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Abstract
The earthquake cycle of stress accumulation and release is associated with the elastic 
rebound hypothesis proposed by H.F. Reid following the M7.9 San Francisco earthquake 
of 1906. However, observing details of the actual values of time- and space-dependent 
tectonic stress is not possible at the present time. In two previous papers, we have pro-
posed methods to image the earthquake cycle in California by means of proxy variables. 
These variables are based on correlations in patterns of small earthquakes that occur nearly 
continuously in time. The purpose of the present paper is to compare these two methods 
by evaluating their information content using decision thresholds and Receiver Operating 
Characteristic methods together with Shannon information entropy. Using seismic data 
from 1940 to present in California, we find that both methods provide nearly equivalent 
information on the rise and fall of earthquake correlations associated with major earth-
quakes in the region. We conclude that the resulting timeseries can be viewed as proxies 
for the cycle of stress accumulation and release associated with major tectonic activity.
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Article Highlights 

• The current state of the earthquake cycle of tectonic stress accumulation and release is 
unobservable

• We review two methods for visualizing the current state of the earthquake cycle from 
correlation in small earthquake patterns

• Machine learning techniques indicate that signals in a correlation time series corre-
sponding to future large earthquakes can be detected
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1 Introduction

Earthquake hazard analysis is hobbled by our inability to directly observe the accumula-
tion and release of tectonic stress in regions of seismic activity (Scholz 2019). As a result, 
research in this area has focused on several other lines of investigation. In forecasting, a 
major emphasis is now being placed on topologically realistic numerical simulations (Tul-
lis et al. 2012).

Alternatively, recent research has developed the idea of earthquake nowcasting, which 
uses proxy variables to infer the current state of the earthquake cycle (Rundle et al. 2016a, 
b, 2018, 2019a, b, 2020; Pasari and Mehta 2018; Pasari 2019a, b, 2020; Pasari and Sharma 
2020; Luginbuhl et  al. 2018a, b, c, 2019, 2020). In the nowcasting approach, one uses 
observations of small earthquake seismicity to estimate the conditional probability that a 
major earthquake might occur after the current number of small earthquakes has occurred, 
given that one has not occurred since the last major event.

A comprehensive review of the current state of earthquake nowcasting, forecasting, and 
prediction is given by Rundle et al. (2002, 2021a, b). Perez-Oregon et al. (2020) have also 
shown that nowcasting methods can be extended to forecasting methods as well. These 
methods have begun to be applied to India (Pasari 2019a, b), Japan (Nanjo 2019; personal 
comm. 2020) and Greece (Chouliaras, personal comm. 2019).

Fundamentally, nowcasting has been based on the concept of natural time (Varotsos 
et al. 2001; 2002; 2011a, b, 2013; 2014; 2020a, b; Sarlis et al. 2011). Beginning with the 
nowcasting idea, Perez-Oregon et al. (2020) have now shown that nowcasting models can 
be extended into forecasting models for two types of model systems, one being the slider 
block model of Rundle and Jackson (1977) and Olami-Feder Christensen (1992), and the 
other being a system in which the events obey a log-normal distribution. These are toy 
models as described above but may be applicable to real data. The forecast methods are 
tested by means of the Receiver Operating Characteristic method that we also describe 
below.

Recently, Rouet-LeDuc et al. (2017) have developed a timeseries prediction technique 
using machine learning for acoustic emissions from events in laboratory experiments on 
regular, nearly periodic stick-slip friction. They also applied a similar technique for Epi-
sodic Tremor and Slip events in the Pacific Northwest (Rouet-LeDuc et al. 2019), which 
are also relatively regular in time.

In a previous paper, Rundle and Donnellan (2020) showed that a timeseries resembling 
the long-hypothesized earthquake cycle could be constructed from the time dependence of 
horizontal radius of gyration RG(t) of bursts of small earthquakes that are clustered in space 
and time. In fact, the quantity RG(t) is often used in the calculation of correlation length 
for models in statistical mechanics (Rundle and Donnellan 2020). In a subsequent paper, 
Rundle et al. (2021a, b) have developed an alternate method based on constructing a cor-
relation time series χ(t) of small earthquakes in the seismically active region of California. 
Both of these methods use patterns of small earthquakes, and the correlations among them, 
to define proxy timeseries that have many of the characteristics expected of the cycle of 
tectonic stress accumulation and release.

To summarize our results The two timeseries so defined imply that regional correlation 
of seismic activity generally decreases prior to major earthquakes in California. Just after 
occurrence a major earthquake, correlation of seismic activity discontinuously increases, 
as does the quantity RG(t). Both of the resulting timeseries strongly resemble the expected 
earthquake cycle of stress accumulation and release. We then applied standard timeseries 
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methods based on constructing Receiver Operating Characteristic (ROC) diagrams together 
with a Shannon Information metric (e.g., Rundle et al. 2019a, b) to show that signals of 
future large earthquakes may be present. The method implies some level of signal detection 
of future large earthquakes, albeit with errors, in both RG(t) and χ(t).

2  Methods

2.1  Summary of the Radius of Gyration RG(t) Method

Rundle and Donnellan (2020) proposed a machine learning method consisting of 5 stages. 
The first stage was unsupervised learning classification of small earthquake activity into 
"bursts." The second stage was a method for rejection of outliers to "clean" the bursts. The 
third stage was again a further cleaning stage as an unsupervised method defined to accept 
only high-density bursts. Stage four applied an exponential moving average, while stage 
five was an ensemble average, followed by a supervised learning method to determine the 
optimal decision threshold for M > 7 earthquakes.

