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Abstract:

Recently expressions were derived for the rate at which a highly ex-
cited nucleus breaks up into several interacting prefragments. The present
work treats the dynamical evolution of the system subsequent to such a
transition. The post-transition system is described as a number of dis-
tinct prefragments that experience both conservative and dissipative pair-

. wise interactions, obtained by a suitable generalization of the dynamics
governing damped nuclear reactions. The post-transition dynamics has
a significant effect on the disassembly process. Most importantly, some
prefragments may fuse in the course of the evolution, thus reducing the
heavy-fragment multiplicity. The nuclear dissipation enhances this effect,
while the survival probability of a specific mass partition is significantly
increased when the source is endowed with an overall radial flow.
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1 Introduction

In a recent paper[l], we presented a general formulation of the transformation of an
‘excited nucleus into several interacting prefragments. Based on a generalization of
the Bohr-Wheeler treatment of ordinary fission [2], that work derived expressions for
the partial widths for the system to find itself in a conditional transition configuration
consisting of specified heavy prefragments. Since these prefragments are not yet fully
developed, the dynamical evolution of the system subsequent to the transition is
expected to play a significant role: not only may the specific mass partition change as
the fragments complete their formation and separate (as also occurs in ordinary binary
fission), but some of them may recombine, so that the final fragment multiplicity may
be smaller than that characterizing the particular transition configuration considered.
It is therefore necessary to augment the transition-state formulation with a treatment
of the post-transition dynamics. It is on this task this second paper is focussed.

First, the transition-state treatment developed in ref. [1] is briefly summarized in
section 2. Then the specific treatment of the multifragment dynamics is described in
section 3; it includes both conservative and dissipative forces and builds on experience
gained from studies of damped nuclear reactions, so that no arbitrary quantities
are introduced. This formal framework is then used to examine the importance
of the post-transition dynamics in section 4. The treatment is also extended to
accomodate the possibility of an overall radial flow (a “blast”), as might result from
a compression generated early on in the nuclear collision producing the source. This
aspect is relevant to the question of whether multifragmentation processes can be
utilized to probe the properties of high-density matter. Finally, in section 5, we give
a concluding discussion, in which we outline the most important aspects that remain
to be incorporated before the theory can provide quantitative results.

2 Transition-state treatment

This section contains a summary of the transition-state treatment developed in the
preceding work [1]. We consider a very excited nuclear system consisting of A nucleons
and having a total energy E. After its creation, presumably by an energetic nuclear
collision, this source is assumed to achieve a transient equilibrium so that statistical
considerations can be employed.

Any particular manifestation of the system is described as a number of distinct
but interacting prefragments. Thus, such a fragmentation F' is characterized by the
quantities {A,, T, Pn, €, 7 = 1,..., N}, where A,, r,, pn, and ¢, denote the mass
number, position, momentum, and internal excitation energy of fragment n, respec-
tively. As in ref. [1], the isospin degree of freedom is ignored; its inclusion would be
relatively straightforward, though perhaps somewhat tedious, and should not present
any conceptual problems. The partial width for the idealized source to break up
into a specified mass partition Ay, ..., Ay is denoted by I'a,..4,(F). The total width
TN (E) for breakup into any N prefragments can then be obtained by performing a



summation over the various contributing mass partitions,

1 N N
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and the total breakup width is I'?**(E) = - T (E).

In order to make the system amenable to a transition-state treatment, we de-
fine, for a given fragmentation F', the disassembly coordinate ¢ and its conjugate
momentum p as follows,

: _ 1 < 2 1 ¢
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where m,, is the fragment mass. The quantity ¢ is simply related to the rms radius
of the mass distribution of the total system and provides a general and convenient
measure of the overall linear dimension of the multifragment system. Its conjugate
momentum p is a simple measure of the outwards directed motion of the fragments
(the “radial flow”). These disassembly variables can be regarded as the radial posi-
tion and momentum in the 3/N-dimensional hyperspace in which the multifragment
configuration can be embedded. Moreover, ¢ and p are conjugate variables, and the
associated inertial mass is given by my = 3, m,, since the kinetic energy in the
disassembly degree of freedom is k = 1pg = p?/2my.

The amount of energy available for statistical excitations is given by E* = E —
E? n —V — k, where E?_j is the sum of the ground-state energies of the specified
fragments and V/(ry, ..., rn) is the potential energy associated with the particular con-
figuration. This energy is shared between the random kinetic energy of the fragments
(in addition to the energy k of their ordered outwards motion), «, and the internal
excitation, ¢. The corresponding internal level density is denoted by p;...n(€).

