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RESEARCH

Genetic pleiotropy underpinning adiposity 
and inflammation in self-identified Hispanic/
Latino populations
Mohammad Yaser Anwar1*, Antoine R. Baldassari1, Hannah G. Polikowsky2, Colleen M. Sitlani3, 
Heather M. Highland1, Nathalie Chami4, Hung‑Hsin Chen2, Mariaelisa Graff1, Annie Green Howard5,6, 
Su Yon Jung7,8, Lauren E. Petty2, Zhe Wang4, Wanying Zhu2, Steven Buyske9, Iona Cheng10, Robert Kaplan11, 
Charles Kooperberg12, Ruth J. F. Loos4, Ulrike Peters12, Joseph B. McCormick13, Susan P. Fisher‑Hoch13, 
Christy L. Avery1,6, Kira C. Taylor14, Jennifer E. Below2 and Kari E. North1 

Abstract 

Background: Concurrent variation in adiposity and inflammation suggests potential shared functional pathways and 
pleiotropic disease underpinning. Yet, exploration of pleiotropy in the context of adiposity‑inflammation has been 
scarce, and none has included self‑identified Hispanic/Latino populations. Given the high level of ancestral diversity in 
Hispanic American population, genetic studies may reveal variants that are infrequent/monomorphic in more homo‑
geneous populations.

Methods: Using multi‑trait Adaptive Sum of Powered Score (aSPU) method, we examined individual and shared 
genetic effects underlying inflammatory (CRP) and adiposity‑related traits (Body Mass Index [BMI]), and central adipos‑
ity (Waist to Hip Ratio [WHR]) in HLA participating in the Population Architecture Using Genomics and Epidemiology 
(PAGE) cohort (N = 35,871) with replication of effects in the Cameron County Hispanic Cohort (CCHC) which consists 
of Mexican American individuals.

Results: Of the > 16 million SNPs tested, variants representing 7 independent loci were found to illustrate significant 
association with multiple traits. Two out of 7 variants were replicated at statistically significant level in multi‑trait analy‑
ses in CCHC. The lead variant on APOE (rs439401) and rs11208712 were found to harbor multi‑trait associations with 
adiposity and inflammation.

Conclusions: Results from this study demonstrate the importance of considering pleiotropy for improving our 
understanding of the etiology of the various metabolic pathways that regulate cardiovascular disease development.
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Introduction
Self-identified Hispanic/Latino Americans (hereafter 
Hispanics) harbor an elevated burden of obesity (> 40%) 
[1]. Excess body weight is a known risk factor for a range 
of metabolic abnormalities, including insulin resistance 
[2], high blood pressure [3], dyslipidemia [4], and meta-
bolic hormones disorders [5].
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The associations between obesity and metabolic irreg-
ularities are often attributed to induction of inflamma-
tory responses by adipose tissue [6, 7]. Fat accumulation 
leads to enlargement (hypertrophy) of adipocytes with 
impaired capacity for fat oxidation, glucose regulation 
and amelioration of inflammatory activities [8, 9]. Hyper-
trophied adipocytes exhibit a distorted cytokine secre-
tion profile [7, 10]; cytokines are key drivers of C-reactive 
protein (CRP) production [11], which is associated with 
cardiovascular diseases (CVD) [12], and a significant pre-
dictor of CVDs’ clinical course [13]. Clinical studies sug-
gest lowering serum CRP levels significantly reduce CVD 
incidences [14].

Although this process has been highlighted as the 
presumptive pathophysiological direction of adiposity-
CVD risk factors association, compelling evidence also 
suggests that inflammation could induce adiposity. For 
example, inflammation-induced insulin resistance may 
trigger hyperplastic and hypertrophic changes in adipose 
tissues to alleviate glucose accumulation [15]. Further-
more, results from a longitudinal study illustrated steeper 
weight gain among those with higher baseline CRP lev-
els in a 3-year follow-up period [16]. More corroborating 
evidence for adiposity-inflammation interrelatedness has 
emerged with the increased availability of genetic stud-
ies. High levels of inflammatory markers in mice carrying 
genes that increase obesity  [17], or concurrent inflam-
matory effects where the expression levels of adipose tis-
sue genes were regulated [18, 19], all support common 
molecular pathways for inflammation and obesity.

