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ABSTRACT OF THE DISSERTATION

Learning Diagonal Gaussian Mixture Models and Incomplete Tensor Decompositions

by

Bingni Guo

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Jiawang Nie, Chair

Gaussian mixture models are widely used in statistics and machine learning because

of their simple formulation and superior fitting ability. High order moments of the Gaussian

mixture model form incomplete symmetric tensors generated by hidden parameters in

the model. This thesis studies how to recover unknown parameters in diagonal Gaussian

mixture models using high order moment tensors. The problem can be formulated as

computing incomplete symmetric tensor decompositions. We propose to use generating

polynomials to compute incomplete symmetric tensor approximations and approximations.

The obtained decomposition is utilized to recover parameters in the model.

In the first part of thesis, we propose a learning algorithm using the first and third

ix



order moment tensors and require that the number of components r ≤ d
2
− 1 for mixture of

d-dimensional Gaussians. In the second part of thesis, we generalize the previous algorithm

using higher order moment tensors and therefore we can recover the unknown parameters

of the model when the number of components r > d
2
− 1. We provide an upper bound of

the number of components in the Gaussian mixture model that the generalized algorithm

can compute. For both algorithms, we prove that our recovered parameters are accurate

when the estimated moments are accurate. Numerical simulations and comparisons with

EM algorithm are presented to show the performance of our algorithms.
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Chapter 1

Introduction

1.1 Tensors

Let m be positive integers. Let F = C (the complex field) or R (the real field).

Denote X1, . . . , Xm finite dimensional vector spaces over the field F. The dual space X∗i

of vector space Xi is defined to be the space of all linear functionals x∗i : Xi → R. Denote

the linear functional x1 ⊗ · · · ⊗ xm on X∗1 × · · · ×X∗m such that

(x1 ⊗ · · · ⊗ xm)(z1, . . . , zm) = z1(x1) · · · zm(xm),

for arbitrary zi ∈ X∗i . The tensor product space of X1, . . . , Xm, denote by X1 ⊗ · · · ⊗Xm,

is a vector space of such x1 ⊗ · · · ⊗ xm.

If {eij : j = 1, . . . , ni} is a basis for Xi, then the set of all tensors of the form

e1
j1
⊗ · · · ⊗ emjm ,

where 1 ≤ ji ≤ ni induces a basis of X1 ⊗ · · · ⊗Xm. By universal property, there exists a

isomorphism between a tensor space Fn1 ⊗ · · · ⊗ Fnm and Fn1×···×nm . Therefore we may

represent a tensor T ∈ Fn1 ⊗ · · · ⊗ Fnm by a multidimensional array in Fn1×···×nm .

Let Sm(Cd) (resp., Sm(Rd)) denote the space of mth order symmetric tensors over

the vector space Cd (resp., Rd). For convenience of notation, we set d = n + 1 and the
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labels for tensors start with 0. A symmetric tensor F of order m and dimension n+ 1 can

be represented by an array indexed by integer tuples (i1, . . . , im), that is,

F = (Fi1...im)0≤i1, ..., im≤n,

where the entry Fi1...im is invariant for all permutations of (i1, . . . , im).

For a vector u := (u0, u1, . . . , un) ∈ Cn+1, the tensor power u⊗m := u ⊗ · · · ⊗ u,

where u is repeated m times, is defined such that

(u⊗m)i1...im = ui1 × · · · × uim .

An outer product like u⊗m is called a rank-1 symmetric tensor.

For every F ∈ Sm(Cd), there exist u1, . . . , ur ∈ Cn+1 such that

F = (u1)⊗m + · · ·+ (ur)
⊗m.

The smallest such r is defined as the symmetric rank of F , denoted as rankS(F),

i.e.

rankS(F) := min

{
r | F =

r∑
i=1

u⊗mi

}
.

There are other types of tensor ranks [34, 36]. We refer to [11, 16, 24, 29, 34, 36] for

general work about tensors and their ranks. In this thesis, we only deal with symmetric

tensors and symmetric ranks. For convenience, if r = rankS(F), we call F a rank-r tensor

and F =
r∑
i=1

u⊗mi is called a rank decomposition.
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1.2 Generating Polynomials

For a power α := (α1, α2, · · · , αn) ∈ Nn and x := (x1, x2, · · · , xn), denote

|α| := α1 + α2 + · · ·+ αn, xα := xα1
1 x

α2
2 · · ·xαnn , x0 := 1.

The monomial power set of degree m is denoted as

Nn
m := {α = (α1, α2, · · · , αn) ∈ Nn : |α| ≤ m}.

The symmetric tensor F ∈ Sm(Cn+1) can be labelled by the monomial power set Nn
m, i.e.,

Fα = Fxα = Fi1...im

where xα = x
m−|α|
0 xα = xi1 . . . xim .

For a finite set B ⊂ C[x] of monomials and a vector v ∈ Cn, we denote the vector

of monomials in B evaluated on v as

[v]B := (f(v))f∈B.

Let C[x]m be the space of all polynomials in x with complex coefficients and degrees

no more than m. For a polynomial p ∈ C[x]m and a symmetric tensor F ∈ Sm(Cn+1), we

define the bilinear product (note that x0 = 1)

〈p,F〉 =
∑
α∈Nnm

pαFα for p =
∑
α∈Nnm

pαx
α, (1.1)

where pα’s are coefficients of p. A polynomial g ∈ C[x]m is called a generating polynomial
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for a symmetric tensor F ∈ Sm(Cn+1) if

〈g · xβ, F〉 = 0 ∀β ∈ Nn
m−deg(g), (1.2)

where deg(g) denotes the degree of g in x.

For a cubic polynomial p ∈ C[x]3 and F ∈ S3(Cn+1), we have the bilinear product

(note that x0 = 1)

〈p,F〉 =
∑

0≤i1,i2,i3≤n

pi1i2i3Fi1i2i3 for p =
∑

0≤i1,i2,i3≤n

pi1i2i3xi1xi2xi3 , (1.3)

where pi1i2i3 are coefficients of p.

Example 1.2.1. Suppose there is a tensor F ∈ S3(C3) that can be represented as


8 −7 19 −7 11 12 −19 12 29

−7 11 12 11 −1 −22 12 −22 −34

−19 12 29 12 −22 −34 29 −34 −73


The following polynomials are generating polynomials for the tensor F

g1 = 1 + 1.2x1 − 0.6x2 − x2
1,

g2 = 2− 1.6x1 + 0.8x2 − x1x2,

g3 = 4− 1.2x1 + 0.6x2 − x2
2.

One can verify it by checking the definition in (1.2).

These three polynomials have common zeros

(1, 2), (2,−1), (−1, 2),
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which can be used to construct a symmetric rank decomposition of F as

F = −(1, 1, 2)⊗3 + (1, 2,−1)⊗3 + 2(1,−1,−2)⊗3.

Using generating polynomials of a rank r tensor, we can show that it only uses its

first r entries and a set of generating polynomials to represent the whole tensor as in the

work [43].

For a given rank r, denote the index sets

B0 := {1, x1, . . . , xn, x
2
1, x1x2, . . .︸ ︷︷ ︸

first r monomials

},

B1 := (B0 ∪ x1B0 ∪ · · · ∪ xnB0)\B0.

Then for α ∈ B1 and G ∈ CB0×B1 , define the polynomials

ϕ[G,α] :=
∑
β∈B0

G(β, α)xβ − xα.