One may now consider the outwards probability current, i.e. the number of el-
ementary multifragment states that pass by a given value of ¢ per unit time. This
quantity is given by

-2
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where Ry denotes the CM position of the fragmentation F. The flux factor p/mq
in the p-integration can be thought of as arising from an integration over values of ¢
extending from 0 to p/my, the distance covered by ¢ per unit time. After division by
Planck’s constant h, the p-integral then yields the number of elementary states that
pass the specified value of ¢ per unit time. Since (p/mo)dp = dk, the integrations
over k and € may be interchanged, so the former one can be performed analytically.
The geometric factor cos « corrects for the fact that in general the local normal to the
transition surface may not be directed along the radius vector in the configuration
hyperspace; this factor is ignored in the following (cf. the discussion in [1]).
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It is advantageous to express the current (3) as an average over the constrained
fragment positions. Invoking the formula for the surface area of a hypersphere, we

find
Vayay(E) ‘
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The quantity ¢;..n5 denotes that value of ¢ for which the current attains its minimum
value, when an overall scaling of the fragment positions is performed, r, — Ar,. At

this point, the maximum internal excitation energy is €;..n, and the corresponding
maximum temperature is 7y..5. The prime indicates that the average is over fragment

-positions {r,} that have been constrained to have their center-of-mass position at the

origin, Ry = 0, and have the specified rms extension, ¢ = ¢;..5. The second relation is
obtained by evaluating the e-integration in the stationary-phase approximation. The
corresponding most probable internal temperature 7 of the particular configuration
is given by
Fenall+E)r—¢, €= 3N2 2 Tl (5)
€1..N

For given values of the constrained positions {r,}, the integrand in the flux (3)
has a-minimum at some value ¢;..n, as a function of the scaling parameter A. This
key feature is easy to understand since the potential energy has a maximum as the
system is stretched from a compact configuration towards separated fragments. This
barrier top is a generalization of the conditional saddle point for asymmetric binary
fission. The minimum in the integrand will be shifted slightly inwards relative to the
barrier top because the geometrical factor ¢>V~* biases the statistical weights toward
larger sizes. As in the treatment of binary fission, it is natural to identify the value
q = ¢1..n with the local “bottle neck” in the evolution towards breakup. Accordingly,
the total rate at which the system makes an irreversible transition towards disassembly
is approximated by the above current (4), with the proviso that the local value of ¢
be chosen as that for which the integrand has a minimum, i.e. the transition value
q1..N .

Invoking the usual statistical assumption, the breakup rate of the system (into
the specified mass partition) is given by the magnitude of the transition current,
Va,..ay(E), divided by the total compound level density, p(A, E), which represents
the total number of elementary states in the source. (Both of these refer to states
with a total energy within an infinitesimal interval dE around the specified value E.)
We then obtain the following relation for the partial width for breakup into specified
prefragments,

Tany(E) = h% | (6)

1 Viarn ((moqf_._N? a
p(A,E) T(ZN - 2) 2h?




We remind of the fact that the average should be taken over the reduced fragment
positions describing configurations constrained to have a vanishing center-of-mass
position and a specified (but arbitrary) overall rms extension.

The level density p(A, E) of the source is difficult to calculate because of the many
collective modes accessible at the high excitations considered. A theoretical calcula-
tion can in principle be made on the basis of the multifragment formalism developed
in [3, 1], although considerable development would be required before quantitative
results could be obtained. For our present purposes, we adopt a relatively simple
preliminary expression, namely

) paleo) | m
‘with the value x = 1. The last quantity has the same form as the level density
employed for each of the individual prefragments, which are taken to be of simple
Fermi-gas type, pn(€,) = cA;?exp2,/a,€,. The factor in front is introduced as a
rough attempt to take account of the fact that the prefragments in the source may
roam the entire volume bounded by the appropriate transition surface. The form
adopted should only be relied on for its qualitative features, and the resulting decay
widths should therefore be considered as schematic only.

The formula (6) has an intuitive interpretation. It expresses the partial disassem-
bly width I" as the outwards transition current relative to the total number of states, as
in the ordinary transition-state method. The transition current is obtained by adding
the contributions from all possible reduced positions of the fragments, corresponding
to an integration over the generalized orientation in hyperspace. For each such gener-
alized orientation, the local transition flux is a product of a macroscopic and a micro-
scopic factor. The macroscopic factor Npmacro ~ 47r(m0q2'r/2h2)%N"2/F(%(N —1))is
the effective number of states associated with the macroscopic degrees of freedom, ¢.e.
those associated with the overall motion of the individual prefragments, while the sec-
ond factor N0 ~ p7 is the outwards probability current for each such macroscopic
state.

At low excitation, channels with only two fragments dominate and the formula (6)
for the decay width reduces to a form rather similar to the standard Bohr-Wheeler
expression,[2] but with an extra factor arising from the orbital motion of the binary
complex. The dominant multiplicity increases with excitation and at high excitation
the treatment acquires considerable formal similarity with existing statistical multi-
fragmentation models,[3, 4, 5] although certain notable differences are present. An
important advantage of the treatment is that it automatically provides the constraint
on the fragment positions so that a finite result is obtained; in this regard it is a sig-
nificant advance relative to current statistical models in which the freeze-out volume
must be prescribed separately. It should also be added that conservation of angular
momentum can readily be incorporated into the formulation, as described in ref. [1].
Its main effect is to reduce the available energy by the amount tied up in overall
rotation.