To be more explicit, we begin with our definition of a seismic burst, or cluster of small 
events. Our definition of a seismic burst is the occurrence of an unusual sequence of gen-
erally small earthquakes closely clustered in space and time (e.g., Hill and Prejean 2007; 
Peresan and Gentili 2018; Zaliapin and Ben-Zion 2016a, b).

We define two general types of bursts, Type I and Type II:

• We define a Type I seismic burst as a mainshock–aftershock sequence, in which the 
initiating event has the largest magnitude in the sequence, and is typically followed by a 
power-law Omori decay of occurrence of smaller events (Omori 1894; Scholz 2019).

• A Type II seismic burst is defined as a sequence of similar magnitude events in which 
the largest magnitude event is not the initiating event, and in which there is not typically 
a subsequent power-law decay.

The earthquakes defining the bursts are small, usually of magnitudes characterizing 
the catalog completeness level. For the Southern California region, we consider small 
earthquakes of magnitudes M ≥ 3.3. This magnitude threshold was chosen as a value high 
enough to ensure completeness of the catalog data used. The catalog containing these 
events is downloaded from the US Geological Survey earthquake search database. The 
method we describe proceeds in 5 stages, and only a summary is provided here. For a more 
detailed discussion, we refer readers to Rundle and Donnellan (2020).

The first stage consists of an automated definition and classification of seismicity into 
candidates of seismic bursts. The second stage involves automated rejection of outliers. 
The third stage selects the members of the ensemble of accepted bursts which will then be 
displayed as a time series. The fourth stage applies an exponential moving average to the 
bursts to construct the burst time series. The fifth stage involves optimization of the ensem-
ble of possible bursts with a simple cost function. We note that both classification/clus-
tering and optimization/regression are well known components of new ideas in machine 
learning, along with other ideas in deep learning and decision tree analysis.

We begin by coarse-graining time in the catalog into units of single days, and con-
sider an elementary burst to be a day on which there are 2 or more small earthquakes of 
magnitude M ≥ 3.3 within the region of interest, which for this study is the 600 km radius 
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Southern California region. Note that, over the last 10 years, the rate of occurrence of these 
small earthquakes has been about 0.75 such earthquakes per day in that geographic region.

In Stage I, classification, the daily seismic catalog is searched to find bursts consist-
ing of connected sequences of days in which 2 or more M ≥ 3.3 events occur without any 
intervening days of fewer events. For each such set of days, we also, as a rule, include the 
preceding day to allow for any foreshock events.

This stage yields many hundreds of candidate bursts. This process will of necessity 
yield bursts that include purely random, uncorrelated events. To remove these, the bursts 
are then filtered in the following two ways.

In Stage II of the method, rejection of outliers, we detect and remove small earthquakes 
that may be random outliers. We begin by computing the spatial centroid, or center-of-
mass, of each burst. In this calculation, all events having M ≥ 3.3 are treated as a particle or 
unit of mass, each of equal computational weight.

We now compute the horizontal distance or radius ("Ri") of each small event from the 
centroid, then the median distance ("MedianR") is calculated from the set {Ri}. A factor 
FCL is defined and applied to each of the candidate bursts. Using all the accepted small 
events in the burst, the burst radius-of-gyration RG is computed about the burst centroid. RG 
is the square root of the mean square radius of the small events in the burst (Stauffer and 
Aharony 2018). These filtered bursts now define the ensemble of accepted clusters. Radius 
of gyration is a parameter used to study fracture mechanics (e.g., Kucherovand Ryvkin 
2014; Sayers and Calvez 2010).

In Stage III of the method, the collection of bursts is filtered according to their mass 
ratio or density ρ, which we define as the ratio of the cluster mass μ to the radius-of-gyra-
tion RG, ρ = μ /RG. Mass is defined as the number of small events in the cluster or burst.

To implement this filter, we define a filter or threshold value corresponding to a particu-
lar value of mass ratio ρ. Each burst is tested, with the criterion for acceptance being that 
the density is greater than the threshold value. With this condition, we accept only high-
density clusters, which are typically the most compact clusters. Clusters that are accepted 
by this criterion correspond to long wavelength fluctuations in the time series, so this con-
dition represents a low-pass filter (Rundle and Donnellan 2020).

In Stage IV, an exponential moving average (Footnote 2) (EMA) was applied to the fil-
tered burst time series data. The choice to be made with this method is the value of N, the 
number of averaging steps. For our purposes, a 1 year averaging interval was adopted for 
the temporal resolution, corresponding to an average of N ~ 23 bursts per year.

In Stage V of the approach, the collection or ensemble of the bursts was optimized and 
combined into a single time series using a simple cost function. The result of this stage is 
an ensemble in which the largest earthquakes of M ≥ 7 occur at approximately the same 
value of RG for each event. The strategy involves defining a cost function that seeks to opti-
mize the value of radius of gyration RG for the largest earthquakes M ≥ 7, just before they 
occur. The cost function that used requires that the radius of gyration of these large earth-
quakes just prior to failure be a relatively uniform value. This would allow a crude nowcast 
or forecast of when a large such earthquake might occur in the future.

In general, it was found that there is a recharge period where average RG(t) decreases 
prior to each magnitude M ≥ 7, followed by a sudden discharge where RG(t) increases in 
average due to the large aftershock bursts following the mainshock. Between these large 
mainshocks, it can be seen that lesser magnitude earthquakes result in lesser but similar 
effects.

