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Simple Summary: Biofilm formation by Staphylococcus aureus in foods poses a potential concern for
public health and food safety. Therefore, the present study was conducted to detect biofilm-producing
S. aureus from foods and human hand swabs using phenotypic and genotypic assays. In this study, S.
aureus was detected in 23.81% (100/420) of samples, and among them, 89 and 97 of the isolates were
biofilm producers by qualitative and quantitative tests, respectively. At least one biofilm-forming
gene was detected in 21 S. aureus isolates, of which four isolates harbored all five adhesion genes (icaA,
icaB, icaC, icaD, and bap). In addition, the occurrence of adhesion genes in S. aureus isolates showed a
strong significant correlation among themselves. This is the first report on detecting biofilm-forming
S. aureus from foods and hand swabs in Bangladesh using the molecular technique. The findings
from this study indicate a significant public health risk and suggest the necessity of maintaining food
hygiene practices at every step of the food chain to prevent and control S. aureus foodborne illness.

Abstract: Staphylococcus aureus is a major foodborne pathogen. The ability of S. aureus to produce biofilm is
a significant virulence factor, triggering its persistence in hostile environments. In this study, we screened a
total of 420 different food samples and human hand swabs to detect S. aureus and to determine their biofilm
formation ability. Samples analyzed were meat, milk, eggs, fish, fast foods, and hand swabs. S. aureus
were detected by culturing, staining, biochemical, and PCR. Biofilm formation ability was determined
by Congo Red Agar (CRA) plate and Crystal Violet Microtiter Plate (CVMP) tests. The icaA, icaB, icaC,
icaD, and bap genes involved in the synthesis of biofilm-forming intracellular adhesion compounds were
detected by PCR. About 23.81% (100/420; 95% CI: 14.17–29.98%) of the samples harbored S. aureus, as
revealed by detection of the nuc gene. The CRA plate test revealed 20% of S. aureus isolates as strong
biofilm producers and 69% and 11% as intermediate and non-biofilm producers, respectively. By the
CVMP staining method, 20%, 77%, and 3% of the isolates were found to be strong, intermediate, and
non-biofilm producers. Furthermore, 21% of S. aureus isolates carried at least one biofilm-forming
gene, where icaA, icaB, icaC, icaD, and bap genes were detected in 15%, 20%, 7%, 20%, and 10% of the
S. aureus isolates, respectively. Bivariate analysis showed highly significant correlations (p < 0.001)
between any of the two adhesion genes of S. aureus isolates. To the best of our knowledge, this is the
first study in Bangladesh describing the detection of biofilm-forming S. aureus from foods and hand
swabs using molecular-based evidence. Our findings suggest that food samples should be deemed a
potential reservoir of biofilm-forming S. aureus, which indicates a potential public health significance.

Keywords: biofilm formation; S. aureus; CRA plating test; CVMP test; ica genes; bap gene; foods;
public health; Bangladesh
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1. Introduction

Staphylococcus aureus is a food-borne pathogen ranked as the third most common
bacterial cause of foodborne illness worldwide [1]. Consuming foods contaminated with
heat-stable staphylococcal enterotoxins is a major cause of staphylococcal food poisoning,
which leads to abdominal cramps, diarrhea, nausea, vomiting, endocarditis, pneumonia,
toxic shock, and even skin infections in humans [2]. Food handlers, hand contact surfaces,
and food contact surfaces are important sources of S. aureus transmission in food processing
facilities, particularly during food processing and packaging [3].

Various pathogenic bacteria or other spoilage bacteria can be attached to hand and
food contact surfaces as planktonic or adherent cells to form a biofilm. Biofilms are a
common approach adopted by bacteria to endure various hostile environmental conditions
by forming an aggregation of microbial cells surrounded by exopolymeric substances [4].
Biofilm-forming bacteria have several advantages over planktonic cells by showing more
resistance to environmental stress conditions, sanitizers, and antimicrobials. Bacterial
attachment and biofilm formation are affected by factors such as bacterial types, contact
surface characteristics, growth conditions, and other environmental factors [5].

