
UC San Diego
UC San Diego Previously Published Works

Title
Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer’s 
Disease using structural MR and FDG-PET images

Permalink
https://escholarship.org/uc/item/552232zx

Journal
Scientific Reports, 8(1)

ISSN
2045-2322

Authors
Lu, Donghuan
Popuri, Karteek
Ding, Gavin Weiguang
et al.

Publication Date
2018

DOI
10.1038/s41598-018-22871-z
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/552232zx
https://escholarship.org/uc/item/552232zx#author
https://escholarship.org
http://www.cdlib.org/


1Scientific REPOrTs |  (2018) 8:5697  | DOI:10.1038/s41598-018-22871-z

www.nature.com/scientificreports

Multimodal and Multiscale Deep 
Neural Networks for the Early 
Diagnosis of Alzheimer’s Disease 
using structural MR and FDG-PET 
images
Donghuan Lu1, Karteek Popuri1, Gavin Weiguang Ding1, Rakesh Balachandar1,  
Mirza Faisal Beg   1 & Alzheimer’s Disease Neuroimaging Initiative*

Alzheimer’s Disease (AD) is a progressive neurodegenerative disease where biomarkers for disease 
based on pathophysiology may be able to provide objective measures for disease diagnosis and staging. 
Neuroimaging scans acquired from MRI and metabolism images obtained by FDG-PET provide in-vivo 
measurements of structure and function (glucose metabolism) in a living brain. It is hypothesized 
that combining multiple different image modalities providing complementary information could help 
improve early diagnosis of AD. In this paper, we propose a novel deep-learning-based framework 
to discriminate individuals with AD utilizing a multimodal and multiscale deep neural network. Our 
method delivers 82.4% accuracy in identifying the individuals with mild cognitive impairment (MCI) who 
will convert to AD at 3 years prior to conversion (86.4% combined accuracy for conversion within 1–3 
years), a 94.23% sensitivity in classifying individuals with clinical diagnosis of probable AD, and a 86.3% 
specificity in classifying non-demented controls improving upon results in published literature.

Alzheimer’s disease (AD), the most common dementia, affecting 1 out of 9 people over the age of 65 years1. 
Alzheimer’s diseases involves progressive cognitive impairment, commonly associated with early memory loss, 
requiring assistance for activities of self care during advanced stages. Alzheimer’s is posited to evolve through a 
prodromal stage which is commonly referred to as the mild cognitive impairment (MCI) stage and 10–15% of 
individuals with MCI, progress to AD2 each year. With improved life expectancy, it is estimated that about 1.2% 
of global population will develop Alzheimer’s disease by 20463 thereby affecting millions of individuals directly, 
as well as many more indirectly through the effects on their families and caregivers. There is an urgent need to 
develop biomarkers that can identify the changes in a living brain due to the pathophysiology of AD providing 
numerical staging scores, as well as identifying syndromal stages.

Neuroimaging modalities such as magnetic resonance imaging (MRI)4 and fluorodeoxyglucose positron emis-
sion tomography (FDG-PET)5 have been previously used to develop such pathophysiology-based biomarkers for 
diagnosis of AD, specially targeting the prodromal stage of AD, where the pathology has begun but the clinical 
symptoms have not yet manifested. Structural MRI provides measures of brain gray matter, white matter and 
CSF compartments enabling the quantification of volumes, cortical thickness and shape of various brain regions 
and utilize these in developing classifiers for AD6–13. FDG-PET provides measures of the resting state glucose 
metabolism14, reflecting the functional activity of the underlying tissue5 that has also been utilized for AD bio-
marker development15–17. Other published approaches have utilized a combination of modalities for developing 
neuroimaging AD biomarkers4,18–24.

Recent advances in deep neural network approaches for developing classifiers have delivered astound-
ing performance for many recognition tasks25. The application of deep neural networks in recognition of AD 
has also attracted application for AD26–28. By applying deep neural network to extract features, such as stacked 
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autoencoder (SAE) or Deep Boltzmann Machine (DBM), these approaches outperform other popular traditional 
machine learning methods, e.g., support vector machine (SVM) and random forest techniques. A major problem 
of deep neural network’s application in AD diagnosis is that only a small amount of training data is available for 
learning discriminative patterns in very high dimensional feature spaces. Another issue is that the scale at which 
the discriminative signal resides is not a-priori known hence dimensionality reduction techniques need to be 
sensitive to multiple scales to increase the chances of extracting the discriminative signal.

In this paper, we are proposing a novel approach for combining multimodal information from both MRI and 
FDG-PET images at multiple scales within a deep neural network framework. Our proposed multiscale approach 
extracts features at coarse-to-fine structural scales29,30. This is achieved by segmenting the structural image into 
cortical and subcortical gray-matter compartments, and further subdividing each into patches of a hierarchical 
size, and extract features from each-sized patch26–28 by averaging within the patch and use these multi-scale 
features taken from multiple modalities into a deep learning framework. Unlike the simple approach of down 
sampling, which could lead to the loss of discriminative information, our multi-scale approach preserves the 
structural and metabolism information at multiple scales and may potentially improve the classification accuracy 
for this diagnostic task31. To validate our proposed novel methodology, we performed cross validation experi-
ments with all available ADNI data (subjects that include both a T1-structural MRI and an FDG-PET metabolism 
image). A comprehensive set of results of these experiments for the detection of controls and MCI that convert 
to AD as a function of years to conversion, as well as classification of controls, and AD subjects are presented for 
each modality separately and in combination, and compared to existing methods available in literature demon-
strating superiority of the deep neural network framework in AD diagnosis and prognosis.

