UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
Learning Diagonal Gaussian Mixture Models and Incomplete Tensor Decompositions

Permalink
bttgs:ggescholarshiQ.orgéucgitem4554254ng
Author

Guo, Bingni

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/554254ng
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Learning Diagonal Gaussian Mixture Models and Incomplete Tensor Decompositions

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

n

Mathematics

by

Bingni Guo

Committee in charge:

Professor Jiawang Nie, Chair
Professor Bhaskar Rao
Professor Rose Yu

Professor Tianyi Zheng
Professor Wenxin Zhou

2024

Copyright
Bingni Guo, 2024

All rights reserved.

The Dissertation of Bingni Guo is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2024

1l

TABLE OF CONTENTS

Dissertation Approval Page iii
Table of Contents iv
List of Figureso v
List of Tables vi
Acknowledgements vii
VoA . viii
Abstract of the Dissertation ix
Chapter 1 Introduction 1
L1 TenSOTS .ot 1
1.2 Generating Polynomials 3
1.3 Gaussian Mixture Models. 6
1.3.1 Third Order Moment Structure 7

1.3.2 Higher Order Moment Structure.............................. 8
Chapter 2 Learning Diagonal Gaussian Mixture Models Using Third Order Moment 11
2.1 Incomplete Tensor Decomposition. 11
2.2 Tensor Approximations and Stability Analysis 23
2.3 Learning Diagonal Gaussian Mixtures 31
2.4 Numerical Simulations 37

Chapter 3 Learning Diagonal Gaussian Mixture Models Using Higher Order Mo-

0101 0L 42

3.1 Incomplete Tensor Decomposition of Higher Order 42
3.2 Incomplete Tensor Approximations and Error Analysis 55
3.3 Learning General Diagonal Gaussian Mixture......................... 60
3.4 Numerical Experiments. 66
Bibliography 71

v

Figure 2.1.

LIST OF FIGURES

Textures from VisTex

Table 2.1.

Table 2.2.

Table 2.3.

Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.

Table 3.5.

LIST OF TABLES

The performance of Algorithm 2.2.1........... 38
Comparison between Algorithm 2.3.1 and EM for simulations. 40
Classification results on 8 textures 40
The largest rank r that Algorithm 3.1.4 can compute. 54
The performance of Algorithm 3.1.4 67
The performance of Algorithm 3.2.1 whend=15 68
The performance of Algorithm 3.2.1 whend=25 69

Comparison between Algorithm 3.3.1 and EM for learning Gaussian
MIXBPUTES .« oo 70

vi

ACKNOWLEDGEMENTS

Firstly, I would like to express my greatest appreciation to my advisor Professor
Jiawang Nie. His unwavering support, invaluable guidance and insightful feedback have
been instrumental throughout my doctoral journey. I am very fortunate to be guided by
him in my Ph.D study and I am deeply grateful for his mentorship.

Next, I hope to thank Professor Zi Yang for his contribution on the research project
for his generous suggestions. I would also like to thank Professor Bhaskar Rao, Professor
Rose Yu, Professor Tianyi Zheng and Professor Wenxin Zhou for serving on my committee
and providing impassive comments.

No fortune is more valuable than a good friend. I would like to thank my colleagues
and friends in UCSD, including Toni Gui, Jingwen Liang, Jiaqi Liu, Zhiling Liu, Tuo Lin,
Chunyi Lyu, Jiajie Shi, Xindong Tang, Xuyu Zhang, Muhan Zhao, Suhan Zhong, Ziyan
Zhu, etc. for their companionship. I am also grateful to my friends outside UCSD. In
particular, I want to thank Diyue Guo, Yuyan Guo, Tianning Lu and Zijun Luo.

Finally, I would like to express my deepest gratitude to my parents for always being
by my side. The love from them is my strongest support.

In this dissertation, some materials have been published, or been submitted for
publication.

The Chapter 2, in full, is a reprint of the material as it appears in Vietnam Journal
of Mathematics 2021 [64]. The dissertation author coauthored this paper with Nie, Jiawang
and Yang, Zi.

The Chapter 3, in full, has been submitted for publication. The dissertation author
is the coauthor of the preprint ”B. Guo, J. Nie and Z. Yang, Diagonal Gaussian Mixture

Models and Higher Order Tensor Decompositions, 2024. arXiv preprint arXiv:2401.01337”.

vil

VITA

2012-2016 Bachelor of Science, Xi’an Jiaotong University
2016-2023 Master of Arts, University of California San Diego
2018-2024 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

“Learning Diagonal Gaussian Mixture Models and Incomplete Tensor Decompositions”

Joint with J. Nie and Z. Yang on Vietnam Journal of Mathematics, 50(2), pp 421-446,
2022.

"Diagonal Gaussian Mixture Models and Higher Order Tensor Decompositions” Joint with
J. Nie and Z. Yang, Submitted, 2024.

FIELDS OF STUDY

Major Field: Mathematics

Studies in Applied Mathematics
Professors Jiawang Nie

viil

ABSTRACT OF THE DISSERTATION

Learning Diagonal Gaussian Mixture Models and Incomplete Tensor Decompositions

by

Bingni Guo

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Jiawang Nie, Chair

Gaussian mixture models are widely used in statistics and machine learning because
of their simple formulation and superior fitting ability. High order moments of the Gaussian
mixture model form incomplete symmetric tensors generated by hidden parameters in
the model. This thesis studies how to recover unknown parameters in diagonal Gaussian
mixture models using high order moment tensors. The problem can be formulated as
computing incomplete symmetric tensor decompositions. We propose to use generating
polynomials to compute incomplete symmetric tensor approximations and approximations.
The obtained decomposition is utilized to recover parameters in the model.

In the first part of thesis, we propose a learning algorithm using the first and third

X

order moment tensors and require that the number of components r < g — 1 for mixture of
d-dimensional Gaussians. In the second part of thesis, we generalize the previous algorithm
using higher order moment tensors and therefore we can recover the unknown parameters
of the model when the number of components r > %l — 1. We provide an upper bound of
the number of components in the Gaussian mixture model that the generalized algorithm
can compute. For both algorithms, we prove that our recovered parameters are accurate
when the estimated moments are accurate. Numerical simulations and comparisons with

EM algorithm are presented to show the performance of our algorithms.

Chapter 1

Introduction

1.1 Tensors

Let m be positive integers. Let F = C (the complex field) or R (the real field).
Denote Xi,...,X,, finite dimensional vector spaces over the field F. The dual space X
of vector space X, is defined to be the space of all linear functionals =} : X; — R. Denote

the linear functional 1 ® --- ® x,,, on X7 x --- x X such that

(1@ QX)) (21, -y 2m) = 21(x1) -+ 2 (Tm),

for arbitrary z; € X;. The tensor product space of Xi,...,X,,, denote by X; ® --- ® X,,,
is a vector space of such 71 ® - - - ® x,,,.
If {e§ :j=1,...,n;} is a basis for X;, then the set of all tensors of the form

el @@l

Jm?

where 1 < j; < n; induces a basis of X; ® - -+ ® X,,. By universal property, there exists a
isomorphism between a tensor space F" ® - -+ ® "™ and F™ < *"~_ Therefore we may
represent a tensor 7 € F™ ® --- ® F™ by a multidimensional array in F?1*>*"m,

Let S™(C?) (resp., S™(R?)) denote the space of mth order symmetric tensors over

the vector space C? (resp., R?). For convenience of notation, we set d = n + 1 and the

labels for tensors start with 0. A symmetric tensor F of order m and dimension n + 1 can

be represented by an array indexed by integer tuples (i1, ..., i,,), that is,

F = (El...im)ogil,“.,imgn;

where the entry F;, ; is invariant for all permutations of (i1, ..., 4py).

For a vector u := (ug,uy,...,u,) € C"" the tensor power u®™ = u ® - -

where u is repeated m times, is defined such that

(U®m)i1_._im = U4 X e X U, -

An outer product like u®™ is called a rank-1 symmetric tensor.

For every F € S (CY), there exist uy, ..., u, € C**! such that

F=(u)®" + -+ (u,)®™

& u,

The smallest such r is defined as the symmetric rank of F, denoted as rankg(F),

1.e.

rankg(F) == min {7“ | F= Zu?m} .

i=1

There are other types of tensor ranks [34, 36]. We refer to [11, 16, 24, 29, 34, 36| for

general work about tensors and their ranks. In this thesis, we only deal with symmetric

tensors and symmetric ranks. For convenience, if r = rankg(F), we call F a rank-r tensor

,
and F = Y u™ is called a rank decomposition.
i=1

1.2 Generating Polynomials

For a power a = (g, g, -+ , ;) € N and x = (21, 29, -+ , 7,), denote

(o4 a1 2 Qn

lal =a1 +ag+ -+, % =altad?ayn, xyi= 1

The monomial power set of degree m is denoted as
N ={a=(a,a9, - ,ap) € N" : |a| <m}.
The symmetric tensor F € S™(C"!) can be labelled by the monomial power set N” , i.e.,

«FQZZ‘F;QZZJQ

1~--im

m—ix
where 2% = z, lod o — Tiy o Ty

m*

For a finite set 8 C Clx] of monomials and a vector v € C", we denote the vector

of monomials in & evaluated on v as

vl = (f(v) e

Let Clx],, be the space of all polynomials in with complex coefficients and degrees
no more than m. For a polynomial p € C[z],, and a symmetric tensor F € S"(C"*1), we

define the bilinear product (note that zo = 1)

(p, F) = Z PaFa for p = Z Dat”, (1.1)

aeNT, aeNT,

where p,’s are coefficients of p. A polynomial g € C[z],, is called a generating polynomial

for a symmetric tensor F € S™(C"*1) if

(g-2°, Fy=0 VB eN" (1.2)

m—deg(g)>

where deg(g) denotes the degree of g in x.
For a cubic polynomial p € C[z]s and F € S*(C™*!), we have the bilinear product

(note that g = 1)

(p, F) = Z Pivigis Firizis for p = Z DiyigizLiy LiyLig, (1.3)

0<i1,i2,i3<n 0<iy,i2,i3<n
where p;,;,:, are coefficients of p.
Example 1.2.1. Suppose there is a tensor F € S*(C3) that can be represented as
8§ -7 19|-7 11 12 |-19 12 29

-7 11 12|11 -1 =22} 12 =22 —-34
-19 12 29|12 =22 -34| 29 —-34 -—-73

The following polynomials are generating polynomaials for the tensor F

g1 =14 1.2z, — 0.625 — 22,
gos =2 —1.6x7 + 0.829 — x179,

g3 =4 —1.221 + 0.6my — 22.

One can verify it by checking the definition in (1.2).

These three polynomials have common zeros

(172)7 (2’ _1)’ (_172)7

which can be used to construct a symmetric rank decomposition of F as
F=—(1,1,2)% + (1,2, -1)® +2(1, -1, —2)*>.

Using generating polynomials of a rank r tensor, we can show that it only uses its
first r entries and a set of generating polynomials to represent the whole tensor as in the
work [43].

For a given rank r, denote the index sets

. 2
Bo = {1,21,..., 2., 27,122, ...},
A >y

vV
first r monomials

Bl = (BO U IlBO y---u l’nBo)\Bo
Then for a € B, and G € CB*B1_ define the polynomials

|G, a] = Z G(B,a)z? — z*.
BEBo
Proposition 1.2.2. For a tensor F € S™(C"™Y), if o|G, a] is a generating polynomial

for a matriz G € CB*B1 and Vo € By, then for Vo € By and Vy € N™ with || + |a| < m,

we have

fa—l—w = Z G(ﬁ, a)]:ﬁ—l-v‘

BEBo
We refer to [43] for more details of generating polynomials. The generating polyno-
mials are powerful tools to compute low-rank tensor decompositions and approximations

(64, 45, 43]. More work about tensor optimization can be found in [19, 20, 46, 21, 22, 48, 47].

1.3 Gaussian Mixture Models

A Gaussian mixture model consists of several component Gaussian distributions.
For given samples of a Gaussian mixture model, people often need to estimate parameters
for each component Gaussian distribution [27, 35]. Consider a Gaussian mixture model
with r components. For each i € [r] :={1,...,r}, let w; be the positive probability for
the ith component Gaussian to appear in the mixture model. We have each w; > 0 and
> wi = 1. Suppose the ith Gaussian distribution is N (y;,3;), where p; € R? is the
expectation (or mean) and X; € R is the covariance matrix. Let y € R? be the random
vector for the Gaussian mixture model and let y,...,yx be identically independent
distributed (i.i.d) samples from the mixture model. Each y; is sampled from one of
the r component Gaussian distributions, associated with a label Z; € [r] indicating the
component that it is sampled from. The probability that a sample comes from the ith
component is w;. When people observe only samples without labels, the Z;’s are called

latent variables. The density function for the random variable y is

Z T s exp { 50—)5 -)}

where p; is the mean and ¥; is the covariance matrix for the ith component.

Learning a Gaussian mixture model is to estimate the parameters w;, u;, >2; for
each i € [r], from given samples of y. The number of parameters in a covariance matrix
grows quadratically with respect to the dimension. Due to the curse of dimensionality, the
computation becomes very expensive for large d [38]. Hence, diagonal covariance matrices
are preferable in applications. In this paper, we focus on learning Gaussian mixture models

with diagonal covariance matrices, i.e.

Y = dlag(Zl,...,afd), 1=1,...,7

1.3.1 Third Order Moment Structure

Let M3 :=E(y ® y ® y) be the third order tensor of moments for y. One can write
that y = n(z) + ((z), where z is a discrete random variable such that Prob(z = i) = w;,
n(i) = p; € R and ((i) is the random variable (; obeying the Gaussian distribution
N(0,%;). Assume all 3; are diagonal, then

T

Zwl i)+ ()% = Zwi(ﬂi®ﬂi®Ni+E[Ni®Ci®<i]+

i=1

E[G®u G +EGRG® Nz]) (1.4)
The second equality holds because (; has zero mean and

El¢ ® G ® G = Elp @ p; @ G] = E[G ® pi @ pi] = Bl @ ¢ @] = 0.

