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b) Top ten features using a parallel height branch decomposition.

c) Compressed, reconstructed and individually colored features via Cinema.a) Original WarpX Data set.

Figure 1: a) Isosurface visualization of the transverse electric field Ex of a WarpX laser plasma particle accelerator simulation [11].
b) Visualization of the ten most-significant contours detected automatically using a branch decomposition of the contour tree
using our data-parallel, height-based simplification method that correctly captures the topology of the data set. c) For interactive,
post-hoc visualization, we compute and store features in a Cinema image database in situ and reconstruct them via a web interface.
We store features individually and this allows us to manipulate their properties such as color, scale, opacity, etc.

ABSTRACT

The contour tree is a tool for understanding the topological struc-
ture of a scalar field. Recent work has built efficient contour tree
algorithms for shared memory parallel computation, driven by the
need to analyze large data sets in situ while the simulation is run-
ning. Unfortunately, methods for using the contour tree for practical
data analysis are still primarily serial, including single isocontour
extraction, branch decomposition and simplification. We report data
parallel methods for these tasks using a data structure called the
hyperstructure and a general purpose approach called a hypersweep.
We implement and integrate these methods with a Cinema database
that stores features as depth images and with a web server that
reconstructs the features for direct visualization.
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1 INTRODUCTION

Computational scientists use massive numerical simulations to study
physical phenomena. As these simulations increase in size, tech-
niques for analyzing and displaying the data are increasingly impor-
tant. However, due to limited bandwidth to disk and in the human
visual system, this increasingly depends on running analytics and
visualization tools in situ during simulation rather than post hoc.

An important analytic tool available for scalar fields is the contour
tree, which captures the relationship between the isocontours in the
data, annotated with geometric measures, such as volume and inten-
sity, that are of significance to the science behind the data. In order
to apply these tools at scale, recent work has focused on building
parallel algorithms and data structures for computing, manipulating
and interpreting contour trees, first in data parallel environments, and
in the future in hybrid clusters with heavy on-node data parallelism.
Data parallel algorithms to compute and augment the contour tree
have been reported [6, 11], but not secondary computations. Those
secondary computations are geometric measures, branch decompo-
sition, simplification and single isocontour extraction.

The first contribution of this paper is to introduce data parallel
algorithms for those secondary computations. To compute geomet-
ric measures we develop a method we call a hypersweep that is a
modification of the parallel tree contraction algorithm [21]. The
hypersweep method arises naturally from the computation of the
contour tree and unlike parallel tree contraction it respects the seman-
tics of the contour tree as a data structure. For branch decomposition



and simplification we replace the standard inherently serial priority
queue computation with a local and trivially parallelisable algorithm.
The second contribution is an implementation of those secondary
measures in the open source VTK-m library. The final contribution
of this paper is to link the resulting code with the existing in situ Cin-
ema database to demonstrate viable data-parallel contour algorithms
for the entire analysis and visualization pipeline.

We review the relevant background literature in Section 2, then
introduce the hypersweep in Section 3, showing how to adapt branch
decomposition to data-parallel computation. We then describe how
to extract significant isocontours in data-parallel (Section 4), report
how we integrated it with the Cinema database (Section 5), and
show its application to a WarpX laser plasma particle accelerator
simulation (Section 6). We then evaluate performance (Section 7)
and discuss conclusions and future research directions (Section 8).

2 BACKGROUND

Given a scalar function f : Rn→ R, a level set is the set of points at
an isovalue h: f−1({h}) = {x ∈ Rn | f (x) = h}. We call individual
connected components of level sets contours. As h varies, contours
appear, disappear, connect or disconnect at critical points where
the gradient vector is zero, which may be peaks, pits or saddles. If
we contract each contour to a single point, the resulting structure is
called a contour tree [5]. For functions over general manifolds, the
structure may have cycles, and is called a Reeb graph. In both, criti-
cal points are known as supernodes and are connected by superarcs,
with regular (non-critical) mesh vertices represented as nodes strung
on arcs along the superarcs. An augmented contour tree contains
regular nodes, and is more expensive, but often more useful.

