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Cyclopropeniminium ions exhibit unique reactivity profiles with 
bioorthogonal phosphines

Tyler K. Heiss†, Jennifer A. Prescher*,†,‡,§

†Departments of Chemistry, Irvine, California 92697, United States

‡Molecular Biology and Biochemistry, Irvine, California 92697, United States

§Pharmaceutical Sciences, University of California, Irvine, California 92697, United States

Abstract

We report a new ligation of cyclopropeniminium ions with bioorthogonal phosphines. 

Cyclopropeniminium scaffolds are sufficiently stable in biological media and, unlike related 

isomers, react with functionalized phosphines via formal 1,2-addition to a π-system. The ligation 

can be performed in aqueous solution and is compatible with existing bioorthogonal 

transformations. Such mutually compatible reactions are useful for multicomponent labeling.

Graphical Abstract

Bioorthogonal chemistries are powerful tools for investigating biomolecules in living 

systems.1,2,3 These transformations involve reagents that react selectively with one another 

while remaining inert to biological species. Such chemistries have enabled numerous 

applications in vitro and in vivo,4 including biomolecule imaging,5,6,7 antibody-drug 

conjugation,8,9 and on-demand drug release.10,11,12 While the number and examples of 

bioorthogonal reagents continue to grow, limitations remain.13,14,15,16 Many scaffolds are 

too large for routine use with biological targets. Several of the most popular reagents also 

cross-react, hindering multicomponent labeling applications.
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The need for additional biocompatible reagents has inspired several pursuits over the years.
17,18 We recently reported cyclopropenone (CpO) scaffolds with broad biological utility.19,20 

CpO motifs are relatively small and stable, and they react selectively with functionalized 

(and bioorthogonal) phosphines. The ligation proceeds via a unique ketene-ylide 

intermediate that can be trapped with a variety of nucleophiles (Figure 1).21 Modifications to 

the cyclopropenone core can also alter reactivity. For example, we showed that sulfur 

heteroanalogs (CpS) react more rapidly with substituted phosphines.22

We hypothesized that additional CpO analogs would broaden the scope of bioorthogonal 

reactivity.23,24 We were drawn to cyclopropeniminium (CpN+) motifs based on their 

previous use in aqueous environments (Figure 2).25,26,27 Mono-N-substituted scaffolds (e.g., 

I–III) are not stable across the entire span of physiological pH values.28 N,N-Disubstituted 

scaffolds, by contrast, are robust in a range of environments.29,30 CpN+ analogs have even 

been used as transfection reagents, suggesting compatibility with live cells.31 Furthermore, 

Hamada and colleagues showed that cyclopropenimines can react with triarylphosphines32

—reagents that have been well vetted in living systems.33,34,35

To evaluate CpN+ motifs as candidate bioorthogonal reagents, we first synthesized a panel of 

symmetric probes (2a–c, Scheme 1). The desired motifs were obtained from the 

corresponding cyclopropenones via carbonyl activation and amine displacement.25,36 To 

access 2a–b, commercially available alkynes were reacted with difluorocarbene and then 

hydrolyzed using the general procedure of Olah, et al.20,37 The resulting cyclopropenones 

were then alkylated with Meerwein’s reagent and subsequently treated with diethylamine. 

The aryl-substituted probe 2c was similarly accessed using commercially available 

diphenylcyclopropenone (1c). The overall yields for 2a–c were modest (Scheme S1), likely 

due to inefficient carbonyl activation. In each case, though, the remaining cyclopropenone 

could be readily recovered and re-subjected to the reaction sequence.

With the CpN+ compounds in hand, we tested their stabilities in aqueous solution (Table 

S1). Compounds 2a–c were dissolved in buffer (pH 7.4) and monitored via nuclear magnetic 

resonance (NMR) spectroscopy. Compounds 2a–b were stable for >2 d (Figures S1–S2), 

suggesting that they are suitable for biological use. Compound 2c, by contrast, degraded 

over 24 h (Figure S3). Aryl-substituted CpO and CpS derivatives were also previously 

observed to be less stable than their bis-alkylated counterparts.20,22 Alkyl-substituted CpN+ 

probes are susceptible to degradation at higher pH values, but they are sufficiently long-lived 

for most applications (t1/2 ~13 d at pH 8.4, Table S2).

