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A B S T R A C T   

Minerals are ubiquitous in the natural environment and have close contact with microorganisms. In various 
scenarios, microorganisms that harbor extracellular electron transfer (EET) capabilities have evolved a series of 
beneficial strategies through the mutual exchange of electrons with extracellular minerals to enhance survival 
and metabolism. These electron exchange interactions are highly relevant to the cycling of elements in the 
epigeosphere and have a profound significance in bioelectrochemical engineering applications. In this review, we 
summarize recent advances related to the effects of different minerals that facilitate the EET process and discuss 
the underlying mechanisms and outlooks for future applications. The promotional effects of minerals arise from 
their redox-active ability, electrical conductivity and photocatalytic capability. In mineral-promoted EET pro-
cesses, various responses have concurrently arisen in microorganisms, such as stretching of electrically 
conductive pili (e-pili), upregulated expression of outer-membrane cytochromes (Cyts) and production of specific 
enzymes, and secretion of extracellular polymeric substances (EPSs). This review synthesizes the understanding 
of electron exchange mechanisms between microorganisms and minerals and highlights potential applications in 
development of renewable energy production and pollutant remediation, which are topics of particular signifi-
cance to future exploitation of biotechnology.   

1. Introduction 

The behavior of microbial extracellular electron transfer (EET) pro-
cesses has attracted considerable attention in recent years because 
electron exchange processes inevitably influences microbial meta-
bolism, energy conservation, and mineral formation, and contribute to 
the biogeochemical evolution of the Earth’s critical zone – where rock 
meets life [1–4]. Currently, many alternative approaches are under 
investigation to improve the electron transfer capacity between micro-
organisms and electron acceptors, such as induction with conductive 
materials (e.g., carbon cloth, graphene, and conductive minerals) [5], 

exogenous electron shuttles (e.g., quinone compounds) [6], and genet-
ically programmable multistep catalysis [7]. Notably, via long-term 
evolutionary processes, microorganisms established an intimate rela-
tionship with minerals for exchange of electrons to sustain special sur-
vival strategies and environmental adaptability [8,9], consequently 
contributing to the origin and evolution of life [10–12]. Minerals serve 
as habitats for the formation of biofilms [13], electron donors/acceptors 
for microbial respiration [8], reservoirs of macro- and micronutrients for 
sustaining fundamental microbial metabolisms [14], and as electron 
transfer conduits that favor intercellular interactions [15,16]. Hence, 
interactions between microorganisms and inorganic minerals are among 
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the most colorful and vivid manifestations of the epigeosphere, wherein 
inorganic and organic materials are mutually biotransformed. 

Although the interplay between microorganisms and minerals is 
complex in subsurface environments, the process of electron transfer 
and energy flow between minerals and microorganisms has long been 
considered a fundamental process occurring at the junction between the 
lithosphere and biosphere [17]. Thus, the electronic response of these 
interactions and the involved environmental processes are likely to 
shape the biosphere-lithosphere habitats in which microorganisms live 
and elements cycle at a variety of temporal and spatial scales [18,19]. 
Additionally, microorganism-mineral interactions hold promise for 
exploitation in various bioelectrochemical engineering applications. 
Previous studies have primarily focused on the behaviors of microbes 
that harbor EETs coupled with redox-active and/or electrically 
conductive minerals for mineralization of organic pollutants and 
methanogenesis [20,21]. In recent years, major advances in microbial 
EET processes include fixation of carbon dioxide to organic compounds 
and denitrification via photosynthesis in conjunction with (semi) 
conductive minerals [22–24]. Therefore, understanding the funda-
mental mechanisms underlying microbe EETs coupling with minerals is 
expected to have profound significance in revealing the environmental 
impact and practical application of minerals. 

Microorganisms have developed specific strategies that aid them in 
sustaining intracellular/extracellular redox balance, such as altering 
their outer-membrane cytochromes (Cyts) expression patterns and 
enzyme metabolic pathways, and secreting extracellular polymeric 
substances (EPSs) in response to shifts in external stimuli [25–27]. 
Because a diverse range of minerals with various properties is present in 
the natural environment, substantial uncertainty regarding in electron 
exchange processes due to the coexistence of different microbial species 
with multiple mineral phases. Due to these complexities, the molecular 
mechanisms underlying the abilities of microorganisms to exchange 
electrons with extracellular minerals or with the same or different 
microorganism species, such as c-Cyts and microbial nanowires, are 
rarely studied. Particularly, there is a paucity of information regarding 
pathways involved in electron conduction. 

The electrical interplay between minerals and microorganisms is 
viewed as one of the most complicated, important and dynamic 
biogeochemical mechanisms on Earth [8,28], and the basic principles 
might be exploited for various bioelectrochemical engineering applica-
tions. In this review, the roles that minerals play in enhancing the mi-
crobial EET process were classified into three main categories according 
to the sites at which they interact within the EET process: redox-active 
capability, electrical conductivity, and photocatalytic capability. This 
synthesis addresses current knowledge gaps related to the mechanisms 
by which minerals mediate EET processes and offers a vision of antici-
pated future applications in biological engineering. 

2. Redox-active minerals 

2.1. Redox-active minerals serve as a temporary mediator for electron 
storage 

Several representative minerals containing mixed-valence iron or 
manganese, i.e., Fe(II)/Fe(III) or Mn(III)/Mn(IV) (e.g., green rust 
[Fe6(OH)12CO3], clay mineral nontronite [Nax(H2O)4Fe3+2[AlxSi4-xO10] 
(OH)2] and magnetite [Fe3O4]), can serve as temporary redox-active 
mediators or electron storage materials (similar to batteries) in the 
EET process [8,9,29]. In general, these redox-active minerals function as 
“naturally occurring batteries” by serving as an environmentally rele-
vant electron sink/source for a vast variety of bacterial communities. 
These redox-active minerals are commonly used as terminal electron 
donors and as terminal electron acceptors by specific microbes, corre-
spondingly extending the direct EET distance through multiple redox 
cycles of mixed-valence metal elements inside these minerals by 
dissimilatory metal-reducing bacteria (DMRB) and specific phototrophic 

bacteria [8,30]. That is, such a redox-active mineral-based “battery” gets 
“charged” under reducing conditions by DMRB via storing electrons and 
then undergoes “discharge” to transfer electrons to phototrophic bac-
teria [30]. 

For instance, Byrne and coworkers [30] found that efficient direct 
interspecies electron transfer (DIET) performance was displayed in a 
co-culture of the dissimilatory Fe(III)-reducing strain of Geobacter sul-
furreducens and the photosynthetic Fe(II)-oxidizing strain of Rhodop-
seudomonas palustris in the presence of magnetite. In addition, they 
found that microbial activity did not change the mineral mass [30], 
indicating that magnetite displayed an effect similar to that of biochar 
and anthraquinone to confer electron shuttling capability. This redox 
property of magnetite was used to boost the transient charge storage of 
the anode in magnetite-amended microbial fuel cells [31,32]. Analogous 
to magnetite, Zhao et al. [33] found that nontronite could retain its 
substantial mineral properties even after undergoing up to 3 reversible 
redox cycles by coupling the Fe(III)-reducing Shewanella oneidensis strain 
and the Fe(II)-oxidizing Pseudogulbenkiania sp. strain 2002. Specifically, 
DMRB delivers electrons to the surface of redox-active minerals for 
extracellular respiration, resulting in the release of low-valence metal 
ions that subsequently interact with other oxidizers (e.g., iron-oxidizing 
phototrophic bacteria and oxidizing substances present at the surface of 
minerals; Fig. 1a) [34]. In other words, this process can be described as a 
“redox active mineral-based battery that charges/discharges electrons” 
process driven by mixed-valence metal ions in redox-active minerals 
wherein the involved mixed-valence metal ions are repeatedly cycled in 
a manner similar to that of Fe(II)/Fe(III) redox reactions in magnetite. 
Although magnetite possesses both redox capability and electrical con-
ductivity (described in section 3), each role is different and may be 
closely linked to specific microbes in a given bioelectrochemical system. 
Specifically, participation of Fe(II)-oxidizing microbes in Fe(II) oxida-
tion is a key linkage in maintaining dynamic redox cycles with structural 
Fe in redox-active minerals, as the resulting product, Fe(III), is an 
important precursor for accepting electrons. 

