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Abstract

Land surface depressions play a central role in the transformation of rainfall to ponding, 

infiltration and runoff, yet digital elevation models (DEMs) used by spatially distributed 

hydrologic models that resolve land surface processes rarely capture land surface depressions 

at spatial scales relevant to this transformation. Methods to generate DEMs through processing 

of remote sensing data, such as optical and light detection and ranging (LiDAR) have favored 

surfaces without depressions to avoid adverse slopes that are problematic for many hydrologic 

routing methods. Here we present a new topographic conditioning workflow, Depression-

Preserved DEM Processing (D2P) algorithm, which is designed to preserve physically meaningful 

surface depressions for depression-integrated and efficient hydrologic modeling. D2P includes 

several features: (1) an adaptive screening interval for delineation of depressions, (2) the ability 

to filter out anthropogenic land surface features (e.g., bridges), (3) the ability to blend river 

smoothing (e.g., a general downslope profile) and depression resolving functionality. From a 

case study in the Goodwin Creek Experimental Watershed, D2P successfully resolved 86% of 

the ponds at a DEM resolution of 10 m. Topographic conditioning was achieved with minimum 

impact as D2P reduced the number of modified cells from the original DEM by 51% compared 

to a conventional algorithm. Furthermore, hydrologic simulation using a D2P processed DEM 
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resulted in a more robust characterization on surface water dynamics based on higher surface 

water storage as well as an attenuated and delayed peak streamflow.
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Surface depressions; Topographic processing; Hydrologic modeling; Digital elevation model

1. Introduction

Surface depressions have a direct impact on surface and subsurface flows through 

hydrologic, biochemical and biological exchanges (Cohen et al., 2016). Primarily, runoff 

can be modulated and delayed by surface depressions through fill-spill dynamics and storage 

effect (Ameli and Creed, 2017; Brooks et al., 2018). This has been shown to improve 

downstream water quality and support habitat functions because of longer residence times 

(Biggs et al., 2017; Cheng and Basu, 2017; Jones et al., 2018). In addition, large scale 

surface depressions in the form of wetlands and lakes can be critical for water supply as they 

replenish aquifers through seepage during dry conditions (Liu et al., 2016).

With a growing emphasis on the impact of surface depressions on hydrologic processes, 

semi-distributed hydrologic models have been widely used to provide new insights (Evenson 

et al., 2016; Wang et al., 2021). One approach is to aggregate surface depressions within 

each subbasin into a lumped depression that functions conceptually as a bucket. Water is 

stored in the bucket and spills as runoff when it exceeds a parameterized threshold volume 

(Hay et al., 2018; Liu and Schwartz, 2011; Rajib et al., 2020). This type of approach is 

simple to implement but fails to account for the spatial distribution of the depressions. 

In reality, some surface depressions may fill and contribute runoff water earlier than the 

others but in the lumped approach, water is only released to the streams when all the 

surface depressions (i.e., the aggregated depression) are fully filled. The other approach is 

to model surface depressions as individual units which better represents wetlands and their 

hydrologic connectivity. For example, Chu et al. (2013) developed a puddle-to-puddle (P2P) 

model where the study domains were divided into multiple puddle-based units (PBU). Each 

PBU contains the highest-level puddle and its contributing area. The PBU can drain to a 

downstream PBU based on an overflow threshold and the same applies for its embedded 

lower-level puddles based on a puddle delineation (PD) algorithm (Chu et al., 2010). 

Building on the PD algorithm and PBU concept, subsequent improvements were made 

to account for infiltration and unsaturated flow (Yang and Chu, 2015), improve the channel-

puddle cascading mechanism (Nasab et al., 2017) and enhance computational efficiency 

(Wang and Chu, 2020).

Fully distributed hydrologic models have different needs for topographic data compared to 

semi-distributed models, given that the former is designed to resolve flow paths along and 

into the land surface (Golden et al., 2014), which in turn supports numerous geophysical 

applications such as material transport and reactive flows (Golden et al., 2017, 2014; Jones 

et al., 2019). In particular, fully distributed models require careful attention to spatial 

distribution of land surface heights as this drives the spatiotemporal variability of land 
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surface storage, infiltration, runoff and soil moisture (Amado et al., 2018; Liu et al., 2016). 

Hence, fully distributed hydrologic modeling at fine resolution calls for careful attention to 

the source of topographic data, which is generally supplied by a Digital Elevation Model 

(DEM) (Gardner et al., 2018; Jan et al., 2018; Tavares da Costa et al., 2019).

DEMs are developed in many different ways, but fine-resolution DEMs used in hydrologic 

modeling are typically derived from aerial LiDAR data or optical data with photogrammetric 

methods (Lidberg et al., 2017). Raw point cloud data is filtered to differentiate ground 

surface points from vegetation canopy, and then gridded to produce a preliminary DEM. 

Subsequently, DEMs are hydro-conditioned (i.e., filling or breaching topographic cells) 

to limit variability or noise in land surface slopes for smoother flow routing (i.e., lower 

chance of computational instability) (Chow and Ben-Zvi, 1973; Rieger, 1998; Zhang and 

Cundy, 1989), yet this process often removes physical land surface depressions that are 

highly relevant to hydrologic processes at the land surface. Previous studies have worked to 

identify land surface depressions for the purpose of characterizing the location and size of 

land surface features such as wetland and karsts (Bertassello et al., 2020; Li et al., 2011; 

Moreno-Gómez et al., 2019; Wu et al., 2016), but these work did not focus specifically 

on creating a DEM suited to resolving fine-scale land surface processes with spatially 

distributed hydrologic models. Hence, the objective of this study is to present a novel 

topographic processing workflow, referred to as Depression-Preserved DEM Processing 

(D2P) algorithm, with the aim of resolving surface depressions based on the scale of interest 

and smoothing small scale, non-physical variability in DEMs (e.g., Sanders, 2007) for 

depression-integrated and efficient modeling of land surface hydrology.