Proposition 1.2.2. For a tensor F ∈ Sm(Cn+1), if ϕ[G,α] is a generating polynomial

for a matrix G ∈ CB0×B1 and ∀α ∈ B1, then for ∀α ∈ B1 and ∀γ ∈ Nn with |γ|+ |α| ≤ m,

we have

Fα+γ =
∑
β∈B0

G(β, α)Fβ+γ.

We refer to [43] for more details of generating polynomials. The generating polyno-

mials are powerful tools to compute low-rank tensor decompositions and approximations

[64, 45, 43]. More work about tensor optimization can be found in [19, 20, 46, 21, 22, 48, 47].
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1.3 Gaussian Mixture Models

A Gaussian mixture model consists of several component Gaussian distributions.

For given samples of a Gaussian mixture model, people often need to estimate parameters

for each component Gaussian distribution [27, 35]. Consider a Gaussian mixture model

with r components. For each i ∈ [r] := {1, . . . , r}, let ωi be the positive probability for

the ith component Gaussian to appear in the mixture model. We have each ωi > 0 and∑r
i=1 ωi = 1. Suppose the ith Gaussian distribution is N (µi,Σi), where µi ∈ Rd is the

expectation (or mean) and Σi ∈ Rd×d is the covariance matrix. Let y ∈ Rd be the random

vector for the Gaussian mixture model and let y1, . . . , yN be identically independent

distributed (i.i.d) samples from the mixture model. Each yj is sampled from one of

the r component Gaussian distributions, associated with a label Zj ∈ [r] indicating the

component that it is sampled from. The probability that a sample comes from the ith

component is ωi. When people observe only samples without labels, the Zj’s are called

latent variables. The density function for the random variable y is

f(y) :=
r∑
i=1

ωi
1√

(2π)d det Σi

exp
{
− 1

2
(y − µi)TΣ−1

i (y − µi)
}
,

where µi is the mean and Σi is the covariance matrix for the ith component.

Learning a Gaussian mixture model is to estimate the parameters ωi, µi,Σi for

each i ∈ [r], from given samples of y. The number of parameters in a covariance matrix

grows quadratically with respect to the dimension. Due to the curse of dimensionality, the

computation becomes very expensive for large d [38]. Hence, diagonal covariance matrices

are preferable in applications. In this paper, we focus on learning Gaussian mixture models

with diagonal covariance matrices, i.e.

Σi = diag
(
σ2
i1, . . . , σ

2
id

)
, i = 1, . . . , r.
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1.3.1 Third Order Moment Structure

Let M3 := E(y ⊗ y ⊗ y) be the third order tensor of moments for y. One can write

that y = η(z) + ζ(z), where z is a discrete random variable such that Prob(z = i) = ωi,

η(i) = µi ∈ Rd and ζ(i) is the random variable ζi obeying the Gaussian distribution

N (0,Σi). Assume all Σi are diagonal, then

M3 =
r∑
i=1

ωiE[(η(i) + ζi)
⊗3] =

r∑
i=1

ωi

(
µi ⊗ µi ⊗ µi + E[µi ⊗ ζi ⊗ ζi]+

E[ζi ⊗ µi ⊗ ζi] + E[ζi ⊗ ζi ⊗ µi]
)
. (1.4)

The second equality holds because ζi has zero mean and

E[ζi ⊗ ζi ⊗ ζi] = E[µi ⊗ µi ⊗ ζi] = E[ζi ⊗ µi ⊗ µi] = E[µi ⊗ ζi ⊗ µi] = 0.

The random variable ζi has diagonal covariance matrix, so E[(ζi)j(ζi)l] = 0 for j 6= l.

Therefore,

r∑
i=1

ωiE[µi ⊗ ζi ⊗ ζi] =
r∑
i=1

d∑
j=1

ωiσ
2
ijµi ⊗ ej ⊗ ej =

d∑
j=1

aj ⊗ ej ⊗ ej,

where the vectors aj are given by

aj :=
r∑
i=1

ωiσ
2
ijµi, j = 1, . . . , d.

Similarly, we have

r∑
i=1

ωiE[ζi ⊗ µi ⊗ ζi] =
d∑
j=1

ej ⊗ aj ⊗ ej,
r∑
i=1

ωiE[ζi ⊗ ζi ⊗ µi] =
d∑
j=1

ej ⊗ ej ⊗ aj.

7



Therefore, we can express M3 in terms of ωi, µi,Σi as

M3 =
r∑
i=1

ωiµi ⊗ µi ⊗ µi +
d∑
j=1

(
aj ⊗ ej ⊗ ej + ej ⊗ aj ⊗ ej + ej ⊗ ej ⊗ aj

)
. (1.5)

We are particularly interested in the following third order symmetric tensor

F :=
r∑
i=1

ωiµi ⊗ µi ⊗ µi. (1.6)

When the labels i1, i2, i3 are distinct from each other, we have

(M3)i1i2i3 = (F)i1i2i3 for i1 6= i2 6= i3 6= i1.

Denote the label set

Ω = {(i1, i2, i3) : i1 6= i2 6= i3 6= i1, i1, i2, i3 are labels forM3}. (1.7)

The tensor M3 can be estimated from the samplings for y, so the entries Fi1i2i3 with

(i1, i2, i3) ∈ Ω can also be obtained from the estimation of M3. To recover the parameters

ωi, µi, we first find the tensor decomposition for F , from the partially given entries Fi1i2i3

with (i1, i2, i3) ∈ Ω. Once the parameters ωi, µi are known, we can determine Σi from the

expressions of aj as in (1.3.1).

1.3.2 Higher Order Moment Structure

The higher-order moments can be expressed by means and covariance matrices

as in the work [26]. Let z = (z1, · · · , zt) be a multivariate Gaussian random vector with

8



mean µ and covariance Σ, then

E[z1 · · · zt] =
∑
λ∈Pt

λ=λp∪λs

∏
(u,v)∈λp

Σu,v

∏
c∈λs

µc, (1.8)

where Pt contains all distinct ways of partitioning z1, · · · , zt into two parts, one part λp

represents p pairs of (u, v), and another part λs consists of s singletons of (c), where

p ≥ 0, s ≥ 0 and 2p+ s = t.

We denote the label set Ωm for mth order tensor Mm

Ωm = {(i1, . . . , im) : i1, . . . , im are distinct from each other}. (1.9)

Let zi ∼ N (µi,Σi) be the random vector for the ith component of the diagonal Gaussian

mixture model. For (i1, . . . , im) ∈ Ωm, the expression (1.8) implies that

(Mm)i1...im =
r∑
i=1

ωi
(
E[z⊗mi ]

)
i1...im

=
r∑
i=1

ωiE[(zi)i1 · · · (zi)im ]

=
r∑
i=1

ωi
∑
λ∈Pm

λ=λp∪λs

∏
(u,v)∈λp

(Σi)u,v
∏
c∈λs

(µi)c

=
r∑
i=1

ωi(µi)i1 · · · (µi)im

= (Fm)i1...im ,

where Pm contains all distinct ways of partitioning {i1, . . . , im} into two parts and λp, λs

are similarly defined as in (1.8). When λp 6= ∅, we have (Σi)u,v = 0 for diagonal covariance

matrices. Thus, we only need to consider λp = ∅ and λs = {i1, . . . , im}. It demonstrates

the above equations. We conclude that the moment tensors for diagonal Gaussian mixtures

9



satisfy

(Mm)i1...im = (Fm)i1...im (1.10)

where Fm =
r∑
i=1

ωiµ
⊗m
i and (i1, . . . , im) ∈ Ωm.