Considering the ubiquitous existence of redox-active minerals 
(magnetite, silicate clays and green rust) in natural soils, it is clear that 
these redox-active minerals are significantly involved in a wide range of 
biogeochemical cycling processes involving elements and pollutant 
degradation dynamics. For instance, organic carbon turnover in soils 
and sediments is closely linked to mineralogical processes via oxidation/ 
reduction, complexation/decomplexation, sorption/desorption and 
precipitation/dissolution reactions [35]. Because of microbial anaerobic 
extracellular respiration, sequestered organic fractions that are origi-
nally enclosed in redox-active minerals are liberated and available to 
enhance the secondary EET processes [36]. Additionally, structural Fe in 
nontronite was able to undergo multiple redox cycles mediated by the Fe 
(III)-reducing member Shewanella putrefaciens CN32 and 
nitrate-dependent Fe(II)-oxidizing member Pseudogulbenkiania sp. strain 
2002. This process resulted in continuous removal of nitrate (reduced to 
nitrogen gas) from aqueous solution [37]. Thus, these mixed-valence 
iron-/manganese-bearing minerals function as natural batteries for 
storage and exchange of electrons to support microbial metabolism, 
which could in turn sustain the redox stability of the mineral. This is 
especially relevant for biofilms attached to redox-active minerals where 
c-Cyts and e-pili enclosed in biological polymers directly deliver elec-
trons to redox-active minerals. This contact process mediates satisfac-
tory EET efficiency at the interface between the biofilm and crystalline 
mineral phase with the assistance of the Fe(II)/Fe(III) redox couple [31]. 
Notably, the prevailing abiotic/biotic reactions occurring in the 
biogeochemical Fe cycle could be an important mediator for regulating 
the bioavailability and ultimate fate of several metal pollutants and 
essential biogenic elements in the epigeosphere (discussed in sections 
2.2 and 2.3). 

G. Dong et al.                                                                                                                                                                                                                                    
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2.2. Dynamic redox cycles and recrystallization of structural Fe in redox- 
active minerals 

It is obvious that redox-active minerals such as magnetite and non-
tronite can exchange electrons through intracrystalline electron hopping 
between neighboring octahedral Fe2+–Fe3+ valence interchanges [38]. 
The extent and reversibility of these structural changes are commonly 
determined by the Fe(II)/Fe(III) ratio of the mineral structure [39] 
(Fig. 1b). Microbial dissimilatory reduction of Fe(III) to biogenetic Fe(II) 
is first processed from the edges of the minerals to the structural interior 
phase in a relatively “rigid” environment, creating a reduction front at 
the Fe(II)–Fe(III) redox boundary [40]. Thereafter, the transiently pro-
duced biogenetic Fe(II) in the Fe(II)–Fe(III) domain at the mineral edges 
directly transfers electrons to the external electron acceptors (e.g., ni-
trate, pertechnetate, arsenate and hexavalent chromium) to produce 

adsorptive Fe(III), which can in turn oxidize adjacent biogenetic Fe(II) 
via intervalence electron transfer [41–43]. Recrystallization of 
redox-active stable minerals mainly arises through ion exchange 
occurring as interfacial reactions between mineral phase Fe(III) and 
aqueous phase Fe(II) [44]. Therein, aqueous Fe(II) is preferentially 
adsorbed to mineral surfaces while reductive dissolution of structural Fe 
(III) preferentially occurs at step/defect sites on mineral particles, pro-
moting the recrystallization reaction [45]. Besides, the reaction rate for 
recrystallization is largely dependent on the pH of the reaction system. 
Specifically, extensive and rapid recrystallization is most favorable at 
circumneutral pH conditions in the presence of dissolved Fe(II) [46]. 

Overall, with such dynamic redox cycling and recrystallization re-
actions, it is beneficial to certain microorganisms to gain energy for 
growth from coupled redox cycles with structural Fe, or even to build a 
syntrophic relationship to mutually support the other partner’s growth 

Fig. 1. Redox-active minerals containing mixed-valence iron serve as temporary batteries for electron storage/release and support microbial metabolism (a). 
Schematic illustration for dynamic redox cycles of structural Fe in redox-active minerals, such as magnetite and nontronite (b). Notably, electrical conduction and 
reductive dissolution might synchronously occur in magnetite. 
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by replacing redox-active minerals with an environmental medium. In 
natural environments, these redox processes mostly thrived in transition 
zones where a new model of microbial metabolism for energy generation 
is established at their junctions. 

2.3. Significance of redox-active minerals in controlling cycling of major 
and trace elements 

Because of their fine grain size and special chemical structure, 
reversible oxidation/reduction of structural Fe in clay minerals con-
tributes to organic carbon preservation/degradation [47,48], nitrogen 
cycling [33,37] and mobility of trace metals and radionuclides (e.g., 
arsenic [As], chromium [Cr], technetium [Tc] and uranium [U]) [42,43, 
49], which have important environmental implications. It could be 
inferred that alternating oxidation/reduction processes within 
redox-active minerals potentially occur in sunlight irradiated and anoxic 
zones (e.g., marsh, shoal area and coastal marine sediment), where dy-
namic hydrogeological fluctuations drive the metabolic connection with 
redox-active minerals [50]. For instance, redox conditions are likely to 
fluctuate due to changes in water depth and oxygen penetration into 
sediments. In these environments, redox-active minerals may contribute 
to the bioremediation of pollutants and the fate/transport of several 
biogenic elements. These results from the biotransformation processes of 
organic pollutants and the cycling of biogenic elements are closely 
linked to the reactivity of redox-active minerals [9,47–49]. Additionally, 
the mobilization/solubilization of As(V) can proceed via microbial 
dissimilatory reduction/detoxification pathways concomitant with 
reductive dissolution of Fe(III)-containing minerals in anoxic subsurface 
environments [35,49]. Subsequently, the dissolved Fe(II) produced as a 
result of microbial respiration using Fe(III)-bearing minerals can be a 
powerful reductant to facilitate the reduction of Cr(VI), Tc(VII) and U 
(VI) [51–53]. Thus, using redox-active minerals to control the biogeo-
chemical fate/transport of trace metals and radionuclides provides 
alternative remediation strategies. 

Considering the diversity of minerals in nature, identifying novel 
redox-active minerals should be a priority for future research. Addi-
tionally, thermodynamic and kinetic prediction models combined with 
Mössbauer spectroscopy and microscopy methods should be instituted 
to verify mineral redox reactions and their mechanistic interactions 
within the epigeosphere. 

3. Conductive and semi-conductive minerals 

3.1. Enhanced electrical conductivities at the attached interface 

Various conductive/semiconductive minerals can serve as electrical 
conductors to facilitate the EET process, highlighting the importance of 
the electron transmission mechanism through the conduction band of 
these minerals. In general, the electrical conductivity of a mineral is 
primarily determined by the energy level discrepancy required for 
electrons to jump from the top of the valence band to the bottom of the 
conduction band. The band gaps are commonly large in insulative 
minerals, smaller in semiconductive minerals, and smallest in conduc-
tive minerals because of the overlap of the valence band and conduction 
band. In natural soils or sediments, a variety of (semi)conductive min-
erals are present, such as magnetite, greenockite, rutile and hematite, 
that are capable of functioning as electrical conduits for transfer of 
electrons between different microbial species (Table 1) [54–56]. 

