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Introduction 

Creativity lies at the heart of the scientific process. Although much of science involves the 
dreary application of well-worn methods, true progress requires an act of discovery. In some 
cases, these discoveries take the form of insight, in which previously unseen and unexpected 
connections suddenly reveal themselves to the mind. 

Introspectively, the moment of insight often contains a 'mystical' quality, and this has led 
many to assume the; process lies outside the realm of human understanding. Early theories 
of scientific insight s·hared in this feeling, relying heavily on notions of unconscious (and thus 
noninspedable) processing. But in the past few decades, cognitive psychology and artificial 
intelligence have made significant strides in understanding the nature of human cognition. It 
seems only natural to apply their methods to develop a process explanation of this intriguing 
phenomenon. 

In this paper, we present just such a computational theory of scientific insight. We begin 
by recounting some well-known examples of the process, along with some early theories that 
attempted to account for the phenomenon. We also review some more recent attempts to 
explain insight in process terms, but our reservations about these models have led us to 
develop an alternative theory. Our framework builds on two separate lines of research in 
cognitive science - on reasoning by analogy and on qualitative mental models. Thus, we also 
review some work in these areas before moving on to the details of our model. 

The Advantages of Cognitive Simulation 

Before addressing the substantive issues, we should ·briefly consider our methodological 
assumptions. One of our basic tenets is that the construction of cognitive simulations can 
improve our understanding of human behavior. A cognitive simulation is simply a computer 
program that is intended to model human cognitive processes in some area. This approach 
has proved successful in a wide variety of domains, including problem solving (e.g., Newell 
& Simon, 1972), vision (e.g., Marr, 1982), natural language (e.g., Schank & Abelson, 1977), 
and memory (e.g., Anderson & Bower, 1973). 

The cognitive simulation approach has a number of advantages over more traditional 
psychological methods. First, the act of constructing a running computer program ensures 
that one's theory is internally consistent. Second, one can determine the consequences of 
changing a theory by adjusting the computational model and observing the new behavior. 
Most important, it forces one to think in terms of specific representations of knowledge and 
to explicitly specify processes for manipulating those representations. This leads to more 
specific- and thus more testable - models of cognitive behavior. We refer the reader to Newell 
and Simon (1972) and Anderson (1976) for additional discussion of this methodology. 

The goal of our research is to construct a running cognitive simulation of scientific insight. 
Although we have not yet achieved that goal, we believe the very act of thinking in process 
terms has revealed aspects of insight that we would otherwise have missed. 
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The Problem Sp-ace Hypothesis 

Much of the research within the cognitive simulation approach relies on what Newell 
(1980) has called the problem space hypothesis. This states that all cognitive behavior involves 
search through some problem space. A problem state is composed of a set of problem states, 
including the initial state from which search begins. New states are generated by applying 
operators to existing states, letting one systematically explore the space until the goal state 
has been reached. 

As an example, "suppose we wanted to solve some problem in linear algebra. The initial 
state might be a set of n equations in n unknowns, such as 

2x + 3y = 8 

3x - 6y = -9 

In this case, our goal would be to find some value for each unknown. There are two operators 
for generating new states - adding two equations together and multiplying an equation by 
a constant. An intermediate state for the above problem might include the equations 

4x + 6y = 16 

3x - 6y = -9 

By applying the right operators in the right order, we would eventually reach the goal state, 
which would tell us that x = 1 and y = 2. 

Unfortunately, the problem space for most interesting tasks are combinatorial in nature, 
so that many alternative paths present themselves. One response is to carry out an exhaustive 
search of the problem space, but this rapidly becomes unmanageable for even simple domains. 
A more reasonable approach is to carry out a heuristic search of the problem space, using rules 
of the thumb to suggest likely states to expand and likely operators to select. This approach 
is not guaranteed to find an optimal solution, but it is likely to produce an acceptable 
solution in reasonable time. Humans problem solvers appear to rely heavily on heuristic 
search methods. 

The problem space hypothesis has been quite successful within artificial intelligence and 
cognitive science, and we will see later that most explanations of insight have been formulated 
within this framework. In fact, the problem space approach has become so popular in some 
circles that many view it as 'truth' rather than as an hypothesis. Nevertheless, one can 
imagine competing frameworks for describing cognition, and as we will see, our theory of 
scientific insight incorporates such an alternative approach, based on the joint notions of 
mentaJ. models and reasoning by analogy. 

The Phenomenon of Scientific Insight 

The popular view of science assumes that progress occurs through the methodical collec­
tion of data and careful inferences from those observations. Although certain scientific work 
occurs in this mode, real progress often seems t~ require a 'leap of intuition' or a 'flash of 
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. insight', in which an old problem is suddenly seen in a differeril light. Let us consider some 
examples of this phenomenon. 

Probably the most famous instance of scientific insight is Archimedes' discovery of the 
principle of displacement (Dreistadt, 1968). The Greek scholar had been given the problem 
of determining whether the king's crown was pure gold, or whether the gold was mixed with 
silver. Knowing the density of gold and the weight of the crown, he needed only to find its 
volume in order to check for purity. But the crown's shape was irregular, and he could not 
measure its volume }Vithout melting it down again. Archimedes worked on the problem for 
some time without finding a solution. Then, as he lowered himself into a bath, he noticed 
that the water level rose simultaneously. With this came the realization that any object 
displaces its own volume when submerged in a liquid, and that this provided the means for 
measuring irr.egular vol um es.* 

Another well-known example of scientific insight is Louis Kekule's discovery of the ring 
structure of the benzene molecule. The scientist tried for some time to identify a structural 
model that would account for benzene's chemical makeup. Finally, he sat down by the fire 
and began to doze {Dreistadt, 1968; Farber, 1966). In his sleepy state he watched the smoke 
rising from the fire, 'twisting in a snakelike motion'. At this point, one of the snakes took 
its own tail in its mouth, creating a ring. In a sudden flash, Kekule realized the molecule 
must be structured as a ring. 

Insights seem to be fairly common in mathematics, and the eminent French mathemati­
cian Henri Poincare {1952) reported a number of his own insights in a lecture at the Societe 
de Psychologie in Paris. In one particularly striking example, he detailed his discovery of an 
expression for Fuchsian functions: 

At this moment I left Caen, where I was then living, to take part in a geological 
conference arranged by the School of Mines. The incidents of the journey made 
me forget my mathematical work. When we arrived at Coutances, we got into a 
[bus] to go for a drive, and, just as I put my foot on the step, the idea came to. 
me, though nothing in my former thoughts seemed to have prepared me for it, 
that the transformations I had used to define Fuchsian functions were identical 
with those of non-Euclidean geometry. (p. 53) 

This case differs from our earlier examples in the lack of any obvious external stimulus that 
is closely related to the insight. We will return to this issue later, since it bears on our 
theory. 

