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Optical emissivity dataset of multi-
material heterogeneous designs 
generated with automated figure 
extraction
Viktoriia Baibakova, Mahmoud Elzouka, Sean Lubner, Ravi Prasher   & anubhav Jain   ✉

Optical device design is typically an iterative optimization process based on a good initial guess from 
prior reports. Optical properties databases are useful in this process but difficult to compile because 
their parsing requires finding relevant papers and manually converting graphical emissivity curves to 
data tables. Here, we present two contributions: one is a dataset of thermal emissivity records with 
design-related parameters, and the other is a software tool for automated colored curve data extraction 
from scientific plots. We manually collected 64 papers with 176 figures reporting thermal emissivity and 
automatically retrieved 153 colored curve data records. The automated figure analysis software pipeline 
uses Faster R-CNN for axes and legend object detection, EasyOCR for axes numbering recognition, 
and k-means clustering for colored curve retrieval. additionally, we manually extracted geometry, 
materials, and method information from the text to add necessary metadata to each emissivity curve. 
Finally, we analyzed the dataset to determine the dominant classes of emissivity curves and determine 
the underlying design parameters leading to a type of emissivity profile.

Background & Summary
Optical device design has impacted many fields, from the pioneering work of Fritts on the selenium solar cell1 
to the cutting-edge elaboration of nanophotonic intercellular force sensors expanding the conventional micro-
biology toolkit2. Further progress became possible due to materials synthesis3,4 and modeling5,6 advancements, 
allowing precise light manipulation over a wide range of wavelengths. Nevertheless, device design optimization 
remains an iterative process, strongly relying on a good initial guess followed by potentially time-consuming 
optimization. Modern sources of successful and useful initial designs are databases compiled from digesting the 
relevant literature, such as Materials Platform for Data Science7 and HITRAN8.

Optical properties databases should cover as many materials as possible and be up-to-date. There have been 
several notable endeavors9–13 to translate literature into structured databases by parsing the text. However, 
text-based parsing of data is insufficient for many material properties because much of the needed information 
is communicated through graphs (e.g., spectral data). The standard method14 for converting graphs is manual 
curve extraction using software such as WebPlotDigitizer15, MATLAB GRABIT16, DataThief17. Manual extrac-
tion requires significant user participation (i.e., clicking along the curve). In our experience, it takes approxi-
mately 3 minutes to parse a simple graph, which is practical for small tasks but becomes limiting if hundreds of 
graphs must be extracted. In contrast, existing efforts to automate graph data extraction have a list of drawbacks, 
such as parsing only continuous curves without sharp picks18, requiring the figures to have PDF embedded 
axes19 or having incompatibility issues due to no longer being actively maintained20. Therefore, the need exists 
for a tool for automated curve extraction from plots.

To address the listed issues, we compiled a dataset of thermal emissivity measurements from the optical sci-
entific literature using various image analysis techniques. Figure 1 reviews the overall pipeline, which includes 
the following steps. First, we manually collected a corpus of 64 relevant publications. From these, we manually 
retrieved 176 figures containing emissivity-wavelength data relations. We implemented an algorithm for auto-
mated curve raw data extraction and automatically obtained data records for 153 curves. Next, we manually 
extracted two types of metadata from the text: the general information on the publication and design-related 
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parameters such as the materials used and device geometry corresponding to each curve. Finally, we wrapped 
the collected information into an explicit dataset record.

This paper presents a dataset of thermal emissivity of multi-material heterogeneous designs and the algo-
rithm used for its creation. Regarding the dataset, this work describes the chosen data format and dataset organ-
ization. It also covers the technical validation of the collected records and provides a use case for the dataset. 
For the algorithm, the article presents a detailed description of the method used to collect every data entry. It 
addresses the aggregation of general information like DOI, publisher, authors, year, and title. Also, it covers the 
retrieval of materials, design, and method descriptions. Additionally, the paper reports the performance of a 
proposed tool for automated curve extraction.

Methods
We established an algorithm that automates data extraction from figures and produced a comprehensive dataset 
of optical properties. Figure 1 provides an overview of the complete workflow; the various steps are described 
next in greater detail.

Generation of initial corpus. We manually collected the corpus of 64 publications21–84 referring to emis-
sivity by keeping track of relevant articles during our routine research for several years. We further used Google 
Scholar to search for articles by keywords and extracted more papers from the references. All selected articles 
contained graphical information of interest: emissivity-wavelength dependencies depicted as 2D curves on a 
blank background.

automated article information extraction from text. General information on publications (blue 
path and dataset component on Fig. 1) was extracted automatically using Mendeley85. We saved the corpus as 
a Mendeley archive, which allowed us to export it as a single BibTeX86 file containing the desired information. 
From the formatted BibTeX files, we used regular expressions87 to retrieve the DOI, title, authors, publisher, URL, 
and year of publication for each article. We note that dedicated software libraries for parsing BibTeX files such as 
pybtex88 (Python) are also available; however, we did not use those in this work.