It is known that electron flow between different substances can be 
thermodynamically permitted due to redox potential discrepancy [67]. 
Both the Cyt-protein complex in the cytoplasmic membrane of microbial 
cells and the conduction band of (semi)conductive minerals have wide 
ranges of redox potentials, electron transfer is theoretically permitted 
across the microbial cytochrome-protein complex and the conduction 
band of (semi)conductive minerals. Some (semi)conductive minerals 
assembled with comparably low resistance can enable improved DIET 

efficiency between different microorganisms in electrical syntrophic 
cultures. This enhanced effect is prominent when applying (semi) 
conductive minerals in anaerobic digestion systems to promote meth-
anogenic performance. For example, Kato et al. [20] reported that 
supplementation with magnetite and hematite accelerated methano-
genesis in terms of both lag time and production rate when Meth-
anosarcina spp. was grown in co-culture with Geobacter spp. Further, 
genomic analyses by Zhuang et al. [68] even demonstrated that a higher 
dose of hematite and magnetite increased the higher abundance of 
Methanobacterium, which subsequently accelerated syntrophic cooper-
ation in methanogenic benzoate degradation. These findings emphasize 
the special roles of magnetite and hematite in boosting methanogenesis 
via DIET. Overall, these examples demonstrate the efficacy of (semi) 
conductive minerals for electrical modification of bioelectrochemical 
systems through decreasing interfacial resistance and promoting charge 
transfer. 

When microorganisms come in direct contact with (semi)conductive 
minerals, efficient electron transfers occur in electro-syntrophic part-
ners, permitting conductive networks between (semi)conductive min-
erals, exoelectrogenic bacteria and electrotrophic methanogens. 
Specifically, large (semi)conductive minerals provide abundant attach-
ment sites for microorganisms to form biofilms on mineral surfaces, 
whereas submicron-sized minerals are easily aggregated with microor-
ganisms to form floc-like aggregates (Fig. 2). Specifically, biofilm for-
mation on mineral surfaces promotes e-pili and membrane-bound c-Cyts 

Table 1 
Selected physicochemical properties of conductive and semiconductive 
minerals.  

Mineral Chemical 
formula 

Type Resistivity 
(Ω⋅m) 

Specific 
gravity 
(g/cm3) 

Ref. 

Covellite CuS Conductive 10− 4-10− 7 4.59–4.64 [57] 
Bornite Cu5FeS4 Conductive 10− 3-10− 5 4.90–5.01 [58] 
Chalcopyrite CuFeS2 Conductive 10− 1-10− 4 4.14–4.32 [59] 
Magnetite Fe3O4 (Semi) 

conductive 
10− 2-10− 5 5.16–5.18 [60] 

Cassiterite SnO2 (Semi) 
conductive 

103–10− 4 6.06–6.95 [61] 

Pyrite FeS2 (Semi) 
conductive 

100–10− 5 4.90–5.27 [62] 

Hematite α-Fe2O3 Semiconductive 102–10− 3 4.91–5.32 [63] 
Pyrolusite MnO2 Semiconductive 102–10− 3 4.71–5.23 [64] 
Rutile TiO2 Semiconductive 104–10− 2 4.13–4.31 [65] 
Sphalerite ZnS Semiconductive 105–10− 2 3.91–4.21 [66] 

Note: 1). Mineral resistivity is a function of the purity, geometrical morphology 
and density of minerals, as well as the temperature. 2). Due to the resistivity 
ranges reported, several minerals overlap between conductive minerals and 
semiconductive minerals; herein, we labeled such minerals as “(semi)conductive 
minerals”. 

Fig. 2. Schematic of (semi)conductive minerals serving as an electrical 
conductor to facilitate interspecies electron transfer. 
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adherence to (semi)conductive minerals. Correspondingly, biofilms 
form on mineral surfaces by bacterial surface attachment and mono-
layer/multilayer growth. Because of suitable conductivity by the (semi) 
conductive minerals, electron transfer from bacteria to the anode 
interface is readily facilitated. In this scenario, a conductive network 
with electron transfer hop might be reconstructed due to coexistence 
with these (semi)conductive minerals, thereby eliminating sluggish 
electron transfer in the “blind areas” that lack the relevant electron 
shuttling matrices. Notably, e-pili and membrane-bound c-Cyts serve as 

important carriers for electron transfer [69,70], and their direct contact 
with different nanosized (semi)conductive minerals might exhibit dif-
ferential physiological responses. The specific mechanisms are further 
discussed in sections 3.2 and 3.3. 

3.2. Nanosized (semi)conductive minerals stimulate the formation and 
expression of e-pili and c-cyt 

In the presence of (semi)conductive minerals, EET efficiency is 

Fig. 3. Comparisons of TEM (a and b) and AFM (c and d) images, as well as heights of pilus monomer (e and f) for G. sulfurreducens cells in treatments without 
maghemite NPs and direct contact with maghemite NPs [77]. In AFM image, red line indicates the existence of pilus. When cells are in direct contact with maghemite 
NPs, very sparse electrically conductive pili were observed through AFM and TEM observation; the greater heights of pilus monomer were stretched through AFM 
measurement. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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closely correlated with the degree of crystallinity and crystal size and 
with the morphology of the minerals [71,72]. Particularly, smaller 
mineral sizes with larger specific surface areas usually exhibit higher 
electron transfer performance than large mineral samples [73–75]. 
Previous investigations conducted using natural or fabricated single 
mineral crystals, with dimensional scales ranging from nanometer to 
submicron, confirmed that electroactive species exhibited an apparent 
recognition towards nanosized minerals. To establish an effective 
communication between microbes and extracellular electron acceptors, 
microbes stretch their e-pili in the presence of well-crystalized nano-
sized minerals. This physiological response makes microbial assem-
blages electrically conductive facilitating enhanced respiratory 
interactions [17]. It was also found that certain c-type cytochrome 
(c-Cyt) genes, such as omcJ, pgcA and omcK, were upregulated in the 
presence of conductive magnetite nanoparticles (NPs) and semi-
conductive hematite NPs [25]. Similar observations were reported by 
Zhou et al. [76] using TiO2 NPs (a model compound for the semi-
conductive mineral of nanosized rutile) to induce the formation of 
nanowires by upregulating PilA expression by 3.1-fold compared to 
treatments without TiO2 NPs. It appears that the responses of e-pili and 
c-Cyts might compromise the addition of nanosized semi-
conductive/conductive minerals. Notably, our recent finding confirmed 
that e-pili and c-Cyts of G. sulfurreducens were stretched through direct 
contact with a representative nanosized semiconductive mineral, 
maghemite (γ-Fe2O3 NPs) (Fig. 3) [77]. These findings provide strong 
evidence of the involved biofilm morphologies and electrochemical 
properties underlying molecular and physiological levels in situations 
with coexisting nanosized conductive/semiconductive minerals. 

Because these nanosized minerals are easily embedded into biofilms, 
the compacted interfacial system that results from their coexistence can 
supply more active sites for close contact with the electroactive pro-
teins/cytochromes of microorganisms. These interfaces are particularly 
beneficial to the direct transport of electrons using multiheme c-Cyt 
(OmcS) associated with the outer membrane [78]. Therefore, a favor-
able interspecies modification for construction of a “multicultural mi-
crobial community-nanosized (semi)conductive mineral” network could 
be achieved by spatially combining bacterial nanowires with 
outer-membrane Cyts. This approach offers new insights into selected 
c-Cyts-free microbes for the formation of nanowires to participate in 
electron transfer. Considering that mixed strains are especially impor-
tant in systems such as wastewater treatment, environmental remedia-
tion and energy production [79,80], interspecies modification is 
expected to favor the use of nanosized (semi)conductive minerals in 
bioengineering applications. 