" 4r
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3 Multifragment dynamics

This section describes our treatment of the dynamical evolution of the disassembling
multifragment system. In this endeavor, we shall exploit the considerable insight
gained from many years of theoretical and experimental investigation of study of
damped nuclear reactions. Indeed, the disassembling system can be regarded as a
generalized damped reaction process, involving several fragments and being prepared
with all the fragments near each other and with a finite temperature.

The dynamical state of the multifragment system is described by the variables

{l‘n,Pn, Sn3¢n,6n’n = 1?' v N} ) (8)

where S, is the angular momentum (or spin) of a fragment and ¢, denotes the

associated conjugate set of angles specifying the spatial orientation of the fragment.
Since we treat the fragments as spheres, the angles ¢, are cyclic and hence not

physically interesting. (However, we retain them in the formulation for completeness;
they are in fact practically useful if one wishes to monitor the evolution by means of
a graphical display (a movie), since they can be utilized as indicators of the fragment
rotation.) In general the individual fragments may change their mass numbers A,
in the course of the evolution, both because of the statistical exchange nucleons (the
mechanism underlying the friction employed), and as a consequence of light-particle
emission (see the discussion in section 5). These effects are relatively minor for the
heavy fragments of primary interest here and will be ignored for the time being.

The conservative part of the evolution of the N-fragment system is described by
a Lagrangian £(Q, Q) given by

L=y Ry 5y, (9)
—n___12mn n=12In 1 yAIN)

where Q denotes the generalized coordinates {r,, ¢,} and the dot indicates the cor-
responding time derivative. The dissipation generated by the motion is described
by a Rayleigh function F(Q, Q). The temporal development of the system is then
governed by the general Lagrange-Rayleigh equation,

d oL OF oL

agQ = 9Q 0Q

For the conservative motion, we employ the potential energy described in ref. [1].

It is of the form

, N
V(rla e ,I'N) = E?N - EO + Z Vnn’(rnn') . (11)

n<n'

Here EY 5 = ¥, E? is the sum of the ground-state energies of the N fragment
products, and FEj is the ground-state energy of the disassembling compound system.
Moreover, V,,,.+ is the interaction potential between the two fragments n and n’. This
latter quantity has been carefully designed so as to yield a reasonable reproduction

)



of the shapes and energies of the conditional binary saddles throughout the nuclear
chart, by employing a simple parametrization developed by Swiatecki.[6]

Finally, the inertial mass of a given fragment is_approximated by m, = A,mn,
where mp is the nucleon mass, and the moment of inertia is taken as Z,, = %mnRi,
corresponding to a sharp rigid sphere.

3.1 Dissipation

Extensive investigations of damped nuclear reactions have shown that the interfrag-
ment forces are dissipative. Our treatment of the nuclear dissipation is based on the
the nucleon-exchange transport model in which the dissipation is generated by the
stochastic exchange of nucleons between the interacting nucleides.[7] This model has
been found to give a good overall reproduction of a large variety of damped reaction
observables.[8] Thus, the friction forces are derived from a Rayleigh function of the
form

1 AN a rad \2 tan \2
F = 5 Z an’ = TNg Z Jnn'(rnn')[2(u’nn') + (unn’) ] ’ (12)

n<n'! n<n'

Here an: is the dissipation arising from the exchange of nucleons between the frag-
ments n and n’. In the following this quantity will be described in some detail;
for notational convenience we denote the two nuclei considered by A and B, as is
commonly done in the context of damped nuclear reactions.

In the friction form factor, the quantity no = 3pv &~ 0.263/fm?/10~?? s is the one-
sided nucleon flux in standard nuclear matter and o4p is the effective window area
through which the nucleons are exchanged between the two nuclei. In the present
treatment, we adopt the following simple form,

oap = 27er\1:(:2) , (13)
suggested by the proximity approximation.[9] Here b =1 fm is the nuclear surface
diffuseness, and the reduced radius R is given in terms of the radii R4 and Rp of
the individual nuclei as R = R4Rg/(R4 + Rp), ignoring the difference between the
central radius C and the equivalent sharp radius R. The smallest separation between
the two nuclear surfaces is then given by s = R— R4 — Rp. Finally, the dimensionless

form factor ¥(() is taken to have the form

(<0: 14—

V(O = { ¢(>0: 1.4 exp(—=() (14)

This form is adopted for simplicity and corresponds approximately to what would be
expected for two spherical fragments with a small surface separation. The possible
existence of a neck between the two fragments is not taken into account, although
this may be a required for quantitative applications.

