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Abstract

The ground-state enerq1es of H2, L1H L12, and HZO are calculated
by a fixed-node quantum Monte Carlo method, wh1ch is presented in
detail. For.eachlmolecule, relatively simp]e.tr1a1 wavefunctions,
WT’ are chosen. Each WT consists of a single Slater determinant -

of mo]ecular orbitals mu1t1p11ed by a product of pair-correlation
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(Jastrow) functions. These wavefunctions are used as imgbrtance
functions in a stochastic approach that solves the Schroedinger
equation by treatfng it as a diffusion equation; In this approach,

WT serves as a "guiding function" for a random walk of the electrons
through conffguratiqn space. In the fixed-node approximation used
here, the diffusion process is confined to connected regions of space,
bounded by the nodes (zeroes) of Y;. This approximation simplifies
the treatment of Fermi statistics, since within each region an elec-
tronic probability amplitude is obtained which does not change sign.
Within thése approximate boundaries, however, the Fermi problem is
solved exactly. The energy obtained by this procedure is shown to be
an upper bound to the true energy. For the molecular systems treated,
at least as much of the correlation energy is accounted for with the
relatively simple W%'s used here as by the best configuration

interaction calculations presently available.



1. Introduction

Accurate calculations of molecular properties such as binding
energieé, bond'stfengths, charge distributions, and potential energy
surfaces are an important goal of quantum chemistfy. Most approaches
in use tbday:for such calculations involve some combination of the
multiecbnfiguratfpn'self;consistent~fie1d and configufation interaction

2 'In this

(CI) methods,l or invp]ve many-body perturbation theory.
paper, however, we use é quantum Monte Carlo scheme_which in principle
‘can give exact resu]ts;'

Configdration.interaction wavefunctions, for example, have been
able to éccbunt typically for about 75% of the cofre1ation energy3 of
a mo]écdle”shch a's'water.4 However, much interesting chemistry
occurs on an energy scale of only a fractioﬁ of the corre1atjon
energy. For example, the 0-H bond strength in water is about 50% of-j
‘ tﬁe cofkelation.energy. Thus, the ground-state energy computed using
large CI wavefunctions differs from the exact (non-re]ativisﬁic,
Born—Oppenheimer)'energy by an amount on this same order of magnitude..-
Furthermore, it can be difficult to improve CI results because
»convergence to the -exact result is slow and can be non—uniform.5 An
additional limitation with CI is that the computational effort
increases with somewhere between the fourth and fifth power of the
number of electrons in the mo1e§u1ar‘system, effective]x restricting
the size of molecules the method can treaf.

A direction that shows promise, and avoids the inherent limitations
of éxpansioh approaches, is the use of quantum Monte Carlo (QMC) |

methods;s'l8w'These methods were developed and used primarily in the
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fields of nuclear and condensed matter physics. Only recently have

chemical calculations by QMC methods been carried out.u’M’N’18

QMC méthods are of both the variational type,g’lz’18

in which the
Monte Carlo method is used to numerically evaluate expectation values
obtained from a given (generally optimized) trial wavefunction 4%,
and of the "exact" fype in which the Schroedinger equation is solved.
In these latter approaches it is not necessary to compute'a‘high1y
accurate wavefuhction in order to determine molecular properties.
Instead, these QMC methods use various procedures to stochastically
sample the exact wavefunction, Q(E), of a molecular system, subject
only to statistical errors. Properties of.interest are in effect
"measured”" as the system evolves under the Schroedinger equation.
When a stationary state is obtained, averages of the measured
quantities provide the desired expectation va]ﬁes.

Récent developments in the exact QMC methods inc1ude a reduction
in statistical error10’14'17 by use of importance Samph’ng,19 and

11,14-17  thaese developments

the ability to treat Fermi statistics
are described here, and have been used in the calcu1ation of the

ground-state energies of HZ’ LiH,_Liz, and HZO which we report. We

-use a "fixed-node" approXimation15'17 to treat Fermi statistics. This

approximation may be rehoyed, however, as has been done for the _ ' .
homogeneous electron gas.ls' It is employed here because it simplifies
the calculation, and can be argqued on physical gfounds as representing
a very good approximation. A EoStiori, the fixed-node approximation
is justified by the results, since this procedure yields accuracies

comparable to or better than the CI method. Furthermore, in this
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stochastic approach the combutationa] time rises only with the éecond
power of the number of electrons in the molecute. 20

The outline Qf“tﬁ?é paper is as follows. In Section 2,lwe preseht'
the stochastic diffusion method for solving the’ Schroedinger equation.
We-also discuss importance sampling, the choice of the trial function
WT, and the fiXed-node approximation used to tfeat Fermi statistics.
Furthermoré; we demonstrate that the fixed-node approximation'retains
the character of a variational methoqf—i.e., that the ca1cu1atéd energy
is an upper boupd‘to'the true energy. In Section 3 we outline the‘
algorithm used for the QMC calculations. We present and discuss results
for'Hz, LiH, Liz, and H20 in Section’4.‘ A summary and conclusion

comprise Section 5. Finally, the Appendix gives the details of the

trial wavefunctions used in this study. ‘

2. Diffusion Monte Carlo

A starting point of'thié approach is to write the Schroedinger

equation in imaginary time as

Here D = ﬁ2/2me, R is the 3N-dimensional vector specifying the
coordinates of the N electrons of the molecule, t is imaginary’time

measured in units of H, and -

2 2
Ze Z7.e .

= +Z____—°'r8 . o (2)
a8 '

' 2
V(R) = > - - 2.

- i>j 1j i,a ia a>8

is the potential energy of the molecule. Also, rab = IPA—SEI,
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Roman indices label electronic coordinates, Greek indices label
nuclear coordinates, e is the electron charge, and Za is the atomic
number of nucleus‘a.' ET represents a constant shift in fhe zero of
energy, whose introduction proves useful.

The objective is to obtain the solution to the time-independent
Schroedinger equation. As is apparent, this may be obtained from a
steady-state solution to Eq.(1l). Let us solve Eq.(1) by expanding
®R,t) in a complete set of eigenfunctions ¢i(g) of the Hamiltonian,
and substituting this expansion into Eq. (1). One fihds

)t

6. (R) | (3)

1

~(E -E.
oR,t) <5 Ne T
-i

where Ei are the energy eigenvalues corresponding to the ¢i(3)‘

The coefficients Ni depend on the initial conditions. At sufficiently ’

long times, only the term with the lowest energy survives in Eq. (3).