Manual design-related parameters extraction from text. Design-related parameters (green path and 
dataset component on Fig. 1) are commonly reported in different sections of a publication, making it challeng-
ing to connect each curve record with its corresponding device geometry (sandwich, thin-film, grating), list of 
materials (W, Al, SiC), and method of data generation (calculation, experiment). Figure 2 demonstrates that 
design-related parameters of a given dataset record (data curve) were included in unrelated snippets of a sample 
paper. In the example from Fig. 2, the emissivity figure caption contains an incomplete list of materials and a brief 
geometry description elaborated in the figure-referring text. However, the full description of these two parame-
ters is only given in the synthesis section of the paper, which already refers to other figures and does not mention 
the one with emissivity curves. We also note some complicated cases49 in our corpus when the authors reported 
the design solely graphically, leaving out the explanation in the text. Regarding the method of data generation, it 
could be reported in any location throughout the paper, and while it was usually possible to distinguish between 
experiment and theory from the context, many authors23,34 did not completely specify the used tool. For the issues 
listed above and others, our attempts to develop automatic tools for metadata extraction were insufficient to 
obtain the desired attributes (see SI.1), and this analysis was conducted through a manual approach.

Fig. 1 The overall pipeline of data collection and organization into dataset. The data is retrieved from a corpus 
of 64 manually collected relevant papers (gray). There are three categories of data retrieval: blue - automated 
extraction of the general article information from text; green - manual extraction of the design-related 
parameters; and orange - automated curve raw data extraction embedded in semi-automatic figure analysis.
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We manually located text passages containing information about each curve and recorded this information. 
First, we recorded all distinct materials (chemical compositions) used in the device. We categorized records into 
two groups: “single material” if the structure was made out of a single material or “sandwich” if the structure was 
a multilayer design. We also parsed all keywords related to the device geometry. We found 100 distinct descrip-
tors (thin film, aperiodic multilayers, 2D array, front coating). Using them, we classified geometry descriptions 
into seven types. These were: (i) film, (ii) 1D grating - a film with an array of slots of any shape on the surface 
with 1-dimensional periodicity (with or without coating), (iii) 2D grating - a film with an array of slots of any 
shape on the surface with 2-dimensional periodicity (with or without coating), (iv) 2D cylindrical cavities - a 
film with an array of cylindrical holes on the surface with 2-dimensional periodicity (empty or filled), (v) wire, 
(vi) bull’s eye - a film with a concentric equally spaced circular grooves on the surface (sometimes also with 
coating), and (vii) microspheres - random media composed of microscopic balls. Lastly, we parsed the method 
of data generation: experiment or computation and the characterization or modeling tool (Fourier transform 
infrared spectroscopy, finite-difference time-domain, etc.).

Figure data extraction. The next step of the procedure was to detect emissivity records from graphs 
and parse them (orange regions on Fig. 2). We examined 64 papers for the graphical information of interest: 
emissivity-wavelength dependencies depicted as 2D curves on a blank background. We found 176 images with 
550 thermal emissivity curves and manually converted them to PNG format. We manually split figures with mul-
tiple plots for the final one to contain a single plot panel and axis with units. The figures varied from 600 to 1400 
pixels in width and 800 to 2000 pixels in height.

We followed a three-step algorithm for the automated extraction of structured data from figures (the orange 
box on Fig. 1). First, we identified the portion of the image with the axes and legend regions. Second, we looked 
at axes specifically and parsed the scale for the recalculation of pixel positions to units of measurement. Third, 
we removed the axes, legend, and gray objects (leaving just the curves themselves) and used a color decomposi-
tion algorithm to extract colored curve raw data. This procedure is fully automated if each curve is of a different 
color.

Axes and legend regions identification. We explored two approaches to detecting axis and legend regions: algo-
rithmic and data-driven. Regarding the algorithmic methods, we tried Canny edge detection89 combined with 
the Probabilistic Hough line transform90 or polygon approximation91. We successfully found axes lines for 95% 
of figures in the dataset. However, these traditional methods expected fixed rules for each detected data type, 
making the algorithm brittle (see SI.2).
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A schematic of a 1-D photonic structure is shown in Fig. 2. Such a structure

consists of a multilayer stack of thin films on top of a supporting substrate...

