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Hierarchical Regression for Epidemiologic
Analyses of Multiple Exposures
Sander Greenland
Department of Epidemiology, UCLA School of Public Health, Los Angeles, California

Many epidemiologic investigations are designed to study the effects of multiple exposures. Most of these studies are analyzed either by fitting a
risk-regression model with all exposures forced in the model, or by using a preliminary-testing algorithm, such as stepwise regression, to produce a
smaller model. Research indicates that hierarchical modeling methods can outperform these conventional approaches. These methods are
reviewed and compared to two hierarchical methods, empirical-Bayes regression and a variant here called "semi-Bayes" regression, to full-model
maximum likelihood and to model reduction by preliminary testing. The performance of the methods in a problem of predicting neonatal-mortality
rates are compared. Based on the literature to date, it is suggested that hierarchical methods should become part of the standard approaches to
multiple-exposure studies. -Environ Health Perspect 102(Suppl 8):33-39 (1994)
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Introduction
Many epidemiologic studies, especially in
occupational and environmental health,
have as their objective the evaluation of
multiple exposures for potentially harmful
effects. While the statistics literature osten-

sibly deals with these problems under such
topics as stepwise regression and multiple
comparisons, prominent epidemiologic
methodologists have been adamant in their
rejection of such methods (1-3). These
authors criticize conventional methods for
(among other things) failure to take
account of prior knowledge, the irrelevance
of the inferential objectives on which the
methods are based, and the tendency of the
methods to misrepresent continuous esti-
mation problems as discrete decision prob-
lems. I have been largely sympathetic with
these criticisms; nevertheless, I have not

found these alternative points of view to be
entirely satisfactory with regard to the rep-

resentation and solutions they offer for the
multiple-inference problem (4).

Developments over the past few
decades offer fresh approaches to the prob-
lem. Thanks to dramatic increases in com-

puting power, hierarchical methods (such
as empirical-Bayes regression) can be
explored as practical alternatives or supple-
ments to the regression analyses common
in epidemiology. The hierarchical perspec-

tive is oriented specifically toward multiple-
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inference problems. In contrast to conven-
tional multiple-inference methods, the
Bayesian format of hierarchical methods
allows straightforward accommodation of
prior information and interpretation of
results. At the same time, hierarchical
methods can enjoy superb repeated-sam-
pling properties (5,6).

Several authors have discussed the
application of parametric empirical-Bayes
methods to the estimation of parameters in
risk-regression models (7-10); a related,
Bayesian log-linear approach to risk model-
ing was given by Cornfield (11). Here, I
provide an overview and comparison of
two of the more common modeling strate-
gies employed by epidemiologists (maxi-
mum likelihood [ML] and preliminary
testing) to two hierarchical methods, para-
metric empirical-Bayes regression (6) and
a variant I call "semi-Bayes" regression
(9,10). After reviewing the basic strategies,
I illustrate these methods and another hier-
archical method (Bayes empirical-Bayes) in
an application to a neonatal mortality
study. The results illustrate how hierarchi-
cal methods can offer considerable advan-
tages over more common approaches to
epidemiologic studies of multiple expo-
sures.

Background
Consider the following problem: An inves-
tigator gathers data on an outcome (depen-
dent) variable y, an n-row vector of study
variables x ("exposures"), and an m-row
vector of nuisance variables w ("potential
confounders"), with the intention of esti-
mating the n-column vector 3 of exposure
coefficients in a generalized linear model for
the expectation ofy conditional on x and w,

g[E(y x, w)] = a+ xf+ wy

where g is a known, strictly increasing link
function and y is assumed to be randomly
sampled from its distribution conditional
on x, w. In this multiple-estimation setting,
the investigator may be concerned to maxi-
mize the "accuracy" in estimating /B. In the
epidemiologic literature, the concept of
accuracy is rarely formalized; when it is,
accuracy of point estimation is sometimes
equated with mean-squared estimation
error (12), and accuracy of interval estima-
tion is usually equated with nominal or
conservative coverage coupled with short
length (12). The multiplicity inherent in
the interval-estimation task is almost
always disregarded on the ground that
componentwise coverage, not overall cover-
age, is scientifically relevant in exploratory
studies (1-3). The latter view finds accept-
able the high probability that at least one
component of ,B will not be covered by the
componentwise 95% intervals if ,B has, say,
20 components.

Other multiple-inference problems
arise if one is chiefly interested in estimat-
ing the expectation E(y x, w) or future val-
ues ofy (prediction). In these problems, the
coefficients are of only intermediate inter-
est. Nonetheless, accuracy in coefficient
estimation reasonably could be expected to
correlate with prediction accuracy, and
coefficient estimation methods can be com-
pared for their effectiveness in producing
accurate prediction.