For the methods described here, we downloaded the earthquake catalog from the 
USGS web site, collected and filtered the data to construct acceptable timeseries of small 
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earthquakes (Footnote 1). The largest of these earthquakes since 1994 are given in Table 1. 
As examples of bursts that were used in computing RG(t), we show in Fig. 1 four bursts of 
small earthquakes in California. The top two represent moderate sized bursts, the bottom 
two represent aftershocks of major earthquakes M ≥ 6.0.

3  Summary of the Correlation Timeseries χ(t) Method

Here we use the machine learning methods of Principal Component Analysis (PCA), 
followed by optimization via supervised learning using a loss function defined by Shan-
non information entropy (see Rundle et al. 2021a, b for details). Optimization consists 
of calculating Receiver Operating Characteristic variables to compute the information 
contained in the time series. In the analysis below, we also use a one-step walk-forward 
time series prediction method from the python machine learning library scikit-learn, 
employing a random forest algorithm.

The method begins by defining a spatial coarse graining, assigning an array of grid 
boxes of given latitude and longitude Δx (in degrees) to the area of interest. Each of 
these grid boxes (tiles or partitions) is required to have a minimum number of small 
earthquakes over the entire time interval used. This procedure produces a set of NX 
"active" grid boxes.

Table 1  Large earthquakes in 
the Los Angeles region between 
January 1, 1984 and December 
31, 2020. These correspond to 
the vertical lines in Fig. 3, 4 
and 5

These correspond to the vertical lines in Figs. 3,4, 5

Date (Z) Time (Z) Magnitude Location

Large earthquakes near Los Angles from 1/1/1984 to 12/21/2019
4/24/84 21:15:18.760 6.2 Morgan Hill
11/23/84 18:08:25.360 6.1 Round Valley
7/8/86 09:20:44.560 6 Morongo Valley
7/21/86 14:42:26.000 6.4 Chalfant Valley
11/24/87 01:54:14.660 6.2 Elmore Ranch
11/24/87 13:15:56.710 6.6 Superstition hills
10/18/89 00:04:15.190 6.9 Loma Prieta
4/23/92 04:50:23.230 6.1 Joshua Tree
6/28/92 11:57:34.130 7.3 Landers
6/28/92 15:05:30.730 6.3 Big Bear
5/17/93 23:20:50.250 6.1 Big Pine
1/17/94 12:30:55.390 6.7 Northridge
10/16/99 09:46:44.460 7.1 Ludlow
12/22/03 19:15:56.240 6.5 San Simeon
8/3/09 18:40:50.100 6.2 Gulf of California
4/4/10 22:40:42.360 7.2 El Major Cucupah
12/14/12 10:36:01.590 6.3 Baja Coast
8/24/14 10:20:44.070 6.02 Napa
7/4/19 17:33:49.000 6.4 Ridgecrest
7/6/19 03:19:53.040 7.1 Ridgecrest
5/15/20 11:03:27.176 6.5 Tonopah, NV
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We then extract data from the seismic catalog, which is the set of values {ti, Mi, zi}, 
where i = 1,…, NE, in which NE is the number of earthquakes in the catalog. Here ti is the 
origin time of the earthquake, Mi, is the magnitude, and zi is hypocentral location (latitude-
longitude-depth). Note that zi is a container variable for an epicentral (horizontal) location 
xi and depth di.

The catalog is then digitized in time at increments Δt. A given earthquake is then 
assigned to a time interval [tj-Δt, tj], j = 1,…, JT and to the grid box centered at xn, 
n = 1,…, NX. These assignments then yield a collection of time series Φ(xn, tj ), which 
for convenience we designate as Φ(xn, t ). Thus we have a total of NX time series, digi-
tized at equidistant intervals Δt, extending over the interval t0, …, (t0 + Δt JT). In words, 
Φ(xn, tj ) is the number of earthquakes in the grid box centered on xn, occurring between 
tj-Δt and tj.

The next step is to compute the (eigen) patterns. Principal Component Analysis (PCA) 
is used to analyze the correlation matrix Cnm(t), which involves centered, univariant time 

Fig. 1  Examples of moderate bursts having M ≥ 3.29. Symbol color: cooler colors represent earlier events 
in the burst, hotter colors later events. Symbol size represents magnitudes. In each figure, the right side is 
a chart of magnitudes of the sequence of events in the burst. a and b represent bursts in which the largest 
earthquake is not the first. c and d represent bursts associated with large earthquakes having M ≥ 6 and their 
aftershocks. In addition, c illustrates events associated with the M6.2 Elmore Ranch and M6.6 Superstition 
Hills earthquakes of November 11, 1987. d illustrates events associated with the M6.9 earthquake of Octo-
ber 17, 1989
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series Φ̂
(

xn, t
)

. Φ̂
(

xn, t
)

 is obtained from the timeseries Φ(xn, t ) by removing the mean and 
normalizing to unit variance (Rundle et al. 2021a, b). Cnm(t) is then diagonalized to find 
its eigenvectors (eigenpatterns) ei(t) , i = 1,…,NX, and eigenvalues �i(t) . Because Cnm(t) is 
a positive definite, symmetric matrix of rank NX, the eigenvalues �i(t) are real and positive.