Hadamard's Theory of Scientific Insight 

Hadamard (1949) gives us a splendid discussion of the phenomenon of insight. In addition 
to reviewing numerous instances from the history of science, he identifies four distinct stages 
that seem to occur in every documented case of scientific insight - preparation, incubation, 
illumination, and verification. These stages and their characteristics constitute a set of 

* It is said that Archimedes' joy at this insight was so great that he leaped from his bath and 
ran naked through the streets of Syracuse, exclaiming 'Eureka!', or 'I have found it!'. 
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empirical generalizations relating to insight, and any successful theory must account for 
I 

their existence. 

The preparation phase involves intense effort in attempting to solve some problem. In 
some cases this attempt leads directly to a solution, but for especially difficult problems one 
eventually 'gives up'. This abandonment constitutes the entry into the incubation stage, 
during which the problem solver devotes his conscious processing to other issues. Depending 
on the situation, incubation can last anywhere from seconds to years, but eventually the 
solution 'proposes itself' during the illumination stage, which occurs both unexpectedly and 
very rapidly. This is the 'aha' experience that produces exclamations like the 'Eureka' of 
Archimedes. However, these 'leaps of intuition' are not always valid, and sometimes lead to 
'false insights'. Thus, one must still check the details during the final verification phase. 

In addition to describing these four stages and their relation to one another, Hadamard 
also proposes a theory of insight which gives a major role to unconscious reasoning. His 
explanation assumes three levels of the mind which work together during the process of 
discovery - the fully conscious, the fringe conscious, and the unconscious. The first refers to 
our everyday mode of thought, in which we are aware of the mental steps we traverse. The 
unconscious refers to thought processes that are not available to introspection, of which we 
are not even aware. The fringe conscious occupies the gray area between these two extremes, 
in which we are aware of ideas but not focusing on them. One can view this as the 'peripheral 
vision' area of the mind. 

Hadamard's theory states that the preparation stage involves only conscious thought. 
However, the mental activity during preparation serves to 'stir up' ideas relevant to the 
problem at hand. During the incubation phase, the unconscious mode takes charge and 
considers alternative soluti~ns that incorporate the ideas produced during the earlier prepa­
ration. When the unconscious encounters an especially promising combination, it deposits 
the result into the fringe conscious. The mind seizes upon this new idea and experiences the 
flash of insight as it enters full consciousness. Finally, one continues in the conscious mode 
while the result is checked. 

Clearly, most of the action in this theory is occurring at the unconscious level, and it is 
natural to ask how this mechanism manages to sift through so many ideas and distinguish 
the profitable ones from others. Hadamard argues that the unconscious is able to generate 
combinations of ideas that are specific enough to be fruitful and yet general enough not to 
miss the solution completely. This process is likened to the scattering of a hunting cartridge. 
The pellets are spread enough so that one does not miss the target, yet not so much that 
it is useless to aim. Hadamard concludes that great mathematicians differ from ordinary 
people in the selective ability of their unconscious, which lets them generate ideas that are 
aesthetically pleasing or interesting. 

Ohlsson 's Restructuring Theory 

Ohlsson (1984a, 1984b) has proposed a computational model of insight by attempting to 
integrate ideas from Gestalt psychology with the problem space framework. In the Gestalt 
paradigm, every situation was characterized by some structure in the mind. These structures 
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Figure 1. Find the sum of the areas of square ABO D and parallelo­
gram EBGD, given AB= a and AG= b. 
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were influenced by forces which could become unbalanced and introduce gaps. An unsolved 
problem was viewed as some situation in which gaps existed between one's current state and 
the goal state. When forces became unbalanced enough, restructuring occurred and some new 
configuration was produced. Gestalt psychologists claimed that these restructuring events 
are more likely to occur when the problem solver has carefully analyzed the problem, carefully 
analyzed the goal, and made a series of unsuccessful attempts at solving the problem. 

According to the problem space hypothesis, normal problem solving involves a search 
through a problem space. Ohlsson claims that restructuring requires search through the 
description space for a problem. That is, restructuring involves finding a different way to 
look at the problem, rather than trying to solve the problem in a straightforward manner. 
He further assumes that humans are able to 'look ahead' a few steps, and that this lets 
them know when they are near their goal. When a problem solver encounters an impasse, 
he attempts to view the problem in a different light. This can lead to a new representation 
for the problem, which constitutes restructuring. In some cases, this representational shift 
leads to a state that is only a few steps from the goal; the shift combines with the look ahead 
ability to produce a flash of insight. 

As an example, Ohlsson presents the problem shown in Figure 1, in which one must 
compute the sum of the areas of a square and an overlapping parallelogram. The straight­
forward solution is to calculate the area of the square and the area of the parallelogram 
(which requires calculating the base of the parallelogram) and adding them together. Most 
people do not know the formula for the area of a parallelogram, and so cannot solve the 
problem with the information provided. This causes an impasse and this in turn leads to 
restructuring. 
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One such alteration lets the problem solver view the pictu
1
r-e instead as two overlapping 

triangles (DC E and GAB). Given this representation, one can calculate the areas of the 
two triangles and add the results. These operations are simple, since the base and height of 
the triangles are given in the problem statement. The feeling of insight might or might not 
occur in this case, depending on whether the problem solver can look ahead the required 
three steps. · 

Another restructering simplifies the problem even further. If one notices that the tri­
angles can be 'slipped apart' to form a rectangle, then one need only calculate the area of 

) 

that rectangle, using the base and height already given. In this case, the feeling of insight is 
almost certain to occur, since the goal state is only two steps away from the initial state in 
this new space. 

Simon's Theory of Familiarization and Selective Forgetting 

Simon (1977) has also proposed a computational explanation of Hadamard's four stages 
of insight. The theory combines models of human memory with information processing 
models of problem solving. Research on human short-term memory has shown that its 
capacity is severely limited, but it has also shown that this limitation. can be offset by 
experience. When asked to remember 'artificial' input such as digits or letters, people can 
hold only about seven symbols in memory at one time. However, given sufficient experience 
in a domain, humans form chunks to describe regularities in that domain. Simon calls this the 
process of familiarization. Memory experiments show that subjects can hold approximately 
the same number of chunks in short-term memory, regardless of the complexity of the chunks. 
Thus, one 'can remember around seven letters, seven familiar words, or even seven familiar 
sentences. An extreme example is the Gettysburg Address, which is composed of sentences, 
which are in turn composed of phrases, which are themselves composed of certain words, 
and so forth. 