In epidemiology, two common strategies
for estimating study-variable coefficients
are the following:

Use estimates from a "full" model, one
that contains all the study variables (if
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such a model can be fit), or as many
variables as can be fit. Kleinbaum et al.
(12), Miettinen (1), and Rothman (2)
make recommendations along these
lines. (Note that full stratification on all
variables is equivalent to such an
approach, but is rarely practical because
of the sparsity of the stratification.)

* Use estimates from a "reduced" model,
including only components of ,B or y
that survive some preliminary-testing
algorithm (such as forward selection,
backward elimination, or univariate
testing).

Note that in the second strategy,
coefficients deleted from the model are, in
effect, assigned an estimated value of zero.

Either of the above strategies may
involve algorithms for reduction of the
nuisance parameter y, e.g., by backward
elimination of components of w. In fact,
virtually all the epidemiologic literature on
variable selection has focused on methods
for reduction of the nuisance parameter,
rather than P(12,13). This focus may
explain in part why published analyses
often treat the components of ,B one at a
time: for each component of ,B, a model is
selected based on some method for reduc-
ing the number of remaining components;
in each model, one component is treated as
the sole study variable, while the remaining
study variables are treated as nuisance vari-
ables. For example, PI would be estimated
by forcing xl into the model, then applying
some selection or reduction algorithm
to the vector of remaining variables
(X2.Xn-WI) ... Wm)* In essence, this
approach treats an n-parameter inference
problem as n one-parameter problems. If no
reduction of the nuisance vector is applied,
this approach is equivalent to simply fitting
the full model and basing inference on this
fit; otherwise, it may be viewed as an ad
hoc compromise between the strategies
specified above. Empirical-Bayes estima-
tion may be viewed as a more formal com-
promise: as in the first strategy, coefficients
will not be dropped; but, as in the second
strategy, large unstable estimates from the
full model may be replaced by much
smaller estimates.

Hierarchical Methods
In addition to modeling the outcomes as
random variables whose distributions are a
function of the target parameters /, hierar-
chical methods model these target parame-
ters as random variables whose joint
distribution is a function of hyperparame-
ters and prior covariates z that are thought
to determine the magnitudes of the target

parameters. For example, in a model in
which 31_./36 represented the carcino-
genic effects of six polychlorinated
biphenyls x1,...,x6, the magnitude of each
of these effects may be determined by the
degree of chlorination of the particular
compound. Thus, one would assign to
each P3i (i= 1,...,6) a covariate zi that mea-
sures the chlorination of chemical x.. The
impact of these and other such properties
of exposures on carcinogenic activity could
then be analyzed using a second-stage
model for the first-stage (disease) coef-
ficients pi. Consider, for example, the
regression model

pi = Zi7r+ai j=l,....,.n,
i.e., / = Z7r + = ,u + d, [2]

where zi is a row-vector ofp known prior
covariates, r is a column vector ofp possibly
unknown prior coefficients, the 3i are
independent Gaussian (normal) random
variables with mean zero and possibly
unknown variance T2, and Z is the n-by-p
matrix with rows zi. Equation 2 represents a
second stage of the sampling model
(Equation 1 being the first stage); it implies
that the expected value ,u of /3 equals Zrc,
and that the components 3,i of /3 have a
common variance r2. The distribution of/
is traditionally termed the prior distribution
for /3, because it is supposed to represent or
incorporate what is known about /3 prior to
seeing the study data. The hyperparameters
,u and z2 in Equation 2 are hence termed
the prior mean and prior variance of /3.
The model may be generalized by allowing
the variances of the 3i to vary, so that r2
becomes a vector of t.

An extreme version of Equation 2
occurs when Z is the n-by-n identity
matrix, in which case Equation 2 allows
unrelated means for the components of /3;
the other extreme occurs when Zi= 1 for all
i in which case Equation 2 implies a com-
mon mean for the components. A transi-
tional model would arise if, as above, the
study variables were six types of polychlori-
nated biphenyls, and zi= (1,zi) where zi
measures the degree of chlorination of
chemical i. Here, the prior mean is a linear
function of the chlorination covariate zi;
this allows distinct prior means for the
components of /3, which are nevertheless
related via a covariate (chlorination)
believed to be directly linked to strength of
effect (as measured by /3).

To model effect modification, one may
add product terms among the exposures
and confounders to x, and then include
their coefficients in the second-stage model.

