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Mapping the unknown: The spatially correlated multi-armed bandit
Charley M. Wu1, Eric Schulz2, Maarten Speekenbrink2, Jonathan D. Nelson1 & Björn Meder1

1Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
2Department of Experimental Psychology, University College London, London, WC1H0AP

Abstract

We introduce the spatially correlated multi-armed bandit
as a task coupling function learning with the exploration-
exploitation trade-off. Participants interacted with bi-variate
reward functions on a two-dimensional grid, with the goal of
either gaining the largest average score or finding the largest
payoff. By providing an opportunity to learn the underly-
ing reward function through spatial correlations, we model
to what extent people form beliefs about unexplored payoffs
and how that guides search behavior. Participants adapted to
assigned payoff conditions, performed better in smooth than
in rough environments, and—surprisingly—sometimes per-
formed equally well in short as in long search horizons. Our
modeling results indicate a preference for local search options,
which when accounted for, still suggests participants were
best-described as forming local inferences about unexplored
regions, combined with a search strategy that directly traded
off between exploiting high expected rewards and exploring to
reduce uncertainty about the spatial structure of rewards.
Keywords: Exploration-exploitation; Multi-armed bandits;
Active Learning; Gaussian Processes;

Introduction
Modern humans descend from capable foragers and hunters,
who have migrated and survived in almost every environment
on Earth. Our ancestors were able to adaptively learn the
distribution of resources in new environments and make good
decisions about where to search, balancing the dual goals of
exploring to acquire new information and exploiting existing
knowledge for immediate gains. What strategies do humans
use to search for resources in unknown environments?

We present a new framework for studying human search
behavior using a spatially correlated multi-armed bandit task,
where nearby arms (i.e., search options) have correlated re-
wards. Spatial correlations provide an opportunity to learn
about the underlying reward function, extending the tra-
ditional reinforcement learning paradigm (Sutton & Barto,
1998) to allow for generalization of learned rewards to un-
observed actions using spatial context. We compare search
behavior across different payoff conditions, search horizons,
and types of environments, finding that participants adapt to
their environment, tend to perform very local inferences about
unexplored regions and choose arms based on a trade-off be-
tween expectations and their attached uncertainties.

Spatially Correlated Multi-Armed Bandits
We adapt the multi-armed bandit (MAB) setting by adding
spatial correlation to rewards and placing the arms in a two-
dimensional grid (Fig. 1). Each tile represents a playable
arm of the bandit, which are initially blank and display the
numerical reward value (along with a color aid) after an arm
has been chosen. Traditionally, the goal in an MAB task is to

Smooth Environment Rough Environment

Figure 1: Examples of the underlying reward functions for the two
classes of environments.

maximize cumulative payoffs by sequentially choosing one of
the N-arms of the bandit that stochastically generate rewards
(Steyvers, Lee, & Wagenmakers, 2009), with learning hap-
pening independently for each arm (i.e., reinforcement learn-
ing). In our case, because proximate arms generate similar re-
wards, there is the opportunity to form inductive beliefs about
unobserved rewards (i.e., function learning). This allows us to
study how people generate beliefs about unobserved rewards
and how this influences their search behavior.

The spatially correlated MAB is related to the optimal for-
aging context (Krebs, Kacelnik, & Taylor, 1978), whereby a
forager is not only guided by the search for resources, but also
by the need to acquire information about the distribution of
resources in the environment (Schulz, Huys, Bach, Speeken-
brink, & Krause, 2016). This creates a natural trade-off be-
tween exploration and exploitation (March, 1991), where an
effective search policy needs to adequately balance exploring
areas with higher uncertainty, while also exploiting existing
information to obtain rewards. One key difference in our task
is that the decision-maker must determine where to search,
and not only whether to stay or to leave a patch.