Staphylococcus aureus affects food quality and safety by persisting and developing
biofilms in food processing environments. Biofilm development in S. aureus depends on five
stages: initial attachment, unchangeable attachment, first maturation, second maturation,
and finally detachment [6]. The extracellular matrix of staphylococcal biofilms includes ex-
opolysaccharide, proteaceous, and extracellular DNA [7]. Exopolysaccharide, also termed
Polysaccharide Intercellular Adhesin (PIA) or Poly-β-1,6-N-acetyl-D-glucosamine (PNAG),
is the first widely researched matrix element. Its production and secretion are generated by
a protein expressed in the icaADBC, an intercellular adhesion (ica) operon that includes icaA
and icaB (both belong to N-acteylglucosamine transferase), icaC (belongs to an anticipated
exporter), and icaD (belongs to a deacetylase) [8]. The staphylococcal biofilm formation
significantly depends on the ica operon and environmental factors such as temperature,
osmotic pressure, glucose, and low oxygen to induce its expression [9]. Certain species of S.
aureus may also encode a microbial surface component named biofilm-associated protein
(bap) that recognizes adhesive matrix substances and confers PIA production and biofilm
development independently via cell-to-cell aggregation [10]. These bap and bap-associated
proteins have the ability to be present on bacterial surfaces, show virulence properties, and
control mobile elements [11].

Contamination of biofilm-forming S. aureus in food sources is a serious public health
concern. Understanding staphylococcal biofilm formation is, therefore, pivotal to develop-
ing strategies for preventing biofilm-related contamination. As we know, there is no report
on detecting biofilm-forming S. aureus phenotypically and genotypically from food sources
in Bangladesh. The present study was therefore aimed: (1) to investigate biofilm produc-
tion in S. aureus isolates by phenotypic and quantification approaches and (2) to evaluate
different biofilm-related genes (icaADBC and bap) of S. aureus isolated from different food
sources in Bangladesh.

2. Materials and Methods
2.1. Sample Size Calculation

Because no previous research had been conducted in Bangladesh, we could estimate
the prevalence of biofilm-forming S. aureus to be 50%. Therefore, the sample size was
enumerated following the formula described by Thrusfeld [12]:

n =
Z2 pq

d2

where n = desired sample size, Z = the standard normal deviation at 95% confidence level
(1.96), p = assumed prevalence (50% = 0.5), q = 1 − p = (1 − 0.5) = 0.5, d = precision (it may
be 5% or 10%, for the best accuracy we assume 5%, so d = 0.05). Therefore, n = (1.96)2 × 0.5
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× 0.5/(0.05)2 = 384. To account for non-response, 10% more samples were calculated, and
then the sample size was = (384 + 10% of 384) = (384 + 38.4) ≈ 422. However, 420 samples
were collected related to foods and food products.

2.2. Study Area and Sampling

The present study was carried out in Mymensingh Sadar Upazila (24.7851◦ N, 90.3560◦ E),
Mymensingh district of Bangladesh, between June 2021 and March 2022. The study area is
featured in Figure 1.

1 
 

 
Figure 1. Sample location map of the study area. The map was created by ArcMap 10.7 (ArcGIS
Enterprise, ESRI, Redlands, CA, USA).

A total of 420 samples associated with food and food products were collected asepti-
cally, comprising human hand swab—60, raw milk—60, chicken muscle—60 (breast—30
and thigh—30), fish—60, egg surface—60, ready-to-eat foods—120 (fuchka—20, French
fries—20, vegetable fries—20, puri—20, singara—20, and samosa—20).

Hand swabs were taken from vendors and dairy farms’ owners using sterile cotton
buds, followed by immediately transferring into sterile test tubes containing 5 mL of nutri-
ent broth (NB; HiMedia, India); 4 mL of raw milk (immediately after milking) was collected
by sterile falcon tubes from different dairy farms; breast (25 g) and thigh (25 g) muscles from
each chicken were collected by sterile zip-lock bags from poultry slaughterhouses; fresh
fishes were collected from different local fish markets and eggs from egg markets using
sterile zip-lock bags. In addition, ready-to-eat foods were collected from different food
vendors and restaurants using sterile zip-lock bags. After collecting samples, particular tag
numbers were given and transferred to the laboratory by maintaining a cold chain.
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2.3. Sample Processing