Methods
There are two major steps in the proposed framework: (1)image preprocessing: segment both MRI and FDG-PET 
images, subdivide the gray-matter segmentation into patches of a range of sizes, and extract features from 
each-sized patch; and, (2)classification: train a deep neural network to learn the patterns that discriminate AD 
individuals, and then use for individual classification.

Materials.  Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 
whether serial MRI, PET, other biological markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

For a comprehensive validation of the proposed method, it is emphasized that all the available ADNI subjects 
(N = 1242) with both a T1-weighted MRI scan and FDG-PET image at the time of preparation of this manuscript 
were used in this study. These subjects were categorized into 5 groups based on the individual’s clinical diagnosis at 
baseline and future-timepoints. 1) Stable Normal controls (sNC): 360 subjects diagnosed to be NC at baseline and 
remained NC at the time of preparation of this manuscript. 2) Stable MCI (sMCI): 409 subjects diagnosed to be 
MCI at all time points (at least for 2 years). 3) Progressive NC (pNC): 18 subjects evaluated to be NC at baseline visit 
but progressed to clinical diagnosis of probable AD at the time of preparation of this manuscript. 4) Progressive 
MCI (pMCI): 217 subjects evaluated to be MCI at baseline visit and progressed to a clinical diagnosis of probable 
AD at some point in the future (data available for upto 8 years prior to conversion for some individuals). 5) Stable 
Alzheimer’s disease (sAD): 238 subjects with a clinical diagnoses of probably AD. Subjects showing improvement 
in their clinical diagnosis during their follow up, i.e. those clinically diagnosed as MCI but reverted to NC or those 
clinically diagnosed as probable AD but reverted to MCI were excluded from the proposed study because of the 
potential uncertainty of clinical misdiagnosis considering AD is an irreversible form of dementia1. The progressive 
controls and progressive MCI subjects have some neuroimaging timepoints with a clinical diagnosis of probable 
AD. Hence, the subset of images from pNC and pMCI subjects that have a clinical diagnosis of probable AD will 
be identified as part of the sAD group for assessment of classifier accuracy, while the remaining images before the 
conversion to AD will be assessed as part of the pNC and pMCI groups. Demographic and clinical information of 
the subjects are shown in Table 1. Numbers in brackets are the number of male and female subjects in the second 
row, while in the rest 3 rows the two number represent the minimum and maximum value of age, education year 
and MMSE (Mini–Mental State Examination) score. In total, there are 2402 FDG-PET scans and 2402 MRI images 
including all the longitudinal time-points. Detailed descriptions of the ADNI subject cohorts, image acquisition 
protocols procedures and post-acquisition preprocessing procedures can be found at http://www.adni-info.org.

Image Processing.  Unlike typical image recognition problems where deep learning has shown to be effec-
tive, our data set, although very large in a neuroimaging context, is relatively smaller. Hence directly using this 
smaller database of images to train the deep neural network is unlikely to deliver high classification accuracy. 
However, contrary to typical image recognition tasks, where the database of images contains large heteroge-
neity, the images in this database are all human brain images acquired with similar pose and scale which show 
relatively much less heterogeneity in comparison. Therefore we applied the following processing steps to extract 
patch-wise features as shown in Fig. 1: FreeSurfer 5.332 was used to segment each T1 structural MRI image into 
gray matter and white matter followed by subdivision of the gray matter into 87 anatomical regions of interest 
(ROI). The FreeSurfer segmentation were quality controlled by an expert neuroanatomist and any errors noted 
were manually corrected. Then, a T1 MRI image was chosen as the template. Each ROI of this template was 
further subdivided into smaller regions of varying sizes, denoted here as “patches”. The voxels in each ROI were 
clustered into patches through k-means clustering based on Euclidean distance of their spatial coordinates33, i.e. 
voxels spatially close to each other would belong to the same patch. Given that the size of FreeSurfer ROIs were 
different, we predefined the number of voxels in each patch instead of fixing the number of patches in each ROI 
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to keep uniform patch size density (patches in ROI/voxels in ROI) across the brain leading to signal aggregation 
at the same scale among the different ROIs. In this study, the size of patches was predefined to be 500, 1000 and 
2000 voxels. Using these sizes, the number of patches in total across the brain gray matter ROIs segmented by 
FreeSurfer was found to be 1488, 705 and 343, respectively. The patch size chosen were designed to keep enough 
detailed information as well as avoiding too large feature dimension considering the limited number of available 
data samples. Subsequently, each ROI of the standard template MRI was registered to the same ROI of every 
target image via a high-dimensional non-rigid registration method (LDDMM34). The registration maps were 
then applied to the patch-wise segmentation of the standard template. This transformed the template patch seg-
mentation into each target MRI space so the target images were subdivided into the same number of patches for 
their FreeSurfer ROIs. It is also worth mentioning that after the transformation, the size of a template patch in 
different images is not the same due to non-rigid registration encoding local expansion/contraction and hence 
is one of the features used to represent the regional information of a given structural brain scan. Then, for each 
target subject, the FDG-PET image of the subject was co-registered to its skull-stripped T1 MRI scan with a rigid 
transformation using FSL-FLIRT program35 based on normalized mutual information. The degrees of freedom 
(DOF) was set as 12 and Normalized correlation was used as cost function. The mean intensity in the brainstem 
region of the FDG-PET image was the chosen reference to normalize the voxel intensities in that individual brain 
metabolism image, because brainstem region was most unlikely to be affected by AD. The mean intensity of each 
patch was used to form the feature vector representing the metabolism activity, and the volume of each patch was 
used to represent the brain structure.