The random variable (; has diagonal covariance matrix, so E[((;);(¢;)] = 0 for j # L.
Therefore,
r d d
sz Mz®€z®€z —Zzwz zJMz®€j®€j:Zaj®ej®€j7
=1 j=1 7j=1

where the vectors a; are given by

:Zwiagjﬂh 7=1,...,d.
=1

Similarly, we have

d r d

Z%E[Q ® i @ G| = Z@j ® a; @ ej, ZM‘E[Q ® G ® pi] = Zej ®e; ® aj.
i—1

j=1 =1 7j=1

Therefore, we can express M3 in terms of w;, u;, 2; as

d

M3:Zwim®m®ui+z(aj®ej®ej+ej®aj®ej+ej®ej®aj).

i=1 j=1

We are particularly interested in the following third order symmetric tensor

JF= Zwim ® i & p-

i=1

When the labels iy, 49, 73 are distinct from each other, we have
(Ms)ivisis, = (Fivisis for i1 # i # i3 # 1.
Denote the label set

Q= {(il,’ig,ig) . il 7é ’ig 7é ’i3 7é ’él, il,ig,ig are labels for Mg}

(1.5)

(1.6)

(1.7)

The tensor M3 can be estimated from the samplings for y, so the entries F;,;,;, with

(11,19,13) € Q can also be obtained from the estimation of Mjs. To recover the parameters

w;, ii, we first find the tensor decomposition for F, from the partially given entries F;

11213

with (71, 149,13) € Q. Once the parameters w;, i; are known, we can determine ¥; from the

expressions of a; as in (1.3.1).

1.3.2 Higher Order Moment Structure

The higher-order moments can be expressed by means and covariance matrices

as in the work [26]. Let z = (21, -, z;) be a multivariate Gaussian random vector with

mean g and covariance X, then

E[Zl T Zt] = Z H Eu,v H Hec, (18)

AEP: (u,v)ENp CEAs
A=ApUAs
where P, contains all distinct ways of partitioning 24, - - , 2; into two parts, one part \,

represents p pairs of (u,v), and another part A\ consists of s singletons of (¢), where
p>0,s>0and 2p+s=t.

We denote the label set €, for mth order tensor M,,
Qe = {1, .. ,im) : 41, ..., 4, are distinct from each other}. (1.9)

Let z; ~ N (u;,%;) be the random vector for the ith component of the diagonal Gaussian

mixture model. For (iy,...,4,) € ,, the expression (1.8) implies that

(Mg = Zwi (E[Z?m])“zm

= sz‘ Z H (Ei)u,v H(,L%)c

i=1 AEPm (u,v)EXNp CEAs
A=A U

= Zwi(ﬂz’)il w ()i

= (fm>il...im7

where P, contains all distinct ways of partitioning {i, ..., %, } into two parts and A, As
are similarly defined as in (1.8). When A, # 0, we have (¥;),, = 0 for diagonal covariance
matrices. Thus, we only need to consider A\, = () and A\; = {i1,...,%,}. It demonstrates

the above equations. We conclude that the moment tensors for diagonal Gaussian mixtures

satisfy

where F,,, = Y- wipd™ and (i1, ..., 0m) € Q.
i=1

10

Chapter 2

Learning Diagonal Gaussian Mixture
Models Using Third Order Moment

2.1 Incomplete Tensor Decomposition

The moment structure of the third order moment for a diagonal Gaussian mixture
model observed in (1.5) leads to the incomplete tensor decomposition problem. For a third
order symmetric tensor F whose partial entries F, i, With (i1, i2,13) € © are known, we
are looking for vectors pq, ..., p, such that

'Filléis = (pi@?) +oe +p§3) L for all (ila i27 Z3) € Q. (21>
111213
The above is called an incomplete tensor decomposition for F.

This section discusses how to compute an incomplete tensor decomposition for a

symmetric tensor F € S*(C?) when only its subtensor Fq is given, for the label set € in

(1.7). For convenience of notation, the labels for F begin with zeros while a vector u € C%

is still labelled as u := (uq, ..., uq). We set

n:=d—-1, x=(x1,...,2,), zo:=1

11

For a given rank r, denote the monomial sets
By =A{x1, - ,x.}, PBr={zxj:1€](r], jer+1,n]} (2.2)

For a monomial power o € N"| by writing a € %4, we mean that x* € %4,. For each
o € %, one can write a = ¢; +¢; with i € [r], j € [r + 1,n]. Let CI'*#1 denote the
space of matrices labelled by the pair (k,«) € [r] x #;. For each a = ¢; + ¢; € %, and

G € C"*#1 denote the quadratic polynomial in z

©iilGl(x) = Z G(k,ei +ej)ry — ziz;. (2.3)

X ,%1

Suppose r is the symmetric rank of . A matrix G € Cl") is called a generating
matriz of F if each ¢;;|G](z), with o = €; + €; € 4, is a generating polynomial of F.

Equivalently, G is a generating matrix of F if and only if

(wpif[G(x), F) =Y Gk e+ e))Fore — Fige = 0, t=0,1,...,m, (2.4)
k=1

for all i € [r], j € [r + 1,n]. The notion generating matriz is motivated from that the
entire tensor F can be recursively determined by G and its first r entries (see [43]). The

existence and uniqueness of the generating matrix G is shown as follows.

Theorem 2.1.1. Suppose F has the decomposition

®3 ®3
1 1
F=X\ 4N, ’ (2.5)
(51 Uy
for vectors u; € C" and scalars 0 # X\; € C. If the subvectors (uy)1.p, - . ., ()1, are linearly

independent, then there erists a unique generating matriz G € CU*%1 satisfying (2.4) for

the tensor F.

12

Proof. We first prove the existence. For each i = 1,...,r, denote the vectors v; = (u;)1..

Under the given assumption, V' := [v; ... v,] is an invertible matrix. For each | =
r+1,...,n, let
N, =V -diag((u1)s, ..., (u.),) - V7L (2.6)
Then Nyw; = (w;)v; for i = 1,...,7, i.e., N; has eigenvalues (uy)y, ..., (u,); with corre-
sponding eigenvectors (uy)1.,. .., (ur)1.,. We select G € CI'*#?1 to be the matrix such
that
G(l,e1+¢) -+ G(res +e)
N, = : : d=r+1,...,n (2.7)
G(l,e.+e) -+ G(rye.+e)

Forecach s=1,...,rand a =¢; +¢; € By with i € [r], j € [r+ 1,n],

i Glus) = > Gk, es +) (us)x — (ug)i(uy); = 0.

k=1

For each t =1,...,n, it holds that

(rrpi|Gl(2), F) = <Z G(k, e + €j)xix), — v2;75, f>

k=1
®3
r r 1
= Z G(k,e; +)z — 22574, Z As
k=1 s=1 us

= Y Glkei+e) > Mlug)lugi — 3 Auug)eluy)i(uy);

= Z As(Usg)¢ (Z G(k,ei+e;j)(us)p — (Us)i(US)J)

k=1
= 0.

13

When ¢ = 0, we can similarly get

(0ij|G](x), F) = < G(k,e; + €j)xy, mixj,]-">

=)\S< G(k,e; + ej)(us)k - (u5>i<u5)j>

Therefore, the matrix G satisfies (2.4) and it is a generating matrix for F.

Second, we prove the uniqueness of such G. For each o = ¢; + ¢; € %, let

-F(]ll e JT"Orl Fll]
F = , Gij =

JT:Oln fOrn fm’j
Since G satisfies (2.4), we have F'- G(:, e; +¢e;) = g;;. The decomposition (2.5) implies that

T
F = |:u1 e ur:| . diag(Al, ey)\T) . |:'U1 e UT:| .

The sets {vy,...,v.} and {uq,...,u,} are both linearly independent. Since each \; # 0,
the matrix I has full column rank. Hence, the generating matrix G satisfying F - G(:

e, +ej) =g;; forall i € [r],j € [r + 1,n] is unique. O
The following is an example of generating matrices.

Example 2.1.2. Consider the tensor F € S3(C®) that is given as
F=04-(1,1,1,1,1,)*¥ +0.6 - (1, —1,2, —1,2,3)%>,

The rank r = 2, By = {x1,x2} and By = {x103, 1124, 175, ToX3, Toky, T2x5}. We have

14

the vectors

up=(1,1,1,1,1), w=(-1,2,-1,2,3), v =(1,1), wvy=(-1,2).

The matrices N3, Ny, N5 as in (2.6) are

- - - _1 -
1 —-1] 11 0 1 -1 1/3 2/3
. ||
1 2 0 —1f (1 2 4/3 —1/3
- Sl T -
1 —-1]1 11 0 -1 4/3 —1/3
N, = Y / |
1 2 0 2 2 —-2/3 5/3
_ I I I _ -
1 -1 11 0 -1 5/3 —=2/3
v RECEE
1 2 0 3 2 —4/3 7/3
The entries of the generating matriz G are listed as below:
k\(,7) | (1,3) (L,4) (1,5) (2,3) (2,4) (2,5)
1 /3 4/3 5/3 4/3 —2/3 —4/3 .
2 2/3 —-1/3 -2/3 —1/3 5/3 7/3
The generating polynomials in (2.3) are
1 2 4 1
©13|G)(7) = 34 + 3%2 — Tis, 3]G () = 301 gt T Ty,
4 1 2 5
9014[G] ($) = §$1 - §=T2 — L1y, 9024[G] (m) = —§$1 + ng’Q — X9y,
5 4 7
@15[G] (l’) = g.ﬁCl — gi[)z — 15, @25[G] (%) = —§£U1 + 533'2 — T2T5.

15

(2.8)

Above generating polynomials can be written in the following form

¢151G](x)) T

= N; — , for j =3,4,5.

a5 (G () 3 B
For x to be a common zero of ¢1;|G](x) and q;|G](x), it requires that (x1,xs) is an

etgenvector of N; with the corresponding eigenvalue x;.

We show how to find an incomplete tensor decomposition (2.5) for F when only
its subtensor Fj, is given, where the label set €2 is as in (1.7). Suppose that there exists
the decomposition (2.5) for F, for vectors u; € C* and nonzero scalars \; € C. Assume
the subvectors (uq)1.p, - - -, (u;)1. are linearly independent, so there is a unique generating

matrix G for F, by Theorem 2.1.1.

For each a = ¢; +¢; € %, with i € [r],j € [r + 1,n] and for each
l=r+1,...,0—17+1,....n,

the generating matrix G satisfies the equations

<£L‘l (Z G(k, e; + €j>$k — $Z{L’j> ,./T"> = ZG(k, e; + ej)-FOkl — -Fijl =0. (29)

k=1 k=1

Let the matrix A;;[F] € C~"=D*" and the vector b;;[F] € C* ! be such that

fO,l,T—f—l T fO,r,r—l—l]:i,j,r-i—l
J’-'O 1.4 Y Fii
’ 7]_1 07T7.7_1 Z7]7J_1
Forgrr o Forgtl Fijjtl
FO,I,n e JrO,r,n Evjvn

16

To distinguish changes in the labels of tensor entries of F, the commas are inserted to
separate labeling numbers.

The equations in (2.9) can be equivalently written as

If the rank r < ;—i —1,thenn—r—1=d—r —2 > r. Thus, the number of rows is not
less than the number of columns for matrices A;;[F]. If A;;[F] has linearly independent
columns, then (2.11) uniquely determines G(:,«). For such a case, the matrix G can

be fully determined by the linear system (2.11). Let N,41(G),..., N;u(G) € C™" be the

matrices given as

G(l,@l + 61) e G(T, €1 + 61)
N(G) = : : l=r+1,...,n. (2.12)

G(17 er + el) e G(’I", er + el)

As in the proof of Theorem 2.1.1, one can see that

The above is equivalent to the equations

N(G)v; = (wi)i—p vy, l=r+1,...,n,

for the vectors (i = 1,...,7)

v = (ui)lzr7 w; = (ui>r+1:n- (2~14)

17

Each v; is a common eigenvector of the matrices N,.1(G), ..., N,(G) and (w;),—, is the

associated eigenvalue of N;(G). These matrices may or may not have repeated eigenvalues.

Therefore, we select a generic vector £ == (&.41,- -+ ,&,) and let
N(f) =& Nep1 + - + &N (2'15)
The eigenvalues of N(£) are (7w, ..., &7 w,. When wy, ..., w, are distinct from each other

and ¢ is generic, the matrix N(§) does not have a repeated eigenvalue and hence it has
unique eigenvectors vy, ..., v, up to scaling. Let 0y, ..., 0, be unit length eigenvectors of
N(&). They are also common eigenvectors of N,1(G), ..., N,(G). Foreach i =1,...,r,
let w; be the vector such that its jth entry (@;); is the eigenvalue of N;.,.(G), associated

to the eigenvector v;, or equivalently,

W; = (DN, (G)0y, - - DI NL(G)) i=1,...,7. (2.16)
Up to a permutation of (01, ...,7,), there exist scalars 7; such that

The tensor decomposition of F can also be written as

®3 ®3

F=Xi|min| +ot A |

w1 Wy

The scalars Ay, --- , A\ and 7, - - , 7, satisfy the linear equations

)\171771 QW+ -+)\r’)/rﬁr Qw, = F[O,l:r,r+1:n]>

/\1712{)1 QU Wy + -+ /\r’)/zf&'r QU W, = f[l:r,l:r,r-{—l:n]'

18

Denote the label sets

Jl = {(O,il,iQ) : il c [7”], ig c [7""‘ 1,”]}, (2]_8)

Jo = { (i1, iz, 3) i1 # iz, i1, 02 € [r],i3 € [+ 1,n]}.

To determine the scalars \;,;, we can solve the linear least squares
, 2
(B1,0r) ‘ n ;ﬁ (219)
. 2
(emi% : |.7:J2 — Z Ok - (U ® T @ W;) g, (2.20)
Lot k=1

Let (B5,...,0), (0,...,0) be minimizers of (2.19) and (2.20) respectively. Then, for

eachi=1,...,r, let

A= (B7)/07, =07/ (2.21)

For the vectors (i =1,...,7)
bi = 3\/)‘1(1771617,&}@)7

the sum p® + -+ + p®3 is a tensor decomposition for F. This is justified in the following

theorem.

Theorem 2.1.3. Suppose the tensor F has the decomposition as in (2.5). Assume that

the vectors vy, ..., v, are linearly independent and the vectors wy, ..., w, are distinct from
each other, where vy,..., v, w,...,w, are defined as in (2.14). Let & be a generically
chosen coefficient vector and let py,...,p, be the vectors produced as above. Then, the

tensor decomposition F = p{® + - - + p®3 is unique.