Modeling Adaptive Search Behavior
We consider various computational models for describing hu-
man behavior, which all make sequential predictions about
where people are likely to search. We present both simple
strategies without an explicit representation of the environ-
ment, along with more complex function generalization mod-
els representing the task as a combination of (i) a function
learning model and (ii) a decision strategy. We use a form of
Gaussian Process regression as a flexible and universal func-
tion learning model, which forms inferential beliefs about the
underlying reward function, conditioned on previous obser-
vations of rewards. Decision strategies are used to transform
beliefs into predictions about where to search next. The re-
covered parameter estimates of our models describe the ex-
tent to which people make spatial inferences and how they
trade off between exploration and exploitation.
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Simple Strategies
Local search. While simple, a tendency to stay local to the
previous search decision—regardless of outcome—has been
observed in many different contexts, such as semantic forag-
ing (Hills, Jones, & Todd, 2012), causal learning (Bramley,
Dayan, Griffiths, & Lagnado, 2017), and eye movements
(Hoppe & Rothkopf, 2016). We use inverse Manhattan dis-
tance (IMD) to quantify locality:

IMD(x,x′) =
1

|x1− x′1|+ |x2− x′2|
(1)

which compares the location of two arms x and x′, where x1
and x2 are the grid coordinates. For the special case where
x= x′, we set IMD(x,x′) = 1. At each time t, we compute the
IMD for each arm based on the choice at xt−1, and then use
a softmax function (Eq. 11) to transform locality into choice
probabilities, such that arms closer to the previous search de-
cision have a higher probability of being chosen.

Win-stay lose-shift. We also consider a form of the win-
stay lose-shift (WSLS) heuristic (Herbert, 1952), where a win
is defined as finding a payoff with a higher or equal value
than the previous best. When the decision-maker “wins”, we
assume that any tile with a Manhattan distance ≤ 1 is chosen
(i.e., a repeat or any of the four cardinal neighbors) with equal
probability. Losing is defined as the failure to improve, and
results in choosing any unrevealed tile with equal probability.

Function Generalization Models
We use a combination of (i) Gaussian Process (GP ) regres-
sion as a model of how people form beliefs about the un-
derlying reward function conditioned on previous observa-
tions (Lucas, Griffiths, Williams, & Kalish, 2015), and (ii)
a decision strategy that transforms beliefs into predictions
about where a participant will sample next. This approach
has recently been applied to human behavior in contextual
multi-armed bandits (Schulz, Konstantinidis, & Speeken-
brink, 2016) and is the only known computational algorithm
to have any guarantees in a bandit setting (i.e., bounded re-
gret; Srinivas, Krause, Kakade, & Seeger, 2010).

Gaussian process learning. A GP defines a distribution
P( f ) over possible functions f (x) that map inputs x to output
y, in our case, grid location to reward. A GP is completely
defined by a mean µ(x) and a kernel function, k(x,x′):

µ(x) = E [ f (x)] (2)

k(x,x′) = E
[
( f (x)−µ(x))( f (x′)−µ(x′))

]
(3)

Here, we fix the prior mean to the median value of payoffs,
µ(x) = 50 and use a radial basis function kernel (Eq. 7).

Suppose we have collected observations yT =
[y1,y2, . . . ,yT ]

> at inputs XT = {x1, . . . ,xT}, and assume

yt = f (xt)+ εt εt ∼N (0,1) (4)

Given a GP prior on functions f (x) ∼ GP (µ(x),k(x,x′)),
the posterior distribution over f (xT ) given inputs XT is also

a GP with the following mean and covariance:

µT (x) = kT (x)>(KT +σ
2I)yT (5)

kT (x,x′) = k(x,x′)−kT (x)>(KT +σ
2I)−1kT (x′) (6)

where kT (x) = [k(x1,x), . . . ,k(xT ,x)]> and KT is the posi-
tive definite kernel matrix [k(xi,x j)]i, j=1,...,T . This posterior
distribution is used to derive normally distributed predictions
about the rewards for each arm of the bandit (Fig. 2).

The kernel function k(x,x′) encodes prior assumptions
about the underlying function. We use the radial basis func-
tion (RBF) kernel

kRBF(x,x′) = exp
(
−||x−x′||2

2λ2

)
(7)

which is a universal function learner and assumes infinitely
smooth functions (i.e., correlations between two points x and
x′ slowly decay as an exponential function of their distance).
The RBF kernel uses λ (length-scale) as a free parameter,
which determines how far correlations extend: larger values
of λ result in longer spatial correlations, whereas λ→ 0+ as-
sumes complete independence of spatial information. We use
recovered parameter estimates of λ to learn about the extent
to which humans make inferences about unobserved rewards.