Multimodal and Multiscale Deep Neural Network.  With the features extracted from MRI and 
FDG-PET images, we trained a Multimodal and Multiscale Deep Neural Network (MMDNN) to perform the 
classification. As shown in Fig. 2, the network consists of two parts. The first part consisted of 6 independent deep 
neural networks (DNNs) corresponding to each scale of a single modality. The second part was another DNN 
used to fuse the features extracted from these 6 DNNs. The input data of this DNN was the concatenated latent 
representation learned from each single DNN. The DNNs in the two parts shared the same structure. For each 
DNN, the number of nodes for each hidden layer were set as 3N, N3

4
 and 100 respectively, where N denotes the 

dimension of input feature vector. The number of nodes was chosen to explore all possible hidden correlation 
across features from different patches in the first layer and gradually reduce the number of features in the follow-
ing layers to avoid over-fitting. We trained each DNN with two steps, unsupervised pre-training and supervised 
fine-tuning, respectively. Then all the parameters of MMDNN were tuned together. The trained DNN output is a 

sNC sMCI pNC pMCI sAD

Count (Male/Female)

Number of Subjects 360 (167/193) 409 (239/170) 18 (11/7) 217 (126/91) 238 (141/97)

Number of Images 753 (399/354) 409 (239/170) 74 (51/23) 702 (422/280) 464 (270/194)

Mean (min-max)

Age in years 73.4 (60–94) 74 (56–91) 77 (68–84) 74 (55–89) 75 (55–90)

Education in years 16.5 (6–20) 15.8 (7–20) 15.7 (12–20) 16.0 (8–20) 15.3 (4–20)

MMSE score 29.1 (24–30) 28.0 (22–30) 29.4 (27–30) 26.5 (9–30) 23.2 (18–27)

Table 1.  Subject Demographics. Except for the count where the numbers in brackets are (male/female), age 
(years), education (years) and MMSE score are displayed in the mean (min-max) format.

Figure 1.  Flowchart of extracting patch-wise features from MRI scans and FDG-PET images. Each FreeSurfer 
ROI was segmented into “patches” through registration to a patch-segmented template. Patch-based volume 
and mean intensity of FDG-PET were extracted as features to represent each patch.
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probability value for each class, the final classification is to the label with the highest probability. The probability 
value can also be interpreted as a disease staging score, with extreme value of 0 representing the highest probabil-
ity of belonging to the sNC class, and extreme value of 1 representing the highest probability of belonging to the 
AD class.

Unsupervised Pre-training.  For the unsupervised pre-training step, each DNN was trained as a 
stacked-autoencoder (SAE). Autoencoder is an artificial neural network used for unsupervised learning of 
non-linear hidden patterns from input data. It consists of three layers, input layer, hidden layer and output layer, 
for which two nearby layers are fully-connected. Three functions are used to define an autoencoder, encoding 
function, decoding function and loss function. In this study, encoding function is defined as: y = s (W1x + b1), 
where x is the input data, y is the latent representation, W1 is the weight matrix, b1 is the bias term and s is the 
activation function for which we used rectified linear function max(0, x). Similarly, decoding function can be 
represented as: z = s (W2y + b2), where we constrained it with tied weight W1 = WT and z is the reconstructed data 
which is supposed to be close to input x. Squared error 

 −x z1
2

2 is applied as loss function to optimize the net-
work. The hypothesis is that the latent representation can capture the main factors of variation in the data. 
Comparing with another popular unsupervised feature learning method, the principle component analysis 
(PCA), the activation function enables the network to capture non-linear factors of data variation, especially 
when multiple encoders and decoders are stacked to form a SAE. To fully train the network, we applied greedy 
layer-wise training36 approach where every hidden layer was trained separately.