10



Chapter 2

Learning Diagonal Gaussian Mixture
Models Using Third Order Moment

2.1 Incomplete Tensor Decomposition

The moment structure of the third order moment for a diagonal Gaussian mixture

model observed in (1.5) leads to the incomplete tensor decomposition problem. For a third

order symmetric tensor F whose partial entries Fi1i2i3 with (i1, i2, i3) ∈ Ω are known, we

are looking for vectors p1, . . . , pr such that

Fi1i2i3 =
(
p⊗3

1 + · · ·+ p⊗3
r

)
i1i2i3

, for all (i1, i2, i3) ∈ Ω. (2.1)

The above is called an incomplete tensor decomposition for F .

This section discusses how to compute an incomplete tensor decomposition for a

symmetric tensor F ∈ S3(Cd) when only its subtensor FΩ is given, for the label set Ω in

(1.7). For convenience of notation, the labels for F begin with zeros while a vector u ∈ Cd

is still labelled as u := (u1, . . . , ud). We set

n := d− 1, x = (x1, . . . , xn), x0 := 1.

11



For a given rank r, denote the monomial sets

B0 := {x1, · · · , xr}, B1 = {xixj : i ∈ [r], j ∈ [r + 1, n]}. (2.2)

For a monomial power α ∈ Nn, by writing α ∈ B1, we mean that xα ∈ B1. For each

α ∈ B1, one can write α = ei + ej with i ∈ [r], j ∈ [r + 1, n]. Let C[r]×B1 denote the

space of matrices labelled by the pair (k, α) ∈ [r]×B1. For each α = ei + ej ∈ B1 and

G ∈ C[r]×B1 , denote the quadratic polynomial in x

ϕij[G](x) :=
r∑

k=1

G(k, ei + ej)xk − xixj. (2.3)

Suppose r is the symmetric rank of F . A matrix G ∈ C[r]×B1 is called a generating

matrix of F if each ϕij[G](x), with α = ei + ej ∈ B1, is a generating polynomial of F .

Equivalently, G is a generating matrix of F if and only if

〈xtϕij[G](x),F〉 =
r∑

k=1

G(k, ei + ej)F0kt −Fijt = 0, t = 0, 1, . . . , n, (2.4)

for all i ∈ [r], j ∈ [r + 1, n]. The notion generating matrix is motivated from that the

entire tensor F can be recursively determined by G and its first r entries (see [43]). The

existence and uniqueness of the generating matrix G is shown as follows.

Theorem 2.1.1. Suppose F has the decomposition

F = λ1

 1

u1


⊗3

+ · · ·+ λr

 1

ur


⊗3

, (2.5)

for vectors ui ∈ Cn and scalars 0 6= λi ∈ C. If the subvectors (u1)1:r, . . . , (ur)1:r are linearly

independent, then there exists a unique generating matrix G ∈ C[r]×B1 satisfying (2.4) for

the tensor F .
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Proof. We first prove the existence. For each i = 1, . . . , r, denote the vectors vi = (ui)1:r.

Under the given assumption, V := [v1 . . . vr] is an invertible matrix. For each l =

r + 1, . . . , n, let

Nl := V · diag
(
(u1)l, . . . , (ur)l

)
· V −1. (2.6)

Then Nlvi = (ui)lvi for i = 1, . . . , r, i.e., Nl has eigenvalues (u1)l, . . . , (ur)l with corre-

sponding eigenvectors (u1)1:r, . . . , (ur)1:r. We select G ∈ C[r]×B1 to be the matrix such

that

Nl =


G(1, e1 + el) · · · G(r, e1 + el)

...
. . .

...

G(1, er + el) · · · G(r, er + el)

 , l = r + 1, . . . , n. (2.7)

For each s = 1, . . . , r and α = ei + ej ∈ B1 with i ∈ [r], j ∈ [r + 1, n],

ϕij[G](us) =
r∑

k=1

G(k, ei + ej)(us)k − (us)i(us)j = 0.

For each t = 1, . . . , n, it holds that

〈xtϕij[G](x),F〉 =

〈
r∑

k=1

G(k, ei + ej)xtxk − xtxixj,F

〉

=

〈
r∑

k=1

G(k, ei + ej)xtxk − xtxixj,
r∑
s=1

λs

 1

us


⊗3〉

=
r∑

k=1

G(k, ei + ej)
r∑
s=1

λs(us)t(us)k −
r∑
s=1

λs(us)t(us)i(us)j

=
r∑
s=1

λs(us)t

(
r∑

k=1

G(k, ei + ej)(us)k − (us)i(us)j

)
= 0.
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When t = 0, we can similarly get

〈ϕij[G](x),F〉 =

〈
r∑

k=1

G(k, ei + ej)xk − xixj,F

〉

=
r∑
s=1

λs

(
r∑

k=1

G(k, ei + ej)(us)k − (us)i(us)j

)
= 0.

Therefore, the matrix G satisfies (2.4) and it is a generating matrix for F .

Second, we prove the uniqueness of such G. For each α = ei + ej ∈ B1, let

F :=


F011 · · · F0r1

...
. . .

...

F01n · · · F0rn

 , gij :=


F1ij

...

Fnij

 .

Since G satisfies (2.4), we have F ·G(:, ei + ej) = gij . The decomposition (2.5) implies that

F =

[
u1 · · · ur

]
· diag(λ1, . . . , λr) ·

[
v1 · · · vr

]T
.

The sets {v1, . . . , vr} and {u1, . . . , ur} are both linearly independent. Since each λi 6= 0,

the matrix F has full column rank. Hence, the generating matrix G satisfying F · G(:

, ei + ej) = gij for all i ∈ [r], j ∈ [r + 1, n] is unique.

The following is an example of generating matrices.

Example 2.1.2. Consider the tensor F ∈ S3(C6) that is given as

F = 0.4 · (1, 1, 1, 1, 1, 1)⊗3 + 0.6 · (1,−1, 2,−1, 2, 3)⊗3.

The rank r = 2, B0 = {x1, x2} and B1 = {x1x3, x1x4, x1x5, x2x3, x2x4, x2x5}. We have
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the vectors

u1 = (1, 1, 1, 1, 1), u2 = (−1, 2,−1, 2, 3), v1 = (1, 1), v2 = (−1, 2).

The matrices N3, N4, N5 as in (2.6) are

N3 =

1 −1

1 2


1 0

0 −1


1 −1

1 2


−1

=

1/3 2/3

4/3 −1/3

 ,

N4 =

1 −1

1 2


1 0

0 2


1 −1

1 2


−1

=

 4/3 −1/3

−2/3 5/3

 ,

N5 =

1 −1

1 2


1 0

0 3


1 −1

1 2


−1

=

 5/3 −2/3

−4/3 7/3

 .
The entries of the generating matrix G are listed as below:

k\(i, j) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5)

1 1/3 4/3 5/3 4/3 −2/3 −4/3

2 2/3 −1/3 −2/3 −1/3 5/3 7/3

. (2.8)

The generating polynomials in (2.3) are

ϕ13[G](x) =
1

3
x1 +

2

3
x2 − x1x3,

ϕ14[G](x) =
4

3
x1 −

1

3
x2 − x1x4,

ϕ15[G](x) =
5

3
x1 −

2

3
x2 − x1x5,

ϕ23[G](x) =
4

3
x1 −

1

3
x2 − x2x3,

ϕ24[G](x) = −2

3
x1 +

5

3
x2 − x2x4,

ϕ25[G](x) = −4

3
x1 +

7

3
x2 − x2x5.
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Above generating polynomials can be written in the following form

ϕ1j[G](x)

ϕ2j[G](x)

 = Nj

x1

x2

− xj
x1

x2

 , for j = 3, 4, 5.