Proof. Since vy, ..., v, are linearly independent, the tensor decomposition (2.5) is unique,
up to scalings and permutations. By Theorem 2.1.1, there is a unique generating matrix

G for F satisfying (2.4). Under the given assumptions, the equation (2.11) uniquely

19

determines G. Note that 7wy, ..., w, are the eigenvalues of N (&) and vy, ..., v, are the
corresponding eigenvectors. When ¢ is generically chosen, the values of 7wy, ..., T w, are
distinct eigenvalues of N(§). So N (&) has unique eigenvalue decompositions, and hence
(2.17) must hold, up to a permutation of (vy,...,v,). Since the coefficient matrices have

full column ranks, the linear least squares problems have unique optimal solutions. Up
1

to a permutation of py,...,p,, it holds that p; = </, . Then, the conclusion follows
U;

readily.

The following is the algorithm for computing an incomplete tensor decomposition

for / when only its subtensor Fgq is given.

Algorithm 2.1.4. (Incomplete symmetric tensor decompositions.)

(IS8

Input: A third order symmetric subtensor Fq and a rank r = ranks(F) < § — 1.

1. Determine the matriz G by solving (2.11) for each a = e; + ¢ € By .

2. Let N (&) be the matriz as in (2.15), for a randomly selected vector . Compute the

unit length eigenvectors vy, . ..,0, of N(§) and choose w; as in (2.16).

3. Solve the linear least squares (2.19) and (2.20) to get the coefficients X\;,y; as in

(2.21).
4. Foreachi=1,...,r, let p; .= /Ni(1,%:0;, ;).
Output: The tensor decomposition F = (p1)®* + -+ + (p,)®>.
The following is an example of applying Algorithm 2.1.4.

Example 2.1.5. Consider the same tensor F as in Example 2.1.2. The monomial sets

20

B, B are the same. The matrices A;;[F] and vectors bi;[F| are

—0.8 2.8 1.6 -2
Al F] = Ag|F] = , bl F] = , bos[F] = ,
—1.4 4 2.2 —3.2
1 —0.8 1.6 -2
Ap|F) = Ay F] = , bl F) = ,bos[F| = ,
—14 4 -3.2 7.6
1 —0.8 2.2 —3.2
A F] = Ags[F] = . bis|F] = , bos[F] =
—-0.8 2.8 —-3.2 7.6

Solve (2.11) to obtain G, which is same as in (2.8). The matrices N3(G), Ny(G), N5(G)

are

N3(G) =

1/3 2/3] NG) {4/3 1/3] N(G) —
4/3 —1/3 —2/3 5/3

Choose a generic &, say, & = (3,4,5), then

N(E) = 1/vV2 —1/v/5| |12 0| [1/vV2 —1/V5 B
1/v2 2/vV/5 |0 20| [1/vV2 2/V5 '

The unit length eigenvectors are
As in (2.16), we get the vectors

wy = (1,1,1), wy = (—1,2,3).

21

Solving (2.19) and (2.20), we get the scalars

Y1 = \/5, Yo = \/5,)\1 = 04,)\2 = 0.6.

This produces the decomposition F = Mu$® + XuS® for the vectors

Ul = (1,’71?,71,’&01) = (1, 1,]_, 1, 1, 1), Ug = (1,’72’[)2,11)2) = (1, —1,2, —1,2,3)

Remark 2.1.6. Algorithm 2.1.4 requires the value of r. This is generally a hard question.
In computational practice, one can estimate the value of r as follows. Let Flat(F) €

COHtDX(4D? be the flattening matriz, labelled by (i, (j, k)) such that

Flat(F)igry = Fijr

for alli,j,k = 0,1,...,n. The rank of Flat(F) equals the rank of F when the vectors
P1,--.,Dr are linearly independent. The rank of Flat(F) is not available since only the
subtensor (F)q is known. However, we can calculate the ranks of submatrices of (F)q whose
entries are known. If the tensor F as in (2.5) is such that both the sets {vy,...,v,} and
{wi,...,w,} are linearly independent, one can see that > ;_, Nvw; is a known submatriz
of Flat(F) whose rank is r. This is generally the case if r < g — 1, since v; has the length
r and w; has length d — 1 — r > r. Therefore, the known submatrices of Flat(F) are

generally sufficient to estimate ranks(F). For instance, we consider the case F € S*(CT).

22

The flattening matriz Flat(F) is

* * * * * * *
* * Fizo Fizo Fuo Fiso Fieo
* Foro ok Fazo Foso Faso Faeo
* Fzi0 Fa * Faao Fzso Faeo| o (2.22)
* Fao Fazo Fazo * Fiso Faeo
* Fsio Fs20 Fsz0 Fsao * Fs560
* Feo Feo Fezo Feao Fes0 *

where each * means that entry is not given. The largest submatrices with known entries

are
Fao Fazo Fazo Fro Fiso Fieo
Fsio Fsao Fszo| o | Foao Faso Faco
Fe10 Fe2o Fe3o Fsa0 Fzso F3eo

The rank of above matrices generally equals ranks(F) if r < ¢ —1 = 2.5.

2.2 Tensor Approximations and Stability Analysis

In some applications, we do not have the subtensor Fg exactly but only have an
approximation]?Q for it. The Algorithm 2.1.4 can still provide a good rank-r approximation
for F when it is applied to Fq. We define the matrix A;j [7] and the vector bij [F] in the
same way as in (2.10), for each a = ¢; + ¢; € %;. The generating matrix G for F can be
approximated by solving the linear least squares

min [|Ay[F] - g — by[F|, (2.23)

gecr

23

for each a = ¢; +¢; € By. Let @(:, e; + e;) be the optimizer of the above and G be the

matrix consisting of all such G(:, e; + e;). Then @G is an approximation for G. For each

~

l=r-+1,...,n, define the matrix V;(G) similarly as in (2.12). Choose a generic vector

§=(&41,...,&) and let
N(€) = & N1 (G) + -+ + ENa(G). (2.24)

The matrix N (€) is an approximation for N(§). Let 01,...,0, be unit length eigenvectors

of]/\\f(f) For k=1,...,r, let
Wy = ()TN (G, -, ()T N (G)). (2.25)

For the label sets Ji, J as in (2.18), the subtensors F Jl,ﬁ 7, are similarly defined like

F,, Fy,. Consider the following linear least square problems

r 2
min ./T‘:]1 — Z ﬂk Vi, @ Wi N (226)
(ﬁl ----- r =1
r 2
(emin) ﬁJQ — Z 0; - (f)k ® U ® wk)Jz (2.27)
Lo k=1

Let (Bl, o ,Br) and (él, . ,ér) be their optimizers respectively. For each k =
1,...,r, let

This results in the tensor approximation

for the vectors pj = V/ Xk(l,'?k@k,wk). The above may not give an optimal tensor

24

approximation. To get an improved one, we can use py, ..., P, as starting points to solve

the following nonlinear optimization

2

min (2.29)

(q15--,9r)

<Z(Qk)®3 - ﬁ)

k=1

The minimizer of the optimization (2.29) is denoted as (pj,...,p}).
Summarizing the above, we have the following algorithm for computing a tensor

approximation.
Algorithm 2.2.1. (Incomplete symmetric tensor approximations.)
Input: A third order symmetric subtensor .7/-:9 and a rank r < g —

1. Find the matriz G by solving (2.23) for each o = e; +¢; € B;.

2. Choose a generic vector and let N(f) be the matriz as in (2.24).

Compute unit length eigenvectors vy, ..., 0, for]\7(5) and define w; in (2.25).
3. Solve the linear least squares (2.26), (2.27) to get the coefficients \;,%;.

4. For each i =1,...,r, let p; == vV Ni(1,9:05, ;). Then (p1)% + - + (p,)3 is a

tensor approzimation for F.

R

Use p1,...,Pr as starting points to solve the nonlinear optimization (2.29) for an

optimizer (ps,...,pk).
Output: The tensor approzimation (p?)&* + - -+ (p1)® for F.

When F is close to F , Algorithm 2.2.1 also produces a good rank-r tensor approxi-

mation for F. This is shown in the following.

Theorem 2.2.2. Suppose the tensor F = (p1)®* + -+ + (p,)®3, with r < § — 1, satisfies

the following conditions:

25

(i) The leading entry of each p, is nonzero;

(ii) the subvectors (py)owit, .-, (Py)2r+1 are linearly independent;
(iii) the subvectors (pi)p42:jj+2:d)s-- > (Pr) 42 42:4 are linearly independent for each
JjE[r+1,nl;

(iv) the eigenvalues of the matriz N (&) in (2.15) are distinct from each other.

Let p;, pi be the vectors produced by Algorithm 2.2.1. If the distance € := ||(]? — Fall is

small enough, then there exist scalars 7;, 7 such that
(7= () =1, |7 —pill = O(e), |I77p; —pill = O(e),

up to a permutation of (p1,...,pr), where the constants inside O(-) only depend on F and
the choice of £ in Algorithm 2.2.1.

Proof. The conditions (i)-(ii), by Theorem 2.1.1, imply that there is a unique generating
matrix G for F. The matrix GG can be approximated by solving the linear least square

problems (2.23). Note that
[AGIF] = Al FII < e i [F] = by [FII < e,
for all & = e; +e; € %;. The matrix A;;[F| can be written as

AGlF] = [(p0)ps2gjr2dys - - s (Pr)prragjrod) - [(P1)2rs1s - o (D)2041) "

By the conditions (ii)-(iii), the matrix A;;[F] has full column rank for each j € [r + 1, 7|

~

and hence the matrix A;;[F] has full column rank when e is small enough. Therefore, the

26

linear least problems (2.23) have unique solutions and the solution @ satisfies that
IG =Gl = Ofe),

where O(e€) depends on F (see [14, Theorem 3.4]). For each j =7+ 1,...,n, Nj(@) is

part of the generating matrix @, SO
IN;(G) = N;(G)| < |G =Gl =0(e), j=r+1,....n

This implies that || N(€) — N(€)|| = O(e). When € is small enough, the matrix N () does
not have repeated eigenvalues, due to the condition (iv). Thus, the matrix N(§) has a set

of unit length eigenvectors vy, ..., v, with eigenvalues w1, ..., w, respectively, such that
[0: = il = O(e), [[w; —wi| = O(e).

This follows from Proposition 4.2.1 in [8]. The constants inside the above O(-) depend
only on F and £. The wy,...,w, are scalar multiples of linearly independent vectors
(P1)rs2:ds - - - 5 (Dr)rr2:a TESPECtively, so Wy, . .., W, are linearly independent. When € is small,
wy, ..., w, are linearly independent as well. The scalars j\ﬁz and 5\1(%)2 are optimizers for

the linear least square problems (2.26) and (2.27). By Theorem 3.4 in [14], we have
1M = Aill = O(e), [1%i(5:)* = Al = O(e).

The vector p; can be written as p; = v/A;(1, 70, W;), so we must have \;,v; # 0 due to

the condition (ii). Thus, it holds that

1A = Xdll = O(e), 135 — il = O(e),

27

where constants inside O(-) depend only on F and £. For the vectors p; := &/ \i(1, 70, w;),
we have F =", 793 by Theorem 2.1.3. Since py, ..., p, are linearly independent by the
assumption, the rank decomposition of F is unique up to scaling and permutation. There
exist scalars 7; such that (7;)® = 1 and 7;p; = p;, up to a permutation of py,...,p,. For
pi = {?’/5_1-(1, iU, 0;), we have || 7;p; — p;|| = O(€), where the constants in O(-) only depend
on F and &.

Since ||7;0; — pi|| = O(€), we have |31, (p:)®® — F)qll = O(€). The (p5,...,p}) is

a minimizer of (2.29), so

H (Z(p?)®3 - ﬁ)

For the tensor F* :=>""_ (p;)®3, we get

<

(S -7)

i=1

[(F* = Flall < [(F* = Fall + |(F = Flal = Oe).

When Algorithm 2.2.1 is applied to (F*)gq, the Step 4 will give the exact decomposition

Fr =37 (pf)®. By repeating the previous argument, we can similarly show that
lpi — 77pi|| = O(e) for some 7; such that (77)® = 1, where the constants in O(-) only
depend on F and &. O]

Remark 2.2.3. For the special case that e = 0, Algorithm 2.2.1 is the same as Algo-
rithm 2.1.4, which produces the exact rank decomposition for F. The conditions in Theorem
2.2.2 are satisfied for generic vectors py,...,p,, since r < g — 1. The constant in O(-)
is not explicitly given in the proof. It is related to the condition number k(F) for tensor

decomposition. It was shown by Breiding and Vannieuwenhoven [5] that

DI =B < K(F)F = Fll + e
=1

28

for some constant c. The continuity ofé in F is implicitly impled by the proof. Eigenvalues
and unit eigenvectors of N (&) are continuous in G. Furthermore, 5\1,’% are continuous in
the eigenvalues and unit eigenvectors. All these functions are locally Lipschitz continuous.
The p; is Lipschitz continuous with respect to]:", i a neighborhood of F, which also
implies an error bound for p;. The tensors (p})®3 are also locally Lipschitz continuous in
F illustrated by [6]. This also gives error bounds for decomposing vectors pf. We refer to

[5, 6] for more details about condition numbers of tensor decompositions.

Example 2.2.4. We consider the same tensor F as in Example 2.1.2. The subtensor

(F)q is perturbed to (]?)Q The perturbation is randomly generated from the Gaussian

A~

distribution N'(0,0.01). For neatness of the paper, we do not display (F)q here. We use

Algorithm 2.2.1 to compute the incomplete tensor approrimation. The matrices A;; []?]

-~

and vectors b;;[F| are given as follows:

~ ~ —0.8135 2.7988 N 1.5980 N —2.0047
A3 F] = Ags|F] = . biz[Fl= , bas[F| = ,

—1.3697 4.0149 2.1879 —-3.2027

~ ~ 1.0277 —0.8020 N 1.5920 N —2.0059
AplF] = AnlF] = . bulF] = . bulF] = ;

—1.3697 4.0149 —3.2013 7.5915

~ ~ 1.0277 —0.8020 N 2.1993 N —-3.1917
A5 F] = Ags|F] = . bis[F] = , bos[Fl = .