Development of one-dimensional photonic selective emitters for energy
harvesting applications
Mehdi Zeyghami, Elias Stefanakos, D. Yogi Goswami

... Structures made of alternating layers of Al2O3 and SiC also produce a
favorable emissivity profile, but with less emitter efficiency compared to
Al2O3-SiO2 multilayer stacks. Figs. 10 and 11 show the spectral emissivity
profiles of two-layer and four-layer selective emitter structures of Al2O3-SiC
on the Aluminum substrate. Although for the Al2O3-SiC structures the
emissivity peak is observed at around 10.2 μm, the emissivity in not
suppressed strongly at shorter wavelengths.
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{
 "doi": "10.1016/j.solmat.2017.01.026",
 "title": "development of one-dimensional photonic

selective emitters for energy harvesting applications",
 "authors": ["zeyghami mehdi", "stefanakos elias",

"goswami d. yogi"],
 "publisher": "elsevier",
 "url": "http://www.sciencedirect.com/science

/article/pii/s0927024817300235",
 "year": 2017,
 "figure_number": "10",
 "materials": ["SiC", "Al2O3", "Al"],
 "geometry": ["1D", "supporting substrate",

"multilayer stack", "thin films", "2 layers"],
 "composition_key": "sandwich",
 "geometry_key": "film",
 "data_type": "calculation",
 "tool": "Genetic Algorithm",
 "comment": "Spectral emissivity",
 "info_on_image": "SiC 9.99 mkm, Al2O3 9.48 mkm, 

Al substrate",
 "axes_units": {"x": "m*10-6", "y": "1"},
 "color": "#1273be"
 "data": [

 [10.145299145299147, 0.9999999999999999],
 [10.153846153846155, 0.9999999999999999],

 ...
 ]

}

Fig. 2 Information extraction from the source paper to the dataset record. Colors correspond to the category 
of extraction: blue - automated text analysis; green - manual text analysis; orange - automated figure analysis. 
Information is taken from different parts of an article; for example, materials are listed in the figure description 
and within the figure itself. This example uses the work of Zeyghami et al.24.
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For the data-driven approach, we used convolutional neural networks92 (CNNs). CNNs can detect multiple 
figure features using the same underlying framework but different data labels. We followed a standard proce-
dure for supervised CNN learning with a pre-trained object detection model (first section inside the orange 
box in Fig. 1). We began by scaling all figures to the size of 800 × 600 pixels (only for the training of CNN; 
for future steps, we restored the original aspect ratio), splitting the set of 176 figures as 80/20 for training and 
testing and labeling all figures with LabelImg93 software. We labeled portions of images corresponding to the 
three classes: “X_axis”, “Y_axis”, and “Legend”. Axes regions required an axis line, ticks, and numbering. Legend 
regions included line samples and labels. Figure 3 shows examples of the labelling under a)21 and b)80. In the case 
of a), we located an X-axis region on top, a Y-axis region to the right, and no legend. Thanks to such images, the 
trained model can detect the axes objects with numbering on both sides of the axis line. In case b) of the Fig. 3, 
we identified axes regions containing numbering and two side-by-side legend regions aligned vertically for con-
sistency. Overall, the trained model allows any number of legend objects, including zero.

After compiling the training data, we trained a machine learning model using Tensorflow 294 (TF) object 
detection API95. We have a small dataset (for the comparison, the Microsoft COCO 201796 object detection data-
set has 121408 images), and using a pre-trained model from the Tensorflow Model Zoo is a powerful approach 
to handle this issue. Among the provided solutions for object detection, we selected faster_rcnn_inception_v2_
coco model97 as it is lightweight with competitive accuracy. The model employs the Faster R-CNN98 attention 
mechanism and Inception Resnet99 deep convolutional network architecture, providing high-speed training. 
The model was pre-trained on Microsoft COCO 2017 images scaled to 600 × 1024 resolution. Training on our 
data with the default hyperparameters took 3.5 hours for 10,180 steps on 2.8 GHz Quad-Core Intel Core i7 pro-
cessor running on a 2019 MacBook Pro.

We evaluated the model performance with standard metrics: precision, recall, and loss based on the 
intersection-over-union (IOU) method. In object detection tasks, IOU calculates a pixel-by-pixel difference of 
detected regions from human labels. Then, if we compare the detected region with the corresponding human 
label and calculate the area of the exact overlap, this value divided by the area of the detected object would 