In the expression (12) for the dissipation rate, the quantities u33 and u'3" denote
the radial and tangential components of the relative surface velocity, in the interaction



zone where the nucleons are exchanged. Since the fragments are considered to be rigid,
the relative radial velocity is given by

U = Uyp - F4p taB (15)

wherer p = r4—rp is the relative position of the two fragments and U p = r4p is the
relative fragment velocity. (The hat indicates a unit vector, # = r/r.) The tangential
component of the relative center velocity is then given by U8 = U p — U3, If the
fragments do not rotate this quantity represents the tangential part of the relative
velocity of the two fragment surfaces. However, since the fragments carry angular
momenta, S, and Sg, they are rotating and this feature modifies the relative surface
velocity. Therefore, in general

ab —UAB+ua—Ub, v (16)

where u, = wy X p, is the velocity of the surface of fragment A, and u, = wp x p, is
the velocity of the surface of fragment B, both as seen from the respective fragment
center. Here wy = S4/T4 = ¢, and wp = Sp/Ip = ¢y are the angular velocities
of the two fragments. Furthermore, the location of the interaction zone between the
two fragments is

RA RB

- _ A - 17
PB4 R.+ Rp FAB , PaB R, + Rg 4B , ( )

as seen from the centers of the two fragments A and B, respectively.

3.2 Equations of motion

By introducing generalized momenta P = d£/9Q, the above second-order Lagrange-
Rayleigh equation (10) can be reduced to a set of coupled first-order equations which
are computationally more convenient. Thus we get

. Pn
n — Un = P 18
r 2 (18
. Sn

= n = T, 1

for the evolution of the coordinates, and

_ 1 WV
Prn = _Z [ ——Tnp + MOy (2uradl + utan )] ’ (20)

Sn = noz,ann:u,m: X Porn s (21)
for the evolution of the corresponding generalized momenta.

Because of the dissipation, the energy in the above degrees of freedom is not con-
served but decreases steadily in the course of the evolution. This energy is dissipated
from the macroscopic degrees of freedom into internal excitation of the residual micro-
scopic degrees of freeedom. It is assumed that this energy is shared equally between

7



the two fragments producing it. The excitation energy of the individual fragments
then evolve according to the equation

- 1 s 1 T an
en = 53 Qunr = 500 [2(uid)? + (u1)) (22)

The total rate of energy dissipation is given by Q=2F =%, én

It should be noted that the presence of a dissipative agency, in the present model
the stochastic exchange of nucleons, gives the dynamical evolution a diffusive char-
acter. In the present investigation, we consider only the mean trajectory, which is
governed by the above deterministic equations. The associated development of fluc-
tuations and correlations can be incorporated by adapting the transport treatment
developed for damped reactions.[7] Generally, the accumulated fluctuations in the
fragment masses are relatively small and so have little bearing on our present study.

4 Results and discussion

The above closed set of equations can be readily solved to yield the dynamical evo-
lution of the system, starting from any specified multifragment transition state, F'.

4.1 Initial states

For specified prefragment mass numbers, Ay, ..., Ay, a sample of transition-state con-
figurations is chosen randomly in accordance with the expression (6). This amounts
to first selecting the N prefragment positions r, randomly, subject to the constraints
that the overall center of mass Ry be at the origin and the overall rms size g be
equal to an arbitrary but fixed value g, and then performing a scale transformation
r, — (q1..N/qo)r» to bring the configuration to the transition surface (where the
current vy..y has a minimum).

In our formulation of the transition-state treatment [1], the transition configura-
tions are determined as those for which the overall outwards flux has a minimum. This
simple assumption was made mainly to facilitate the formal developments which have
a general applicability. As we now combine such statistical considerations with the
dynamical features of the disassembling nuclear system, we need to modify the formu-
lation appropriately. The basic assumption underlying the transition-state method
is that the disassembling system maintains global statistical equilibrium among all
configurations inside the transition surface. Physically, such a situation can only
be reasonably expected to prevail if the system is well connected, that is to say, if
the prefragments are situated within the proximity of one another. An inspection
of samples of candidate transition configurations reveals, not surprisingly, that the
assumption of global equilibrium often appears to be invalidated. Most typically, one
fragment is positioned away from the rest, at such a distance that little exchange of
energy and momentum can occur.

In order to address this problem in a quantitative and systematic manner, we
perform a cluster analysis of the multifragment configuration. Towards this end, we

8



consider two fragments to be linked iff their surface separation is smaller than a certain
value, so = 2 fm, representing the maximum distance for which the the fragments can
be expected to maintain mutual equilibrium (by the exchange of nucleons through
the “window” between them).

On the basis of this definition, any multifragment configuration can be considered
as a mathematical graph, which can be subjected to decomposition into isolated clus-
ters. Such a cluster then consists of fragments that are all in communication with
each other via a succession of binary links as defined above. On the basis of this
cluster analysis, we may now reject candidate transition configurations that consist
of two or more isolated clusters, since no equilibrium can be maintained between the
disconnected clusters. In other words, from the general class of candidate transi-
tion configurations defined as in [1] by means of the outwards flux, we accept only
those that form a single connected cluster. Qur further discussion is based on results
obtained with this restriction.