These common pathways  [20] suggest pleiotropic dis-
ease underpinnings [21], which may inform classification 
and treatment of disease. Yet, exploration of pleiotropic 
variants in the context of adiposity-inflammation has 
been scarce  [22], and none have included Hispanics 
populations. Given the high level of ancestral diversity 
in Hispanics, genetic studies may reveal variants that are 
infrequent/monomorphic in more homogeneous popula-
tions [23, 24]. Furthermore, the differential distribution 
of inflammatory markers associated with comparative 
adiposity configurations [25, 26], patterns of fat accu-
mulation [27, 28], and the prevalence of cardiometabolic 
abnormalities in Hispanics  [29] highlights the need for 
adiposity-inflammation pleiotropy study in this under-
served group.

We, therefore, examined individual and shared genetic 
effects underlying inflammatory (CRP) and adiposity-
related traits (overall obesity: Body Mass Index [BMI], 
and central adiposity: Waist to Hip Ratio [WHR]) in 
self-identified Hispanics participating in the Population 
Architecture Using Genomics and Epidemiology (PAGE) 
study with replication of effects in the Cameron County 
Hispanic Cohort. For multi-trait analysis, we used 

adaptive Sum of Powered Score (aSPU) [30] method. 
Advantages of aSPU over similar methods include 
its ability to accommodate differences in sample size 
between traits and phenotypic distributions, preserved 
type 1 error in select scenarios, where some other meth-
ods did not [30], performance in the context of heteroge-
neity in direction of phenotypic effect, and scalability and 
computational efficiency which enabled examination of 
millions of variants in a reasonable time.

We also assessed whether replicated signals were 
directly associated with relevant phenotypes (i.e., bio-
logic pleiotropy) or indirectly associated as mediators 
(i.e., mediated pleiotropy). Assuming that adiposity and 
inflammation are interrelated manifestations of bio-
logical mechanisms, pleiotropy assessment may provide 
insights on the development of effective preventive strat-
egies designed to improve the cardiovascular health of 
Hispanics. Our results illustrate the broad utility of plei-
otropy assessment to illuminate the biology of complex 
diseases and traits.

Materials and methods
Study populations
The conceptual framework for the adiposity-inflamma-
tion pleiotropy study is displayed in Additional file 2: Fig. 
S1. We chose a discovery and replication study design 
of self-identified Hispanics study participants from the 
two studies. The PAGE study population includes several 
studies at different sites [31, 32] as described previously 
[33]. In brief, PAGE consists of multiple populations 
grouped by self-identified ethnicities: European Ameri-
cans (Non-Hispanic whites [NHW]), African Americans 
(AA), Hispanics, American Indians (AI), East Asians 
(ASN), and Native Hawaiians/Pacific Islander (HAW). 
All participating sites in PAGE ascertained both men and 
women except for the women only Women’s Health Ini-
tiative (WHI). We studied the Hispanics sub-cohort as 
our discovery set (N = 35,871) from four studies within 
the PAGE: Hispanic Community Health Study/ Study 
of Latinos (HCHS/SOL), the Women’s Health Initiative 
(WHI), BioMe Biobank (BioMe), and MultiEthnic Cohort 
(MEC). Principal component analyses suggest substan-
tial ancestral variability among self-identified Hispanics/
Latinos in PAGE (Additional file 1: Appendix, Section 1. 
Fig. 1.). All study participants provided written informed 
consent and each study was approved by relevant insti-
tutional review board. The replication study included 
self-identified Hispanics study participants recruited at 
the US-Mexico border, the Cameron County Hispanic 
Cohort (CCHC). This cohort was established in 2004 and 
now numbers 5,000 individuals randomly selected from 
a population with severe health disparities. Many of the 
participants are originally from Mexico, and we have 



Page 3 of 11Anwar et al. BMC Medical Genomics          (2022) 15:192  

collected detailed information on participant place of 
birth, how recently they arrived in the US, income, mari-
tal status, and employment [34]. Out of 5000 individuals 
recruited for the cohort, a sub sample of 3,313 geno-
typed individuals are included in this study. The CCHC 
is almost exclusively self-report Mexican American, with 
substantial patterns of admixture from Native American 
and European ancestry, with limited African admixture 
(Additional file 1: Appendix, Section 1. Fig. 2.)