—0.8135 2.7988 —3.2020 7.6153

The linear least square problems (2.23) are solved to obtain G and Ng(@), N4(@), N5(é’\),

29

which are

~ 0.5156 0.7208 ~ 1.2631 —0.3665
N3<G) =) N4<G) =)
1.6132 —0.2474 —0.6489 1.6695

~ 1.6131 —0.6752
N;(G) =

—1.2704 2.3517

For € = (3,4,5), the eigendecomposition of the matriz N(€) in (2.24) is

-1

N(f) —0.7078 0.4470 12.0343 0 —0.7524 0.4499
—0.7064 —0.8945 0 20.0786 | [—0.6588 —0.8931

It has eigenvectors v, = (—0.7078, —0.7064), vo = (0.4470, —0.8945). The vectors wy, Wy
obtained as in (2.25) are

@y = (1.2021,0.9918, 0.9899), 1y = (—1.0389,2.0145, 3.0016).
By solving (2.26) and (2.27), we got the scalars

A= —1.1990, 49 = —2.1458, \; = 0.4521, Ay = 0.6232.
Finally, we got the decomposition 5\1@?3 + 5\2%@3 with

@y = (1,401,401 = (1,0.8477,0.8479,1.2021, 0.9918, 0.9899),

Uy = (1,4209,19) = (1, —0.9776,1.9102, —1.0389, 2.0145, 3.0016).

They are pretty close to the decomposition of F.

30

2.3 Learning Diagonal Gaussian Mixtures

We use the incomplete tensor decomposition or approximation method to learn
parameters for Gaussian mixture models. The Algorithms 2.1.4 and 2.2.1 can be applied
to do that.

Let y be the random variable of dimension d for a Gaussian mixture model, with r
components of Gaussian distribution parameters (w;, p;, %;), @ = 1,...,r. We consider the
case that r < g — 1. Let y1,...,yny be samples drawn from the Gaussian mixture model.
The sample average

1

is an estimation for the mean M; := Ely| = wiuy + - - - + w1, The symmetric tensor

—

1
M; = N(yi@3 o+ YR

is an estimation for the third order moment tensor Mz := E[y®3]. Recall that F =

S wip®. When all the covariance matrices %; are diagonal, we have shown in (1.5) that

d
M3:f+2(aj®ej®ej+ej®aj®ej+ej®ej®aj).
j=1
If the labels i1, 49, i3 are distinct from each other, (M3);,ipis = (F)iyizis- Recall the label

set 2 in (1.7). It holds that
(Ms)a = (F)a-

Note that (]/\/[\3)9 is only an approximation for (Mj)q and (F)q, due to sampling
errors. If the rank r < g — 1, we can apply Algorithm 2.2.1 with the input (]\/4\3)9, to

compute a rank-r tensor approximation for F. Suppose the tensor approximation produced

31

by Algorithm 2.2.1 is

F () 4+ ().

The computed pj,...,p; may not be real vectors, even if F is real. When the error

e:=|[(F— Z\//Tg,)QH is small, by Theorem 2.2.2, we know

1705 = Vil = O(e)

where (77)% = 1. In computation, we can choose 7; such that (7)3 = 1 and the imaginary
part vector Im(7/p}) has the smallest norm. It can be done by checking the imaginary

part of 7/p! one by one for

Then we get the real vector

Gi = Re(1]p}).

It is expected that ¢; ~ ¥w;u;. Since

My =wipn + -+ wepty = wf/?’(jl 4o +w3/3ér,

the scalars wf/ 3, e ,wz/ ? can be obtained by solving the linear least squares
, 2
min M, — 5 2.30
(B1s.-,Br)ERY ' ; & ()
Let (Bf,..., %) be an optimizer for the above, then @; := (5:)*? is a good approximation

for w; and the vector

i = Qz/%

32

is a good approximation for p;. We may use

T

. A1 A :
iy (E wj) w;,, 1=1,...,7

=1

as starting points to solve the nonlinear optimization

min Iy wips — My + [200 wi(pd®)a — (Ms)al?
(W1 5oy y L 5y) (2_31)

subject to w1+ -+ w, =1, wy,...,w >0,

for getting improved approximations. Suppose an optimizer of the above is
(Wi, W ey).
Now we discuss how to estimate the diagonal covariance matrices >;. Let
Ai=My—F, A=DM— ()% - —(G)%. (2.32)
By (1.5), we know that

d
A=) (a;®e;@¢+e;Qa;Dej+¢;®e; D ay), (2.33)

j=1

where a; = Y- wioj;p; for j =1,--- ,d. The equation (2.33) implies that
i=1

1
(a;); = 3 Aiss (a5)i = Ajij, (2.34)
3
fori,j=1,---,d and i # j. So we choose vectors a; € R? such that
. I~ . ~ .,
(a5); = Az, (a5)i = Agiy for i 7. (2.35)

33

.
Since a; ~) w0 u;, the covariance matrices ¥; = diag(o3, . . ., 07;) can be estimated by
i=1

solving the nonnegative linear least squares (j = 1,...,d)
, 2
min ||a; — O wiul By
Buvee) || 7 i ’ (2.36)

subject to 31; > 0,...,8,; > 0.

For each j, let (37, ..., B;;) be the optimizer for the above. When (]/\4\3)9 is close to (M3)q,
it is expected that 3} is close to (0;)%. Therefore, we can estimate the covariance matrices

Y, as follows
(2.37)

Bp = diag(Byy, .- B, (03)7 = B
The following is the algorithm for learning Gaussian mixture models.

Algorithm 2.3.1. (Learning diagonal Gaussian mizture models.)
Input: Samples {yi,...,yn} C R drawn from a Gaussian mizrture model and the number

r of component Gaussian distributions.
—_~ L 1 N —_~ L 1 N ®3
Step 1. Compute the sample averages My := > ", y; and My := i doyc.
i=1

Step 2. Apply Algorithm 2.2.1 to the subtensor (F)q := (Ms)q. Let (p)®3 + - + (p7)®?
=1,...,r, let

be the obtained rank-r tensor approrimation for F. For each i

Gi = Re(;p}) where 7; is the cube root of 1 that minimizes the imaginary part vector

norm || Im(m;pf)||.

Step 3. Solve (2.50) to get &y, ..., @, and ji; = q;//@ii=1,...,7.

Step 4. Use the above w;, §; as initial points to solve the nonlinear optimization (2.31) for

the optimal wf, ;1 =1,... 7.

Step 5. Get vectors ay, ..., aq as in (2.35). Solve the optimization (2.36) to get optimizers
. and then choose 33} as in (2.37).

34

*

Output: Component Gaussian distribution parameters (uf, X5 wi),i=1,...,r.

The sample averages]\//.71,]\/@ can typically be used as good estimates for the
true moments M, M3. When the value of r is not known, it can be determined as in

Remark 2.1.6. The performance of Algorithm 2.3.1 is analyzed as follows.

Theorem 2.3.2. Consider the d-dimensional diagonal Gaussian mixture model with
parameters {(w;, p1;, ;) 1 i € [r]} and r < & — 1. Let {(w}, i, 57) i € [r]} be produced by
Algorithm 2.3.1. If the distance € :== max(||M3 —]\/4\3||, | My — J/\/[\1||) is small enough and
the tensor F =Y., winl® satisfies conditions of Theorem 2.2.2, then

i = i1l = O(e), llwi — Wil = OCe), [|%: = X7l = O(e),

)

where the above constants inside O(-) only depend on parameters {(w;, pi, ;) = i € [r]}

and the choice of & in Algorithm 2.5.1.

Proof. For the vectors p; := J/w;p;, we have F =Y 0, p&3. Since

I(F = Fall = 1(Ms — Ma)al| < €

and F satisfies conditions of Theorem 2.2.2, we know ||77pf —p;|| = O(e) for some (77°) = 1,
by Theorem 2.2.2. The constants inside O(¢) depend on parameters of the Gaussian model
and £. Then, we have ||Im(7;"p)|| = O(€) since the vectors p; are real. When € is small
enough, such 7/ is the 7 in Step 2 of Algorithm 2.3.1 that minimizes ||[Im(7;p})||, so we

have

G — pill < ||mipi — pill = O(e)

where ¢; = Re(7;pf) is from the Step 2. The vectors ¢y, ..., §, are linearly independent
when € is small. Thus, the problem (2.30) has a unique solution and the weights @;

can be found by solving (2.30). Since ||M; —]/\4\1” < e and ||¢; — pi|| = O(e), we have

35

|w; —@i|| = O(e) (see [14, Theorem 3.4]). The mean vectors fi; are obtained by fi; = §;/ /@i,

so the approximation error is
i = fuill = |[pi/ wi — @i/ v/ @il = OC(e)

The constants inside the above O(¢) depend on parameters of the Gaussian mixture model
and &.

The problem (2.31) is solved to obtain w} and u, so

| F =)
=1

H@—Zwé‘ui‘
1=3

Let F*:= Y"1 wi(u)® = (Y/wrus)®3, then
IF = F| < |IF = Fll + |F = F|| = O(e).

Theorem 2.2.2 implies ||p; — ¢/wipl]| = . In addition, we have

HA? =y Wi
i=1

= HA? = (W)Y

i=1

The first order moment is M; = S7_ (w;)?3p;. Since |My — M| = O(e) and ||p; —
Jwiul|| = , it holds that ||(,‘)2/3 (w?)?3|| = O(e) by [14, Theorem 3.4]. This implies

that ||w; —wa = O(e), so

i = i || = Nlps/ /i = (/wiy)) §/wi || = O(

The constants inside the above O(-) only depend on parameters {(w;, i, ;) : ¢ € [r]} and
€.

The covariance matrices ¥; are recovered by solving the linear least squares (2.36).

36

In the least square problems, it holds that |jw;u; — w!uf|| = O(e) and

A = A < [[My = M| + [|F =47 = Oe),
i=1
where tensors A, A are defined in (2.32). When the error € is small, vectors wi i}, . .., w} "
are linearly independent and hence (2.36) has a unique solution for each j. By [14,

Theorem 3.4], we have
I(033)* = (o7,)*[l = OC(e)-

It implies that || X; —XF|| = O(e), where the constants inside O(-) only depend on parameters
{(wi, i, 35) 1 € [r]} and €. O

2.4 Numerical Simulations

First, we show the performance of Algorithm 2.2.1 for computing incomplete
symmetric tensor approximations. For a range of dimension d and rank r, we get the
tensor F = (p1)®3 + -+ + (p,)®3, where each p; is randomly generated according to the
Gaussian distribution in MATLAB. Then, we apply the perturbation (F)q = (F)q + o,
where £ is a randomly generated tensor, also according to the Gaussian distribution in
MATLAB, with the norm ||, ||q = €. After that, Algorithm 2.2.1 is applied to the subtensor
(]?)a to find the rank-r tensor approximation. The approximation quality is measured by

the absolute error and the relative error

(7 = Fal
I(F = Fall

abs-error == ||(F* — F)qll, rel-error :=

where F* is the output of Algorithm 2.2.1. For each case of (d,r,¢€), we generate 100
random instances. The min, average, and max relative errors for each dimension d and

rank r are reported in the Table 2.1. The results show that Algorithm 2.2.1 performs very

37

well for computing tensor approximations.

Table 2.1. The performance of Algorithm 2.2.1

rel-error abs-error
d r € min average max min average max time
3 01 09610 09731 0.9835 0.0141 0.0268 0.0556 0.2687
20 5 0.01 0.9634 0.9700 0.9742 0.0019 0.0032 0.0068 0.2392
7 0.001 0.9148 0.9373 0.9525 2.3-107% 3.8-107* 6.6-107* 0.2638
4 01 09816 0.9854 0.9890 0.0094 0.0174 0.0533 0.4386
30 8 0.01 09634 09700 0.9742 0.0015 0.0024 0.0060 0.7957

11 0.001 0.9501 0.9587 0.9667 1.8-107* 3.0-107* 5.7-107* 0.8954
6 0.1 09853 09877 0.9904 0.0099 0.0146 0.0359 1.7779
40 10 0.01 0.9761 0.9795 0.9820 0.0013 0.0020 0.0045 2.6454
15 0.001 0.9653 0.9690 0.9734 1.7-107* 26-107" 4.8-107* 3.6785
7 0.1 09887 0.9911 0.9925 0.0081 0.0128 0.0294 4.9774
50 13 0.01 0.9812 0.9831 0.9854 0.0011 0.0018 0.0045 8.7655
18 0.001 0.9739 09767 0.9792 1.5-107% 2.2-107* 4.1-107% 11.6248

Second, we explore the performance of Algorithm 2.3.1 for learning diagonal
Gaussian mixture models. We compare it with the classical EM algorithm, for which the
MATLAB function fitgmdist is used (MaxIter is set to be 100 and RegularizationValue
is set to be 0.0001). The dimensions d = 20, 30, 40, 50, 60 are tested. Three values of r are
tested for each case of d. We generate 100 random instances of {(wj, p;, %) i =1,--- ,r}
for d € {20, 30,40}, and 20 random instances for d € {50,60}, because of the relatively
more computational time for the latter case. For each instance, 10000 samples are generated.
To generate the weights wy, ..., w,, we first use the MATLAB function randi to generate a
random 10000—dimensional integer vector of entries from [r], then the occurring frequency
of i in [r] is used as the weight w;. For each diagonal covariance matrix ¥;, its diagonal
vector is set to be the square of a random vector generated by the MATLAB function

randn. Each sample is generated from one of r component Gaussian distributions, so

38

they are naturally separated into r groups. Algorithm 2.3.1 and the EM algorithm are
applied to fit the Gaussian mixture model to the 10000 samples for each instance. For each
sample, we calculate the likelihood of the sample to each component Gaussian distribution
in the estimated Gaussian mixture model. A sample is classified to the ith group if its
likelihood for the ith component is maximum. The classification accuracy is the rate that
samples are classified to the correct group. In Table 2.2, for each pair (d,), we report the
accuracy of Algorithm 2.3.1 in the first row and the accuracy of the EM algorithm in the
second row. As one can see, Algorithm 2.3.1 performs better than EM algorithm, and its
accuracy isn’t affected when the dimensions and ranks increase. Indeed, as the difference
between the dimension d and the rank r increases, Algorithm 2.3.1 becomes more and
more accurate. This is opposite to the EM algorithm. The reason is that the difference
between the number of rows and the number of columns of A;;[F] in (2.10) increases as
d — r becomes bigger, which makes Algorithm 2.3.1 more robust.