After taking samples to the laboratory, each raw milk sample collected was vortexed,
and 1 mL of sample was transferred into 5 mL of NB, contained in a sterile test tube. For
chicken meat, 5 g of each sample was ground and transferred into 5 mL of NB, contained in
a sterile test tube, followed by mixing homogenously. For ready-to-eat food samples, 20 mL
of sterile phosphate buffer saline (PBS) was added to each sample and mixed by grinding
with a sterile mortar and pestle. The mixture was then centrifuged at 4000 rotations per
minute (rpm) for seven minutes in a centrifuge machine (KUBOTA 6500, Japan), followed
by the collection of 100 µL of supernatant and transfer into 5 mL of sterile NB, contained in
a sterile test tube. For egg samples, the surface of each egg was washed thoroughly using
5 mL of sterile PBS. Subsequently, 50 µL of egg-washed samples were taken into sterile
test tubes containing 5 mL of NB. For fish samples, the gills were collected by an expert
veterinarian, and swabs of the gills using sterile cotton buds were taken and transferred
into 5 mL of sterile NB, contained in a sterile test tube. After transferring all samples into
the sterile test tubes, they were incubated aerobically in an incubator overnight at 37 ◦C for
microbial enrichment.

2.4. Isolation of S. aureus

S. aureus were initially isolated by culturing on Mannitol Salt Agar (MSA) (HiMedia,
India) media. At first, one loopful of overnight-cultured broth was streaked on separate
MSA plates and subsequently incubated aerobically under the appropriate time (24 h)
and temperature (37 ◦C). Isolates having golden-yellow colonies on MSA agar plates were
assumed to be S. aureus, and they were sub-cultured on MSA plates to obtain pure colonies.
Moreover, the purity of the colonies was checked by culturing on 5% bovine blood agar
plates, followed by incubating at 37 ◦C for 24 h. Presumptive S. aureus colonies were then
isolated by Gram staining, Voges–Proskauer tests, glucose and mannitol utilization tests,
catalase tests, and coagulase tests [13].

2.5. Molecular Detection of S. aureus

Presumptive staphylococcal isolates were subjected to polymerase chain reaction
(PCR) to detect S. aureus molecularly by targeting the gene nuc (Table 1).

Table 1. List of primers used in the present study to detect biofilm-producing S. aureus from food
sources and human hand swabs.

Targeted
Genes Primer Sequence (5′–3′) Annealing

Temperature Amplicon Size (bp) References

nuc F: GCGATTGATGGTGATACGGT
R: AGCCAAGCCTTGACGAACTAAAGC 55 279 [14]

icaA F: GACCTCGAAGTCAATAGAGGT
R: CCCAGTATAACGTTGGATACC 56 814 [15]

icaD F: AGGCAATATCCAACGGTAA
R: GTCACGACCTTTCTTATATT 59 526 [16]

icaB F: ATCGCTTAAAGCACACGACGC
R: TATCGGCATCTGGTGTGACAG 59 526 [17]

icaC F: ATAAACTTGAATTAGTGTATT
R: ATATATAAAACTCTCTTAACA 45 989 [17]

bap F: CCCTATATCGAAGGTGTAGAATTGCAC
R: GCTGTTGAAGTTAATACTGTACCTGC 53 971 [18]

For the molecular detection of S. aureus, DNA was extracted by the boiling method,
as previously described [19,20]. In brief, first, 1 mL of overnight growth S. aureus culture
was centrifuged at 5000 rpm for 5 min in a centrifuge machine (KUBOTA 6500, Kubota
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Corporation, Tokyo, Japan). The supernatant was then discarded, and a similar process
was followed by adding 1 mL of PBS. The supernatant was discarded again, and the
remaining pellet was suspended with 200 µL of PBS. The suspension was then boiled
and cooled for 10 min in each step before being centrifuged at 10,000 rpm for 10 min in a
centrifuge machine (KUBOTA 6500, Kubota Corporation, Tokyo, Japan). In the final step,
the supernatant was collected as genomic DNA and stored at −20 ◦C for future studies.