~ Hence if N # 0, the asymptotic solution to Eg. (1) is

-(E -Ep)t ' ,
Rt =he O R . W

If ET is adjusted to be the true ground-state energy, E_, the asymp-

o’ _
totic solution is a steady-state solution, corresponding to the ground-
state eigenfunctionkﬁo. If, however, we require exp]icifly that ¢ be
orthogonal to ¢O, then N =0 in Eq.(3) and the asymptotic solution

gives the first excited state.

Equation (1) is a diffusion equation in a 3-N dimensional space,

and as such'may be readily simu]ated.11 Here @(E,t) plays the role
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of the_density of diffusing particles. If fhe [ET - V(R)J® term
were absent, Eq.(1) would be the usual difosiOn equation, with a
diffusion constant D--the coefficient of the Laplacian. This simple
equation éan be simulated by a random walk of particles through
configuration space--the well-known “drunkard's walk". On the other
hand, if the term [ET - V(R)]% were present alone on the right—hand
side? Eg. (1) would be a rate equation, describing branching processes
“such as radioactive decay or exponential birth and death processes in
a popu]afion.. Thus, the enfire equation can be simulated as a
combination of a diffusion and a branching process, in which the
number of diffusers increases or decreaées at a'given point
’ propOrtiona] to the density of diffusers already there. This
branching serves to decrease the probability density in regions where
V(R) is 1arge,.and enhance it in regions of~favorab1e potential ehergy.
-For the diffusion fnterpretation to be valid, however, ¢ must
always be positive, since it %s a population density. ¢ may also be
everywhere negative, since the overall phase of the wavefunction is
arbitrary. Thus, at first glance, it seems that the process is
_.restricted to functions ¢0(3) that have no nodes, such as for Bose
systéms in their ground state. If, however, éo does have nodes, and
hence changes sign as in a Fermi system, the apparent limitation of
the diffusion analogy can be dealt with by treating positive and
negative regions separately. If we do not allow diffusion between ‘
these regions, we have the fixed-node approximation. Releasing this
constraint will not be pursued here,.but w111 be the subject of a

subsequent paper. |



Importance Sampling

Solving Eq. (1) by a réndom-waTk process with branching is
inefficient, because the branching rate--which is proportional to the
Coulomb potential V(E)--can diverge to #= This leads to large
fluctuations in the number of diffusers,‘and to slow convergéncé when
calculating éQérages such as <V(5)> and hence EO. However, the

fluctuations, and hence the statistical uncertainties, can be greatly

reduced10’14_17-by the téchnique of importance samp]inglg.

Importance sampling enables one to work with a probability _
14

distribution other than &(R), to obtain the same averages. Anderson

~.

has explored several ways of using known propertiés of the ground state
to reduce statistical f]uctuations. Here, howéver; wé use a simple

10, sincé

method introduced earlier by Kalos for many-Boson systems
this method is‘most readily genéra]ized to many-electron systems, and
: provides a convenient way of dealing with Fermi statistics. One simply

multiplies Eq.(1) by a known trial function, 4%(R), and rewrites if,

~

9
~

in terms of a new probability distribution f(R,t) given by

Rearranging termé in the resultant equation leads to

DR pv 2 (g R) - Ep) £ OTSFR) ) . (6)

Here EL(R) = H¥ /¥ is the local energy obtained from the trial

~

function, and FQ(E) = V!Ln[‘PT(E)I2 = 2VN%LB)/WT(&). The quantity FQ
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p]ays the role of a "quantum force," as may be seen from a classical
analogue. - If we equate the quantum mechanical probabi]ity distribution
IYTIZ with a'Boithann probability e_sU, (thereby defining U), then

FQ is proporfiona] to the force due to the potential U. In fact, eQen

in the quantum céée, WT is often written as an exponential of a sum’
over pseudopotentia]s.ZI' ‘ |

Equation (6), which incorporates importance sampling thrdugh WT,
is"a diffusion equation‘for a density function f(g,t). The branching
term is now proportional to the "excess local energy" (EL(B) - ET),
which, unlike the original branching term, with a good choice of ¥y
need not become singular when V(E) does. Thus, to control branching we
need to choose WT such that EL is everywhere as smooth as

possib]e.22

In particular, WT should have the correct cusp behavior
as any two particles approach each other.23 As ¥y better
A approximates the EOrrect wavefunction, EL(B) will tend to approach
EO throughout configﬁration space. As a conséquencé, the excess local
energy becomes independent of R, -and branching can be greatly reduced by
- a propef'choice of E;.

Also, an additional term DV-(fFQ) now appears in Eq.(6). This new
term acts to impose a directed drift velocity on the diffusion, just as

24 gives the correction to

a similar term in the Smoluchowski equation
Brownian diffusion in an external potential. In regions of low
probability--where WT(B) is small--one can see that FQ(g) is 1arqe,

and hence any diffusers reaching such.a region are driven away. Thus,

‘the advantage of Eq. (6) over Eq. (1) is that the diffusion process for

f(R,t) is guided by WT (through the force FQ), so that sampling is
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performed preferentially in regions where WT is large. Hence, it is
evident that importance sampling will be most useful if WT is a good
approximation to 60. In fact, as y » éo, EL(B) > E0 independent
of 5. Thus, in this case, the variance and hence the statistical uncer-
tainty of <EL> will vanish. In practice, importance sampling with a
good approximate trial function containing whatever information is known
about the exact wavefunction--such as the cusp conditions--yields
averages with much lower statistical uncertainties than can be obtained
without importance sampling. | 7

Note that from Egqs. (4) and (5), the asymptotic solution to Eq.(6) is

-(E -E)t '
o T (7)

‘By adjusting ET one’may achieve a steady-state solution where, on the
average, the branching leads to no net change in the bopu1ation. The
value of ET obtained in this way is the energy Eo. Actually, as we
shall see later, the average <EL>, taken as the é]ectrons diffuse,
will also yield EO——even when Y1 is approximate. Were it not for
the branching term, however, this average would be edua1 to the
expectation value <WT|HIWT>, since the solution to Eq.(6) would then be
f;|wT12. In other words, with0qt branching we would obtain the
variétiona] energy of Y15 rather than E .

Sampling from the distribution f=|\PT|2 is the basis of the
variational QMC method.8’12’18 Although, with good choices of ¥,
the variational QMC procedure can yield accurate results, there is little

justification in using that method when a minor modification in the
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stochastic. procedure (i.e. adding the branching term) can eliminate the
variational approximetion. Thus, in the procedure used in the present
computations it is possible to obtain higher'accufacy~than the N
variationa1 method since YT is on]y the starting point, and branchinq
serves to correct the distribution IW |2 in regions where it 1s

‘ poor We discuss the details of the fixed-node QMC solution to Eq. (6)
and the caicu]ation of E in Section 3. First, we discuss our choice

of ¥, and the problem associated{with Fermi statistics.