Our approach is designed for hydrologic models that calculate flow across 4 cell faces 

(i.e., D4) but can be modified easily to handle more flow directions (e.g., D8). Alongside 

a processed DEM, the algorithm also generates slopes across the cell faces. This adds 

to the limited number of DEM processing algorithms that can generate slope inputs for 

D4 routing models using finite difference methods (Condon and Maxwell, 2019). In this 

study, we detail the workflow of D2P and examine its utility in processing the DEM as an 

input for the integrated hydrologic model ParFlow (Ashby and Falgout, 1996; Jones and 

Woodward, 2001; Kollet and Maxwell, 2006; Maxwell, 2013). We compare the processed 

DEM and evaluate the hydrologic simulation against the traditional filling method by 

Condon and Maxwell (2019) using a case study on the Goodwin Creek Experimental 

Watershed (GCEW).

2. Materials and methods

2.1. Study area

GCEW is located in northern Mississippi, United Statesand the area of the watershed is 

21.7 km2, with an elevation ranging from 64.8 m to 129.1 m above mean sea level (Fig. 

1). The land use is mainly idle pasture, followed by forest and cultivated land and there is 

a high density of small water bodies such as farm ponds (Yasarer et al., 2018). Based on 

the satellite imagery from the National Wetlands Inventory (NWI) provided by United States 

Fish and Wildlife Service (USFWS) (https://www.fws.gov/wetlands/), there are a total of 93 

fresh water ponds ranging in size from 500 m2 to 11,000 m2.
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The DEM used in this study was downloaded from a derived-LiDAR product by the 

Mississippi Automated Resource Information System. The DEM represents bare earth 

surface that was created from LiDAR points collected from 2009 to 2010 by the U.S. 

Army Corps of Engineers (USACE) for the Mississippi Delta Phase 1 project (https://

www.maris.state.ms.us/HTML/DATA/Elevation.html#gsc.tab=0) and was hydroflattened. 

The spatial resolution is 1 m and the vertical accuracy is 0.09 m (Root Mean Square Error). 

The DEM was first smoothed by a median filter to remove roughness and aggregated to 10 

m resolution to keep the hydrologic simulation computationally manageable.

2.2. Overview of Depression-Preserved DEM Processing (D2P) algorithm

The D2P algorithm comprises six steps as shown in the flowchart in Fig. 2. Using DEM 

and NWI wetland as input data, it identifies surface depressions that are likely to be 

physically meaningful and generates a processed DEM that is smoothened to reduce fine 

scale variability while preserving those depressions. Slope data is then derived from the 

processed DEM. Details of steps 1 to 6 of the flowchart are explained from Sections 2.2.1 to 

2.2.6.

2.2.1. Topographic sink extraction—A depression-less DEM was first obtained by 

filling the sinks using Priority-Flood, a depression-filling tool (Barnes et al., 2014). All 

the topographic depressions comprising real depressions and artifacts were then extracted 

by subtracting the input DEM from the depression-less DEM. The artifacts are caused 

by systematic and random errors from the precision of data acquisition instrument and 

processing techniques (Zhu et al., 2013).

2.2.2. Removal of small-scale depressions in DEM—From the extracted 

topographic depressions (Section 2.2.1), an improved adaptation of the level set method 

(Wu et al., 2019) was applied to characterize the depressions in terms of their geometric 

properties and hierarchy. A depression hierarchy describes the relationship between each 

depression whereby depressions can themselves contain smaller ones. The most-nested 

depression is referred to as a Level 1 depression and the level increases as the depressions 

combine to form bigger depressions (Supporting Information Text S1).

The level-set method by Wu et al. (2019) establishes the hierarchy by screening each 

depression from the highest elevation and moving downwards to determine the spill point 

at which depressions combine (Supporting Information Text S2). One disadvantage of this 

method is that the screening was performed at fixed intervals and could overlook certain 

depressions (Barnes et al., 2019). To avoid this, the screening interval must be reduced but 

the computation can become inefficient (Supporting Information Text S3). Therefore, we 

modified the method to screen at each unique DEM cell elevation within the depression 

instead of at fixed intervals. This ensures that each depression is assigned the correct level in 

the hierarchy. The level of each depression will be used in Section 2.2.4.

After establishing the hierarchy, the area of each depression was determined and the average 

depth of each depression, D, was calculated using Eq. (1).
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D =
i = 1

n
zs − zi /n

where n is the number of DEM cells within the depression, zs is the spill elevation and zi 

is the elevation of the ith cell in the depression. Finally, average depth and area thresholds 

of 0.0036 m and 900 m2 were applied. The motivation of the thresholds was to identify 

and remove small-scale depressions that are deemed to be inconsequential to the overall 

hydrologic process since they tend to fill easily and lose their function as closed basins 

in most rainfall events (Li et al., 2011). The thresholds also help to filter out small-scale 

non-physical variabilities from the DEM to improve computational efficiency. These small-

scale depressions were removed by filling to generate a modified DEM. The thresholds 

were derived from a sensitivity assessment of the final delineated depressions using different 

threshold values to achieve a balance between matching the wetland data from NWI and 

excessive false matches (Supporting Information Text S4). The considerations for the setting 

of the thresholds are also discussed in Section 4.1

2.2.3. Watershed analysis—The watershed analysis was implemented using the 

GRASS module, r.watershed (GRASS Development Team, 2020). An A* least-cost search 

algorithm (Hart et al., 1968; Metz et al., 2011) was applied on the modified DEM from 2.2.2 

to generate flow direction and river network. This algorithm does not require the DEM to be 

further altered to determine flow direction and extracts the path of rivers through depressions 

more accurately compared to traditional methods (Planchon and Darboux, 2001; Wang and 

Liu, 2006) with sink filling (Metz et al., 2011).