If we instead take the connected components of sublevel sets
such that f−1((−∞,h]) = {x ∈ Rn | f (x) ≤ h} we can construct a
tree known as the join tree. If we take the connected components
of superlevel sets or f−1([h,∞)) = {x ∈ Rn | f (x)≥ h} we obtain
the split tree. Collectively, the join and split trees are referred to as
merge trees. They are important in computing the contour tree, but
can also be used independently for analysis [4].

In serial, a single sweep computes the join tree, a second one
computes the split tree, then superarcs are transferred from the
outside of the merge trees inwards to construct the contour tree [8].
Subsequent work parallelised this in shared memory [6, 11, 15, 16],
in distributed clusters [18, 23, 24, 26] or on hybrid models [1, 20,
28]. The most performant shared-memory approach is the PPP
algorithm [6, 11], which we use as the basis for our computations.

The PPP algorithm [11] computes the merge trees in two phases:
topology graph construction and parallel peak pruning (PPP). In
the first phase, the input mesh is abstracted to a topology graph [7]
in which all critical points are represented, and edges represent
monotone paths between critical points. This is then used as the input
to the second phase, where superarcs from peaks to the topologically
nearest saddle are found and added to the merge tree in parallel, then
removed from the topology graph. What remains of the topology
graph now has new peaks which used to be saddles, but some saddles
become regular and can be collapsed out. As a result, the join (or
split) tree can be computed in a logarithmic number of passes, and
in later passes, large numbers of superarcs are transferred at once.

PPP batches superarc transfers from the merge trees to the contour
tree, alternating between maxima and minima. In every stage leaves
can be transfered in parallel because that is a local operation. To
speed up computation long chains of degree two vertices are trans-
fered in a single stage. Due to the specifics of the computation those
chains need to be monotone in the function values at the vertices.

The original PPP algorithm has been recently extended to com-
pute the augmented contour tree efficiently [6]. The extension was to
record the monotone chains from the merge phase to guarantee the
ability to search for regular nodes in logarithmic time. The endpoints
of the monotone chains are recorded as hyperarcs, similary to the

already existing superarcs and regular arcs. The hyperarcs of the
contour tree form what we call the hyperstructure [6].

We illustrate the idea of the hyperstructure with the right hand
subfigure of Figure 2. The supernodes of the contour tree are labeled
with the number of the iteration they are transfered in the merge
phase of the algoritm. The supernodes in the tree are connected by
superarcs and hyperarcs with small and large arc widths respectively.
The hyperarcs store a monotone path of supernodes (sorted by value)
that are collapsed in a single iteration of the merge phase.

We can think of hyperarcs as shortcuts for more efficient compu-
tation. Since the supernodes in a hyperarc are in monotone order
we can insert regular nodes by comparing against the endpoints of
the hyperarc. If the regular node’s value is not in that interval, we
move along the next hyperarc and skip a potentially large number
of supernodes. Otherwise we use binary search on the supernodes
in the hyperarc. In this paper we’ll describe how we can use the hy-
perstructure to speed up secondary computations such as geometric
measures and contour extraction.

Since the merge phase of the contour tree algorithm and the
hyperstructure process monotone paths an issue emerges with non-
monotone paths. Non-monotone paths in the contour tree are refered
to as W-structures [17] because of the way they zig-zag up and down.
We refer to the size of a w-structure as the number of maximal
monotone paths. W-structures are significant because they serialize
the computation of the merge phase and can be used to show that
persistent homology differs from branch decomposition [17].

2.1 Simplification and Branch Decomposition
Once the contour tree has been computed, it can be simplified so
that only significant features are represented. This is usually done by
removing the least significant leaf edge in the contour tree, collapsing
regular nodes if necessary, and iterating until only one master branch
remains [27]. Note that this is an inherently serial computation.

This simplification process forms a hierarchy of branches called
the branch decomposition. For this purpose, “least significant” can
be interpreted by computing the difference in function value between
an extremum and a saddle, or by computing geometric measures [9]
such as volume or integrated function value (hypervolume) for the
set of contours corresponding to a given superarc or subtree.