Having thus found an acceptable transition configuration, the initial dynamical
state is prepared by endowing the prefragments with linear and angular momenta.
The linear momenta p, have an approximately canonical distribution characterized
by the most probable local temperature 7 given in (5), although only those states
that have a positive value of the overall outwards momentum pr should be accepted.
Having selected the momenta, a modified local temperature is calculated and the
fragment spins S, are selected from the corresponding canonical distribution, which
is a very good approximation. Finally, the remaining excitation energy e is distributed
on the N fragments in proportion to their heat capacity, €, ~ an, so that they all
have the same temperature 7,, at the outset.

4.2 Disassembly widths

We are now in a position to study the effect of the post-transition dynamics. Figure
1 shows the calculated transition width T's,..4,(E) for a number of specified mass
partitions of a system with A = 120, shown as a function of the excitation energy per
nucleon in the source, £*/A. These results have been calculated without considering
the dissipative forces, in order to provide a simple reference. Figure 2 then shows the
effect of including the proximity friction induced by nucleon exchange.

4.2.1 Binary fission

Let us first discuss the binary transition channels, i.e. those disassembly processes
for which the transition configuration consists of two prefragments, corresponding to
ordinary fission. We observe that as E*/A is increased from one to ten MeV, the cor-
responding fission widths I 4, 4, grow by about four orders of magnitude, approaching
about a few hundred electron Volts, and the widths for the different mass partitions
are within half an order of magnitude of each other. (We wish to recall that the
absolute magnitude is rather uncertain because of our rudimentary knowledge of the
source level density entering in the denominator of the Bohr-Wheeler formula.) Be-
cause of the relatively moderate dependence of I' on mass partition, we shall limit



our considerations to a few “typical” channels in the following discussion.

For the binary channels the effect of the dissipation is relatively unimportant:
once the two prefragments have receded beyond their respective barrier separation,
they must keep moving apart. The dissipative effect in then limited to the conversion
of relative kinetic energy into internal excitation. In reality there is also a certain
amount of mass diffusion during the descent from saddle to scission, but this process
is not considered in the present study, since it is relatively unimportant. (From studies
of induced fission and damped reactions we know that the degree of mass diffusion
is relatively small, so that the character of the particular channel will change little;
in particular, the (pre)fragment multiplicity would be unaffected, ¢f. the remarks at
the end of section 3.) v

It should be noted, though, that since the transition point lies (slightly) inside the
saddle point (because of the additional macroscopic factor ~ ¢* in our expression for
T'), the friction may actually prevent the system from surmounting the barrier top,
when the radial kinetic energy is sufficiently low. The two prefragments will then
recombine and the given transition configuration does in fact not lead to disassembly.
Because of this effect, the actual fission widths are smaller than the corresponding
transition widths. For binary channels this effect is very small, as is evident from

fig. 2, and can usually be ignored, but for higher multiplicities it grows increasingly

significant, as we shall demonstrate, and must be taken into account.

4.2.2 True multifragmentation

Let us now turn to true multifragmentation, i.e. processes involving more than two

fragments. The most important effect of the dynamics is that some of the prefrag-

ments may fuse. Those processes for which such recombination occurs lead to final

states having a correspondingly lower fragment multiplicity and thus, in principle,

they contribute to the disassembly widths for those channels. The width for the

source to disassemble into the a specified mass partition A, --- Ay can then be writ-
ten on the form

dissassemb] ransition
FA]---AN y(E) = Ff'hAtN (E) P(Cl - a) (23)
. 1 N' N' .
+ 3 1|2 602 A4, = 4) DRYen(B) Ple’ — a)
N'>N ‘n=1 { A, n=1

Here the Pf{?ﬁ?ﬁf”(E ) denotes the partial width for the source to transform itself into
NI

a specified mass partition o/ = Aj--- A}, at the transition point; this is the quan-

tity given in eq. (6). The probability that this initial mass partition evolves into
the specified final mass partition o = A;--- Ay is given by P(a’ — «). The total
width I‘jlf?f‘s;;mbly (F) for disassembly into a particular mass partition, irrespectively
of the initial specification, can then be obtained by adding up the partial widths for
all possible precurser partitions o, each weighted with the associated transmission
probability P(¢/ — a). In the above expression, the first term is the direct contri-
bution @ — « arising from the survival of the desired mass partition «, while the

10
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second line contains the indirect feeding o’ — « from transition states o’ with a larger
multiplicity for which some prefragments fuse.

In the present discussion, we shall disregard the indirect terms in (23). Con-
tributions from side feeding are not necessarily negligible, though, but their proper
inclusion would require the development of a more accurate description of the recom-
bination processes. (In our present calculations, two fusing prefragments are treated
as two distinct entities throughout and so the interaction of the complex with a third
prefragment is not very accurate.)

Figure 1 shows the disassembly widths calculated for two ternary and two quater-
nary mass partitions. For a given multiplicity, T is not very sensitive to the particular
mass partition, which simplifies the analysis. The ternary widths rise more steeply
than the binary widths, and the quaternary widths are still steeper, as is generally
expected because of the macroscopic factor Npacro ~ ¢°¥~* in the transition current.
They catch up with the binary widths at around E*/A = 9 MeV. It should be re-
called that the total disassembly width 'y for obtaining a given multiplicity N is
obtained by adding the contributions from all possible partitions of the source into
N fragments, see eq. (1). Since the number of mass partitions increases rapidly with
multiplicity, the values for the total widths I'y will be correspondingly larger.