Phenotype measurements and quality control
We studied two anthropometric phenotypes: BMI (kg/
m2; a measure of overall adiposity) and WHR (proxy 
measure of central obesity). For all studies, except in 
MEC, height and weight were measured by study staff at 
study enrollment, to calculate BMI (weight/height2). In 
MEC, BMI is based on self-reported height and weight 
at enrollment. Pilot analyses of BMI in MEC illustrated 
a comparable distribution to national surveys [35]. Waist 
circumference was measured at the level of natural waist 
in horizontal plane to the nearest 0.5  cm  [36]; no waist 
or hip measurement was available for BioMe sub-cohort; 
WHR measures were multiplied to 100 for ease of inter-
pretation. Analyses of WHR measures were stratified by 
sex to account for well-established sexual dimorphism. 
For inflammation, we used high sensitivity CRP (hsCRP) 
as robust marker of systemic inflammation with strong 
association with central obesity [37]; CRP was measured 
at enrollment separately in each contributing cohort and 
subsequently harmonized for the entire set [38].

Genotype and quality control
Most individuals (~ 20,000) were genotyped using the 
MEGA array panel; details on the genotyping were pub-
lished previously [39]. The remaining PAGE samples 
were genotyped with Affymetrix and Illumina arrays. We 
used the genome-wide variants’ set that was imputed to 
1000 Genome Phase 3 reference population after qual-
ity control (QC), and details are accessible [40]. For this 
study analyses, we next excluded genetic variants with 
poor imputation  (R2 < 0.4), effective sample size of < 30, 
and minor allele frequency (MAF) of < 0.05; criteria 
used for calculating effective sample size for each single 
nucleotide polymorphisms (SNP) is defined in Additional 
file  1: Appendix, Section  2. Out of > 60 million SNPs, 
approximately 32 million SNPs were removed because 
of low MAF. The replication cohort from the CCHC was 
genotyped at the Vanderbilt University Medical Center 
genotyping core facility, VANTAGE, using MEGA-EX 
Array panel. After standard QC, imputation was com-
pleted using the Trans-Omics for Precision Medicine 
(TOPMed) [41]  freeze 8 panel available on the NHLBI 
Imputation Server (https:// imput ation. bioda tacat alyst. 

nhlbi. nih. gov), by having American ancestry as reference 
group. We used same QC criteria to exclude SNPs in this 
replication cohort as substudies from PAGE.

Statistical analyses
Association tests
The skewed distribution of CRP necessitated log-trans-
formation before regression analyses. Extreme observa-
tions (defined as values outside three standard deviations 
(SD) from the mean in the log transformed distributions 
(CRP), or 4SD for BMI and WHR) were flagged as out-
liers and excluded from all analyses. WHR for women 
and men were treated as separate phenotypes, so that 
the phenotypes included were CRP, BMI, WHR-men, 
and WHR-women. Residuals for each phenotype were 
estimated from linear regression models adjusted for 
age, age2, sex (when applicable), BMI (when applicable), 
center, cohort, and age-by-sex interaction, performed 
separately in each study. Residuals were then inverse 
rank normalized and used as the outcome for univariate 
genome-wide association tests (GWAS). All MEGA-gen-
otyped samples were pooled together for genetic associa-
tion testing while the remaining non-MEGA data were 
analyzed by study. GWAS were performed using SUGEN, 
adjusted for 10 genetic principal components (PC). 
SUGEN employs generalized estimating equations (GEE) 
to adjust for family relationships (first or second degree), 
with independent error distributions by self-identified 
group [42]. GWAS results from MEGA samples and 
other studies were then meta-analyzed with METAL [43] 
assuming fixed-effect inverse-variance weighting.

Multi‑trait association test
Various multi-trait methods have recently been proposed 
[44]. Most of these methods offer superior statistical 
power compared with multivariate analysis [45]. To iden-
tify loci with evidence for associations with one or more 
of the adiposity and inflammation traits, we combined 
Z-score statistics from meta-analysis results from each 
phenotype using aSPU [30] test.

Briefly, aSPU aggregates information across n pheno-
types for a given SNP by taking the sum of its univari-
ate GWAS Z-scores Sp, each raised to some power γ, 
so that a higher γ increases the influence of strongly-
associated phenotypes on the score SPU(γ ) = n (Sp)

γ 
[30]. With γ taking one of many competing values (1, 
2, …, 8), aSPU selects a maximally-efficient scheme 
to detect combined phenotype effects on the entire 
group of phenotypes. Monte-Carlo methods applied 
to univariate GWAS Z-scores estimated by inverse-
variance-weighted meta-analysis are then used to gen-
erate aSPU P-values, which are interpreted as evidence 
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for an association of the SNP with at least one pheno-
type. SNP-specific γ scores also provide a mechanism 
to group loci from most to least likely to be pleiotropic.