All the PCRs were performed with a final volume of 20 µL (nuclease-free water-
4 µL, master mix (2x, Promega, Madison, WI, USA)- 10 µL, forward and reverse primers-
1 µL each, genomic DNA- 4 µL). After the completion of amplification, the PCR products
were electrophoresed on a 1.5% agarose gel, subsequently stained with ethidium bromide,
and recorded on a UV transilluminator (Biometra, Göttingen, Germany). Note that a
100 bp (Promega) DNA ladder was used to check the expected band size of the amplified
PCR products.

2.6. Biofilm Formation of S. aureus
2.6.1. Phenotypic Analysis of Biofilm Formation

Biofilm formation of S. aureus was phenotypically analyzed by the Congo Red (CR)
test, as previously described [21]. In the CR test, the production of biofilm in the strains of
S. aureus was studied by culturing the isolates on Congo Red Agar (CRA) plates. To prepare
CRA plates, 0.8 g CR (HiMedia, India) and 36 g saccharose (HiMedia, India) were added to
1000 mL of blood agar (HiMedia, India) and subsequently incubated overnight at 37 ◦C
to check their sterility. Then, overnight-growth S. aureus cultures were streaked on CRA
plates, followed by incubation for 24 h and 48 h at 37 ◦C. The observable properties of the
examined isolates were analyzed to check their biofilm-forming abilities. Isolates showing
dry filamentous crusty black, pink with a dark center, and smooth pink colonies were
interpreted as strong, intermediate/potential, and non-biofilm producers, respectively [22].

2.6.2. Quantitative Analysis of Biofilm Formation

The biofilm-forming ability of S. aureus was measured using 96-well flat-bottomed
microtiter polystyrene plates, as previously described by Kouidhi et al. [23]. Briefly, single
colonies from CRA plates were inoculated into 5 mL of sterile tryptic soy broth (TSB),
followed by incubation at 37 ◦C for 18 h without shaking. The growth of the isolates was
adjusted with the 0.5 McFarland concentration, corresponding to a cell concentration of
approximately 108 colon-forming units (CFU)/mL for each strain [3]. The growth cultures
were then diluted by a 10-fold dilution method in TSB supplemented with 10% glucose.
An amount of 200 µL of the diluted culture was dispensed in three wells of the microtiter
plate for each strain and incubated at 37 ◦C for 24 h. Negative controls were wells filled
with broth medium (TSB + 10% glucose). Planktonic bacteria/cells were removed by
washing each microtiter well 3–5 times with sterile PBS. The adherent cells were fixed
with ethanol (95%) for 5 min, followed by emptying and drying the plates and subsequent
staining for a few minutes with 100 µL of 1% crystal violet. The plates were air-dried after
rinsing off the excess stain using sterile distilled water. The optical density (OD) value was
evaluated at 570 nm (OD570) in an automatic spectrophotometer (VWR, part of Avantor,
Radnor, PA, USA). The biofilm formation assay of each isolate was graded as strong biofilm
(OD570 ≥ 1), moderate/intermediate biofilm (0.1 ≤ OD570 < 1), and non-biofilm (OD570 < 0.1)
producers [23].

2.6.3. Genotypic Analysis of Biofilm Formation

The molecular detection of biofilm-forming S. aureus was performed by PCR-based
amplification of adhesion genes of the icaADBC operon (icaA, icaB, icaC, and icaD) and
biofilm-associated proteins (bap gene). Table 1 summarizes the primer sequences, the PCR
product size, and the corresponding references. The PCR amplification of icaADBC genes
in S. aureus was performed using the same method that was used to detect the nuc gene.
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2.7. Statistical Analysis

Data obtained from the present study were entered into Excel 365 (Microsoft/Office
365, Redmond, DC, USA) and were subsequently transferred to the GraphPad Prism (Prism
8.4.2, San Diego, CA, USA) and the Statistical Package for Social Science (IBM SPSS 25.0,
Chicago, IL, USA) for statistical analysis.

2.7.1. Descriptive Analysis

The prevalence of different variables was enumerated by descriptive analysis. The
Wilson and Brown Hybrid method [24] was employed to calculate the binomial 95%
confidence intervals for estimating the prevalence of different variables related to S. aureus-
positive isolates. In addition, the chi-square test for goodness-of-fit was employed to
determine the difference in the prevalence of S. aureus among different foods and hand
swab samples. A p-value less than 0.05 (p < 0.05) was fixed to consider them statistically
significant outcomes.