Decision strategies. The GP learning model generates nor-
mally distributed predictions about the expectation µ(x) and
the uncertainty σ(x) for each arm, which are available to the
decision strategies1 for evaluating the quality, q(x), and ulti-
mately making a prediction about where to sample next.

The Variance Greedy (VG) strategy values an arm using
only the estimated uncertainty

qV G(x) = σ(x) (8)

and is an efficient step-wise (greedy) approximation of infor-
mation gain (Srinivas et al., 2010), which seeks to learn the
global reward function as rapidly as possible. VG achieves at
least a constant fraction of the optimal information gain value
(Krause & Guestrin, 2005); however, it fails to adequately
trade-off between exploration and exploitation, because ef-
fort is wasted exploring the function where f (x) is small.

The Mean Greedy (MG) strategy is also step-wise greedy,
valuing arms using only the estimated mean reward

qMG(x) = µ(x) (9)

although this strategy carries no known guarantees and is
prone to getting stuck in local optima.

Upper confidence bound sampling (UCB) combines the
VG and MG strategies

qUCB(x) = µ(x)+βσ(x) (10)

1We also considered Probability of Improvement and Probabil-
ity of Maximum Utility (Speekenbrink & Konstantinidis, 2015) as
alternate decision strategies, but have omitted them because they
failed to reach performance comparable to UCB.
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where the exploration factor β determines how the reduction
of uncertainty trades off against exploiting high expected re-
wards. This is sometimes referred to as optimistic “sampling
with confidence” as it inflates expectations with respect to
the upper confidence bounds (Srinivas et al., 2010), creating
a natural balance between exploration and exploitation.
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Figure 2: Modeling human performance. Column left represents the
initial state of the task and column right is after 10 clicks. Top row:
screenshots from the experiment. 2nd row: posterior predictions of
expected reward µ(x), from a GP with an RBF kernel (not shown:
the estimated variance). 3rd row: the values of each tile q(x) using
the UCB acquisition function. Bottom row: the softmax prediction
surface transforming the UCB values into choice probabilities.

Choice Probabilities
For all models, we use a softmax function (Fig. 2 bottom row)
to convert the value of an option q(x) into a choice probability

P(x) =
exp(q(x)/τ)

∑
N
j=1 exp(q(x j)/τ)

(11)

where τ is the temperature parameter. As τ→ 0 the highest-
value arm is chosen with a probability of 1 (i.e., argmax), and
when τ→ ∞, all options are equally likely, with predictions
converging to random choice. We use τ as a free parame-
ter, where lower estimates can be interpreted as more precise
predictions about choice behavior.

Experiment
We present a bi-variate MAB problem with spatially corre-
lated rewards. The problem space was represented by a two-
dimensional grid, measuring 11×11, resulting in 121 unique
tiles in total. Participants could click to reveal unexplored
tiles or re-click previously uncovered tiles to exploit known
rewards (see Fig. 2 top row for screenshots).

Methods
Participants. We recruited 80 participants from Amazon
Mechanical Turk (25 Female; mean age ± SD 32 ± 9). Each
participant was paid a participation fee of $0.50 and a per-
formance contingent bonus up to $1.50. Subjects earned on
average $1.64 ± 0.20 and spent 8 ± 4 minutes on the task.

Design. We used a 2×2 between subject design, where par-
ticipants were randomly assigned to one of two different
pay-off structures (Average Reward vs. Maximum Reward)
and one of two different classes of environments (Smooth
vs. Rough). Each grid represented a bi-variate function,
with each observation including normally distributed noise,
ε∼N (0,1). The task was presented over 8 blocks on differ-
ent grid worlds drawn from the same class of environments.
In each block, participants had either a Short (20 clicks) or
Long (40 clicks) search horizon to interact with the grid. The
search horizon alternated between blocks (within subject),
with initial horizon length counterbalanced between subjects.
Per block, observations were scaled to a uniformly sampled
maximum value in the range of 65 to 85, so that the value of
the global optima could not be easily guessed (e.g., a value of
100).