Last, we apply Algorithm 2.3.1 to do texture classifications. We select 8 textured
images of 512 x 512 pixels from the VisTex database. We use the MATLAB function
rgb2gray to convert them into grayscale version since we only need their structure and
texture information. Each image is divided into subimages of 32 x 32 pixels. We perform
the discrete cosine transformation(DCT) on each block of size 16 x 16 pixels with overlap
of 8 pixels. Each component of "Wavelet-like” DCT feature is the sum of the absolute
value of the DCT coefficients in the corresponding sub-block. So the dimension d of the
feature vector extracted from each subimage is 13. We use blocks extracted from the first
160 subimages for training and those from the rest 96 subimages for testing. We refer to
[50] for more details. For each image, we apply Algorithm 2.3.1 and the EM algorithm
to fit a Gaussian mixture model to the image. We choose the number of components r
according to Remark 2.1.6. To classify the test data, we follow the Bayes decision rule that
assigns each block to the texture which maximizes the posteriori probability, where we

assume a uniform prior over all classes [17]. The classification accuracy is the rate that a

39

Table 2.2. Comparison between Algorithm 2.3.1 and EM for simulations

accuracy time
d r Algorithm 2.3.1 EM Algorithm 2.3.1 EM
3 0.9861 0.9763 0.8745 0.1649
20 5 0.9740 0.9400 2.3476 0.3852
7 0.9659 0.9252 3.4352 0.6777
4 0.9965 0.9684 4.5266 0.2959
30 8 0.9923 0.9277 8.5494 0.8525
11 0.9895 0.9219 17.2091 1.4106
6 0.9990 0.9117 18.9160 0.6273
40 10 0.9981 0.8931 28.4161 1.2617
15 0.9971 0.9111 69.8013 2.0627
7 0.9997 0.8997 40.6810 0.8314
50 13 0.9995 0.9073 104.7927 1.7867
18 0.9993 0.9038 163.2711 2.6862
8 0.9999 0.8874 93.9836 1.1266
60 15 0.9998 0.8632 234.0331 2.6435
22 0.9995 0.8929 497.9371 3.5527

subimage is correctly classified, which is shown in Table 2.3. Algorithm 2.3.1 outperforms

the classical EM algorithm for the accuracy rates for six of the images.

Table 2.3. Classification results on 8 textures

Accuracy Algorithm 2.3.1 EM
Bark.0000 0.5376 0.8413
Bark.0009 0.5107 0.7150
Flowers.0001 0.8137 0.6315
Tile.0000 0.8219 0.7239
Paintings.11.0001 0.8047 0.7350
Grass.0001 0.9841 0.9068
Brick.0004 0.9406 0.8854
Fabric.0013 0.9220 0.9048

40

Flowers.0001 Tile.OOOO

(5]
Y

AR L00¢

YN

Paintings.11.0001 Grass.0001 Brick.0004 Fabric.0013

Figure 2.1. Textures from VisTex

Acknowledgement. The Chapter 2, in full, has been published in Vietnam

Journal of Mathematics 2021 [64]. The dissertation author coauthored this paper with

Nie, Jiawang and Yang, Zi.

41

Chapter 3

Learning Diagonal Gaussian Mixture
Models Using Higher Order Moment

Previous work performs the incomplete tensor decomposition to learn diagonal
Gaussian mixture models using partially given entries of the moment tensor when r < %l— .
This result uses the first and third-order moments to recover unknown model parameters.
However, the third order moment Mj is insufficient when r > %l — 1. In the following
sections, we propose to utilize higher-order moments to learn Gaussian mixture models

with more components.

3.1 Incomplete Tensor Decomposition of Higher
Order

In this section, we discuss how to solve the incomplete symmetric tensor decompo-
sition problem arising from learning Gaussian mixtures with parameters {w;, p;, i Hi_;.
Let F,, € S™(C?) be the symmetric tensor. In the following, we discuss how to obtain the
decomposition of F,, given entries (F,)q,, -

For convenience, we denote n :=d — 1. Suppose that F,, has the decomposition

Fou = ™ 4 o™, (3.1)

42

where p; = ((13)0, (1)1, - - -, (1ti)n) € C**1. When the leading entry of each y; is nonzero,

we can write the decomposition (3.1) as

®m ®m

where)\z = wi((ﬂl)o)m, and U; = ((Ui)ly RPN (ul)n) = (,ul)ln/(,uz)o & Cn

Let 1 <p<m—2and p<k<n—m—pbe numbers such that
k n—k—1
>r and >
p m—p—1

,@Og{x“m%1§u<<2p§k} (33)

Define the set

such that %, consists of the first » monomials in the graded lexicographic order. Corre-

spondingly, the set %, is defined as

'@1 = {le---mij:1§j1<---<jp§k<jp+1§n}. (34)

For convenience, we say o € N" is in %, (resp. %) if 2% € HBy (resp. %p). Let
a=ej+--+e, +ej,, €% and G € C#*% be a matrix labelled by monomials in

By and H,. We consider the polynomial

D p+1
Pi1-dpip+1 [G](ﬂf) = Z G(Z €its Z ejt)xil T, — Tyt T L
(i1,..ip)EBy t=1 =1

Recall that ¢j,...;,,, [G](z) is a generating polynomial for F,, if it satisfies (1.2), i.e.

<§0j1"'jpjp+1 [G](I) ’ TB:]:m> =0 VpBe N,

m—p—1-

43

The matrix G is called a generating matrix if ¢;,..; ., [G](z) is a generating polynomial. If

the matrix G is a generating matrix of F,,, it should satisfy the equations

<x81 L1 P dp [G] (13)7 fm) =0 (35)
for each a = e, +---+¢;, +e;,,, € % and each tuple (S1y- -y Sm—p-1) € Oq, where

E+1<s <...<S8pp1<m,
Oa = (81,‘..,Sm_p_1)Z

S1 7’é jp+17 <oy Sm—p—1 7’é jp+1

Define the matrix Al«, F,,;] and the vector ba, F,,] be such that

A[avfm}%ﬁ = (]:m)ﬁ-i-% v(%ﬁ) € O, X %o (3 6)
b[oz,]:m]y = (}—m)aﬂ-w Vy € O,.

The dimension of Ala, F,,] is (:::;:11) x r and the equations in (3.5) can be equivalently

written as

Ala, Fr] - G(:y) = blay, Fa.- (3.7)
Lemma 3.1.1 proves that the matrix Alo, F,,] in (3.6) has full column rank under some
genericity conditions.
Lemma 3.1.1. Suppose that (l;) > r and (:::;:11) > r. Let F,, be the tensor with the
decomposition (3.2). If vectors {[u;]z, Yi—y and {[ui]o, }i_, are both linearly independent,

then the matriz Ala, Fo,] as in (3.6) has full column rank.

Proof. The matrix Alo, F,,] can be written as

A[Oé, -Fm] = Z)\i[uz’]Oa [ui]zu:?o'

Therefore, Ao, F,,] has full column rank. O

44

Remark 3.1.2. A successful construction of By requires that (ﬁ) > r. The vectors
n—k—1
m—p—1

()= o (00
>r and >,
P m—p—1

the vectors {[u;) s, }ieq and {[u;)o, Yie, are both linearly independent for generic vectors

{[ui]z }iy and {{wi]o, }i—, have dimensions r and () respectively. Thus, when

Uy, ..., U, in real or complex field.

Under the condition of Lemma 3.1.1, we can prove there exists a unique generating

matrix G for F,,.

Theorem 3.1.3. Let F,, be the tensor in (3.2). Suppose that conditions of Lemma 3.1.1

hold, then there exists a unique generating matriz G for the tensor F,,.

Proof. We first prove the existence of GG. For k + 1 < j < n, we denote

Under the assumption of Lemma 3.1.1, we can define
N; = ([w)a, - - - [ur]z)diag(dy) ([ur) g, - - - [wr]z,)
The matrix G is constructed as
G(B,v+e;) = (Nj)us
forj=k+1,...,nand v, 3 € %y. For every a = v +¢; € %, it holds that

Z G(ﬁ’ a)uf - u? = (Nj)u,:[ui]%o - (Uz)]u;’ =0

BeHo

45

Thus, for every v € N, _;, it holds that

(#7alG](2), Fn) = D_ Al Y (G0, a)uf —uf) =0.

(USKZ0

It proves that the matrix G is a generating matrix for JF,,.
Next, we show the uniqueness. The matrix Ao, F,,] has full column rank by
Lemma 3.1.1, so the generating matrix G is uniquely determined by linear systems in

(3.7). It proves the uniqueness of G. O

By Theorem 3.1.3 and Lemma 3.1.1, the generating matrix G can be uniquely
determined by solving the linear system (3.7). Let Ny11(G),...,No(G) € C™" be the

matrices given as (v, 5 € %y):
Nl(G)yﬁ:G(ﬂ, V+€l) forl=k+1,...,n. (38)

Then we have

Nl(G) [U’i]%o = (wi)lfk[vi]%’o for [=k + 17 sy T

for the vectors (i = 1,...,7)

v = ((Ui)l, ceey (Uz)k) = (uz’)lzlw

wi = ((wi)1, - - (Wi)n—k) = (Us) k4 1en-
We select a generic vector £ == (g1, ---,&,) and let
N(§) = &Nt + - + & No (3.9)
Let 01,...,0, be unit length eigenvectors of N(§), which are also common eigenvectors

of Nk11(G),..., N,(G). For each i =1,...,r, let w; be the vector such that its jth entry

46

(w;); is the eigenvalue of Ny, ;(G), associated to the eigenvector ¢;. Equivalently,

W; = (07 N1 (G) 0y, - -+, 07 N (G)D;) d=1,...,m. (3.10)

Up to a permutation of (91, ...,7,), we have

We denote the sets

Ji :Z{Qlil"'.il,’ip11§i1<"'<ip§]{7},

Jl_j 3:J1m{xi1"‘$ipIil,...,ip%j},

(3.11)

Jy = {(ZE“ Ty py E+1<iy <0< im—p—l < n},

J3 = {xh*k Ty p1—k (il, . ,’l’m,pfl) € J2}
The tensors A\jo5?, ..., \v®P satisfy the linear equation
(m—p—1
Z Ai U®p ® w Y (]:m)o,[1:k]p,[k+1:n]<m—p—1>-
Thus, Ai[v1]s, ..., Ar[vr]s, can be obtained by the linear equation
2

min ; ® [0 3.12
(717“'7’\/7‘) Jl J2 Z ’y ()

We denote the minimizer of (3.12) by (34,...,%,).

The vectors vy, ..., v, satisfy the linear equation

Z v ® Ao @ w7 TP = (Fo) et x i tnfom-n-)-

=1

47

For each j € [k], we solve the linear least square problem

, 2
S (CEV A DR (3.13)
We denote the minimizer of (3.13) as (01, ...,0,).
The scalars Ay, ..., A, in (3.2) satisfy the linear equation
Qm @m
1 1
A + A, = Fm, (3.14)
ZNLl ar
where u; = (0;,w;) for i = 1,...,r. They can be solved by the following linear least square
problem
&m 2
i F T A ! 3.15
min - i . .
i e =32 | | (3.15)
Qm
Let (A1, ...,)\,) be the minimizer of (3.15).
Concluding everything above, we obtain the decomposition of F,,
Fn =™ 4 4 ¢,
where ¢; = (5\)1/7”(1, 0;,w;), for i = 1,... 7. All steps to obtain the decomposition are

summarized in Algorithm 3.1.4

Algorithm 3.1.4. (Incomplete symmetric tensor decompositions.)

Input: Rank r, dimension d, constant p and subtensor (Fy,)q,. in (3.2).

Step 1. Determine the matriz G by solving (3.7) for each o = ej, +--- +¢;,., € %.

Step 2. Let N (&) be the matriz as in (5.9), for a randomly selected vector £. Compute the

vectors w; as in (3.10).

48

Step 3. Solve the linear least squares (3.12), (3.13) and (3.15) to get the scalars \; and

vectors v;.

Output: The tensor decomposition F, = ¢7™ + -+ + ¢=™, for q; = (NY™(1, 5y, 1)

Theorem 3.1.5. Let F,, be the tensor in (3.2). If F,, satisfies conditions of Lemma
3.1.1 and the matriz N (&) in (3.9) has distinct eigenvalues, then Algorithm 3.1.4 finds the

unique rank-r decomposition of F.

Proof. Under the assumptions of Lemma 3.1.1, the tensor F,, has a unique generating
matrix by Theorem 3.1.3 and the generating matrix G is uniquely determined by solving
(3.7). The matrix N (&) in (3.9) has distinct eigenvalues, so the vectors w; are determined
by (3.10). Lemma 3.1.1 assumes {|u;]o,}/_; are linearly independent, it implies that
{[wi] s, }7_, are also linearly independent. Thus, the systems (3.12) and (3.13) both have
unique solutions. By the uniqueness of every step in the Algorithm 3.1.4, we conclude

that Algorithm 3.1.4 finds the unique rank-r decomposition of F,. O

Algorithm 3.1.4 requires the tensor F,, to satisfy the condition of Lemma 3.1.1.

Thus, the rank r should satisfy

remn () o))

In the following, we will find the largest rank that Algorithm 3.1.4 can compute for the

given order m.

Lemma 3.1.6. If n > max{2m — 1, mTQ — 1}, then

k* n—k*—2
.1
max((p*), (m—p*—l)) (3.16)
() (1))
= max max min , ,
peNN[1,m—2] keNN[p,n—m-+p| D m—p—1

where p* = LmT_lj and k* is largest k such that (pk*) < (ﬁ:}’j{_ll).

49

Proof. For a fixed p € [1, 2] NN, it holds that (];) is increasing in k& and (;:;:11) is

decreasing in k. For the fixed p, let k, be the largest k such that

() =(h)

It holds that

o . _ k n—k—1 . k, n—k,—2
rp'—kGNﬂl[’jlol,n}ferp] i p) \m—-p—1 - e p) \m-p—-1/))"

Forpe (%2 m—-2lNNand k€ [pn—m+p],letp =m—-—p—land k' =n—Fk—1.

We can verify that p’ € [1, mT’l], E € [p',n—m+7p], and

()7 0) () 7))

Therefore, it holds that maxpenni,m—2) p = MaXpennp,ps] Tp- Next, we will prove max, 1, =
rp« by showing r, > r,_1 for p € NN [2,p*].