Fig. 3 Examples of axes and legend labeling and trained CNN model performance. The x-axis is outlined 
in light green, the y-axis in cyan, and the legend in dark magenta. (a,b) Examples of hand-labeling using 
LabelImg93 software. Boxes depict the identified regions. Note that in b, the y-axis label includes just the 
portion with numbers and not the entire axis line for subsequent axis scale extraction; see text for details. 
(c–f) Examples of output of trained object detection model. Boxes demonstrate the detection results. For a: 
Copyright 1999–2021 John Wiley and Sons, Inc. All rights reserved. For b: reprinted from Timans, P. J. (1992). 
The experimental determination of the temperature dependence of the total emissivity of GaAs using a new 
temperature measurement technique. Journal of applied physics, 72(2), 660–670, with the permission of AIP 
Publishing. For c: Reprinted from Nefzaoui, E., Drevillon, J., and Joulain, K. (2012). Selective emitters design 
and optimization for thermophotovoltaic applications. Journal of Applied Physics, 111(8), 084316, with the 
permission of AIP Publishing.
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be precision, and divided by the area of the labeled object would be recall. Loss sums up the localization loss 
(the undetected portion of the label area) and the classification loss (distinguishing between various classes). 
Following the training, Tensorboard calculated all these metrics on the test set. The model reached 0.75 average 
precision, 0.81 average recall, and 0.28 average loss (see the description of detection evaluation metrics used by 
COCO100 for more details regarding averaging). We note that perfect accuracy on these metrics is not required 
for the overall task of figure data extraction. Rather, we only need to detect enough of the axis information to be 
able to correctly perform axis scale parsing (see next step). Manual examination showed that all detected axis 
objects except one (99.4%) were acceptable in this regard.

Some example results of the model performance are depicted in Fig. 3c–f. In the case of c)83, the detected 
x-axis region missed the very left number; nevertheless, the captured information is enough to compute the 
axis scale, as will be described later. The model detected the y-axis region without issues. We note that the pres-
ence of other straight lines like the plot grid did not prevent the algorithm from identifying the axes correctly. 
Furthermore, the model correctly located the legend despite the unconventional location of the line samples 
to the right from the labels. In the case of d)47, all classes were correctly detected: x and y-axis regions con-
tained axis lines, ticks, and all numbers, and the legend object included line samples and labels excepting the 
borderline. Case e)101 also had all objects of interest accurately located by the model. In f)68, the model slightly 
cropped the x-axis region, missing the last digit but capturing the majority of the numbering; the y-axis was fully 
detected.

Automated axis scale parsing. Following the identification of the axes and legend regions, the second step in 
the automatic data retrieval from the images (second section inside the orange box on Fig. 1) was obtaining 
the axis scale for recalculating pixel positions to units of measurement. We found that optical character rec-
ognition102 (OCR) methods were effective at axis numbering recognition with relatively few modifications or 
training needed. As the basis of our OCR strategy, we selected EasyOCR103. EasyOCR uses Pytorch104 for deep 
learning portions and Character-Region Awareness For Text105 for detection. For recognition, EasyOCR uses 
Convolutional Recurrent Neural Networks106 based on ResNet107, Long Short-Term Memory sequence label-
ling and Connectionist Temporal Classification108 decoding with the deep text recognition benchmark109. We 
adjusted EasyOCR’s model parameters, imposing a minimum height for the characters of 5 pixels and limiting 
character detection to numeric characters and special symbols such as a minus symbol or period. Also, we added 
white padding of 10 pixels from all sides of the images to reduce image edge impact and allow convolutions to 
operate better. Nevertheless, we note that some fonts were particularly unreadable for the model. EasyOCR 
returned a list of recognized numbers with the number value and pixel coordinates of the box with the number 
for every axis region. It properly handled 90% of our figures, producing sufficient information for scale calcula-
tion (detecting at least three numbers) for both axes.

To complete the axis scale recalculation, we cleaned EasyOCR output from the poorly detected values as 
follows. From the EasyOCR output, we filtered out entries with empty or non-numeric text and entries with 
the probability of recognition lower than 50%. Assuming that the numbers were centered correctly inside 
the detected boxes and on the tick lines (see SI.3), we approximated the location of ticks in the middle of the 
detected number boxes. Then, with automated rule-based approach, we applied a polynomial fitting for a set 
of tick pixel coordinates vs. recognized numbers, ensuring the fitting error subsided 5% for each instance and 
dropping outliers. We picked two middle points from the accepted set as they are typically more accurate than 
the edge ones and defined a linear equation for converting pixel coordinates to units of measurement.