A related idea is present in persistent homology [12], where the
difference between a peak and a saddle in the sort order of the mesh
vertices gives the persistence, and is used to pair, or cancel, peaks and
saddles (or pits and saddles), or alternately, the difference in function
value between peak and saddle. Recent work has confirmed [17]
however that the cancellation pairs from persistent homology are
only guaranteed to match branches in the branch decomposition if
no W-structures are present. In practical data, W-structures exist (as
we will see in Section 7) and persistent homology gives a different
result from branch decomposition. We use the term height of a
feature to refer to the difference in value along a superarc to avoid
confusion with the formal definition of persistence.

Given a simplified contour tree, visualization interfaces can be
built that show only the most significant features or contours, and
allow visual manipulation [9] of the remaining features, or extraction
for subsequent processing with other algorithms. In essence, the goal
of this paper is to replace the previous serial algorithms for geometric
measure computation, simplification, branch decomposition and
single isosurface extraction with data-parallel equivalents so that
they can be run in an in situ environment efficiently.

2.2 Parallel Tree Operations
A fundamental parallel tree algorithm is parallel tree contraction [14,
21]. Parallel tree contraction is a bottom up technique where we start
at the leaves of a rooted tree and move inwards in stages. In every
stage all leaves with a different parent are processed independently
in parallel. Once all leaves are processed they are discarded (raked)
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Figure 2: On the left is a contour tree whose vertices are annotated based on how and when they’re processed by the parallel tree contraction
algorithm. On the right is a hypersweep of the same contour tree annotated with the hyperstructure. While the two methods are substantially
similar, minor differences arise because PPP [11] alternates upper and lower leaves, and because only monotone chains can be compressed.
Even in a small tree, this leads to differences between the two methods, as can be seen in the operations Rake 2 and Iteration 3 (Lower).

and new vertices become leaves. If the tree is unbalanced the rake
operation serializes the computation along chains of vertices of
degree two. Those chains can be contracted using pointer doubling
or a prefix scan. After a logarithmic number of rake and contract
operations the whole tree is contracted to its root. At the end every
vertex accumulates the value that corresponds to evaluating the
expression over the subtree whose root is that vertex.

As we have noted above, the merge phase of the PPP algo-
rithm [10] is a variation of parallel tree contraction, but with several
differences. First, the hyperstructure only collapses chains whose
vertices are monotone in value: this property is required to support
binary search for data values along a path in the tree. Second, due
to the need to keep intermediate results updated, the hyperstructure
transfers upper leaves and lower leaves in alternating passes. While
it is tempting to view each pair of upper and lower iterations in the
hyperstructure as equivalent to the contraction phases, variations are
visible even in small trees, as shown in Figure 2.

2.3 The Cinema In Situ Database

Advances in processing power for extreme scale scientific com-
putation have greatly outpaced data bandwidth and I/O, impeding
visualization and analysis. A Cinema database [2] is a large collec-
tion of images which are sampled based on time, visualization object
and camera position, and stored along with metadata that allows
interactive querying [25]. Cinema is used with image processing
techniques to combine images to obtain new camera and time loca-

tions or even to reconstruct the original object using Depth Image
Based Rendering [19]. Cinema has been implemented in ParaView
as well as the open source Topology Toolkit TTK [30]. However,
since the images and the metadata are orders of magnitude smaller
than simulation raw output they can be transfered for post hoc anal-
ysis and visualization. This requires sophisticated techniques for
identifying features of interest, hence the interest in contour trees for
analysis at scale. Our approach allows us to compute the triangles of
connected components in situ and, by storing them as Cinema image
collections, reduce their size and visualize large-scale simulation
runs interactively on commodity hardware.

3 HYPERSWEEPING GEOMETRIC MEASURES

The first contribution in this paper is to describe data-parallel com-
putation of geometric measures such as volume and height (if not
persistence), and to use them to construct branch decompositions.
Geometric measures describe properties of a region bounded by a
given contour, i.e. a region corresponding to a subtree of the original
tree. This means that the volume (for example) is determined by
all superarcs in the subtree, not just the final superarc at which the
subtree is rooted. We will need to evaluate arithmetic expressions
over subtrees of the contour tree and so we look to the parallel tree
processing technique we discussed in Section 2.2.