Supervised Fine-tuning.  After pre-training, the first three layers of a DNN were initialized with the parame-
ters of encoders from pre-trained SAE followed by a softmax output layer. At first, we trained the output layer 
independently while fixing the parameters of first 3 layers. Then we fine-tuned the whole network as Multilayer 
Perceptron (MLP) with subject labels for criterion. The network outputs the probabilities of a subject belonging 
to each class and the class with highest probability determines the output label of the subject. If we use xi, yi to 
represent the input feature vector and label of the ith sample, respectively, the loss function based on cross entropy 
can be displayed as:

∑∑= − =
= =

H i
N

y j log h x( ) 1 [1{ } ( ( ) ]
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N

j

i i
j

1 1
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where N is the number of input samples, j represents the class of samples, and h represents the network function.

Optimization of Network.  Training of the network was performed via back propagation with the Adam algo-
rithm37. It is a first-order gradient-based optimization algorithm which has been proven to be computationally 
efficient and appropriate for training deep neural networks. During the training stage, the training set was ran-
domly split into mini batches38 where each split contains 50 samples in this study. At every iteration, only a single 

Figure 2.  Multimodal and Multiscale Deep Neural Network. The input feature dimension (number of patches) 
extracted from different scales is 1488, 705 and 343. For each layer, its number of nodes is shown on the top 
left of the layer representation. For each scale of each image modality, its patch-wise measures were fed to a 
single DNN. The features from these 6 DNNs were fused by another DNN to generate the final probability 
score for each of the two classes being discriminated. Of the two classes, the class being the one with the highest 
probability (effectively a threshold of 0.5 for probability) is the assigned final classification. The probability 
output of the DNN can be interpreted as a staging score, with extreme value of 0 representing the highest 
probability of belonging to the sNC class, and extreme value of 1 representing the highest probability of 
belonging to the AD class.
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mini batch was used for optimization. After every batch has been used once, the training set was reordered and 
randomly divided again so that each batch would have different samples in different epochs.

Dropout.  In order to prevent the deep neural network from overfitting, regularization is necessary to reduce its 
generalization error. In this study, we used dropout39 to learn more robust features and prevent overfitting. In the 
dropout layer, some units were randomly dropped, providing a way to combine many different neural networks. 
In this study, we inserted dropout layers after every hidden layer. In each iteration of training stage, only half of 
hidden units were randomly selected to feed the results to the next layer, while in the testing stage all hidden units 
were kept to perform the classification. By avoiding training all hidden units on every training sample, this reg-
ularization technique not only prevented complex co-adaptations on training data and decrease overfitting, but 
also reduced the amount of computation and improved training speed.

Early Stopping.  Another approach we used to prevent overfitting is early stopping. Because deep architectures 
were trained with iterative back propagation, the networks were prone to be more adaptive to the training data 
after every epoch. At a certain point, improving the network’s fit to the training set is likely to decrease generali-
zation accuracy. In order to terminate the optimization algorithm before over-fitting, early stopping was used to 
provide guidance for how many iterations are needed. In the cross validation experiment, after dividing the data 
set into training and testing, we further split the training samples into a training set and a validation set. The net-
works were trained only with data in the former training set, while samples in the latter validation set were used 
to determine when to stop the algorithm: while the network has the highest generalization accuracy for validation 
set. In actual training, we stopped the optimization if the validation accuracy had ceased to increase for 50 epochs.

Ensemble Classifiers.  Although early stopping has proven to be useful in most deep learning problems, relatively 
small data set limited the number of samples we could use for validation. And a small validation set may not able 
to represent the whole data set resulting in a biased network. Therefore, we resorted to ensemble multiple clas-
sifiers to perform more stable and robust classification. Instead of selecting a single validation set, we randomly 
divided the training set into 10 sets and used them to train 10 different networks to ‘vote’ for the classification. 
At the training stage, for network i, set i would be used for validation while the rest 9 sets were used for training. 
At the testing stage, the test samples were fed into all these networks resulting in 10 sets of probabilities. For each 
sample, the probabilities from 10 networks were added and the class with highest probability was the classification 
result of this sample. Although the performance of ensemble classifiers may not be greater than a single classifier 
on every occasion, the ensemble strategy can statistically improve the classification accuracy as well as the robust-
ness and the stability of the classifier.

Ensemble Classifier Probability Distribution.  The output of the DNN for each individual image is a pair of prob-
ability values representing the probabilities of the given input subject image features (or image pair features for 
multimodal images) as belonging to one of the two classes on which the DNN was trained. This probability score 
for belonging to the disease positive (AD) class can be interpreted as a disease severity staging score, since value 
of 1 represents the highest probability of being from the AD class, and 0 represents highest probability of being 
from the disease negative (NC) class.

Classifier Validation Experiment Setup.  To validate the discriminant ability of proposed network, 
two kinds of binary classification experiments were performed. First, we performed discrimination between 
sMCI and pMCI to compare our results on this experiment directly with the published state-of-the-art meth-
ods18,20,21,28,40–46. Since the published literature typically used only baseline images, we also used a single baseline 
image for each of the 409 sMCI subjects. Hence, the number of sMCI images is the same as the number of sMCI 
subjects. For the 217 pMCI subjects, their earliest image within 3 years before conversion was selected. The data 
samples were randomly divided into 10 sets. For each iteration, 1 set was used for testing while the rest sets were 
all used for training. Therefore, all subjects were used for testing exactly once.