Automated curve data extraction. For the final step of the automated figure data extraction, we parsed the 
colored emissivity curves using image color decomposition (third section inside the orange box on Fig. 1). We 
chose color decomposition because of the sophistication of this approach, although it has a room for improve-
ment: it does not consider black curves, resulting in about half of the curves being excluded. Figure 4 outlines 
the framework of the color-based decomposition strategy. The first goal is to remove any extraneous plot ele-
ments apart from the data curves themselves. We removed black and gray objects such as axes, text, etc., by 
transforming images to the Hue Saturation Value (HSV)110 color scheme and whitening pixels with a Value or 
Saturation less than 50%. Also, we removed legends detected in the previous processing steps (dark magenta 
box on Fig. 4a)23 by coloring them white. This resulted in an image isolated to only colored pixels (top snip-
pet on Fig. 4b). Second, we separated the obtained color-isolated images into clusters of different colors using 
k-means111 clustering (bottom snippet on Fig. 4b). We noticed that most of the existing solutions, such as the 
scikit-learn112 k-means package or Dominant Color Detection113, missed the colors corresponding to data 
curves (see SI.4). Therefore, we adjusted the k-means algorithm initialization (see SI.4). When examining the 
resulting clusters, some of the color clusters contained single curve records (clusters 3 and 5 on Fig. 4c), some 
had multiple curves information, and the rest had noisy data (cluster 4 on Fig. 4c). To filter some of the noisy 
data clusters, we removed clusters for which there were multiple y values for a single x value for more than 1/3 of 
the x data range. For example, this would exclude a color cluster in which both a solid blue curve and a dashed 
blue curve were present since the multiple curves would be detected as multiple y values for a single x value. 
Overall, we obtained clean raw data in pixels for 199 distinct curves.

Finally, we used the calculated axis scales (snippets on the sides of Fig. 4a) to convert pixel positions to units 
of measurement for the extracted curves. This results in 153 curve records in physical units (orange dataset 
component on Fig. 1), which determines the total dataset size. We note that we counted every pixel participating 
in a curve as a data point and did not perform any smoothing operations.

Dataset generation. We applied the data extraction methods described above to the corpus to generate a 
dataset of thermal emissivity curves and associated metadata. In the case of multiple curves in a single image, we 
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matched curves to metadata manually using a color name reference in the text. We normalized y-coordinates with 
values from 0 to 1 and standardized x-coordinates to micrometers. The total number of dataset records (one per 
curve) is 153.

Unsupervised clustering of curve data records. To classify the 153 obtained curves into a managea-
ble number of distinct groups, we applied an unsupervised clustering to the emissivity-wavelength curve data 
records stored in dataset. We set the wavelength range from 0 μm to 30 μm for all curve data records and reshaped 
the arrays to a size of 1000. Thus, each curve record became a 1-dimensional array of length 1000 with values 
from 0 to 1, where zero represented no emissivity measured. Next, we performed unsupervised learning with 
the DBSCAN algorithm implemented in the Scikit-learn library with parameters eps = 2.6, min_sample = 5 (see 
SI.5 for the hyperparameter search). The DBSCAN clustered half of the records (all the noise curves were put 
into a single class for the subsequent analysis, see SI.6) into seven classes of curves with close profiles in terms of 
Euclidian distance. More details regarding the results are in the Use case section.

Data Records
The dataset of thermal emissivity records with metadata is represented as a set of JSON files and may be found at 
Figshare114. Table 1 provides an overview of the data record schema. The first set of keys refers to article-related 
attributes: DOI, title, authors, publisher, URL, and year of publication, and also the figure number given in the 
paper. The remaining attributes are curve-related: list of materials, keywords describing geometry, measurement 
or calculation method, legend information, axes units, color, score (see Technical Validation for details), and 
curve raw data. One JSON file corresponds to information retrieved from a single curve. See SI.7 for possible 
values for various keys.

technical Validation
We evaluated the efficiency (recall) of the automated figure data extraction pipeline by the portion of the curves 
extracted from the total number of curves in the data set. Algorithm obtained 153 single curve records. The 
studied images contained 550 curves, of which half curves were colored curves. The total efficiency over all 
curves was thus 27%, whereas the total efficiency over colored curves was 55%.

We also studied the quality of the extracted curve data records. To define a quality score, we considered two 
types of failures in the curve record: gaps in the data and multiple (conflicting) points. Data gaps in a curve 
frequently occur due to overlapping objects of different colors on the extracted curve and result in x coordinates 
without corresponding y values. Multiple conflicting points typically appear when the original image had text 
comments or symbols of the same color as the curve. Such data points contain multiple y values (taking into 
account the line thickness) for a single x coordinate. We note briefly that attempts to clean text with OCR algo-
rithms often produced gaps; for example, OCR assigned the oscillating portions of data curves with the letter M 
with very high confidence scores (see SI.8).