When p < mT_l andn>2m—1,wehavep<m—p—-1<n—1— L”T_lj —p. Hence,

(7)) ()<
p)~ p n—1-[%-p) =\ m-p-1
The above equation implies k, > |25%| > 222,

If k,—1 < k,, then it holds that

s ()< (0) =Gt = (isn= () =
p—1 p—1 p)k,—p+1 p)n—m P

In the following proof, we show r,_; <, if k, 1 > k,.

20

Case 1: (];f) > (”7’“”72). In this case, r, = (’Z’) It holds that

m—p—1

(k;—c*) - (k;)k;—pfnc K —i—pf
- =1 .)
p+1) p+1 kK —i+1

<@f+0) B (@) P e k,+1i
p—1 p)hy—p+1 Tk, —pr14d’
for C >0,p’=m —p—1,k, =n —k, — 1. By direct computation, we have

Ko—i—p k+i
P P <lekm-—-np+n—k,+im—1i>0.
Mo—itlhky—ptlti P b v =

The inequalities n —m +p > k, > < T=n>2m—1,1 >0 imply

kym —np+n—k,+im—i>n—m+i(m—1)+1>0.

It proves
ky—i—p k41
ky—i+1k,—p+1+i

<1, fori > 0. (3.17)

Ifp="- thenp=m—p—1=p and k, = |%5]. If n is even, then k, = 252

and (]Z’) = (”7’“”72), which does not satisfy the assumption of Case 1. If n is odd, then

m—p—1

_ n—1 1t k;; _ (kp kzlafpl p _ kp—p P
ky = %5~ and k, = k,. Thus, we have (p,) = (p) and T Fep ol Fepil < 1.

These inequalities and (3.17) imply that

r 2 I
GG < G) = (G0) () <
p—1 p+1 P p—1 p+1

o1

Then, we consider p < ™=, Under the assumption of Case 1, we have

/ / - /
(k;—C) _ (k;)k pnclkp—z.—p
P+l y)p+1 ki —i+1
_ k,—1 k;, k‘]’)—p'HC k,—i—p'
ko—p p+1 "k —it1

k2 Kk, e k,—i—7p
p)p+1 Tk —i+ 1

It holds that - < 1if and only if kym +m + (p — m —n)p > 0. We observe that

/+1 Fp—pt1
kym+m+ (p—m — n)p is increasing in k, and decreasing in p. When p < == we have
2 m—2 m— 2 m?
kym+m+ (p — m—n)p>—m+m+(——m—n) =n+1-——.
2 2 2 4
As a result, +1k—p+1 < 1 when n > ™= — 1. This inequality and (3.17) imply

k,+C\ (K, —C ky\ k, +C\ (K —C
)G)<(’°) (510 ()) <
p—1 p+1 P p—1 p+1
For all choices of p, the above inequality holds. Under the assumption that k,_1 > k,,
we have r,_; = min ((k;jlc), (%;J) for some C' > 0. It proves that r, > 7,_; when

n > max{2m — 1, mTQ — 1} under the assumption of Case 1.

Case 2: (];f) < (" _k; 2) In this case, r, = ("*k”*Q). Similar to Case 1, we can

m m—p—1
show
Fp £ 14 CY _ (= 1\ kyt1 P o kptlti
p—1 Y Jky+1—pk,—p+2 Tk,—p+2+i

K —-1-C E—1\kl —p —1 K —p —1—1i
(p,)< (%) S e
p+1 D p+1 ky, —1

k}p+1+l k! _p /—1—1 kp+1 » k/ p _ .
and Fp—ptoti K= <1 for ¢ > —1. We observe that Tt 1=p Foep i3 p+1 is decreasing

52

in k, and increasing in p. Recall that £ > ”7_2, p < ’”T_l, so we can show

k,+1 D k,—p —1
ky+1—pk,—p+2 p+1

<1l<4n*—PBn+~y >0, (3.18)

where 8 = m? — 2m — 8 and v = m® — 4m? — 4m + 16. The inequality on the right of
(3.18) is quadratic in n, so it holds when 3% — 16y < 0 or n > Fiypm-16y V’izm. The assumption

n > max{2m — 1, mT2 — 1} implies that

2 2 _
NI R 7]

Therefore, the inequality (3.18) holds. Similar to Case 1, it concludes the proof of 7, > r,_4
for Case 2.
Summarizing everything above, we prove that (3.16) holds for n > max{2m —

2

1,7 -1} O
The following Theorem 3.1.7 provides the largest rank that Algorithm 3.1.4 can
compute based on the result of Lemma 3.1.1.

Theorem 3.1.7. Let F,, € S™(C"™) be the tensor as in (3.2). When n > max(2m —

2

1,7 — 1), the largest rank v of F,, that Algorithm 5.1.4 can calculate is

k* n—2—k*
T'mae = max((p*)’ (m 1 p*)), (3.19)

where p* = LmT_lj and k* 1is largest integer k such that (pk*) < (TZ:;:}I).

Proof. By Theorem 3.1.5, Algorithm 3.1.4 requires (';) > r and ("_k_l) > r to find a

m—p—1

rank-r decomposition of tensor F,,. For the given tensor F,, with dimension n + 1 and

order m, the largest computable rank of Algorithm 3.1.4 is

o ((Q) e

93

where p € [1, m — 2] and k € [p+ 1, n — m + p — 1]. Therefore, (3.19) is a direct result of
Lemma 3.1.6. [

Remark 3.1.8. The k* in Theorem 3.1.7 can be obtained by solving

k —k-1
<) - (”) (3.21)
where the above binomial coefficients are generalized to binomial series for real number k.

Let k € R be the solution to (3.21), then k* = U%J Especially, when m is odd, we have

pr=m-—1-—p*= mT_l, k* = L"T_IJ, and the corresponding largest rank is

n—1
_ (%)
Tmaz = m—1 .
2

There is no uniform formula for the largest ranks when m is even. The largest ranks for

some small orders are summarized in Table 3.1.

Table 3.1. The largest rank r that Algorithm 3.1.4 can compute.

the largest r
| g
| 1”5
‘ L2n7172\/mJ
| (“3)
max((tm), (”_%J_Q)), where A = %n4 — %ng + %ﬂ? — %n + %

and k = ¢ —3n—-3)(n—4)+ VA + f/—%(n—S)(n—ll)—\/Z—I—n—?)

7 1)

(=}

o4

3.2 Incomplete Tensor Approximations and Error
Analysis

When learning Gaussian mixture models, the subtensor (F,,)q,, is estimated from
samples and is not exactly given. In such case, Algorithm 3.1.4 can still find a good
low-rank approximation of F,,. In this section, we discuss how to obtain a good tensor
approximation of F,, and provide an error analysis for the approximation.

Let]-A"m be approximations of F,,. Given the subtensor (ﬁm)gm, we can find a
low-rank approximation of F,, following Algorithm 3.1.4. We define the matrix A[a, ﬁm]

and the vector b[a, ﬁm] in the same way as in (3.6), for each o € ;. Then we have the

following linear least square problem

~ ~ 2
min HA[a, Fol - g — bla, Forl (3.22)

ga €ECZ0

For each o € %, we solve (3.22) to get G[:,a] which is an approximation of G[:, al.

Combining all (A}’[:,a]’s, we get G € CPx# approximating the generating matrix G.

~

Similar to (3.8), for l =k +1,...,n, we define V;(G) as an approximation of N;(G) and

let
N(€) = & Nt (@) + - + &N (@), (3.23)
where £ = (§k41, ..., &) is a generic vector. Let 0q,...,0, be the unit length eigenvectors
of N({) and
Wi = (07 Niyr (G) s, -+, 0F NL(G)o;) i=1,...,7. (3.24)

For the sets Jy, J; 7. Jo, Jy defined in (3.11), we solve the linear least square problem

min (ﬁm)Jl Jo T Zf}/z ® [wZ]Jg (325)
(V15e7r) p
Let (41, ...,%,) be the minimizer of the above problem. Then, we consider the following

95

linear least square problem

., 2

0 Py = 203 @ i (3.26)

We obtain (04, ..., 0,) by solving the above problem for j = 1,... k. Let & = (0, w). Then,

we have the following linear least square problem
Xm 2
i F, =) ! 3.27
min m)Q,, — i))
Qm

~

Denote the minimizer of (3.27) as (5\1, oA Fori=1,...r let
Gi = ()™ (1, 0, 1),
Now, we obtain the approximation of the tensor F,,
Fon = (@)™ 4 -+ (G,)°™

This result may not be optimal due to sample errors. We can get a more accurate

approximation by using (¢, ..., ¢,) as starting points to solve the nonlinear optimization

T

(Fa)e — 3 _(@5™)a,,

=1

min
(qlv---7QT)

(3.28)

We denote the minimizer of the optimization (3.28) as (¢7,...,q}).

We summarize the above calculations as a tensor approximation algorithm in

Algorithm 3.2.1.
Algorithm 3.2.1. (Incomplete symmetric tensor approzimation.)

Input: The rank r, the dimension d, the constant p, and the subtensor (]?m)gm as in

o6

(3.30).
Step 1. Determine the generating matriz G by solving (3.22) for each o € A;.

Step 2. Choose a generic vector & and define]V(S) as in (3.23). Calculate unit length
eigenvectors of]/\\f(é’) and corresponding eigenvalues of each NZ(CAJ) to define w; as in

(3.24).
Step 3. Solve (3.25), (3.26) and (3.27) to obtain the coefficients \; and vectors 0.

Step 4. Let §; = (Xi)l/m(lﬁi,uﬁi) fori=1,...,r. Useq,...,q. as start points to solve

the nonlinear optimization (3.28) and get an optimizer (qf,...,q}).
Output: The incomplete tensor approzimation (q1)®™ + - + (q)®™ for Fi.

We can show that Algorithm 3.2.1 provides a good rank-r approximation when the

input subtensor (ﬁm)g is close to exact tensors F,,.

m

Theorem 3.2.2. Let F, = wi(1)®™ + -+ + w,(1)®™ as in (3.1) and constants k, p be

such that min ((];), (:;’;:11)) > r. We assume the following conditions:
(i) the scalars w; and the leading entry of each p; are nonzero;
(ii) the vectors {[(pi)1:n)2, }i—y are linearly independent;

(11i) the vectors {[(1ti)1:m]o, Yiey are linearly independent for all « € % ;

(iv) the eigenvalues of the matriz N (&) in (3.9) are distinct from each other.

Let ¢; = (wi)Y™u; and ¢ be the output vectors of Algorithm 3.2.1. If the distance

€= ||(]?m — Fm)a, || is small enough, then there exist scalars 7;,n} such that

(7)™ = ;)" =1, |G — all = Ole), nigi —all = Ole),

o7

up to a permutation of (q1,-...,q.), where the constants inside O(-) only depend on F,,

and the choice of & in Algorithm 3.2.1.

Proof. The vectors (1,uq), ..., (1,u,) in (3.2) are scalar multiples of u1, ..., u,. respectively.
By Conditions (ii) and (iii), the vectors {[u;]4,}i—; and {[u;]o,}i_; are both linearly
independent, which satisfies the condition of Lemma 3.1.1. Thus Conditions (i)-(iii) imply
that there exists a unique generating matrix G for F,, by Theorem 3.1.3 and it can be
calculated by (2.11). By Lemma 3.1.1, the matrix A[a, F;,| has full column rank. It holds
that

|A[a, Fon] — Ala, Fol|| < €, (|6, Fon] = ble, Fual | < e, (3.29)

for v € %, When € is small enough, the matrix Afo, F,,] also has full column rank. Then
the linear least square problems (3.22) have unique solutions and the collection of solutions
G satisfies that

IG =G|l = Ofe),

~

where O(e€) depends on F,,, (see [14, Theorem 3.4]). Since N;(G) is part of the generating

matrix G for each [= k + 1,...,n, we have
IN(G) = NG| < IG =G| =O(e), 1=k+1,....n,

which implies that | N(¢) — N(€)|| = O(e). By condition (iv) we know that the matrix
]V(f) has distinct eigenvalues wy, ..., w, if € is small enough. So the matrix N(£) has a

set of eigenvalues w; such that

[[@; = wil| = O(e).

This follows from Proposition 4.2.1 in [8]. The constants inside the above O(-) depend only
on F,, and £. The vectors wy, ..., W, are multiples of the vectors (11)k+1my - - -5 (fr)kt1m

respectively. Thus, we conclude that [w1]y,, .. ., [0,], are linearly independent by condition

o8

(iii). When € is small, the vectors [i1]y,, ..., [W,]s, are also linearly independent. For
optimizers 4;, 9;, \; of linear least square problems (3.25), (3.26) and (3.27), by [14,

Theorem 3.4, we have
13 = 7ll = O(e), ll6; —vill = O(e), A = Xill = O(e),

where constants inside O(-) depend on F,, and . By Theorem 3.1.5, we have F,,, =
S @™ where ¢ = (M)Y™ (1, %;, ;). The rank-r decomposition of F,, is unique up to
scaling and permutation by Theorem 3.1.5. Thus, there exist scalars 7; such that (7;)™ =1
and 7;¢; = ¢;, up to a permutation of ¢,...,q.. Then for §; = (5\)1/’"(1,1%, w;), we have
1M:¢; — qi|]| = O(e) where constants inside O(-) depend on F,,, and &.

Since ||7:G;—q;|| = O(€), we have || F,— (D20, (4)®™)q,. || = O(€). For the minimizer

(g1, ...,q) of (3.28), it holds that

<

(%)

=1

Qm

Qm

For the tensor F, :=>""_,(¢;)®™, we have
1(Fs = Fadonll < [(Fpe = Fan)anll + [[(Fon = Fnda | = Ole)

If we apply Algorithm 3.2.1 to (F})q,., we will get the exact decomposition

Fro o= >_,(g5)®™. By repeating the above argument, similarly we can obtain that
Infqr — q;|| = O(e) for some 7} such that ()™ = 1, where the constants in O(-) only

depend on F,, and £. O

29

3.3 Learning General Diagonal Gaussian Mixture

Let y be the random variable of a diagonal Gaussian mixture model and y, . ..

y YN

be i.i.d. samples drawn from the model. The moment tensors M, = E[y®™] can be

estimated as follows

7 1 m m
My, = < (y¢ + ey,

Recall that F,, = Y ;_, wips™. By Corollary 1.8 and (1.10), we have

7

where €Q,,, is the index set defined in (1.9). Let Fum be such that

—~

(ﬁm)Qm = (Mm>Qm .