CpN+ species were further examined in the presence of biologically relevant nucleophiles. 

Compounds 2a–c were incubated with amines or L-glutathione (5 mM) in aqueous buffer 

and analyzed via NMR spectroscopy. Analogs 2a–b were stable to exogenous amines, while 

2c degraded under similar conditions (Figure S4–S6). The probes also exhibited varying 

degrees of reactivity with cellular thiols (Figures S7–S9). The half-life of 2c in the presence 

of L-glutathione was ~7 h, while the half-life of 2b (the most robust probe) was ~41 h. 

Despite being less stable than their CpO or CpS counterparts, CpN+ probes are still suitable 

for use in non-reducing environments.20,22 The reaction between CpN+ motifs and L-
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glutathione also liberates diethylammonium ions and bioorthogonal CpO scaffolds (Figure 

S7–S9), a process that could potentially be exploited for caged probe release.

CpN+ analogs were hypothesized to react with functionalized phosphines via initial 

conjugate addition, ultimately undergoing ring opening similar to CpO and CpS derivatives 

(Figures 1 and S10).21,38,39 However, when 2b was incubated with phosphine 3a, the 

expected iminium product was not observed. Instead, a species with hemiaminal and 

phosphonium character was formed (4a, Figure 3A). Unfortunately, this product was found 

to revert to starting materials over time (Figure S11). A stable product was formed in the 

reaction of 2b and phosphine 3b, and spectral analyses confirmed the presence of a 

cyclopropane-phosphonium adduct (4b, Figure 3B). The 13C-31P coupling constants in the 
13C NMR spectrum were smaller than typical JC–P values (Figure S12). Cyclopropane 

carbon resonances are typically less affected by phosphorous nuclei.40 Additionally, 1H-1H 

COSY analysis revealed 4JH-H coupling between the endocyclic methine and exocyclic 

methylene protons (Figure S13). Such long-range interactions have been observed in related 

structures.41 NMR analyses also suggested a single diastereomer was formed. Unfortunately, 
1H-1H NOESY analysis could not distinguish among the possibilities (Figure S14). To 

unambiguously assign the stereochemistry, crystals of 4b were grown and analyzed via X-

ray diffraction (Figure 3C). The structure confirmed the presence of a cyclopropane-

phosphonium bicycle (Figure S15, Table S2). Interestingly, the phosphorus and sulfur atoms 

were positioned on the same face of the ring as the methine proton.

The CpN+-phosphine ligation is also compatible with aqueous solvent. When 2b and 

phosphine 3b were mixed in CH3CN containing 50% water, conversion to the expected 

adduct 4b was observed (Figures S16 and S17). Thiohemiaminal 4b was also stable over 

time in aqueous solution (Figure S18). To further probe the longevity of 4b in biological 

environs, we incubated the compound with L-glutathione (Figure S19). No degradation was 

observed over 24 h. Related thiohemiaminal motifs comprise natural products and drug 

scaffolds, providing further evidence for their biocompatbility.42,43

The CpN+-phosphine ligation appears to be a highly unusual formal [4+2] bis-nucleophilic 

cycloaddition. The observed stereoselectivity can be explained via the mechanism shown in 

Figure 3D. We propose that phosphines 3a–b first react with 2b to form enamine 

intermediates. Intramolecular proton transfer to a single face of the enamine dictates the 

observed stereochemistry. The deprotonated nucleophile can then attack the iminium 

species, generating a product with the phosphonium, nucleophile, and proton positioned on a 

single face of the cyclopropane ring.