Choice ofiYT | |
| ,As discussed above, the role of WT(R) in the fixed-node QMC method
is that of a quiding function for importance sampling. As such, its role
isvprimariiy in variance reduction--i.e. a better WT leads to smai]er
| statistical errors for the same amount of sampiing. Thus, in attempting
'to reduce the statistica]_error'there is a tradeoff between using a more
elaborate formrfor ¥y (which generaiiy-takes longer to compute)vand
using a simple Wf (which must be sampled more times). In the
iixed-node approximation, however, WT also determines the location of
the nodal surfaces, where the approximate'ﬁo(g) must vanish. How well
the nodes are represented will determine how ciose to Eo one can
uitimately come. Once the nodes are established, however, the choice of
WT affects only the variance and not the expectation value of the
energy. In this paper the optimum mix of simplicity and accuracy in
choosing ¥y has not been investigated. Instead, several simple forms
for't% are used to minimize the time necessary for computing the trial

function and its derivatives. The choices are specified in the Appendix.
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In the cases treated Here, molecular orbitals ¢k are fofme& from
linear combinations of atomic §1ater—type»orbita1$ (LCAO), or are I
4Gaussian—1ike orbitals localized to the Vicinity of a single nucleus.
These in turn are used tb form a Slater determinant with the symmetry of
the ground state. VTo allow explicitly for electron correletien in the

wavefunct1on, the determinant is multiplied by a Jastrow pair-correlation

21

factor®" of the form exp(z: U ) where U = ar; /(1 ). This

13
Pad€ form is the simplest funct1on hav1ng the desired propertieé that

U1J be linear in rs ij at small r1J to satisfy the cusp cond1t1on23, and
that Uij approach a constant + O(l/rij) so that the wavefunction factors

at large rij' »Thus,

(R) = det|D o det!Dkzlexp :E: Us . (8)

~ i>3 J.

25 DS th

where kg = uk(Fk;s), s is the spin state, and ¢k is the k—

molecular orbital. Trial wavefunctions of the form (8) have been
shown to be quite‘reeSOnab1e in variatienal ca]cu]ations.m’26

The cusp condition on the wavefunction, necessary for‘cahce111nq
the singularity in V(R) when two particfes approach the same pdsition;
fixes fhe valee of a in the Jastrow factor23; the variable b, and
the parametere»in the Slafer determinanf, may be adjusted by a
variational QMC procedure, to-achieve the lowest energy. More
eophisticated Padé appfoximants for Uij may also be used. However," .
since the Jastrow factor is always positive, any such adjustments
will not change the nodes of %%. Thus, adjustment_of the Jastrow

factdr alone can only affect the variance of the energies obtained by

the method presented here.
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In add1t1on to tr1a1 funct1ons constructed from S]ater-type
orbitals, we have a]so tr1ed a s1gn1f1cant1y d1fferent tr1a1 funct1on

ll

wh1ch, for some mo]ecu]es, offers the pass1b111ty af h1gher accuracy
and éreater computattomat speea. The mo1ecu1ar orbitals, instead ofe
_ being of the LCAO form--where each atomic orbital may have a different
center—-are instead each iocalized“about'one center. Different
molecular orbitals may,_however, have.different centers. These
mo]ecu]arlorbita1s have the torm o

. - (F-)t

W (F) = exp| — — ] . | (9a)
L . wk + Vklr ",.Ck! . . )

where El, Wi and'vk are variational parameters. A Slater determi-
nant is then fqrmeq'from theserrbitalét The full triai function, in
addition to having the productvof;the Slater qeterminant with an
electron-electron correlation factor, as in Eq.(8), also has an
,eieetron—nuc1ear Jastrow factor to satiefy the cusp condition when

riaao. Explicitly, this trial function has the form

” ' Z a, rt |
. ij'ii Y fa%ia i
WT(E). = detIDzzl:detlD | exp[ :E: i +Jbr —ZE:—%—;EE;%— 1, (9b)

i>3 i,a ia

where a. e2/80 if ij are 1like spins,

iJ _ .
e2/4D if ij are un11ke sp1ns,
and a1°l =\e 2/20 The parameter b in the three cases may be
written in terms of a single parameter B as b = (a/B)lzz, where a

is either a1J or a-a. The values of 8, ck, Wy s and vk which
~we have used are glven in Tab]e AIV in the Appendix.
A tr1a1 funct1on of the form of Eq (9) has built into 1t a number

~of des1rab1e propert1es
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a) It contains the correct cusp conditions for both like and
un]ike.e1ectron spins. It is nof generally realized that the cusp
conditions for these two cases are different because of the presence
of the determinant. ‘

b) It also contains the correct cusp behavior as the
e]ectron—nuc]ear separation L becemes small. Since wk(?) is |
quadratic in r at‘the‘origin, the determinant does not affect the _
cusp behavior. Therefore, if the nuclear positions change by a small
amount it does not become immediately necessary to re-optimize the
determihant, since the trial function will change in such a way that
the electron-nuclear cusp is preserved.

c) For two separated, closedéshe1] molecules (A and B), the

wavefunction will naturally have the form

Y (Ry) % (Rg) expl- 88V(R)]  , (10)
j wﬁere BA and BB are the electronic coordinates ofvmolecu1es A and B, |
AV(R) s the potential energy of interaction of molecule A with B, and
Béa/bz. This form is reminiscent ‘of that obtained in the Hj]]eraas-
Hasse’variational treatment of intermolecular forces.27

d) If the Jasfrow factor is dropped.and Vi is set to zero, these
orbitals become floating spherica1-Gaussians (FSGO). However, the
complete trial function is superior to one constructed from FSGO's,
primarily because of the correlation factors. |

e) This wavefunction can‘be applied more efficiently in QMC
approaches to large systems, e.g., containing up to 250 electronszs.

In such large systems, trial functions made with "localized" orbitals,

such as those given by Eq. (9), will be computationally more-efficient'
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than ones formed from "de1ocalizedj‘orbitals, such as LCAO, sjnce'inw
the formef éase sparse matrii a]gofithms.hgy be. used td,caicu1ate tHe‘
S]afer detérminant and ifsninverse_matfix. Matr{x ménipu]ation for
large syétems is the most time-consuming step.

f) Fina11y,'the parameter§ in.this trial function are mﬁch‘simpler
to ihterpref.physica11y. Thus, one shéu]d be ab1e to>undérst§nd,how»
‘they will change a§ a mo1ecd1é is distorted. At large sepérations, 8.
Can.be re]atéd to the polarizability, and v*, the maximum va1ue,of o
Vs is 1/Y§TZ whefe ”I :js the-first jonization potentié].