2.7.2. Bivariate Analysis

A bivariate analysis was undertaken to determine the correlation between pairs of
different genes associated with biofilm-forming S. aureus isolates. The bivariate analysis to
calculate Pearson correlation coefficients (ρ) was performed by the SPSS analysis tool. The
correlation was statistically significant only when the p-value was less than 0.05 (p < 0.05).

2.7.3. Heatmap Analysis

A heatmap was generated to visualize the occurrence of staphylococcal biofilm-
producing genes. The Origin Pro-2019b (Version 9.65, OriginLab Corporation, Northamp-
ton, MA, USA) was used to develop the heatmap. We considered the value “1” as positive
and the value “0” as negative on the origin datasheet.

3. Results
3.1. Prevalence of S. aureus Isolates

Out of 420 samples analyzed, 151 (35.95%, 95% CI: 31.51–40.65%) samples were
positive for S. aureus by observing the characteristic colonies of S. aureus on MS agar plates,
Gram-staining, and biochemical tests. By PCR assay, 100 (23.81%; 95% CI: 19.99–28.11%)
were found to be positive for S. aureus, as revealed by the detection of the nuc gene. Among
the positive isolates, the highest prevalence was observed in raw milk, chicken muscle, fish,
and egg surface samples, which showed equal prevalence (25%). Conversely, ready-to-eat
food samples showed the lowest prevalence (21.67%). However, there was no statistically
significant variation (p > 0.05) in the prevalence of S. aureus isolated from different food
sources (Table 2).

Table 2. Prevalence of Staphylococcus aureus isolated from different food sources and human hand swabs.

Name of Sample Positive Isolates (%) 95% CI p-Value

Human hand swab (n = 60) 14 (23.33) 14.44–35.44

0.992

Raw milk (n = 60) 15 (25) 15.78–37.23

Chicken muscle (n = 60) 15 (25) 15.78–37.23

Fish (n = 60) 15 (25) 15.78–37.23

Egg surface (n = 60) 15 (25) 15.78–37.23

Ready-to-eat foods (n = 120) 26 (21.67) 15.24–29.85

Overall (n = 420) 100 (23.81) 19.99–28.11
Here, a p-value less or equal to 0.05 (p ≤ 0.05) was statistically significant, n = Number of samples, CI = Confidence
interval.
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3.2. Phenotypic Biofilm Formation

On the CRA plates, 20% (20/100, 95% CI: 13.34–28.88%) of S. aureus isolates were strong
biofilm producers, while 69% (69/100, 95% CI: 59.37–77.22%) and 11% (11/100, 95% CI:
6.25–18.63%) isolates were intermediate and non-biofilm producers, respectively (Figure 2).
Sample-wise, the highest occurrence of strong biofilm-producing S. aureus was found in
ready-to-eat food samples (61.54%, 16/26), but there was no strong biofilm-producing S.
aureus in raw milk, fish, or egg surface samples (Figure 2).
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3.3. Quantification of Biofilm Formation

By the CVMP test, 20 (20%, 95% CI: 13.34–28.88%), 77 (77%, 95% CI: 67.85–84.16%),
and 3 (3%, 95% CI: 0.82–8.45%) of S. aureus isolates showed strong, intermediate, or non-
biofilm-producing characteristics, respectively (Figure 2). Like the CRA plate test, the
CVMP test also revealed that ready-to-eat food samples exhibited the highest occurrence
(61.54%, 16/26) of strong biofilm-producing S. aureus isolates, while raw milk, fish, and egg
surface samples did not harbor any strong biofilm-producing S. aureus isolates (Figure 2). In
addition, all the 89 biofilm-producing isolates detected by the CRA test were also detected
as biofilm producers by the CVMP test.

3.4. Genotypic Biofilm Formation

By PCR, out of 100 positive S. aureus isolates, 21 (21%, 95% CI: 14.17–29.98%) were
found to carry at least one biofilm-forming gene. Among them, icaB and icaD were found
to have the highest prevalence (20%, 95% CI: 13.34–28.89%) in the isolated S. aureus from
different food samples and hand swabs, followed by icaA (15%, 95% CI: 9.31–23.28%), bap
(10%, 95% CI: 5.52–17.44%), and icaC (7%, 95% CI: 3.43–13.75%) genes (Figure 3).