2.2.4. Classify riverine depressions for targeted preservation—In this section, 

we focus on riverine depressions after having removed small-scale depressions from the 

DEM (Section 2.2.2). DEMs are especially prone to errors along rivers due to the difficulty 

of sensors in penetrating thick riparian vegetation and water bodies as well as the resolution 

limits in resolving the channel bottom elevation (Lindsay, 2016a; Schwanghart and Scherler, 

2017). This creates spurious topographic variability along rivers leading to depressions 

inside the channel width with discontinuous bottom slopes that can cause model instability 

(Hengl, 2006; Iserles, 2009; Yu et al., 2020). In addition, high resolution LiDAR-derived 

DEMs can contain false hydrologic barriers such as bridges or roads (Carlson and Danner, 

2010) that will form false depressions during the depression extraction process in Section 

2.2.1. Such false depressions are rarely addressed in previous depression-integrated studies.

Hence, our goal is to filter out the aforementioned spurious depressions within the channel 

width (Fig. 3a) and depressions arising from false hydrologic barriers (Fig. 3b) to finally 

keep the remaining water bodies that partially coincide with rivers (Fig. 3c). To achieve 

this, we developed a new metric that takes advantage of the hierarchy of depression levels. 

The metric, referred herein as the river to depression ratio (RtD), provides a measure of the 

contribution of the river to the makeup of the depression. The RtD was calculated for each 

highest-level depression using the formula in Eq. (2).
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RtD = nr

n
nL1, r

nL1
(2)

In Eq. (2), n is the number of DEM cells within the highest-level depression and nr is a 

subset number of cells from n that are within the river channel width; while nL1 is the 

number of DEM cells in all Level 1 depressions (i.e., the most nested depressions) within the 

highest-level depression and nL1, r is a subset number of cells from nL1 that are within the river 

channel width. The equation is a product of two ratios. The first ratio is a measure of the 

extent of the depression that coincides with the river. The higher the first ratio, the larger the 

portion of the depression falling within the river channel width (Fig. 3a). The second ratio 

was introduced to specifically distinguish between false depressions arising from roads or 

bridges and actual water bodies that partially coincide with the river. It does so by drawing 

on the depression hierarchy from Section 2.2.2 to gage the geometry of the depression. 

Ponds and wetlands generally have a bowl-like structure with a flat bottom which manifests 

itself by the Level 1 cells spreading beyond the river, resulting in a lower nL1, r/nL1 (Fig. 3c). 

On the other hand, in false depressions arising from road or bridge crossings, Level 1 cells 

are mostly concentrated within the river channel width, resulting in a higher nL1, r/nL1 (Fig. 

3b).

Using Eq. (2), depressions with RtD lower than a certain threshold would be selected for 

preservation in the next section as their geometry suggests that they are more likely to be 

physically meaningful depressions that intersect with a river (e.g. Fig. 3c). In other words, 

the threshold is the maximum RtD for a physically meaningful depression in the study area. 

To determine the threshold, the RtD was calculated for each depression from NWI data and 

the maximum calculated RtD was set as the threshold.

By this point, we had identified physically meaningful depressions that we wanted to 

preserve in the DEM. The preserved depressions compared well against the wetlands in the 

NWI data (Fig. 4). The excluded depressions, namely small-scale depressions, depressions 

within the channel width and depressions associated with false hydrologic barriers were all 

assumed to be artifacts.

2.2.5. River network smoothening—We applied a quantile regression algorithm to 

smoothen the river while preserving the depressions partially coinciding with the river 

identified in Section 2.2.4. The smoothening aims to maintain the general profile while 

reducing fine scale variability and adverse slopes. Previous studies smoothen the river 

profile by modifying the elevation universally based on the average slope of the reach 

(Barnes et al., 2016; Condon and Maxwell, 2019). The approach we adopt here offers the 

flexibility to process the river segment intersecting with depression differently from other 

segments.

Generally, the algorithm works by minimizing the sum of absolute values of the residuals 

given by the difference between the smoothened elevation and the raw elevation as well 

as the roughness. The underlying optimization function of the algorithm, known as the 
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constrained regularized smoothing (CRS) algorithm, is shown in Eq. (3) (Schwanghart and 

Scherler, 2017).

arg min
i = 1

n
ρτ z xi − Izτ xi + s zτ

″ x 2dx (3)

where z xi  is the unsmoothed elevation along river profiles x distance upstream of the 

watershed outlet, n is the number of elevations, I is the identity matrix, τ ∈ 0, 1  is the 

constant chosen according to which quantile needs to be estimated. In this case, τ was set at 

0.5. zτ is the estimated elevation. ρτ ·  is a loss function dependent on the residuals ri given 

by

ρτ ri = τ − ri < 0 ri (4)

where ri is defined as z xi − Izτ xi  and ‖ is an indicator function that has a value of 1 if the 

residual ri is less than 0 and a value of 0 otherwise. s dictates the degree of smoothening and 

is defined by

s = Δx 2K n
p (5)

where Δx is the resolution of the DEM, p is the number of second derivative terms in Eq. (3), 

K is the parameter that scales the degree of smoothing.

In Schwanghart & Scherler (2017), the river profile was forced to decrease in the 

downstream direction and the degree of smoothening s was set to be uniform throughout 

the entire river network. To avoid distorting the actual depressions that intersect the 

river path (e.g. Fig. 3c), we introduced separate conditions to process river segments 

within depressions and river segments outside of depressions. For river segments outside 

depressions, the downstream elevation was forced to be lower than the upstream by a 

minimum difference ε as shown in Eq. (6)

zτ x ≥ zτ x − δx + ε (6)

This was not applied for river segments inside depressions to avoid removing the 

depressions. In addition, s was set to be higher for river segments outside of depressions 

but lower in river segments within depressions to preserve any high curvature structures 

(e.g., dams) downstream of the depressions.

Lastly, to prevent the river cell being raised inadvertently creating depressions outside the 

river, we introduced a new condition whereby the elevation of the river segment was globally 

set not to exceed that of the riverbanks by ε.

zτ x ≤ min zτ, y + δy x , zτ, y − δy x − ε (7)
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Fig. 5 illustrates the different constraints that were imposed on the river segments within the 

depressions and outside the depressions. The modified algorithm will be referred to as the 

adapted CRS algorithm. Following the implementation of the adapted CRS algorithm, we 

temporarily masked out the stream segments and preserved depressions and applied filling 

on any sinks created as a by-product in the DEM (Barnes et al., 2014). A final processed 

DEM was obtained.