As mentioned above, for higher multiplicities there exists the possibility that some
prefragments may fuse in the course of the disassembly process, thus reducing the
heavy-fragment multiplicity. Generally, the dissipation acts to facilitate fusion and
the corresponding reduction of the width T'4,..4,, is significant.

This is illustrated in fig. 2 for the mass partitions 20440460 and 15+25+35-+45.
For ternary channels the associated reduction is about one order of magnitude, while
it is about one and a half order of magnitude for quaternary channels. The effect
grows progressively larger for higher multiplicities. In fact, for the higher multiplici-
ties, the probability that the initial multiplicity survives the post-transition dynamics
becomes negligible, and the major portion of the yield for a given mass partition
arises indirectly by “side feeding” from transition configurations that had initially
more prefragments but suffered a reduction in multiplicity due to fusion. Because of
this general feature, there is no simple relationship between the transition configu-
ration and the final multifragment state and the post-transition dynamics plays an
indispensable role in the disassembly process.

Of course, one might still attempt to describe phenomenologically the outcome of
this complicated dynamical disassembly process in terms of a simple freeze-out model,
by fitting its parameters appropriately. While such an undertaking may provide a
useful means for systematizing the data, our present studies indicate that the insight
gained about the disassembling system would be somewhat limited.

4.3 Radial flow

A major focal point in the study of intermediate-energy nuclear collisions is the explo-
ration of the nuclear equation of state. Particular efforts have been directed towards
extracting the compressibility of nuclear matter. It is generally expected that the
early stage of energetic nuclear collision leads to significant enhancements of the den-
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sity, relative to the standard saturation value of ~ 0.17 fm™3. Such a compression

may in turn produce an overall radial flow in the system at the subsequent disassem-
bly stage. Our multifragmentation treatment can readily be employed to study the
effect of such a feature, if it were indeed present.

For this purpose, it is convenient to characterize the degree of overall outwards mo-
tion by the “blast” energy Fl.. = p2/2m, where po is the amount of superimposed
radial momentum. The ordinary transition-state treatment described above corre-
sponds to Fy,e = 0. For a specified finite value of Eyjag, we employ the following
modified procedure. '

The transition configuration (i.e. the prefragment positions r,) is determined in
the standard manner, but the prefragment momenta p,, are picked differently. First,
the available energy at the transition point is reduced by the specified blast energy,
€\.n = €1..N — Fblast, and the associated temperature 7' is corresponding smaller.
A set of “local” fragment momenta {p’} are then sampled from a distribution char-
acterized by the reduced temperature 7. These local momenta are isotropic and
correspond to what would be seen in a frame moving outwards with the specified
blast velocity, which is equal to (po/mo)(rn/qo) locally. The actual prefragment mo-
menta p, are finally obtained by superimposing the blast motion,

myPo
Mpqo

Pn = rr + p; ) (24)
with usual the proviso that only positive values of the resulting radial flow be ad-
mitted, p > 0 (otherwise new local momenta pJ, are picked and the procedure is
repeated). As the value of the blast energy Fis is increased, a larger proportion of
the energy is tied up in the collective flow and the random components of the frag-
ment momenta become corresponding smaller. Therefore, for large values of Ep.s the
random components p!, of the admitted states are relatively small (and practically
isotropic), while the total momenta p, are nearly perfectly radially directed.

With a radial blast incorporated as described above, we now reconsider the disas-
sembly of the A = 120 source. Because of the ordered outwards motion, the prefrag-
ments are less likely to recombine during the dynamical evolution. Figure 3 shows
the partial widths I'4,..4, obtained for various blast scenarios, for the specific mass
partitions 40 + 80, 20 + 40 + 60 and 15 4 25 4+ 35 + 45.

It is seen that the presence of an overall radial flow at the transition point sig-
nificantly increases the survival probability of a particular configuration and, conse-
quently, it will act to increase the corresponding partial width. It should also be noted
that such a blast-induced increase in the multifragmentation width is accompanied
by a decrease of sequential decays because of the associated reduction of the internal
excitation energy.

It is apparent from fig. 3 that a relatively small amount of radial flow, a fraction
of an MeV per nucleon, sufficies to cause a significant increase in I'. Moreover, the
effect rapidly saturates as a function of Ey).. Interestingly, the values thus achieved
are relatively similar to those first calculated without considering dissipation, see fig.
1. Thus dissipation and radial flow approximately counterbalance each other, with
regard to the partial disassembly width I'4,..4,-

12



4.3.1 Fragment formation

The fact that we have an explicit dynamical description enables us to elucidate various
aspects of the disassembly dynamics. In particular, we may examine the time evolu-
tion of the fragmentation: the gradual evolution of a single well-connected cluster of
prefragments to a number of individual fragments.