The proposed mechanism is further supported by reactivity data. When 2b was incubated 

with a panel of functionalized phosphines (3a–e), reactions were only observed with the 

phenol and thiophenol conjugates (3a–b, Table 1 and Figure S20). No reaction was observed 

with the corresponding aniline probes 3c–d (Figures S21 and S22), even when the less 

sterically encumbered CpN+ 2a was used (Figure S23). The trends in reactivity correlate 

with the pKa values of the pendant nucleophiles, with efficient ligation observed with the 

most acidic residues (pKa ~ 10, 6 for 3a–b, respectively). Intramolecular proton transfer is 

likely, as no ligation was observed when triphenylphosphine and exogenous thiophenol were 
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combined with 2b (1:1, data not shown). Slight reactivity was observed only when >100 

equivalents of thiophenol were present (Figure S24). Further evidence for the proposed 

mechanism comes from a lack of reactivity between 2b and phosphine 3e. The more 

nucleophilic cyclohexyl phosphine44 has been shown to robustly ligate CpO and CpS 

derivatives20 In the case of CpN+ species, though, no reactivity was observed (Figure S25), 

likely due to inefficient proton transfer (Figure S26).

The unique reactivity profile of CpN+ motifs suggested that they could be used in tandem 

with other bioorthogonal reagents, even the structurally related cyclopropenones. CpO 

derivatives react quickly with phosphine 3e (k2 = 0.34 ± 0.06 M–1 s–1), but the same 

phosphine does not ligate 2b.20 Conversely, phosphine 3b reacts readily with 2b (k2 = 2.3 

± 0.3 × 10–3 M–1 s–1) but only sluggishly with similar cyclopropenones (k2 ≤ 10–5 M–1 s–1).
20 To examine whether the CpO- and CpN+-phosphine ligations could be used concurrently, 

cyclopropenone 1b, CpN+ 2b, and phosphines 3b and 3e were mixed together, and the 

reactions were monitored by 1H- and 31P-NMR spectroscopy (Figures S27–S28). The 

expected ligation products formed, but a minor cross product was also observed (Figure 

S29). This product would be unlikely to form under biologically relevant conditions, when 

lower reactant concentrations are typically employed (Figure S29). Nonetheless, to 

showcase the exquisite compatibility of the CpO and CpN+ probes, we performed the 

ligations sequentially. Compounds 1b, 2b, and 3e were first incubated, and only the expected 

carbonyl adduct was observed (Figures 4, S30–S32). Phosphine 3b was then added, and the 

cyclopropane adduct formed with no cross products observed. Considering that the CpO and 

CpN+ scaffolds differ by just a single heteroatom, it is noteworthy that they can be used for 

multi-component labeling.

In conclusion, we investigated N,N-dialkylcyclopropeniminium (CpN+) ions as new 

bioorthogonal reagents. A panel of CpN+ scaffolds was designed and synthesized. We tested 

the motifs in the presence of cellular nucleophiles, such as thiols and amines. We determined 

that dialkylated CpN+ analogs react readily with functionalized phosphines to form 

cyclopropane-phosphonium adducts. The unique reactivity profiles of CpN+ motifs enabled 

the reagents to be used in tandem with CpO probes. Collectively, cyclopropeniminium ions 

will be useful additions to the bioorthogonal toolkit and are poised for a variety of 

applications. Future work will address methods to install the probes on a range of target 

biomolecules for deployment in biological settings.

EXPERIMENTAL SECTION

General synthetic procedures.

Compounds 3a,45 3b,46 3c,47 and 3d–e20 were prepared according to literature procedures. 

All reagents and solvents were used as received, unless otherwise specified. Anhydrous 

organic solvents were prepared by degassing with argon and passing through two 4 × 36 in. 

columns of anhydrous neutral A2 (8 × 12 mesh; LaRoche Chemicals: activated at 350°C for 

12 h under a flow of argon). Column chromatography was carried out using Silicycle 60 Å 

(230–400 mesh) silica gel. Thin layer chromatography (TLC) was carried out with Merck 

Millipore 250 mm silica gel F-254 plates. Plates were visualized using UV light or KMnO4 
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stain. Organic solutions were concentrated under reduced pressure using a Büchi rotary 

evaporator.