3.3. Magnetite stimulates the production of specific enzymes related to 
electron transfer 

Under natural aerobic and anoxic conditions, a variety of microor-
ganisms have an inherent ability to use iron as an essential element for 
synthesis of cellular components (e.g., metalloenzymes) and energy 
metabolism [81]. It is well known that processes such as acidogenesis 
and methanogenesis are mediated by iron-containing enzymes [82]. The 
active sites derived from the involved mediated enzymes, such as 
[Fe–Fe] hydrogenase, F420H2 dehydrogenase, F420-reducing hydroge-
nase, [Fe] hydrogenase, acetyl-coenzyme A synthetase and for-
mylmethanofuran dehydrogenase, mostly have iron-containing clusters, 
which are probably responsive to induction by magnetite. The close 
mutual contacts between active sites and magnetite (due to the strong 
attraction by magnetite) might inevitably lead to increased expression of 
specific enzymes. Therefore, apart from ameliorating interface charge 
transfer, magnetite supplementation into bioelectrochemical systems is 
likely to activate the redox enzyme systems related to EET [83,84]. 

Support for magnetite induced enzyme production follows from 
magnetite amendment studies that document stimulation of enzymes 
activities involved in processes such as acidogenesis and 

methanogenesis [26,85,86]. In early 2005, Eugenii et al. [87] observed 
improved direct electron transfer performance between a conductive 
support and enzyme cofactors in a biofuel cell that was 
surface-reconstituted with magnetite. Further, an anaerobic digestion 
study revealed that the activities of key enzymes, such as acetate kinase, 
protease and coenzyme F420 that represent the capabilities for acido-
genesis, hydrolysis and methanogenesis, were all increased by at least 
20% with the assistance of magnetite [86]. These results imply an 
enhanced direct interspecies electron exchange driven by magnetite 
resulting in energy conservation. The conserved energy can be used for 
the production of e-pili or c-Cyt in exoelectrogenic bacteria, such as 
Geobacter or Shewanella species, and for stimulating key enzymes 
expression in electrotrophic methanogens. 

Addition of magnetite NPs to an acetogens-methanogens syntrophic 
system for methanogenesis (Fig. 4a) resulted in selective up-regulation 
for the expression of mRNA encoding several enzymes. These enzymes 
were involved in CO2 reduction (in hydrogenotrophic pathway) or ac-
etate decarboxylation (in aceticlastic pathway) into the common inter-
mediate of 5-Methyl-THMPT [26,86]. Because of stimulation by 
magnetite NPs, the up-regulated expression of 5,10-methylenetetrahy-
dromethanopterin reductase greatly promoted CO2-dependent meth-
anogenesis in the hydrogenotrophic pathway. Further, increased 
activities of acetate kinase and acetyl-CoA decarbonylase/synthase 
complex β subunit are beneficial to acetate-dependent methanogenesis 
in the aceticlastic pathway. Thus, magnetite NPs were involved in the 
consolidation/establishment of two pathways for final methanogenesis. 
To profile the expression levels of key enzymes and c-Cyts in methane 
metabolism following magnetite additions to syntrophic cultures, 
iTRAQ quantitative proteomic analysis was applied by Jing et al. [88]. 
They revealed a marked increase in production of several chemical 
compounds (e.g., methylmalonyl-CoA, succinyl-CoA and acetyl-CoA) 
related to activities of key enzymes involved in aceticlastic methano-
genesis of Methanosaeta and possible proteins (cytochrome c oxidase) 
related to DIET and associated with the methanation of propionate [88]. 
This phenomenon is consistent with the results from Wang et al. [26] for 
syntrophic metabolism of butyric acid in magnetite-supplemented Geo-
bacter/Methanosaeta co-cultures. Therefore, magnetite-mediated DIET 
results from a rapid buildup of the enhanced activities of key enzymes 
responsible for rapid electron transfer in syntrophic partners and rep-
resents an important mechanism for improving the efficiency of 
methanogenesis. 

3.4. Magnetite stimulates EPSs secretion to assist EET 

Microorganism production of extracellular secretions is a normal 
physiological protection response to contact with foreign materials. 
Until now, up-to-date reviews reporting on EET highlight that EPSs are 
crucial for facilitating EET [89,90] because most EPSs are dominated by 
extracellular redox enzymes and electroactive humic substances that are 
likely to serve as electron shuttles [91]. In addition, the secreted EPSs 
surrounding microbial cells function as viscous nets that can trap 
extracellular c-Cyts for construction of enlarged conductive biofilms 
[91]. This observation implies that the EPSs produced by microorgan-
isms could serve as a transient media for microbial EET via electron 
hopping. Thus, magnetite stimulation of EPS secretions might elicit a 
promotional effect to enhance EET, which is highly relevant for 
exploitation by microbiology and engineering fields utilizing microbial 
materials/processes. 

Multiple lines of direct evidence show that magnetite stimulates 
DIET with the support of EPSs. For instance, Yan et al. [92] and Li et al. 
[93] confirmed that addition of magnetite induced increased EPS se-
cretions and correspondingly promoted DIET performance. Insights 
from anaerobic digestion studies further showed enhanced DIET effects 
owing to augmented EPSs derived from stimulation by magnetite sup-
plementation (Fig. 4b). Magnetite amendment effectively alters EPS 
composition (especially increased contents of redox enzymes and humic 
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substances within EPSs [92,94]), contributing to successful establish-
ment of EET conditions. Commonly, magnetite interacts with the EPS 
layer first to establish direct contact with cells, implying that the 
secreted EPS preferentially serves as a source of conductive materials to 
facilitate EET. Hence, in a scenario of augmented EPSs, a magnetite 
induced EPS diffusion mechanism promotes more efficient long-distance 
electron transfer through electron multi-hopping relative to the given 
conductive mechanism alone. Compared with other magnetic materials, 
magnetite NPs appeared to have superior advantages in stimulating EPS 
production. Unlike magnetite, more extracellular polysaccharide was 
secreted around microorganisms in contact with zero-valent iron NPs 
[93]. In contrast, Geobacter species in contact with magnetite NPs 
developed favorable strategies to secrete more EPSs to enable cell-to-cell 
connections between microorganisms and/or terminal electron accep-
tors for methanogenesis through the DIET pathway [93]. In contrast, 
EPS secretion was comparably limited in the presence of zero-valent iron 
NPs [93]. This result is ascribed to more exopolysaccharides without 
redox activity that can serve as circumvolute appendices by attaching to 
the cell surfaces to form complex networks [95], which potentially 
decrease the direct contact between cells and the reactive surfaces of 
zero-valent iron NPs. Indeed, the resulting physiological responses of 
extracellular secretion and the involved direct interspecies electron 
transport are closely correlated with the dosages of magnetite amend-
ments, as well as the preferential behavior by microorganisms. 

4. Semiconductive mineral-derived photoelectrochemical 
process 

4.1. Alternative photoelectrotrophy microbial metabolism favored by 
mineral photoelectrons 

It is well known that solar-to-chemical energy conversion relies on 
photosynthetic systems in which phototrophic microorganisms use solar 
energy via photosynthetic pigments. Previous evolutionary surveys have 
demonstrated that semiconductive mineral-induced photocatalysis 

played a critical role in the origin and early evolution of life on Earth 
[96–98]. In the photoelectrophy pathway, semiconductive minerals play 
a similar role together with photosynthetic pigments via conversion of 
solar energy to chemical or biological energy (in the form of carbohy-
drates, NADH or NADPH) in the photosynthesis reaction center with the 
participation of specific proteins and coenzymes [99,100]. Many pre-
vious investigations report that mineral photoelectrons are available for 
the growth of both phototrophic and nonphototrophic microorganisms 
in sunlight-enriched terrestrial geothermal ecosystems [101–103], 
particularly in selective zones enriched in iron or manganese-bearing 
minerals are enriched [104,105]. 