One potential issue with respect to the sMCI class is that some of these individuals may progress to AD or 
other dementias in the future and if some of these individuals convert to probable AD in the future, these ear-
lier timepoints would become part of the pMCI group, whereas some other individuals may revert back to NC. 
Hence, although the sMCI vs. pMCI experiment is commonly used to assess classifier performance in recent stud-
ies, the classification of sMCI subjects may not be entirely accurate due to the potential uncertainty in the clinical 
diagnosis of the sMCI class. Therefore, we performed additional experiments that involved classifying individuals 
with known future progression to AD, namely the pNC, pMCI and sAD classes, denoted as the dementia positive 
class, against those that are stable normal controls (sNC), denoted as the dementia negative class.

We investigated the performance of the classifier by using various combinations of samples during training 
phase. At the first level, the classifier was trained soley on samples from the sNC subjects (the dementia nega-
tive class) and the sAD subjects (the dementia positive class). At the next level, the dementia positive class was 
enriched with pMCI subjects’ images that represent an earlier stage in the evolution of AD. In the last level, the 
positive class was further enriched with adding pNC subjects’ images representing an even earlier stage in the 
evolution of AD. For each level, the classifier training followed the standard 10-fold cross validation procedure 
(90% of data samples used for training and 10% of data used for testing in each iteration). The groups not used 
for training, if any, were utilized in the testing group. In these experiments, allocation into training or testing 
was done on the level of subjects, not images. If a subject was allocated into the training group, all the available 
baseline and longitudinal images for this subject would be used for training. Otherwise, all the available images 
of a subject would be used for testing.
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Sensitivity of the classifier is defined as the number of positive class images that are correctly classified, which 
in this case is the classification of the test subset of pNC, pMCI and sAD images as the positive class. Specificity of 
the classifier is the number of negative class images (the sNC class) that are correctly classified as sNC. Accuracy 
of the classifier is the fraction of images from both the positive and the negative classes that are correctly classified.

The proposed deep neural network (DNN) was built with Tensorflow47, an open source deep learning toolbox 
provided by Google. For all the experiments, the number of nodes in each layer was predefined as shown in Fig. 2 
and the learning rate was set as 10−4. The deep network parameter space is very large, with a large range of choices 
from which to sample i.e. number of layers and number of nodes, testing all the possible parameter combinations 
exhaustively is computationally unrealistic. Instead of doing parameter selection for each of the 10-fold experi-
ments, the parameters were selected based on the results of the first fold experiment.

Results
Discrimination between Stable and Progressive MCI (sMCI vs pMCI).  We conducted the sMCI vs. 
pMCI experiment to be able to compare the classification accuracy of our proposed novel method with published 
and comparable state-of-the-art methods18,20,21,28,40–46. The FDG-PET image and MRI image acquired at a single 
time point for each subject were used for the 10-fold cross validation experiment. For sMCI subjects, the images 
acquired at the first time to visit, while for pMCI subjects, the images acquired at the earliest time point within 3 
years before conversion were used. Results of this experiment and comparable results from published methods 
are shown in Table 2. These results reveal an accuracy of 82.9% for our MMDNN method over 626 subjects and 
both specificity (83.8%) and sensitivity (79.7%) are high. The results for single modality DNN are also found 
to improve upon the state-of-art. These results suggest that our proposed MMDNN network is promising for 
applications requiring classification between sMCI and pMCI individuals for the single modality T1-MRI and 
FDG-PET or the multimodal (T1-MRI and FDG-PET combined) neuroimaging approach.

Discrimination between disease negative (sNC) and disease positive (the pNC, pMCI, sAD) 
classes.  The classifier was trained to discriminate the negative class (sNC) from the disease positive class (pNC, 
pMCI, sAD) using three different enrichments for the positive class samples, namely training with the positive class 
containing only sAD, or, pMCI and sAD, or, pNC and pMCI and sAD samples. Each subject was used for testing 
at least once in the 10-fold cross validation experiments. In each fold of the experiment, images of the same subject 

Method Modality
Year to 
conversion #Subjects Accuracy Sensitivity Specificity

Young et al.18 MRI 0–3 143 64.3 53.2 69.8

Liu et al.40 MRI 0–3 234 68.8 64.29 74.07

Suk et al.28 MRI unknown 204 72.42 36.7 90.98

Cheng et al.41 MRI 0–2 99 73.4 74.3 72.1

Zhu et al.42 MRI 0–1.5 99 71.8 48.0 92.8

Huang et al.46 longitudinal MRI 0–3 131 79.4 86.5 78.2

Proposed MRI 0–3 626 75.44 (7.74) 73.27 (7.58) 76.19 (8.35)

Young et al.18 PET 0–3 143 65.0 66.0 64.6

Liu et al.40 PET 0–3 234 68.8 57.14 82.41

Suk et al.28 PET unknown 204 70.75 25.45 96.55

Cheng et al.41 PET 0–2 99 71.6 76.4 67.9

Zhu et al.42 PET 0–1.5 99 71.2 47.4 93.0

Proposed PET 0–3 626 81.53 (7.42) 78.20 (7.72) 82.47 (9.30)