1H, 13C, and 31P NMR spectra were obtained using Bruker instruments: DRX400, DRX500 

equipped with a cryoprobe, or AVANCE600 equipped with a cryoprobe. 1H NMR spectra 

were acquired at 400 MHz, 500 MHz, or 600 MHz, 13C spectra were acquired at 125 MHz 

or 151 MHz, and 31P spectra were acquired at 162 MHz or 243 MHz. Spectra were 

internally referenced to residual solvent signals (7.27 ppm for 1H and 77.16 ppm for 13C for 

CDCl3, 3.31 ppm for 1H and 49.0 ppm for 13C for CD3OD, 1.94 ppm for 1H and 1.32 ppm 

for 13C for CD3CN, and 4.79 ppm for 1H for D2O). 31P NMR spectra were referenced by 

indirect absolute chemical shift to residual protic solvent signals. All spectra were acquired 

at 298 K. Chemical shifts are reported in ppm, and coupling constants (J) are reported in Hz. 

In some cases, internal standards were used (trimethylsilylacetylene for 1H NMR and 

triphenylphosphine oxide for 31P NMR). Mass spectra were acquired at the University of 

California, Irvine Mass Spectrometry Facility. Crystallographic analysis was performed at 

the University of California, Irvine X-Ray Crystallography Facility.

Preparation of 2,3-dimethylcycloprop-2-en-1-one (1a).

Compound 1a was prepared following the procedure of Shih, et al., with some 

modifications.19 To an oven-dried sealed tube containing a stir bar was added NaI (1.65 g, 

11.0 mmol). The NaI was gently flame-dried under vacuum and then allowed to cool to 

room temperature. A solution of 2-butyne (0.39 mL, 5.0 mmol) in anhydrous THF (15 mL) 

was added under an atmosphere of N2. Trifluoromethyltrimethylsilane (1.47 mL, 10.0 

mmol) was added, and the tube was sealed. The solution was stirred rapidly at room 

temperature for 2 d, then diluted with H2O (60 mL) and extracted into CH2Cl2 (3 × 60 mL). 

The combined organic layers were dried over Na2SO4, filtered, and concentrated in vacuo. 

The residue was dry-loaded onto silica (3 g) and purified by flash column chromatography 

(eluting with 30% acetone/CH2Cl2) to afford compound 1a as a yellow oil (0.33 g, 4.0 

mmol, 80%). Spectra matched those previously reported.48

Preparation of 2,3-diethylcycloprop-2-en-1-one (1b).

Compound 1b was prepared following the procedure of Shih, et al., with some 

modifications.19 To an oven-dried sealed tube containing a stir bar was added NaI (0.804 g, 

5.36 mmol). The NaI was gently flame-dried under vacuum and then allowed to cool to 

room temperature. A solution of 3-hexyne (0.39 mL, 5.0 mmol) in anhydrous THF (7.3 mL) 

was added under an atmosphere of N2. Trifluoromethyltrimethylsilane (0.72 mL, 4.9 mmol) 

was added, and the tube was sealed. The solution was stirred rapidly at room temperature for 

2 d, then diluted with H2O (30 mL) and extracted into CH2Cl2 (3 × 30 mL). The combined 

organic layers were dried over Na2SO4, filtered, and concentrated in vacuo. The residue was 

dry-loaded onto silica (2 g) and purified by flash column chromatography (eluting with 5% 

acetone/ethyl acetate) to afford compound 1b as a yellow oil (0.24 g, 4.0 mmol, 91%). 

Spectra matched those previously reported.49

Heiss and Prescher Page 5

J Org Chem. Author manuscript; available in PMC 2020 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Preparation of N-(2,3-dimethylcycloprop-2-en-1-ylidene)-N-ethylethanaminium 
tetrafluoroborate (2a).