A set containing trait-specific GWAS-inferred 
Z-scores (from all contributing phenotypes) was con-
structed. Multi-trait analysis was performed using the 
JaSPU (github.com/kaskarn/JaSPU) package, with the 
number of iterations set to 100 billion. This program 
relies on a Markov Chain Monte-Carlo (MCMC)  [46] 
iterative process to estimate p-values. The p-values 
generated from this test were used to assess statistical 
significance of whether SNPs were associated with one 
or more phenotypes.

We considered a SNP as a candidate for pleiotropy 
analyses if a): exceeded significance threshold for multi-
trait test at PaSPU < 1.25 ×  10–8, a conservative thresh-
old  [47] which accounted for multiple testing on likely 
low frequency SNPs and the number of traits tested, and 
b) nominally significant for inflammation and at least 
one adiposity trait in univariate GWAS results. We sub-
sequently identified significantly associated loci where: i) 
variants in the region met the criteria above, and (ii) were 
present in pooled MEGA results; latter criterion was 
used to ensure understudied SNPs existed in both PAGE 
and CCHC results, thereby usable for likewise compari-
son. Linkage disequilibrium (LD) analyses identified 
independent variants (R2 < 0.1). For each independent 
locus, we highlighted the most likely functional or closest 
observed proxy to functional variant based on a literature 
review, and the lowest or close to the lowest PaSPU.

Bioinformatic annotation
Ensemble Variant Effect Predictor (VEP) (grch37.
ensembl.org/) was used to determine the effect of each 
variant on genes, transcripts, protein sequences, and 
regulatory regions. We searched replicated variants and 
their close LD proxies (with LD cut-point of R2 > 0.8) in 
the publicly available database PhenoScanner  [48]  and 
GWAS Catalogue [49]  for reported associations with 
any phenotype including adiposity and inflammation 
traits at P < 1 ×  10–5 significance level. LD clumping was 
performed using the AMR ancestry panel. We used both 
Gene Expression Portal (GTEx Portal) [50] and PhenoS-
canner to examine variants and close proxies (R2 > 0.5) 
for functional significance and influence on tissue expres-
sion at GWAS significance level, which are genomic 
regions associated with expression levels of messenger 
RNA (mRNA). Finally, Haploreg was used to evaluate 
the regulatory potentials of variants on haplotype blocks, 
such as candidate regulatory SNPs at disease-associ-
ated loci [51]. This annotation tool was used to assess 

the effects of SNPs on regulatory motifs and expression 
Quantitative Trait Loci (eQTL).

Replication of shared genetic loci
All significant variants were taken forward to replication 
in the CCHC. GWASs were performed with SUGEN. 
Multi-trait analysis was completed following the same 
aSPU based approach used in the discovery stage. The 
criteria set for replication included, a) variant is nomi-
nally significant in multi-trait test (Paspu < 0.05), b) vari-
ant was nominally significant for CRP and at least one 
anthropometric trait, and c) direction of effect of each 
SNP was same in discovery vs replication cohort for the 
tested trait.

Causal pathway analyses
We performed a causal mediation pathway analyses of 
replicated variants to assess pleiotropic potential of iden-
tified variants, and whether an observed association is 
independently associated with several phenotypes and 
the genetic effect is transmitted through a common path-
way that is upstream to the associated phenotypes (i.e., 
biologic pleiotropy, Additional file 2: Fig. S1); or induced 
due to relationships between the outcome phenotype and 
a “mediating” phenotype [53]. Elucidating these com-
plexities could provide novel biological insights [54].