For this purpose it is instructive to perform a cluster analysis of the developing
multifragment system. Towards this end, we regard two fragments as being linked
iff their center separation is smaller than the value associated with their respective
barrier top. In analogy to the cluster analysis made in connection with the preparation
of the initial states, the dynamical fragment configurations can now be decomposed
into isolated irreducible clusters. In particular, the specified mass partition A, --- Ay
can be regarded as fully formed when there are no longer any links present, ¢.e. when
the multiplicity of irreducible clusters is equal to the number of specified prefragments.

Weighting each dynamical history in accordance with the expression (6) for the
transition width, it is possible to calculate the average cluster multiplicity < N >, as
a function of the time elapsed since the transition to the specified initial configuration
occurred. Figure 4 shows the evolution of < N > for the particular breakup 120 —
16 + 20 + 24 + 28 + 32 at £*/A = 8 MeV. It is seen that the inclusion of dissipation
has little effect on < N >. This brings out the fact that by far the largest proportion
of the initial sample evolves into final states of lower multiplicity and it is rather
unlikely that a given state will emerge with its multiplicity intact. For these atypical
latter states the dissipation plays a major role, as already discussed.

The figure also shows that the presence of radial flow leads to a higher multiplicity,
as would be expected. Again, there is little dependence on the amount of radial flow,
as soon as Epp,e/A > 0.5 MeV. ’

4.3.2 Kinetic energy

It is also instructive to consider the time dependence of the total kinetic energy
associated with the translational motion of the fragments, Ey, = 3, p2/2m,. The
average of this quantity can be calculated using (6) as for < N > above. It is displayed
in fig. 5 as a function of the time elapsed since the system was started off, for the
particular partition 120 — 20440+ 60 and for various degrees of source excitation E*
and radial flow Fyl.s. Remarkably, the kinetic energy is relatively independent of the
total excitation but depends predominantly on the flow. A number of details should be
noted, though. First, the initial decrease in < Fjy;, > is caused by the concerted action
of conservative and dissipative forces as the system is moving over the barrier top.
The subsequent increase is a reflection of the Coulomb-induced acceleration as the
fragments recede. In the absence of flow, there is a modest increase in < Ey, > with

. excitation, due to the thermal increase in the initial value of the radial momentum p.

When a radial flow is present, an increase in excitation acts to increase the random
component in the initial momenta and thus degrade the outwards motion. Therefore
the kinetic energy is reduced as E* grows.

The results shown in fig. 5 indicate that the initial collective flow is not degraded
significantly in the course of the post-transition dynamics. The feature is further
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illustrated in fig. 6, where < Ej > is plotted as a function of the assumed amount of
radial flow, for a variety of multiplicities and excitations. It is noteworthy that a fairly
universal curve emerges, within a certain tolerance that is relatively largest for small
flow values. This striking feature may prove useful in the analysis of experimental
data on multifragmentation processes, since, taken at face value, the displayed rela-
tionship would enable the experimentalist to deduce the approximate amount of radial
flow energy from the “observed” total kinetic energy. (Of course, < Fyy, > is not di-
rectly observed, because of the subsequent decay processes, but it can in principle be
deduced by reconstruction, provided a sufficiently exclusive measurement is made.)
If the initial compression indeed produces a radial blast, it may thus be possible to
probe the degree of compression achieved by examining the velocity distribution of
the emerging fragments. It should be recalled, though, that our present exploratory
calculations have been made with the simple proximity friction (13) which ignores
the possibility of a neck between two fragments. The inclusion of a neck may sig-
nificantly increase the dissipation, thus reducing the signal, and it therefore deserves
consideration before a definite statement can be made.

5 Concluding remarks

In this paper and the preceding one [1], we have developed the basic elements of
a statistical theory for nuclear multifragmentation. A statistical model provides a
relatively well-defined reference that can be useful even if the idealized conditions
are not realized in the actual processes accessible for study. The present theory
combines a generalized transition-state treatment of the transformation of a source
into interacting prefragments with a dynamical description of their further fate. There
are a number of aspects that need further consideration, before the theory can provide
quantitatively useful results. These are briefly outlined below.

The quantitative reliability of the calculations depend on the accuracy of the
potential energy functional Vj..ny and the internal level density p;..n(€). So far, we
have employed rather schematic expressions for these quantities, in order to make it
possible to move forward with the formal developments. Just as the Bohr-Wheeler
treatment per se is independent of the degree of refinement invoked when calculating
the barrier heights and the level densities, so does our treatment not depend on these
specific ingredients, although any numerical results of course are affected. There is
still considerable work ahead towards developing a suitable potential energy functional
for multifragmenting systems and their associated internal level densities. To put this
task in perspective, it is may be noted that even fifty years after the advent of the
Bohr-Wheeler treatment, our ability to calculate fission barriers and internal level
densities is still not entirely satisfactory.

