 23 classes, 

with a mean precision and recall of (0.91±0.00, 0.91±0.00) compared to (0.78±0.05, 0.76±0.06) for 
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hematopathologists. The mean standard deviation for precision and recall across the classes was (0.03±0.02, 

0.04±0.02) for the AI, versus (0.08±0.06, 0.10±0.00.05) for hematologists, demonstrating a major 

improvement in reproducibility. In terms of speed, the three hematopathologists took an average of 

approximately 3 hours to label 575 images, while DeepHeme-SE completed the same task in 0.36 

seconds—nearly 30,000 times faster than the experts. It is important to note that we do not claim our model 

to be superior to clinician experts, who in a real-world setting can use image context, clinical history, 

multimodal clinical data and expert judgement to improve their performance on cell classification. However, 

given the image alone, DeepHeme-SE demonstrates comparable or better performance. Given the fact that 

our dataset encompasses the most abundant cell type classes to date, we believe that we have made 

significant strides in optimizing the model’s performance. 

 

EVALUATING DEEPHEME’S DIAGNOSTIC UTILITY 

The ability to discern the distribution of cell types is crucial for the diagnosis of various hematological 

conditions. Building upon the robust cell-typing capabilities of DeepHeme-SE, we sought to investigate its 

application in the clinical diagnosis realm. To approximate the manual cell counting procedure employed 

by pathologists, who select regions of interest and classify cells, we used DeepHeme-SE to automate the 

prediction of cell types. Our evaluation engaged samples from three de-identified patients, each with classic 

hematological diagnoses. Patient 1 exhibited a normal marrow profile, typified by a blast count under 5%. 

Patient 2 was identified with chronic myelomonocytic leukemia, marked by a moderately progressive blast 

count between 5% and 20%. Patient 3’s diagnosis was acute myeloid leukemia, an aggressive leukemia 

requiring immediate intervention, with a blast count greater than 20%. 

 

Figures 6.4 A-C underscore DeepHeme-SE’s ability to distinguish between these diagnosis based on 

morphometric quantification and in particular, myeloid blast count. By combining this approach with 
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automated region selection and cell detection, DeepHeme-SE could provide fully automated graphical and 

text reports to pathologists to improve their workflows. 

 

CLOUD-BASED WEB APPLICATION 

To demonstrate the performance of the DeepHeme-SE algorithm and to encourage further collaboration 

and development, we have built a cloud deployment where users can test it 

(https://hemepath.ai/deepheme.html). The application allows users to test the algorithm on images from 

either the UCSF or MSK test sets. They can also upload their own bone marrow aspirate images. Images 

may be cropped from 400x-equivalent WSIs or images captured from microscope cameras at 400x. A full 

featured web application for analyzing WSIs is also available for those with user credentials(Figure 6.6B). 

The full version includes a WSI image viewer, region selection tools, cell selection tools and tools for 

automated cell detection. It also includes tools for rapid visualization of the results at the slide or region 

level, as well as tools for rapid annotation (Figure 6.6B). This interface can be used to build clinical 

validation datasets for any hospital interested in deploying the DeepHeme system. 

 

CLINICAL TESTING AND DEPLOYMENT ARCHITECTURE 

We have implemented a framework for clinical validation at MSK summarized (Figure 6.6C). WSI 

scanners are connected to a shared network Isolon server on which all WSI images are stored. A newly 

scanned image spawns a call to the electronic health record (EHR) to determine if the slide is a bone marrow 

aspirate or not and collect necessary clinical information. The slides are then tiled and accessioned in a 

PostgreSQL relational database. The tiled images undergo region selection, cell detection, cell classification, 

as well as a series of statistical quality assessments. The final differential count is communicated back to 

the EHR along with a hyperlink to the web application where the user can review the slide, review the 

results, and view visualizations that provide evidence and explainability for the results (Figure 6.6C). This 
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system will be used for clinical testing and validation prior to its clinical deployment. Containerizing each 

element allows for easier deployment across different hospitals and 

research environments including en-prem, cloud, and hybrid architectures, allowing compliance with 

institutional infrastructure policies regarding protective health information. 

 

6.4 DISCUSSION 

 

In this study, we presented DeepHeme-SE, a method tailored for the classification of cells in bone marrow 

aspirate. Our findings underscore the significant impact of using an expert consensus-annotated dataset 

combined with the robust capabilities of ensemble deep neural networks. This synergistic approach 

outperforms previous published work, and yields results comparable to those of hematopathologists. 

DeepHeme-SE also demonstrates strong adaptability across various medical centers, WSI scanners, and 

a broad range of hematologic diseases. Notably, our results also illustrate the capacity of neural networks 

to decipher and represent the underlying biological relationships inherent in labeled image datasets. 