)
e

Fermi Statistics

The diffusion equation'formU1ation requires that the density,of_
diffusers be non*negativé."jﬁ.Eq.(l)'this'requiréd that @(&,t);‘and '
hencé ¢0(5), eitherihqanno nodes—-jeading fo a Bosevgrdund state;—br:.

that we cou]d.freatvthe poéifive and negative regioﬁs bf.¢o |
| separ&teiy; 'In Eq. (és,.onlthe other hand, it isﬂf(g,t) =‘
q&(g) @kg,t) théf ﬁust hot change sign. Thus, if Yy were to have
the exact nodes of the ground statg, one coufd treat thé Fermion systeﬁ
immediately and exactly, since f would never change sign. |
Unfortunately, véry iitf]e is known about the exact 1oéafion of the
" nodes in molecular systems.29 From.symmetrylone éan only‘détermine |
points on the nodal surface. Nevertheless, an exact simulation of
Eq. (6) by QMC methods is posSib]e.15’17 Hdwever;’in fhié paber we
“deal with Fermi systems by employing the simpler fixed-node
appkoximation: we solve Eq. (6) 1n‘éach nodally bounded vo1ume of WT

separately, with the boundary*condition'that ®(R,t) = 0 at, and only
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30 In térms of the description of

at; the boundary of this volume.
diffusion with branching, this means that when a configuration diffuses
to the boundary, it is kil]éd. Thé dﬁffusion proceés thus leads to the
lowest energy solution with no ihterna] nodes (i.e., the Bose ground
state in such a bounded system)vfor each nddaT]y bounded region of

¥re The approximate‘ground state is then taken as the antisymmetrized
®(R), obtained by permutation-"réflections" of the asymptotic ®(R) in
the nodal region having thellowest energy. We show now that the energy
expectation value, caicu]ated with the approximate density f(g) =
4&(5)@ (E) is an upper bound to the true ground-state energy.

Variational principle for the fixed-node process31

“In this section we discuss the re1ation§hip between the fixed-node
énergy and_the Fermion ground-state energy Eo’ ‘Lét:the trial
function Y¥q(R,s) be antisymmetric in both the spatfhl variables r
’ana the spin variab]eé s. Further, 1et'va be the connetted volumes
in 3N-dimensional space bounded by the nodes of ?T, obtained for some
arrangement of spins 50.32 Inueach of these volumes there is a
unique ground-state eigenfunction ¢ (R,s) with eigenvalue e,

which satisfies the equations

HB,(R,s) = € 8 (R,S) Rev,

6_(R,s) ¥r(R,s) >0 | |  (11a)
and ‘ . | | -

¢ (R,s) =0 Ryv . o (11b)
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The’fixed—node:procedure solves this problem exactly in each volume . .
element [i.e., (R t) tre (g,so)]. However, each of the eigenvalues.
€y is an upper bound to the Fermion energy Eo, since for each o one can

define an antisymmeiric function
:E: P
= (—) ¢G(PB,PS) ’ : (12)
whose variational energy is

%
fdR ¢ Ho |
JoR = e > E . (13)
Jor 8.4 2 | S

Here P repfesehts a permutation of the electrons. The approximation
to é in Eq. (12) has the nodal structure of Yr. The probability .
density f ( ) = ¢ ( ) (R), is thus always non-negative, as

~

desired.

There are two\important points to note in fhis proof. First, 8u
is not idenfica]ly zero. This can be seen because ahy permufation
which maps Beva back into v, must be-even'(othépwisé va-wou]d contain
positive and negative regions of ¥;), and hence the terms in the sum in
Eq. (12) must be all of the same sign. Thus, 8 cannot be zero inside
va. Second, é may have a discontinuous gradient at the node, and
consequent]y the Lap]ac1an in the Hamiltonian of Eq. (13) could contain a
delta function there. However, such a delta function would not
contribute to the integra] since aa.is zero at the boundary.

In the fixed-node process, we attempt to populate as many of the
volumes'v& as possible. By Eq. .(3), the trial energy necessary to

hold the population of walks asymptotically constant will be given by

€ = mép (eu), where « ranges over those volumes initially populated.
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This energy is clearly also an upper bound to Eo' Thus, at large times,

the average value of the local energy will equal €’

SR/ ®R - N
<EL> = = =€, R (14)
[R) R |

where

R = (Rt >=) = D e, 6, (R,5) ¥ (Rys) (15)

a
and <, is a non-negative constant proportional to thé initial population
of va. The best upper bound (for a giVen WT) wif]Ibe obtained if all
of the volumes Vo have been populated. For the true nodes, all these
volumes will have the same energy, and it Wi]] be irre]evant how we choose
the initial ensemble. In faét, no debendence on the initial ensemble has

“been discovered for the molecular systems treated here.

3. Monte Carlo Solution

| To obtain the asymptotic distribution fw(g), which is a solution
fo Eq. (6), we begin with an arbitrary initial distribution f(BRO)——
for example, one randomly generated, or one given by IWT(E)lz'from an
earlier variational QMC simulation. The time evolution of f(g,t)vis

given by
f(R',t + 1) =de f(R,t) G(R » R', T) , | (16)

~

where the Green's function_33 G(

RsR',T) is a transition probability for
moving the set of coordinates from R to R' in time . Thus G is a
solution to the same differential equation, Eq. (6), as f, but with the

boundary condition G(Eag',O) = 5(5'—5).
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For short times T we may assume that both the local energy and the
quantum force are constant, independent of B. Then an appkoximate

Green's function solution to equation (6) is

Z3N/2 -T{[E (R)+E (R")]/2- ET} ~[R'-R-DTF (R )] /4Dt

G(R » R',T) = (4nDT) ()
. . 17

i This Gaussian probability distribufion has a mean which drifts with a
velocity OF, and a width which spreads with time as VT. This
distribution is used to move the electrons. The exponential prefactor
of the Gaussian grows or diminishes depending on the relative
magnitude of EL and E;. This change in normalization results from
~ the branching term in Eq. (6). It is carried out by creating or
destroying entire electronic configurations with a probability such
that the average number of configurations in the next time step is -
exp(-7{[E (R) * E (R')]/2 - Eq} ). |

- Thus to obtain a Monte Carlo solution to Eq. (6)--that is, to find
thé asymptotic distribution f(R,t)--one needs only to apply Egs. (16)
and (17) repeatedly for sma]] T, until t is sufficiently 1arge. Once
the equilibrium distribution for f s obtaiﬁed, one_may‘takg any
desired average over the configurations. ‘The exb]icit algorithm
follows: | |

(0) Before beginning the computatidn,tone must choose ¥:(R).