The next step is to define a sliding window seismicity state vector �(t) . The NX compo-
nents of Φ(xn, t ) are just the NX time series Φ(xn, t ), summed over a previous time interval 
τ = SΔt. The nth component of �(t) is then:

Because the ei(t) are orthonormal and complete, �(t) can be expanded in the eigenpat-
terns with expansion coefficients ai(t):

In computing ei(t) , only data for t’ ≤ t are used.
The weighted correlation of the seismicity at time t is then found as the dot product of 

the power spectrum ai(t)2 with the vector of correlation eigenvalues. This dot product is 
then the weighted correlation value �(t) for the regional seismicity:

�(t) represents a Weighted Correlation Timeseries (WCT) containing (possibly) significant 
information content.

In computing (3), it is found that the number of time series with the required minimum 
number of events and therefore active grid boxes, generally increases with time. So in order 
to compute a continuous timeseries, uniformly valid for all times t, both (t) and ai(t)

2 were 
normalized to standard values of, respectively, 100 and 1 (Rundle et al. 2021a, b).

To compute the timeseries �(t) , we construct a state vector �(t) . As is often the case in 
these machine learning methods (see, e.g., Rouet-Leduc et al. 2017, 2019), �(t) consists 
of a sliding window of length τ = SΔt, that advances in time by the successive increment 
Δt on each time step. In other words, small earthquake activity is accumulated over the 
window length τ and assigned to the time t at the end of the sliding window. As our sliding 
window we set S = 13, thus τ = 1 year.

At each time t, �(t) is expanded in the eigenpatterns and the coefficients of expansion 
ai(t) are computed. The current eigenvalues �i(t) are then used as in Eq. (7) to compute the 
value of χ(t) at that time step. We plot χ(t) as a function of time as shown below, which we 
interpret as a nowcasting correlation timeseries.

4  Comparison of the Two Methods

We have applied both methods to California, and summarize previous results here, 
together with some new analysis. We begin by focusing on the region centered on Los 
Angeles (34.0522° latitude, 118.2437° west longitude), and within 5.0° (in latitude and 
longitude) of that point. We consider small earthquakes to be those having magnitudes 

(1)�n(t) =

t

∫
t−�

(

xn, t
�
)

dt�

(2)�(t) =
∑

i

ai(t)ei(x, t)

(3)�(t) ≡ (t) =
∑

i

�i(t)ai(t)
2
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M ≥ 3.29 from 1/1/1940 until 12/31/2020. For the time interval Δt as discussed above, we 
set Δt = 0.07692  year, equal to 1/13  year or approximately 1 “lunar month,” equal to 4 
“weeks” of length 1/52 year.

For the method used to compute the WCT χ(t), the size of the N coarse-grained grid 
boxes was taken to be 0.33°. Requiring a minimum of 35 small earthquakes over the time 
period from 1/1/1940 to 12/31/2020, we find NX = 100 of the spatial grid boxes can be 
used. We then constructed the correlation matrix (1), and diagonalized it to find the eigen-
values and eigenvectors. As noted, when we computed the correlation matrix at time t, we 
used data only prior to that time.

In Fig. 2, we show four orthonormal eigenpatterns with the high correlation values in 
the correlation matrix, computed for the entire time period 1/1/1940 to 12/31/2020. These 
eigenpatterns can clearly be recognized by their association with the four largest earth-
quakes in California during that time period. Again for reference, Table 1 lists the large 
earthquakes having magnitude M ≥ 6 from 1984 to present.

4.1  Timeseries

For both timeseries methods, we compute the timeseries, RG(t) and χ(t), by the methods 
described above. These are shown in Fig.  3, over the time periods from 1984–present, 
where the red dashed vertical lines represent earthquakes having magnitudes larger than 
M ≥ 6.75, and the black dotted vertical lines represent earthquakes having magnitudes 
6.0 ≤ M < 6.75. The green dashdot line ("decision threshold" Dχ(TW)) will be discussed in 
the following.

Note that the time series values on the vertical axis are plotted on an inverted scale, so 
that the smallest values of RG(t) and χ(t) are at the top of the figure, and the largest values 
at the bottom. As a result, the two timeseries resemble the hypothesized cycle of regional 
stress accumulation and release that is thought to be associated with the elastic rebound 
hypothesis of H.F. Reid (Scholz 2019). These time series might then be viewed as a proxy 
for the regional tectonic stress cycle.

Since RG(t) is often used in statistical mechanics as a measure of correlation length, 
Fig.  3 implies that just after a major earthquake occurs, correlation length suddenly 
increases. Then, over the subsequent period of time, correlations gradually decrease, even-
tually reaching a low value prior to the next major earthquake. This cycle of sudden cor-
relation increase at the time of a major earthquake, is presumably associated with a sudden 
decrease in regional tectonic stress. The gradual decrease in correlation following a major 
event, is then apparently associated with the preparation and stress buildup leading to the 
next large earthquake. In any case, the two time series resemble the expected behavior of 
the cycle of regional tectonic stress in seismically active areas.

It would be of interest to test if new results such as these can be understood in terms 
of the statistical physics of a critical phase transition (e.g., Bowman et al. 1998). In this 
model, the cumulative seismic strain release increases as a power law time to failure before 
the final event. The region of correlated seismicity predicted by this model is much greater 
than would be predicted from simple elastodynamic interactions. At the moment, it is not 
clear how to design such a test.
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4.2  Time Series Prediction

Given a time series such as those in Fig. 3, there are a number of machine learning models 
and techniques that have been developed to predict future behavior of the time series, given 
a period of training of the parameters in the models. One of these that we briefly describe 
is the one-step walk-ahead method based on the random forest  algorithm2.

