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Abstract

Localized surface forcings are very common in physical scenarios, for instance, in the
case of a storm over an ocean that lasts for a limited time. We perform a theoretical
study of the transmission of two-dimensional internal waves generated by a localized
surface forcing through non-uniform density stratifications. We solve the two-dimensional
Boussinesq internal wave equations using a weakly viscous linear model for a stratification
that gradually changes in a finite transition layer. It is observed that time-localization of
the forcing contributes to the disappearance of transmission peaks that would otherwise
be present in the case of a harmonic forcing. We then conclude by demonstrating how
this directly impacts the downward energy flux of the internal waves.

1 Introduction

Internal waves are propagating disturbances in a density stratified medium that is gravi-
tationally stable. Linear internal waves excited by a forcing in a uniformly stratified fluid
propagate at a fixed angle to the horizontal. One of the first experimental evidences of
internal waves was found by Mowbray and Rarity (1967), who observed a St. Andrew’s
Cross pattern by oscillating a cylinder in a stratified fluid. Internal waves are observed
readily in the ocean and the atmosphere as they are mediums that are naturally stratified.
It has been shown by Alford (2003) that internal waves contribute to the redistribution
of energy available for global ocean mixing and are thus important inputs for climate
models.

Oceanic and atmospheric stratifications are highly non-uniform. One such example is
the double-diffusive stratification structure that has been observed in the central Canada
Basin of the Arctic ocean (Timmermans et al. (2008)). It is thus important to study
the propagation of internal waves through non-uniform stratifications. Sutherland and
Yewchuk (2004) theoretically computed the transmission coefficient for harmonic internal
waves encountering a mixed region sandwiched between linearly stratified layers. This
study was then extended by Mathur and Peacock (2009) in studying the propagation of
internal wave beams through non-uniform stratifications. An interesting analogy between
a Fabry-Perot interferometer and harmonic internal wave transmission was shown both
theoretically and experimentally by Mathur and Peacock (2010). Most recently, a study
by Ghaemsaidi et al. (2016) has shown that layered stratifications have a rich transmis-
sion behavior for internal waves that are harmonic and horizontally periodic. Multiple
transmission peaks exist due to interactions between propagating and evanescent waves

(Ghaemsaidi (2015)).

All the above mentioned studies consider harmonic internal waves. In contrast, we con-
sider internal waves generated by a time-localized forcing, which is potentially very dif-
ferent because of a higher frequency content in the forcing. We discuss the mathematical
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formulation of the problem in section (2), present the results in section (3) and conclude
in section (4).

2 Mathematical Formulation

The dynamics of two-dimensional linear internal waves propagating in a viscous stratified
fluid is given by (Sutherland (2010)):

(VW) + N (2)*we = v(V'0), (1)

w is the vertical velocity field and N (z) is the buoyancy frequency that is given by N(z) =
V/(=g/po)dp/dz. Here, py is the characteristic density of the fluid, p is the background
density, g is the gravitational acceleration and v is the kinematic viscosity of the fluid.
The physical system under consideration is shown in figure (1). The buoyancy frequency
changes from a value of N7 to Ny through a transition layer of thickness A that lies a
distance L below the top boundary.

zt Wy

N(z) # =~

Figure 1: A sketch of the physical system. wy(z,t) is the forcing function that fixes the vertical velocity at
the top boundary (z=0) of the system. The physical domain extends from —oo to +o00 in the x direction.
z = 21 acts as a boundary through which waves are allowed to pass through freely. The thickness of the
transition layer is A and its midpoint lies a distance L below the top of the boundary.

We solve equation (1) spectrally in 2 and ¢. A general vertical velocity forcing function
can be decomposed into its Fourier modes as follows.

+o0 +oo
wy(z,t) = / / Wy, e 5= dk du (2)

For each Fourier mode of the forcing, we substitute an ansatz w(z)exp(i(kx — wt)) for
w(z, z,t) in equation (1) to obtain

. . N 9
{U\ZZZZ + (Zﬁ - 2k2) @zz + kg (kj? + Zﬁ ( (Z) - 1)) 1/1} - O (3)

v v w?

Equation (3) is solved using the MATLAB bup/c solver to obtain @w(z;w, k) (Ghaemsaidi
et al. (2016)). The general solution at the top and bottom boundaries can be written as

(4)

. Zexp(miz) + Rexp(—mqz) at 2 =0
T exp(maz) at z =z
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Here, Z, R and T are the amplitudes of the incident, reflected and transmitted waves
through the transition layer. m; and msy are the local vertical wavenumbers in the N; and
N5 layers respectively, such that the group velocity of the incident and the transmitted
waves points downwards and they are weakly damped. The representation in equation
(4) allows us to implement two boundary conditions each at z = 0 and z = 2. After
obtaining the vertical structures for all the Fourier modes, we transform them back to the
space-time domain to obtain the vertical velocity field w(x, z,t).

3 Results

To demonstrate the effects of localization, we consider a velocity forcing function that is
given by

wy(, 1) = Aexp(i(koz — wot)) exp <M> exp (M> tee. (5)

2 2
207; 207

The above function is essentially a harmonic function in x and ¢ but is localized by
the respective Gaussian functions. This widens the frequency and wavenumber content
around wy and kg depending on the widths of the Gaussian functions given by o; and o,
respectively. A is the maximum value of the forcing velocity.

The following stratification profile is considered for our model case study.

N1 + NQ N1 — N2 zZ+ L
Nz = ———= ——~ ) tanh
0= (557) (7)o (55) ®
A snapshot of the theoretically computed vertical velocity field is presented in a non-
dimensional form in figure (2).

Time-Space Visualisation of the Forcing (¢N; = 112.00)
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Figure 2: The velocity field at tN; = 112 (for A/L = 0.5, N1 /N3 = 0.6, wy/N1 = 1/3, 0 N7 = 15,
0x/L =1and kgL = 5). The top panel shows the time-space nature of the forcing wherein the horizontal
line indicates the current time. At this time instant, the forcing has already decayed. The bottom left
panel indicates the stratification profile and the bottom right panel shows the vertical velocity field in
the domain at the current time instant.
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We now fix the non-dimensional parameters o,/L = 1 and koL = 5, and vary o, and
wp. From the obtained vertical velocity field, we compute the transmission parameter
(1o = max(w(z = z;2,t))/A) and total transmitted energy (non-dimensionalized by
poA%L?). These quantities are plotted in figure (3). For the lowest value of o, both
the quantities vary monotonically with wy indicating the absence of interference effects.
As the value of o, is increased, more time is available for the wave beam to reflect off
the transition region and interfere with the forcing. This leads to the appearance of
interference peaks.
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Figure 3: Plots of (a) transmission parameter based on w (7,) and (b) the total dimensionless energy

4 Conclusion

We have performed a theoretical study of the transmission of internal waves that are
generated by a boundary forcing that is localized in time.This has been done by employing
a weakly viscous psuedo-spectral model to solve the linear internal wave equations for any
arbitrary stratification and surface forcing. As the forcing gets localized, the frequency
content around the dominant frequency gets wider which affects the interference peaks.
We choose a sample forcing function and perform a case study to demonstrate this effect.
Through a parametric study, we show that as the forcing gets de-localized, we start
observing the appearance of interference peaks in the transmission spectra. This in turn
affects the total energy that is transferred due to the forcing.

Future work in this study would involve understanding the effect of localization in both
space and time. Physical arguments pertaining to the group velocity of internal waves be-
longing to the dominant wavenumber and frequency can help in identifying the parameter
regimes where a harmonic analysis can produce incorrect results.
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