As discussed éarlier, a trial function which is compact and concise,
yet relatively accufate, is ideal [cf; Eqgs. (8) and (9)].
0pt1m1zat1on of the parameters in WT may have been carried out in
previous var1at1ona1 QMC runs, or in a self-consistent-field or a

Hartree-Fock ca]cu]ation.
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" The initial probability density f(E,O) must also be chosen} To.
increase the speed with which f(R,t) épproaches its asymptdtic,
steady-state solution, we usually choose f( R ,0) | (R)|2 | T
However, any initial choice of f is acceptable, as long as the overlap
of ®R,0) = f(g,O)/WT(E) [cf. Eq. (5)] with the ground-state 8, is
non-zero. | '

In order to compute ¥, FQ, and ET efficient]y, the inverse
of the Slater matrix is initially computed.12 Later in the
algorithm, as electrons are moved, this inverse is updated. The first
‘and second derivatives of Y., needed to evaluate FQ and ET,'can;

then be obtained readily as scalar products.

(1)- Initialize a set of Nc configurations of coordinates R,
(the "iist"), with the electrons in each configufation distributed
with.a probabi]ity density f(R,0). Typically Nc¢3100—500. If

f(R,0) IWT(R)I the initial list may be generated by choosing

configurations produced in a variational QMC simulation. |

(2) Pick a configuration from the list--assume the-next'one.is
the mEh one. The eTectronS in this cbnfiguration, will be moved,
one at a time, by letting them diffuse indépendently for a time'f;
according to the Gaussian part of the transition probability G(E}&',T).

If the current electron is the JED electron in configuration m, it is

‘moved to [cf. Eq. (17)] ' ’ - e
?3.‘“" - 7Moo My« (18)

where ;§m)’ the three-dimensional coordinate of the electron

being moved, is the JED component of R; § is a three-dimensional
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. Gaussian random variable with a mean of zero and a variance of 2DT;
and D = h2/2me is the dtffusion constant. The time step T is
chosen empirically by determining when decreasing t no longer affects
the results within resolution of the statistical uncertainty. To' =
correct for the effect of the finite time step systematically, -one
should -extrapolate the results obtained for a sequence of decreasing
values of 1. We have performed detai]ed studies of the time-step
dependence of the energy'on1y'for:the H2 mo1ecu1e. In Fig. (1) we
show the results obtained. The two curves are E = E + A T’/Z
for i=1l, 2. Here E is the exact H2 energy, and the A are
determined by least squares fits to the data. The coeff1c1ents A
will van1sh as W& approaches the exact ground- state wavefunct1on
These forms for the dependence of E were chosen because the

. 1/2.

correct1ons to Eq (17) go as powers of T 2

In both cases, a X
) test shows that the Monte Carlo resu]ts are cons1stent w1th an
extrapo]at1on of E to E o In pract1ce, we have found that choos1ng

T small enough that the re3ect1on ratio, in step (3) be1ow, is 1ess
than 1% makes the systemat1c error due to the t1me step smaller than
our stat1st1ca1 errors (cf. Fig. 1). Typically, we chose 1=0.003 -

-1 1 for the other‘ -

h™ for the water mo1ecu1e, and 1=0,005-0.015 h~
mo1ecu1es. The time-step error may a]so be eliminated by use of
Green's function Monte Carlo_method.13

'If electron j crosses a node (e.qg. as“a resu1t of the finite T‘in'
the simulation) the entire configuration is eliminated from the list.
(This forces 8,(R) to vanish on the other side of the node,

satisfying the boundary condition (11b); thus the Schroedinger
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equation is solved in each nodal volume separate]y.) If this is the
case, go back to the beginning of step (2) and pick the next

configuration. Otherwise, go on to Step 3.

(3) After electron j is "moved" according to Eq. (18), accept the

move with a probability

and G is given by Ed. (17). This step would.be unnecessary if G were
the exact Green's function, since w(g},g) Woﬁ]d be unity. This can be |
seen by writing the exact Green's function in its eigenvalue expansion.
The approxfmate Green'; function 6f Eg. (17) becomes exact as T » 0,
except perhab§ at Fig = 0. For finite.r, however, when G is on]y
apprdximate, the acceptance/rejection procedure of thfs step
.nevertheless guarantees detailed balance in our operational Monfe
Carlo transition probability G(B'> R',1) AR > &',Ti: if thjs
expreséjon replaces G in Eq. (20), W is again.unity.34 This step
guarantees fhat'as WT > ¢0, the correct disfribution, léolz, wi}] be

sampled for any 1, no matter how large.

(4) After all N electrons in the current configuration, m, have
been moved once, advance the time associated with this new
configuration R' by 1. Calculate EL(Bj) and other quantities of

interest.
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- (5) Calculate the multiplicity M, (the branching probability)
for configuration m, from the exponential prefactor of the Gaussian in

Eq. (17). Explicitly,

L

Moo= exp { -1 ([ (E(R) *+E(R)V/2 - E‘T)} . (21)

Note that the actual time that the electrons have been drifting and
diffusing is slightly shorter than Tt due to rejections in step (3).

The mean-squaried distance the eTectrons would diffuse in time T is

«rl> =60t . - C(22)
However, due to rejections, they oh]y diffuse by24

2 Je .
<" accepted” = 60T, . , ' (23)

This equation defines Tt

5 used in Eq. (21). Combining Egs. (22) and (23),

T =

2
<Taccepted” . o - (24)
a- 2 ’ o

<Ttotal”

After computing (21), place M_ copieé of the new configuration
R*(™ “back into the Tist of molecular configurations. If M_ is
not an integer, tréatvthe remainder as a probability: choose a random
number £ between'O and 1; if the remainder of'Mm is greater than"
g, round Mm up. This rounding can be achieved simply by using the
integer | |

Moo= int (M + &) A (25)
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instead‘of Mpe It s easy to see that <ﬁh> = Mm; andbhencé the

density of random walks at the point E will be given by Eq. (17).

" Note fhat if ﬁ% = 1, the total number of configurations in the 1list ~o
js unchanged,'while if ﬁ% = 0 the mEh confjguration is not

returned to the list.

(6) If M 40, weight E_(R') and other quantities of interest

by'Mm.