Additionally, we have developed platforms for both scientific collaboration and clinical testing, aiming 

to facilitate further research and practical applications of our findings. Our research affirms the critical 

role of ensemble methods in deep learning, particularly for medical imaging applications, as corroborated 

by various studies[35–38]. Unlike many medical diagnostic tasks such as drug response, cancer grading, 

and COVID detection, which typically involve binary or a small number of classes, bone marrow cell 

typing presents a uniquely challenging scenario with its requirement for classification across an extensive 

array of over 20 distinct classes. This complexity significantly elevates the challenge, exemplifying 

situations where the advantages of ensemble methods become especially valuable[21], [39], [40]. Among 

ensemble methods, snapshot ensemble methods stand out due to their distinct advantages. One key benefit 

of snapshot ensembles is their efficiency in training time. Unlike traditional methods that require 

extensive training for each model in the ensemble, snapshot ensembles streamline this process, leading 

to significant time savings[41]. Additionally, these methods alleviate the often cumbersome task of 

selecting different architectures and fine-tuning hyperparameters for each model in the ensemble. Instead, 

snapshot ensembles allow for a unified approach where a single architecture can be optimized and then 

leveraged to generate multiple models at different training phases. This not only simplifies the model 
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development process but also ensures consistency across the ensemble, making it a particularly effective 

strategy in medical imaging where precision and reliability are paramount. Last but not least, our attempt 

for improving saliency map with snapshot ensemble could also be innovative. A novel aspect of this work, 

compared with other bone marrow classifier, is our efforts in external validation. Through a series of 

analyses (Figure 6.15, and Figure 6.16), we demonstrate that Deep-SE can maintain remarkably consistent 

performance across both in-domain and external datasets. However, it is important to recognize that our 

results do not signify a complete resolution of the bone marrow classification challenge. For instance, the 

model’s predictive accuracy may falter when tasked with identifying specific cell types not included in 

our current dataset. Nonetheless, our findings offer substantial evidence that a combination of high-

quality dataset configuration and adequately trained models can effectively overcome challenges 

associated with color variation, staining differences, and other domain-specific shifts in image 

characteristics. Overall, our external analysis, augmented by expert comparison, represents a significant 

stride towards automating the evaluation of bone marrow (BM) cell morphology using automated image 

classification algorithms. 

 

One current limitation of DeepHeme-SE is its dependence on manual steps in the diagnostic pipeline. 

Future developments will focus on integrating DeepHeme-SE with automated region selection and cell 

detection algorithms. This integration aims to establish a fully autonomous diagnostic pipeline. The 

efficacy of this pipeline will be rigorously evaluated by comparing its outputs with bone marrow 

differentials and diagnoses extracted from pathology reports in clinical archives and prospective trials. 

Additional, entities for specific disease morphologies, such as hairy cell leukemia cells, could be added. 

Such advancements are not only expected to streamline diagnostic processes, but also to enhance the 

accuracy and reliability of medical assessments. 

 

Our study paves the way for several promising avenues in enhancing bone marrow classification. Firstly, 

including a wider array of cell types for AI-based bone marrow classification. This is particularly 

significant as our findings demonstrate that high performance can be maintained even with an extensive 

number of cell classes, given the availability of high-quality data. For instance, incorporating abnormal 

cells associated with specific subtypes of acute myeloid leukemia could greatly enhance the model’s 
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diagnostic capabilities for more nuanced disease categories. Such an expansion would not only deepen 

our understanding but also improve the identification of a diverse range of cellular abnormalities. 

Secondly, integrating DeepHeme-SE, or other bone marrow classifiers into a fully automated diagnostic 

pipeline, as proposed by existing literature, is a critical advancement. This integration would not only 

streamline the diagnostic process but also facilitate more complex analyses, such as genotype 

determination, drug response prediction, and survival rate estimation. Lastly, a collaborative effort 

between clinicians and AI scientists is essential for the clinical deployment of software utilizing the bone 

marrow classifier. This partnership will be crucial in ensuring that the technology is effectively translated 

into a clinical setting, benefiting real-world patient diagnosis and treatment. In summary, the potential 

applications of DeepHeme-SE are extensive. Its ability to maintain high performance across a large 

number of cell classes is just the beginning. Future research should aim to validate these diagnostic tools 

clinically, ensuring the efficacy and reliability in real patient scenarios. This progression from theoretical 

model to practical application represents an exciting frontier in the field of medical AI (Figure 6.6). 