For x to be a common zero of ϕ1j[G](x) and ϕ2j[G](x), it requires that (x1, x2) is an

eigenvector of Nj with the corresponding eigenvalue xj.

We show how to find an incomplete tensor decomposition (2.5) for F when only

its subtensor FΩ is given, where the label set Ω is as in (1.7). Suppose that there exists

the decomposition (2.5) for F , for vectors ui ∈ Cn and nonzero scalars λi ∈ C. Assume

the subvectors (u1)1:r, . . . , (ur)1:r are linearly independent, so there is a unique generating

matrix G for F , by Theorem 2.1.1.

For each α = ei + ej ∈ B1 with i ∈ [r], j ∈ [r + 1, n] and for each

l = r + 1, . . . , j − 1, j + 1, . . . , n,

the generating matrix G satisfies the equations

〈
xl

(
r∑

k=1

G(k, ei + ej)xk − xixj

)
,F

〉
=

r∑
k=1

G(k, ei + ej)F0kl −Fijl = 0. (2.9)

Let the matrix Aij[F ] ∈ C(n−r−1)×r and the vector bij[F ] ∈ Cn−r−1 be such that

Aij[F ] :=



F0,1,r+1 · · · F0,r,r+1

...
. . .

...

F0,1,j−1 · · · F0,r,j−1

F0,1,j+1 · · · F0,r,j+1

...
. . .

...

F0,1,n · · · F0,r,n


, bij[F ] :=



Fi,j,r+1

...

Fi,j,j−1

Fi,j,j+1

...

Fi,j,n


. (2.10)
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To distinguish changes in the labels of tensor entries of F , the commas are inserted to

separate labeling numbers.

The equations in (2.9) can be equivalently written as

Aij[F ] ·G(:, ei + ej) = bij[F ]. (2.11)

If the rank r ≤ d
2
− 1, then n− r − 1 = d− r − 2 ≥ r. Thus, the number of rows is not

less than the number of columns for matrices Aij[F ]. If Aij[F ] has linearly independent

columns, then (2.11) uniquely determines G(:, α). For such a case, the matrix G can

be fully determined by the linear system (2.11). Let Nr+1(G), . . . , Nm(G) ∈ Cr×r be the

matrices given as

Nl(G) =


G(1, e1 + el) · · · G(r, e1 + el)

...
. . .

...

G(1, er + el) · · · G(r, er + el)

 , l = r + 1, . . . , n. (2.12)

As in the proof of Theorem 2.1.1, one can see that

Nl(G)


(ui)1

...

(ui)r

 = (ui)l ·


(ui)1

...

(ui)r

 , l = r + 1, . . . , n. (2.13)

The above is equivalent to the equations

Nl(G)vi = (wi)l−r · vi, l = r + 1, . . . , n,

for the vectors (i = 1, . . . , r)

vi := (ui)1:r, wi := (ui)r+1:n. (2.14)
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Each vi is a common eigenvector of the matrices Nr+1(G), . . . , Nn(G) and (wi)l−r is the

associated eigenvalue of Nl(G). These matrices may or may not have repeated eigenvalues.

Therefore, we select a generic vector ξ := (ξr+1, · · · , ξn) and let

N(ξ) := ξr+1Nr+1 + · · ·+ ξnNn. (2.15)

The eigenvalues of N(ξ) are ξTw1, . . . , ξ
Twr. When w1, . . . , wr are distinct from each other

and ξ is generic, the matrix N(ξ) does not have a repeated eigenvalue and hence it has

unique eigenvectors v1, . . . , vr, up to scaling. Let ṽ1, . . . , ṽr be unit length eigenvectors of

N(ξ). They are also common eigenvectors of Nr+1(G), . . ., Nn(G). For each i = 1, . . . , r,

let w̃i be the vector such that its jth entry (w̃i)j is the eigenvalue of Nj+r(G), associated

to the eigenvector ṽi, or equivalently,

w̃i = (ṽHi Nr+1(G)ṽi, · · · , ṽHi Nn(G)ṽi) i = 1, . . . , r. (2.16)

Up to a permutation of (ṽ1, . . . , ṽr), there exist scalars γi such that

vi = γiṽi, wi = w̃i. (2.17)

The tensor decomposition of F can also be written as

F = λ1


1

γ1ṽ1

w̃1


⊗3

+ · · ·+ λr


1

γrṽr

w̃r


⊗3

.

The scalars λ1, · · · , λr and γ1, · · · , γr satisfy the linear equations

λ1γ1ṽ1 ⊗ w̃1 + · · ·+ λrγrṽr ⊗ w̃r = F[0,1:r,r+1:n],

λ1γ
2
1 ṽ1 ⊗ ṽ1 ⊗ w̃1 + · · ·+ λrγ

2
r ṽr ⊗ ṽr ⊗ w̃r = F[1:r,1:r,r+1:n].
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Denote the label sets

J1 :=
{

(0, i1, i2) : i1 ∈ [r], i2 ∈ [r + 1, n]
}
,

J2 :=
{

(i1, i2, i3) : i1 6= i2, i1, i2 ∈ [r], i3 ∈ [r + 1, n]
}
.

(2.18)

To determine the scalars λi, γi, we can solve the linear least squares

min
(β1,...,βr)

∥∥∥∥∥FJ1 −
r∑
i=1

βi · ṽi ⊗ w̃i

∥∥∥∥∥
2

, (2.19)

min
(θ1,...,θr)

∥∥∥∥∥FJ2 −
r∑

k=1

θk · (ṽk ⊗ ṽk ⊗ w̃i)J2

∥∥∥∥∥
2

. (2.20)

Let (β∗1 , . . . , β
∗
r ), (θ∗1, . . . , θ

∗
r) be minimizers of (2.19) and (2.20) respectively. Then, for

each i = 1, . . . , r, let

λi := (β∗i )
2/θ∗i , γi := θ∗i /β

∗
i . (2.21)

For the vectors (i = 1, . . . , r)

pi := 3
√
λi(1, γiṽi, w̃i),

the sum p⊗3
1 + · · ·+ p⊗3

r is a tensor decomposition for F . This is justified in the following

theorem.

Theorem 2.1.3. Suppose the tensor F has the decomposition as in (2.5). Assume that

the vectors v1, . . . , vr are linearly independent and the vectors w1, . . . , wr are distinct from

each other, where v1, . . . , vr, w1, . . . , wr are defined as in (2.14). Let ξ be a generically

chosen coefficient vector and let p1, . . . , pr be the vectors produced as above. Then, the

tensor decomposition F = p⊗3
1 + · · ·+ p⊗3

r is unique.

Proof. Since v1, . . . , vr are linearly independent, the tensor decomposition (2.5) is unique,

up to scalings and permutations. By Theorem 2.1.1, there is a unique generating matrix

G for F satisfying (2.4). Under the given assumptions, the equation (2.11) uniquely
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determines G. Note that ξTw1, . . . , ξ
Twr are the eigenvalues of N(ξ) and v1, . . . , vr are the

corresponding eigenvectors. When ξ is generically chosen, the values of ξTw1, . . . , ξ
Twr are

distinct eigenvalues of N(ξ). So N(ξ) has unique eigenvalue decompositions, and hence

(2.17) must hold, up to a permutation of (v1, . . . , vr). Since the coefficient matrices have

full column ranks, the linear least squares problems have unique optimal solutions. Up

to a permutation of p1, . . . , pr, it holds that pi = 3
√
λi

 1

ui

 . Then, the conclusion follows

readily.

The following is the algorithm for computing an incomplete tensor decomposition

for F when only its subtensor FΩ is given.