Similarly, to more flexibly model dose
response, one may add multiple terms (e.g.,
linear and quadratic) for a single exposure
and then include their coefficients in the
second-stage model. Building such models
involve a number of complexities beyond
the scope of the present discussion, how-
ever; Cornfield (11) presents an example
involving interaction in cross-classifications.

The nuisance parameter y can be
included with /3 in the second-stage model,
or dealt with separately. Options for ywill
be further described below.

Bayesian Methods
The classical Bayesian approach to infer-
ence on /3 requires that one completely
specify the prior distribution for /3. Thus,
to use Equation 2, one would have to treat
the hyperparameters r and T2 as known
quantities. Bayesian analysis would then
proceed by merging the prior distribution
for /3 with the likelihood function for /3 to
obtain a posterior distribution for /3 (14,
ch. 10). For simplicity, the present exposi-
tion will concentrate on the Gaussian
approximation to this analysis.

Suppose that the prior follows Equa-
tion 2 and the likelihood for /3 is well
approximated by a multivariate normal
density with mean

A

and covariance matrix
VI where , is the maximum-likelihood
estimate (MLE) and Ais the inverse of the
observed information matrix evaluated at
/3; such an approximation is adequate in
large-sample logistic and Poisson regression
(15). The posterior distribution for /3 will
then be approximately Gaussian with mean
Bu + (I-B)

A

and covariance matrix
VV(I-B), where B= (V+721I) V and I is
the n-by-n identity matrix (6). Note that
the posterior mean is a weighted average of
the prior mean p and the MLE Ai.
Parametric Empirical Bayes Methods
The "naive" parametric empirical-Bayes
approach treats r and T2 as unknown para-
meters, estimates them from the data (via
one of several available methods), plugs
these estimates into the prior, and then
uses this estimated prior in a standard
Bayesian analysis to obtain an empirical-
Bayes posterior distribution. This "naive"
empirical-Bayes approach is unsatisfactory
because it fails to account for the uncer-
tainty in the estimated prior parameters
kand T. The resulting estimates can, how-
ever, be corrected to account for this
uncertainty (6). With correction, the
approximate mean of the empirical-Bayes
posterior distribution for P under Equation
2 is
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3 = B*1u* + (I-B*) A) [3]
where

B* = (n-p-2) W* Vl(n-p)

W* = (V+ I)- Zc*,X2= nR/(n-p)-V*,

R=e 1*e SiWj,s=(twz2zT,

_A

VW'* V/Y Wi*, e=fle,iiiY

and W-. is element ij of W* (6). An
approximate posterior covariance for /3 is

A

C* = V [I-(n-p)B *In] +A, [4]

where A=2B*e(B*e)'I(n-p) is an adjust-
ment term that accounts for estimation of
the prior variance (6). /* and C* can be
used to obtain empirical-Bayes confidence
regions for /; as illustrated below, these
regions can be superior to the analogous
conventional regions based on / and V(6).

As discussed by Morris (6) and illus-
trated in simulations (10), the confidence
intervals based on C* can be extremely
conservative in small samples when the prior
variance is small relative to the first-stage
variance. Improvement in small-sample
behavior can be obtained by component-
wise variance corrections (6); with the
Morris (6, Eq. 5.6-5.9) corrections, the
estimated variance of component i of the
EB estimator is

Vi= Vii -(1-H1)( VB*)ii + (V, +X2I)W.7Aii,
[5]

where H*=Z(Z'W*Z)' Z'W*, V*=W*V/
EiW., and subscript ij on a matrix expres-
sion indicates the ijth element of the
expression. Greater improvements may be
obtained via further approximations (16)
or via Monte-Carlo-based methods (17).

Approximate procedures become more
complex if ir (as well as 3) is regarded as
random (18), but such extensions are easily
handled by Monte-Carlo methods (19). In
particular, Monte-Carlo methods render
practical a fully Bayesian empirical Bayes
analysis, in which r and T2 (the unknown
hyperparameters of the prior distribution
for /3) are themselves assigned "hyperprior"
distributions (20). Such distributions repre-
sent a third stage in the modeling process.

Semi-Bayes Methods
Consider Equation 2. It often is possible to
specify the prior standard deviation r on a
priori grounds, or at least to assign r a plau-
sible range of values. In logistic regression
with binary covariates, /3 represents a vector

of log odds ratios, and it often is possible to
set upper and lower prior bounds on these
ratios. Typical environmental and occupa-
tional surveillance studies involve exposures
whose effects are expected to produce small
positive log odds ratios. If Z is a vector of
ones, setting 'r = 0.5 would correspond in
this case to being 95% certain that any
given ratio is within an exp[2(1.96)
(0.5)] = 7-fold range of about the prior geo-
metric mean odds ratio; this would be
appropriate if (for example) 19 out of 20
ratios fell between 1 and 7.

