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Simultaneous single-nucleus RNA 
sequencing and single-nucleus 
ATAC sequencing of neuroblastoma 
cell lines
Richard A. Guyer   1,2 ✉, Jessica L. Mueller2, Nicole Picard2 & Allan M. Goldstein2 ✉

Neuroblastoma is the most common extracranial solid tumor in children, and a leading cause of 
childhood cancer deaths. All neuroblastomas arise from neural crest-derived sympathetic neuronal 
progenitors, but numerous mutations, the most common of which is MYCN amplification, give rise to 
these lesions. Epigenetic aberrations also play a role in oncogenesis and tumor progression. To better 
understand biologic diversity of neuroblastomas, we performed joint single-nucleus ATAC sequencing 
and single-nucleus RNA sequencing on six neuroblastoma cell lines, three of which are MYCN amplified. 
After standard filtering for high-quality nuclei, we obtained chromatin accessibility and transcript 
abundance data from 41,733 neuroblastoma tumor cells. Preliminary analysis reveals significant 
diversity in chromatin landscape and gene expression across neuroblastoma cell lines. This dataset is a 
valuable resource for studying the transcriptional and epigenetic mechanisms of this deadly childhood 
disease.

Background & Summary
Neuroblastoma is the most common extracranial solid tumor in children, with an especially high incidence 
among children under age 4 years1. The disease is stratified into low-risk, intermediate-risk, and high-risk cat-
egories, based on clinical and biological features. High-risk disease is fatal in over 60% of cases2. MYCN ampli-
fication is the most common mutation in neuroblastoma, and the presence of MYCN amplification is sufficient 
to designate a tumor as high-risk3. However, over half of high-risk lesions lack this mutation4,5, indicating sig-
nificant biological diversity between neuroblastoma cases. Due to the challenges of obtaining primary tumor 
samples, various neuroblastoma cell lines have been established from high-risk lesions and are widely used for 
studying tumor biology.

There are numerous publicly-available transcriptional and epigenetic datasets derived from neuroblastoma 
cell lines, but information regarding heterogeneity within cell lines is not captured by the bulk methods used 
to generate these data6–8. The advent of single-cell sequencing tools has permitted high-parameter profiling of 
transcript abundance and epigenetic features in many cancers9. Several studies have reported single-cell RNA 
sequencing on neuroblastoma tissue, and have demonstrated considerable transcriptional heterogeneity within 
tumors as well as between cases10–13. Single-cell multiomic tools have been developed that measure two or more 
features (such as transcript abundance and chromatin accessibility) simultaneously from individual cells14. To 
our knowledge, however, multiome technology has not yet been applied to neuroblastoma.

We undertook the present study to better understand transcriptional and epigenetic diversity of human neu-
roblastoma cell lines, both within and between samples. We utilized six widely-studied neuroblastoma cell lines, 
features of which are displayed in Table 1, including MYCN amplification status and whether each line is known 
to have adrenergic or mesenchymal transcriptional circuitry15,16. One of these lines, SH-SY5Y, is a subclone 
derivative of another, SK-N-SH. By jointly quantifying transcript abundance and chromatin accessibility in indi-
vidual nuclei, we provide a resource for studying the complex regulation of tumor cell phenotype. We anticipate 
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these data will be extremely useful for identifying the driver genes, transcriptional regulatory networks, and 
transcription factor-chromatin interactions underlying neuroblastoma cell states.

Methods
Cell lines and culture.  Cell lines used in this study were purchased from ATCC (Manassas, VA). All cell 
growth and preparation for sequencing was done at Massachusetts General Hospital. Cells were cultured under 
conditions recommended by ATCC. All cells were maintained in incubators a 37 °C and 5% CO2. Cells were 
passaged when they reached approximately 80% confluency. In all cases, cells were prepared for sequencing at a 
passage number less than 10.

Cell Line MYCN status
Mesenchymal vs 
Adrenergic

Cells retained 
for analysis

SH-SY5Y Non-amplified Adrenergic 5,480

SK-N-SH Non-amplified Mesenchymal 5,977

SK-N-AS Non-amplified Mesenchymal 7,459

SK-N-D.Z Amplified Adrenergic 5,295

CHP134 Amplified not reported in literature15,16 5,827

Be2c Amplified Adrenergic 11,695

Table 1.  Characteristics of cell lines studied.