Algorithm 2.1.4. (Incomplete symmetric tensor decompositions.)

Input: A third order symmetric subtensor FΩ and a rank r = rankS(F) ≤ d
2
− 1.

1. Determine the matrix G by solving (2.11) for each α = ei + ej ∈ B1.

2. Let N(ξ) be the matrix as in (2.15), for a randomly selected vector ξ. Compute the

unit length eigenvectors ṽ1, . . . , ṽr of N(ξ) and choose w̃i as in (2.16).

3. Solve the linear least squares (2.19) and (2.20) to get the coefficients λi, γi as in

(2.21).

4. For each i = 1, . . . , r, let pi := 3
√
λi(1, γiṽi, w̃i).

Output: The tensor decomposition F = (p1)⊗3 + · · ·+ (pr)
⊗3.

The following is an example of applying Algorithm 2.1.4.

Example 2.1.5. Consider the same tensor F as in Example 2.1.2. The monomial sets
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B0, B1 are the same. The matrices Aij[F ] and vectors bij[F ] are

A13[F ] = A23[F ] =

−0.8 2.8

−1.4 4

 , b13[F ] =

1.6

2.2

 , b23[F ] =

 −2

−3.2

 ,

A14[F ] = A24[F ] =

 1 −0.8

−1.4 4

 , b14[F ] =

 1.6

−3.2

 , b24[F ] =

−2

7.6

 ,

A15[F ] = A25[F ] =

 1 −0.8

−0.8 2.8

 , b15[F ] =

 2.2

−3.2

 , b25[F ] =

−3.2

7.6

 .
Solve (2.11) to obtain G, which is same as in (2.8). The matrices N3(G), N4(G), N5(G)

are

N3(G) =

1/3 2/3

4/3 −1/3

 , N4(G) =

 4/3 −1/3

−2/3 5/3

 , N5(G) =

 5/3 −2/3

−4/3 7/3

 .
Choose a generic ξ, say, ξ = (3, 4, 5), then

N(ξ) =

1/
√

2 −1/
√

5

1/
√

2 2/
√

5


12 0

0 20


1/
√

2 −1/
√

5

1/
√

2 2/
√

5


−1

.

The unit length eigenvectors are

ṽ1 = (1/
√

2, 1/
√

2), ṽ2 = (−1/
√

5, 2/
√

5).

As in (2.16), we get the vectors

w1 = (1, 1, 1), w2 = (−1, 2, 3).
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Solving (2.19) and (2.20), we get the scalars

γ1 =
√

2, γ2 =
√

5, λ1 = 0.4, λ2 = 0.6.

This produces the decomposition F = λ1u
⊗3
1 + λ2u

⊗3
2 for the vectors

u1 = (1, γ1v1, w1) = (1, 1, 1, 1, 1, 1), u2 = (1, γ2v2, w2) = (1,−1, 2,−1, 2, 3).

Remark 2.1.6. Algorithm 2.1.4 requires the value of r. This is generally a hard question.

In computational practice, one can estimate the value of r as follows. Let Flat(F) ∈

C(n+1)×(n+1)2 be the flattening matrix, labelled by (i, (j, k)) such that

Flat(F)i,(j,k) = Fijk

for all i, j, k = 0, 1, . . . , n. The rank of Flat(F) equals the rank of F when the vectors

p1, . . . , pr are linearly independent. The rank of Flat(F) is not available since only the

subtensor (F)Ω is known. However, we can calculate the ranks of submatrices of (F)Ω whose

entries are known. If the tensor F as in (2.5) is such that both the sets {v1, . . . , vr} and

{w1, . . . , wr} are linearly independent, one can see that
∑r

i=1 λiviw
T
i is a known submatrix

of Flat(F) whose rank is r. This is generally the case if r ≤ d
2
− 1, since vi has the length

r and wi has length d − 1 − r ≥ r. Therefore, the known submatrices of Flat(F) are

generally sufficient to estimate rankS(F). For instance, we consider the case F ∈ S3(C7).
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The flattening matrix Flat(F) is



∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ F120 F130 F140 F150 F160

∗ F210 ∗ F230 F240 F250 F260

∗ F310 F320 ∗ F340 F350 F360

∗ F410 F420 F430 ∗ F450 F460

∗ F510 F520 F530 F540 ∗ F560

∗ F610 F620 F630 F640 F650 ∗



, (2.22)

where each ∗ means that entry is not given. The largest submatrices with known entries

are 
F410 F420 F430

F510 F520 F530

F610 F620 F630

 ,

F140 F150 F160

F240 F250 F260

F340 F350 F360

 .
The rank of above matrices generally equals rankS(F) if r ≤ d

2
− 1 = 2.5.

2.2 Tensor Approximations and Stability Analysis

In some applications, we do not have the subtensor FΩ exactly but only have an

approximation F̂Ω for it. The Algorithm 2.1.4 can still provide a good rank-r approximation

for F when it is applied to F̂Ω. We define the matrix Aij[F̂ ] and the vector bij[F̂ ] in the

same way as in (2.10), for each α = ei + ej ∈ B1. The generating matrix G for F can be

approximated by solving the linear least squares

min
g∈Cr

‖Aij[F̂ ] · g − bij[F̂ ]‖2, (2.23)
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for each α = ei + ej ∈ B1. Let Ĝ(:, ei + ej) be the optimizer of the above and Ĝ be the

matrix consisting of all such Ĝ(:, ei + ej). Then Ĝ is an approximation for G. For each

l = r + 1, . . . , n, define the matrix Nl(Ĝ) similarly as in (2.12). Choose a generic vector

ξ = (ξr+1, . . . , ξn) and let

N̂(ξ) := ξr+1Nr+1(Ĝ) + · · ·+ ξnNn(Ĝ). (2.24)

The matrix N̂(ξ) is an approximation for N(ξ). Let v̂1, . . . , v̂r be unit length eigenvectors

of N̂(ξ). For k = 1, . . . , r, let

ŵk :=
(
(v̂k)

HNr+1(Ĝ)v̂k, . . . , (v̂k)
HNn(Ĝ)v̂k

)
. (2.25)

For the label sets J1, J2 as in (2.18), the subtensors F̂J1 , F̂J2 are similarly defined like

FJ1 ,FJ2 . Consider the following linear least square problems

min
(β1,...,βr)

∥∥∥∥∥F̂J1 −
r∑

k=1

βk · v̂k ⊗ ŵk

∥∥∥∥∥
2

, (2.26)

min
(θ1,...,θr)

∥∥∥∥∥F̂J2 −
r∑

k=1

θi · (v̂k ⊗ v̂k ⊗ ŵk)J2

∥∥∥∥∥
2

. (2.27)

Let (β̂1, . . . , β̂r) and (θ̂1, . . . , θ̂r) be their optimizers respectively. For each k =

1, . . . , r, let

λ̂k := (β̂k)
2/θ̂k, γ̂k := θ̂k/β̂k. (2.28)

This results in the tensor approximation

F ≈ (p̂1)⊗3 + · · ·+ (p̂r)
⊗3,

for the vectors p̂k :=
3
√
λ̂k(1, γ̂kv̂k, ŵk). The above may not give an optimal tensor
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approximation. To get an improved one, we can use p̂1, . . . , p̂r as starting points to solve

the following nonlinear optimization

min
(q1,...,qr)

∥∥∥∥∥
(

r∑
k=1

(qk)
⊗3 − F̂

)
Ω

∥∥∥∥∥
2

. (2.29)

The minimizer of the optimization (2.29) is denoted as (p∗1, . . . , p
∗
r).