 

6.5 METHODS 

 

CASE IDENTIFICATION, WHOLE SLIDE IMAGING, AND IMAGE ANNOTATION 

50 aspirate slides from 50 unique patients with normal BMA morphology were selected from the UCSF 

Parnassus adult hospital and UCSF Benioff Children’s Hospital between 2017 and 2020. The UCSF slide 

set was separated at this stage into 40 slides used for training and validation. 10 slides were kept as a 

hold-out test set to ensure accurate reporting of the model’s performance on unseen patient cases. A 

library of 41,595 images was assigned into one of 23 classes by consensus decision of an expert panel of 

three hematopathologists (Table 6.1). 30,394 images in the training set and 8,507 images in the test set. 

 

The 23 image classes represent all cell types included in a standard bone marrow differential, as well as 

differentiation stages of trilineage hematopoietic cells (Figure 6.1b). The full spectrum of erythroid and 

neutrophil maturation was included, from proerythroblast to mature erythrocyte and from myeloid blast 

to segmented neutrophil, respectively. Along the megakaryocytic lineage, megakaryocytes and platelet 

clumps were assessed. The lymphoid lineage included lymphocytes and plasma cells. Eosinophils were 
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separated into mature eosinophils with segmented nuclei and immature eosinophils. In addition, the set 

included monocytes, basophils and mast cells. Additional classes include artifacts and mitotic bodies to 

probe for cellular states. Artifacts are cells that are broken as a result of the biopsy procedure or slide 

preparation process. These cells cannot be used for classification. The presence of mitotic bodies is a 

proxy for the mitotic rate of the sample, which is itself a clinically prognostic biomarker[42–45]. Because 

of the differences in the relative distribution of bone marrow cell types, special efforts were made to 

identify additional examples of rare classes including myeloid blasts, basophils, mast cells, and mitotic 

bodies[46]. Slides from MSK were scanned using a Hamamatsu S360 scanner and were taken from the 

archives of the clinical service. They include morphologically normal samples and a range of abnormal 

samples. 

 

CASE IDENTIFICATION AND WHOLE SLIDE IMAGING 

Two new datasets were created to develop and test the performance of our deep learning algorithm, one 

from UCSF and one from MSK. All UCSF slides were randomly selected from the adult and pediatric 

hematophatology clinical service based on normal morphology and adequate specimen. WSIs were 

scanned at 400x-equivalent magnification using either a Leica Aperio AT Turbo, Leica Aperio AT2, or 

GT450 and saved as .svs files. MSK slides come from the clinical hematopathology service and represent 

the range of normal and abnormal cases seen there. Slides were scanned using a Hamamatsu S360 and 

saved as .ndpi files. All slides were scanned using a high density of focus points and a single z-plane. 

Slides include a range of quality reflecting variations in stain intensity, slide preparation, and slide age 

common to clinical archives. 

 

IMAGE LIBRARY ANNOTATION 

Images were annotated using annotation software developed in-house. To compensate for variations in 

slide preparation and stain intensity, as well as to replicate features of a manual microscope, the software’s 

viewer permits modification of brightness, contrast, and zoom. To compensate for variations in slide 

preparation and stain intensity, as well as to replicate features of a manual microscope, the software’s 

viewer permits modification of brightness, contrast, and zoom. Images from both the UCSF and MSK 

datasets were annotated using a 3-step process. Initial image classification was performed by a single 
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pathologist. A second audit was performed by a single pathologist to correct any errors made with the 

first round of classification. Finally, a panel of three hematopathologists reviewed the final sorted cell 

lists to provide a consensus label that was used as the gold-standard for each image. For each image, the 

annotated cell is in the center of the image, based on the whole cell, not the nucleus, except for the 

following classes. Since megakaryocytes are larger than the field of view, image centers were placed in 

multiple non-overlapping locations within the megakaryocyte to capture different fields of view. For cells 

undergoing mitosis, the centers may have been placed in either the center of the mitotic figure, the center 

of the cell, or both. For platelet clumps, the center of the object was placed in the middle of the clump. 

Images were exported as 96x96 pixel PNGs with a resolution of 72px/inch. 