2.2.6. Slope calculation—The outcome of the above steps was a processed DEM with 

smoothened rivers and retained depressions. In this step, slopes in the north-south and 

east-west directions were calculated for each cell. The north-south slope is defined at the 

upper cell face between a cell and the adjacent cell to the north while the east-west slope is 

defined at the right cell face between a call and the adjacent cell to the east. The calculated 

slope direction for cells outside of depressions was adjusted to match the flow direction 

by reversing the sign whenever there was a discrepancy. The slope magnitude remained 

unchanged but subject to a maximum slope threshold and a minimum slope threshold.

2.3. Comparative analysis

To assess the performance of D2P, we evaluated the extent and magnitude of its modification 

on the raw DEM and the subsequent impact on overland flow. Since ParFlow is used in 

this study, we chose PriorityFlow (Condon and Maxwell, 2019), a recent DEM conditioning 

algorithm developed for ParFlow, to be compared against D2P. The algorithm followed the 

traditional way of removing all the sinks and the approach is justified when a kinematic 

wave approximation is used for the overland flow simulation.

DEM processing algorithms are known to introduce errors since it is difficult to ascertain 

the origin of each depression so the algorithm should ideally achieve a reasonable flow path 

with minimal modification to the DEM (Lindsay and Creed, 2005). Hence, we quantified 

the change in elevation of the processed DEM relative to the source DEM as a measure of 

the change to the landscape. In addition, we performed a rainfall recession simulation in 

ParFlow using the processed DEMs and the raw DEM by applying a rainfall rate of 5 mm/hr 

for 10 hrs followed by 20 hrs of recession, similar to the test used by Barnes et al. (2016) 

and Condon and Maxwell (2019) The simulation was performed on an impervious surface to 

focus on surface water processes. Diffusive wave approximation was used for overland flow.

Table 1 summarizes the five DEMs that were used in the comparative study. The raw DEM, 

the processed DEM from the conventional algorithm and the processed DEM from D2P are 

represented by Case 0, Case 1 and Case 4, respectively. Case 1 fills the depressions first 

and smoothens the river by enforcing a constant average slope between two ends of each 

reach. Due to the fundamental differences between the conventional algorithm and D2P in 

terms of the treatment of the depression and river smoothening, two cases were added to 

isolate the effect of each change on the DEM from Case 1 to Case 4. Case 2 changes the 

river smoothening in Case 1 to the use of the adapted CRS with the uniform constraint 

of elevation decreasing downstream (Eq. (6)). Case 3 uses the adapted CRS with uniform 

constraint of elevation decreasing downstream before filling. Case 3 is the closest to Case 
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4 in terms of the processed DEM except that select depressions are preserved during the 

adapted CRS step and the filling step in Case 4.

In summary, Cases 1 to 3 condition DEMs using different combination of depression 

treatment and stream smoothening methods without preserving any depression, while Case 

4 incorporates select depressions. An example of a processed river segment from Case 0 to 

Case 4 is illustrated in Supporting Information Fig. S9.

3. Results

3.1. Evaluation of identified depressions

To evaluate the accuracy of the delineated depressions by D2P algorithm, 

1-m resolution aerial imagery from the National Agriculture Imagery 

Program (NAIP) (https://www.fsa.usda.gov/programs-and-services/aerial-photography/

imagery-programs/naip-imagery/) was used to manually delineate the ponds as a benchmark 

for comparison. The imagery was chosen from July 2009 to match the date of the LiDAR 

DEM used in this study. Alongside the DEM resampled to 10-m resolution, the comparison 

was also done at the original LiDAR DEM resolution of 1 m and two other resampled 

resolutions of 5 m and 20 m. The area and depth thresholds are set the same for all the 

resolutions to solely investigate the impact of DEM resolution on depression identification.

From Fig. 6a–d, the D2P algorithm was able to identify at least 85% of the delineated ponds 

from the NAIP imagery (56 out of 66) at the DEM resolutions of 1 m, 5 m and 10 m but 

the performance dropped to 35% (23 out of 66) at the coarsest resolution of 20 m. This 

indicates the inability of the 20-m resolution DEM to resolve the scale and geometry of 

the depressions in the study area. Most of the NAIP ponds had an area of the same order 

of magnitude (~400 m2 to 4000 m2) as the 20 m by 20 m grid cell so the depressions in 

the DEM could easily be lost during the resampling of the DEM. We compared the area 

of the depressions identified by D2P against the NAIP ponds and found a close agreement, 

with a coefficient of determination (R2) of at least 0.75 across all the resolutions. In general, 

there is an overestimation in the area of the depressions delineated by D2P as shown in 

Fig. 6e. This is because the D2P depression area is determined by filling the depressions in 

the raw DEM up to the spill point elevation, which makes it the maximum possible area. 

The manually delineated areas from NAIP reflect the state of the pond at a specific time 

but may not be the maximum given the tendency to fluctuate depending on the climate. 

Moreover, vegetation and shadows in the NAIP imagery may mask the true boundary of the 

ponds during manual delineation and result in underestimation of the pond extent (Yasarer 

et al., 2018). Notably, the positive bias tends to increase with the DEM resolution because 

the DEM at higher resolution is better able to represent the boundary of the maximum 

depression area more closely. On the other hand, a coarser resolution DEM may fail to 

capture the irregular boundary of the depression and underestimate the area, as is the case 

for the 20 m DEM especially for the smaller ponds.

Another statistical analysis in the form of the binary pattern metrics shown in Table 2 was 

conducted to further examine the degree to which the D2P depressions agree with the NAIP 

ponds in terms of location and extent. The results affirmed the performance of D2P as the 
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probability of detection (POD) indicated that more than 85% of the depressions matched 

the ponds for DEM resolutions 10 m and lower. D2P produced false alarms across all four 

DEM resolutions, with the false alarm rate (FAR) ranging from 44% to 53%. This is to be 

expected due to the tendency to overestimate the depression area as explained previously and 

the fact that not all depressions may result in the formation of a pond. In general, as the 

DEM resolution increases, the POD increases but this is offset by an increase in the FAR, 

so the resulting critical success index (CSI) is similar for the DEM resolutions of 1 m, 5 

m and 10 m at about 50%. However, at the DEM resolution of 20 m, we observe that the 

POD drops drastically but the FAR does not decrease in tandem and this causes the CSI to 

decrease significantly to 32%.