Photoelectrons have a certain long-range transitivity [106,107], 
implying that mineral photoelectrons can serve as an alternative avail-
able energy source for support of microbial growth and metabolism. 
Considering the widespread occurrence of semiconductive minerals 
with sunlight and microorganisms in the epigeosphere, the proliferation 
of phototrophic microorganisms can be stimulated by mineral photo-
electron energy endowed from solar-irradiated semiconductive min-
erals. Previous investigations provide solid evidence that a typical 
phototrophic strain (Rhodopseudomonas palustris TIE-1) absorb solar 
energy for its metabolism and growth by coupling microbial photo-
trophic Fe(II) oxidation to form a nano-scale Fe(III)-bearing mineral [34, 
108]. The expressions of pioABC operons in R. palustris TIE-1 are spe-
cifically required for phototrophic Fe(II) oxidation, which are encoded 
by outer-membrane proteins (Pio-phototrophic iron oxidation ABC) to 
uptake extracellular electrons [108]. Recently, Wang and coworkers 
reported that the survivability of CdS-coated R. palustris cells incubated 
without organic carbon under intermittent illumination displayed a 
survival advantage compared to their natural counterparts [109]. Owing 
that the key enzyme in the CO2-reducing Calvin cycle is activated by 
photo-excited semiconductors [110], NADPH regeneration was pro-
moted via accepting more photoelectrons to consolidate the photosyn-
thetic electron transfer chain [109,111]. This novel energy metabolism 
of R. palustris utilizing photoelectrons provides several competitive ad-
vantages for their survivals and biotransformation of inorganic 

Fig. 4. Mechanisms of syntrophic methanogenesis via stimulating the production of specific enzymes (a) and shuttling electrons in exuberant EPSs (b) stimulated 
by magnetite. 
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materials in organic-depleted environments. Moreover, it has been 
found that Fe(II) oxidation rates driven by an anaerobic anoxygenic 
phototrophic Rhodovulum iodosum were positively correlated with light 
intensities within an appropriate range [112], contributing to the 
deposition of banded Fe(III)-mineral formations. Owing to the ultravi-
olet light absorption capacity of Fe(III)-bearing minerals [113], photo-
trophic Fe(II)-oxidizing bacteria are partially protected from cellular 
damage from ultraviolet irradiation [114]. 

Because microbial community structure can be influenced by 
ecological destabilization (e.g., biotic interactions, habitat affinities or 
microbial physiologies) [115], certain individual species might execute 
a specific evolutionary strategy in response to environmental changes 
over short and long timescales [116]. These obtained findings offer 
valuable insight into a typical evolutionary process of phototrophic 
microorganisms that exhibit good physiological fitness towards photo-
electrons for their adaptive evolution. 

Compared with phototrophic microorganisms, the pathways through 

which nonphototrophic microorganisms accept electrons rely on mi-
crobial degradation of organic substrates. However, nonphototrophic 
microbes can also accept mineral photoelectrons delivered from the 
conduction band of semiconductive minerals to the microbial outer 
membrane proteins, thus favoring a novel pathway [99]. In a 
solar-illuminated fuel cell, Lu et al. [117] found that biomass of Alcali-
genes faecalis in association with natural semiconductive mineral pho-
tocatalysis reached up to three orders of magnitudes higher than 
treatments with no photocatalysis control. This result confirms that 
phototrophic metabolism can also act as an alternative energy-yielding 
pathway for nonphototrophic microorganisms, thus overcoming limi-
tations of the conventional chemotrophic metabolism of oxidizing 
organic or inorganic compounds (Fig. 5). Our recent findings also 
confirmed that amendments with model compounds for the semi-
conductive minerals (anatase and sphalerite) resulted in increased in the 
abundances of several metal-reducing bacteria (e.g., Bacillus, Geobacter, 
Clostridium and etc.) in the soil microbial community under intermittent 

Fig. 5. Interplay within the ternary complex system of “solar radiation-semiconductive minerals-nonphototrophic microorganisms” and its environmental 
implications. 
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illumination [118,119]. Notably, there was improved bacterial viability 
in biofilms and high enrichment of Geobacteraceae (a nearly 1.5-fold 
increase of relative abundance vs. control) in a photobioanode that 
was equipped with hematite [120]. Because a variety of electricigens 
that can donate electrons to electrodes without the addition of electron 
shuttles are affiliated with Geobacteraceae [121], enhanced EET per-
formance can be realized with the assistance of semiconductive minerals 
and visible light. These findings provide compelling evidence for a new 
microbial energy metabolism pathway that is distinguishable from 
conventional phototrophy and chemotrophy modes in nature. The novel 
pathway involves the growth of nonphototrophic microorganisms that 
are stimulated by a mineral photocatalysis-induced microbial meta-
bolism. This novel energy-utilizing pathway linked to mineral photo-
electrons offers opportunities and challenges to satisfy future renewable 
energy needs (as discussed in sections 4.2 and 4.3). 

4.2. Mineral photoelectrons participate in microbial extracellular 
respiration 

Mineralogical and spectroscopic studies confirm the ubiquitous na-
ture of semiconductive minerals in the environment, such as metal oxide 
and metal sulfide. These minerals can assemble optical band gap en-
ergies [122,123], which can excite photoelectron-photohole pairs by 
solar illumination [124]. Because of crystal defects and surface leakage 
along the edge of these semiconductive minerals, the excited 
photoelectron-photohole pairs usually have comparably long lifetimes 
[124]. In addition, abundant humic substances and reductive inorganic 
materials (e.g., sulfides) in the biosphere are accessible and can serve as 
a scavenger for the photoholes. Such alternative administration enables 
the separation of photoelectron-photohole pairs through the capture of 
photoholes and guarantees that photoelectrons participate in microbial 
extracellular electron transfer. Therefore, photoelectrons excited from 
semiconductive minerals under solar illumination are considered as 
desirable alternative electron sources for nonphototrophic microorgan-
isms to replace/complement conventional bioelectron sources produced 

Table 2 
Stimulatory effects of semiconductive mineral model compounds used in improving ICP-MR performance.  

Reaction Inoculum Substrate Model compound Size/area Remarkable results Ref. 

Reductive dissolution of As(V)/Fe 
(III) 

Tailing soils Acetate ZnS (sphalerite) 3 × 103–5 × 103 

nm  
• Increase in released levels of As(III) 

and Fe(II) by 2.1- and 1.6-fold  
• Increase in total abundance of metal- 

reducing bacteria by 23% 

[118] 

Reductive dissolution of As(V)/Fe 
(III) 

Tailing soils Acetate TiO2 (rutile) NPs 50–100 nm  • Increase in released levels of As(III) 
and Fe(II) by 1.3- and 1.7-fold  

• Decrease in acetate consumption by 
1.2-fold 

[119] 

Conversion of carbon dioxide to 
methane 

Anaerobic activated 
sludge 

Acetate TiO2 (rutile) 
nanowire 

Length > 104 nm  • Up to 96% of Faradaic efficiency for 
CO2 reduction to CH4  

• CH4 produced at an average rate of 
94.6 ± 1.7 μL/cm2 per day 

[23] 

Enhance the current production Anaerobic activated 
sludge 

Acetate α-Fe2O3 (hematite) URa  • Shortened start-up time from 2.5 days 
to 1.1 days 

• Decrease in charge-transfer resis-
tance by 50% 

[120] 

Solar microbial 
photoelectrochemical cell 

S. oneidensis MR-1 Lactate α-Fe2O3 (hematite) Length: 5 ×
103–104 nm  

• Increase in production of 
photocurrent by 1.5-fold  

• 2 weeks of long-term operation for 
current generation 

[137] 