Transcriptional start site enrichment
per cell Nucleosome signal per cell

A B

C D

E

RNA counts per cell Unique RNA features per cell

ATAC counts in peaks per cell

Fig. 1  Quality control analysis of single-nucleus datasets. (A) Violin plot showing RNA counts in each cell 
in the snRNA-seq dataset, with the cell line indicated on the X-axis. (B) Violin plot showing unique RNA 
features identified in each cell in the snRNA-seq dataset, with the cell line indicated on the X-axis. (C) Violin 
plot showing transcriptional start site enrichment in each cell in the snATAC-seq dataset, with the cell lines 
indicated on the X-axis. (D) Violin plot showing nucleosome signal in each cell in the snATAC-seq dataset, with 
the cell lines indicated on the X-axis. (E) Violin plot showing ATAC counts in MACS2-identified peaks in each 
cell in the snATAC-seq dataset, with the cell lines indicated on the X-axis.
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Sample preparation.  Nuclei were isolated from individual cells using the 10X Genomics (Pleasanton, CA)  
Demonstrated Protocol CG000365: Nuclei Isolation for Single Cell Multiome ATAC + Gene Expression 
Sequencing. Briefly, cells were washed with cold PBS and trypsinized to a single-cell suspension. After pelleting 
at 300 rcf in a tabletop centrifuge in 15 mL conical tubes, cells were washed twice in 1 mL cold PBS supplemented 
with 0.04% BSA. Cells were then passed through a 40 μm strainer and counted using a standard hemocytometer. 
A total of 1,000,000 cells were transferred to 2 mL microcentrifuge tubes. Cells were resuspended in 100 mL of 
ice-cold Lysis Buffer (10 mM Tris-HCl at pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% NP-40, 0.01% 
digitonin, 1% BSA, 1 mM DTT, 1 U/mL RNase inhibitors, all in nuclease-free water) and incubated for 4 minutes 
on ice, followed by addition of 1 mL of Wash Buffer (10 mM Tris-HCl at pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1% 
BSA, 0.1% Tween-20, 1 mM DTT, and 1 U/mL RNase inhibitors in nuclease-free water). Cells were centrifuged 
at 500 rcf for 5 minutes at 4 °C to repellet. A total of 3 washes in Wash Buffer were performed. Cells were then 
suspended in 1 mL of 1x Nuclei Buffer (provided at 20x concentration by 10X Genomics in Chromium Next GEM 
Single Cell Multiome ATAC Kit A, PN-1000280) supplemented with 1 mM DTT and 1 U/mL RNase inhibitors. 
GEM generation and cell barcoding were immediately performed using 10X Genomics Chromium Controller 
and 10X Genomics Next GEM Chip J. ATAC and gene expression library construction was performed per the 
10X Genomics Next GEM Single Cell Multiome ATAC + Gene Expression User Guide, with reagents purchased 
from 10X Genomics. Sequencing was performed on the Illumina NovaSeq platform at the Harvard University 
Bauer Core facility.

Data analysis.  ATAC and gene expression FASTQ output files were demultiplexed and mapped to the 
Genome Refence Consortium hg38 reference genome with Cell Ranger ARC (10X Genomics) software on the 
Harvard University Bauer Core’s computing cluster. The resulting fragment files and count matrices were processed 
further using Signac version 1.1.0 and Seurat version 4.3.0.1, and implemented in R version 4.3.2 in the Rstudio 
computing environment version 2023.03.1 + 446. High-quality nuclei were selected based on the following criteria: 
ATAC counts > 2500 and <1000000, RNA counts > 2000 and <10000, nucleosome signal <2, transcriptional start 
site enrichment > 1, and mitochondrial RNA < 5% of total transcripts. Table 1 shows the number of cells from each 
line retained after qualiy filtering. ATAC peak calling was performed using the Signac “CallPeaks” function and 
MACS2 version 2.2.7.1. The standard Seurat and Signac workflows were then used to analyze data. Marker peaks 
for each cell line with the ATAC data were identified using the Seurat “FindAllMarkers” function with default argu-
ments, except for the following: only.pos = “TRUE”, test.use = “LR”, and latent.vars = “nCount_ATAC”. Similarly, 
marker genes for each cell line were identified with the same function, with the following adjustments to default 
arguments: only.pos = “TRUE”, logfc.threshold = 0.5, and min.pct = 0.2.