From the above comparisons, we have shown that D2P is able to reasonably identify 

depressions provided that the DEM resolution is able to resolve the scale of the depressions 

of interest. While D2P will perform better in capturing both the location and geometry of the 

known depressions from existing datasets (e.g., NWI, NAIP) with a higher resolution DEM, 

it also generates a higher number of unknown depressions, which can be hard to validate 

without ground truth data.

3.2. Effect of processing methods on DEM

The extent and magnitude of the impact to the raw DEM by the different methods decreased 

gradually from Case 1 to Case 4, as shown by the percentage of modified cells and mean 

absolute elevation offset in Table 3. This agrees with previous research (Lindsay, 2016b) 

which showed filling (Case 1 and Case 2) to have a bigger impact on the DEM than a hybrid 

of breaching and filling (Case 3 and Case 4). Between Case 4 and Case 1, D2P reduced the 

percentage of modified cells for the entire watershed from 11.3% to 5.58% and the mean 

absolute elevation offset by 5-fold from 0.0745 m to 0.0145 m compared to the conventional 

algorithm.

Focusing on the river network which was more likely to have changed due to the additional 

smoothing step, the elevation of practically all the cells in Case 1 were modified compared 

to only 30.6% of the cells in Case 4. In addition, the magnitude of modification was also 

smaller in Case 4, with a mean absolute elevation offset of 0.223 m compared to 0.648 m in 

Case 1. From the boxplot in Fig. 7, there was a predominant increase in elevation in Case 1 

and Case 2 but not Case 3 and 4 due to the nature of the filling algorithm. At the same time, 

the elevation offsets were highly variable in Case 1 (−1.5 m to +2 m) and Case 2 (−0.6 m to 

+1 m) compared to Case 3 (−0.4 m to +0.4 m) and Case 4 (−0.4 m to +0.4 m). Overall, the 

differences between the river profile from the processed DEM and the raw DEM were the 

highest in Case 1 followed by Case 2 and finally Cases and 3 and 4 which were similar.

3.3. Effect of processing methods on hydrologic simulation

To understand the impact of the processing methods on hydrologic simulation, we compared 

the distribution of the simulated surface water depth and the time series of the surface water 

storage and streamflow. Fig. 8 shows the instantaneous surface water depth distribution for 

a selected location in the watershed with a high density of ponds. 10 hrs into the simulation 

at the end of the heavy rainfall (Fig. 8c), the location and extent of the ponds in both Case 
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0 and Case 4 generally matched that of the ponds extracted from NAIP. However, artifactual 

depressions could be observed in Case 0 such as the one in the black circle as a result of 

using the raw DEM. This is a classic example of a false depression arising when a road 

crosses over the river. In Cases 1, 2 and 3, the depression removal process created flat terrain 

in the NAIP pond areas, resulting in minimal accumulation of water less than 0.1 m in 

depth. Notably, Case 1 resulted in a larger flooded area compared to Cases 2 and 3 as the 

elevation of the river profile was raised gradually upstream to maintain a constant slope, 

thereby reducing the capacity of the channels.

30 hrs into the simulation at the end of the recession (Fig. 8d), the residual water in flat 

areas in Cases 1 to 3 had already dried out. On the other hand, the depressions in Case 4 

functioned as storage by trapping the water and formed isolated ponds. The result was not 

available for Case 0 as the model stopped running at the 11th hour due to the numerical 

instability from using the raw DEM. Overall, the DEM in Case 4 allowed ponding to be 

modeled realistically and the choice of DEM processing resulted in significant difference in 

the spatial distribution of ponding. Refer to Supporting Information Fig. S10 for a similar 

comparison at another location within the watershed.

Next, we analyzed the surface water storage time series for all cases. The total surface water 

storage (Fig. 9a) was broken down into a river storage component (Fig. 9b) and a non-river 

storage component (Fig. 9c).

In Fig. 9a, the total surface water storage was highest in Case 0 up to the point when the 

model terminated prematurely. This is because the drainage was poorest in Case 0 due to 

the lack of a smoothened river network that could direct water to flow between cell faces. 

The water from the rainfall became trapped in sinks and could barely reach the outlet of 

the watershed. Of the other cases, the total surface water storage was highest in Case 4 

due to retention of water by the preserved depressions. Although the total surface water 

storage was similar across all depression-less simulations (i.e., Cases 1, 2 and 3), the choice 

of river smoothening mechanism and depression treatment resulted in a large difference in 

the distribution of storage between the river and non-river components. In Fig. 9b, the river 

storage was lower in Cases 1 and 2 than Case 3. This can be attributed to the shallower 

channel depth (See Table 4) from the use of filling to remove depressions in Cases 1 and 

2. Conversely, the shallower channel depth makes the river more prone to overflowing and 

results in a higher non-river surface water storage in Case 1 and 2 compared to Case 3 (Fig. 

9c).

By preserving and integrating depressions in the hydrologic simulation, the river storage in 

Case 4 was reduced compared to Case 3 (Fig. 9b) because surface runoff was intercepted as 

non-river storage. After the rain had stopped, the non-river storage in Case 4 decreased much 

slower than other cases due to the retention effect of the depressions.

Fig. 10 shows the hydrographs at the outlet of the watershed. Without any DEM processing, 

the peak flow was substantially lower in Case 0 as it was difficult for the water to flow 

past the rugged terrain to the outlet of the watershed. This corresponds with the behavior of 

storage in Fig. 9 whereby most of the water arriving as rainfall remained as surface water 
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storage after getting trapped by the sinks until the 10th hr. The streamflow took about the 

same time to peak for Cases 1, 2 and 3. However, the peak streamflow in Case 3 was visibly 

higher than Case 1 and Case 2 because of the higher flow depth at the outlet. Comparing 

Case 4 and Case 3, an attenuation of the peak streamflow was observed in the former due to 

the preserved depressions. The peak stream flow in Case 4 was reduced by 10% compared to 

Case 3 and the hydrograph for Case 4 lagged that of Case 3 by 0.4 hr.