Solar microbial 
photoelectrochemical cell 

S. oneidensis MR-1 Lactate p-Cu2O (cuprite) 
nanowire 

Length: 3 ×
103–104 nm  

• Substantial current generation under 
white light illumination  

• Self-sustained operation for more 
than 50 h 

[138] 

Denitrification of nitrate by 
reduction to nitrogen gas 

Agrowaste-derived 
periphyton 

Woods Hole 
culture medium 

CdS (greenockite) 
NPs 

UR  • Increase in NO3
− reduction to N2 by 

1.5-fold  
• Increase in EPS yield and abundance 

of electroactive bacteria strains 

[139] 

Mineralization of tetracycline 
hydrochloride 

Anaerobic activated 
sludge 

Acetate Ag/TiO2 (rutile) UR  • Accelerate of TCH removal by 11% in 
the first 2 h  

• Enrichment of genera responsible for 
scavenging organic substrates 

[140] 

Degradation of 4-chlorophenol (4- 
CP) 

G. sulfurreducens Acetate N-doped TiO2 

(anatase type) 
8–10 nm  • Increase in degradation efficiency of 

4-CP by 3.1-fold  
• Increase in current generation by 

50% 

[134] 

Conversion of nitrate to nitrogen 
gas 

Anaerobic activated 
sludge 

Acetate TiO2 (anatase)/Ti Surface area: 16 
cm2  

• Increase in current efficiency for 
denitrification by 19%  

• Increase in denitrification rate 
constant by 36% 

[22] 

Phenol degradation Anaerobic activated 
sludge 

Acetate Er3+: YAlO3/TiO2 UR  • Shortened reaction time by at least 6 
h  

• Increase in removal of phenol and 
DOC by 48.5% and 1.94-fold 

[141] 

Self-sustaining hydrogen 
generation 

Anaerobic activated 
sludge 

Acetate GaInP2-TiO2-MoSx Surface area: 
0.081–0.09 cm2  

• Up to 93–97% of high current to H2 

conversion recovery efficiency  
• Produced stable current (0.4 mA/ 

cm2) for 24 h without any external 
bias 

[142]  

a UR = Unrecorded in corresponding published article. 
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from microbial degradation of energetically-expensive organic sub-
strates (e.g., acetate and lactate). 

Since the potentials of highly reductive mineral photoelectrons are 
more negative than those of most of the biological compounds [125], the 
excited photoelectrons are theoretically accepted by microorganisms to 
drive specific biogeochemical reactions. Moreover, the conduction 
bands of many semiconductive minerals are sufficiently negative for 
excitation of photoelectrons under solar irradiation, thus enabling an 
intimately coupled photoelectrochemical-microbial reduction (ICP-MR) 
of protons to hydrogen or reduction of carbon dioxide to methane 
(Fig. 5) [23,126–128]. 

Considering that c-Cyts are critical for electron transfer [16,129], the 

accessibility of c-Cyts for photoelectron transfer requires more careful 
consideration and experimental investigation. In recent studies by Zhou 
et al. [130–133], markedly higher transcription levels for c-Cyts in 
G. sulfurreducens and functional ferredoxin-dependent hydrogenase in 
Methanosarcina barkeri (M. barkeri) were all found in response to illu-
minated cultured systems. This suggests that a c-Cyts-mediated mecha-
nism was also important in the photoelectron transfer pathway in a 
majority of electrogenesis strains. Because the potentials of the con-
duction band for many semiconductive minerals (e.g., sphalerite, rutile 
and greenockite) are sufficiently negative [122], the excited photo-
electrons are thermodynamically allowed to be transported to enzymes 
involved in the EET process. Based on this knowledge, various 

Fig. 6. Schematic illustration for engineering of 
grafted biohybrids and electron transfer pathways 
involved in the ICR-MR process. Photoelectron flows 
are profiled with yellow dashed lines, and bio- 
electricity derived from microbial degradation of 
labile DOM is profiled with red dashed lines. Path I, 
Path II and Path III are denoted as electron transfer 
pathways derived from microbial degradation of 
labile DOM, mineral photoelectrons and oxidative 
decomposition of photoholes, respectively. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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proof-of-concept studies have been advocated and their findings 
demonstrate increasing promise for successful application in several 
environmental uses, such as decoloration, methane production and 
organic pollutant degradation (Table 2). Inspired by the above-
mentioned observations, a novel methodology was developed using ni-
trogen doping or in conjunction with a multilayered metal-organic 
framework (MOF) to construct new ICP-MR systems (Table 2) 
[134–136]. With the aid of these new modifications, ICP-MR perfor-
mance is expected to greatly improve making this technology more 
highly efficient and cost-effective. Overall, the newly constructed 
ICP-MR systems enhance the light-harvesting wavelength range and 
overcome the limitations that might result from the weak electronic 
connection between substitutes for modified mineral compounds and 
c-Cyts or rapid recombination of photoelectrons and holes. 

4.3. Enhanced photoelectric performance in engineered nonphototrophic 
microorganism-semiconductive mineral biohybrids 

Previous research clearly demonstrates that mineral photoelectrons 
reinforce the EET process and exhibit a distinct advantage from photo-
catalysis of semiconductive minerals, compensating for deficiencies in 
pollutant biotransformations by supplying adequate organic substrates. 
Current efforts are exploring how to integrate mineral photoelectron 
production into ICP-MR processes to benefit future biochemical engi-
neering applications (Fig. 6). Nonphototrophic microorganisms 
commonly have higher metabolic activities than those of phototrophic 
microorganisms and display a superior robustness for loading of semi-
conductive mineral particle compounds on their cell surfaces. This 
observation implies the possibility of constructing specific electron 
transfer agent-free biohybrid systems that can be applied for ICP-MR. 
Because ICP-MR systems are unavoidably exposed to light, photohole- 
induced sensitive suppression of microbial activities might make ICP- 
MR less efficient. Additionally, a suitable photoirradiated mineral en-
ergy level is required to enable electron transport across the outer- 
membrane proteins to ensure efficient electron transfer when loading. 
Therefore, it is essential to determine which types of photocatalytic 
semiconductive minerals should be selected to optimize their use in 
challenging ICP-MR systems and avoid the adverse effects of photo-
catalytic suppression in grafted biohybrids. 

To address the aforementioned limitations of biohybrid systems, the 
substitutes for semiconductive minerals grafted onto the surface of 
biohybrids must not only enable light-harvesting energy transfer but 
also exhibit high biocompatibility and higher electrical conductivity 
than the microbe alone. Grafting can circumvent restrictions from 
adverse photoinduced effects and the disadvantages resulting from a 
charge transfer barrier. Among a variety of mineral substitutes, cad-
mium sulfide nanoparticles (CdS NPs, a model nanosized compound for 
semiconductive greenockite) are viewed as a particularly suitable 
candidate for in situ grafting in engineered biohybrids. The CdS NPs 
have a high photosensitive coefficient, narrow band gap and stable 
surface electrostatics that can support the junctions with microbes to 
overcome the charge transfer barrier [143]. 

Due to the superior capabilities of CdS NPs in ICP-MR, considerable 
effort has focused on use of engineered CdS NPs-grafted biohybrids to 
evaluate their potential for various environmental engineering appli-
cations (e.g., methane production, azo dye degradation and denitrifica-
tion), as shown in Table 3. For instance, Ye et al. [131] revealed that 
high methane production rates comparable to that of plants or algae 
when using an innovative biohybrid system consisting of CdS NPs and 
Methanosarcina barkeri. Similarly, rapid light-driven decolorization of 
methyl orange was achieved by a G. sulfurreducens-CdS NPs biohybrid 
[132]. The highest maximum kinetic rate constant (1.441 h− 1) was the 
highest reported in the literature for methyl orange biodecolorization. 
Notably, the catalytic ability displayed for methyl orange decolorization 
by the G. sulfurreducens-CdS biohybrid retained its effectiveness after 
four repeated-use cycles. These results demonstrate that CdS-derived 
biohybrids display a strong robustness for light harvesting and excel-
lent biocompatibility for electron transfer in ICP-MR systems, as well as 
long-term durability in practical applications. 