Out of 21 biofilm-forming S. aureus isolates, three and four adhesion genes were
present in six isolates, two genes in five isolates, and all the selected genes were detected in
four S. aureus isolates (Figure 3).

By bivariate analysis, strong positive significant correlations were observed between
the biofilm-forming genes icaA and icaB (ρ = 0.770, p < 0.001), icaA and icaC (ρ = 0.653,
p < 0.001), icaA and icaD (ρ = 0.770, p < 0.001), icaA and bap (ρ = 0.607, p < 0.001), icaB
and icaC (ρ = 0.549, p < 0.001), icaB and icaD (ρ = 1.000, p < 0.001), icaB and bap (ρ = 0.583,
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p < 0.001), icaC and icaD (ρ = 0.549, p < 0.001), icaC and bap (ρ = 0.431, p < 0.001), icaD and
bap (ρ = 0.583, p < 0.001) (Table 3).
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Table 3. Pearson correlation coefficients (ρ) for pairs of adhesion genes to assess biofilm-forming S.
aureus isolates from different food samples and hand swabs (n = 100).

icaA icaB icaC icaD bap

icaA
Pearson Correlation 1

Sig. (2-tailed) -

icaB
Pearson Correlation 0.770 ** 1

Sig. (2-tailed) 0.000 -

icaC
Pearson Correlation 0.653 ** 0.549 ** 1

Sig. (2-tailed) 0.000 0.000 -

icaD
Pearson Correlation 0.770 ** 1.000 ** 0.549 ** 1

Sig. (2-tailed) 0.000 0.000 0.000 -

bap Pearson Correlation 0.607 ** 0.583 ** 0.431 ** 0.583 ** 1

Sig. (2-tailed) 0.000 0.000 0.000 0.000 -

Here, a p-value less than 0.05 (p < 0.05) was considered statistically significant, **. Correlation is significant at the
0.01 level (2-tailed), Sig. = Significance.
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4. Discussion

Staphylococcus aureus is a zoonotic pathogen that can cause a wide range of symptoms
in humans [25]. The ability of S. aureus to form biofilm on food contact surfaces is considered
to lead to food poisoning. Biofilm-producing S. aureus poses a serious health problem to
humans. As we know, there is no previous report on the prevalence of biofilm-forming S.
aureus from various food samples and hand swabs in Bangladesh.

In the current study, 23.81% of the food samples and hand swabs were found to
be positive for S. aureus by the presence of the nuc gene. Previously in Bangladesh,
Islam et al. [26] reported a similar occurrence of S. aureus (22%) in ready-to-eat foods,
raw meat, raw milk, and fish samples, and a lower occurrence of S. aureus (6.67%) was
detected in food samples by Urmi et al. [2]. In addition, Jahan et al. [27] and Pandit et al. [28]
also detected S. aureus in raw milk (12/47) and on chicken egg surfaces (27/300) samples in
Bangladesh. In addition, several previous studies showed diversified detection rates of S.
aureus in different food samples abroad [29–34]. The observed variations between these
studies and the present study could be attributed to differences in sample sources, size,
and types; geographical locations; hygienic management; and other factors. Furthermore,
ready-to-eat foods can be easily contaminated with S. aureus by food handlers, as most
of them process and serve street foods with their bare hands in Bangladesh. In addition,
proper hygiene practices are not guaranteed during food preparation; 23.33% of food-
handler swab samples were found positive for S. aureus. Although there is no report in
Bangladesh on the occurrence of S. aureus in food handlers’ hand swabs, Gadaga et al. [35]
from Zimbabwe and Kasturwar and Shafee [36] from India recorded S. aureus in 32% and
36%, respectively, of samples from food handlers responsible for the food processing and
serving. However, the presence of S. aureus in different food samples and hand swabs
indicates a high health risk to consumers. In addition, the contamination level of food
sources with S. aureus suggests that animal handling, food processing and handling, as
well as cleaning and disinfecting food environments, must be improved.