Mediation analyses allows for the assessment of 
whether a SNP has a direct effect on the phenotype of 
interest. The R package Mediation [55] was used for anal-
ysis, which conducts a three-step process. The total effect 
between a SNP and an outcome is assumed to be the sum 
of the average causal mediation effects (ACMEs) and the 
average causal direct effect (ADE). The first step includes 
estimating the distribution of the mediator phenotype 
as a function of the SNP, adjusted for genetic ancestry 
(e.g., mediator ~ genotype (variant) + PCs + covariates). 
The next step involves estimating the distribution of the 
outcome phenotype as a function of the mediator phe-
notype, genotype, and covariates (e.g., outcome ~ medi-
ator + genotype + PCs + covariates). The final step 
combines the fitted models in the mediation equation, 
providing estimates and p-values for the direct (e.g., 
genotype → adiposity [outcome]) and indirect/mediating 
(e.g., genotype → mediator → adiposity [outcome]) asso-
ciations. We did not allow for any mediator by genotype 
interaction [16]. We performed mediation analyses in the 
biggest subset of the discovery cohort that were geno-
typed by the same MEGA array, excluding samples with 
missingness since mediation method required complete 
observation across output and mediating phenotypes; the 
total available sample size stood at 15,600. We considered 
age and sex as covariates in the mediator and outcome 
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models, together with first 10 PCs. We additionally per-
formed sex stratified analyses but 95% confidence inter-
vals and point estimates overlapped with sex adjusted 
results. With this method, quasi-Bayesian Monte Carlo 
simulations are used for the estimation of standard 
errors. The number of simulations was set to 1000, with 
robust standard errors using sandwich estimators [56]. 
We also used same mediation package to further perform 
sensitivity analysis on the mediated and direct effects 
for violation of the sequential ignorability assumption 
and assessing the effect of unmeasured confounders. For 
genotypes, we used allele dosages and models were esti-
mated assuming additive genetic effects.

For each significantly replicated SNP, if a SNP was 
previously associated with inflammation, we performed 
mediation analyses assuming CRP as mediator and an 
adiposity trait as the outcome (Additional file 3: Fig. S2); 
conversely, where a SNP was primarily associated with 
adiposity in prior studies, then we used adiposity pheno-
type as the mediator and CRP as the outcome. Statistical 
significance of ADE in either scenario would suggest an 
independent association of the lead SNP with the out-
come and a potentially biologic pleiotropy effect.

Results
Sample description
Most participants were women (N = 22,733 (63.4%) and 
the average age was 52.9  years (SD = 14; Table  1). Most 
study participants were overweight and centrally obese, 
with an average of BMI of 29.2 kg/m2 and WHR of 86.6 
in the discovery group, and mean BMI of 30.8  kg/m2 
and mean WHR of 91.2 in CCHC replication group. 
Inflammation was apparent with a mean value of CRP 
of 4.2 mg/dL in the discovery group. A small number of 
samples (N = 33 for BMI, N = 21 for WHR in females, 
N = 13 for CRP) were excluded as outliers.

GWAS and multi‑trait association analyses in PAGE
More than 16 million SNPs were available for analyses 
post QC and were evaluated in our combined pheno-
type analysis of 4 traits (BMI, WHR in men, WHR in 
women and CRP). No genomic inflation was observed 
in univariate GWAS (Additional file  5: Table  S1). In 
univariate GWAS, we observed 3 independent loci 
(i.e., LD R2 < 0.1) exceeding genome-wide significance 
level (P < 5 ×  10−8) for BMI, one locus for WHR in men 
and one for WHR in women, and 11 loci for CRP in 
meta-analyzed results (Additional file  5: Table  S2). All 
observed loci were previously known. In subsequent 
multi-trait association assessment, SNPs representing 7 
independent loci exceeded the multi-trait test threshold 
(PaSPU < 1.25 ×  10−8) (Additional file 5: Table S3).

Phenotype decomposition of multi‑trait significant 
variants in PAGE
All SNPs except for rs11642015 (FTO) were associated 
with CRP at GWAS significance level; the FTO SNP was 
associated with BMI (Additional file  5: Table  S3). SNPs 
rs11208712 and rs9987289 (both intergenic) were also 
associated with BMI at nominal level. SNPs rs62158854 
(IL1RN), rs1169288 (HNF1A) and rs439401 (APOE) were 
nominally associated with WHR-women. The remaining 
rs12064564 on chromosome 1 was nominally associated 
with WHR-men.