Due to interactions between enhanced electrical conductivity and 
mineral photoelectrons, the produced synergistic effects are conducive 
to nonphototrophic microorganisms that gain light energy through 
semiconductive CdS NPs, thereby improving the ICP-MR performance in 
biohybrids. Outer membrane-bound cytochromes of engineered bio-
hybrids were shown to participate in photoelectron transport by acting 
as the terminal reductase [131–133], indicating good biocompatibility 
of CdS NPs for biohybrid construction. Thus, biohybrids constructed 
through in situ grafting of nanosized semiconductive mineral 

Table 3 
Selected applications of illuminated engineered biohybrids by superficial precipitation of semiconductive minerals onto nonphototrophic microorganisms.  

Application Biohybrid Illumination Remarkable results Ref. 

Decolorization of methyl orange G. sulfurreducens-CdS biohybrid LED irradiation 
3.07 ± 0.14 mW/cm2  

• The maximum kinetic constant reached 1.441 h− 1  

• Exhibited favorable catalytic ability during 4 
repeated recycles 

[132] 

Conversion of carbon dioxide to 
methane 

M. barkeri-CdS biohybrid Violet LED irradiation 
1.0 ± 0.14 mW/cm2  

• Methanogenesis rate (0.19 μmol/h) was comparable 
to that of plants or algae  

• Nearly 1.5-fold increase of mcrA gene copies in 
biohybrid 

[131] 

Denitrification of nitrate to 
generate nitrous oxide 

T. denitrificans-CdS biohybrid Violet LED irradiation 
3.07 ± 0.14 mW/cm2  

• More than 72.1% of NO3
− was converted into N2O  

• More than 96.4% of N2O dominated in final gaseous 
products (N2O and N2) 

[133] 

Hydrogen generation E. coli-CdS biohybrid Xenon lamp irradiation 
200 mW/cm2  

• 1800 μmol of H2 produced within 3 h under 2000 W/ 
m2 of visible light irradiation  

• Higher quantum efficiency (~9.6%) of biohybrid 
than that of phototrophic bacteria 

[144] 

Synthesis of acetic acid from 
carbon dioxide 

Moorella thermoacetica-CdS 
biohybrid 

Violet LED irradiation with photon 
flux of 5 × 1018 cm− 2⋅ s− 1  

• Nearly 90% of CO2 was converted into acetic acid in 
illuminated biohybrid  

• 10-fold quantum yields vs. that of the averages 
determined for plants and algae 

[101] 

Biological nitrogen fixation Rhodopseudomonas palustris- 
CdS biohybrid 

Visible light irradiation 
8 mW/cm2  

• 1.5-fold increase of solid biomass accumulated in 
biohybrid vs. that of control  

• Outstanding photosynthetic efficiency (6.73%) and 
malate usage efficiency (0.06 g/h) 

[111] 

Conversion of DHS to SA Saccharomyces cerevisiae-InP 
biohybrid 

Visible light irradiation 
5.6 mW/cm2  

• Increased in highest SA/DHS conversion ratio by 35- 
fold  

• Increased in total SA production by 24-fold 

[24] 

Note: LED = light emitting diode. 
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compounds could serve as an effective approach for enhancing localized 
energy delivery and shortening the lag phase of electron transport. 
Further, research findings confirm the desirable capability of 
CdS-derived biohybrids in reinforcing the electron transfer in ICP-MR 
systems. However, there is a paucity of information concerning alter-
native semiconductive mineral compounds for potential use in designing 
new types of highly functional biohybrids. One promising alternative is 
the assembly of indium phosphide NPs onto Saccharomyces cerevisiae for 
improved conversion of 3-dehydroshikimic acid (DHS) to shikimic acid 
(SA) [24]. Therefore, further research evaluating potential alternative 
semiconductive mineral compounds for construction of biohybrid 
complexes is among the highest research priorities. 

4.4. Significance of semiconductive minerals in assisting ICP-MR systems 

Evolutionary surveys confirmed that various natural composite ma-
terials are grown by biologically controlled self-assembly processes 
under ambient conditions [145]. For instance, mineral membranes 
possessing nanostructure and excellent biocompatibility with attached 
microorganisms are widely developed on rock/soil surfaces and are 
highly active upon solar illumination [105]. These naturally 
self-assembled materials commonly exhibit intimate coupling perfor-
mance and strong stability. Minerals have a fix chemical composition 
and highly ordered internal atomic structure, implying that several 
artificial analogues, like synthetic materials or engineered nano-
materials, may serve as suitable substitutes for semiconductive minerals. 
Inspired by developments in biomimetic materials, novel semi-
conductive minerals-based biomaterials are being developed for po-
tential use as solar-driven biocatalysis [146]. Employing synthetic 
biological approaches of incorporating nanoscale analogues to construct 
novel biohybrids are expected expand biohybrid designs beyond the 
traditionally independent microbial EET process. Newly developed 
mechanistic models for microbial EET will provide a theoretical 
framework for targeted bioengineering applications incorporating 
nanosize-mineral analogues and solar illumination in future 
applications. 

Although successful applications derived from familiar semi-
conductive mineral substituents such as TiO2, CdS and Fe2O3 on ICP-MR 
have reached a functional level, the potential attributes other highly 
photosensitive minerals have received little attention. To assess the 
potential of mineral substituents used in ICP-MR systems, it is essential 
to evaluate their catalytic capabilities in more complex mixed substrates 
or under more demanding environmental conditions. Currently, an 
increasing number of investigations are underway to explore renewable 
energy production to alleviate the demand on carbon-based fuels in 
industrial manufacturing is still in great demand [23,147]. Thus, 
improving the efficiency of semiconductive mineral-mediated hybrid 
microbial-photoelectrochemical systems for energy conversion (e.g., 
generation of hydrogen and methane) will hold great promise for 
meeting future renewable energy goals. Additionally, solar energy is 
recognized as the most readily available and cost-effective renewable 
clean energy source for construction of hybrid 
microbial-photoelectrochemical systems for environmental remedia-
tion. Hence, the hybrid systems that integrate microbial catalysts with 
inorganic semiconductive mineral substituents to harvest sunlight pro-
vide a new platform for the future development of renewable energy 
production and environmental engineering remediation. 

5. Applicability of mineral substituents for enhancing 
bioelectrocatalytic performance 

5.1. Production of renewable energy and value-added chemicals 

At present, rapid economic expansion and emerging global climate 
change render an urgent need for production of clean fuel and renewable 
energy. In microbial electrosynthesis systems, enzymes undertake 

conformational changes and promote steric effects to aid in reaction 
selectivity [148]. Armed with the photocatalysis effect by semimineral 
substituents, energy efficiencies of biohybrid systems using CO2/H2O 
and solar radiation as substrate and an energy source could exceed that 
of natural photosynthesis. Given the advantage of the abovementioned 
engineered biohybrids, fuels and chemicals could be synthesized from 
CO2 with a high quantum efficiency due to the combination direct 
enzyme activation and photocatalysis effects in a given biohybrid sys-
tem [101,109,149]. Thus far, the efficacy of renewable energy, such as 
hydrogen, methane or other hydrocarbons, has been successfully 
demonstrated using bioelectro-synthesis from various engineered bio-
hybrids (Table 3). 