 

SNAPSHOT ENSEMBLE 

Snapshot Ensemble is a training technique for neural networks that enables the capture of several different 

learned models at different epochs during training, which can then be combined into an ensemble with 

minimal extra computational cost. It leverages the cyclical learning rate policy to identify the optimal 

stopping points (snapshots) of the model during training, allowing us to store these snapshots and later 

aggregate them to improve performance and robustness. In our implementation of Snapshot Ensemble, 

we adopt the following steps: 1. For different neural network we chose for the bone marrow cell typing 

task, we initialize a deep neural network with pretrained weights from ImageNet. Our network 

architecture is designed to be conducive to the learning task, taking into account the complexity of the 

input data and the desired output. 2. We employ a cyclic leaning rate policy where the learning rate 

cyclically varies between reasonable boundary values. This allows the model to converge to several local 

minima along its training path. The length of a cycle is predetermined and is set such that the learning 

rate will have made a complete cycle back to its initial value by the time we take a snapshot. At the end 

of each learning rate cycle, when the rate is at its lowest and the model is presumed to be at a local 

minimum, we take a snapshot of the model weights. This does not require the training to stop, and we 

continue the training process by increasing the learning rate once again as per the cyclic learning rate 

policy. After training is completed over several cycles, we combine the snapshots by averaging their 

predictions. This can be done in different ways which we will elaborate later. For our experiment, we 

trained the neural network model over a total of 50 epochs. These epochs were divided into 5 snapshot 
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periods, each consisting of 10 epochs, during which the learning rate decreases progressively. This 

decrement is in accordance with a predefined schedule, adhering to the cyclical learning rate policy 

discussed earlier. At the conclusion of each 10-epoch snapshot period, rather than allowing the learning 

rate to reach its minimum value before taking a snapshot, we introduce an early stopping criterion based 

on the model’s performance on a held-out validation set. This early stopping mechanism is crucial in 

identifying the most performant model within each period. It’s important to note that the ’best’ model — 

the one we take a snapshot of — does not necessarily coincide with the last epoch of the snapshot period 

before the learning rate is reset. It is the model that exhibits the highest validation performance during the 

snapshot period. 

 

METHODOLOGY FOR ENSEMBLE PREDICTION SYNTHESIS 

In the realm of predictive modeling with deep learning, synthesizing the output from multiple models—

each potentially offering a unique viewpoint—can significantly enhance the robustness and accuracy of 

the final decision. Given that our models maintain architectural consistency and provide predictions along 

with corresponding likelihoods on a comparable scale, we have formulated three distinct strategies to 

integrate their individual inferences.  

 

Pooling Method: Our first approach, termed ’Pooling’, involves aggregating the probability distributions. 

provided by each model. By averaging the predicted probabilities for each class across all snapshots, we 

achieve a consensus prediction that embodies the collective wisdom of the ensemble. 

 

Voting Method: The second approach relies on a democratic ’Voting’ system. Each model casts a vote 

for its predicted class, and the class with the majority of votes is selected as the final prediction. This 

method capitalizes on the strength of the most frequent outcome, effectively harnessing the power of 

numbers. 

 

Confidence-Based Selection: The third method prioritizes the confidence level of individual models. Here, 

the final prediction is chosen based on the highest probability likelihood among all the predictions. This 
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technique assumes that the model’s confidence in its prediction—a reflection of the maximum 

likelihood—is a direct indicator of its accuracy. 

 

The implementation of these techniques aims to enhance decision-making by leveraging the unique 

strengths of each model in the ensemble. By considering both the collective agreement and individual 

confidence levels, our methods strive to distill a more precise and reliable final prediction from the 

snapshot ensemble. 

 

NEURAL NETWORK STRUCTURE, TRAINING AND TESTING 

In this study, a diverse array of deep learning architectures was utilized, including ResNeXt-50, 

EfficientNetV2, VGG19, GoogLeNet, and Inception V3, to classify bone marrow cells. Each architecture 

was selected based on its reported efficacy in image recognition tasks. We initiated training with the 

ResNeXt-50 architecture[47], following its documented success in similar classification tasks by Matek 

et al11. Furthermore, we adapted other models to fit the specific requirements of our image data and 

classification objectives. 

 

Our dataset presented an imbalanced distribution of cell types. To address this, we applied up-sampling 

to balance the classes before proceeding with data augmentation. We leveraged the Albumentations 

Python library to implement 20 different augmentation transformations[48], enhancing both the shape 

and color characteristics of the images. This extensive augmentation process resulted in a robust dataset 

of approximately 50,000 images per class, totaling 1.15 million images. We included shape 

augmentations such as rotations, flips, shears, and resizing. For color, we incorporated adjustments in 

contrast, brightness, and added Gaussian noise, alongside stain-color augmentation to enhance the 

dataset’s variability and representativeness. For our experiments, we conducted 50 iterations overall. Each 

model was initially loaded with ImageNet-pretrained weights and then fine-tuned on our augmented bone 

marrow cell images. We adapted the input size to accept 96x96 pixel images and modified the output 

layer to classify the 23 cell types defined in our annotation scheme. To optimize our models, we employed 

the Adam optimizer with an initial learning rate of 0.001 and a large batch size of 1024. The loss function 

used was binary cross-entropy, suitable for our one-hot encoded targets. All training was performed on 
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NVIDIA TITAN RTX graphics processing units, where training of the ResNeXt model took 

approximately 12 hours of computing time. For training and validation, we used 40 images from slides 

from the UCSF dataset, whereas the rest 10 slides were used as the UCSF test set. 5-fold cross validation 

was performed on the training/validation set. All model tuning and parameters adjustment were 

performed during training and validation. All the numbers reported in the paper come from analysis of 

the unseen test sets. Results were then averaged across the 5 different cross-validation networks. 