Functional assessments
Phenoscanner and GWAS-catalogue probe indicated 
that multi-trait significant SNP on chromosome 16 
(rs11642015, overlapping FTO gene) and its close prox-
ies (R2 > 0.8) is primarily associated with anthropo-
metric and fat mass traits (Additional file  4: Fig. S3, 
Additional file  5: Table  S4). rs9987289 on chromo-
some 8 (LOC157273) is associated with lipid traits, liver 
enzymes, and glucose (diabetes) measures. rs1169288 on 

Table 1 Descriptive Distribution of anthropometric and inflammation phenotypes in self‑identified Hispanic/Latinos Americans sub‑
cohort of PAGE (discovery) and CCHC (replication) populations

a (Missing 10,265), b(Missing 1436), c(Missing 1152), d(Missing 1398), e(Missing 3407), f(Missing 1376)

Study Sample size Female (%) Age (years, SD) BMI (kg/m2, SD) WHR in women 
(wc/hip × 100, 
SD)

WHR in men 
(wc/hip × 100, 
SD)

CRP (mg/dL, SD)

SOL 11,986 7026 (58.6) 46.1 (13.8) 29.8 (6.0) 90.0 (7.2) 95.4  (6.8) 3.9  (5.9)

BioME 10,727 6766 (62.2) 51.6 (16.2) 29.5  (6.6) NA NA 4.1  (4.4) a

WHI 5386 5386 (100) 60.2 (6.8) 29.1  (6.3) 82.0 (8.0) NA 5.0  (6.6)b

MEC 7772 3555 (45.7) 60.0 (7.1) 27.9  (4.8) 88.1 (7.6)c 95.6 (6.4)d 3.9  (4.4)e

Total Sample (Discovery 
study)

35,871 22,733 (63.4) 52.9 (14.0) 29.2 (6.0) 86.6 (8.4) 95.6 (6.8) 4.2 (6.8)

CCHC (Replication Study 3313 2074 (65.6) 45.9  (17.2) 30.8  (6.5) 91.2  (7.1) 95.5  (6.4) 6.2  (6.9)f
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chromosome 12 (HNF1A), is primarily reported in asso-
ciation with lipid traits and CRP. rs11208712 (intergenic) 
on chromosome 1 is reported for blood immunity cells 
and CRP. Variant rs62158854 on chromosome 2 (IL1RN 
gene) is mostly associated with blood immunity cells. We 
found only one study reported rs12064564 on chromo-
some 1 (intergenic) associated with CRP. The APOE vari-
ant (rs439401, on chromosome 19) is frequently reported 
in association with lipid traits, and in some studies in 
connection with Alzheimer’s disease.

Tissue gene expression
Probe of GTEx, and PhenoScanner for multi-trait signifi-
cant variants suggested that except for rs12064564 and 
rs11208712 on chromosome 1, the remaining SNPs were 
associated with higher mRNA expression in several tis-
sues including skin, thyroid, brain, adipose, artery, whole 
blood, esophagus, testis, and colon (Additional file 6: Fig. 
S4, Additional file  5: Table  S5). SNP rs11208712 exhib-
ited gene expression only with whole blood and pancreas, 
though not at GWAS significance level.

Replication with CCHC
We carried forward the 7 loci for replication in the 
CCHC population. 2 of the 7 variants met replication 
criteria in CCHC multi-trait association results (Table 2, 
Additional file 5: Table S3): variant rs439401 (APOE) on 
chromosome 19, and rs11208712 (intergenic) on chro-
mosome 1.

Regulatory significance of replicated multi‑trait SNPs
We searched Haploreg for regulatory features for overlap 
of the replicated variant with enhancers with enrichment 

of histone 3 lysine 4 monomethylated 1 [H3K4me1] and 
H3K27 acetylation [H3K27ac], and promoter epigenomic 
markers with enrichment of H3K4me3 and H3K9ac. 
Lead SNP rs439401 (APOE) exhibited higher frequencies 
of enhancer and promoter annotations in the epithelial 
and brain tissues (Additional file  5: Table  S6), enhancer 
annotations with embryonic stem cells, muscles, heart, 
digestive, and various cells with hormonal functionality. 
The remaining rs11208712 on chromosome did not illus-
trate regulatory annotation in Haploreg database.