Since parallel contraction is well-established, we will not illus-
trate the process in detail, restricting ourselves to the computations
of interest, and commenting on how the variation of the hypersweep
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Figure 3: Hypersweep Computation of Geometric Measures based on the Parallel Tree Contraction [21]. Vertices are labeled with their scalar
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(Left), we initialize each supernode to the number of regular nodes on its superarc, then propagate towards the root with a prefix-sum. For
sub-tree minimum and maximum (Centre and Right), we re-root the tree to the global minimum (maximum), initialize to the supernode’s data
value, then propagate by prefix-minimum (maximum). Shades of grey are the iteration in which a node gets a final value.

from parallel contraction affects the algorithmic analysis. We illus-
trate this in the left-hand column of Figure 3, where we compute an
approximation of contour volume by counting the number of con-
tained regular nodes [29]. In this image, we use shading to indicate
which nodes belong to which iteration of the contraction. Each pair
of iterations in the hypersweep normally corresponds to a single
iteration of the parallel contraction, although there are edge cases

where the exact order is different.

In the absence of W-structures [17], the chains in each pair of
sweeps will remove the same supernodes as a single iteration of the
parallel tree contraction: since this is a constant factor, the overall
analysis is unchanged. In the presence of W-structures, however,
the hypersweep cannot be bounded by O(lg t) time complexity and
O(t lg t) work where t is the tree size. We have demonstrated else-
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where [6, 17] that in practice the work is still bounded by O(t lg t),
and that the time complexity is typically better than O(lg t).

Subtree Volume: We know [9] that the number of regular nodes
in a subtree approximates the volume of the regions represented by
branches of the contour tree. While we could do a hypersweep with
regular nodes rather than supernodes, it is less efficient. We therefore
use prefix sum operations to compute the number of regular nodes on
each superarc as the initial value at each supernode, as shown in the
left column of Figure 3. We use shading to indicate the iteration in
which these values are propagated inwards by prefix sums, resulting
in the final tree sizes visible in the lower register.

3.1 Branch Decomposition and Subtree Height
Once we have established subtree volume, we build branches by hav-
ing each vertex choose locally the superarc with the highest ascent
and descent. The branches are then groups of adjacent superarcs that
greedily maximize subtree volume or for that matter any geometric
measure we have defined on the subtrees. We demonstrate this in
Figure 4 with a black dots on the edge adjacent to the best up and
best down of each supernode. After each vertex chooses the “best”
ascent and descent, we use pointer-doubling to collect the branches.

Building the standard branch decomposition [27] based on branch
height is more difficult. When there are no W-structures in the
contour tree each vertex can select the highest (or lowest) reachable
maxima (or minima). In the presence of W-structures we need to
compute the longest branch in every subtree. This makes the existing
branch height decomposition difficult to compute in parallel. We will
deal with this in more detail in Section 7.2. Now we will introduce
an alternative geometric measure that is readily parallelizable.

Instead of branch height, we consider subtree height for the
branch and all child branches. We define subtree height as the
difference in function value between the maxima and the minima
of a subtree. This means that we need the minimum and maximum
values in every subtree from the root outwards. As we will see later
Figure 10, this gives a slightly different branch decomposition than

previous definitions, but only in the presence of W-structures.
We can now frame this in terms of a hypersweep operation: to find

the minimum value in each subtree, we re-root the hyperstructure at
the global minimum, then apply a hypersweep with the minimum
operator. Re-rooting the hyperstructure is fairly straightforward: we
select the global minimum m, and identify the hyperarcs along the
path P between it and the previous root r, at a cost of at most |P|.

All paths from the leaves to the root terminate at the root r or
at this path P. We convert this path to a new hyperarc (which may
not be monotone) with at most the same number of iterations as
before. This new hyperac is shown in the upper register of the
middle column in Figure 3 as a thick red edge. We then hypersweep
to propagate minima through the tree towards the minimum m, as
shown. Similarly, the right column of Figure 3 shows the re-rooting
and hypersweep to compute subtree maxima.

In the next stage of the computation, shown in Figure 5, we
annotate every edge in the tree with two values: the minimum in the
direction of the hypersweep, and the minimum in the other direction.
Of these, the minimum in hypersweep direction is set to the value
just computed. The minimum in the other direction will always be
the global minimum, since it is the new root of the tree.