 

UMAP INTERPRETATION 

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) was used to 

represent the information that the deep learning classifier learned25. We embedded the extracted features 

represented in the flattened final convolutional layer of the network into 2 dimensions for each member 

of the data set using the UMAP algorithm. UMAP works by using by using nearest-neighbor-descent 

technique to identify the closest neighbors. The nearest neighbors that were previously found are then 

connected to create a graph[53]. The next stage for UMAP is to map the approximation manifold to a 

lower-dimensional space, in our case two dimensions, after learning it from the higher-dimensional 

environment. To perform these calculations, we used the umap-learn package in Python[54]. 
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Figure 6.1 Workflow of DeepHeme-SE 
 (A) Whole slide images of bone marrow aspirates were digitized using whole slide scanners. Regions of 
interest were selected by hematopathologists and the location and classification of cells was labeled by a 
consensus of three hematopathologists. A diagram of cells and morphologic labels included in the study, 
as well as their relationship to each other in the hematopoietic tree. (B) The overall framework of group 
convolution snapshot ensemble method. (C) The inllustration of the downstream analysis for DeepHeme. 
From left to right: Cell typing, Feature embedding and clustering, interpretability analysis. (D) A web 
application has been built for scientists to interact with the DeepHeme algorithm, as well as a clinical 
deployment framework that interfaces with the digital slide scanning laboratory and the electronic health 
record. 
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Figure 6.2 External validation and expert evaluation 
 (A) Data distribution for individual cell types. (B) Comparing with the previous work. C1 and C1 are the 
bone marrow classifier whose mean model performance we can found9, 11. I refer to the mean 
performance of individual snapshot ensemble classifier, R is the bone marrow classifier regularly trained 
for the same epoch as the whole snapshot ensemble framework, S refers to snapshot ensembles. (C) 
Boxplot demostrated the model performance on UCSF-Test-set, MSK-Test-set-1 and MSK-Test-set-2. 
(D) Radar plot comparing the Deep-SE performance compared with three clinical experts. 
 
 