Simon proposes that familiarization occurs during conscious problem solving of the type 
that characterizes Hadamard's preparation stage. As the problem solver carries out a heuris­
tic search through the problem space, he also builds up higher level structures that describe 
regularities in that space. The goals and states that are generated during search are held in 
short-term memory, while these chunks are stored in long-term memory. On difficult prob­
lems, the problem solver can easily get lost and be forced to start over from the beginning. 
Meanwhile, he is becoming more familiar with the structure of the space and its components. 
Eventually, he may decide the problem is too difficult and abandon his efforts. At this point, 
the structures in short-term memory will fade rapidly, but the chunks that have been stored 
in long-term memory will remain. Simon terms this process selective forgetting. 

Later the problem solver may reexamine the troublesome problem. However, this time he 
has a powerful repertoire of chunks available in long-term memory, and these lead the search 
down a quite different path than on earlier occasions. These chunks may allow the person . 
to move directly to the goal, and in some cases this may occur so rapidly as to produce the 
experience of illumination. The process of familiarization, combined with the mechanism of 
selective forgetting, gives the problem solver a new approach, thus transforming a difficult 
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problem into a straightforward one. 

Commentary 

Let us consider the similarities and differences between Hadamard's, Ohlsson's, and Si­
mon's theories of the insight process. All assume that Hadamard's four-stage model provides 
a reasonable description of the phenomena, and concentrate on explaining the processes that 
underly the different stages. Furthermore, all agree that the preparation and verification 
stages involve conscious problem solving, though Ohlsson and Simon give more detail, since 
they can build on the results of modern cognitive psychology. 

The theories differ in their treatment of the incubation and illumination stages. Al­
though he does not cast it in quite these terms, Hadamard argues that incubation involves 
a search through the space of idea combinations. This search is carried out by unconscious 
mechanisms, which employ measures of interestingness or elegance, both to select promising 
candidates and to decide when a likely solution has been found. illumination is secondary 
in this framework, serving only to notify the conscious mind of the solution. Most of the 
interesting action occurs in the unconscious during incubation, though the preparation stage 
also serves to 'stir up' the ideas that are used by the unconscious. 

However, developments in cognitive psychology strongly suggest that search of this kind 
requires conscious attention. Thus, Simon rejects the notion of an unconscious that can 
selectively search large problem spaces of the sort required for many scientific discoveries. 
He replaces Hadamard's unconscious search scheme with two much simpler unconscious 
processes - familiarization and selective forgetting. The first of these occurs during the 
preparation stage, while the second occurs during incubation. Together, they clear the way 
for conscious problem solving· mechanisms to find a solution during illumination .. This stage 
occurs so quickly because the chunks acquired in the preparation phase make the search 
process trivial. This explanation is much more distributed than Hadamard's, assigning 
significant roles to each stage. 

In Ohlsson's theory the major action occurs during illumination, when the problem solver 
restructures the problem description so that its solution becomes obvious. This explanation 
does not attempt to account for the role of incubation, and in fact this stage is not even 
mentioned in the theory. Presumably, Ohlsson would argue that in some cases restructuring 
does not occur until some time after an impasse is reached, but this does not explain what 
causes restructuring when it does occur. 

Although each of these theories of insight have their attractions, we are not satisfied that 
any provides an adequate explanation of the phenomena. Hadamard attributes powerful 
search capabilities to the unconscious that contradict the findings of cognitive psychology. 
Simon invokes the more plausible mechanisms of familiarization and selective forgetting, but 
he does not explain why the problem solver returns to the problem when he does. Finally, 
Ohlsson posits a restructuring process that generates a new, simpler problem space. Like 
Simon's theory, this framework is consistent with our knowledge of the human information 
processing system, but it does not explain the incubation stage. 

In the following pages, we propose an alternative theory of scientific insight that diverges 
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from the existing theories along a number of dimensions. One-difference is that it does not 
I 

rely on the problem space hypothesis, as do the approaches· of Simon, Ohlsson, and even 
Hadamard. Rather, we assume that insight is a memory-related phenomenon that centers 
on mechanisms of indexing and retrieval. Another distinguishing feature of our framework 
is the central role played by analogy. Given the importance of this mechanism to our work, 
we will diverge slightly to review some earlier work on the topic. 

Research on Reasoning by Analogy 

Looking back on our examples of scientific insight, it becomes apparent that all involved 
some form of analogy. Archimedes formed an analogy between his body submerged in the 
bath and the king's crown submerged in a container of known volume. Kekule formed a 
mapping between a snake biting its own tail and the benzene ring. Finally, Poincare's 
insight was based on an analogy between the Fuchsian transformations and non-Euclidean 
transformations. 

Polya (1945), Sternberg (1977), and others have argued for the importance of analogy 
in human cognition. Thus, it would not be surprising to find analogy occurring in scientific 
discovery. We will argue that this mechanism plays an important role in many (though not 
necessarily all) cases of insight, and analogy occupies a central position in our theory of that 
phenomenon. But before describing this theory, let us first review some previous work on 
analogy itself. 

Dreistadt's Analogy-Based Theory of Insight 

Dreistadt (1968) has also noted the role analogy in historical examples of insight. He 
summarizes his own theory of insight in the following words: 

This writer explains insight as occurring when one finds a stimulus pattern 
(the analogy) in which parts of the form or structure are like the structure of 
the problem-situation and the rest of the structure of this stimulus pattern (the 
analogy) indicates how to organize the unintegrated materials of the problem or 
how to reorganize the problem by putting the parts that are out of place into 
their correct place, or both, thereby completing the whole which is then the 
solution of the problem. (p. 111) 

In other words, an insight occurs when the problem solver finds some analogy that is similar 
to the current problem, and that suggests a different view on the problem that makes its 
solution clear. In this framework, most of the action occurs during the illumination stage, 
which involves the discovery of a suitable analogy. 

To test this hypothesis, Dreistadt (1969) performed a number of experiments to deter­
mine the influence of analogies and incubation periods on subjects' ability to solve problems. 
One group of subjects was given twenty minutes in which to solve a set of tricky problems. 
A second group was given the same amount of time to solve the same problems, but was also 
presented with pictures which contained analogical 'hints' to help find the solution. However, 
this group was not told the purpose of the pictures. A third group was allowed five minutes 
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to concentrate on the problem, then was given an eight minute11.ncubation' period (involving 
a distracting activity), and finally was given seven more minutes to solve the problem. A 
final group was presented with the pictorial analogies and given an incubation period. 