(3.30)

We can apply Algorithm 3.2.1 to find the low-rank approximation of }/:m Let .7-A"m ~

i1 (gF)®™ be the tensor approximation generated by Algorithm 3.2.1. By Theorem

—

3.2.2, when € = ||(M,,)q,, — (M,,)q,,|| is small, there exists n; € C such that n/* =1 and

msqF — (wi)Y™u;]| = O(e). The n; appears here because the vector ¢f can be complex

even though]?m is a real tensor. But w;, y; are both real in Gaussian mixture models. In

practice, we can choose the n; from all mth roots of 1 that minimizes ||Im(n;q})||. Let

G = (m:q;)-

1/m

We expect that ¢; &~ (w;)'/™u;. Then, we consider the tensor

m—t

Ezwm?t—k---%—wm?tz (wl) m (é1)®t+---+(wT) —

60

(3.31)

where ¢ is the smallest number such that ({) > 7. It holds that (F)q, = (M;)q, ~ (]\Z)Qt,

so we obtain the scalars (w;)™% by solving the linear least square problem

. 2
i Mo, =Y 5 ((G)% 3.32
ey (SIO7) ;5 (@)™, (3.32)
Let the optimizer of (3.32) be (85, ..., 5), then
~ $) — 2 ~ * x| —L
w; = (B")m= and [= q; /(B;) (3.33)
should be reasonable approximations of w; and u; respectively.
To obtain more accurate results, we can use (wi,...,w,, fl1,..., 1) as starting
points to solve the following nonlinear optimization
Jmin ([(Mi)a,, = 32 wi(ps ™), l* + 1Mo, — 32 wilp e, |
[T i=1 i=1 (334)

subject to wi + -+ w, =1, wy,...,w, >0,

and obtain the optimizer (wf, ..., wk ui, ..., pwk).
Next, we will show how to calculate the diagonal covariance matrices. We define a

label set

L ={(j,7,%1, - yimso): 1 <iy <+ <ipo <dyand iy # J,...,lm_2# J}.
For (7, 4,1, ... ,im—2) € Lj, we have

(Mm)j,j,il,...,z‘m,g = izr;wz‘ ((Mi)j(ﬂz‘)j (Mz‘)il T (Nz’)im,g + E%‘)(N/i)il T (Mz‘)z‘m,2> .

The above equation is a direct result of (1.8) since all covariance matrices are diagonal.

61

Let

A= My — Fry A= My — (00)%" — - — (3,)°™ (3.35)
To get the estimation of covariance matrices 3; = diag(c?, ..., 0%), we solve the nonnega-
tive linear least square problems (j = 1,...,d)
2
mln 0w} ®@m=2y
i [(2), = S G, -

subject to 0 > O, ooy 0,520

where L; = {(i1,.. im—2) : (4, 5,01, im_2) € L;}. The vector ((u;‘)®m_2)ﬁj has
length (mriz) > (f}) > r, where k,p are constants in Algorithm 3.2.1. Therefore,
((u3)®m=2); By ((ur)®m=2) i, are generically linearly independent and hence (3.36) has
a unique optimizer. Suppose the optimizer is (7}, ...,0;;). The covariance matrix 3, can

Vg

be approximated as
xi = {diag(031, .0} o3y = /0 (3.37)
The following is the complete algorithm to recover the unknown parameters
{riy B, Yy
Algorithm 3.3.1. (Learning diagonal Gaussian mizture models.)

Input: The mth order sample moment tensor]\//Tm, the tth order sample moment tensor

]\/4\75, and the number of components r.

Step 1. Apply Algorithm 3.2.1 to subtensor (.7-")a,, defined in (3.30). Let (¢7)®™ + -+ +

(@5)®™ be the output incomplete tensor approzimation for Fon.

Step 2. Fori=1,...,r, we choose 1; such that n* =1 and it minimizes || Im(n;q})||. Let
G; = Re(niqr) as in (3.31).

Step 3. Solve (3.32) to get the optimizer (57,...,55) and compute &;, fi; as in (3.33) for

T

1=1,...

3 .

62

Step 4. Use (w1, ..., fl1,- .., [l) as starting points to solve (3.34) to obtain the optimizer
(Wiy o wi i,).

Step 5. Solve the optimization (3.36) to get optimizers 0; and then compute X} as in
(5.87).

Output: Mizture Gaussian parameters (w}, puf, X5),i=1,...,r.

When the sampled moment tensors are close to the accurate moment tensors, the
parameters generated by Algorithm 3.3.1 are close to the true model parameters. The

analysis is shown in the following theorem.

Theorem 3.3.2. Given a d-dimensional diagonal Gaussian mizture model with parameters
{(wi, pi, 3;) 10 € [r]} and r no greater than the rymax in (3.19). Let {(w}, i, 27) 14 € [r]}
be the output of Algorithm 3.3.1. If the distance € := max(||]/\4\m—Mm||, ||]\/4\,5—Mt||) is small

enough, (u3")q,, ..., (U2 q, are linearly independent, and the tensor F,, = > i wiui™

satisfies the conditions of Theorem 3.2.2, then
17 = pill = O(e), [lwi” — will = O(e), 155 = Xill = O(e),

where the constants inside O(-) depend on parameters {(w;, i, 3;) : @ € [r]} and the choice

of & in Algorithm 3.8.1.

Proof. We have

1(F = Fado |l = 1Mo = M), || < e

I(Fi = Fal = |(M; — My)o, || < e.

and F,,,, F; satisfy conditions of Theorem 3.2.2. They imply that ||nfq¢} — ¢|| = O(e) for

some (7)™ =1 by Theorem 3.2.2. The constants inside O(e¢) depend on the parameters

63

of the Gaussian model and vector £. Since vectors ¢; are real, we have ||Im(n/¢})|| = O(e).

When e is small enough, such n] minimizes ||[Im(n}¢})|| and we have
IRe(nia;) = aill < lnj a7 — a:ll = O(e).

Let ¢; == Re(n;q}). When € is small, vectors (¢)q,, - . ., (G%)q, are linearly independent
since (1), - - -, (1®)q, are linearly independent by our assumption. It implies that the
problem (3.32) has a unique solution. The weights w; and mean vectors fi; can be calculated
by (3.33). Since H(Ht — My)a,|| < eand ||¢; — ¢ = O(€), we have ||w; — @&;]| = O(e) (see

[14, Theorem 3.4]). The approximation error for the mean vectors is
7 = pall = 116/ (@)™ = as/ (i)™ = O(e).

The constants inside O(¢) depend on parameters of the Gaussian mixture model and €.

We obtain optimizers w; and p; by solving the problem (3.34), so it holds

H(ﬂmmm =D wi ((1)°),, || = 0.

Let Fy, =Y wi(p)®™ and F; == ., wi(p)®", then

(2 3

1(FF = Foall < 1(Fe = Fall + (Fr — Fall = Ofe).

By Theorem 3.2.2, we have ||(w})"™u! — ¢|| = O(¢). Since we are optimizing (3.34), it

]

also holds that

= O(e).

t

H(M\t)szt - Zwi ((:U“:>®t)gt

) H@m = 2@ (@) i)™,

64

m—t

Combining the above with ||[(M, — M,)a,|| = O(e), we get [|(w}) " —w, ™ || = O(e) by

[14, Theorem 3.4] and hence ||w; — w;|| = O(€). For mean vectors u; we have

i = pill = (@)™) [(wi) ™ = qi/ (i)™ | = O(e).

The constants inside the above O(-) only depend on parameters {(w;, i, ;) : ¢ € [r]} and

€.
We obtain the covariance matrices 3; by solving (3.36). It holds that

s ()22 — w2 = O(e),

IA = Al < | My = M| + 1D (a))™ = Foull < OCe),
=1

where A and A are defined in (3.35). The tensor F,, satisfies the condition of Theo-

®(m—2)

rem 3.2.2, so the tensors p, o 7M§(m—2)

are linearly independent. It implies that
{w(u)®m=237_ are linearly independent when e is small. Therefore, (3.36) has a unique

solution for each j. By [14, Theorem 3.4], we have

1(e5)* = (033)*]| = O(e)-
It implies that || X —X;|| = O(e), where the constants inside O(-) only depend on parameters
{(wi, pi; X5) i € [r]} and & u

Remark 3.3.3. Given the dimension d and the highest order of moment m, the largest
number of components in the Gaussian mizture model that Algorithm 3.5.1 can learn is

the same as the largest rank r,q. as in Theorem 3.1.7, i.e.,
(k*) (d -3 - k*)
T'maz = maX())7

65

m—1

5| and k* is largest integer k such that

()= ()

Given a d-dimensional Gaussian mixture model with r components, we can use Theorem

where p* = |

3.1.7 to obtain the smallest order m required for the Algorithm 3.3.1 and then apply

Algorithm 3.3.1 to learn the Gaussian mizture model using the mth order moment.

3.4 Numerical Experiments

First, we present numerical experiments for Algorithm 3.1.4. We construct
Z @ e S™(RY) (3.38)

by randomly generating each ¢; € R? in Gaussian distribution by the randn function in
MATLAB. Then we apply Algorithm 3.1.4 to the subtensor (F,,)q,, to calculate the rank-r
tensor decomposition. The relative error of tensors and components are used to measure

the decomposition result

|(Fin = F), % — G

vec-err-max ‘—m max —r————,

I(Fm)anll i el

decomp-err,, =

where fm, G; are output of Algorithm 3.1.4. We choose the values of d, m as

d=15,25,30,40, m=3,4,5,6,7,

and r as largest computable rank in Theorem 3.1.7 given d and m. For each (d, m,r),
we generate 100 random instances, except for the case (40, 7,969) where 20 instances are
generated due to the long computation time. The min, average, and max relative errors

of tensors for each dimension d, order m, and the average relative errors of component

66

vectors are shown in Table 3.2. The results show that Algorithm 3.1.4 finds the correct

decomposition of randomly generated tensors.

Table 3.2. The performance of Algorithm 3.1.4

decomp-err,,

d m r min average max vec-err-max
3 6 17-100"® 31-1072 17-107% 1.1-107H
4 8 40-107% 78-107% 77-107% 1.2.1071°
15 5 15 19-10% 25-100" 87-107 9.1.107"
6 20 52-100% 23-107° 12-107% 9.5-1071°
7020 74-107% 1.7-107° 13-107% 3.4.10710
3 11 93-107% 73-1072 63-107° 1.3.107Y
4 16 61-100%* 1.0-1071% 91.107° 3.5-1071
o5 5 55 29-107'? 44-107° 1.2-1007 3.8-107%
6 8 93-107" 72.10% 1.7-107% 4.6-1077
7 165 1.4-107° 14-1077 41-10¢ 1.7.10°¢
3 14 32-100% 71-1002 22.107'° 4.3.107Y
4 21 36-100%® 1.6-107° 24.107% 3.9.107%
30 5 91 33-107% 15-1007 53-100% 6.2-1077
6 136 1.0-107* 1.7-1007 83-10% 1.9.10°
7 364 24-100% 24-100° 2.7-107° 4.1.107°
3 19 94-100% 59.10712 76-1071 24.1071
4 29 41-107%¥ 54-100% 69-1071% 1.4.107%
40 5 171 1.6-107 13-1077 1.4-10% 1.1-107°
6 28 4.5-10° 59-100° 1.1-100* 6.0-107°
7 969 7.8-1007 1.2-10° 43-10° 3.7-107*

Then we present numerical experiments for exploring the incomplete symmetric
tensor approximation quality of Algorithm 3.2.1. We first randomly generate the rank-r
symmetric F as in (3.38). Then we generate a random tensor £ with the same dimension
and order as F,, and scale it to a given norm ¢, i.e. [|En|| = ¢. Let Frp = Fop + En.
Algorithm 3.2.1 is applied to the subtensor (]?m)g to compute the rank-r approximation

Fr.. The approximation quality of F can be measured by the absolute error and the

67

relative error

(F — Pl
[Erle|

abs-err,, = ||(Fr, — Fm)a,.ll, rel-err, =
We choose the values of d, m, € as
d=15,25, m=3,4,56, e=0.1,0.01, 0.001,

and r as largest computable rank in Theorem 3.1.7 given d and m. For each (d, m, r, €),
we generate 100 instances of fm(for the case (25, 6, r,€), 20 instances are generated due
to long computational time) and record the minimum, average, maximum of abs-err,,,
rel-err,, respectively. For the case when d = 15, the results are reported in Table 3.3. For
the case when d = 25, the results are reported in Table 3.4. For all instances, the output

tensor of Algorithm 3.2.1 provides a good rank-r approximation.