For example, in the left top corner, the vertex with value 86 forms
a subtree, and the propagated minimum value, 86, is the value we
use when pruning towards the root: the global minimum value, 0, is
the value when pruning away from the root. Now, for each possible
pruning (i.e. at each end of the superarc), we add the value of the
supernode itself, then take the maximum and minimum of the three
values: thus, if the supernode value is the lowest, it replaces the
minimum, if the highest, it replaces the maximum. Finally, we
subtract minimum from maximum to get the subtree range.

Considering vertex 86 once more, pruning at the lower end of
superarc 86−55 gives a subtree minimum of 86 and maximum of
86. We substitute 55 for the minimum, and compute a subtree height
of 31. Further in, at the lower end of superarc 30−4, the maximum
is 86 in the upwards subtree and the minimum 30. Replacing 30
with 4, we compute an upwards subtree height of 82.

3.2 Simplification
Having computed our geometric measures and branch decomposi-
tion, simplifying to a threshold amounts to ignoring branches of the
contour tree that fail a logical test. For example, suppose we want
to ignore all branches that involve less than 1% of the data. This
is achieved by testing all superarcs to see whether their volume (or
height) is over the threshold, which is trivial to do in parallel. If de-
sired, the “weight” of the pruned branch can be retained by keeping
the terminal superarc as an augmenting node in the simplified tree.

4 FEATURE EXTRACTION

Once the contour tree has been computed, decomposed and sim-
plified, visualization interfaces extract contours corresponding to
selected superarcs. In prior work [9], the user interactively selected
contours and manipulated them visually. While this is still possible
with the data-parallel contour tree, one goal of in situ visualization
is to defer user interaction until later. We adopt an alternate solution
- local contours [9], where we choose a relative isovalue on each
branch - normally 50%, or halfway along it.

Previous work [9] adapted the continuation method [32] to extract
single contours, but this approach is essentially serial. Instead we
extract a contour for a branch using marching cubes and a method
based on searching the contour tree [31]. First we use a parallel
implementation of marching cubes to extract an isosurface for the
isovalue of that branch. Next we filter out the triangles produced by
marching cubes that do not belong to the branch.

To determine if a triangle belongs to a branch consider a mesh
edge u,v that intersects the triangle. Since the path from u to v in
the mesh is monotone there is monotone path from u to v in the
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(third tree). For W-free contour trees, the result is guaranteed to be identical to the standard branch decomposition and persistent cancellation.
For trees with W-structures, a side tree may have a larger range of values than the obvious choice, so some arcs will differ.

contour tree. Therefore along that path there is a superarc whose
endpoints’ values contain the isovalue for the branch. We search for
that superarc with the hyperstructure because it supports efficient
search for regular points at logarithmic cost [6]. If that superarc
belongs to the branch we keep the triangle, otherwise we discard it.

Each such contour can be extracted in O(k lgT ) time, where k is
the size of the entire isosurface, and O(lgT ) is the cost of searching
the hyperstructure to find the corresponding superarcs. For a small
number of contours (e.g. 10 or 20), we iterate over their superarcs
and values to generate them, with the advantage that we will extract
them as separate surfaces and can render them accordingly. For large
numbers of contours, each mesh cell (or mesh edge) can search for
the corresponding path(s) in the contour tree and compare them all
at once, but we have not yet implemented this variation.

5 CINEMA INTEGRATION

To demonstrate integrating our parallel methods into a full visual-
ization pipeline, we developed the “contour visualizer” application
prototype. Our goals in developing this application were: (i) to
extract a representative set of contours from the scalar field with
minimal user interaction; (ii) utilize high-performance computing to
handle large-scale data sets; (iii) to use standard scientific visualiza-
tion libraries for easy integration into existing project.

We implemented the hypersweeps described in Section 3 as part
of the VTK-m project, and integrated them with the existing Cinema
database application, using a two stage visualization pipeline. In the
first stage, we extract, compress and store features from scalar fields
in a Cinema database. In the second stage, we read images from
this database, reconstruct features from depth images and visualize
them. All of the methods developed have been contributed to the
development branch of VTK-m, and are available for use.

Our input is assumed to be a standard VTK image format. While
our current implementation works with regular, rectilinear grids,

the underlying algorithms employ the topology graph abstraction
referred to in Section 2, and are valid for any simply connected mesh,
subject to writing suitable adaptor classes.