Dreistadt measured both the number of correct solutions in each group and the closeness 
of their incorrect answers. He also interviewed subjects about their impressions of the prob­
lem solving task. He found that pictorial analogies significantly aided the solution process, 
even though subjects were not always aware they had been given a hint. Incubation alone did 
not seem to help in problem solving, but there was some evidence that incubation enhanced 
the effect of the pictorial analogies. These results lend credibility to the belief that analogies 
are important in scientific insight, and we will return to this view later in the paper. 

Hall's Framework for Analogy 

Although Dreistadt presented evidence for the role of analogy during insight, he did not 
suggest details for this process. However, a number of researchers within AI and cognitive 
science have described computational models of analogy. Hall (1986) provides an excellent 
review of these alternative approaches and suggests an organizing framework for research on 
analogy. This framework ~ncludes four components - recognition, elaboration, evaluation, 
and consolidation. 

Reasoning by analogy involves mapping from some existing structure, the source, onto 
some new structure, the target. One typically begins with an incomplete description of the 
target. The first step involves retrieving a plausible source from long-term memory; this 
is the recognition process. Once a likely source has been identified, one must evaluate the 
analogy to ensure that it is reasonable. Assuming the mapping is acceptable, one then carries 
over relevant aspects of the source to fill out the target description; this is the elaboration 
stage. Finally, for successful analogies one may want to store an abstract description in 
memory to simplify retrieval in future situations; this is the consolidation process. 

We will use this framework in our discussion of the three particular computational models 
of analogy that we consider below. We should note that much of the work on analogy 
focuses on learning tasks, and the consolidation stage plays an important role in this context. 
However, our focus is on scientific discovery and insight, and consolidation seems less relevant 
for this domain. Also, Hall's framework downplays the need to store and index experiences 
in long-term memory before recognition/retrieval can occur. We will include this earlier step 
in our treatment of analogy. 

Gentner's Structure Mapping Theory 

Gentner (1983) has put forth a structure mapping theory that attempts to distinguish 
useful analogies from poor ones. This framework assumes that memory contains represen­
tations of objects linked together by predicates. Some predicates accept only one argument, 
while others relate two or more arguments. The attribute red is an example of the former; 
the relation larger is an example of the latter. Gentner makes a further distinction between 
first-order predicates, which relate objects, and second-order predicates, which relate other 
predicates. The relation larger is an example of the first, while cause is an example of the 
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second. 

The structure mapping theory claims that single-argument attributes are useful when 
noting similarities between two situations, but relations are more important for drawing 
analogies. For example, the statement 'The X12 star system in the Andromeda galaxy is 
like our solar system' involves a similarity, implying that the X12 star is yellow, hot, about 
the same size as Sol, and so forth. In contrast, the statement 'The hydrogen atom is like our 
solar system' involves an analogy. In this case, we certainly do not mean that the hydrogen 
atom is hot and yellow, but we do mean that certain objects (electrons) revolve around the 

) 

atom, more or less as planets revolve around the sun. 

Gentner's theory does not address the issue of retrieving or recognizing analogies, but it 
does provide. criteria for evaluating their quality and it does suggest principles for carrying 
out elaboration. The theory can be summarized by three mapping rules: 

1. Disregard attributes of objects, such as size or color; 

2. Try to preserve relations between objects; 

3. In deciding which relations to preserve, select those which retain consistency among 
higher-order relations. 

Gentner refers to the third rule as the systematicity principle. The reasoning behind this 
principle is that the best analogies retain the highest-order relations. 

As an example, consider the partial representation of the solar system shown in Figure 
2 (a). If we state that 'the atom is like the solar system', the structure mapping theory 
predicts that only those relations presented in Figure 2 (b) would be carried over. In this 
case, the sun corresponds to the nucleus of the atom and the planet maps into the electron. 
Notice that none of the sun's attributes are carried along, nor is the fact that the sun is 
hotter than its planet, since this relation is not involved in the higher-order cause relation. 

Winston's Theory of Analogy 

Winston (1980) has proposed an alternative theory that focuses on different aspects of 
the analogical reasoning process. As in Gentner's framework, memory consists of objects 
linked together by relations, and together these form schemas describing some connected set 
of events. But Winston provides much more than this; his theory also addresses the issues 
of indexing and retrieval. 

When a new event or description is stored in memory, it is indexed by the type of object 
it contains. For example, if one reads a story about a wicked stepmother and a beautiful 
girl, the schema summarizing the story would be indexed through those concepts. Later, 
when one reads another story involving a wicked stepmother or a beautiful girl, one would be 
reminded of the earlier schema. The actual process is both more complex and more general 
than this account suggests. Winston organizes concepts in is-a hierarchies, so that 'wicked 
stepmother' would be stored as a subtype of 'stepmother', this would be stored as a subtype 
of 'parent', and so forth. 

Thus, a story involving any type of parent might remind the reader of the original schema, 
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Figure 2. Creating a representation for the atom from the statement, 
"The atom is like the solar system." Higher order relations are carried 
over and simple attributes are ignored. 
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though to a lesser-- extent. But this extension means that, potentially, any new experience 
could remind one of any earlier experience. Winston responds to this issue by preferring 
connections that are more discriminating during the retrieval process. For instance, fewer 
stories would be indexed by 'wicked stepmother' than by the more general 'parent' concept. 
As a result, a new story containing a wicked stepmother would be more likely to remind one 
of an earlier story with a wicked stepmother than stories containing other kinds of parents. 
This approach has some similarities to 'spreading activation' models of retrieval. 

Once a plausible source for the analogy has been established in this manner, Winston's 
model compares all possible mappings between the source and the target, and then evaluates 
them according to their degree of match. This evaluation process gives preference to higher 
order relations, but it also takes objects into account. The approach also differs from Gen­
tner's in that the elaboration process carries over both relations and attributes. Finally, the 
method consolidates its analogically-based findings by transforming them into production 
rules, but this process need not concern us here. Winston has tested his mechanism in a 
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number ot domains, including story understanding- and electric.. circuits. 
I 

Carbonell's Theory of Derivational Analogy 

Carbonell (1986) has explored the use of analogy in problem solving. When one encoun­
ters a completely· novel problem, the only choice is to employ weak problem solving methods 
such as heuristic search or means-ends analysis. However, when the current problem shares 
features with an earlier problem for which the solution is already known, one can use this 
knowledge to direct; search on the current task. 

But Carbonell argues that superficial similarities in the problem structure and solution 
path are less important than the reasons why particular steps were taken. He suggests that 
weak problem solving methods lay down a derivational trace in memory. This trace contains 
not only the final solution path, but includes failed paths and the reasons why these paths 
did not lead to a solution. It also includes subgoals and the reason for their creation. 