Table 3.3. The performance of Algorithm 3.2.1 when d = 15

rel-error abs-error

m € min average max min average max
0.1 0.8452 0.8953 0.9258 0.0378 0.0444 0.0534
3 6 0.01 0.8549 0.8947 0.9280 0.0037 0.0045 0.0052
0.001 0.8581 0.8969 0.9337 3.5-107% 44-.10* 5.1-107%
0.1 0.9382 0.9544 0.9666 0.0256 0.0298 0.0346
4 8 0.01 0.9409 0.9569 0.9700 0.0024 0.0029 0.0034
0.001 0.9333 0.9547 0.9692 25-107* 3.0-107* 3.6-107*
0.1 09521 0.9612 0.9689 0.0248 0.0275 0.0306
5 15 0.01 09529 0.9613 0.9690 0.0025 0.0028 0.0030
0.001 0.9539 09615 0.9704 24-107% 2.7-107* 3.0-107*
0.1 0.9625 0.9697 0.9767 0.0215 0.0244 0.0271
6 20 0.01 0.9620 0.9694 0.9737 0.0023 0.0025 0.0027
0.001 0.9619 0.9696 0.9769 21-107% 24-107* 2.7-1074

68

Table 3.4. The performance of Algorithm 3.2.1 when d = 25

rel-error abs-error

m o € min average max min average max
0.1 0.9248 0.9377 0.9488 0.0316 0.0347 0.0380
3 11 0.01 09257 0.9380 0.9484 0.0032 0.0035 0.0038
0.001 0.9239 09383 0.9504 3.1-107% 34-107% 38-10714
0.1 09809 09840 0.9861 0.0166 0.0178 0.0194
4 16 0.01 0.9813 0.9839 0.9868 0.0016 0.0018 0.0019
0.001 0.9808 0.9838 0.9860 1.7-107* 1.8-107* 1.9-107*
0.1 0.9854 0.9870 0.9878 0.0156 0.0161 0.0170
5 55 0.01 0.9858 09871 0.9884 0.0015 0.0016 0.0017
0.001 0.9856 0.9870 0.9882 1.5-107* 1.6-107%* 1.7-1074
0.1 09938 0.9940 0.9943 0.0106 0.0109 0.0111
6 84 0.01 09939 0.9942 0.9946 0.0011 0.0011 0.0011
0.001 1.0001 1.0046 1.0102 1.6-107* 1.8-107* 2.1-107*

Next, we explore the performance of Algorithm 3.3.1 for learning diagonal Gaussian
mixture model. We compare it with the classical EM algorithm using the MATLAB function
fitgmdist (MaxIter is set to be 100 and RegularizationValue is set to be 0.001). The
dimension d = 15 and the orders of tensors m = 3, 4, 5, 6 are tested. The largest possible
values of 7 as in Theorem 3.1.7 are tested for each (d, m). We generate 20 random instances
of {(wi, ps, X)) ¢ =1,...,r} for each (d,m). For the weights wy,...,w,, we randomly
generate a positive vector s € R" and let w; = ﬁ For each diagonal covariance matrix
¥; € R™? we use the square of a random vector generated by MATLAB function randn to
be diagonal entries. Each example is generated from one of component Gaussians and the
probability that the sample comes from the ith Gaussian is the weight w;. Algorithm 3.3.1
and EM algorithm are applied to learn the Gaussian mixture model from samples. After

obtaining estimated parameters (w;, p;, 3;) of the model, the likelihood of the sample

for each component Gaussian distribution is calculated and we assign the sample to the

69

group that corresponds to the maximum likelihood. We use classification accuracy, i.e.
the ratio of correct assignments, to measure the performance of two algorithms. The
accuracy comparison between two algorithms is shown in Table 3.5. As one can see, the

performance of Algorithm 3.3.1 is better than EM algorithm in all tested cases.

Table 3.5. Comparison between Algorithm 3.3.1 and EM for learning Gaussian mixtures

accuracy

d m r Algorithm 3.3.1 EM
3 6 0.9839 0.9567
15 4 8 0.9760 0.9451
5 15 0.9639 0.9382

6 20 0.9423 0.9285

Acknowledgement. The Chapter 3, in full, has been submitted for publication

[65]. The dissertation author coauthored this paper with Nie, Jiawang and Yang, Zi.

70

Bibliography

[1]

2]

[11]

[12]

D. Achlioptas and F. McSherry, On spectral learning of mixtures of distributions,
International Conference on Computational Learning Theory, pp. 458-469, 2005.

A. Anandkumar, R. Ge, D. Hsu, S. Kakade, and M. Telgarsky, Tensor decompositions

for learning latent variable models, Journal of Machine Learning Research, 15, pp.
2773-2832, 2014.

M. Belkin and K. Sinha, Toward learning Gaussian mixtures with arbitrary separa-
tion, COLT, 2010.

J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and
J. Chanussot, Hyperspectral unmixing overview: Geometrical, statistical, and
sparse regression-based approaches, IEEE journal of selected topics in applied earth
observations and remote sensing, 5(2):354-379, 2012.

P. Breiding and N. Vannieuwenhoven. The condition number of join decompositions.
SIAM Journal on Matriz Analysis and Applications, 39(1):287-309, 2018.

P. Breiding and N. Vannieuwenhoven. The condition number of Riemannian approx-
imation problems. SIAM Journal on Optimization, 31(1):1049-1077, 2021.

C. Brubaker and S. Vempala, Isotropic PCA and affine-invariant clustering, Building
Bridges, pages 241-281. Springer, 2008.

F. Chatelin, Eigenvalues of matrices: revised edition, STAM, 2012.

K. Chaudhuri, S. Kakade, K. Livescu, and K. Sridharan, Multi-view clustering
via canonical correlation analysis, Proceedings of the 26th annual international
conference on machine learning, pages 129-136, 2009.

K. Chaudhuri and S. Rao, Learning Mixtures of Product Distributions Using
Correlations and Independence, COLT, pages 9-20, 2008.

P. Comon, L.-H. Lim, Y. Qi, and K. Ye, Topology of tensor ranks, Advances in
Mathematics, 367:107128, 2020.

S. Dasgupta, Learning mixtures of Gaussians, 40th Annual Symposium on Founda-
tions of Computer Science (Cat. No. 99CB37039), pages 634-644. IEEE, 1999.

71

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

[27]

S. Dasgupta and L. Schulman, A two-round variant of EM for Gaussian mixtures,
arXiv preprint arXiw:1301.3850, 2013.

J. Demmel, Applied Numerical Linear Algebra, STAM, 1997.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1-22, 1977.

V. De Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank
approximation problem, STAM. J. Matriz Anal. Appl., 30(3), 1084-1127, 2008.

M. Dixit, N. Rasiwasia, and N. Vasconcelos, Adapted Gaussian models for image
classification, C'VPR 2011, pages 937-943, 2011.

I. Domanov and L. De Lathauwer, On the uniqueness of the canonical polyadic de-
composition of third-order tensors—Part II: Uniqueness of the overall decomposition,
SIAM Journal on Matriz Analysis and Applications, 34(3), pages 876-903, 2013.

M. Dressler, J. Nie, and Z. Yang, Separability of Hermitian tensors and PSD
decompositions, Preprint, 2020. arXiv:2011.08132

J. NIE, Sum of squares methods for minimizing polynomial forms over spheres and
hypersurfaces, Frontiers of Mathematics in China 7, 321-346, 2012.

J. Nie, Moment and Polynomial Optimization, STAM, 2023.

J. NIE AND X. ZHANG, Real eigenvalues of nonsymmetric tensors, Computational
Optimization and Applications 70(1), 1-32, 2018.

L. Fialkow and J. Nie, The truncated moment problem via homogenization and flat
extensions, Journal of Functional Analysis, 263(6), 1682-1700, 2012.

S. Friedland, Remarks on the symmetric rank of symmetric tensors, SIAM J. Matrix
Anal. Appl., 37(1), 320-337, 2016.

S. Friedland and L.-H. Lim, Nuclear norm of higher-order tensors, Mathematics of
Computation, 87(311), 1255-1281, 2018.

R. Ge, Q. Huang, and S. M. Kakade, Learning mixtures of Gaussians in high
dimensions, Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pages 761-770, 2015.

F. Ge, Y. Ju, Z. Qi, and Y. Lin. Parameter estimation of a gaussian mixture
model for wind power forecast error by riemann I-bfgs optimization. IFEE Access,
6:38892-38899, 2018.

72

arXiv:2011.08132

[28]

[39]

[40]

M. Haas, S. Mittnik, and M. S. Paolella, Modelling and predicting market risk
with Laplace-Gaussian mixture distributions, Applied Financial Economics, 16(15),
1145-1162, 2006.

C. J. Hillar and L.-H. Lim, Most tensor problems are NP-hard, J. ACM, 60(6),
Art. 45, 39, 2013

D. Hsu and S. M. Kakade, Learning mixtures of spherical Gaussians: moment meth-
ods and spectral decompositions, Proceedings of the 4th conference on Innovations
in Theoretical Computer Science, pages 11-20, 2013.

A. T. Kalai, A. Moitra, and G. Valiant, Efficiently learning mixtures of two Gaussians,
Proceedings of the forty-second ACM symposium on Theory of computing, pages
553-562, 2010.

R. Kannan, H. Salmasian, and S. Vempala, The spectral method for general mixture
models, International Conference on Computational Learning Theory, pages 444-457.
Springer, 2005.

S. Karpagavalli and E. Chandra. A review on automatic speech recognition architec-
ture and approaches. International Journal of Signal Processing, Image Processing
and Pattern Recognition, 9(4):393-404, 2016.

J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathe-
matics, vol. 128, American Mathematical Society, Providence, RI, 2012.

D. -S. Lee, Effective Gaussian mixture learning for video background subtraction,
IEEEFE transactions on pattern analysis and machine intelligence, 27(5):827-832, 2005.

L.-H. Lim, Tensors and hypermatrices, in: L. Hogben (Ed.), Handbook of linear
algebra, 2nd Ed., CRC Press, Boca Raton, FL, 2013.

Y. Ma, Q. Jin, X. Mei, X. Dai, F. Fan, H. Li, and J. Huang, Hyperspectral unmixing
with Gaussian mixture model and low-rank representation, Remote Sensing, 11(8),
911, 2019.

M. Magdon-Ismail and J. T. Purnell, Approximating the covariance matrix of
gmms with low-rank perturbations, International Conference on Intelligent Data
Engineering and Automated Learning, pages 300-307, 2010.

C. Mu, B. Huang, J. Wright, and D. Goldfarb, Square deal: lower bounds and
improved relaxations for tensor recovery, Proceeding of the International Conference
on Machine Learning (PMLR), 32(2),73-81, 2014.

J. Nie and B. Sturmfels, Matrix cubes parameterized by eigenvalues, SIAM journal
on matriz analysis and applications 31 (2), 755-766, 2009.

73

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. Nie, The hierarchy of local minimums in polynomial optimization, Mathematical
programming 151 (2), 555-583.

J. Nie, Linear optimization with cones of moments and nonnegative polynomials,
Mathematical Programming, 153(1), 247-274, 2013.

J. Nie, Generating polynomials and symmetric tensor decompositions, Foundations
of Computational Mathematics, 17(2), 423465, 2017.

J. Nie, Symmetric tensor nuclear norms, SIAM J. Appl. Algebra Geometry, 1(1),
599-625, 2017.

J. Nie, Low rank symmetric tensor approximations, SIAM Journal on Matriz Analysis
and Applications, 38(4), 1517-1540, 2017.

J. Nie, Tight relaxations for polynomial optimization and Lagrange multiplier
expressions, Mathematical Programming 178 (1-2), 1-37, 2019.

J. Nie and K. Ye, Hankel tensor decompositions and ranks, SIAM Journal on Matrix
Analysis and Applications, vol. 40, no. 2, pp. 486-516, 2019.

J. Nie and Z. Yang, Hermitian tensor decompositions, SIAM Journal on Matriz
Analysis and Applications, 41 (3), 1115-1144, 2020

K. Pearson, Contributions to the mathematical theory of evolution, Philosophical
Transactions of the Royal Society of London. A, 185, 71-110, 1894.

H. Permuter, J. Francos, and 1. Jermyn, A study of Gaussian mixture models of color

and texture features for image classification and segmentation, Pattern Recognition,
39(4), 695-706, 2006.

D. Povey, L. Burget, M. Agarwal, P. Akyazi, F. Kai, A. Ghoshal, O. Glembek,
N. Goel, M. Karafiat, A. Rastrow, et al, The subspace Gaussian mixture model—a
structured model for speech recognition, Computer Speech € Language, 25(2),
404-439, 2011.

R. A. Redner and H. F. Walker, Mixture densities, maximum likelihood and the
EM algorithm, SIAM review, 26(2), 195-239, 1984.

D. A. Reynolds, Speaker identification and verification using Gaussian mixture
speaker models, Speech communication, 17(1-2), 91-108, 1995.

B. Romera-Paredes and M. Pontil, A New Convex Relaxation for Tensor Completion,
Advances in Neural Information Processing Systems 26, 29672975, 2013.

A. Sanjeev and R. Kannan, Learning mixtures of arbitrary Gaussians, Proceedings
of the thirty-third annual ACM symposium on Theory of computing, pages 247257,
2001.

74

[56]

Y. Shekofteh, S. Jafari, J. C. Sprott, S. M. R. H. Golpayegani, and F. Almasganj,
A Gaussian mixture model based cost function for parameter estimation of chaotic

biological systems, Communications in Nonlinear Science and Numerical Stmulation,
20(2), 469-481, 2015.

G. Tang and P. Shah, Guaranteed tensor decomposition: a moment approach, Pro-
ceedings of the 32nd International Conference on Machine Learning (ICML-15), pp.
1491-1500, 2015. Journal of Machine Learning Research: W&CP volume 37.

S. Vempala and G. Wang, A spectral algorithm for learning mixture models, Journal
of Computer and System Sciences, 68(4),841-860, 2004.

T. Veracini, S. Matteoli, M. Diani, and G. Corsini, Fully unsupervised learning
of Gaussian mixtures for anomaly detection in hyperspectral imagery, 2009 Ninth
International Conference on Intelligent Systems Design and Applications, 596-601,
2009.

Y. Wu, P. Yang, Optimal estimation of Gaussian mixtures via denoised method of
moments, Annals of Statistics, 48(4), pp. 1981-2007, 2020.

M. Yuan and C.-H. Zhang, On tensor completion via nuclear norm minimization,
Found. Comput. Math., 16(4), 1031-1068, 2016.

H. Zhang, C. L. Giles, H. C. Foley, and J. Yen, Probabilistic community discovery
using hierarchical latent Gaussian mixture model, AAAI 7, 663-668, 2007.

7. Zivkovic, Improved adaptive Gaussian mixture model for background subtraction,
Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR
2004., 2, 28-31, 2004.

B. Guo, J. Nie and Z. Yang, Learning diagonal Gaussian mixture models and
incomplete tensor decompositions, Vietnam Journal of Mathematics, pages 1-26,
2021.

B. Guo, J. Nie and Z. Yang, Diagonal Gaussian Mixture Models and Higher Order
Tensor Decompositions, arXiv preprint arXiv:2401.01337, 2024.

75

	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Tensors
	Generating Polynomials
	Gaussian Mixture Models
	Third Order Moment Structure
	Higher Order Moment Structure

	Learning Diagonal Gaussian Mixture Models Using Third Order Moment
	Incomplete Tensor Decomposition
	Tensor Approximations and Stability Analysis
	Learning Diagonal Gaussian Mixtures
	Numerical Simulations

	Learning Diagonal Gaussian Mixture Models Using Higher Order Moment
	Incomplete Tensor Decomposition of Higher Order
	Incomplete Tensor Approximations and Error Analysis
	Learning General Diagonal Gaussian Mixture
	Numerical Experiments

	Bibliography