Fixing r at some prior value in the
empirical-Bayes analysis shifts both the phi-
losophy and the mechanics of the analysis
back toward the classical Bayesian approach;
thus, when r is specified in advance, I refer
to the empirical-Bayes analysis as "semi-
Bayes." This approach is computationally
simpler than standard empirical-Bayes; for
example, under Equation 2, 7r will require
iterative estimation using standard empiri-
cal-Bayes methods, but has closed form
using the semi-Bayes approach (9). As
shown in simulations (10), semi-Bayes
confidence regions can be superior to stan-
dard empirical-Bayes regions when r equals
or exceeds the true standard deviation of
the components of /3, although this superi-
ority is purchased by a risk of subnominal
coverage if r is set lower than this.

Under Equation 2, the approximate
mean and covariance of the semi-Bayes
posterior distribution for ,B are~~~~~~~~

1B= BF+ (I-B)fp [6]
and

C= V[I-(n -p)Bln] [7]
where

A 1

=Zr, j= (Z'WZ)-'Z' W=(V+ I Y,

and B = WV (as in the classical Bayesian
analysis). Note that, as r is increased, the
semi-Bayes estimate /3 approaches the
maximum-likelihood estimate /,, and C
approaches V. The variance estimate for
component i of each SB estimator is

i3=V.- (1-I_H)(VB )ii [8]
where

H=Z(Z'WZ)-1Z'W.

Preiminary-Test Estimates Revisited
For comparison to Bayesian methods, a
preliminary-test estimator (such as a step-
wise-regression result) may be viewed as an
ad hoc, discontinuous shrinkage estimator
(21): for any given data set, the estimate is

either shrunk all the way to zero (if it gets
deleted from the equation), or else it is
replaced by an estimate from an equation
with fewer variables than the full equation
(if it is retained but other variables are
deleted). This shrinkage rule is somewhat
perverse relative to the usual empirical-
Bayes rationale. Like empirical-Bayes,
unstable estimates are most subject to
change, but outliers are poorly handled.
Unlike empirical-Bayes, small estimates are
much more subject to change than large
ones. It would seem natural, then, to
expect preliminary-test estimators to have
larger mean-squared error than empirical-
Bayes estimators, and in fact this has been
demonstrated in the multivariate normal
model (22).

Another problem with preliminary-test
estimators is the lack of a valid standard
error to attach to the estimate, especially
when the estimate is set to zero. A prelimi-
nary-test confidence interval may be con-
structed by using the information matrix
for the full model evaluated at the reduced
parameter-vector estimate. 'While this ad
hoc device performs surprisingly well in
small samples, simulation results (10,23)
indicate that, in terms of coverage and
average width, preliminary-test interval
estimators still do not perform as well as
other intervals.

Nuisance Parameters
A common practice in occupational and
environmental epidemiology is to eliminate
the nuisance parameters y from the model
by "preadjusting" the outcome variable for
w (possibly after some preliminary reduc-
tion of w as well). For example, y may be
the log of standardized mortality ratio
(SMR), the latter being the observed num-
ber of cases of disease divided by the num-
ber expected given the age and sex (w)
composition of the particular exposure
group (x-level) under examination. Breslow
and Day (24) and Checkoway et al. (25)
present detailed discussions of this method
(which implicitly assumes that joint expo-
sure and confounder effects on rates are
multiplicative). This approach allows elimi-
nation of explicit consideration of y in the
problem of inference on /3; concern now
focuses on inference on P in an equation

g[E(ywl x)] = aw+ x/3,
where the subscript w indicates that some
appropriate preadjustment for w has been
made, as distinct from simply dropping w
from Equation 1 (no preadjustment of x is
needed if the exposure groups are homoge-
neous with respect to x).
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One may instead fit the full first-stage
model (Equation 1) directly, and then
model both ,B and y in a second-stage
model analogous to Equation 2. If y is
allowed to have a different variance para-
meter from /, then, as this variance para-
meter becomes arbitrarily large, the
hierarchical estimates of ywill approach the
maximum-likelihood estimates. Also, the
hierarchical estimates of ,B will approach
those obtained by modeling ,B alone (as in
Equation 2) when A is obtained from the
full first-stage model (Equation 1). The
resulting hierarchical estimates are model-
based analogues of those obtained using
preadjustment.