Causal mediation analyses
We performed mediation analyses for replicated SNPs. 
Primarily known for association with inflammation, 
we assumed CRP as mediator in association between 
rs11208712 and BMI (the phenotype at association with 
SNP at nominal level). Results suggest directly posi-
tive and indirectly negative (via CRP) associations of the 
SNP with BMI, though total effect (e.g., direct + indi-
rect effect) was positive but marginally nonsignificant 
(beta = 0.12, 95% CI [− 0.01, 0.26]) (Table  3). In com-
parison, rs439401 (APOE) was previously associated with 
adiposity (WHR), and therefore was used as mediator 
in association between the SNP and CRP. Analyses sug-
gested positive indirect (via WHR) and direct (inde-
pendent of WHR) associations with CRP. These results 
were supportive of biologic pleiotropy effects for APOE. 
Results were estimated with robust standard errors and 
remained consistent after sensitivity tests.

Table 2 Variants with evidence for genetic pleiotropy that were replicated in Cameron County Hispanic Cohort

Chromosome Position (HG19) PAGE 
multivariate p 
value

CCHC 
multivariate p 
value

MAF in 
Hispanics

MAF in 
Europeans

rsID Gene

1 66148652 1.00E−11 0.007731 0.44 0.36 rs11208712 Intergenic

19 45414451 1.00E−11 0.0291 0.42 0.38 rs439401 APOE

Table 3 Results of mediation analyses

Both variants rs11208712 and SNP rs439401 (APOE) illustrated direct association with CRP after adjusting for phenotypes that SNP was primarily associated in prior 
studies. Results suggest biologic pleiotropy with independent associations with both inflammation and obesity. SNP rs11208712 (LEPR) was not associated with BMI 
after adjusting for mediator (CRP), albeit missing on nominal significance by a close margin

SNP Gene Mediator Outcome Direct effect (95% 
CI)

Direct 
effect p 
value

Mediated effect 
(95% CI)

Mediated 
effect p 
value

Total effect (95% 
CI)

Total 
effect p 
value

rs11208712 Intergenic CRP BMI − 0.12 (− 0.24, 
0.00)

0.044 0.25 (0.19, 0.31) < 0.01 0.12 (− 0.01, 0.26) 0.074

rs439401 APOE WHR CRP 0.64 (0.39, 0.88) < 0.01 0.05 (0.01, 0.10) 0.024 0.69 (0.44, 0.94) < 0.01
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Discussion
We performed pleiotropy analyses on univariate meta-
analyzed GWAS of BMI, WHR and CRP, as measures of 
overall and central adiposity and inflammation respec-
tively, using data from self-identified Hispanics in 
PAGE cohort. We identified 7 independent signals with 
potential for pleiotropy, 2 of which were replicated with 
CCHC population including rs11208712 and rs439401.

The lead variant on chromosome 1 (rs11208712) 
is intergenic and the closest gene is leptin receptor 
(LEPR), a gene linked to obesity [57, 58]. Although this 
SNP has not previously been associated with inflamma-
tion, another SNP (rs4655582) which is a close proxy 
of this variant (R2 > 0.9) was associated with acute-
phase serum amyloid A proteins (A-SAA) [59]. This 
family of apolipoproteins is secreted during the acute 
phase of inflammation [60]. Increased expression of 
this proinflammation lipolytic adipokine is suggested 
to play a role in systemic inflammation, free fatty acid 
production and is proposed as a link between obesity 
and CVD risk factors including insulin resistance and 
atherosclerosis [61]. Mediation analyses did not suggest 
significant association with adiposity once adjusted for 
mediator (CRP).

The only replicated likely pleiotropic SNP, rs439401 
overlapping APOE gene is reported in association with 
different lipid markers. Analyses suggested higher gene 
expression levels associated with this SNP in adipose, 
skin, liver, thyroid, and adrenal tissues. Overall, sev-
eral genetic variants in APOE has been widely related 
to pro-inflammatory measure [62, 63], and obesity [64]. 
One recent meta-analysis also supported strong corre-
lation between better known APOE variants and CVD, 
especially CHD [65]. Although rs439401 is less inter-
rogated compared to other APOE SNPs, but we found a 
study linking the SNP with high blood pressure [66], and 
another linking SNP’s allelic variation to poor metabolic 
profile (obesity, insulin resistance and high triglyceride 
level [67]. SNP rs584007, a variant in the same region 
in tight LD with rs439401, is frequently associated with 
CRP level [68]. rs439401 is also associated with lower risk 
of Alzheimer’s disease [69], and appears to be function-
ally independent of another APOE SNP (rs429358) which 
is the most widely studied Alzheimer’s disease variant 
(R2 ~ 0.1).