In this method, the data set of values V ∈ {Vi}, i = 1,…,Ni, are partitioned into a training set 
and a test set, typically 25–75% training, with the remainder in the test set. The parameters 
of model are then adjusted, and the result is checked by application to the test set. The idea 
is that the model parameters are assigned using a sliding window of NP time series values, 
resulting in the prediction for the next (unknown) value of the time series. In the examples 
shown below, we use NP = 13 monthly values of the time series to predict the next value.

Fig. 2  Four prominent eigenpatterns having high regional correlation eigenvalues, near the locations of a 
the April 4, 2010 M7.2 El Mayor Cucupah; b the June 28, 1992 M7.3 Landers + October 16, M 7.1 1999 
Hector Mine events (hot colors) and the July 21, 1952 M7.3 Kern County earthquake (cool colors); c July 
4, 2019 M7.1 Ridgecrest earthquake; and the d October 17, 1989 M6.9 Loma Prieta earthquake. Small 
earthquake activity at locations with (hot = reds/cool = blues) color is positively correlated with activity at 
other (hot/cool) color locations and anticorrelated with activity at (cool/hot) color locations. a El Mayor 
Cucupah pattern (6.23% of total correlation). b Landers–Hector–Kern pattern (5.46% of total correlation). 
c Ridgecrest pattern (3.63% of total correlation). d Loma Prieta pattern 5(2.7% of total correlation). Data 
used to compute the patterns in this figure spanned the entire interval from 1/1/01940 to 12/31/2020
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We show time series prediction of the time series for RG(t) and χ(t) in Figs. 41 and 52, 
respectively. The left panel in both figures is shown for the entire time period since 1984, 
with the original blue curve representing the time series, and the red superposed curve 
representing the time series prediction. The right panel of each figure is a zoom closeup of 
the last ~ 2.5 years of the left side panel, encompassing the time period of the M7.1, July 5, 
2019, Ridgecrest earthquake.

Superficially, from the left panels, both figures show that the red prediction curve 
appears to predict the next time series values reasonably well. However, a closer look rep-
resented by the right panel indicates that the prediction algorithm does not predict the onset 
of the large earthquakes, but in fact shows a delayed response, delayed by one time step.

We note that, in other work, a few months before the onset of large earthquakes in Cali-
fornia as well as in Japan, clearly observable changes of the variability of the order param-
eter of seismicity have been identified (Varotsos et  al. 2011a; 2012; Sarlis et  al. 2013). 
These may offer promising changes in signals to be searched by machine learning methods.

5  Signal Detection and Information Content

5.1  Decision Thresholds

We now turn to investigating the information contained in the correlation timeseries 
RG(t) and χ(t) that is shown in Fig. 3 from 1984 to 12/31/2020. More specifically, we are 
interested in determining whether those timeseries contain any information about future 

Fig. 3  Comparison of two time series, a RG(t) and b χ(t) from 1984 through 2020. RG(t) is calculated as a 
filtered optimized ensemble average of radii of gyration of small earthquake bursts as a function of time. 
Note that the average radius of gyration of a cluster of events is often taken to be a measure of the cor-
relation length in statistical mechanics. χ(t) is the weighted correlation time series computed from princi-
pal component analysis of the gridded timeseries of small earthquake events. In both figures, vertical red 
dashed lines represent large earthquakes M ≥ 6.9, vertical dotted lines represent earthquakes 6 .9 > M ≥ 6.0. 
Note that the vertical scale is inverted so that small values of RG(t) and b) χ(t) are at the top of the figure, 
so values increase towards the bottom. The horizontal green dash dot line in each figure represents the deci-
sion threshold D�(TW) for the time window TW = 3 years as discussed in the text. For RG(t) time series at the 
left, D�(TW) = 4.15. For χ(t) time series at right, D�(TW) = 1.216.

1 https:// earth quake. usgs. gov/ earth quakes/ search/.
2 https:// machi nelea rning maste ry. com/ random- forest- for- time- series- forec asting/.

https://earthquake.usgs.gov/earthquakes/search/
https://machinelearningmastery.com/random-forest-for-time-series-forecasting/
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large earthquakes. This is basically a problem in signal detection in the presence of 
noise, which was considered in the 1940’s in association with the advent of radar (Green 
and Swets 1966; Joy et  al. 2005). In that application, the problem was to determine 
whether an observed signal was actually a true radar return or a random fluctuation.

Fig. 4  Time series forecasting for RG(t) time series by a 1 step walk-forward algorithm using the random 
forest method adapted from the scikit-learn library of machine learning methods. In this application, we use 
13 features in the feature vector, representing 1 year of prior data to forecast the next time series value in 
the future. Blue curve with dots at the left panel is the same curve as shown in Figure 3 left. The red curve 
overlying the blue curve is the time series forecast. The left panel seems to suggest that the method has 
promise at forecasting future values of the curve. However, the right panel is a zoomed version of the same 
curve for 2018–2020, showing that the forecast does not correctly anticipate or forecast the large M7.1 July 
5, 2019 Ridgecrest earthquake. The same is true for the other large earthquakes upon closer examination

Fig. 5  Similar to Figures 4, 5 represents a time series forecast for χ(t) time series by a 1 step walk-forward 
algorithm using the random forest method adapted from the scikit-learn library of machine learning meth-
ods. In this application, we also use 13 features in the feature vector, representing 1 year of prior data to 
forecast the next time series value in the future. Blue curve with dots at the left panel is the same curve as 
shown in Figure 3 right. The red curve overlying the blue curve is the time series forecast. The left panel 
seems to suggest that the method has promise at forecasting future values of the curve. However, the right 
panel is a zoomed version of the same curve for 2018–2020, showing that the forecast does not correctly 
anticipate or forecast the large M7.1 July 5, 2019 Ridgecrest earthquake. The same is true for the other large 
earthquakes upon closer examination
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The researchers introduced the idea of a decision threshold, where if the signal had 
amplitude higher than the threshold, it was classified as a true return (true positive = TP). 
Of course, even if the signal was large enough, there was still the possibility that it was 
a random signal (false positive = FP). On the other hand, some returns might have had 
amplitudes less than threshold, but still have been real returns (false negative = FN). Or 
alternatively, they might have been random fluctuations (true negative = TN).