To an oven-dried round bottom flask containing a stir bar was added cyclopropenone 1a (25 

mg, 0.31 mmol) and anhydrous CH2Cl2 (2 mL) under an atmosphere of N2. 

Triethyloxonium tetrafluoroborate (1 M in CH2Cl2, 0.31 mL, 0.31 mmol) was added 

dropwise, and the reaction was stirred at room temperature for 20 min. A solution of 

diethylamine (0.032 mL, 0.31 mmol) was prepared in anhydrous CH2Cl2 (1 mL). Both 

solutions were chilled to 0°C. The diethylamine solution was then added dropwise to the 

solution of alkylated 1a, and the reaction was monitored by TLC (25% acetone/CH2Cl2). 

After 2 h, the reaction was concentrated in vacuo, and the residue was purified by flash 

column chromatography (eluting with 5% toluene/25% acetone/CH2Cl2) to afford 

compound 2a as an orange oil (43 mg, 0.19 mmol, 22%). 1H NMR (400 MHz, CD3OD) δ 
3.64 (q, J = 7.3 Hz, 4H), 2.52 (s, 6H), 1.36 (t, J = 7.3 Hz, 6H). 13C{1H} NMR (151 MHz, 

CD3OD) δ 150.0, 143.5, 47.8, 12.2, 8.5. HRMS (ESI-TOF) m/z calculated for C9H16N [M]
+ 138.1283, found 138.1281.

Preparation of N-(2,3-diethylcycloprop-2-en-1-ylidene)-N-ethylethanaminium 
tetrafluoroborate (2b).

To an oven-dried round-bottom flask containing a stir bar was added cyclopropenone 1b (39 

mg, 0.35 mmol) and anhydrous CH2Cl2 (3 mL) under an atmosphere of N2. 

Triethyloxonium tetrafluoroborate (1 M in CH2Cl2, 0.35 mL, 0.35 mmol) was added 

dropwise, and the reaction was stirred at room temperature for 20 min. A solution of 

diethylamine (0.051 mL, 0.50 mmol) was prepared in anhydrous CH2Cl2 (1 mL). Both 

solutions were chilled to 0 °C. The diethylamine solution was then added dropwise to the 

solution of alkylated 1b, and the reaction was monitored by TLC (10% acetone/CH2Cl2). 

After 2 h, the reaction was concentrated in vacuo, and the residue was purified by flash 

column chromatography (eluting with 5% toluene/10% acetone/CH2Cl2) to afford 

compound 2b as a yellow oil (31 mg, 0.12 mmol, 35%). 1H NMR (400 MHz, CD3CN): δ 
3.58 (q, J = 7.3 Hz, 4H), 2.84 (qt, J = 7.5, 1.1 Hz, 4H) 1.33 (t, J = 7.5 Hz, 6H), 1.29 (t, J = 

7.3 Hz, 6H). 13C{1H} NMR (151 MHz, CD3CN): δ 150.8, 148.3, 49.6, 18.5, 13.6, 11.0. 

HRMS (ESI-TOF) m/z calcd for C11H20N [M]+ 166.1596, found 166.1598.

Preparation of N-(2,3-diphenylcycloprop-2-en-1-ylidene)-N-ethylethanaminium 
tetrafluoroborate (2c).

To an oven-dried round bottom flask containing a stir bar was added cyclopropenone 1c (53 

mg, 0.26 mmol) and anhydrous CH2Cl2 (3 mL) under an atmosphere of N2. 