An alternative approach would be to
apply some type of preliminary-test model
reduction to ywhen fitting Equation 1, fol-
lowed by second-stage modeling of the
coefficients that remain. Such an approach,
however, would be subject to the same
objections as other preliminary-test estima-
tors, such as poor handling of outlying esti-
mates.

An Example
Neonatal mortality (death among liveborn
infants within the first 28 days after birth)
underwent a notable decline in industrial-
ized countries during the middle decades of
this century. Neonatal mortality rates in
the United States underwent a particularly
important decline during the 1960s and
1970s, with the advent of a number of
medical innovations, including electronic
fetal monitoring and methods for manage-
ment of prenatal and perinatal risk factors.
An interesting question is the relative
impact of interventions (such as monitor-
ing), modifiable or potentially treatable fac-
tors (such as duration of pregnancy), and
fixed patient characteristics (such as mater-
nal age). How much did the decline in
neonatal mortality arise from changes in
these risk-factor distributions, especially for
treatable versus fixed factors?

The Beth Israel Hospital study (26)
provides limited data bearing on this issue.
This cohort study of neonatal death
included over 14,000 live births but only
about 60 neonatal deaths from 1970 to
1975, after exclusions. The longitudinal
nature of the study, and the documented
trends over the period, provide means for
evaluating the regression methods studied
here (albeit indirectly) by comparing the
success of the methods in predicting the
observed trend.

Table 1 displays the estimates of the
coefficients in a logistic regression of
neonatal death rates on 14 risk factors

recorded in the Beth Israel data set, using
only the 2992 subjects in 1970. (Certain
other variables were excluded from the
original study on a priori grounds; for
example, Apgar score was excluded because
it was considered an intermediate indicator
of risk.) The preliminary-test estimates
were derived using a 0.10 significance level,
as was done in some early (pre-1978) pre-
sentations of these data (one additional
variable, malpresentation, was significant at
the 0.10 level in the full model but was not
significant at this level after the other non-
significant variables were deleted). The
semi-Bayes and empirical-Bayes estimates
are both based on a unidimensional prior
and method of moments, as used in the
simulation study (10). Risk factor i was
assigned a prior covariate value of zi= 1 if
the factor was expected to have a positive
coefficient, zi= -1 if the factor was
expected to have a negative coefficient, and
Zi=0 if the factor was expected to have a
near-zero coefficient. The prior variance T2
for the semi-Bayes estimates was set to
0.25, 0.5 and 1.0, round figures that also
happen to be reasonable on prior grounds:
For example, T2= 0.5 corresponds to a
prior that 95% of the odds ratios for the
factor effects, the exp(f3i), are within a
exp(2(1.96'I0.5)=16-fold span, such as
0.75 to 12. (To save space, results for
r2=0.25 and 1.0 are omitted from the
table.)

Also shown are the posterior means
from a Bayesian empirical-Bayes (BEB)
analysis based on extending the hierarchical
model with third-stage hyperpriors for 7r

(the coefficient of z) and r2. The hyper-
prior for it was Gaussian with mean 0.4
and standard deviation 0.2, while the
hyperprior for '2 was 5.5 times an inverse
x2 distribution on 13 degrees of freedom
(the residual degrees of freedom in the sec-
ond-stage regression). The latter hyperprior
was chosen because it has mean 0.5 (the
fixed '2 value in the semi-Bayes analysis)
and roughly 90% of the distribution falls
between 0.25 and 1 (a prior standard devi-
ation r of 0.5 to 1.0). The hyperprior for it
represents a geometric mean relative risk
(per unit change in the expected harmful
direction) of exp(0.4)=1.5, with a 95%
hyperprior interval of exp[0.4 ± 1.96(0.2)]
= 1.0, 2.2. This analysis was done via
Gibbs sampling (19,27) averaging over the
final 100 draws from 100 parallel Markov
chains of 200 iterations each; using the
measure of Gelman and Rubin (28), further
iterations would probably not have
changed any estimate by more than 0.5%.

For clarity and compactness, Table 1
gives standard errors only for the ML esti-
mates. The preliminary-test (PT) estimates
had 5 to 10% smaller estimated standard
errors than the ML estimates; EB and BEB
estimates typically had 20 to 40% smaller
estimated standard errors, while the SB
estimates typically had 25 to 50% smaller
estimated standard errors. In the remaining
discussion, I will refer to the EB, SB, and
BEB estimates as the hierarchical estimates.