When a problem solver encounters a new problem, he begins applying weak methods 
to search for a solution. If the initial reasoning steps are similar to those used in another 
problem, then he retrieves the earlier problem and its derivational trace. Once a plausible 
analogy has been identified, the mapping is elaborated by 'replaying' the derivations from the 
earlier problem and checking to see that similar derivations carry over to the new problem. 
In cases where the same reasoning holds for both problems, the analogous path is followed. 
In other cases the analogous derivation does not hold, and some different justification must 
be found for problem solving to proceea. As in Gentner's theory, the emphasis here is 
on evaluation and elaboration, though Carbonell also addresses the problems of indexing, 
retrieval, and consolidation. 

Commentary 

Before moving on, we should attempt to extract some useful lessons from the earlier 
work on analogy. One immediate observation is that these theories are weak on the side of 
indexing and retrieval. Gentner does not even address this issue, and Carbonell must carry 
out some search before being reminded of an earlier problem. Winston provides the most 
coherent model of retrieval, employing a me,chanism similar to Anderson's (1983) spreading 
activation theory. This simple mechanism has two interesting properties. First, it seems 
quite plausible that activation could spread in parallel, and that this process could occur 
at unconscious levels. Second, the mechanism may sometimes suggest very poor analogies, 
since it focuses on the types of objects shared by two situations and not on their relations. 
Later, we will see that these features of spreading activation play an important role in our 
theoi:y of insight. 

All three theories share a concern with the elaboration process, in which one constructs 
a detailed mapping between source and target and carries over relevant structures. How­
ever, they disagree significantly on methods for determining relevance. Winston uses causal 
relations to select an optimal mapping, but once this has been established he carries along 
all consistent structures. In contrast, Gentner explicitly abandons single-argument predi­
cates and retains only those relations that occur as arguments of higher-level relations. This 
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naturally leads to a more abstract description of the target th.an does Winston's approach. 
·However, Gentner's emphasis on the number and nature of arguments seems somewhat ad 
hoc. Carbonell's claim is more elegant - that one carries over only those structures that 
were used in deriving the source structures. We will reinvoke this idea later as well. 

An Alternative Theory of Insight 

We are now ready to present an alternative theory of scientific insight. In many ways, our 
framework is an ext'ension of Dreistadt 's analogy-based scheme, with computational ideas 
borrowed from Carbonell, though Gentner and Winston have also influenced our thinking. 
Below we present an overview of the theory and its differences from earlier frameworks. After 
this, we consider the details of the theory and the phenomena it covers. 

An Overview of the Theory 

The basic tenet of our theory is that insight does not result from search through a problem 
space, but rather is a memory-related phenomenon. Moreover, the process of insight often 
involves the recognition, evaluation, and elaboration of analogies. We will not claim that 
all insights can be explained in this manner, but we believe that many examples from the 
history of science have this quality. 

However, one can instantiate this general view in different ways. One argument, fol­
lowing Hadamard's line of reasoning, is that unconscious processes lead to the recognition 
of analogies during incubation. These mechanisms would search the space of possible map­
pings and, when a suitable analogy had been found, would deposit the result in the fringe 
consciousness. Presumably this search would be directed by heuristics of elegance (or even 
by Gentner's notion of systematicity ). This scheme is identical to Hadamard's, except that 
his 'combination of ideas' has been replaced by the recognition of useful analogies. 

We will argue instead that the process of analogical retrieval occurs entirely during the 
illumination stage, and that this retrieval is usually cued by some external event. This 
explanation requires a very rapid mechanism, presumably one that occy.rs in parallel. A 
spreading activation process (like that used by Winston) has precisely these characteristics, 
and this will form another cornerstone of our theory of insight. 

But if analogies are formulated during illumination, what purpose is served by the in­
cubation stage? Our theory provides a simple answer to this question: there is nothing 
occurring during incubation. There are no unconscious processes selectively searching a 
problem space, as Hadamard suggests, nor is there even significant forgetting, as Simon pro­
poses. Instead, the memory system is simply biding its time, waiting for some cue to initiate 
retrieval of a promising analogy.* When this occurs, it takes place very rapidly, giving the 
flash of insight that so many scientists have experienced. 

Note that we are not rejecting the notion of unconscious processes. Both indexing and 

* This suggests the need for a fifth group in Dreistadt's experiment, which would be supplied 
with pictorial analogies only after the incubation period. Our theory predicts that this group's 
problem solving ability would be comparable with the group that had analogies for the entire time. 
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Table 1. A comparison of four theories of insight. 

Hadamard Ohlsson Simon Current 

Preparation 
'stirring up' gei:eration of familiar- indexing of 

of ideas impasse ization useful 
structures 

Incubation 

J unconsc10us selective search for nothing forgetting nothing 
ideas 

Illumination 
noticing a restructuring, informed 

retrieval problem solution look ahead solving of analogy 

Verification checking checking checking checking 
solution solution solution solution 

retrieval are unconscious in that the problem solver has no conscious control over them. We 
have only rejected (along with Simon) the concept of unconscious reasoning. Such a process 
is inconsistent with currently accepted theories in cognitive psychology, which assume that 
problem solving requires conscious attention. We have replaced it with the much weaker 
mechanism of unconscious spreading activation. This component is completely consistent 
with recent work, and some widely recognized theories (e.g., Anderson, 1983) rely heavily 
on such a mechanism. 

Our theory makes less controversial claims about the preparation stage. There is little 
doubt that conscious problem solving occurs during this period, and that this lays the foun­
dation for the later illumination. Like Simon, we believe that preparation serves to index 
useful structures in memory, and differ from his view only in the purpose to which these 
structures are later put. Our emphasis on analogy makes the particular form of indexing 
very important, and we will have more to say about this below. 

The verification stage also clearly involves conscious checking of the insight's validity, 
but our model of this stage also differs from earlier theories. Recall that Hall's framework 
distinguishes between evaluation and elaboration. The first of these components is closest 
in spirit to traditional notions of verification, since it involves checks on the quality of the 
proposed analogy. But the process does not stop there. One must also decide which aspects 
of the source one should carry over to the target situation; this is the elaboration process. As 
we will see below, our model of elaboration incorporates Carbonell's notion of derivations. 

Table 1 presents the major differences of our theory from earlier models. To summarize, 
we claim that insight is a memory-based phenomenon, in contrast to the search-based theories 
of Hadamard, Ohlsson, and Simon. The theory further states that insight is a form of 
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reasoning by analogy, requiring indexing during the preparation stage, retrieval during the 
illumination stage, and elaboration during the verification stage. Finally, the theory states 
that no significant processes occur during the incubation period. 