A B

C
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Figure 6.3 Exploring Advanced Snapshot Ensemble in Bone Marrow Cell Classification 
(A) Visual representation of three ensemble summarization strategies: Pooling, Voting, and Confidence. 
(B) Bar chart comparing F1 scores for 23 cell types using different methods—blue for Pooling, red for 
Voting, and green for Confidence. (C) Boxplot illustrating performance variations among the three 
summarization methods. (D) F1 Score Comparison of Five Snapshot Modules and Snapshot Ensemble. (E) 
Line graph depicting the performance of pooling method (continuous line) against individual snapshot 
modules (dashed lines). (F) Dumbbell plots contrasting model performance across snapshot ensemble, 
standard learning rate scheduler, and individual snapshot models, highlighting the efficacy and robustness 
of the ensemble approach. 
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Figure 6.4 Model Learns Underlying Hematopoietic Developmental Relationships 
 (A) UMAP embedding of extracted features recapitulates biological relationships. The shape of the UMAP 
recapitulates major aspects of hematopoiesis, of which the untrained neural network has no prior knowledge, 
suggesting it has been learned from the training images. Bridges between clusters reflect the natural 
continuum and lineage trajectories between adjacent cell types. (B) Neutrophil differentiation. The 
complete spectrum of neutrophil development from myeloblast to segmented neutrophil has been learned 
by the algorithm. (C) Erythrocyte differentiation. Similarly, the full spectrum of erythroid development has 
also been learned by the algorithm. The break between orthochromatic erythroblasts (ER5) and 
polychromatic erythrocytes (ER6) likely reflects their clear morphologic boundary (the presence of a 
nucleus). Such clear morphologic boundaries do not exist between other cell categories, which are defined 
based on multiple, subjective features. 
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Figure 6.5 Application of DeepHeme-SE in diagnosing different leukemia types. 
Panels A-C display the cell type distributions in three anonymized patients with varying leukemia 
conditions as identified by hematopathologists. Patient A exhibits a normal marrow with blasts under 5%. 
Patient B, diagnosed with chronic leukemia, shows a blast percentage between 5% and 20%. Patient C, 
diagnosed with acute myeloid leukemia, has a blast (M1=red) percentage over 20%. Each panel includes 
actual image patches with prediction annotations, circular barplots for counting details from image patches, 
and pie charts depicting cell type distributions based on a random subset of 50 patches, aiding in the final 
diagnosis for each patient. 
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Figure 6.6 Software for Supporting DeepHeme-SE 
A) A cloud-based web application has been created to encourage collaboration and further development 
including a web application where the user has the option to upload their own image, or select one of several 
sample images to test the performance of the algorithm. B) The software includes a whole slide image 
viewer, region view with cell detection algorithm, and views for rapidly reviewing cell classification and 
quantification. This can be used to annotate datasets when building validation sets for new hospitals, or for 
providing explanations and verifiable results to clinicians using DeepHeme SE for rapid review. C) This 
describes the clinical testing and deployment architecture at MSKCC for the DeepHeme system. Multiple 
WSI scanners place images in a shared network drive. The creation of these images spawn a process that 
automates communication to the EHR to confirm the specimen type, and then  
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Figure 6.7 Workflow of DeepHeme 
A) Experimental workflow. Whole slide images of bone marrow aspirates were digitized using whole slide 
scanners. Regions of interest were selected by hematopathologists and the location and classification of 
cells was labeled by a consensus of three hematopathologists. The single cell images were used to train and 
test convolutional neural networks with ResNext-50 architecture to produce DeepHeme, an algorithm that 
classifies single cell images into 23 different cell classes. A web application was built, where scientists can 
interact with the DeepHeme algorithm (https://www.hemepath.ai/deepheme.html). B) Cell classes, lineage 
trajectories, and physiologic functions. A diagram of cells and morphologic labels included in the study, as 
well as their relationship to each other in the hematopoietic tree. In addition to classes of cells, two important 
morphologic categories were included: mitotic body and artifact.  
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Figure 6.8 Snapshot ensemble concept 
A). Comparison of traditional model and snapshot ensemble optimization process. B). The changing 
process of cyclic cosine learning rate and corresponding loss in the evaluation set.  
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Figure 6.9 Venn Diagram 
Venn Diagram of Prediction Results for 23 Cell Types Across Five Snapshot Models This diagram 
illustrates the intersection and unique aspects of prediction results for different cell types across five distinct 
snapshot individual modules. 
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Figure 6.10 UpSet Plot 
UpSet Plot of Prediction Results for 23 Cell Types Across Five Snapshot Modules This UpSet plot provides 
an alternative visualization to the previously presented Venn diagram, illustrating the prediction results cell 
types across the five Snapshot Modules. 
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Figure 6.11 UMAP embedding for cells with high nucleus:cytoplasm (N:C) ratio 
All five cell classes in our dataset with high N:C ratio co-localize, while only cell clusters that are directly 
related to each other are attached by bridges. Of note, the bridge between myeloblasts (M1) and 
proerythroblasts (ER1) reflects the location of the theoretical hematopoietic stem cell that exists as a 
precursor between them. 
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Figure 6.12 One-vs-One AUC Analysis 
Here, the analysis focuses on the Area Under the Curve (AUC) for one-versus-one comparisons among the 
classes. This measure provides insights into the separability of each class pair, with higher AUC values 
indicating greater ease of distinguishing between the two classes.  
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Figure 6.13 Confusion Matrix on UCSF dataset 
This figure shows the confusion matrix of prediction on the test set of UCSF images. Most 
misclassifications are between biologically adjacent cell classes, reflecting the true ambiguity between edge 
cases. Notable examples include myeloid blast (M1) vs erythroid blast (ER1). These are developmentally 
adjacent cell types and as a result have some morphologic overlap. 
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Figure 6.14 Confusion Matrix on MSF dataset 
This figure shows the confusion matrix of prediction on the test set of MSK images. 
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Figure 6.15 Saliency Maps 
This figure shows randomly selected saliency maps from 8 classes using different mapping algorithms. 
image processing through the AI algorithm and image registration in a relational database (RDBS). 
Processed that are containerized are denoted by the Docker icon. Containerizing each element allows for 
easy deployment across different hospitals and research environments including en-prem, cloud, and hybrid 
architectures, allowing compliance with varying institutional policies regarding protective health 
information. 
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This table shows the Number of hematopathologist-labeled, single cell images, per cell category, 
evaluated in the training, test, and external validation sets. Training and test sets were separated at the 
slide level to avoid testing on images from slides on which training had been performed. Each slide was 
obtained from a unique patient undergoing bone marrow evaluation, with results showing normal 
hematopoiesis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.1 Multi-institutional Datasets. 
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Table 6.2 Precision score from three experts 
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Table 6.3 Recall score from three experts. 
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Table 6.4 Comparison to other deep-learning-based bone marrow cell classifiers 
This table compares DeepHeme to other works that use CNNs to classify single cell images from 400x-
equivalent images. All image totals are for the entire study, including training and test sets. We define high 
performance is defined as >0.8 precision and recall. Images in smallest class is a measure of dataset quality. 
DeepHeme matches or outperforms currently published algorithms across multiple metrics. 
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Table 6.5 Comparison between Single Snapshot Model, Standard Learning Rate Scheduler, and 
Snapshot Ensemble Model Performances. 
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7 Chapter 7: Conclusion: Summary and Future Work 