The results in Table 1 are typical of
maximum-likelihood versus hierarchical
estimates: For the hierarchical results,
larger, unstable coefficients (such as for

Table 1. Maximum-likelihood, empirical-Bayes, semi-Bayes, and Bayes empirical-Bayes logistic coefficient esti-
mates for 1970 neonatal-death data.a

Predictorb ML pTc EB SB BEB z

Nonwhite 0.634 (0.631) 0 0.573 0.561 0.483 1
Maternal age -0.476 (0.728) 0 -0.459 -0.451 -0.345 -1
Multiparity -0.437 (0.571) 0 -0.441 -0.437 -0.348 -1
Duration pregnancy -1.587 (0.357) -1.725 -1.371 -1.346 -1.385 -1
Isoimmunization 1.113 (0.614) 0 0.907 0.880 0.812 1
Previous abortion -0.328 (0.705) 0 -0.167 -0.148 -0.196 0
Hydramnios 4.099 (1.201) 3.840 1.872 1.540 1.728 1
Dysfunctional labor -0.231 (0.350) 0 -0.016 0.008 -0.077 1
Placental/cord abn. 1.132 (1.138) 0 0.882 0.847 0.719 1
Electronic monitor -0.222 (0.697) 0 -0.529 -0.573 -0.398 -1
Multiple birth 2.105 (0.772) 2.143 1.447 1.366 1.408 1
Publicward -0.146 (0.611) 0 0.295 0.357 0.219 1
PROMd -0.615 (1.116) 0 0.224 0.348 0.068 1
Malpresentation 1.359 (0.756) 0 1.075 1.041 1.008 1

ML, maximum likelihood; PT, preliminary test; EB, empirical-Bayes; SB, semi-Bayes; BEB, Bayes empirical-Bayes;
PROM, prolonged rupture of membrane. 8EB, f2 = 0.45; SB, r2 = 0.50; BEB, mean T2 = 0.50. No. subjects = 2992,
no. deaths = 17, no. predictors = 14, death rate = 5.68 per 1000. ML standard errors in parentheses. z= prior covari-
ate (expected coefficient sign). bAll coded 1 = yes, 0 = no, except maternal age (1=< 15 years,
2 = 15-19 years., 3 = 20+ years), duration of pregnancy (5,6,7 = 32-35, 36-38, and 39+ weeks; under 32 weeks
excluded from analysis), isoimmunization (0 = none, 1 = Rh, 2 = ABO), and dysfunctional labor (0 = normal, 1 = pro-
longed, 2 = protracted, 3 = arrested). CVariables retained at 0.10 significance level. dPROM =30+hours.
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hydramnios). are heavily shifted toward
their estimated prior mean, while stable
coefficients (such as for duration of preg-
nancy) are not much changed. It is inter-
esting that three of the nonsignificant ML
coefficients appear to be in the wrong
direction on subject-matter grounds: dys-
functional labor, public ward, and pro-
longed rupture of membranes (PROM).
All three are shifted in the a priori correct
direction by the other methods, and two
get the a priori correct sign from the hierar-
chical methods. There is no precise prior
information to judge the remaining coeffi-
cients, however.

Figure 1 shows the results of using the
five regressions in Table 1 to predict the
neonatal death rates in Beth Israel Hospital
in 1971 to 1975, the remainder of the
study period. (Not shown is the "null"
regression, which would be a flat line at
5.68 per 1000.) Although only 13, 10, 7,
3, and 7 deaths occurred in 1971 to 1975,
and the predicted rates from each model
are not significantly different from one
another, their relative relationship to the
observed rate bears an interesting resem-
blance to small-sample simulation results
(10): the hierarchical estimates are closer
to the true parameters (the observed rates)
than are the ML and PT predictions. On
average, the hierarchical curves are not
closer to the observed curve than the null
line, but they do correctly predict the
changes between all years but 1971 to 1972.
The hierarchical curves are not sensitive to
reasonable choices for the hyperparameters.

For example, similar patterns are seen for
all 0.2<T2<1 in the semi-Bayes analysis.
Note that the ordinary empirical-Bayes and
Bayes empirical-Bayes curves are indistin-
guishable; similar results were obtained
using other hyperpriors for 7r and z2.

The discrepancy between the ML/PT
curves and the hierarchical curves is almost
entirely attributable to the failure of the
former to correctly predict the trend over
1970 to 1971. Further analysis (not
shown) revealed that hydramnios preva-
lence jumped in 1970 to 1971 from 3.3 to
9.4 per 1000, and that this jump resulted
in the upward shift of the ML and PT
curves, due to the large hydramnios coeffi-
cients in the ML and PT regressions. In
contrast, the hierarchical curves were not
so affected by the hydramnios jump
because they used severely shrunken
hydramnios coefficients. Most of the
remaining fluctuations in the observed
curve are captured by all four predicted
curves, and are largely accounted for by
changes in prevalence in the three strongest
factors (duration of pregnancy, hydram-
nios, and multiple birth).