(7) Repeat (2) through (6) unti1 all extant configurations have

reached a target time t We generally choose t to be

target’
on the order of a few atomic units (inverse hartrees).

target

(8) Calculate the weighted mean {EL(R‘)> as an estimator of the
"ground-state” energy e [cf. Eq.(14)]. This average is the
expectation value of EL = HW%/?% sampled from the distribution

fw(R). Also calcu]afe'other desired averages.

(9) Use the cummulative estiméte of <EL> to.update the .trial
enérgybET. For better convergence, we mix tﬁis estimate with the
01d Er, so that (Ep)pey = [(Ex)grg * <€ 212 If Ey = e,
asymptotically the number of configurations in the ensemble remains

constant [cf. Eq. (4) noting Ref. 30], and thus <Mm> = 1.

(10) "Renormalize" the number of configurations to the initial
list size,_NC, by either randomly elimininating or copying from the
existing list of configurations. Reset the time counter to zero in

all configuratﬁons.
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This step completes one "block". The size of a block is

determineqkby Nc’ and the target time t On the one hand,

target®
one should choose both of these as large as possible to avoid.
introducing a bias in the renormalization procedure, and to minimize
the statistical correlation between b]bcks. Yet, -on the other hand,
one wants these quantitiés small enough that in the available

computing time there are a large number of blocks to average over, and

with which to compute variances.

.(11)_-Repeat‘steps (2) through (10) unfi] there is no systematicu
trend ref]gcted in the single block and grouped averages of <EL> and
ofher quantities. At‘this‘point steady-state has been reached, and all
traces of the initial conditions are gone. |

(12) Reset all cumulative averages. Repeat (2) through (10) until

the variance in <EL> has reached the desired level.

4. Results and Discussion

We have used the QMC algorithm described in the previoué section to-
ca]cﬁ]éte the ground}state energies of H2, LiH, Liz, and HZO' The
resuTts‘presented here are obtained for three different types of
- importance function ¥t A Jastrow electron-electron pair-correlation
function mu]tip]iéd«by a STlater determinant of molecular orbitals
constructed from (I) a minimal basis set of Slater-type atomic orbita]é,
(II) a somewhat enhanced basis.set and/or an optimized version of (1),
and (III) localized Gaussian—]ike orbita1s. These importance functions
were described in more detail in Sec. 2 [cf. Eqs. (8) and (9)].

Importance functions of type III contain a spin—dependént



24—

electron-electron Jastrow factor, and are mu]tip]ied by an additional
electron-nuclear Jastrow factor.

The values of the parameters used for WT are given in the
Appendix. The total energies corresponding to these choices are
"~ presented in Table I. For each molecule, ne compare the fixed-node QMC
ground-state enefgy with the Hartree-Fock energy, the best CI
calculation, and the "exact," clamped (i.e. fixed-nuclei or
Born-Oppenheimen), non-relativistic result. A1l our numbers are

45 2 _ ﬁzlme - 1. In

presented in atomic units, in which e
addition, to gain an appreciation for the quality of -each WT by itseif
(without the ffxed—node procedure) we give‘the results obtained with
the same ¥ 's used as variational trial wavefunctions rather than as
guiding functions. For this comparison, the variational energies have
been calculated with the same set of parameters as used in the fixed-
node QMC calculation. For most of these wavefunctions, the parameters
'haQe only been partially optimized, both to save computer time, and to
demonstrate the strength of the fixed-node procedure.' |

The difference between the variational QMC results and the exact
resg]ts is due,‘ofjcourse, to the inexactness of the trial wavefunction
WT. The statistical error bars have nothing to do with this
difference, but only meésure how accurately the variational energy of
WT has been obtained. .This‘statistical uncertainty (sténdard
deviation) is inversely proportional to the squane root of the number
of independent averages, and thus may be reduced by making more or.
longer computer runs. The difference between the fixed-node QMC

results and the exact results is, on the other hand, due solely to the
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approximation hade in forcing the ground state to have the approximate -
nodes of WT. Adain; the statistical error bars measure only the
uncertainty in the measured quantity--this tihé the ground-state
energy of the functions da (cf. Sec.Z). Numerically, the fixed-node
approximation is quite good. For a given WT, a fixed-node QMC
calculation is much superior to a variational QMC ca]cu]ation,\gaining
approximately 90% of the energy missing in the variational treatment.
In fact, the fixed-node‘procédufe may be thought of as a stochastic
method of "correcting" the variational wavefunction ¥y through the
branching process described by Eq. (6). Thus, the variational result
obtained.with:\l’T is only the starting point for the fixed-node
calculation.

For HZ; where the ground state has no nodes--since there is only.
one electron in each spin state--the fixed-node QMC results are exact,
except for the time step error (cf. Fig. 1) which can be eliminated.
The only remaining uncertainty is statistical. On the other hand,_the
same trial function (e;g. WI) used variationally rather than as a
guiding function, although better than Hartree-Fock, gives only 50% of
the correlation energy. For'LiH, the three trial functions, used as
variational wavefunctions, range from cbnsiderably worse than
Hartree-Fock to considerably better (achieving approximately 60% of
the correlation energy). Note, however, that in each case——regard]ess
of the quality of the starting WT--the fixed-node calculation brings

the result almost 90% of the way from the variational result to the

exact result. Similarly, for Liz, WI starts off worse than

~ Hartree-Fock, while WII and WIII already achieve variationally 22%
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and 62% of the correlation energy reépectiVe1y. Just as for LiH, for
all three trial functions, the fixed-node QMC achieve§ an additional
90% of the energy difference betweer the variational starting point
and the exact result, For H20, however, the quality of neither of
the two trial functions used is especially good. Variationally, WI
is worse fhan Hartree-Fock, and‘?&l‘is only about 17% better than
Hartree-Fock. Nevertheless, using the fixéd—nodé QMC with these trial
functions, almost 80% of the energy difference between the variational
and exact energiés is obtained. We have, however, beeh unable to
effectively optimize ¥1pp for water.