Summarizing the above, we have the following algorithm for computing a tensor

approximation.

Algorithm 2.2.1. (Incomplete symmetric tensor approximations.)

Input: A third order symmetric subtensor F̂Ω and a rank r ≤ d
2
− 1.

1. Find the matrix Ĝ by solving (2.23) for each α = ei + ej ∈ B1.

2. Choose a generic vector and let N̂(ξ) be the matrix as in (2.24).

Compute unit length eigenvectors v̂1, . . . , v̂r for N̂(ξ) and define ŵi in (2.25).

3. Solve the linear least squares (2.26), (2.27) to get the coefficients λ̂i, γ̂i.

4. For each i = 1, . . . , r, let p̂i :=
3
√
λ̂i(1, γ̂iv̂i, ŵi). Then (p̂1)

⊗3 + · · · + (p̂r)
⊗3 is a

tensor approximation for F̂ .

5. Use p̂1, . . . , p̂r as starting points to solve the nonlinear optimization (2.29) for an

optimizer (p∗1, . . . , p
∗
r).

Output: The tensor approximation (p∗1)⊗3 + · · ·+ (p∗r)
⊗3 for F̂ .

When F̂ is close to F , Algorithm 2.2.1 also produces a good rank-r tensor approxi-

mation for F . This is shown in the following.

Theorem 2.2.2. Suppose the tensor F = (p1)⊗3 + · · ·+ (pr)
⊗3, with r ≤ d

2
− 1, satisfies

the following conditions:
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(i) The leading entry of each pi is nonzero;

(ii) the subvectors (p1)2:r+1, . . . , (pr)2:r+1 are linearly independent;

(iii) the subvectors (p1)[r+2:j,j+2:d], . . . , (pr)[r+2:j,j+2:d] are linearly independent for each

j ∈ [r + 1, n];

(iv) the eigenvalues of the matrix N(ξ) in (2.15) are distinct from each other.

Let p̂i, p
∗
i be the vectors produced by Algorithm 2.2.1. If the distance ε := ‖(F̂ − F)Ω‖ is

small enough, then there exist scalars τ̂i, τ
∗
i such that

(τ̂i)
3 = (τ ∗i )3 = 1, ‖τ̂ip̂i − pi‖ = O(ε), ‖τ ∗i p∗i − pi‖ = O(ε),

up to a permutation of (p1, . . . , pr), where the constants inside O(·) only depend on F and

the choice of ξ in Algorithm 2.2.1.

Proof. The conditions (i)-(ii), by Theorem 2.1.1, imply that there is a unique generating

matrix G for F . The matrix G can be approximated by solving the linear least square

problems (2.23). Note that

‖Aij[F̂ ]− Aij[F ]‖ ≤ ε, ‖bij[F̂ ]− bij[F ]‖ ≤ ε,

for all α = ei + ej ∈ B1. The matrix Aij[F ] can be written as

Aij[F ] = [(p1)[r+2:j,j+2:d], . . . , (pr)[r+2:j,j+2:d]] · [(p1)2:r+1, . . . , (pr)2:r+1]T .

By the conditions (ii)-(iii), the matrix Aij[F ] has full column rank for each j ∈ [r + 1, n]

and hence the matrix Aij[F̂ ] has full column rank when ε is small enough. Therefore, the
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linear least problems (2.23) have unique solutions and the solution Ĝ satisfies that

‖Ĝ−G‖ = O(ε),

where O(ε) depends on F (see [14, Theorem 3.4]). For each j = r + 1, . . . , n, Nj(Ĝ) is

part of the generating matrix Ĝ, so

‖Nj(Ĝ)−Nj(G)‖ ≤ ‖Ĝ−G‖ = O(ε), j = r + 1, . . . , n.

This implies that ‖N̂(ξ)−N(ξ)‖ = O(ε). When ε is small enough, the matrix N̂(ξ) does

not have repeated eigenvalues, due to the condition (iv). Thus, the matrix N(ξ) has a set

of unit length eigenvectors ṽ1, . . . , ṽr with eigenvalues w̃1, . . . , w̃r respectively, such that

‖v̂i − ṽi‖ = O(ε), ‖ŵi − w̃i‖ = O(ε).

This follows from Proposition 4.2.1 in [8]. The constants inside the above O(·) depend

only on F and ξ. The w̃1, . . . , w̃r are scalar multiples of linearly independent vectors

(p1)r+2:d, . . . , (pr)r+2:d respectively, so w̃1, . . . , w̃r are linearly independent. When ε is small,

ŵ1, . . . , ŵr are linearly independent as well. The scalars λ̂iγ̂i and λ̂i(γ̂i)
2 are optimizers for

the linear least square problems (2.26) and (2.27). By Theorem 3.4 in [14], we have

‖λ̂iγ̂i − λiγi‖ = O(ε), ‖λ̂i(γ̂i)2 − λiγ2
i ‖ = O(ε).

The vector pi can be written as pi = 3
√
λi(1, γiṽi, w̃i), so we must have λi, γi 6= 0 due to

the condition (ii). Thus, it holds that

‖λ̂i − λi‖ = O(ε), ‖γ̂i − γi‖ = O(ε),
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where constants inside O(·) depend only on F and ξ. For the vectors p̃i := 3
√
λi(1, γiṽi, w̃i),

we have F =
∑r

i=1 p̃
⊗3
i , by Theorem 2.1.3. Since p1, . . . , pr are linearly independent by the

assumption, the rank decomposition of F is unique up to scaling and permutation. There

exist scalars τ̂i such that (τ̂i)
3 = 1 and τ̂ip̃i = pi, up to a permutation of p1, . . . , pr. For

p̂i =
3
√
λ̂i(1, γ̂iv̂i, ŵi), we have ‖τ̂ip̂i− pi‖ = O(ε), where the constants in O(·) only depend

on F and ξ.

Since ‖τ̂ip̂i − pi‖ = O(ε), we have ‖(
∑r

i=1(p̂i)
⊗3 −F)Ω‖ = O(ε). The (p∗1, . . . , p

∗
r) is

a minimizer of (2.29), so

∥∥∥∥∥
(

r∑
i=1

(p∗i )
⊗3 − F̂

)
Ω

∥∥∥∥∥ ≤
∥∥∥∥∥
(

r∑
i=1

(p̂i)
⊗3 − F̂

)
Ω

∥∥∥∥∥ = O(ε).

For the tensor F∗ :=
∑r

i=1(p∗i )
⊗3, we get

‖(F∗ −F)Ω‖ ≤ ‖(F∗ − F̂)Ω‖+ ‖(F̂ − F)Ω‖ = O(ε).

When Algorithm 2.2.1 is applied to (F∗)Ω, the Step 4 will give the exact decomposition

F∗ =
∑r

i=1(p
∗
i )
⊗3. By repeating the previous argument, we can similarly show that

‖pi − τ ∗i p∗i ‖ = O(ε) for some τ ∗i such that (τ ∗i )3 = 1, where the constants in O(·) only

depend on F and ξ.

Remark 2.2.3. For the special case that ε = 0, Algorithm 2.2.1 is the same as Algo-

rithm 2.1.4, which produces the exact rank decomposition for F . The conditions in Theorem

2.2.2 are satisfied for generic vectors p1, . . . , pr, since r ≤ d
2
− 1. The constant in O(·)

is not explicitly given in the proof. It is related to the condition number κ(F) for tensor

decomposition. It was shown by Breiding and Vannieuwenhoven [5] that

√√√√ r∑
i=1

‖p⊗3
i − p̂⊗3

i ‖2 ≤ κ(F)‖F − F̂‖+ cε2
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for some constant c. The continuity of Ĝ in F̂ is implicitly impled by the proof. Eigenvalues

and unit eigenvectors of N̂(ξ) are continuous in Ĝ. Furthermore, λ̂i, γ̂i are continuous in

the eigenvalues and unit eigenvectors. All these functions are locally Lipschitz continuous.