The problem is to determine whether signals of future large earthquakes can be 
detected by analysis of RG(t) and χ(t). We view our problem as lying in the domain of 
classification via unsupervised machine learning, sorting potential signals into the cat-
egories or classes of true positive (TP), true negative (TN), false positive (FP) and false 
negative (FN).

The standard method (Green and Swets 1966; Joy et al. 2005) is then to construct a 
Receiver Operating Curve ("ROC") by plotting the true positive rate (TPR):

against the false positive rate (FPR), defined in terms of the specificity or true nega-
tive rate (TNR):

TPR is also called the Recall or Hit Rate, and FPR is also defined as 1-specificity or 
the False Alarm Rate. As is well known, Recall measures how well the model performs 
at correctly predicting positive classes.

On the other hand, PPV or Precision measures how well the model performs when 
the prediction is positive:

Additionally, ACC or Accuracy measures the fraction of correct predictions, either 
TP or TN:

Inspection of the time series RG(t) and χ(t) shown in Fig.  3 indicates that the largest 
earthquakes having magnitude M ≥ Mλ tend to occur when the correlation timeseries RG(t) 
and χ(t) are near a small minimum value (the “floor”). To proceed, at each time t we define 
a future time window [t, t + TW], where TW is the duration of the window. We then select 
an ensemble of decision thresholds D�

(

TW
)

 to test RG(t) and χ(t). The decision thresholds 
sweep through all possible values to define the ensemble of values for TP, FP, FN, TN.

For each such decision threshold, we accumulate the following statistics. If the con-
dition {RG(t), χ(t)} ≤ D�

(

TW
)

 exists, we take this as an indication (“prediction”) that a 
large earthquake having magnitude M ≥ Mλ will occur during the future time window [t, 
t + TW]. On the other hand, if {RG(t), χ(t)} > D�

(

TW
)

 , the “prediction” is that no large 
earthquake will occur during the future time window. Thus:

• If {RG(t), χ(t)} ≤ D�

(

TW
)

 ("predicted": yes), and the future time window does contain 
at least 1 large earthquake M ≥ Mλ, we increment TP → TP + 1. i.e., a true positive.

• If {RG(t), χ(t)} ≤ D�

(

TW
)

 ("predicted": yes), and the future time window does not con-
tain at least 1 large earthquake M ≥ Mλ, we increment FP → FP + 1. i.e., a false positive.

(4)TPR = TP∕(TP + FN)

(5)FPR = 1 − TNR = FP∕(FP + TN)

(6)PPV = TP∕(TP + FP)

(7)ACC = (TP + TN)∕(TP + FN + FP + TN)
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• If {RG(t), χ(t)} > D�

(

TW
)

 ("predicted": no), and the future time window does contain at 
least 1 large earthquake M ≥ Mλ, we increment FN → FN + 1. i.e., a false negative.

• If {RG(t), χ(t)} > D�

(

TW
)

 ("predicted": no), and the future time window does not con-
tain at least 1 large earthquake M ≥ Mλ, we increment TN → TN + 1. i.e., a true nega-
tive.

Since these the quantities TP, FP, FN, TN only appear in ratios, in the results shown 
here, we list the quantities TP, FP, FN, TN as normalized by the sum TP + FP + FN + TN, 
e.g.,

etc. Thus all the normalized quantities TP, FP, FN, TN listed here lie within the interval 
[0, 1].

5.2  Receiver Operating Characteristic

Figure 6 shows a comparison of the Receiver Operating Characteristics (ROC) diagrams 
for RG(t) and χ(t), obtained by plotting TPR against FPR. The plot for RG(t) is at left, and 
that for χ(t) is at right. These diagrams are computed for the time window TW = 3 years. 
The red curve is the ROC curve in both panels.

As is well known (Green and Swets 1966), a random predictor (no information) is repre-
sented by the condition:

(8)TP → TP∕(TP + FP + FN + TN)

(9)TPR = FPR

Fig. 6  Receiver Operating Characteristic (ROC) diagram for two time series, a RG(t) and b χ(t) using data 
from 1960 through 2020. Red curve is the Receiver Operating Characteristic (ROC) diagrams for the time 
series a RG(t) at left panel and b χ(t) at right panel, shown in Figure 3, obtained by systematically varying 
the decision threshold D�

(

T
W

)

 as described in the text for major earthquakes having magnitudes M ≥ 6.75, 
and computing the true positive rate (hit rate or recall) TPR and plotting against the false positive rate 
(1-specificity) FPR. The black diagonal black line from lower left to upper right is the random predictor, 
TPR = FPR. To emphasize that the diagonal line does indeed represent the ROC for a random predictor, we 
constructed 500 random timeseries by sampling from RG(t) and χ(t) panels, respectively, with replacement. 
These are represented by the mass of cyan colored lines in the figures. The 1 σ confidence level is indicated 
by the ellipsoidal dotted line enclosing the solid black random predictor line. The blue dashed vertical and 
horizontal lines represent the values of TPR and FPR obtained by optimizing the precision TP/(TP + FP) for 
the optimal value of D�

(

T
W

)

 for the ROC using the time window of T
W

 = 3 years
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On the ROC plots for RG(t) and χ(t), this line is shown as the diagonal black line from 
[0,0] to [1,1]. To emphasize that the diagonal line does indeed represent the ROC for a ran-
dom predictor, we computed 500 random timeseries by sampling from RG(t) and χ(t) with 
replacement (bootstrap method). These are represented by the mass of cyan-colored lines 
in the figures. The 1 σ confidence level is indicated by the ellipsoidal dotted line enclosing 
the solid black random predictor line.