Materials and procedure. Before starting, participants
were shown four fully revealed grids in order to familiarize
themselves with the task. Example environments were drawn
from the same class of environments assigned to the partic-
ipant (Smooth or Rough) and underwent the same random
scaling of observations. Additionally, three comprehension
questions were used to ensure full understanding of the task.

At the beginning of each of the 8 blocks, one random
tile was revealed and participants could use their mouse to
click any of the 121 tiles in the grid until the search hori-
zon was exhausted, including re-clicking previously revealed
tiles. Clicking an unrevealed tile displayed the numerical
value of the reward along with a corresponding color aid,
where darker colors indicated higher point values (Fig. 1).
Previously revealed tiles could also be re-clicked, although
there were variations in the observed value due to noise. For
repeat clicks, the most recent observation was displayed nu-
merically, while hovering over the tile would display the en-
tire history of observations. The color of the tile corresponded
to the mean of all previous observations.

Payoff conditions. We compared performance under two
different payoff conditions, requiring either a balance be-
tween exploration and exploitation (Average Reward) or a
pure exploration context (Maximum Reward). Previous work
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has shown that people can adapt (sometimes with great dif-
ficulty) to different payoff conditions in information acquisi-
tion tasks (Meder & Nelson, 2012).

In each payoff condition, participants received a perfor-
mance contingent bonus of up to $1.50. Average Reward par-
ticipants were told to “gain as many points as possible across
all 8 grids” and were given a bonus based on the average
value of all clicks as a fraction of the global optima, 1

T ∑( yt
y∗ ),

where y∗ is the global optimum. Maximum Reward partic-
ipants were told to “learn where the largest reward is” and
were giving a bonus using the ratio of the highest observed
reward to the global optimum, (maxyt

y∗ )4, taken to the power of
4 to exaggerate differences in the upper range of performance
and for parity in expected earnings across payoff conditions.
All 8 blocks were weighted equally, using noisy but unscaled
observations to assign a bonus of up to $1.50. Subjects were
informed in dollars about the bonus earned at the end of each
block.

Smoothness of the environment. We used two different
classes of environments, corresponding to different levels of
smoothness (Fig. 1). All environments were sampled from a
GP prior parameterized with a RBF kernel, where the length-
scale parameter (λ) determines the rate at which the correla-
tions of rewards decay over distance. We sampled 20 Smooth
environments using λ = 2 and 20 Rough environments us-
ing λ = 1. Subjects performed the task on 8 grids randomly
drawn (without replacement) from their assigned class of en-
vironments, while the four fully revealed environments used
to familiarize subjects with the task were drawn (without re-
placement) from the remaining 12 environments.

Search horizons. The length of the search horizon influ-
ences the value of information learned about the environment,
with respect to the assigned payoff condition. Longer hori-
zons provide more opportunities for exploiting acquired in-
formation, thereby making early exploration more valuable.
We chose two horizon lengths (Short= 20 and Long= 40) that
were fewer than the total number of tiles on the grid (121),
and varied within subject (alternating between blocks).

Results
Figure 3 shows task performance. In all conditions, perfor-
mance improved as a function of the trial number (i.e., with
each additional click), as measured by both the overall cor-
relation between average reward and trial number (r = .32,
p = .04) and between the maximum observed reward and
trial number (r = .83, p < .001). There were no learning
effects across blocks (i.e., over successive grids), indicated
by a lack of correlation between average reward and block
number (r = .19, p = .65), or between maximum reward and
block number (r =−.37, p = .36). Performance improved as
more information was revealed (i.e., over trials), but not over
additional blocks of identically parameterized environments.