Fig. 4 The pipeline for extracting axis scale and curves of different colors from figures. (a) Original image 
with detected x-axis (light green box), y-axis (cyan box), and legend (dark magenta box). Along the edges of 
the original image, we show the detected axes regions, the axes scale numbers as detected by EasyOCR103, and 
assigned green ticks. (b) On top is a color-isolated image that is the original image after removing the axes, 
legend, and black/gray objects. On the bottom is a color-isolated image palette with cluster centers determined 
by k-means clustering. (c) Data clusters of each color from the palette. Clusters 3 and 5 were accepted as 
they contain a single curve data. Cluster 4 was rejected as it contained only noise. After extracting the pixel 
coordinates of clusters 3 and 5, we matched them with EasyOCR cleaned output and converted to units of 
measurement.
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Using the failure types defined above, we assigned every x data point of the record as “correct”, “gap”, or “mul-
tiple”. We note that small gaps (running for less than 2% of the curve length) were assigned as “dash” to avoid low 
scores for the dashed style curves. We evaluated the quality of each curve data record, calculating the portion of 
X data range with correctly extracted points using the Eq. 1:

Score
N N

N N N N
1

(1)
GAP MULTIPLE

GAP DASH MULTIPLE CORRECT
= −

+
+ + +

We also performed hand labeling (using the WebPlotDigitizer15 software) for curves at different scores and 
compared the extracted and actual records. The error of the manual extraction was around 2 pixels representing 
the click accuracy. Figure 5 plots both manual and automated extractions for four cases. The first example is a 
curve with a score of 1. Automatically extracted points accurately matched manual extraction. The second exam-
ple is a curve with a score of 0.91. It contains some gaps and a few instances of multiple y points, but most of the 
curve is extracted correctly. We assigned this record to be of medium quality. The third is a curve with a score of 
0.72. Although we correctly handled the dashed style of the curve, this record originally contained a large text 
comment producing a significant amount of failure data points. This record is considered a poor extraction. 
Finally, the curve record with the lowest score of 0.31 contained very large gaps and a massive portion of multi-
ple points among the extracted data. Fortunately, the dataset contained only a few records in such a condition.

We grouped the data curve records by the calculated score: good curves with scores exceeding 0.95, medium 
curves from 0.8 to 0.95, and poor curves for scores below 0.8. Figure 6 depicts the behavior of each group. 
Approximately half of the records were good, one-third were medium, and one-fifth of the curve records were 
bad. There were 40 records with scores above 0.99; the worst entry had a score of 0.31. All in all, the proposed 
automated curve data extraction algorithm produced 122 (80%) good and medium-quality records.

Use case. Next, we examined the data set to understand the overall distribution of the data. This analysis is 
plotted in Fig. 7. In our dataset114, the most often used design was a sandwich film. Because this structure is a 1D 
multilayer stack of thin films, it is easy to model and fabricate. Nevertheless, tuning the composition of the layers, 
the number of layers, and the thickness of each layer to obtain the desired radiative properties remains a chal-
lenge24. Another common design in our dataset was a single material slab with a 2D array of cylindrical cavities on 
the surface. 2D all-metallic emitters are better suitable for high-temperature applications than multilayer struc-
tures due to higher chemical and mechanical stability. Also, a 2D grating provides a higher surface-to-volume 
ratio increasing the emissivity. Grating period, depth, and shape are commonly used to tune the emittance spec-
trum48,115. Analyzing the materials, we found tungsten to be the most popular choice. This is a reasonable obser-
vation. Tungsten has the highest melting point among all pure metals and favorable optical properties for selective 
emitters, such as high emission up to a cutoff wavelength and very little beyond. That makes tungsten a desirable 
choice for optical samples operating under high temperatures29. However, when considering the complete optical 
device design, the most common configuration was tantalum film with a 2D array of cylindrical cavities on the 
surface. Tantalum has similar optical properties to tungsten with a high melting point, low vapor pressure, and 
long-wavelength emissivity (above 2 μm). Also, it is weldable and machinable48. Other common configurations 
include using silica as a sandwich layer34 and the use of tungsten films with a 2D array of cylindrical cavities60. We 
note, however, that these attributes may change depending on the particular data set of papers used as the source.

KEY DESCRIPTION DATA TYPE

article-related

doi DOI of the source paper String

title Title of the source paper String

authors Authors of the source paper List of strings

publisher Name of the publishing group String

url Link to the paper String

year Year of paper publication Integer

figure_number Name of figure appearing in the source paper String

curve-related

materials All materials used in the sample List of strings

geometry Keywords from the geometry description in paper List of strings

composition_key Assigned keyword: sandwich or single material String

geometry_key Assigned keyword: one of the 7 geometry classes String

data_type Calculation or experiment String

tool Equipment, software or theoretical approach List of strings

info_on_image Additional information appearing on image String

axes_units Units of X and Y axes Dictionary

color HEX color code of the curve String

data Raw curve data in a form of list of [X,Y] coordinates List of [float, float]

score Score of curve from Technical Validation Float

Table 1. Format of data records in dataset.
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Next, we aimed to find trends in emissivity profiles and correlate them with device attributes. We followed an 
unsupervised clustering strategy to identify groups of emissivity curves with similar behavior (see Methods sec-
tion) and analyzed metadata within each group. Figure 8 shows that the agreement inside each group is generally 
good: curves are plotted with partial transparency, and the darker regions correspond to curve overlap. Each 
class depicts a unique emissivity behavior. We note that class 6 had a variety of samples and therefore was nonu-
niform. All classes except 6 had a single dominant design and composition with few outliers (pie insets in Fig. 8) 
as well as dominant materials (bar insets in Fig. 8). We observed that class 1 had the sharpest peak compared to 