Young et al.18 MRI + PET + APOE 0–3 143 69.9 78.7 65.6

Liu et al.40 PET + MRI 0–3 234 73.5 76.19 70.37

Suk et al.28 PET + MRI unknown 204 75.92 48.04 95.23

Cheng et al.41 PET + MRI + CSF 0–2 99 79.4 84.5 72.7

Zhu et al.42 MRI + PET 0–1.5 99 72.4 49.1 94.6

Moradi et al.20 MRI + Age + cognitive measure 0–3 264 82 87 74

Xu et al.43 MRI + PET + florbetapir PET 0–3 110 77.8 74.1 81.5

Zhang et al.44 longitudinal MRI + PET 0–2 88 78.4 79.0 78.0

An et al.45 MRI + SNP 0–2 362 80.8 71.5 85.4

Korolev et al.21 MRI + Plasma + cognitive 
measure 0–3 259 80.0 83.0 76.0

Proposed PET + MRI 0–3 626 82.93 (7.25) 79.69 (8.37) 83.84 (6.37)

Table 2.  Classification performance for the sMCI vs. pMCI task: Accuracy (%), Sensitivity (%), and 
Specificity (%) of the proposed network compared with the published state-of-the-art methods for the task of 
discriminating between sMCI and pMCI subjects. ‘PET’ in this table represents FDG-PET neuroimaging. Our 
proposed approach using deep neural networks was performed using a single FDG-PET image and a single 
T1-MRI acquired from each of 409 sMCI subjects and 217 pMCI subjects (total 626 subjects) and the average 
(standard-deviation) of the accuracy, sensitivity and specificity of classifier performance are reported.
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acquired at different time points were either all used for training or all used for testing to ensure the independence 
of training and testing at all times, as further detailed in the Classifier Validation Experiment Setup Section.

The classification result of these experiments are shown as Table 3. The DNN based on FDG-PET neuroimag-
ing features (accuracy 85.9%) performs better than the DNN based on T1-MRI (accuracy 82.5%) neuroimaging 
features, and the combined MMDNN outperforms each of the single modality DNNs (accuracy 86.4%). As the 
positive class is enriched with samples from the pMCI and then further with the pNC samples, there is an increase 
in the sensitivity (correctly classified members of the dementia positive class i. e. pNC, pMCI and sAD). Since 
some of the early stage patterns of AD represented in pMCI and pNC may overlap the sNC group, there is a slight 
decrease in specificity, but overall an increase in accuracy.

The features extracted by the deep neural network are displayed in Fig. 3. Although difficult to interpret as 
these are extracted from multiple nonlinear transformations of data, they show that the patterns for the different 
classes appear to be distinct, whereas patterns within each class appear to be relatively similar.

Classification performance of pNC and pMCI as function of time (years) to conversion.  We 
analyzed the accuracy of classification of pNC and pMCI as a function of the time (years) to conversion and the 
numbers of subjects available for the MMDNN classifier. These results are shown in Fig. 4 for each of the three 
training scenarios with progressive enrichment of the positive class. As the positive class training set of sAD (top 
row, left panel) is enriched with samples from pMCI (top row, middle panel) and with pNC and pMCI samples 
(top row, right panel), the accuracy of detection of the pMCI and pNC class increases, as well as an increase in 
accuracy for identifying AD in pNC and pMCI earlier. The numerical values of classifier performance for the 
pNC, pMCI and sAD enriched positive class (top row, third panel on the right) are provided in the table in the 
second row of this figure.

The MMDNN classifier accuracy in identifying pMCI individuals with future conversion to AD was 90%, 
86.6% and 82.4%, for years 1, 2, and 3 away to conversion. The accuracy for all the years taken together for pMCI 
classification was 79.22%, and 86.4% total for conversion within 1–3 years. The neuroimaging scans farther away 
from conversion are likely more challenging to classify correctly leading to overall lowered accuracy. The clas-
sification accuracy for sAD group, i. e, those images associated with a clinical diagnosis of AD, is 94.25%. The 
accuracy for correctly classifying all pNC images is 41.1% with higher numbers of 100%, 60.0% and 66.7% for 
years 1, 2 and 3 from conversion to clinical diagnosis of probable AD.

Classification Probability score distribution.  The probability score output by the MMDNN trained with 
the dementia negative (sNC) class and the three enrichment choices for the dementia positive class (namely, 
sAD, pMCI + sAD, and pNC + pMCI + sAD) class samples is visualized as histograms in the top row of Fig. 5. 
The fraction of images of each class is shown on the y axis, along with classifier probability score shown on the 
x axis. This distribution shows how the sNC, pNC, pMCI and sAD classes are scored by the classifier for their 
probability of being from the dementia positive class. Further, the bottom row of Fig. 5 shows aggregate values 
of the probability score with respect to each class with a box plot. As the training set for the dementia positive 
class is enriched with samples from pMCI and then additionally, pNC class, the probability score for these classes 
is shown to increase. Overall, the distribution generated by the MMDNN leads to good separation between the 
classes, and the threshold choice of 0.5 (highest class probability assignment) is visually shown to provide good 
classification between the classes.