We compute the contour tree of the scalar field, assuming march-
ing cubes connectivity, using the VTK-m [22] implementation of the
parallel peak pruning algorithm [6, 11]. Subsequently, we compute
the branch decomposition (as described in Section 3) either using
subtree height or volume as the simplification measure and simplify
the branch decomposition to a specified number of branches.

As described in Section 4, we then simplify the contour tree to
the top 10 most important branches, and extract one representative
contour per branch in local contour mode. At present, we usually
choose the 50% isovalue on each branch, but we have also used the
1% isovalue to select contours very close to the critical point: in
future we expect to choose multiple contours along each branch.

After single contour extraction in situ, the first stage is complete,
and we save depth images from varying camera positions for later
reconstruction [19] based on a TTK [30] implementation in order to
avoid saving large meshes of millions of triangles.

The second stage supports post hoc exploration of the data arti-
facts stored in the Cinema database. We first read all depth images in
the cinema database and reconstruct each feature individually using
the TTK [30] implementation of the VOIDGA algorithm [19]. The
quality of the reconstruction depends on image resolution, camera
placement and number of viewpoints in the Cinema database.

As with the Cinema database in general, our project can use
different front ends. For some purposes, we use ParaView and
TTK, but for others, we implemented a simple web server and web
interface to reduce the learning curve for end users. We implemented
this using node.js for the server and Three.js for the front end.

The quality of the reconstruction can vary but does not need to
be perfect, only good enough for the user to get a general idea of
the data. Should the user require the original features they can be
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retrieved at a higher bandwidth and time cost, and we will explore
the best parameter choices for in situ visualization in the future.

This visualization pipeline is an improvement upon previous ones
such as [3]. Every step in our pipeline is fully data-parallel and it is
implemented using popular open source visualization libraries such
as VTK-m and TTK. Furthermore our pipeline adds the additional
step of reconstructing the depth images in 3D.

6 APPLICATION EXAMPLE - WARPX
Figure 1 shows the application of the automatic contour selection to
the transverse electric field (Ex) of a WarpX laser plasma particle ac-
celerator simulation. Plasma-based accelerators use short (≤ 100 f s)
ultrahigh intensity (≥ 1018W/cm2) laser pulses to drive waves in
a plasma. Electrons that become trapped in the plasma (or exter-
nally injected electron or positron beams) are then—much like a
surfer riding a wave—accelerated by the wave to high energy levels.
Understanding the structure of the electric forces generated by the
plasma wave is critical to the design and optimization of plasma-
based particle accelerators and understanding of the fundamental
physical phenomena. In this context, the difference in function value
(i.e., height of arcs in the contour tree) is an important measure of the
strength of the electric forces generated by the corresponding feature
(i.e., contour) in the electric field. As Fig. 1b shows, using height as
importance metric allows us to automatically identify the features
with the largest focusing gradients in the transverse electric field

Figure 8: Scaling using 1 to 64 threads on the 2D Scaled GTOPO
Datasets (log/log). The grayed out polygon is perfect weak scaling.

Ex, describing the primary structures of the electric field generated
by the plasma wave driving particle acceleration. By rendering the
contours in situ and storing for each contour a separate depth-image
in a Cinema database, users can interactively explore, visualize, and
compose the features post-hoc. By storing the additional metrics
computed from the contour tree (e.g., volume and persistence of
contours) alongside the generated depth images, enables quantitative
analysis of the contour-based features and interactive query of the
Cinema database to search for relevant contours.

7 EVALUATION

Next we evaluate the compute performance of our implementation
(Sec. 7.1) and how well it picks out significant contours (Sec. 7.2).

7.1 Performance
As noted above, our implementation is freely available in the open
source VTK-m library [22]. However there is no implementation of
branch decomposition in any other actively maintained visualization
library (TTK and VTK). To ensure consistency between methods,
we re-implemented branch decomposition in serial. It performed
with about the same running time as the parallel branch decomposi-
tion on a single core. We have not included those specific running
times because our serial branch decomposition was implemented as
reference for comparison not with performance in mind.

We ran tests on standard data sets well known in the visualization
community or that we have used previously [6, 11], and refer the
reader to the appendices of those papers for full details. The Asteroid
dataset is freely available courtesy of LANL, the WarpX dataset is
not freely available at present.