Process Models and Behavioral Descriptions 

We have seen that structures are indexed in memory during the preparation stage, and 
that this lays the foundation for retrieval during illumination. However, we have not yet 
stated what type of structures are stored, nor what indexing scheme is used. There are 
many possible responses to these questions, but the one we have taken builds upon Forbus' 
(1984, 1986) qualitative process theory. Thus, we should review this framework briefly before 
movmg on. 

Like other researchers* in the area of qualitative physics, Forbus has noted that people 
often reason about physical processes in a qualitative manner. For example, if asked to 
describe the process by which water boils, one might say, 'If you heat water, its temperature 
will increase until it reaches the boiling point; after this the water turns into steam.' Note 
that this statement does not mention specific quantities of heat, temperature, or rates of 
change. Instead, it focuses on the qualitative changes. 

Forbus' framework centers on the notion of processes that produce changes over time. 
Heating, boiling, evaporation, and fluid flow can all be described as such qualitative pro­
cesses. Each process can be described in t_erms of the objects involved, the conditions under 
which it occurs, and its influences or effects. When a set of objects meet the conditions on 
a process, that process becomes 'active' and leads to changes in those objects. Consider the 
process of boiling water as an example. In this case, the objects consist of a heat source, a 
container, and some water in the container. The condition on this process states that the 
water's temperature must be greater than the boiling point of water. When this occurs, two 
changes result: the amount of water decreases and the amount of steam increases. 

Given a set of processes and an initial state, Forbus shows how one can generate an en­
visionment for that physical system. An envisionment specifies all possible qualitative states 
that the system can enter, along with the order relations between those states. Each state 
contains only qualitative information, such as whether a. quantity is increasing, decreasing, 
or remaining constant. In some situations an envisionment will contain nondeterministic 
branches, and in these cases one cannot predict which behavior will actually occur. 

For instance, the envisionment for heating water in a closed container would include 
three possibilities. First, if the temperature of the heat source is less than the boiling point, 
then the water will get hotter until it reaches this temperature and then remain constant. 
Second, if this temperature is greater than the boiling point, then at some point the water 
will begin turning into steam, and this will continue until all the water is gone. In the third 
case, the pressure within the container builds up sufficiently to cause an explosion. Each 

* We refer interested readers to de Kleer and Brown (1983), Kuipers (1984), and Iwasaki and 
Simon(1986) for alternative approaches to qualitative physics. We find Forbus' framework the 
most consistent with our goals, but we do not have the space to discuss the reasons here. 
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Heat-flow 

~temp(water)> 0 

temp( water )=temp( source) 
~temp(water)= 0 

Heat-flow 
Boiling 

tern p( water)= boil( water) 
~mass( water)< 0 
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Explosion 

mass(water)= 0 pressure( container)= 
burst-point( container) 

Figure 3. An envisionment for boiling water. 

of these situations corresponds to a different path in the envisionment, which we present 
graphically in Figure 3. 

In summary, Forbus' qualitative process theory describes physical systems at two levels 
- a theoretical level in terms of processes and structures and a behavioral level in terms of 
envisionments. We will see that this distinction has important implications for our theory 
of insight. 

The Task of Theory Formation 

Now that we have explained the distinction between process-structural models and en­
visionments, we can clearly describe a task that commonly confronts the scientist. Since one 
can use a process-structural model to derive an envisionment, we can view the former as an 
explanation of the latter. But in many cases, the scientist can induce a behavioral description 
for a physical system by observing its behavior, and must then infer some process model that 
accounts for that envisionment. We will call this the task of qualitative theory formation.* . 

* Of course, there are many other facets to scientific discovery, but we do not have the room to 
consider them here. We refer interested readers to Lenat (1983) and Langley, Simon, Bradshaw, 
and Zytkow (1986) for computational studies of some other aspects of discovery. 
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Figure 4. The mappings found from Es to ET are applied to ME, 
thus inferring MT. New objects and relations are inferred in ET and 
MT based on the derivation ·of Es from Ms. 
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This problem lends itself readily to analogy-based solutions, as can be seen from Figure 
4. Let Ms represent the process-structural model for some known phenomenon, such as the 
flow of fluid through a pipe, and let Es stand for the envisionment derived from that model. 
Given some new behavioral d~scription ET that has been induced from observations, such 
as the behavior of an electric circuit, one can form an analogy between Es and ET. Once 
this mapping has been established, we can use Ms to infer an analogous process-structural 
model MT. If we have been careful in the mapping process, then MT will constitute an 
explanation of ET in the same sense that Ms explains the behavioral description Es. 

We will limit our model of scientific insight to the task of qualitative theory formation. 
This means that it will not account for Poincare's insight about the Fuchsian transformations, 
since this did not involve the construction of a qualitative process model to explain observed 
behavior. However, many examples of scientific insight (including Archimedes' and Kekule's 
discoveries) do take on this form, and we will focus on these in the remainder of the paper. 
We believe our theory can be extended to cover other aspects of insight, but we have no 
firm evidence to present in defense of that claim. Now that we have defined the class of 
phenomena that we hope to model, let us turn to the details of our theory. 

Indexing, Spreading Activation, and Retrieval 

According to Hall's framework, the first step in reasoning by analogy involves retrieving a 
candidate structure. However, before this can happen such structures must have been stored 
in long-term memory, and they must be indexed in ways that allow their retrieval. Scientists 
undoubtedly index their domain knowledge in many ways, but our theory states that the 
most important indexing scheme for analogical retrieval centers on behavioral descriptions 
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or envisionments. 

For example, consider a situation in which two containers have different levels of liquid. 
If we connect these containers with a pipe, fluid will flow from the one with a higher level of 
liquid to the one with a lower level. This process will continue until the system has reached 
equilibrium. One very important aspect of this system is that it began with two unequal 
quantities of the same type, and these quantities changed over time until they became equal. 
Thus, one could index this envisionment through the concept of equilibrium, though certainly 
other features would also come into play. 

) 

One promising mechanism for explaining retrieval centers on the notion of spreading 
activation. In this framework, memory is viewed as a large semantic network (Quillian, 1968) 
consisting of nodes connected by labeled links. Some nodes correspond to general concepts 
such as wat~r and height. These may be activated by interaction with the environment, 
and when this occurs, activation 'spreads out' from the source nodes in concentric rings.* 
Theoretically, this process occurred unconsciously and in parallel. 

Anderson (1976, 1983) incorporated the notion of spreading activation in his ACT theory 
to model human fact retrieval. In this framework, the semantic network played the role of 
long-term memory. As new symbols entered short-term memory, activation spread out from 
these symbols through the semantic network, causing portions to enter short-term memory. 
In order to explain various memory phenomena, Anderson hypothesized that, as one spread 
out from a given source node, the initial activation was split between the links emanating 
from that node. Thus, nodes with a large 'fan' would have less impact on retrieval than 
nodes with a smaller fan. In addition, activation was divided proportionally according to 
the trace strength of the links involved. This trace strength increased the more often a link 
was stored or accessed. 