The p̂i is Lipschitz continuous with respect to F̂ , in a neighborhood of F , which also

implies an error bound for p̂i. The tensors (p∗i )
⊗3 are also locally Lipschitz continuous in

F̂ illustrated by [6]. This also gives error bounds for decomposing vectors p∗i . We refer to

[5, 6] for more details about condition numbers of tensor decompositions.

Example 2.2.4. We consider the same tensor F as in Example 2.1.2. The subtensor

(F)Ω is perturbed to (F̂)Ω. The perturbation is randomly generated from the Gaussian

distribution N (0, 0.01). For neatness of the paper, we do not display (F̂)Ω here. We use

Algorithm 2.2.1 to compute the incomplete tensor approximation. The matrices Aij[F̂ ]

and vectors bij[F̂ ] are given as follows:

A13[F̂ ] = A23[F̂ ] =

−0.8135 2.7988

−1.3697 4.0149

 , b13[F̂ ] =

1.5980
2.1879

 , b23[F̂ ] =

−2.0047
−3.2027

 ,

A14[F̂ ] = A24[F̂ ] =

 1.0277 −0.8020

−1.3697 4.0149

 , b14[F̂ ] =

 1.5920

−3.2013

 , b24[F̂ ] =

−2.0059
7.5915

 ,

A15[F̂ ] = A25[F̂ ] =

 1.0277 −0.8020

−0.8135 2.7988

 , b15[F̂ ] =

 2.1993

−3.2020

 , b25[F̂ ] =

−3.1917
7.6153

 .

The linear least square problems (2.23) are solved to obtain Ĝ and N3(Ĝ), N4(Ĝ), N5(Ĝ),
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which are

N3(Ĝ) =

0.5156 0.7208

1.6132 −0.2474

 , N4(Ĝ) =

 1.2631 −0.3665

−0.6489 1.6695

 ,
N5(Ĝ) =

 1.6131 −0.6752

−1.2704 2.3517

 .
For ξ = (3, 4, 5), the eigendecomposition of the matrix N̂(ξ) in (2.24) is

N̂(ξ) =

−0.7078 0.4470

−0.7064 −0.8945


12.0343 0

0 20.0786


−0.7524 0.4499

−0.6588 −0.8931


−1

.

It has eigenvectors v̂1 = (−0.7078,−0.7064), v̂2 = (0.4470,−0.8945). The vectors ŵ1, ŵ2

obtained as in (2.25) are

ŵ1 = (1.2021, 0.9918, 0.9899), ŵ2 = (−1.0389, 2.0145, 3.0016).

By solving (2.26) and (2.27), we got the scalars

γ̂1 = −1.1990, γ̂2 = −2.1458, λ̂1 = 0.4521, λ̂2 = 0.6232.

Finally, we got the decomposition λ̂1û
⊗3
1 + λ̂2û

⊗3
2 with

û1 = (1, γ̂1v̂1, ŵ1) = (1, 0.8477, 0.8479, 1.2021, 0.9918, 0.9899),

û2 = (1, γ̂2v̂2, ŵ2) = (1,−0.9776, 1.9102,−1.0389, 2.0145, 3.0016).

They are pretty close to the decomposition of F .

30



2.3 Learning Diagonal Gaussian Mixtures

We use the incomplete tensor decomposition or approximation method to learn

parameters for Gaussian mixture models. The Algorithms 2.1.4 and 2.2.1 can be applied

to do that.

Let y be the random variable of dimension d for a Gaussian mixture model, with r

components of Gaussian distribution parameters (ωi, µi,Σi), i = 1, . . . , r. We consider the

case that r ≤ d
2
− 1. Let y1, . . . , yN be samples drawn from the Gaussian mixture model.

The sample average

M̂1 :=
1

N
(y1 + · · ·+ yN)

is an estimation for the mean M1 := E[y] = ω1µ1 + · · ·+ ωrµr. The symmetric tensor

M̂3 :=
1

N
(y⊗3

1 + · · ·+ y⊗3
N )

is an estimation for the third order moment tensor M3 := E[y⊗3]. Recall that F =∑r
i=1 ωiµ

⊗3
i . When all the covariance matrices Σi are diagonal, we have shown in (1.5) that

M3 = F +
d∑
j=1

(aj ⊗ ej ⊗ ej + ej ⊗ aj ⊗ ej + ej ⊗ ej ⊗ aj).

If the labels i1, i2, i3 are distinct from each other, (M3)i1i2i3 = (F)i1i2i3 . Recall the label

set Ω in (1.7). It holds that

(M3)Ω = (F)Ω.

Note that (M̂3)Ω is only an approximation for (M3)Ω and (F)Ω, due to sampling

errors. If the rank r ≤ d
2
− 1, we can apply Algorithm 2.2.1 with the input (M̂3)Ω, to

compute a rank-r tensor approximation for F . Suppose the tensor approximation produced
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by Algorithm 2.2.1 is

F ≈ (p∗1)⊗3 + · · ·+ (p∗r)
⊗3.

The computed p∗1, . . . , p
∗
r may not be real vectors, even if F is real. When the error

ε := ‖(F − M̂3)Ω‖ is small, by Theorem 2.2.2, we know

‖τ ∗i p∗i − 3
√
ωiµi‖ = O(ε)

where (τ ∗i )3 = 1. In computation, we can choose τ ∗i such that (τ ∗i )3 = 1 and the imaginary

part vector Im(τ ∗i p
∗
i ) has the smallest norm. It can be done by checking the imaginary

part of τ ∗i p
∗
i one by one for

τ ∗i = 1, −1

2
+

√
−3

2
, −1

2
−
√
−3

2
.

Then we get the real vector

q̂i := Re(τ ∗i p
∗
i ).

It is expected that q̂i ≈ 3
√
ωiµi. Since

M1 = ω1µ1 + · · ·+ ωrµr ≈ ω
2/3
1 q̂1 + · · ·+ ω2/3

r q̂r,

the scalars ω
2/3
1 , . . . , ω

2/3
r can be obtained by solving the linear least squares

min
(β1,...,βr)∈Rr+

∥∥∥∥∥M̂1 −
r∑
i=1

βiq̂i

∥∥∥∥∥
2

. (2.30)

Let (β∗1 , . . . , β
∗
r ) be an optimizer for the above, then ω̂i := (β∗i )3/2 is a good approximation

for ωi and the vector

µ̂i := q̂i/
3
√
ω̂i
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is a good approximation for µi. We may use

µ̂i,
( r∑
j=1

ω̂j
)−1

ω̂i, i = 1, . . . , r

as starting points to solve the nonlinear optimization


min

(ω1,...,ωr,µ1,...,µr)
‖
∑r

i=1 ωiµi − M̂1‖2 + ‖
∑r

i=1 ωi(µ
⊗3
i )Ω − (M̂3)Ω‖2

subject to ω1 + · · ·+ ωr = 1, ω1, . . . , ωr ≥ 0,

(2.31)

for getting improved approximations. Suppose an optimizer of the above is

(ω∗1, . . . , ω
∗
r , µ

∗
1, . . . , µ

∗
r).