Fig. 5 Several example curves and comparison between automated (black dots for correct points and yellow 
crosses for multiple y points) and manual (cyan) extraction. The red line on the bottom depicts the unconfident 
area, demonstrating the portion of the curve where an extraction has failed (gaps, multiple y values). The scores 
were calculated with Eq. 1. Top left: good extraction, score 1.00, the algorithm correctly captured the entire curve 
region. Top right: medium quality of extraction, score 0.91, the record has a few gaps and multiple y points. 
Bottom left: poor extraction, score 0.72, the original curve has dashed style; many multiple y points created 
by text comment. Bottom right: poor extraction, the lowest score of 0.31; many gaps caused by overlapping, 
multiple y points due to text comment.

size 48%
µ=0.99, σ=0.01

size 32%
µ=0.89, σ=0.04

size 20%
µ=0.64, σ=0.13

0.92
0.88
0.86

0.81

0.95

0.78

0.73

0.68

0.59

0.31

1.00
0.99
0.98

0.95

1.00

good medium poor
Group

Sc
or

e

Fig. 6 Statistical analysis of extracted curve data records grouped as good, medium, and poor. Each point 
represents one curve, and scores show the quality of the extraction. Scores were calculated with the Eq. 1.  
A mean μ and standard deviation σ values are given on top, along with the relative size of each group.
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others. Most class members had a bull’s eye structure which is indeed designed for thermal beaming. A series of 
equally spaced circular concentric grooves produces an emission spectrum in the normal direction with a single 
peak at a wavelength nearly identical to the period62. Class 2 forms a bi-modal emissivity profile. Sandwich films, 
in this case, were designed as Fabry-Perot cavity resonators116. They contained Si, Ti, and Pt layers covered with 
opaque (thick) Au layer, SiO2 cavity layer, ultra-thin top Au layer, and SiO2 protection layer. Fabry-Perot cavity 
resonators produce two emission peaks at locations determined by the optical properties of the cavity, opaque 
and top layer materials (SiO2, Au), and the cavity’s thickness. Peaks amplitudes are sensitive to the thickness of 
the top layer54.

As Fig. 8 demonstrates, geometry seems to be the major factor defining curve behavior. Designs without any 
grating on the surface ended up in classes 2 and 3. Records with a bull’s eye geometries fell in class 1. If there was 
a 2D periodic grating on the surface, we obtained classes 4, 5, and 7. The selection of materials further defined 
the curve behavior. Usage of Au and presence of SiO2 cavity determined class 2, while class 3 members were mul-
tilayer stacks of cermet layers with a Ag reflective back29. Similarly, Ta was characteristic for class 4, W for class 5, 
and TiN for class 7. We trained a decision tree (see SI.9) that further demonstrated primary splitting of behavior 
on geometrical attributes and secondary splitting on a choice of materials.

Other work. A dataset of emissivity curves was previously reported by Frolec et al. in 2018117. It contains 
58 records of thermal emissivities experimentally measured by authors starting at cryogenic temperatures and 
slightly exceeding room temperature. The curves were obtained from 45 different samples covering a range 
of pure metals, alloys, foils, coated metals, and ceramic plates. The dataset does not contain spectral data but 
provides information on the bulk material, coating layer material, treatment techniques, and the temperature 
dependence of the hemispherical emissivity or absorptivity. In contrast to the current work, the information was 
not compiled from the literature but rather was measured by the authors. Thus, this dataset represents more con-
sistent techniques for data generation but is more limited in scope and delivers less information.

Fig. 7 The distribution of design-related parameters (geometry, materials) in the dataset. The innermost circle 
corresponds to geometry. The outer ring depicts the used materials with colors reflecting the composition: the 
color is dark for single material devices and light for sandwich structures. There are 32 distinct materials. In 
total, there are 60% sandwich and 40% single material structures. The most used material overall is tungsten, 
which has desirable properties for optical devices.
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Another work from Kobayashi et al. presents normal spectral emissivity dataset measured at high temper-
atures118 reaching 1500 K. This work also includes the results of measurements performed by the authors in 
the same laboratory and the dataset does not provide spectral data. All the investigated materials were metal 
surfaces with different degrees of oxidation, and the surface roughness is stored as one of the parameters in the 
records. Seven different metals were studied, and only a single design was represented. Thus, while the consist-
ency of the method is higher than the one we report, the scale and diversity of data are more limited.