Our primary test system is the NERSC Cori supercomputer at
Lawrence Berkeley National Laboratory, whose Haswell compute
nodes have two 16-core Intelr Xeon TM E5-2698 v3 CPUs with two
hyperthreads per core, clocked at 2.3 GHz and with 128GB DDR4
main memory at 2133Mhz. We compiled and used the VTK-m
library with Intel’s Thread Building Blocks (TBB) threading API.

We first computed the augmented contour tree for each data set
using VTK-m’s contour tree filter [6]. Next we compute the branch
decomposition of every data set with a range of 1, 2, 4, 8, 16, 32
and 64 cores. Finally we compute the branch decomposition over
the GTOPO30 data set with 64 cores, but with different scales of the
data. This way we can study scaling on a set of related data sets.

In Figure 6, we show timings for the Pawpawsaurus data set. We
have chosen Pawpawsaurus because it is one of the largest data sets
we have available in terms of regular and super node count. We
therefore expect to see the scaling of the hypersweeps, rather than
the cost of initialising parallel data structures. Here, we see the most
performance gain in going from 1 to 2 cores and then to 4 cores and



Contour Tree Compute Tree Hypersweep Branch Decomp Ratio Ratio
Dataset Dimensions Supernodes seconds seconds seconds HS / CT BD / CT
Hydrogen Atom 128x128x128 13,038 0.399 0.001 0.025 0.33% 6.47%
Aneurism 256x256x256 65,625 2.793 0.003 0.039 0.12% 1.39%
Bonsai 256x256x256 192,067 3.153 0.007 0.072 0.23% 2.30%
WarpX E x 6791x371x371 288,807 317.191 0.005 0.055 0.01% 0.01%
Asteroid 500x500x500 881,831 23.160 0.018 0.258 0.08% 1.11%
Backpack 512x512x373 7,441,922 27.990 0.118 1.431 0.42% 5.11%
Spathorhynchus 1024x1024x750 44,554,912 330.926 0.459 7.299 0.13% 2.20%
Kingsnake 1024x1024x795 55,778,125 268.833 0.589 8.887 0.21% 3.30%
Pawpawsaurus 958x646x1088 89,117,386 352.491 0.979 13.841 0.27% 3.92%
GTopo30 at 0.03125 675x1350 72,276 0.236 0.002 0.014 0.98% 6.21%
GTopo30 at 0.0625 1350x2700 271,772 0.735 0.004 0.036 0.65% 4.95%
GTopo30 at 0.125 2700x5400 991,480 2.571 0.004 0.036 0.18% 1.41%
GTopo30 at 0.25 5400x10400 3,579,117 10.387 0.012 0.108 0.12% 1.04%
GTopo30 at 0.5 10800x21600 12,688,670 44.054 0.038 0.353 0.08% 0.80%
GTopo30 at 1.0 21601x43201 36,912,523 172.301 0.381 3.981 0.22% 2.31%

Table 1: Once the contour tree and hyperstructure have been computed, hypersweeps to compute secondary properties are highly efficient,
adding less than 1% extra time. Our modified branch decomposition, which uses multiple hypersweeps, is a negligible additional cost. Note that
the number of supernodes and timings for all data sets differ from the ones reported in [6] because we are using marching cubes connectivity.

Dataset Branches W Diam Difference
shockwave 333 3 0 0.0000%

marschner lobb 810 4 0 0.0000%
neghip 976 4 0 0.0000%

hydrogen atom 6,532 4 0 0.0000%
aneurism 33,139 4 0 0.0000%

bonsai 96,993 5 8 0.0082%
tooth 151,302 5 4 0.0026%

statue leg 223,469 6 13 0.0058%
foot 444,616 7 44 0.0099%

mri ventricles 1,159,963 6 77 0.0066%
skull 1,130,490 7 155 0.0137%

backpack 3,813,085 7 315 0.0098%

Table 2: Differences from the standard branch decomposition [27].
Both decompositions have the same number of branches, but some
leaves can be paired differently. This is due to differences between
branch height and persistence in the presence of W-structures [17].

8 cores. This is also visible in Figure 7 where the speedup of the
hyperswep and the branch decomposition is 3.1 and 6.8 respectively.