All four predicted curves move away
from the observed curve to the same extent
over 1971 to 1972. This suggests that most
of the discrepancy between the fitted and
observed curves was produced by a rapid
and lasting decline in some important
unmodeled risk factor (such as a medical
management factor) around 1971 to 1972.
Unlike the conventional analyses, the hier-
archical analyses pinpoint this change as

Deaths per 1000

Figure 1. Observed and predicted death rates.

occurring in 1971 to 1972 only, as the
1970 to 1971 portion of the decline and
the 1972 to 1975 changes can be explained
by factors in the model.

The lesser difference among the predic-
tions than seen in the simulated coefficient
estimates could have been anticipated:
Dempster et al. (21) noted lesser accuracy
gains of ridge and Stein estimators relative
to ordinary least squares when evaluated in
terms of prediction error rather than coeffi-
cient-estimation error. In one sense, the PT
regression does well, in that it captures the
predictive power of the full ML regression
while using only 3 of the original 14
covariates. On the other hand, the results
conform to theoretical work (29) indicat-
ing that preliminary-test estimates will
often do no better than least-squares esti-
mates and tend to do worse than empirical-
Bayes estimates in prediction problems.

Discussion
In this article, I have chosen to focus on
empirical-Bayes estimation rather than the
more general subject of "shrinkage" estima-
tion, which subsumes Stein estimation and
ridge regression (29-31). While it is possi-
ble to carry out analyses similar to empiri-
cal-Bayes and semi-Bayes analyses entirely
within the non-Bayesian context of logistic
ridge regression (30), hierarchical methods
have an advantage in the interpretability of
the tuning parameter that controls the
degree of coefficient shrinkage: in empiri-
cal-Bayes and semi-Bayes regression, the
tuning parameter is the prior variance,
which has a direct subject-matter interpre-
tation, and the inferences are more easily
seen to be approximately Bayesian.

While the large-sample standard errors
may be questionable in the above example
(with 14 predictors for 17 deaths), simula-
tion studies (10) indicate that their relative
magnitudes do indeed reflect the relative
precision of the estimators, even in small
samples. Considering mean squared error,
such studies also indicate that the variance
reduction of the hierarchical estimates (rel-
ative to ML) more than compensates for
the fact that hierarchical estimates are
biased towards their prior means.
Furthermore, the ML estimates are only
unbiased in the large-sample sense, and so are
not guaranteed to have any small-sample
bias advantage over hierarchical estimates.

Simulations provide a quantitative esti-
mate of the gains one may expect in
employing hierarchical methods in epi-
demiologic studies of multiple parameters.
The following simulation results (10) seem
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especially relevant to formulating recom-
mendations for applications:
* In small samples with few exposures and

subjects, ordinary empirical Bayes did not
provide dramatic benefits over ordinary
maximum likelihood.

* In contrast, the semi-Bayes variant of
empirical Bayes appeared superior to the
other simulated methods in very small
studies, in that it provided narrower
intervals with coverage robust to variance
misspecification in such studies.

* In large samples with many covariates
(i.e., in large studies), there was little dif-
ference in performance between empirical
Bayes and semi-Bayes with correct
specification. Semi-Bayes had the disad-
vantage of sensitivity to misspecification;
empiricalBayes was clearly superior to
ML and preliminary testing.

* Semi-Bayes estimation appeared robust
to overspecification of the prior standard
deviation (setting T too large), in that
overspecification did not reduce confi-
dence-interval coverage and did not sig-
nificantly decrease small-sample precision.

* Preliminary testing, perhaps the most
common approach to handling many
exposures, did not appear to have the
precision or validity of ordinary empiri-
cal-Bayes when the number of covariates
was large; it also lacked large-sample
validity. Its validity could be improved
by raising the significance level, but then
its precision could drop below that of
ordinary maximum likelihood.

Based on these observations, one might
recommend semi-Bayes methods for very
small studies, empirical Bayes for very large
studies, and either method for the spec-
trum in between, with a caution to over-
specify the semi-Bayes prior variance if
either the sample size or number of para-
meters is not small. Both methods, how-
ever, can be subsumed under and replaced
by Bayesian empirical Bayes (BEB) methods:
ordinary empirical Bayes arises as the limit-
ing case of BEB as the hyperpriors for 'r
and z2 become diffuse; semi-Bayes arises as
the limiting case of BEB as the prior for Xt
becomes diffuse, with a one-point hyper-
prior for zr.