Mediation analyses illustrated a positive indirect 
association with CRP independent of WHR, and indi-
rect positive association via WHR, and robust total 
positive association, consistent with prior suggestions. 
Interestingly, the SNP was also proposed as poten-
tially pleiotropic in another study due to association 
with inflammatory reactions in leprosy through regula-
tory effects on lipid metabolism [70]. Authors suggested 

that SNPs’ risk allele is associated with low APOE gene 
expression level, leading to increased plasma lipoprotein 
level that facilitates survival of mycobacterium leprae 
in the skin and hence sustained inflammatory lesions. 
Increased lipoprotein is a known risk factor for arterial 
inflammation [71], but results from our mediation analy-
ses suggest a concurrent and independent association 
with inflammation as well.

Inadequate power with replication set was a nota-
ble limitation to our approach as the remaining 5 likely 
pleiotropic SNPs did not replicate in CCHC. However, 
review of the literature suggests strong candidates for 
pleiotropy and larger replication sample set may signify 
their potentials. For example, the SNP on chromosome 
12 (rs1169288) that overlaps HNF1A had previously 
been reported as a pleiotropic variant affecting cardio-
metabolic traits and CRP levels [72]. The FTO variant on 
chromosome 16 (rs11642015) is reported as pleiotropic 
SNP for inflammation and lipid traits [73], and associated 
with BMI adjusted diabetes [74].

The precise characterization of pleiotropic signals 
requires insight from joint studies of genetics and gene 
expression, particularly in the tissues of interest for the 
traits interrogated. However, functional annotation eval-
uation was able to provide suggestive evidence for possi-
ble functional roles associated with likely causal variants. 
For instance, mesenchymal cell H3K4me3 promoter 
annotation for rs439401 was suggestive of potential plei-
otropic effects at the protein level. It also should be noted 
that annotation tools used for this study were primarily 
derived using European populations and may harbors 
limitations when used for functional annotation of vari-
ants in an admixed group like Hispanics.

Another notable limitation was our consideration of 
only one self-reported Mexican American study popula-
tion for replication. While all PAGE study participants 
self-reported Hispanic/Latino ethnicity, a large range of 
study participants reported backgrounds from South and 
Central American populations. For example, study par-
ticipants self-reported Dominican, Puerto Rican, Cuban, 
and Chilean background, among many others. It is well 
known that self-reported Hispanic/Latino populations 
display extensive ancestral diversity from Europe, Asia, 
Africa, and Native America [75, 76]. Thus, our lack of 
replication of some discovery genetic signals may have 
been influenced by the limited ancestral diversity CCHC 
study participants, when compared to the total PAGE 
population. However, we do have great confidence in our 
replicated signals, which were common in both study 
populations. Finally, caution should be exercised with 
causal interpretation of observed pleiotropic association 
which require longitudinal and randomized assessments.
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The present study also has major strengths. This study 
is the first comprehensive assessment of pleiotropic asso-
ciations between adiposity and inflammation traits in a 
self-identified Hispanics population. The results provide 
suggestive evidence for the regulatory effects of identi-
fied genetic variants on metabolic pathways and high-
light the complexity and interrelatedness of seemingly 
independent phenotypic traits. The intentional selection 
of a genetically tri-admixed Hispanics population  [76] 
with shorter haplotypes compared with European ances-
try (EA) populations  [77] greatly narrowed the number 
of SNPs identified for causal evaluations  [78, 79], and 
allowed isolation of pleiotropic loci potentially specific to 
Hispanic/East Asian populations.

In conclusion, our study characterized potential plei-
otropy between inflammation and adiposity suscepti-
bility variants in self-identified Hispanics. We found 2 
variants with evidence for biologic pleiotropy. The lead 
variant on APOE (rs439401) and rs11208712 were found 
to be harbor pleiotropic association with adiposity and 
inflammation. Particularly, both loci illustrate significant 
and concurrent associations with lipoproteins levels and 
inflammatory markers’ variations which indicate a com-
mon functional pathway with overlapping molecular 
underpinning. Additional loci with similar regulatory 
patterns were also isolated, though study lacked power 
to replicate associations. Results from this study demon-
strate the importance of conducting multi-trait analyses, 
for improving our understanding of the etiology of the 
various metabolic pathways that regulate cardiovascular 
disease development.
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