The fact that the red curve lies substantially above the random predictions indicates that 
there are signals of large earthquakes contained in RG(t) and χ(t). In fact, the area under the 
red line corresponding to RG(t) and χ(t) is a measure of skill, with values lying between 
[0,1].

For the random predictor, (black diagonal line) the skill score = 0.5. It can be seen that 
the area under the red curve in both figures evidently has more area line beneath it, indicat-
ing skill better than random. Values of the skill score for both RG(t) and χ(t) are shown in 
the figure and in Table 2.

5.3  Optimal Decision Thresholds

If we were to use the data in the ROC curve in a practical way, we would need to deter-
mine the optimal decision threshold, corresponding to an optimal point on the ROC curve 
for each value of TW and the large earthquakes to be nowcasted. The possible presence of 
signals for large earthquakes motivates us to use Shannon information entropy IS (Shannon 
1948) as a measure of information content of points along the ROC curve:

where p is an appropriately chosen probability. Thus we are led to seek the value of deci-
sion threshold D�

(

TW
)

 that optimizes IS for a given value of TW.
As an example of this approach, we show in Figs. 6, and Table 2, the optimal values for 

TP, FP, FN, TN that arise from using Eq. (10) and the probability measure of precision. In 
Fig. 6, the optimal values are represented by the vertical dashed blue lines. Figure 7 is a 
plot of the precision as a function of the decision threshold D�

(

TW
)

 for the same time win-
dow TW = 3 years, corresponding to the ROC plots of Fig. 6.

We also optimized the values of these quantities using hit rate (recall) and accuracy, but 
in general found the results were not as good as using precision.

6  Statistical Tests of Significance

To test whether information is contained in the time series RG(t) and χ(t), we take as our 
null hypothesis the idea that any information that may be apparent in RG(t) and χ(t) is the 
result of a purely random process, and that RG(t) and χ(t) might be a random time series. 
Definition of all quantities considered is given in Table 2, columns 1 and 2. Note that TP, 
FP, FN, TN have been normalized as in Eq. (8).

Table 2 also contains the optimal values of the various quantities TP, FP, FN, TN, hit 
rate, precision, specificity, accuracy and skill in columns 3 and 4 for RG(t) and χ(t). Col-
umns 5 and 6 in Table 2 display the means and standard deviations for the random set of 
time series {RG,R(t), χR(t)} evaluated at the same particular decision thresholds D�

(

TW
)

 
defined previously by optimizing the precision of RG(t) and χ(t). Thus columns 5 and 6 

(10)IS = p log2 p + (1 − p) log2 (1 − p)
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contain the same statistical quantities listed in columns 1 and 2, evaluated for a random 
predictor.

As stated, the random predictor was constructed by means of a bootstrap approach. The 
time series RG(t) and χ(t) were repeatedly sampled randomly with replacement to construct 
500 random time series that we can designate as the set of time series { RG,R(t), χR(t)}.

Fig. 7  Similar to Figure 6, the red curve in Figure 7 shows the precision TP/(TP + FP) as a function of the 
decision threshold D�

(

T
W

)

 applied to the time series a RG(t) at left panel and b χ(t) at right panel, as shown 
in Figure 3. The solid black line is the random predictor. To emphasize that the solid black line does indeed 
represent the precision for a random predictor, we constructed 500 random timeseries by sampling from 
RG(t) and χ(t), from the left and right panels, respectively, with replacement. These are represented by the 
mass of cyan colored lines in the figures. The 1 σ confidence level is indicated by the ellipsoidal dotted line 
enclosing the solid black random predictor line. The blue dashed vertical lines represent the optimal values 
of decision threshold obtained by optimizing the Shannon information entropy, using precision as the prob-
ability for a time window T

W
 = 3 years

Table 2  Comparison of optimal data, obtained by optimizing the Shannon information from entropy of the 
precision variable, to random data for a time window T

W
 = 3 years for both RG(t) and s χ(t) time series

Optimal values of decision threshold D�

(

T
W

)

 are found by this procedure. The null hypothesis is that our 
optimal precision data are generated by a random process. Thus we compare our values to those generated 
by the random process and calculate a one-sided P-statistic based on Z-values using standard procedures. 
We note that the precise values of P in the table below can be found from the data contained therein (Rein-
hart 2015).