Discussion
In this paper, we have proposed a novel deep neural network (DNN) based method that utilizes multi-scale and 
multi-modal information (MMDNN) combining metabolism (FDG-PET) and regional volume (T1-MRI) for 
the discrimination of AD, with a focus on assessing classification accuracy in those pNC and pMCI subjects with 
known future conversion to probable AD. In accordance with scale-space theory, our incorporation of multiscale 
approach was intended to capture the discriminant signals at multiple scales, and avoid apriori assumption of the 
scale at which the discriminant signals may reside.

The comparison between our novel proposed MMDNN method and state-of-the-art methods for the sMCI vs. 
pMCI classification task is shown in Table 2. Although the data used for the cited studies are not identical, they all 
come from the ADNI database and have comparable image acquisition and preprocessing procedures. One of the 

FDG-PET (Metabolism) T1-MRI (Volume) Multimodal (Metabolism + Volume)

Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.

Training Set

 sNC vs. sAD 84.5 (1.4) 79.9 (1.6) 91.9 (6.9) 81.9 (1.2) 75.5 (1.3) 92.3 (4.9) 84.6 (1.5) 80.2 (2.0) 91.8 (6.8)

 sNC vs.
(pMCI and sAD) 85.5 (2.8) 85.0 (2.9) 86.2 (10.1) 82.8 (3.4) 79.8 (4.1) 87.7 (6.3) 86.0 (2.5) 85.7 (3.2) 86.5 (8.6)

 sNC vs. (pNC,
pMCI and sAD) 85.9 (4.8) 85.6 (3.8) 86.3 (7.8) 82.5 (5.2) 80.2 (7.6) 86.1 (7.6) 86.4 (4.7) 86.5 (5.2) 86.3 (8.6)

Table 3.  Accuracy (%), sensitivity (%) and specificity (%) of each modality and the multimodal combination 
using different training sets for the classification of AD pathology (discrimination of pNC, pMCI and sAD from 
sNC). The numbers in each cell are the average value and standard deviation from the 10-fold cross validation 
experiments. Sensitivity is the fraction of correctly classified pNC, pMCI and sAD images, specificity is the 
fraction of correctly classified sNC images and accuracy is correctly classified images taken together.
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strengths of our work is that we have analyzed all the available ADNI sMCI and pMCI subjects having both MRI 
and FDG-PET neuroimages at the time of preparation of this manuscript. When using only the T1-MRI modality, 
our method has better accuracy than most methods expect Huang et al.’s46. However, they used a longitudinal 
method with multiple MRI images acquired from different time points for the classification of each subject, 
whereas we classify each image separately, an approach consistent with the other published cross-sectional meth-
ods. For single modality-based classifiers using only FDG-PET, our method outperforms the published methods 
by a significant margin as shown in Table 2. Extension of our DNN for utilization of longitudinal timepoints for 
single subject classification is a direction for future work, and we anticipate that adding longitudinal measures 
explicitly could further improve the classifier performance.

When using multiple modalities for sMCI vs. pMCI classification, our MMDNN approach has the best per-
formance specially compared with the methods that also used the same T1-MRI and FDG-PET modalities. 
The study of Chen et al.41 performed domain transfer learning to exploit the auxiliary domain data (sAD/sNC 
subjects) to improve the classification whereas our proposed MMDNN method’s performance was better even 
though we did not utilize domain transfer learning in our sMCI vs. pMCI classification task.

Further, we performed experiments to detect prodromal AD by training the MMDNN classifier with samples 
from the dementia positive class namely the pNC, pMCI and sAD subjects. The accuracy of correctly classifying 
pNC and pMCI subjects as having patterns indicative of AD improved when the classifier training included pMCI 

Figure 3.  Features extracted from the input data by the deep neural network at the penultimate layer that are 
fed to the output layer for classification. From left to right the training set is sNC vs sAD, sNC vs (pMCI + sAD), 
and sNC vs (pNC + pMCI + sAD) respectively. The y axis represents the units of the second from last layer, 
while the x axis denotes the different data groups. The vertical red lines are added to enhance visual distinction 
between the boundaries of each group. This figure shows that while it is difficult to provide an interpretation of 
the features found by the deep neural network from the input neuroimaging features, the patterns as distilled by 
the deep learning network from the sNC, pNC, pMCI and sAD images are distinct with more uniformity within 
each class as compared to across classes.