 
 
7.1 SUMMARY 

 

This dissertation outlines my endeavor to tailor machine learning techniques for the intricate task of 

deciphering complex diseases. Through a combination of innovative methods and practical applications, 

this work showcases the significant potential of leveraging medical data through novel computational 

approaches to support clinical practices and inform regulatory decisions. The ultimate goal of this research 

is to improve patient care and contribute positively to public health on a broader scale.  

 

Machine learning and deep learning represent revolutionary techniques with the power to transform 

healthcare, offering unprecedented capabilities in data analysis, pattern recognition, and predictive 

modeling. However, it's crucial to acknowledge that medicine is a uniquely complex field, distinct from 

many other areas where these technologies have been applied. The intricacies of medical science, combined 

with the ethical, legal, and personal nuances of patient care, present a landscape replete with pitfalls and 

challenges that can be easily overlooked or oversimplified by researchers from either the machine learning 

or medical domains. These challenges range from the risk of algorithmic bias to the oversimplification of 

complex biological interactions, and from data privacy concerns to the interpretability of model outputs in 

a clinical context. In the work presented in this dissertation, I have endeavored to address some of these 

issues, or at least to propose viable solutions. 
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EQUALLY VITAL: THE INDISPENSABLE ROLE OF SOCIAL DETERMINANTS IN HEALTH 

OUTCOMES 

In the pursuit of a more comprehensive understanding of patient health, my work underscores the critical 

importance of Social Determinants of Health (SDoH), revealing that medical factors alone do not paint the 

full picture. 

Chapter 2 delves into "Topic Modeling on Clinical Social Work Notes for Exploring Social Determinants 

of Health Factors," employing advanced topic modeling techniques to sift through clinical social work notes. 

This innovative approach sheds light on the nuanced ways in which SDoH factors, such as economic 

stability, education, and social context, play a pivotal role in patient health and treatment outcomes. By 

analyzing these often-overlooked aspects of patient records, this chapter demonstrates the profound impact 

of social circumstances on health, advocating for their integration into holistic patient care strategies. 

Building on this foundation, Chapter 3, "Revealing the impact of social circumstances on the selection of 

cancer therapy through natural language processing of social work notes," takes a more focused look at 

how these social determinants influence critical medical decisions, specifically in the context of cancer 

therapy selection. Through the lens of natural language processing, this work highlights the intricate 

relationship between a patient's social environment and their treatment pathway, emphasizing that factors 

such as access to healthy food or supportive family structures can significantly sway therapeutic choices. 

This chapter not only reinforces the indispensability of considering SDoH in medical decision-making but 

also illustrates the practical implications of such considerations in tailoring treatment to individual patient 

needs. 
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HUMAN EXPERTISE IN AI: ENHANCING DEEP LEARNING THROUGH ANNOTATION AND 

FEEDBACK 

The integration of human expertise into the development and refinement of AI, particularly in deep learning 

models, stands as a pivotal advancement in the quest to harness the full potential of these technologies in 

healthcare. This segment of the dissertation delves into the critical role of detailed, high-quality human 

annotations and the strategic use of human feedback to substantially elevate model performance, especially 

when extensive annotations are not feasible. 

 

Chapter 4, "Aligning Synthetic Medical Images with Clinical Knowledge using Human Feedback," 

highlights this interplay, demonstrating how the integration of clinical insights through feedback loops can 

refine the accuracy and relevance of synthetic medical images. This process not only tailors the AI's learning 

trajectory but also ensures the generated images are clinically plausible, thereby enhancing the model's 

utility and trustworthiness in medical applications. Such feedback mechanisms prove invaluable, especially 

in scenarios where direct and detailed annotations may be limited or infeasible, allowing for continuous 

model improvement and alignment with evolving clinical knowledge. 