Payoff conditions. Payoff conditions influenced search be-
havior, with participants in the Maximum Reward condition

displaying more variance in the locations sampled (t(78) =
−2.48, p = .02). There were some differences in the number
of unique tiles revealed (Fig. 3C) and the number of repeat
clicks across the payoff conditions (Fig. 3D), although the ef-
fect size is largest for smooth environments given long search
horizons. However, these behavioral differences did not man-
ifest in terms of performance, with no systematic differences
across payoff conditions in terms of the average reward ob-
tained t(78) = 1.32, p = .2) or in the maximum revealed re-
ward (t(78) = .001, p = .99).
Environment and horizon. Independent of the payoff
condition, participants assigned to Smooth environments
achieved higher average rewards (t(78) = 6.55, p < .001)
and higher maximum rewards (t(78) = 5.45, p < .001), than
those assigned to the Rough environments (Fig. 3E), suggest-
ing that stronger correlations of payoffs make the task easier.
Interestingly, longer horizons did not lead to better overall
performance in the Average Reward condition (t(80) = .34,
p = .73), although participants given longer horizons found
larger maximum rewards for all payoffs and environment
conditions (t(158) = 7.62, p < .001). There may be a less-is-
more-effect, with longer horizons leading to over-exploration,
given the goal of maximizing average rewards.
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Figure 3: Overview of task performance. (A) Average reward earned
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Model Comparison
We describe each model’s ability to predict participant behav-
ior using leave-one-block-out cross validation. For each par-
ticipant, we analyzed the four short and the four long horizon
blocks separately. Cross-validation was performed by hold-
ing out a single block as a test set, and fitting the model pa-
rameters using a maximum likelihood estimate (MLE) on the
remaining three blocks. Iterating through each of the four
hold-out blocks, for both short and long horizons, we calcu-
lated a model’s out-of-sample log loss (i.e., test set prediction
accuracy) and then summed up the results over all blocks. We
use McFadden’s R2 values (McFadden, 1974) to compare the
out-of-sample log loss for each model to that of a random
model (Fig. 4), where R2 = 0 indicates chance performance
and R2 = 1 is a perfect model.

GP Local GP
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Figure 4: Model Comparison. The height of the bars show the
group mean and error bars indicate standard error. McFadden’s R2

is a goodness of fit measure comparing each model Mk to a ran-
dom model Mrand. Using the out-of-sample log loss for each model,
R2

McF = 1− logL(Mk)/ logL(Mrand).

A large amount of the variance in participant behavior is
explained by local search (R2 = .28; all conditions); how-
ever, locality alone fails to achieve similar task performance
as humans, with performance almost identical to random in
terms of average reward and worse than random in maximum
reward (Fig. 5). WSLS by comparison, was a poor approxi-
mation of search behavior (R2 = .05), and was excluded from
the model performance comparison.

Among the GP models, UCB performed best (R2 = .23),
with MG showing comparable results (R2 = .17) and VG per-
forming poorly (R2 = .01). Interestingly, the performance of
the GP-UCB model was remarkably similar to human sub-
jects in terms of both average and maximum reward (Fig. 5).
Both humans and the GP-UCB model explore beyond what
is adaptive in the average reward context as evidenced by the
peak around t = 15, continuing to explore after most high-
value rewards have been revealed and thus failing to consis-
tently improve average rewards2.

To harmonize the different aspects of human behavior cap-
tured by local search and by the GP-UCB model, we added a

2Note that the peak in average reward for the GP-UCB is due to
the use of human parameter estimates, whereas a GP-UCB model
with optimized hyper-parameters and a dynamic β is known to
achieve sublinear regret bounds (i.e., monotonically increasing av-
erage reward; Srinivas et al., 2010)

local variant of each GP model (Local GP), which weighs the
q(x) for each arm by the inverse Manhattan distance to the
previous choice, qLocal(xt) = q(xt) · IMD(xt ,xt−1). Adding
locality to the GP models only improved prediction accuracy
(Fig. 4 right), with the Local GP-UCB model having the high-
est overall out-of-sample prediction accuracy (R2 = .38).