The biofilm or slime formation on media is associated with the development of ex-
tracellular polysaccharides, which plays a significant role in bacterial adhesion [37,38].
Although the CRA test is not considered the most sensitive for determining biofilm de-
velopment, this simple qualitative phenotypic test was used in this study because of its
acceptable sensitivity and specificity [39]. In the present study, among 100 S. aureus isolates,
89% of the isolates showed characteristic colonies on CRA and were categorized as biofilm
producers. The CVMP test revealed that 97 (97%) of the S. aureus isolates had the ability
to produce biofilm. In addition, the same 20 S. aureus isolates were categorized as strong
biofilm producers by both qualitative phenotypic and quantitative biofilm assays. The high
and similar percentage of biofilm producers was in accordance with the previous study [10],
which reported that 75% (63/84) and 97.62% (82/84) of the S. aureus isolated from food
contact surfaces were biofilm producers by qualitative (CRA) and quantitative (crystal
violet staining) assays, respectively. The variation in glucose concentration in the media
used in the current study could explain the disparity in the results of the two tests. Rohde
et al. [15] stated that adding 1% glucose to the TSB media could enhance the occurrence of
biofilm formation in the S. aureus isolates by up to 83%. A previous study [40] reported
that the expression of biofilm formation in S. epidermis isolates on CRA preparations with
different amounts of glucose was significantly higher when the glucose concentration
was higher.

This study recorded that 21% (21/100) of the S. aureus isolates harbored at least one
biofilm-producing gene involved in the synthesis of PIA, where there was no difference
in the distribution patterns of the icaB and icaD genes in the biofilm-forming S. aureus
isolates. Chen et al. [3] also reported that the distribution of icaB and icaD genes was similar;
however, the bap gene was not detected in the S. aureus isolates. In addition, the prevalence
rates of other biofilm-related genes observed in the current study varied greatly, which can
be supported by different studies [41–43]. Multifarious gene expression patterns can be
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recorded when S. aureus isolates are subjected to various temperatures and contact surfaces
for varying lengths of time [3].

The present study revealed that the occurrence rates of biofilm-producing genes are
much lower than the results observed in the CRA and CVMP tests. Similar findings were
reported by previous studies [44,45], however, the high and similar prevalence rates of
biofilm-producing S. aureus observed in the qualitative, quantitative, and molecular as-
says were recorded in previous studies [10,46,47]. This discrepancy could be explained
by the different factors that are associated with biofilm formation in the S. aureus isolates.
The interaction among different regulatory systems and the expression among different
adhesion genes regulate biofilm formation, which can be triggered by various environ-
mental factors such as the concentration of glucose in the used media, the temperature of
the contact surfaces, the osmolality of the used media, and the growth conditions of the
organisms [38,48,49]. In addition, the phenotypic characteristics of biofilm formation can
be influenced by a discrepancy in the regulation of locus genes’ and putative adhesion
genes’ expression [50]. Other credible mechanisms for the emergence of biofilm-negative
strains of S. aureus include the disruption of genes by insertional inactivation and point
mutations in the locus of adhesion genes [51]. The high variability of biofilm formation
observed in the present study indicates that the determination of genes involved in the
PIA or PNAG is not a complete determining factor of S. aureus’s ability to produce biofilm.
Therefore, an integration of both phenotypic and genotypic tests could be used to identify
biofilm-producing S. aureus isolates more accurately.

5. Conclusions

As we know, this is the first study in Bangladesh to detect biofilm-producing S. aureus
phenotypically and genotypically from food. This study revealed that food samples and
hand surfaces are prone to contamination with S. aureus, and most of the isolates could
produce biofilm. Biofilm is a significant virulent substance in S. aureus infections, making
their eradication difficult. The presence of biofilm-forming S. aureus in food samples and
hand swabs indicates that food sources could act as a potential reservoir for pathogenic
bacteria, posing serious public health significance. Our results are encouraging for further
research focusing on the evaluation and exploration of the detailed genetic background
of S. aureus isolated from food sources to assess their association with biofilm formation
and infection development abilities. In addition, our findings emphasize the importance
of good hygiene practices and installing strict food safety strategies at every stage of the
food chain for preventing food-borne illnesses developed by S. aureus contamination and
minimizing their cross-contamination hazards.
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