Considering the simplicity of our trial fuhctions, it is perhaps

remarkable that variationally we obtain with v about 2/3 of the

ITI
- correlation energy for HZ,_LiH,'and Liz{ Nevertheless, applying
the fixed-node procedure with “ifi is better still, and yields
between 95% and 100% of the correlation energy, although presently
“with a statistical errdr of about 2% of the corre]atioh energy. For
these molecules, the results obtained With 4&11 appeér to be
-somewhat superior to these obtaihed with the LCAO-type functions 4&
and H&I. The chief drawbacks appear to be the'difficulty in
optimizing the parameters in g&II for larger mo]écu]es, such as
H20, and in using spherical orbitals to represent directional bonds.
We note that for all the molecules treated here, the fixed-node
procedure appears to obtain a fairly constant fraction of the energy

that the variational wavefunction misses. Thus even the simplest

trial function, ¥, is able to achieve from 50-90% of the -
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correlation energy. Furthermore, the fixed-node procedure with our
best choice of Wf does at least as well as CI pretently does. AS 15'
clear from Table I, the results improve by choosing better WT'S,
since iﬁ'éeneral thése will more accurately represent the nodes of:the
true wavefunction. Thus there is potential for still higher absoiufe
accﬁracy, iﬁ.add{tion to the reduction in statistical error whiéh may
' be achieved by running longer. Finally, by release of the fixed—nodeA
constraint it shou]d be possible to achieve 100% of fhe cbrre]afion
energy,‘even for the simp]éét‘trial functions. This will be the
subject of a futufe'paper; - | | |

Thus far wé have used oﬁ1y a‘few hodrs of computer>time per
mo]ecu]é on a CDC 7600. fhéfé fs, however, n6 fixed amount of
computer timé thét.is necessary; more‘of less c&n be used. Thé effect
of a longer run is to inérease the precision with which fhe computed
averages, such aé the energy, are known. The error bars obtained afe
thé étandard'deviatidhs of'the meén. By running as lohg as.we'have,
we haQe reduced thesé error bars sufficient1y that for each ?& the
effect of the fixed-node approximation becomes visible. The
approximatidn‘manifésfs itself when the statisticél error bars do nbt
encompqss.the exact answer. For H2, however, where there is no |
approximation, feduCtjon of thé statistical errof will give the exact
answer more and more precise]y. |

It is also of interest to inquire whethér this approach is
appffcab]e tb nuéléar separationslaway.from the equilibrium
configuration. The QMC protedure applies equally well in this case,

and in Table Il we present some results for the the ground-state
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energy of Li2 at a few different nuclear separations. Note that we
use the same importance function--with the same parameters--for all
nuclear separatiohs.» Although this choice is not optimal, pointwise
agreement with the exact results is nevertheless quite good; However,
the estimates for the energy are statistically independent and”thus
have separate error bars. This is troublesome for an accurate
calculation of potential energy surfaces. However, work is in
progress on a differential QMC scheme, which would eliminate this
prob]em‘and give more accurate relative energies than is possible from
separate ca]cu]ations of the absolute energies.

It is also wbrth noting that the Born-Oppenheimer approximation,
used throughout, can also be relaxed. This is achieved by a]]oWing
the nuclei, -as well as the electrons, to diffuse. The diffusion
constant for_each nucleus/is then‘hZIZMnuc, where Mngc is the

mass of the nucleus. Thus the nuclei diffusé considefab]y slower than

"the electrons. This, however, may make the calculation much longer.

5. Summary and Conclusion

We have presented the theory and an algorithm for obtaining a
stochastic solution to the Schroedinger equation by treating it as a
diffusion equation, and applied it to H2, LiH, Liz, and HZO’ The
procedure described here made use of the fixed-node approximation, in
which the poSifive and negative regions of the impoftance function ¥y
are treated separately, and electrons from one regioh are prévented
from diffusing across the nodes of Y1, into another region. Using

. relatively simple forms for WT, and only modest computational effort,
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we were able to obtain at least as huch of the cqrre]ation energy as
the CI method does for the molecules treated; A further increase in
accuracy seems aiéo readily achievable. Increasing the length of the
runs reduces the statistical uncertainty (Standard deviétion of tﬁe |
mean) associated. w1th the calculated averages. Abso]ufe error'can_
also be reduced, by choosing importance funct1ons which better |
approx1mate the nodes of the true wavefunct1on or by re]ax1ng the

f1xed-node constra1nt 15,16

In‘th1s paper 1t.was also demonstrated
that the approximate energies calculated within the fixed-node schemé
afe upper bdunds-to the true ground-state energy.f |

Given the relative ease of computation, and the poténtia] for hfgh
accuracy, this method holds exceptional promise for wide application in
quantum chemistry.--Future work should'inc1ude (1) use of more accurate
compact tria] wavefunctiqns, (2) development of adaptfve (self-
. improving) Monte Carlo schemes; (3) work on stable method; for
eliminating the fixed-node constraint, (4) use of differential
methods to obfain potential surfaces, (5) excited-state calculations,
" (6) evaluation of expectation values other than the energy,
- (7) elimination of the Born-Oppenheimer approximation, and’

(8) relativistic calculations.
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Note Added: After this paper was completed we received a preprint

. é1.47 of a paper in which a similar approach to

from Moskowitz et
ours is used to sfudy the molecule LiH. Their results suggest that,
due to an approximatfon in their Green's function, the electron-nuclear
singularity can cause the fixed-node energy to be less than.the true
energy, even at very small time steps. When they remove this
singularity, their energy (1like ours) is an upper bound to‘the true
energy. Theirvbest bounded value for the total ground-state energy of
LiH, obtained using a generalized valence bond trial function, is
(within statistical errors) the same as our energy for LiH obtained

with trial function WIII'
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Appendix

We present here the deta11s of the trial wavefunctlons .T used

in the present calcu]at1ons In Table Al we give the equ111br1um
nuclear geometry used for each molecule. The nuc]éar coordinates arei
held fixed 1n this work (Born—Oppenhe1mer approximation). fhe%: |
electronic coord1nates are qenerated by us1ng three d1fferent tr1a1
wavefunct1ons as importance funct1ons (cf. Sect. 2) |

| Wavefunctions of type WI and WII are descr1bed by Eq kB)}'
For these wavefunct1ons, the linear comb1nat1on of atom1c orbitals
used for each mo1ecu1ar orbital, together w1th the orb1ta1 exponente 4
and the coefficients a and b in the Jastrow factor, are g1ven in
Tab]es All and AIIL. The mo]ecu1ar orbitals for H20 not 11sted in
these Tables, are from Aung et al. 46 o | |
Wavefunctwons of type WIII are. descr1bed by Eq (9). danh
| mo]ecu]ar orb1ta1 is 1oca11zed on one center, and there is no linear

comb1nat1on formed The parameters B, k> Vies and ck are q1ven

in Table AIV,
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N times (once'for each electron moved), and the quadratic term
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40, 573 (1949).

.»In.fact, the constancy of the local energy can be used -as a

quantitative measure of the accuracy of any proposed WT.