Now let us see how the spreading activation approach can be used to model the illu­
mination process. As before, assume that the scientist already has stored knowledge of 
many physical situations as schemas in long-term memory, and that he has indexed these 
situations through features of their envisionments. Now the scientist encounters a new sit­
uation and constructs an envisionment from his observations. Activation will spread out 
from this description, possibly pushing the activation of an existing schema above threshold 
and depositing the structure into short-term memory. Presumably, human memory con­
tains thousands of such schemas, many having features in common with the new situation. 
But if we assume that activation is divided proportionally according to trace strength, then 
well-stored schemas will be greatly preferred. And schemas that have been given signifi­
cant attention in the recent past - during the preparation stage - will have very high trace 
strengths indeed. 

* Quillian focused on finding intersecting paths between source nodes. Recently Charniak (1986), 
Granger, Eiselt, and Holbrook (1986), and Norvig (1985) have reinvoked this mechanism to model 
natural language understanding and inference. We have not used this particular approach in 
modeling insight, though it may provide a plausible alternative. The approach we have chosen 
is mo.re similar to that used by Holland, Holyoak, Nisbett, and Thagard (1986) in their work on 
analogy. 
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This explanation accounts for insights like that of Archimedes, in which some new ex­
perience itself becomes the source of the analogy. But it .does not explain another form of 
insight, in which the analogy maps between two structures already in long-term memory. 
In such cases, the scientist already has the necessary schema Es in memory during the 
preparation stage, but he does not retrieve it until later, after some appropriate cue occurs. 
At first glance this seems odd, but the explanation becomes apparent on closer inspection. 
During the preparation stage, the scientist's attention is focused on the current schema ET, 
which is gradually being laid down in memory with ever higher trace strengths. Activation 

J 

spreads out from this structure, but due to the high fan and low trace strengths of analogous 
schemas, none rise above threshold. Finally the scientist gives up on the problem. 

Later, some cue enters memory from the environment that reminds the problem solver 
of the older, better-understood schema Es. If the cue itself has little fan, this schema will 
be retrieved even with its low trace strength. Once Es enters short-term memory, activation 
spreads from it to associated schemas. This time the fan is large, but on.e schema among the 
many competitors has a very high trace strength - ET. Illumination occurs as this schema 
enters short-term memory and the mapping between Es and ET becomes apparent. Insight 
occurs at this moment, rather than during preparation, because activation does not spread 
away from schemas with high trace strengths; rather, it spreads towards them. 

Consider the situation in which two objects with different temperatures are brought into 
contact. Over time, the temperature of one object will increase and the other decrease, until 
the temperatures stabilize when equilibrium is reached. Suppose we spread activation out 
from the resulting envisionment through indices such as having two objects in contact and 
two quantities reaching equilibrium. One promising analogy for explaining the behavior of 
the temperatures is the envisionment for fluid flow that we described earlier. This mapping 
would not suggest itself during preparation because there are many schemas that share 
some features with the temperature situation. But later, some environmental cue such as a 
waterfall might cause retrieval of the fluid flow schema, and this in turn would retrieve the 
temperature schema. 

This explains the nature of the retrieval process and its sudden character, but presumably 
such retrievals occur in everyday life without the Eureka experience. Yet the rarity of such 
events follows naturally from the notion that activation occurs at different levels. In normal 
situations, we retrieve relevant schemas and deposit them in short-term memory, but at a 
relatively low level of activation. In true cases of insight, the retrieved schema has been 
stored so strongly that, when finally retrieved, it receives a major influx of activation. If we 
assume limited amounts of such activation, then the retrieved schema effectively becomes 
the center of attention, flushing all other structures almost instantaneously. This rapid 
reorganization of the contents of short-term memory gives us the 'aha' feeling we associate 
with true illumination. 

Elaboration through Derivation 

In Hall's framework, once a potential analogy has been recognized and evaluated, the 
mapping must still be elaborated. But how. does one decide which aspects of the source to 
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carry over to the target? Examples from the history of sciep:.ce provide some constraints 
on this process. When Dalton proposed the atomic theory of matter, it was presumably 
based on an analogy with macroscopic objects that could be decomposed into part~. Yet 
notice that, though macroscopic objects have features like color and smell, Dalton did not 
endow atoms with these attributes. Similarly, the caloric theory of heat was based on a fluid 
analogy, but its authors did not carry along aspects of fluids such as taste or viscosity. 

The point here is that, at least in scientific analogies, the elaboration process is quite 
selective. Only certain characteristics of the source situation are carried over into the target 
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description. This ,.is· one of Gentner's main arguments for her structure mapping theory; in 
her framework, higher level predicates determine which structures will be elaborated and 
which will be ignored. Although we could simply have borrowed this solution from Gentner, 
the presence bf Forbus-style qualitative processes in our theory suggests a more elegant way 
to achieve the same effect. 

Recall that Carbonell's theory of analogy relied heavily on the notion of derivations. A 
structure from the source (e.g., portions of a search tree) were carried over to the target only 
if an analogous derivation held for that structure in the target. What is interesting about 
Forbus' qualitative process theory is that it provides mechanisms for deriving behavioral 
descriptions ( envisionments) from process and structural descriptions. We can then use 
these derivations to decide which process components and structural aspects of the source 
situation should be elaborated in the target situation. 

For instance, suppose we have a qualitative process model of fluid flow toward equilib­
rium, as described earlier. The structural description of this situation may contain many 
features, such as the color of the liquids, their taste, their relative heights, and so forth. 
However, only some of these attributes are used to derive the envisionment that predicts the 
:fluids will move toward equilibrium. Now suppose we form an analogy between this envi­
sionment and the observation that adjacent objects with different temperatures also move 
toward equilibrium. We would like to infer some structural description of the new situation, 
but which attributes and objects should we carry over? 

Our theory states that one should carry over only those aspects th~t were actually used 
in the original derivation. In this case, the heights of the liquids were used, so their analog 
(temperature) would be included in the new description. Features like taste and color were 
not used in the derivation, so these would be omitted from the new model. Note that new 
objects as well as attributes may be inferred. One cannot have the height of a fluid without 
first having the :fluid, so one cannot have temperature without having some analogous :fluid. 
Early heat theorists called this substance caloric. 