A vapor of nucleons interspersed between the prefragments should be incorporated
in the description. This is particularly important, and difficult, at the higher tem-
peratures where evaporation is significant on a time scale comparable to the global
disassembly time. This problem is of general interest in the context of the nuclear
equation of state at subsaturation densities and is currently being investigated.
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The prefragments, which are assumed to be fairly heavy (having A, > 10, say),
are typically so highly excited that not only nucleons but also light composite {rag-
ments are likely to be emitted during the dynamical disassembly. Such processes can
relatively easily be incorporated by augmenting the dynamical equations for the pre-
fragments with equations describing the radiation of light fragments of specified type,
such as neutrons, protons, and a-particles. In addition to yielding information about
the early contribution to the light-particle yields (associated with the high-energy
end of the spectra), the light-particle radiation acts back on the explicitly treated
heavy fragments by continually reducing their mass and temperature. At the rela-
tively high temperatures where multifragmentation is important, these effects may
well be significant.

When light-particle emission grows copious, it may be necessary to consider the
possibility of reabsorption of any emitted light fragments. This is probably most
easily done by direct simulation; the trajectories of individual light ejectiles can then
readily be followed and their ultimate fate established. Such an extension of the
dynamics is not expected to reduce the computational speed appreciably.

Of course, the further fate of the fragments, after their decoupling from of the
system, needs to be considered in a treatment aimed at direct contact with measurable
fragment observables. The post-transition dynamics generally causes some fragments
combine into clusters which, if they survive the early disassembly process, are likely
to fuse into a secondary source. When sufficiently excited, such secondary sources
should be subjected to the same disassembly treatment as the original source, and
this iterative procedure should be repeated until more conventional decay processes,
such as light-particle emission and ordinary fission, become dominant.

It should emphasized that the present treatment is only expected to be accurate in
situations where the life time of the source is sufficiently long to permit a considerable
degree of equilibration to occur, and yet shorter than the life times of the produced
fragments. These idealized circumstances may not exist in systems produced in en-
ergetic nuclear collisions and the theory should be regarded as merely a useful (and
relatively well-defined) reference. Our present studies have clearly demonstrated that
the incorporation of dynamics is necessary, even in a statistical approach. It may be
instructive to compare the present statistical and macroscopic model with a fully dy-
namical and microscopic model, such as the one in ref. {10] which evolves an ensemble
of one-body distributions within the time-dependent Hartree-Fock approximation.

As the detector technology advances and powerful multifragment detector systems
are being constructed, there are growing demands on theory to provide the tools nec-
essary for making informative analysis of the data. The present theory, though yet
incomplete, may prove useful for attempts to investigate the extent to which inter-
esting properties of a produced source, such as a collective flow, are manifested in
quantities amenable to experimental measurement.

This work was supported by the Director, Office of Energy Research, Office of High

Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. Department
of Energy under Contract No. DE-AC03-76SF00098.
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: Figure 1: Disassembly widths
The logarithm of the partial width I'4,...4, for disassembly of a source with A =120
into specified mass partitions as indicated. The abscissa is the excitation energy of
the source, E*, divided by its nucleon number A. The nuclear dissipation has been
ignored, and no side feeding has been considered.

Figure 2: Effect of dissipation
The logarithm of the partial width I'y4,...4, for disassembly of a source with A = 120
into the mass partitions 40 + 80, 20 + 40 + 60, and 15 + 25 4+ 35 + 45. For a given
mass partition, the upper curve is calculated without dissipation, as in fig. 1, while
the lower curve results when the proximity friction (12) is included.

Figure 3: Effect of radial flow
For the mass partitions indicated, the logarithm of the disassembly width is calculated
for various amounts of radial flow, as specified by the blast energy Epjase. For N = 2
the (small) effect is shown in a limited domain only, and for N = 4 the results obtained
with Epast/A = 0.5,2 MeV are shown only at E*/A = 5 MeV, to avoid cluttering the
display.

Figure 4: Fragment formation
The mean value of the cluster multiplicity is shown as a function of the time elapsed
since a source with A = 120 and E*/A = 8 MeV broke up into the partition 16 +

.20 + 24 + 28 + 32, for a variety of dynamical scenarios. For a given multifragment

configuration, the number of clusters is determined by performing a cluster analysis
of the graph defined by the separation-dependent links between pairs of prefragments,
as described in section 4.3.1. The statistical error on < N > is around 0.2.

Figure 5: Evolution of kinetic energies
The average total kinetic energy < FEy;, > carried by the prefragments is shown as
a function of the time elapsed since the system was at the transition point with the
mass partition 20 + 40 -+ 60. Results for a variety of source excitations E* and blast
energies Fy.e are shown.

Figure 6: Kinetic energies
The average total kinetic energy of the fragments in the disassembling system, for
various combinations of mass partition and excitation, as a function of the specified
flow energy Fyass- The values of Fiy;, have been extracted at the time ¢ = 20 - 10—22
s; at this time the fragments are well separated but their further recession under the
influence of their mutual Coulomb repulsion will add several MeV to < Ej;, >. The
statistical error on < Ey;, > is less than the width of the band of curves.
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