Statistic Definition Optimal 
precision

Random data P value statistics

RG(t) �(t) RG(t) �(t) RG(t) �(t)

TP True positive 0.161 0.04 0.087 ±0.009 0.02 ±0.005 P << 0.01 P << 0.01
FP False positive 0.161 0.044 0.228 ±0.015 0.059 ±0.009 P << 0.01 P < 0.05
FN False negative 0.113 0.207 0.188 ±0.009 0.227 ±0.005 P << 0.01 P << 0.01
TN True negative 0.564 0.709 0.498 ±0.015 0.694 ±0.009 P << 0.01 P < 0.05
Hit rate (TPR) TP/(TP + FN) 0.587 0.162 0.316 ±0.032 0.078 ±0.019 P << 0.01 P << 0.01
Specificity (TNR) TN/(TN + FP) 0.778 0.942 0.686 ±0.021 0.921 ±0.013 P << 0.01 P < 0.1
Precision (PPV) TP/(TP + FP) 0.5 0.476 0.276 ±0.023 0.244 ±0.051 P << 0.01 P << 0.01
Accuracy TP + TN 0.726 0.749 0.584 ±0.017 0.712 ±0.01 P << 0.01 P << 0.01
Skill score Area under ROC 0.733 0.630 0.5 ±0.185 0.5 ±0.113 P = 0.10 P = 0.12
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For all of the statistical quantities identified in column 1, we then compute the 
Z-statistic:

where S is the statistical quantity (TP, FP, FN, TN, etc.) obtained by optimizing χ(t). The 
quantities �R and �R are the means and standard deviations of the ensemble of random time 
series { RG,R(t), χR(t)}, also evaluated at the same optimized decision thresholds D�

(

TW
)

.
From the Z-statistics, we then calculate the P values shown in columns 7 and 8 in 

Table 2. With few exceptions, it can be seen that for the most part, P < 0.05, a standard cri-
terion for rejecting the null hypothesis at the 95% confidence level. In words, the observed 
values of the quantities in column 1 listed in columns 3 and 4 are unlikely to be the result 
of a random process. There are several exceptions to this general finding for the shorter 
TW = 6 months, but for TW = 3 years, all quantities reject the null hypothesis at the 95% con-
fidence level with the exception of skill score.

7  Discussion

We are led to the conclusion that there is evidently information content embedded within 
RG(t) and χ(t), and that there are optimal decision thresholds that can be determined by a 
procedure similar to that described above. From a practical perspective, one might imag-
ine that these results might be used to identify signals for optimal threshold values. These 
could be in the form of "alerts" of future major earthquakes that are declared when {RG(t), 
χ(t)} ≤ D�

(

TW
)

 for pre-defined values of D�

(

TW
)

.
From examination of Table  2, columns 7 and 8, it would appear that the time series 

RG(t) performs somewhat better than χ(t). It should be noted that the time series RG(t) has 
been optimized using machine methods, while χ(t) has not, which may account for the dif-
ference. This is a subject for future work.

Given the fact that the time series RG(t) and χ(t) appear to contain some level of infor-
mation about the hazard posed by future earthquakes, its use in nowcasting applications 
would seem to have promise. Future investigations may allow further refinement and clari-
fication of whatever information this and similar time series contain.

The elastic rebound theory of earthquakes (Richter 1958) proposes that tectonic stresses 
build up, recharge or increase, in a region following a large earthquake until another large 
earthquake occurs and stress discharges or decreases. At that point the stresses are sud-
denly reduced, and a new cycle of stress recharge and discharge begins. By presenting our 
results in the manner shown in Figs. 3, 4, 5, 6, the similarity with the elastic rebound the-
ory can be seen.

Our present results contribute to the development of seismic nowcasting methods that 
we have discussed earlier (Rundle et al. 2016a, b; 2018; 2019a, b). In previous methods, 
elastic rebound is introduced as a constraint, by counting small earthquakes since the last 
large earthquake using the concept of natural time. Natural time is defined by event counts 
as a measure of time, rather than clock time. The concept of natural time was introduced by 
Varotsos and coworkers in the beginning of 2000s (Varotsos et al. 2011a, b).

In contrast using this method, elastic rebound emerges naturally, in that it follows 
directly from time-dependent properties of the bursts. Another difference is that the seismic 
nowcasting method produces a cumulative distribution function, or equivalently a survivor 

(11)Z =
S − �R

�R
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distribution of future large earthquake activity. By contrast, the present method computes 
an observable property of the region with a clear physical meaning.

It might be argued that the results we present are functionally equivalent to Omori’s law 
of aftershock decay (e.g., Shcherbakov et al. 2005a, b; Scholz 2019). However, as shown 
by Rundle et al. (2021a, b), the time scales for Omori decay are much shorter than the time 
scales seen in Fig. 2, so this equivalence is unlikely to be valid.

Other studies have shown that large earthquakes tend to occur in relatively small regions 
where small earthquake activity has been the greatest for a number of years (Rundle et al. 
2003; Tiampo et al. 2002a, b, c; Holliday et al. 2006a, b; 2007; 2008). This is essentially a 
consequence of the universal applicability of the Gutenberg–Richter relation (Rundle et al. 
2016a, b; 2018). The RELM earthquake forecasting test suggests that this approach may be 
fruitful (Holliday et al. 2007; Lee et al. 2011)A.

A strategy to anticipate major earthquakes that combines methods such as those pro-
posed by (e.g., Rundle et  al. 2003) to estimate candidates for spatial locations of future 
events, combined with the ensemble time series methods discussed here, might be useful 
to consider. A question that remains is the applicability of the methods described here to 
other seismically active regions, which in turn depends on the completeness of the seismic 
catalog over a wide range of magnitudes. A major advantage of the Southern California 
region is that the catalog is complete to small magnitudes, a property that is not generally 
the case elsewhere. Future work will be directed at answering this question as it will be 
important to test the method in other seismically active areas.
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