The cusp condition is a requirement on,a‘wavefunction‘w that® the
leading singu]arity in V(B), when two particles come together,
cancels when evéiuating the energy HY/¥. This leads to the
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_ §e2/80 i,j like spins, 1ay . )
= , , and _n =-L e /2D,
ij 0 "{e?/ap i,j unlike spins, ¥oars, 560 . ¢

arij r
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small rigs ¥ e exp(ezrij/4D), implying that the coefficient
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. Table I.
fixed-node QMC procedure, versus the estlmated Hartree-Fock limit, CI,

|
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Comparison of the total ground-state energy obtained with the

and "exact" energies. Except as noted, "exact" means the non-. -
re]at1v1st1c Born-Oppenheimer energy, derived from experiment.
quaflty" of each of the three importance functions (Y1, YI,. and
WIII) is also indicated, by giving the energy obtained from them in a
variational calculation. Energies are in hartrees.

The,

H2 LiH Li2 H20
- Hartree- a b | o A d
Fock -1.1336 -7.987 -14,872 -76.0675
variational -1.1507#0.0009 -7.91%0.01 -14.85 %0.03 -75.69 £ 0.03
fixed-node -1.1745%#0.0008 -8.047+0.005 -14,985£0.005 -76.23 * 0.02
e
variational -7.975%0.005 -14.900%0.004 -76.13 =0.07
fixed-node -8.059+0,004 -14,991+0.007  -76.377+0.007
variational -1.16220.001 -8.041%0.008 -14.95 # 0.01
fixed-node - -1.174%0.001 -8.067%0.002 -14.,990%+0.002
g f g h : i
Best CI -1.1731 -8.0606 -14,903 ~-76.3683
J k,m 1,m - d
"Exact" -1.17447,.. ~-8.0699 ~-14.,9967 -76.4376

for Ho.
expansion which includes rjj

Obtained with a nine term expansion in Ref. 35.
Ref. 36.

Rosenberg and Shavitt in Ref. 4.
Variational energy from Moskowitz and Kalos in Ref. 18.
Ref. 38.

(c) Ref. 37.

Of course, better correlated wavefunctions than CI exist
For example, Ref., 35 obtains E=-1.1744 from a 40 term

of Ref. 39 also uses this method.

) Ref. 40."

) Meyer in Ref. 4.
} Ref. 39.
)

)

Ref. 43.

(h) Refs.

41, 42.

exp]1c1t1y, and the "exact" result

This value is not derived from experiment, but directly
from theory.

(1) Ref. 44,
Here the zero- po1nt energy has not been subtracted;

also the

relativistic correction is assumed independent of r,g, and the
‘Lamb shift has not been included.
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Table II. Ground-state energies at selected nuclear separations for
Li2. Results of the fixed-node QMC calculation, obtained using the
importance function “ﬁl, are compared with Hartree-Fock and "exact"
energies (in hartrees). Typical statistical uncertainty in the
fixed-node results is 0.005 a.u. :

R (Bohr) EH-F i EF-n Evexact" b
3 o -14,786 -14,905 | - -l4.915
4  -14.853 -14.968 | —14.}983
5.05 14.872 -14.991 -14.997
6 - -14.869 - -14.985 o -14.992
7 -14.859 -14.976 ' _14.982

(a) Refs. 37, 41, 42.
(b) Ref. 44.
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Table AI. Nuclear geometry used for each molecule.

Molecule Bond 1éng£h (Bohr)
H2 | - 1.401

LiH 3.015

Li2 5.05

HoO © ° 0-H: 1.8111 (OH_o_y = 104° 27')
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Table AII. Trial wavefunctions ¥[. The form of Y] is given by

Eq. (8). The Slater determinant of molecular orbitals (MO's) is
constructed from the linear combination of atomic Slater type orbitals
(STO's) shown here. The orbital exponents (z) and the parameters (a, b)
in the_Jastrow correlation factor are also listed. Atomic units
(bohr-1) are used for a and b.

‘ MO Coefficients
Molecule (a, b) STO (<)

Hp ~ (0.28,0.05) lsy (1.285) 1
Isy (1.285) 1

LiH (0.5, 0.5) 1s.5 (2.8) 1 0
2pzLi(1.2) 0 1.1
sy (1.27) 0 1.0
Lip (0.5, 0.5) 1sz (2.8) 1 0 0
1sp (2.8) 0 1 0
a2s, (1.2) 0 0 1
a 2sp (1.2) 0 0 1

H20 (0.5, 3.5) See wavefunction I of Aung et. al.b

(a) The 2s atomic orbitals used here for Li are hydrogenic 25
orbitals rather than STO's. o

(b) Ref. 46.
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Table AIII. Trial wavefunctions WII. Notation as in Table AII.

: : _ MO Coeffigients :
Molecule (a, b) STO (z) 1 Y b
. LiH (0.5, 0.5) 151,Li (2.521) 0.894 -0.128
‘ 152,Li (4.699) 0.103 -0.004
2sLi (0.797) -0.003 0.346
2pz1,Li (0.737) -0.001 0.176
2pz2.04 (1.2) ~0.004 0.046
lsl,H (0.888) 0.007 0.601
1s2. 4 (1.566) 0 0.1
2pzH (1.376) 0.002 0.017
aLlip (0.5, 1.0) 1sz  (2.69) 1 1 0
1sp  (2.69) 1 -1 0
253 -~ (0.694) 0 0 1
25h (0.694) 0 0 1

Hp0. (0.5, 3.5) See wavefunction II of Aung et. al.b

(a) From Moskowitz and Kalos in Ref. 18.

(b) Ref. 46.
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Table AIV. Parameters used in the localized trial wavefunctions q&II
which are of the form of Eq.(9). For each molecule, the separate rows
give the parameters for one molecular orbital (MO). The molecules are
aligned along the x-axis with the center of the bond at the origin. The
parameters have been optimized for a linear combination of the lowest
energy and lowest variance of the energy. Numbers are in atomic units.

Molecule B MO W Vi Cp X
Ho 9.913 wll 2.74 - 0.0 0
LiH . 1.0358 %7  0.568  0.4143  -1.490
- | Y2 0.8937  1.463 1.513
Lip 0.5766 $1 0.509  0.41 2.525

2 0.509 0.41 -2.525
Y3 3.33 . 1.49 0
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Figure 1. The total energy of the H2 molecule computed by the Monte
Carlo fixed-node algorithm versus the time step 7. The two fits to

i/2 where i = 1, 2. AX2 test

the data shown are Eo + AiT
shows that for either power law the Monte Carlo results are consistent
with an extrapolation to the exact ground-state energy Eo. The

trial function used in this calculation was %[ ;.
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