A previous study demonstrated acetic acid generation from CO2 
reduction in a Moorella thermoacetica-CdS NPs biohybrid [101]. We posit 
the feasibility of more value-added multicarbon products (e.g., ethanol, 
butanol and polyhydroxybutyrate [PHB]) are theoretically possible to 
enhance bio-produced acetate using various functional biohybrids. For 
example, Wang and coworkers demonstrated enhanced CO2 reduction 
and valuable C2+ chemical production by a Rhodopseudomonas pal-
ustris-CdS hybrid system [109]. This system increased production of 
β-PHB, solid biomass and carotenoids by 47%, 48% and 22%, respec-
tively [109]. They further found that the grafted biohybrid exhibited a 
survival advantage over its natural counterparts under autotrophic 
conditions. Their findings imply that pairing whole-cell biocatalysts 
with semiconductive mineral substituent-derived photoelectrochemical 
systems could decrease energetic barriers to CO2 activation. Similarly, 
Ding and coworkers designed novel core-shell nanocomposites by 
immobilizing ZnS quantum dots to the outer layer of CdS quantum dots 
to construct a corresponding biohybrid system (Cupriavidus neca-
tor-CdS@ZnS biohybrid) [150]. Notably, they revealed that prominent 
light-driven ethylene and PHB production from CO2 were achieved 
through energy conversion excited from core-shell nanocomposites 
coupled with targeted enzymes in Cupravidus necator [150]. This implies 
that optimizing the properties of mineral substituents accentuates the 
possibility of controllable bioelectrocatalysis for renewable energy 
production. Hence, engineered biohybrids offer an additional strategy 
for photocatalysis by upgrading and reconstructing mineral sub-
stituents, including opportunities for novel research regarding CO2 
conversion to renewable energy and value-added chemicals. 

5.2. Environmental engineering remediation 

Inspired by semiconductive mineral-induced photocatalysis, inti-
mate coupling of photocatalysis and biodegradation (ICPB) in conjunc-
tion with appropriate mineral analogues provides an opportunity to 
overcome the limited efficiency of independent processes [151]. Such 
amendments provide a feasible strategy in environmental engineering 
applications targeted to degrade/transform bio-refractory organic pol-
lutants. Upon irradiation, oxidative photoholes are produced in semi-
conductive mineral substituents to promote photocatalytic degradation 
of bio-refractory organic pollutants into low-molecular-weight byprod-
ucts and synchronously separate photoelectrons, hindering the recom-
bination of photoelectron-hole pairs [152]. Subsequently, the resulting 
byproducts are susceptible to further mineralization to CO2 and H2O by 
microbial degradation. Timely microbial degradation of byproducts 
effectively circumvents any adverse effects imposed by unfavorable 
oxidation conditions and interferences with microbial metabolic pro-
cesses. Recent research reports successful degradation of bio-recalcitrant 
pollutants, including tetracycline hydrochloride, reactive dyes, phena-
zopyridine and nitrofurazone, by ICPB reactors configured with specific 
mineral analogues or their modified substitutes [153–156]. Overall, 
amendment of ICPB systems with specific mineral substituents offers 
operational efficiencies and flexibility for application in pollutant con-
trol and bioremediation strategies. 
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6. Conclusions and perspectives 

This synthesis provides a large audience with a summary of the 
unique capabilities of different types of minerals contributing to regu-
lation of EET processes. In most cases, the addition of a specific mineral 
or appropriate model substituent promotes improved EET performance 
and fulfills/complements the demand for high bioavailability of carbon 
in pure-culture systems, syntrophic cultures and microbial-photoelectric 
coupled cultures. Specifically, supplementation with nanosized-mineral 
substituents possessing favorable redox activity, suitable conductivity, 
magnetism or photosensitivity has great potential to improve the elec-
tron transfer efficiency. This infers that mineral-boosted EET processes 
could be manipulated through interfacial modifications, including 
mineral-electron acceptors, favorable position in the redox boundary, e- 
pili/c-Cyts-minerals, interspecies modifications and photoinduced 
electron transitions. Enhanced knowledge concerning optimization of 
interfacial modifications through supplementation with mineral sub-
stituents will greatly advance our understanding of the typical manner 
of electron transport incorporating contact with specific types of 
minerals. 

Notably, electron transfer is likely mediated by multiple interacting 
mechanisms rather than a single independent mechanism in bio-
electrochemical systems with coexisting mixed strain microbes and 
specific minerals. Considering the various properties of minerals, elec-
tron transfer in the presence of versatile (semi)conductive minerals 
(particularly magnetite) is more likely instigated by multiple interacting 
mechanisms in a synergistic manner. Hence, it is important to distin-
guish the relative influence of each independent mechanism, and the 
role of positive/negative feedbacks among various mechanisms. Hence, 
research investigating independent mechanisms and their interactions 
are of upmost importance. Given the complexity of bioelectrochemical 
systems, this research requires a multidisciplinary approach incorpo-
rating mineralogical, spectroscopy, nano-particle engineering, isotopic, 
ecological and molecular techniques to tease apart the various 
mechanisms. 

Microorganisms mediate environmental electron transfer through 
intracellular metabolism that generates electrons and facilitation of 
charge transfer between external biotic/inorganic interfaces. Thus, to 
promote renewable energy production and pollutant control/remedia-
tion at various scales, research is required to address a number of 
important microbial biotic/abiotic interactions. (1) To improve biore-
mediation efficiency, methods to limit cellular damage induced by 
photoholes are necessary. For example, coating MOF directly onto cell 
membranes offers a potential shield for cytoprotection, thereby 
enhancing the adaptability of cells or corresponding biohybrids towards 
adverse environmental impacts [136]. (2) To promote the conversion of 
value-added chemicals, exploiting the enzymatic machineries imbedded 
in native microbial cells might ensure products with exquisite selectivity 
and circumvent energy/product losses resulting from secondary biomass 
proliferation [157]. (3) To maximize electron flow in clean fuel syn-
thesis, enhancing the electron flux through engineered microbial strains 
produced by manipulating genetic materials could greatly enhance ef-
ficacy (e.g., employing CRISPR [clustered regularly interspaced short 
palindromic repeats] and CRISPRi [CRISPR interference] technologies) 
[158,159]. Following the steady improvements of the past decade, the 
most salient components responsible for electron transfer are primed for 
further exploitation in bioelectrochemical system to greatly enhance 
future applications and operational efficiencies. 

Finally, the exploitation of the minerals and engineered nano- 
particles mentioned above still faces several challenges. A series of key 
questions require attention, including questions related to selection of 
suitable mineral substituents, whether the minerals provide any unex-
pected beneficial or adverse effects, the effect of the supplemented 
dosage and particle size of substituents, and whether there are benefi-
cial/detrimental effects resulting from supplementation of two or more 
substituents in anaerobic digestion systems. Further investigations 

should also examine the environmental effects of these materials or their 
analogues to broaden their future practical application. Moreover, 
clarifying the electron transduction pathway in a hybrid system and 
using time-resolved methods to pair biohybrid photochemical com-
plexes will facilitate our understanding of the stepwise processes that 
underpin these challenging biochemical reactions and will aid in 
application of this novel biotechnology to larger-scale operations. 
Overall, it is warranted to make full use of mineral-assisted EET pro-
cesses to optimize the bioelectrochemical processes because minerals 
are highly abundant in natural soils and sediments, environmentally 
benign, and readily/cheaply available in the epigeosphere. 
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CRISPRi: CRISPR interference 
DHS: 3-dehydroshikimic acid 
DIET: Direct interspecies electron transfer 
DMRB: Dissimilatory metal-reducing bacteria 
e-pili: Electrically conductive pili 
EET: Extracellular electron transfer 
EPSs: Extracellular polymeric substances 
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