4. Discussion

4.1. Threshold for removal of artifacts

For this study, to distinguish farm ponds from depressions too small to be significant to the 

hydrologic simulation, we set a minimum threshold depression depth of 0.0036 m and area 

of 900 m2 based on NWI data. There is not a universal value that can be applied to all cases 

and the threshold should ideally be determined based on the scale of interest, knowledge of 

the existing site, DEM resolution and computational efficiency of the hydrologic simulation.

For example, to investigate malaria vector habitat dynamics in Africa, the hydrologic model 

needs to consider smaller (~100 m2) and shallower depressions (<0.5 m) as the dominant 

malaria vectors prefer transient pools for breeding (Minakawa et al., 1999). On the other 

hand, the threshold will be very different for a reservoir simulation considering that the scale 

of the water body of interest is much bigger. Any existing site information will also be 

helpful in refining the thresholds. Guided by the Minnesota Karst Feature Database (KFDB), 

Wu et al. (2016) used a minimum depression area of 100 m2 and minimum depression depth 

of 0.5 m to identify natural sinkholes. In a separate experiment conducted on the Prairie 

Pothole Region of North Dakota, a different threshold of a minimum depression size of 2000 

m2 and minimum depression depth of 0.3 m was chosen based on spatial data from US 

Geological Survey (Wu et al., 2019).

Area and depth thresholds can also vary with DEM resolution. From the sensitivity 

analysis in Supporting Information Text S4, the performance of the tested thresholds in 

the successful identification of wetlands from NWI data by D2P generally increased with 

DEM resolution. Higher resolution DEMs typically require larger area threshold as there is a 

higher probability of small artifactual depressions that need to be removed (Li et al., 2011). 

However, the same trend was not observed in our study. Instead, the optimal area threshold 

across the resolutions of 1 m, 5 m, 10 m were all around 800 m2 to 900 m2. This could 

be due to the quality and nature of the NWI data which is a record of wetlands and not all 

depressions in the study area. On the other hand, a lower depth threshold may be needed 

for lower resolution DEMs obtained by aggregating a higher resolution DEM. Aggregating a 

higher resolution DEM has the effect of averaging out the topographic variability, resulting 

in shallower depressions.

Another factor to consider is the trade-off between the realism of the topographic 

representation and computational efficiency. While setting a low threshold would allow 

the DEM to capture most of the depressions, it will also increase the variability in the 

topography which could inadvertently introduce slope discontinuities and develop oscillation 

and instability issues for some models. For instance, setting the threshold area too low 
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increases the chances of including deep yet small depressions that are anomalous and can 

greatly hurt the numerical performance.

Surface depressions within the channel width and depressions associated with false 

hydrologic barriers were removed based on a calculated RtD threshold. A threshold that 

is set too low causes more depressions intersecting with the river to be removed, including 

ponds and wetlands along rivers (Fig. 3c) that could serve important hydrologic functions. 

On the other hand, a higher threshold would cause more depressions intersecting with the 

river to be preserved, including false depressions arising from roads or bridges, and also 

result in a more rugged river profile. In this study, the threshold was inferred based on 

known depression locations from NWI data.

In general, the RtD threshold decreases as the resolution increases. The calculated RtD 
thresholds were 0.8, 0.54, 0.33 and 0.076 for DEM resolutions of 20 m, 10 m, 5 m and 1 

m, respectively. This is due to the overestimation of the areal representation of the river at 

lower resolutions. The performance of the RtD threshold in distinguishing false depressions 

associated with roads or bridges from water bodies that coincide with the river drops as the 

resolution decreases. This is due to the inability of the DEM to fully resolve the depression 

hierarchy at lower resolutions. At 20-m DEM resolution, the FAR (Table 2) was particularly 

high which can be attributed to the inclusion of false depressions.

4.2. Implication of DEM processing algorithm on hydrologic simulation: filling vs hybrid

Many studies have compared the influence of different DEM processing algorithms on the 

DEM in terms of elevation, slope and hydrological attributes (Callow et al., 2007; Lindsay, 

2016b; Lindsay and Creed, 2005; Woodrow et al., 2016). In line with those studies, our 

comparison across the four cases shows that the filling based algorithms in Case 1 and 

Case 2 produced a greater impact on the DEM quantified by the number of modified cells 

and elevation offset in Table 3 and Fig. 7. However, the impact of the DEM processing 

algorithms on the hydrological simulation is rarely discussed. From the rainfall recession 

simulation, we observe local differences in the pattern of the ponding between filling and 

hybrid algorithms, especially around false depressions arising from the crossing of a road 

over a river. In Case 1 and Case 2, filling raised the elevation of the upstream river valley 

to at least match the level of the road crossing, and this resulted in inundation over a large 

area upstream of the road crossing with relatively similar elevation. In extreme cases, the 

flat inundated area could create an obstruction to the incoming river and cause the flow to 

back up, increasing the computational demands. On the other hand, the hybrid algorithm 

in Case 3 breached the road crossing and allowed water to flow through the river channel 

relatively easily. In addition, we observe that both the filling and hybrid algorithms resulted 

in roughly similar mean channel slopes, but the former reduced the channel depth by 22% to 

25% compared to the latter. This could cause overestimation of fluvial flooding as alluded to 

by the higher non-river storage in Fig 9c and potentially result in overly conservative flood 

management policies.
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4.3. Implication of depression-integrated hydrologic simulation: depression vs 
depression-less

We show in our rainfall recession simulation that the inclusion of depression modified 

the hydrologic response of the watershed. We observe an attenuation in streamflow at the 

watershed outlet and increase in lag time of the hydrograph as the depressions stored some 

of the rainfall and delayed the arrival of runoff to the rivers. This mechanism is widely 

acknowledged by other similar studies (Nasab and Chu, 2020; Yasarer et al., 2018; Zeng 

et al., 2020). At the same time, by explicitly representing the depressions in the DEM, we 

present a viable means to capture the hydrologic connectivity between the depressions which 

is rarely achieved in the existing depression-integrated hydrologic models. The connectivity 

between ponds, headwater streams and downstream waters was evident in Case 4 at the end 

of the rainfall event in Fig. 8c. Long after the rainfall event when the supply of water had 

stopped, the connecting streams that were ephemeral in nature gradually dried up, resulting 

in geographically isolated ponds in Fig. 8d. This process was absent in Case 3 as there was 

no storage function with a depression-less DEM.