Overall, the modeling results show that humans display
a preference for local search, but that locality alone fails to
achieve comparable performance levels. The best model (Lo-
cal GP-UCB) incorporated this tendency for local search into
a computational model that combines function learning with
a decision strategy explicitly trading off between both high
expected rewards and high uncertainty.
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Figure 5: Comparison of simulated model performance over
10,000 replications, where parameters were sampled from the cross-
validated MLEs of the subject population. Human results are aver-
aged across payoff conditions and horizon length.

Parameter Estimation
Figure 6 shows the cross-validated parameter estimates of the
best predicting Local GP-UCB model. The estimates indi-
cate subjects systematically under-estimated the smoothness
of the underlying environments, with λ values lower than the
true underlying function (λSmooth = 2, λRough = 1), for both
Rough environments (t(36) =−4.80, p < .001) and Smooth
environments (t(42) = −18.33, p < .001), using the median
parameter estimate for each subject. Participants not only had
a tendency towards selecting local search options, but also
made local inferences about the correlation of rewards.

All participants valued the reduction of uncertainty (β >
0), with long horizons often yielding larger β estimates than
short horizons (51 out of 80 subjects; t(79) = −2.02, p =
.047)3. There were no differences between payoff conditions
(t(78) =−1.65, p = .1) or environments (t(78) = .5, p > .1).

Subjects in the average reward condition yielded smaller
estimates of the softmax temperature parameter (τ) than those
in the maximum reward condition (t(78) =−2.66, p = .009),
This is consistent with almost all models making better pre-
dictions for average reward than for maximum reward sub-
jects (Fig. 4), since smaller values of τ indicate more precise
predictions. The larger number of unique tiles searched in the
maximum reward condition (Fig. 3C) may indicate a more
difficult prediction problem.

3Because horizon length varied within subjects, we compare the
aggregate mean of the cross-validated parameter estimates for β.

1361



0.1

1.0

λ (Length−Scale) β (Exploration Bonus) τ (Temperature)

E
st

im
at

e 
(lo

g 
sc

al
e)

Parameter Estimates: Local GP−UCB

Figure 6: Cross-validated parameter estimates for the Local GP-
UCB model, showing the median estimate for each participant.

General Discussion
The results presented here can be seen as a first step towards
uncovering how people search to acquire rewards in the pres-
ence of spatial correlations. We have re-cast the multi-armed
bandit problem as a framework for studying both function-
learning and the exploration-exploitation trade-off by adding
spatial correlations to rewards. Within a simple experiment
about searching for rewards on a two-dimensional grid, we
found that participants adapt to the underlying payoff condi-
tion, perform better in smooth than in rough environments,
and—surprisingly—sometimes seem to perform as well in
short as in long horizon settings.

Our modeling results show a tendency to prioritize local
search options, which may indicate the presence of innate
search costs (e.g., mouse movements or some additional cog-
nitive processing). Even accounting for this local search be-
havior, our best predicting model (Local GP-UCB) indicates
that people still systematically underestimate the extent of
spatial correlation of rewards, preferring instead to make very
local inferences about unexplored rewards. Additionally, we
also found that search behavior was best predicted by a com-
bination of both high expected reward and high uncertainty,
embodied in the UCB decision strategy, which implicitly ne-
gotiates the exploration-exploitation trade-off.

Future studies could expand on this work by assessing a
more diverse and perhaps combinatorial set of kernel func-
tions (Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Ger-
shman, 2016) or by speeding up GP-inference using approxi-
mation methods such as sparse inference (Lawrence, Seeger,
& Herbrich, 2003) or more parsimonious neural network rep-
resentations (Neal, 2012). Indeed, the result that participants
formed only very local beliefs about spatial correlations could
be used to find heuristic approximations to GP models in the
future, which could effectively trade-off a small loss in accu-
racy for reduced computational complexity.

Conclusion
We compared both simple strategies and more complex func-
tion generalization models in their ability to make out-of-
sample predictions about participant sampling behavior. Our
modeling results indicate that there may be innate search
costs, creating a tendency to prioritize local search options.
Furthermore, even accounting for this local search behavior,
our best performing model (Local GP-UCB) indicates that
people also have a systematic tendency to underestimate the

extent of spatial correlation of rewards, preferring instead to
make very local inferences about unexplored rewards.
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