A B

C D

Min

Max

CHP134

SK-N-DZ

Be2c
SK-N-SH

SH-SY5Y

SK-N-AS

Fig. 2  Basic analysis of snRNA-seq data. (A) UMAP projection showing cells from each cell line largely cluster 
together based on transcript abundance. (B) Heatmap showing mean expression in each cell line of the top 250 
marker genes identified for each cell line. (C) Transcript abundance of MYCN within each cell, overlayed on 
the UMAP projection shown in (A). As anticipated, MYCN-amplified cell lines have markedly higher MYCN 
transcript levels. (D) Transcript abundance of PHOX2B within each cell, overlayed on the UMAP projection 
shown in (A). In contrast with MYCN, PHOX2B transcripts are abundant in all cell lines.
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Data Records
Raw FASTQ files, count matrices in CSV fomat, and key Cell Ranger output files (filtered gene expression feature 
marices and ATAC fragment files) have been uploaded to the NCBI Gene Expression Omnibus, with accession 
number GSE26218917. RDS files containing Seurat objects derived from analyzing each cell line as described 
here have been uploaded to Mendeley Data, with the following DOIs and corresponding URLs: 10.17632/
wvzz6hbttg.2 (https://data.mendeley.com/datasets/wvzz6hbttg/1)18, https://doi.org/10.17632/29g4826npf.1 
(https://data.mendeley.com/datasets/29g4826npf/1)19, https://doi.org/10.17632/9yc8d8bnss.1 (https://data.
mendeley.com/datasets/9yc8d8bnss/1)20, https://doi.org/10.17632/cp4d7t74vb.1 (https://data.mendeley.com/
datasets/cp4d7t74vb/1)21.

Technical Validation
We evaluated standard quality control metrics for snRNA-seq and snATAC-seq datasets. After filtering for 
high-quality nuclei, as described above, our dataset consistent of 41,733 nuclei. The gene expression data showed 
consistency of counts per nucleus and unique features per nucleus across the six cell lines studied (Fig. 1A,B). 
Similarly, ATAC data was consistent across cell lines with respect to transcriptional start site enrichment, nucle-
osome signal, and the number of counts in peaks (Fig. 1C–E).

We performed basic dimensional reduction, clustering, and analysis using transcriptional data. As expected, 
there was more variation between cell lines that within cell lines, as demonstrated on a UMAP projection 
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Fig. 3  Basic analysis of snATAC-seq data. (A) UMAP projection showing cells from each cell line largely cluster 
together based on chromatin accessibility. (B) Heatmap showing mean expression in each cell line of the top 
1000 marker peaks identified for each cell line. (C,E) Track plots showing ATAC counts in and around the 
MYCN and PHOX2B coding sequences in the indicated cell lines. (D,F) ATAC count abundance within each cell 
for the indicated MACS2 peaks, which lie within the MYCN (D) and PHOX2B (F) coding regions, overlayed on 
the UMAP projection shown in (A).
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(Fig. 2A). A subset of SK-N-SH cells does appear closely related to SH-SY5Y cells (Fig. 2A), which may be 
expected since SH-SY5Y cells are a subclose of the SK-N-SH line. We identified the top 250 marker genes for 
each cell line, relative to all other cell lines. Hierarchical clustering based on scaled expression of these 250 
genes shows that the non-MYCN-amplified cell lines (SHSY5Y, SK-N-SH, and SK-N-AS) were most similar to 
one another, with SK-N-SH and SH-SY5Y being most similar, while the MYCN-amplified cell lines (CHP134, 
Be2c, and SK-N-DZ) diverged from the non-amplified lines (Fig. 2B). Next, we assessed gene expression of two 
important neuroblastoma driver genes: MYCN and PHOX2B. As anticipated, our data show markedly higher 
expression of MYCN transcripts in the MYCN-amplified cell lines (Fig. 2C), while PHOX2B transcripts are more 
uniformly distributed across all six cell lines (Fig. 2D).

Similarly, we assessed the chromatin accessibility dataset in each cell line. Just as for gene expression data, 
we found that the greatest variability was between cell lines, as visualized on a UMAP projection (Fig. 3A). The 
top 1000 marker peaks for each cell line were identified and used to generate a heatmap (Fig. 3B). Hierarchical 
clustering of this data shows that the three non-MYCN-amplified lines cluster together and maintain open chro-
matin at similar genomic regions. Again, both the UMAP projection and hierarchical clustering of the heatmap 
suggest a close relationship between the SH-SY5Y and SK-N-SH lines (Fig. 3A,B). In contrast, MYCN-amplified 
lines show more divergence in their chromatin accessibility patterns. Due to MYCN amplification, we expect 
the CHP134, Be2c, and SK-N-DZ cell lines to have far more counts mapped to the MYCN locus than the 
non-amplified lines. A tracks plot of the MYCN gene shows these results (Fig. 3C). Similarly, counts within 
the ATAC peak found at chromosome 2, bases 15,939,296-15,943,697, which lies within the MYCN coding 
sequence, are seen exclusively in the MYCN-amplified lines (Fig. 3D). In contrast, there is a similar chromatin 
signal in both the coding sequence and upstream promoter region of PHOX2B, including at the peak at chromo-
some 4, bases 41,748,364-41,749,127 (Fig. 3E,F).

Code availability
R scripts use for processing and analysis of this data are publicly available at a Mendeley Data repository with 
https://doi.org/10.17632/s2fcfb8phh.1 (https://data.mendeley.com/datasets/s2fcfb8phh/1)22.
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