The impact of the depressions on the hydrologic response can vary with the magnitude 

of rainfall. To illustrate this, we increased the rainfall rate applied in the first 10 h of the 

simulation from 5 mm/hr to 10 mm/hr. As shown in Fig. 11, at 5 mm/hr rainfall rate, the 

total runoff volume (i.e. area under the hydrograph) in Case 4 is 14% lower than that of 

Case 3. At the higher rainfall rate of 10 mm/hr, the relative difference in total runoff volume 

reduces to 9%. This implies that the higher the rainfall intensity, the lower the impact of 

the depressions on the hydrologic response. The finding is consistent with the study by 

Costabile et al. (2022). One reason is because at the higher rainfall intensity, the depressions 

tend to fill up more easily and the storage volume becomes less significant compared to the 

runoff volume.

By accounting for depression storage in model simulations, it is possible to improve the 

accuracy of flood hazard studies and allow surface depressions to be leveraged as part of 

a holistic approach in mitigating flood risk and preventing overpredictions. Beyond flood 

hazard studies, depression integrated hydrologic modeling has the potential to augment 

water resources management by enhancing the spatial delineation of water across the 

watershed and providing a more effective guide for local irrigation and crop rotation 

strategies (Rajib et al., 2020). Lastly, it is feasible to explicitly represent the connectivity 

between depressions and streams in studies to understand the effects of the transport of 

materials and biological fluxes within aquatic ecosystems (Leibowitz et al., 2019).

4.4. Limitation of the algorithm

There are three main limitations to D2P. Firstly, the artifactual riverine depressions were 

removed if the RtD was below the threshold, which requires knowledge of locations of 

wetlands in the study area especially those that intersect with the river. In our case, we 

derived the RtD threshold from NWI data, which is only available within the United States. 

For future applications outside of the United States, there is a need to check the local 

database for similar information or resort to other means to determine the RtD threshold 
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such as through field survey. If the above is still not feasible, the threshold can be estimated 

iteratively by a sensitivity analysis.

Secondly, a D2P-processed DEM can result in higher computational demands in distributed 

hydrological modeling than depression-free DEMs. By comparing the number of solver 

iterations among the five cases in Fig. 12, Case 4 generally had a higher computational 

demand than Cases 1 to 3. The number of iterations increased sharply near the 5th time step 

where the water was just starting to fill the depression. This process was harder to solve in 

ParFlow at the point when the overland flow component was activated. From the 7th to 10th 

timestep, Case 1 required the highest number of iterations than Cases 2 to 4. One possible 

reason was that the flat areas created by the filling process in Case 1 obstructed the incoming 

flow from the river and caused it to back up, increasing the computational demands. After 

the rain stopped, the surface water flow in Cases 1 to 3 decreased and became gradually 

easier to solve compared to Case 4 where water was retained by the depressions. Notably, 

the number of iterations required in Case 0 was substantially higher than the other cases, 

indicating that some degree of DEM processing was necessary for modeling purposes.

Finally, we note that hydro-conditioned DEMs produced by the D2P workflow are optimized 

for hydrologic routing methodologies that rely on topographic slopes, such as ParFlow. 

Consequently, D2P DEMs may not necessarily be optimal for hydrologic models that rely 

directly on topographic heights or in flood hazard simulation where the extent and depth 

of ponded areas are sensitive to certain topographic features along the river (Hodges, 2015; 

Sanders and Schubert, 2019). In Sections 2.2.4 and 2.2.5, we removed all depressions within 

the river channel width as shown in Fig. 3a as we could not distinguish artificial depressions 

from real features such as riffles and pools. However, the D2P workflow could be adapted 

to meet slightly different needs with respect to removing some features in the DEM and 

retaining others. For example, the RtD threshold can be adjusted higher to retain more 

stream depressions and exempt them from the enforcement of the downslope condition in 

the adapted CRS algorithm.

5. Summary and conclusions

Despite the growing emphasis on the impact of surface depressions on hydrologic processes, 

there is a lack of a formalized DEM processing tool that can resolve surface depressions 

of interest for fully distributed hydrologic modeling. To address this gap, we present the 

Depression-Preserved DEM Processing (D2P) algorithm, a novel automated workflow that 

provides a representation of the land surface consistent with hydrologic processes being 

resolved while removing small-scale, non-physical variability in the DEM for computational 

efficiency. To achieve the above, the D2P algorithm includes several features, namely (1) 

improved delineation of surface depressions by screening depressions at variable instead of 

fixed intervals, (2) adoption of a new metric, RtD, leveraging depression hierarchy to filter 

out artifactual riverine depressions and (3) adaptation of a hybrid approach to smoothen 

the river in a way that enforces the general downslope profile while preserving surface 

depressions that intersect the river path.
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The application of the proposed algorithm in a case study in GCEW minimizes the 

modification to the original DEM and the identified depressions match well with the 

delineated ponds from NAIP imagery. The performance of D2P in identifying depressions 

was evaluated over four different resolutions of 1 m, 5 m, 10 m and 20 m. In addition, 

the use of the D2P-processed DEM in a distributed hydrologic model also highlights the 

difference that the incorporation of depressions makes to the simulated ponding, water 

storage and streamflow. Following are the conclusions drawn from the study:

1. The D2P algorithm was able to identify at least 85% of the delineated ponds 

from NAIP satellite imagery at the DEM resolution of 1 m, 5 m and 10 m but 

not at 20 m. The performance of D2P did not vary much as the DEM resolution 

decreased from 1 m to 10 m.