Similarly Figure 8 suggests that while the scaling is not linear
(gray area in the plot) the performance is still good in practice. This
is further supported by Table 1 where we can clearly see that the
hypersweep and branch decomposition are only a small fraction of
the computation time of the contour tree. On average the branch
decomposition is only 1.76% of the contour tree computation time,
so we do not yet see the need for further optimization.

An important reason for the good practical performance of our
methods is the topological complexity of the data sets. Remember
that our methods do not scale with size of the input mesh, but rather
the number of supernodes of the contour tree of the mesh, As we can
see in Table 1 the number of supernodes in most tests is roughly an
order of magnitude smaller than the number of regular nodes. Even
though a serial method would have sufficed in some tests the need
for parallelization will become even more apparent in the future with
data sets with more topological complexity or sampling noise.

Furthermore (as pointed out by a reviewer) there are many practi-
cal situations, such as time varying domains or ensemble runs, where
multiple contour trees need to be computed. For each contour tree
we may need multiple branch decompositions if we do not know
which geometric measure would be most useful beforehand. Those

computations add up and any speedup over a serial implementation
with optimal work complexity is valuable. Finally when accelerator
devices such as GPUs are used for contour tree computation our par-
allel implementation allows us to avoid the high cost of inter-device
data transfers to CPU for secondary computations.

7.2 Feature Significance
In this subsection we’ll consider how the difference between our
subtree height decomposition and the standard branch height de-
composition impacts feature selection. In Table 2 the two branch
decompositions typically differ in only a small number of branches.
Moreover, we know from Section 3 that the two are identical in
contour trees with no W-structures (i.e. those with W diameter of 2
or less. In the table, we see that this is the case, and that in fact, the
smallest W-diameter where different decompositions emerge is 5.

Figure 9 shows the effect of choosing the top 10 contours from
the aneurism data set, suppressing noise components. Here, both
volume and height choose similar top 10 contours. In general, as
before [9] volume can be more effective than height, but not always.

In some data sets, the standard branch decomposition is less ef-
fective than our new parallel-friendly subtree height decomposition.
In Figure 10 we show the result of choosing the top 20 features
with the two methods. A large boxy object is visible when subtree
height is used, but not when branch height is used. The relevant
structures in the contour tree are the six illustrated branches (out of
over 3,000,000 total branches). Notice that the W-structure rooted
at 0b means that the standard branch decomposition treats this fea-
ture as less important, but the new subtree height decomposition,
which looks at the height of the entire subtree, displays it.

This does not indicate that the branch height decomposition is
invalid, merely that it is imperfect, and that the subtree height is simi-
lar and similarly imperfect. However, the new height decomposition
is easier to compute in parallel, which is worth having.

8 CONCLUSIONS AND FUTURE WORK

We have now completed the first stage of our research into in situ
topological analysis - the construction and implementation in data-
parallel of the full set of algorithms needed to apply topological
analysis at scale on a single computer. This involved the initial
work on the PPP algorithm [11], the extension to fully augmented
contour trees [6], the implementation of geometric measures, sim-
plification and branch decomposition, and of integration with the
Cinema database, including single contour extraction.



(a) Isosurface of the Aneurism data set. (b) Feature extraction based on height. (c) Feature extraction based on vol-
ume.

Figure 9: In an isosurface of the scalar field a) we can observe a lot of sampling noise. To remove the noise we use branch decompositions
based on height b) and volume c). Both branch decompositions pick out a similar set of features with varying significance ranking.
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Figure 10: W-structures in the Backpack data set. Because of a W-structure ending in 0b, the left subtree at 934 has a larger overall height than
the right subtree, giving a different branch decomposition than Pascucci’s [27]. On the right: the top 20 features chosen with each method.
While the standard branch decomposition detects the box as feature 39, the subtree height decomposition works better in this instance.

As part of this, we introduced the hypersweep - a data-parallel
method for computing properties in contour trees, based on parallel
tree contraction. We implemented the hypersweep in the open source
VTK-m library and used it to develop a proof of concept in situ
visualization pipeline using the Cinema database.

Our main research focus in the future, however, will be to continue
the task of scaling up topological analysis by developing hybrid
algorithms for use on distributed clusters of massively multicore data
parallel nodes, such as exemplified by the Summit supercomputer.
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