 

In contrast, Chapter 6, "DeepHeme: A High-Performance, Generalizable, Deep Ensemble for Bone Marrow 

Morphometry and Hematologic Diagnosis," showcases the transformative power of detailed human 

annotation. This meticulous process involves the comprehensive labeling of medical images or data by 

experts, providing a rich, nuanced dataset that serves as the foundation for training highly accurate and 

reliable deep learning models. DeepHeme leverages this extensive annotated dataset to achieve superior 

performance in bone marrow analysis and hematologic diagnosis, setting new benchmarks for model 

reliability and applicability in clinical practice. The chapter underscores the indispensable role of human-

annotated data in developing AI tools that not only perform with high precision but also align closely with 

the complexities of real-world medical diagnostics. 
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STRATEGIC FEATURE ENGINEERING: ILLUMINATING DISEASE MECHANISMS WITH 

PRECISION 

Chapter 5, "Spatial Cell Type Enrichment Predicts Mouse Brain Connectivity," serves as a testament to the 

power of strategic feature engineering in machine learning for biomedical research. This section of the 

dissertation spotlights the pivotal role of selecting biologically relevant features, such as spatial cell type 

enrichment, to improve the interpretability and accuracy of models that study complex biological systems. 

By prioritizing cell type information over gene enrichment, this work showcases the ability to uncover 

deeper insights into mouse brain connectivity, emphasizing the value of focused feature selection. This 

approach not only enhances the predictive performance of the model but also ensures that the features 

employed are directly aligned with biological reality, offering clearer insights into the underlying 

mechanisms of disease. 

 

In summary, this dissertation has presented a multifaceted exploration of real-world electronic health 

records (EHR) through computational lenses, ranging from classical machine learning techniques to 

cutting-edge natural language processing models based on transformers. We have ventured beyond the 

conventional focus on purely medical factors, incorporating the often-overlooked social determinants of 

health to provide a more comprehensive understanding of patient well-being. Our methodologies have 

harnessed the power of detailed human annotations and feedback to refine deep learning models, ensuring 

their practical applicability and enhancing their performance in clinical settings. Additionally, we have 

underscored the significance of strategic feature engineering, advocating for the prioritization of relevant 

biological features to advance model interpretability and the discovery of disease insights. 

 

These diverse approaches, from the granular examination of social factors to the incorporation of expert 

human input and the deliberate selection of model features, collectively aim to generate high-quality, real-

world evidence. This evidence is crafted not only to address research gaps and medical needs but also to 
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inform and guide improved clinical care practices. As we strive for methodological innovation, the ultimate 

goal of this research remains steadfast: to contribute meaningfully to patient outcomes and public health, 

harnessing the transformative power of machine learning to illuminate the complex tapestry of human 

health. 

 

7.2 FUTURE WORK 

 

I believe this dissertation has carved out several pathways for enhancing machine learning applications in 

healthcare, each with its unique potential for future expansion. As we look ahead, integrating Social 

Determinants of Health (SDoH) with clinical data emerges as a pivotal step towards enriching the 

characterization of complex diseases. This comprehensive approach promises to refine diagnostic accuracy 

and tailor preventive and therapeutic interventions more closely to patient-specific contexts. The intricate 

tapestry of a patient's life, woven with threads of environmental, socioeconomic, and lifestyle patterns, 

alongside their clinical picture, could offer unprecedented insights into addressing and preempting health 

disparities.  

 

Progressing further, the pursuit of blending engineered genomic and imaging features stands out as a 

frontier with immense potential to predict clinical outcomes and understand patient heterogeneity. This 

integration aims to reveal the complex interplay between phenotypic expressions and genetic underpinnings, 

potentially illuminating new subtypes of diseases and leading to more targeted therapeutic strategies. 

Moreover, the correlation between imaging biomarkers and genomic data could unlock novel 

understandings of disease mechanisms, fostering advancements in the realms of personalized and precision 

medicine. 
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Lastly, the fusion of natural language processing with imaging data to develop comprehensive vision-

language models represents an exciting horizon for medical diagnostics. The envisioned models would not 

only automate the interpretation of medical images but also contextualize them within the rich narrative of 

clinical notes, offering a multifaceted diagnostic tool. Such advancements could streamline the diagnostic 

process, providing clinicians with synthesized, actionable insights. The journey to realize this vision will 

necessitate a concerted effort to refine sophisticated algorithms capable of discerning the nuanced interplay 

between textual and visual information, ensuring clinical utility and accuracy. The road ahead is paved with 

both challenges and opportunities, beckoning a future where machine learning not only complements but 

significantly enhances clinical decision-making and patient care. 
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