Our dataset contains spectral data and corresponding materials, method and design parameters. In our data-
set, the temperatures usually lie between room temperature and 2500 K, although we have not rigorously parsed 
all the temperature values for all curves (information regarding the temperature is sometimes contained within 
the “info_on_image” key in the JSON records). Emissivity - wavelength data relations are both experimental 
and theoretical obtained with different equipment. We store many designs of different complexity and details 
regarding the sample geometry. There are 32 distinct materials. Thus, our dataset does not have any records fully 
duplicating those mentioned above or any other work, advancing previously published emissivity databases.

Fig. 8 Curves classes with similar emissivity behavior and distribution of corresponding metadata. Curves 
were clustered with unsupervised learning using the DBSCAN algorithm. Curves are plotted with partial 
transparency such that dark areas indicate overlap of curves. The x-axis is in logarithm scale for better 
visualization. Pie charts in the insets show the distribution of geometry and composition per class. Bar charts in 
the insets depict distinct material frequencies normalized per class size (i.e., if the bin height is 1, the material is 
present in every record in the class).
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In this work, we manually collected 64 papers with 176 figures reporting emissivity and automatically 
extracted 153 curve records with manual extraction of corresponding metadata. However, there exist more 
publications reporting emissivity. We analyzed the collected metadata in our dataset with the CountVectorizer 
package featured in Scikit-learn library without tokenization119 and found that only 45% of captions of relevant 
figures mention emissivity, while 88% of captions mention any of emissivity, emission or emittance (9% mention 
both emissivity and emission, 17% mention only emission, 26% mention only emittance). Thus, among relevant 
entries, 88% satisfy the criteria of three words; and half of interesting figures may be missed if we excluded terms 
emission or emittance from the search. Then, we checked manually that among 100 random figures satisfying 
the criteria of three words (mentioning emissivity, emission or emittance in the figure caption), 70% indeed 
presented thermal emissivity curves. To determine how many more figures might be possible to collect, we 
implemented nine electronic paper scrapers (see SI.10) that checked figure captions amongst 4.9 million papers 
for the above keywords. As an aside, we note that there are packages like EXSCLAIM!120 to help automate this 
process, but it does not support the journal publishers targeted in our work. Our results indicate that there exist 
361,000 figures (178,000 papers) mentioning emissivity, emission, or emitter in the caption and potentially 70% 
of them would have the data we want. While we envision it may be possible to use an automatic curve data 
extraction algorithm to obtain a reasonable fraction of these curves, extracting the design-related parameters 
from text (i.e., the geometries, materials, and methods that describe each curve) remains a challenge and the 
biggest bottleneck for expanding the optical properties databases.

The automated generation of databases incorporating textual and spectral data has several remaining chal-
lenges. First is corpus composition, which includes an automated selection of papers relevant to specific tasks; 
it can be accommodated with existing text-mining tools121. The second is metadata extraction, and advanced 
text-mining algorithms fine-tuned for specific applications are promising for this task122. The next challenge 
comes from curve extraction with a color decomposition strategy; as described previously, OCR routines fail 
to distinguish between curve and text comments of the same color and, therefore, cannot be used to exclude 
text data. Furthermore, black curves cannot be isolated since the curve detection routine removes all grayscale 
pixels (e.g., to remove axes) prior to curve isolation. Also, dashed and solid curves of the same color cannot be 
differentiated. More advanced methods, such as image segmentation, may be able to overcome some of these 
limitations.94. The other is extracting the additional information from figures, such as linking legend labels with 
curves, that has been partially addressed in other methods20.

Usage Notes
The set of JSON files is available at Figshare114. Each file can be opened with any software for text editing or by 
common programming languages. The python script for re-plotting the data from any of the JSON records is 
available at https://github.com/ViktoriiaBaib/curvedataextraction and called “replot_DBrecord.py”. The reposi-
tory also contains some scripts for querying the dataset for the presented analysis and beyond.

Code availability
The source code (implemented in Python) for performing all the described figure analysis steps and generating 
the data entries is available at https://github.com/ViktoriiaBaib/curvedataextraction. The axis and legend 
detection step uses the TensorFlow2 Object Detection API and provides a fine-tuned CNN model. File “object_
detection_axes_legend.py” performs object detection of legend, x-axis, and y-axis objects and generates PNG and 
JSON records for these objects. File “color_decomposition.py” performs clustering by color and produces PNG 
of color-isolated image, palette, as well as PNG and JSON records of separate color clusters in pixel coordinates. 
It uses methods from “posterization.py”. File “final-record.py” performs axes scale parsing and applies it to all 
the clusters, producing cluster records in units of measurement. It utilizes methods from “final_record_func.py”.
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