Figure 4.  Accuracy of correctly identifying prodromal AD for the pNC and pMCI subjects as function of 
(years) to conversion. The top row shows the effect of enriching the training set of the dementia positive class, 
with sAD (top row, left panel), pMCI and sAD (top row, middle panel) and pNC and pMCI and sAD (top row, 
right panel). The y axis represents accuracy of classification, while x axis shows time (years) to AD conversion. 
The x axis value ‘0’ indicates subjects with current clinical diagnosis of probable AD (sAD subjects). The 
number in legend is the classification accuracy taken over all time points for each group. The table in the second 
row shows the numeric accuracy value for pNC and pMCI subjects at different time (years) to conversion to AD 
corresponding to the top right panel (MMDNN with pNC, pMCI and sAD for training the dementia positive 
class).
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and pNC images, as displayed in Table 3. Further, comparison of the DNN results for T1-MRI and FDG-PET 
classifiers as shown in Table 3 indicates that the sensitivity of detection of prodromal AD is higher with FDG-PET 
neuroimaging features as compared to T1-MRI neuroimaging features. This finding is consistent with previous 
studies18,28,40,41 and could indicate support for the hypothesis that alterations in metabolism may precede changes 
in structure, and further, the altered metabolism measures could be detected with FDG-PET earlier than the 
detection of structural changes with T1-MRI.

Analysis of the accuracy of classifying prodromal AD i. e. detecting patterns corresponding to AD in pNC and 
pMCI individuals as function of time (years) to conversion is shown in Fig. 4. As the training set was enriched 
with samples from the pNC and the pMCI groups, the accuracy of detection of prodromal AD also increased. 
The MMDNN classifier delivered high accuracy upto three years prior to conversion and then performance was 
reduced for the timepoints 4–8 years prior to conversion. The number of subjects in 1–3 years before conversion 
are large (over 100 each), and there is also reduced numbers of available subject numbers 4–8 years away from 
conversion. The reduced sample for timepoints farther away from conversion to AD could potentially increase 
classification uncertainty. With more neuroimaging data corresponding to timepoints farther from conversion to 
AD becoming available, models such as the MMDNN proposed here could provide better classification perfor-
mance for the earlier detection of prodromal AD.

The probability score output from the DNN is visualized in Fig. 5. The probability score is highest for the sAD 
class, and lowest for the sNC class, being the two extreme ends of the spectrum for the classifier. The probability 
score for the pNC and pMCI subjects is in between, and higher for pMCI than pNC generally in line with the 
expectation of progressive alterations detected with neuroimaging for subjects further along the disease trajec-
tory. Further analysis of the classifier probability score could be an interesting avenue to develop a surrogate 
staging score for disease severity.

Despite the remarkable ability of DNN to discover patterns that may not be apparent on human visual exam-
ination, one major disadvantage of the DNN framework is that as a result of multiple non-linear transformations 
between the input in generating the output, it is not readily possible to map the output classification probability 
back to neuroimaging patterns in the input neuroimaging data that give rise to this output. The visualization 
of the output of the penultimate layer in the DNN for individual subject images is shown in Fig. 3 and except 
for observing a qualitative difference between the features of different classes, it is not possible to relate these to 
neuroimaging features from specific locations in the brain at the current time. Understanding how to provide 
pathophysiologically meaningful interpretation of the features extracted by the DNN for classificaion remains an 
unsolved problem and is an important future research direction.

A small number of subjects are awarded a probability score inconsistent with their clinical diagnosis. One of 
the main requirements of training DNNs are large quantities of well-characterized data25. It is therefore possible 
that as more comprehensive and homogeneous training databases are developed and become available for learn-
ing, the accuracy numbers may increase and these outliers will be reduced. It is also possible that there may be 
some uncertainty in the available clinical diagnosis. Despite the limitations, our findings indicate that the DNN 

Figure 5.  Multimodal classification probability distribution of different training sets. From left to right the 
training set is sAD, sAD and pMCI, sAD, pMCI and pNC versus sNC respectively. The y axis represents fraction 
of images, while x axis denotes the probability of class sAD, where 0 represents high likelihood of being from the 
sNC pattern, and 1 represents high likelihood of being from the sAD pattern.
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framework has considerable potential in learning the AD-related patterns for promising future applications in 
adding to the toolbox of clinical AD diagnosis.

Conclusion
In summary, we have proposed a novel deep neural network to identify individuals at risk of developing 
Alzheimer’s disease. Our multi-scale and multi-modal deep neural network (MMDNN) was designed to incor-
porate multiple scales of information from multiple regions in the gray matter of the brain taken from multiple 
modalities (T1-MRI and FDG-PET). First we demonstrated the discriminant ability of the proposed MMDNN 
approach by comparing with state-of-the-art methods on the task of discriminating between sMCI vs. pMCI indi-
viduals. Then we trained the classifier to distinguish subjects on trajectory towards clinical diagnosis of probable 
AD (i. e. the pNC, pMCI subjects). We observed the performance of MMDNN classifier built with a combination 
of FDG-PET and structural MRI images was better than those built using either structural MRI or FDG-PET 
neuroimaging scans alone. Further the classifier trained with the combined sample of pNC, pMCI and sAD was 
found to yield the highest overall classification accuracy of 82.4% accuracy in the identifying the individuals 
with mild cognitive impairment (MCI) who will convert to AD at 3 years prior to conversion (86.4% combined 
accuracy for conversion within 1–3 years), a 94.23% sensitivity in classifying individuals with clinical diagnosis of 
probable AD, and a 86.3% specificity in classifying non-demented controls. These results suggest that deep neural 
network classifiers may be useful as a potential tool for providing evidence in support of the clinical diagnosis of 
probable AD.
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