Triethyloxonium tetrafluoroborate (1 M in CH2Cl2, 0.26 mL, 0.26 mmol) was added 

dropwise, and the reaction was stirred at room temperature for 20 min. A solution of 

diethylamine (0.037 mL, 0.34 mmol) was prepared in anhydrous CH2Cl2 (1 mL). Both 

solutions were chilled to 0°C. The diethylamine solution was then added dropwise to the 

solution of alkylated 1c at 0°C, and the reaction was monitored by TLC (5% acetone/

CH2Cl2). After 2 h, the reaction was concentrated in vacuo, and the residue was purified by 

flash column chromatography (eluting with 5% toluene/15% acetone/CH2Cl2) to afford 

compound 2c as a yellow solid (13 mg, 0.035 mmol, 14%). 1H NMR (400 MHz, CD3CN) δ 
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8.15–8.11 (m, 4H), 7.88–7.83 (m, 2H), 7.80–7.74 (m, 4H), 3.96 (q, J = 7.3 Hz, 4H), 1.47 (t, 

J = 7.3 Hz, 6H). 13C{1H} NMR (151 MHz, CD3CN) δ 144.8, 136.2, 135.8, 133.7, 131.1, 

121.5, 50.7, 14.6. HRMS (ESI-TOF) m/z calculated for C19H20N [M]+ 262.1596, found 

262.1593.

Preparation of 1a-(diethylamino)-1,7a-diethyl-7,7-diphenyl-1,1a,7,7a-
tetrahydrobenzo[b]cyclopropa[e][1,4]-oxaphosphinin-7-ium tetrafluoroborate (4a).

To an oven-dried scintillation vial was added cyclopropeniminium 2b (18.3 mg, 0.072 

mmol) and anhydrous MeCN (2.0 mL). Once dissolved, phosphine 3a (40 mg, 0.144 mmol) 

was added and the reaction vessel was flushed with Ar. The reaction was then stirred under 

an inert atmosphere, and reaction was monitored by TLC (10 % acetone/CH2Cl2). After 72 

h, the solution was concentrated in vacuo and purification was attempted by flash column 

chromatography (eluting with 5% toluene/10% acetone/CH2Cl2). While isolable, compound 

4a was found to revert to starting materials 2b and 3a at room temperature, preventing full 

characterization of compound 4a (see Figure S11). 31P{1H} NMR (162 MHz, CD3CN) δ 
16.3. HRMS (ESI-TOF) m/z calculated for C29H35NPO [M]+ 444.2456, found 444.2500.

Preparation of 1a-(diethylamino)-1,7a-diethyl-7,7-diphenyl-1,1a,7,7a-
tetrahydrobenzo[b]cyclopropa[e][1,4]-thiaphosphinin-7-ium tetrafluoroborate (4b).

To an oven-dried scintillation vial was added cyclopropeniminium 2b (26 mg, 0.11 mmol). 

and anhydrous MeCN (5.3 mL). Once dissolved, phosphine 3b (34 mg, 0.12 mmol) was 

added and the reaction vessel was flushed with Ar. The reaction was then stirred under an 

inert atmosphere, and the reaction was monitored by TLC (10 % acetone/CH2Cl2). After 12 

h, the solution was then concentrated in vacuo and purified by flash column chromatography 

(eluting with 5% toluene/10% acetone/CH2Cl2) to afford compound 4b as a white solid (27 

mg, 0.049 mmol, 46%). 1H NMR (500 MHz, CD3OD) δ 7.99–7.96 (m, 2H), 7.89–7.79 (m, 

8H), 7.72–7.67 (m, 2H), 7.58–7.54 (m, 1H), 7.33 (dd, J = 12.4, 7.9 Hz, 1H), 2.97 (dq, J = 

15.1, 7.5 Hz, 1H), 2.89 (dq, J = 13.8, 7.0 Hz, 1H), 2.69 (dq, J = 13.8, 7.0 Hz, 1H), 2.47–2.28 

(m, 4H), 1.99 (app quint, J = 7.1 Hz, 1H), 1.24 (t, J = 7.4 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H), 