If used with a proper hyperprior (as in
the above example), Bayesian empirical
Bayes may offer the best compromise
between the small-study precision of semi-
Bayes and the large-sample robustness of
ordinary empirical Bayes. Furthermore,
due to recent developments in Monte-
Carlo and approximation methods

(16,19,27,28,32-35), Bayesian empirical-
Bayes analyses are now computationally
practical. Nevertheless, because of their
theoretical and computational sophistica-
tion, I suspect such methods will remain
far removed from routine application in
the near future, despite an abundance of
applications in which they could be used.
In the hopes of encouraging more applica-
tions of hierarchical methods, the present
article has focused on the computationally
simpler ordinary empirical Bayes and semi-
Bayes methods, which can be easily pro-
grammed with a matrix language (such as
GAUSS, SAS IML, S-Plus, or SC), run
rapidly on a personal computer, and appear
to provide good approximations to fully
Bayesian results in some common situa-
tions.

Given that hierarchical methods can be
recommended for multiple regression
analysis, there remains one major problem
in implementation: design of the structure
of the prior (in particular, specification of
the prior design matrix Z). The problem
of prior specification is a familiar one in
Bayesian analysis, and has remained a
major obstacle to wide use of classical
Bayesian methods. Nevertheless, the prob-
lem may be less intractable in hierarchical
analysis: The major specification demand is
that the investigator identify subsets of
parameters within which the parameters
may be regarded as "exchangeable" (possi-
bly after location and scale transforms of
the parameters, which must also be speci-
fied). Here, exchangeability means that the
parameters within a subset may be
regarded as draws from a common prior
distribution, in much the same way as
effects are modeled in random-effect and
mixed-model analysis of variance (8). This
ANOVA parallel is helpful in orienting the
problem to a more widely taught and used
context, and in pointing out the major lim-
itations of hierarchical methods: if subsets
of exchangeable parameters cannot be
identified, the methods cannot be applied.
For example, in simple descriptive epi-
demiology, one often begins by examining
the dependence of disease occurrence on
basic demographic variables such as age,
sex, and race; the coefficients of these vari-
ables could hardly be imagined as draws
from a common distribution, even after
transformations. More generally, one must
be able to specify a second-stage regression
model and error-covariance structure that
reflects dependencies among the first-stage
parameters. Such specification demands

even greater subject-matter familiarity than
ordinary regression analysis.

The semi-Bayes method requires addi-
tional specification of the prior standard
deviation, 'r. This step may be viewed as an
elicitation problem similar to those
encountered in classical Bayesian analysis.
The objective is to specify a value that is an
upper bound on the range of parameter
values that would correspond to expert
opinions. In practice, I have found that the
potential range for this "minimal conserva-
tive" t is very narrow, and that its elicita-
tion is simple: even in the most vociferous
epidemiologic controversies, the span of
relative-risk values posited for dichotomous
causal factors rarely exceeds 25-fold and is
usually within 10-fold. Allowing for a 5%
chance that the entire span of expert opin-
ion is too narrow leads one to specify r=
ln(25)12(1.96) 0.8 in the former case
and r= ln(10)/2(1.96) 0.6 in the latter.
Furthermore, r may be allowed to vary
with the prior covariates.

The prior specification problem is fur-
ther mitigated by the fact that absolute
stringency in specification of exchangeabil-
ity or other aspects of the prior does not
seem necessary to realize benefits from
hierarchical methods. The neonatal-death
example illustrates this point: the prior
covariate used here is clearly naive; at the
very least, an obstetrician would want to
distinguish a priori strong risk factors (such
as hydramnios) from a priori weak factors
(such as ward). Yet, despite the naive prior,
hierarchical methods produced better pre-
dictions of observable quantities than the
usual methods. This result is not an iso-
lated case: other applications of simple
hierarchical methods have produced similar
results in a variety of different contexts.
Morris (6) presents an example and pro-
vides references to other examples. There is
apparently much robustness in hierarchical
methods, at least within the realm of appli-
cations considered to date. The chief cau-
tion seems to be that it is better to err on
the vague side than the stringent side when
specifying prior distributions.

Hierarchical methods have demonstra-
ble advantages over conventional methods
and are no longer seriously limited by com-
puter hardware. It thus seems timely to
introduce such methods into epidemio-
logic teaching and software, as was done
with risk-regression methods during the
1970s and 1980s.
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