2. Compared to a conventional DEM processing algorithm which removes all the 

depressions, the D2P algorithm has a significantly lower impact on the raw DEM 

by reducing the percentage of modified cells for the entire watershed by 51% and 

the mean absolute elevation offset by 81%.

3. The hydrologic simulation for the rainfall recession test showcases the ability 

of D2P to capture the spatial distribution of physically meaningful depressions 

and their storage function. The depression-integrated simulation results in higher 

total surface water storage as well as an attenuated and delayed peak streamflow 

due to retention of water by the preserved depressions.

Although LiDAR DEMs are generally of high accuracy and can provide a good 

representation of the landscape, the direct use of the raw DEM in hydrologic models using 

topographic slopes to route flow results in significant computational demands. The proposed 

D2P algorithm provides a systematic means to balance the need to process DEM for ease 

of computation and the preservation of surface depressions of interest. While we have only 

demonstrated the application of D2P for small water bodies in GCEW, the algorithm can 

also be used to process DEMs in the context of larger water bodies such as Prairie Potholes. 

The choice of hydrologic model would have to be tailored to the nature and geometry of the 

water bodies of interest.

Our case study of a test rainfall event clearly suggests that the treatment of surface 

depressions and the choice of method for smoothening topographic variability (e.g., filling 

and breaching) have a significant influence on the hydrologic simulation results. D2P 

adopts a minimum impact approach to avoid distorting terrain attributes unnecessarily 

while offering the user flexibility in altering depressions under different settings. Future 

work involves testing and evaluating the D2P algorithms across different landscapes. D2P 

facilitates depression-integrated studies using more fully distributed hydrologic models like 

ParFlow. This can provide new insights into complex hydrologic systems and help improve 

water resources management and environmental sustainability decisions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Goodwin Creek Experimental Watershed (GCEW) study area.
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Fig. 2. 
Schematic flowchart for the proposed Depression-preserved DEM Processing (D2P) 

algorithm.
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Fig. 3. 
Examples of (a) depression within channel width, (b) false depression at road/bridge 

overpass (c) water bodies partially coinciding with river within GCEW.
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Fig. 4. 
Illustration of gradual exclusion of select depressions in GCEW study area. (a) Delineated 

sinks from Section 2.2.1. (b) Post-removal of small-scale depressions from Section 2.2.2. 

(c) Remaining depressions after the removal of depressions within the channel width and 

depressions associated with false hydrologic barriers from Section 2.2.4.
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Fig. 5. 
Illustration of adapted CRS for smoothening of an example river segment in GCEW study 

area. (a) Plan view of river segment in red coinciding with a depression delineated in 

dark blue. (b) Corresponding elevation profile of river segment from (a) before and after 

the implementation of the adapted CRS for river smoothening. A downstream slope was 

enforced on the river except the segment within the depression. The elevation of the 

rivers segment was globally set not to exceed that of the riverbanks and a lower degree 

of smoothening was applied on the river segment within the depression.
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Fig. 6. 
Scatter plot of area of depressions identified by D2P against that of the manually delineated 

ponds from NAIP imagery at DEM resolutions of (a) 1 m, (b) 5 m, (c) 10 m and (d) 20 

m. (e) Comparison of spatial distribution of NAIP ponds and D2P depressions using DEM 

resolution of 10 m. N is the number of D2P depressions coinciding with NAIP ponds (out of 

a total of 66 ponds).
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Fig. 7. 
Boxplot of elevation offset from raw DEM of the grid cells in the river network for the four 

cases. The median is represented by the red line in the box. Outliers have been removed.
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Fig. 8. 
Example surface water depth map from two-time instants at a selected location for the 

simulations using the raw DEM (Case 0) and four DEM processing approaches (Case 1–4). 

(a) Rainfall hyetograph in ParFlow simulation (b) Watershed map showing selected location 

in purple box and distribution of benchmark depressions extracted from NAIP (c) Surface 

water depth map 10 hrs into the simulation (d) Surface water depth map 30 hrs into the 

simulation.
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Fig. 9. 
Time series of the surface water storage for the simulations using raw DEM (Case 0) and 

four DEM processing approaches (Case 1–4). (a) Total surface water storage (b) Surface 

water storage in river cells (c) Surface water storage in non-river cells.
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Fig. 10. 
Hydrograph at the outlet of GCEW for the simulations using the raw DEM (Case 0) and four 

DEM processing approaches (Case 1–4).
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Fig. 11. 
Comparison of hydrograph between Case 3 (depression-less) and Case 4 (depression 

integrated) at different rainfall rates.
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Fig. 12. 
Comparison of number of solver iterations in ParFlow for each time step across the cases.
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Table 2

Statistical binary comparison of D2P depressions against rasterized NAIP ponds across the different DEM 

resolutions. The definition of probability of detection (POD), false alarm rate (FAR) and critical success index 

(CSI) can be found in Supporting Information Text S5.

Resolution POD FAR CSI

1 m 0.92 0.47 0.50

5 m 0.89 0.46 0.50

10 m 0.86 0.44 0.52

20 m 0.49 0.53 0.32
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Table 3

Statistics of modified cells and absolute elevation offset compared to the raw DEM based on all grid cells in 

the watershed for the four cases. The values in the bracket are the statistics for only the grid cells in the river 

network.

DEM Conditioning Method Elevation

% Of Modified Cells Mean Absolute Elevation Offset (m)

Case 1 11.3 (97.1) 0.0745 (0.648)

Case 2 8.40 (34.0) 0.0394 (0.328)

Case 3 6.35 (33.3) 0.0160 (0.240)

Case 4 5.58 (30.6) 0.0145 (0.223)
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Table 4

Statistics of channel slope and channel depth of GCEW calculated from the raw DEM (Case 0) and 

conditioned DEMs (Case 1 to 4).

DEM Conditioning Method Channel Slope (−) Channel Depth (m)

Mean Std. Mean Std.

Case 0 −0.016 0.051 0.50 0.72

Case 1 −0.014 0.010 0.39 0.71

Case 2 −0.014 0.015 0.38 0.49

Case 3 −0.015 0.016 0.50 0.63

Case 4 −0.015 0.019 0.49 0.63
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