1.04 (t, J = 7.3 Hz, 3H), 0.68 (t, J = 7.5 Hz, 3H). 31P{1H} NMR (243 MHz, CD3OD) δ 20.5. 
13C{1H} NMR (151 MHz, CD3OD) δ 144.6 (d, J = 6.5 Hz), 137.3 (d, J = 10.5 Hz), 137.3 

(d, J = 2.3 Hz), 136.7–136.6 (m), 136.1 (d, J = 9.8 Hz), 135.4 (d, J = 9.8 Hz), 133.0 (d, J = 

7.5 Hz), 132.0 (d, J = 12.9 Hz), 132.0 (d, J = 12.5 Hz), 129.3 (d, J = 12.3 Hz), 119.3 (d, J = 

96.4 Hz), 118.3 (d, J = 89.0 Hz), 117.6 (d, J = 85.5 Hz), 69.8 (d, J = 3.9 Hz), 49.7, 49.6, 41.4 

(d, J = 4.0 Hz), 35.2 (d, J = 72.5 Hz), 20.4 (d, J = 5.0 Hz), 18.4 (d, J = 1.1 Hz), 15.2, 14.7, 

14.4, 12.0. HRMS (ESI-TOF) m/z calculated for C29H35NPS [M]+ 460.2228, found 

460.2208.

Reaction compatibility of CpO- and CpN+-phosphine ligations.

For the simultaneous ligation experiment, cyclopropenone 1b (20 mM), 

cyclopropeniminium ion 2b (20 mM), cyclohexyl phosphine 3e (20 mM), thiophenol 

phosphine 3b (20 mM), and trimethylsilylacetylene (4 mM, internal standard for 1H NMR) 

were combined in CD3CN (containing 14% C6D6) in an oven-dried NMR tube. The reaction 

was monitored by 1H- and 31P{1H}-NMR spectroscopy. For the sequential ligation 
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experiment, cyclopropenone 1b (20 mM), cyclopropeniminium ion 2b (20 mM), phosphine 

3e (24 mM), triphenylphosphine oxide (2 mM, internal standard), and 

trimethylsilylacetylene (2 mM, internal standard) were combined in CD3CN (containing 

20% C6D6) in an oven-dried NMR tube. The reaction was monitored by 1H- and 31P-NMR 

spectroscopy. When 1b was consumed, phosphine 3b (18 mM) was added to the solution. 

The reaction was monitored by 1H- and 31P{1H}-NMR spectroscopy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cyclopropenone analogs can be ligated with bioorthogonal phosphines. Cyclopropenone 

(CpO) and cyclopropenethione (CpS) scaffolds react with substituted phosphines to provide 

carbonyl adducts. In this work, we examine the reactivity of analogous cyclopropeniminium 

(CpN+) ions.
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Figure 2. 
Cyclopropeniminium analogs are candidate bioorthogonal probes.
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Figure 3. 
The CpN+-phosphine ligation. (A) CpN+ 2b reacts with phosphines 3a–b to yield 

cyclopropane-phosphonium adducts 4a–b. (B) Structure of 4b as suggested by correlative 

NMR analyses. Key connections are indicated. (C) ORTEP diagram of 4b showing thermal 

ellipsoids at the 50% probability level (hydrogens have been omitted for clarity). (D) 

Proposed mechanism for the formation of 4a–b. Phosphines 3a–b react with 2b via a 

conjugate addition. Subsequent intramolecular proton transfer and nucleophilic attack 

provide the observed adducts. aIsolated yield 46%.
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Figure 4. 
Compatible CpO- and CpN+-phosphine ligations. CpO 1b (blue triangle), CpN+ 2b (pink 

triangle), and phosphine 3e (light blue circle) were mixed in 20% C6D6/CD3CN. A single 

adduct formed (dark blue circle). After 4 h, phosphine 3b (light pink circle) was added, 

providing the second adduct (red circle). Full spectra are provided in Figures S30 and S31.
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Scheme 1. 
Synthesis of CpN+ probes
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Table 1.

CpN+ species reactivity with functionalized phosphines
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