Returning to Figure 4, we can see the relation between derivational elaboration and the 
other mechanisms in the theory. A Forbus-like derivation process is used to explain the 
source envisionment (Es) given the source model (Ms). The entire structure is indexed by 
characteristics of this envisionment, and these links are used by the spreading activation 
process during retrieval. Given an envisionment (ET) for the target (presumably inferred by 
observation), this retrieval mechanism suggests the source envisionment as a likely analogy. 
If this mapping is consistent, then the elaboration process plays the source derivation 'in 



SCIENTIFIC INSIGHT PAGE 21 

reverse' to determine the relevant objects and attributes of the-target model (MT).* When 
this stage is complete, the scientist has generated an abstract process-structural model that 
explains the observed behavior by analogy with another situation. 

Predictions of the Theory 

Let us examine how our theory accounts for some insight-related phenomena. First, 
recall that the duration of the incubation stage can vary widely. According to the theory, 
this occurs because Jthe problem solver must wait until an appropriate cue appears. This 
might be readily available (as in Dreistadt 's experiments) or it take weeks or months to 
present itself. In the former case, illumination would occur almost immediately; in the 
latter, illumination would be delayed until the cue arises. In some cases, no useful cue ever 
appears, and the problem remains unsolved. Presumably this is a common occurrence, but 
we seldom hear about failed insights because they are not very newsworthy. 

A second phenomenon is that different people have different levels of ability in problem 
solving and discovery. At first glance our theory cannot explain such individual differences. 
If cues appear randomly, then anyone should be able to make great discoveries by simply 
being in the right place at the right time. However, this analysis ignores the importance of 
the indexing that occurs during the preparation stage. Appropriate indexing is all important 
to the process of analogical retrieval, and different levels of domain knowledge can lead to 
quite different indexing schemes. Thus, experts in a given domain are more likely to store 
problems in ways that will let them be easily retrieved later. And the more attention given 
to a problem during the preparation stage, the more ways in which it will be indexed and 
the more firmly will its links be established. This explanation contrasts sharply with that 
given by Hadamard, which attributes differences in creativity to differences in unconscious 
reasoning processes. 

We have seen that dreams play an important role in some insights, and this also seems to 
cause difficulty for the theory. If insights rely on external cues to initiate analogical retrieval, 
then they should never occur during dream states. However, this objection also disappears on 
closer inspection. There is no inherent reason why the retrieval cues must be external; they 
might also be internally generated during periods of free association, and this is exactly what 
dreams provide. But since the chains occurring in dreams are semi-random, they provide 
little more direction than chance external cues. Thus, dream-based illuminations may be 
delayed as long as those based on interactions with the environment. Kekule did not dream 
of a snake because his unconscious mind was gnawing at the benzene problem. Rather, he 
dreamed of a snake by chance and this cued a useful mapping to the problem. 

The theory does not provide a satisfactory account of the Poincare episode. In this case, 
illumination came to the mathematician as he was stepping onto a bus, and he does not report 
any external cue that seems related to the problem. However, this does not mean that such 
a cue was not present. Recall that the retrieval process itself is unconscious, so it seems 
quite plausible that some cue was available and reminded Poincare of the non-Euclidean 

* Note that one can also infer missing components of the envisionment. However, this process 
is purely structural and does not rely on the notion of derivations. 
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transformations, even though he was not aware of iL Dreistadt~s (1969) experiment suggests 
\ 

that this situation is relatively common. Many of his subjects did not think they had been 
aided by the analogies, and those who did were not clear as to how the pictures had helped. 

The final phenomenon predicted by the theory is the occurrence of false insights. These 
tend to be overlooked in the discovery literature, since they are usually rejected soon after 
generation. But most scientists will admit that some of their most promising insights have 
failed to stand up under scrutiny. Recall that the spreading activation process responsible 
for retrieval in our theory is not very selective. In many cases it will propose analogies that 
will not carry through when examined more closely. Nor would we expect more than this 
from such a rapid, unconscious recognition process. Of course, the ratio of false insights 
to useful ones will depend on the indexing scheme and the particular connections formed, 
and this will· depend on the problem solver's level of expertise and the effort spent during 
preparation. In general, we would expect expertise and hard work to increase the proportion 
of true insights. 

Conclusions 

In the previous pages, we reviewed some examples of scientific insight and Hadamard's 
four-stage description of this process. We examined some earlier theories that have attempted 
to account for the roles played by Hadamard's stages - preparation, incubation, illumination, 
and verification. However, we found these search-based explanations lacking and proposed 
an alternative theory that viewed insight as a memory-based phenomenon. The new theory 
is based on the dual notions of analogy and qualitative mental models; it draws heavily on 
concepts developed by earlier researchers in these areas, but links them together in a new 
organization. Finally, we saw that this theory accounts for many of the features normally 
associated with insight. · 

Although our focus has been scientific insight, we should briefly consider our framework's 
implications for other forms of creativity. We will not argue that analogy is the only path to 
creative thought, but we find it plausible that this mechanism does underlie many forms of 
original thinking. To the extent that this holds, many of the mechanisms contained in our 
theory of scientific insight will carry over into these other areas. These include our two main 
biases - tha~ insight is explained better in terms of memory processes than search methods, 
and that retrieval mechanisms such as spreading activation account for illumination effects 
without the need for unconscious reasoning processes. Although we place significant limits 
on our theory as a whole, we believe that these two claims have great generality and could 
be profitably applied to explain other forms of creative behavior. 

Before closing, we should address two traditional concerns of the literature on creativity. 
The first involves methods for measuring creative ability. On this count, our theory takes an 
extreme stance. Humans possess no general creativity factor, so no such component exists to 
be measured. Instead, humans possess a wealth of knowledge structures indexed by concepts 
that person judges important. The level of creativity that a person exhibits will depend on 
his knowledge, his indexing scheme, and the particular situation in which he finds himself. 

But this claim suggests a useful response to the second traditional concern of creativity 
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·work - methods for improving creative ability. We have seen the important role that prepa­
ration plays in scientific insight, and presumably any creative act must have substantial 
knowledge structures on which to build. One cannot expect to be creative in any domain 
until one has achieved knowledge of that domain. Knowledge of an area may also improve 
retrieval abilities by leading one to index structures through concepts useful to that do­
main. Creativity is more than simple retrieval, involving the application of old ideas to new 
situations, but retrieval plays an essential part in the creative experience. 

At this point, W(J have presented only the vague outline of a theory. The next step is to 
specify enough details to let us implement the framework as a running cognitive simulation. 
Whether our theory will hold together against this harsh test, only time and experience 
will tell. Most likely, the process of constructing this model will reveal many problems and 
inconsistencies, but these will lead us to refine and improve the model, until we achieve a 
real understanding of the nature of scientific insight. 
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