Now we discuss how to estimate the diagonal covariance matrices Σi. Let

A := M3 −F , Â := M̂3 − (q̂1)⊗3 − · · · − (q̂r)
⊗3. (2.32)

By (1.5), we know that

A =
d∑
j=1

(aj ⊗ ej ⊗ ej + ej ⊗ aj ⊗ ej + ej ⊗ ej ⊗ aj), (2.33)

where aj =
r∑
i=1

ωiσ
2
ijµi for j = 1, · · · , d. The equation (2.33) implies that

(aj)j =
1

3
Ajjj, (aj)i = Ajij, (2.34)

for i, j = 1, · · · , d and i 6= j. So we choose vectors âj ∈ Rd such that

(âj)j =
1

3
Âjjj, (âj)i = Âjij for i 6= j. (2.35)
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Since âj ≈
r∑
i=1

ωiσ
2
ijµi, the covariance matrices Σi = diag(σ2

i1, . . . , σ
2
id) can be estimated by

solving the nonnegative linear least squares (j = 1, . . . , d)


min

(β1j ,...,βrj)

∥∥∥∥âj − r∑
i=1

ω∗i µ
∗
iβij

∥∥∥∥2

subject to β1j ≥ 0, . . . , βrj ≥ 0.

(2.36)

For each j, let (β∗1j, . . . , β
∗
rj) be the optimizer for the above. When (M̂3)Ω is close to (M3)Ω,

it is expected that β∗ij is close to (σij)
2. Therefore, we can estimate the covariance matrices

Σi as follows

Σ∗i := diag(β∗i1, . . . , β
∗
id), (σ∗ij)

2 := β∗ij. (2.37)

The following is the algorithm for learning Gaussian mixture models.

Algorithm 2.3.1. (Learning diagonal Gaussian mixture models.)

Input: Samples {y1, . . ., yN} ⊆ Rd drawn from a Gaussian mixture model and the number

r of component Gaussian distributions.

Step 1. Compute the sample averages M̂1 := 1
N

∑N
i=1 yi and M̂3 :=

1

N

N∑
i=1

y⊗3
i .

Step 2. Apply Algorithm 2.2.1 to the subtensor (F̂)Ω := (M̂3)Ω. Let (p∗1)⊗3 + · · ·+ (p∗r)
⊗3

be the obtained rank-r tensor approximation for F̂ . For each i = 1, . . . , r, let

q̂i := Re(τip
∗
i ) where τi is the cube root of 1 that minimizes the imaginary part vector

norm ‖Im(τip
∗
i )‖.

Step 3. Solve (2.30) to get ω̂1, . . . , ω̂r and µ̂i = qi/
3
√
ω̂i, i = 1, . . . , r.

Step 4. Use the above ω̂i, q̂i as initial points to solve the nonlinear optimization (2.31) for

the optimal ω∗i , µ
∗
i , i = 1, . . . , r.

Step 5. Get vectors â1, . . . , âd as in (2.35). Solve the optimization (2.36) to get optimizers

β∗ij and then choose Σ∗i as in (2.37).
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Output: Component Gaussian distribution parameters (µ∗i ,Σ
∗
i , ω

∗
i ), i = 1, . . . , r.

The sample averages M̂1, M̂3 can typically be used as good estimates for the

true moments M1,M3. When the value of r is not known, it can be determined as in

Remark 2.1.6. The performance of Algorithm 2.3.1 is analyzed as follows.

Theorem 2.3.2. Consider the d-dimensional diagonal Gaussian mixture model with

parameters {(ωi, µi,Σi) : i ∈ [r]} and r ≤ d
2
− 1. Let {(ω∗i , µ∗i ,Σ∗i ) : i ∈ [r]} be produced by

Algorithm 2.3.1. If the distance ε := max(‖M3 − M̂3‖, ‖M1 − M̂1‖) is small enough and

the tensor F =
∑r

i=1 ωiµ
⊗3
i satisfies conditions of Theorem 2.2.2, then

‖µi − µ∗i ‖ = O(ε), ‖ωi − ω∗i ‖ = O(ε), ‖Σi − Σ∗i ‖ = O(ε),

where the above constants inside O(·) only depend on parameters {(ωi, µi,Σi) : i ∈ [r]}

and the choice of ξ in Algorithm 2.3.1.

Proof. For the vectors pi := 3
√
ωiµi, we have F =

∑r
i=1 p

⊗3
i . Since

‖(F − F̂)Ω‖ = ‖(M3 − M̂3)Ω‖ ≤ ε

and F satisfies conditions of Theorem 2.2.2, we know ‖τ ∗i p∗i −pi‖ = O(ε) for some (τ ∗i )3 = 1,

by Theorem 2.2.2. The constants inside O(ε) depend on parameters of the Gaussian model

and ξ. Then, we have ‖Im(τ ∗i p
∗
i )‖ = O(ε) since the vectors pi are real. When ε is small

enough, such τ ∗i is the τ in Step 2 of Algorithm 2.3.1 that minimizes ‖Im(τip
∗
i )‖, so we

have

‖q̂i − pi‖ ≤ ‖τip∗i − pi‖ = O(ε)

where q̂i = Re(τip
∗
i ) is from the Step 2. The vectors q̂1, . . . , q̂r are linearly independent

when ε is small. Thus, the problem (2.30) has a unique solution and the weights ω̂i

can be found by solving (2.30). Since ‖M1 − M̂1‖ ≤ ε and ‖q̂i − pi‖ = O(ε), we have
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‖ωi−ω̂i‖ = O(ε) (see [14, Theorem 3.4]). The mean vectors µ̂i are obtained by µ̂i = q̂i/
3
√
ω̂i,

so the approximation error is

‖µi − µ̂i‖ = ‖pi/ 3
√
ωi − q̂i/ 3

√
ω̂i‖ = O(ε).

The constants inside the above O(ε) depend on parameters of the Gaussian mixture model

and ξ.

The problem (2.31) is solved to obtain ω∗i and µ∗i , so

∥∥∥∥∥M̂1 −
r∑
i=3

ω∗i µ
∗
i

∥∥∥∥∥+

∥∥∥∥∥F̂ −
r∑
i=1

ω∗i (µ
∗
i )
⊗3

∥∥∥∥∥ = O(ε).

Let F∗ :=
∑r

i=1 ω
∗
i (µ
∗
i )
⊗3 =

∑r
i=1( 3

√
ω∗i µ

∗
i )
⊗3, then

‖F − F∗‖ ≤ ‖F − F̂‖+ ‖F̂ − F∗‖ = O(ε).

Theorem 2.2.2 implies ‖pi − 3
√
ω∗i µ

∗
i ‖ = O(ε). In addition, we have

∥∥∥∥∥M̂1 −
r∑
i=1

ω∗i µ
∗
i

∥∥∥∥∥ =

∥∥∥∥∥M̂1 −
r∑
i=1

(ω∗i )
2/3 3
√
ω∗i µ

∗
i

∥∥∥∥∥ = O(ε).

The first order moment is M1 =
∑r

i=1(ωi)
2/3pi. Since ‖M1 − M̂1‖ = O(ε) and ‖pi −

3
√
ω∗i µ

∗
i ‖ = O(ε), it holds that ‖ω2/3

i − (ω∗i )
2/3‖ = O(ε) by [14, Theorem 3.4]. This implies

that ‖ωi − ω∗i ‖ = O(ε), so

‖µi − µ∗i ‖ = ‖pi/ 3
√
ωi − ( 3

√
ω∗i µ

∗
i )/

3
√
ω∗i ‖ = O(ε).

The constants inside the above O(·) only depend on parameters {(ωi, µi,Σi) : i ∈ [r]} and

ξ.

The covariance matrices Σi are recovered by solving the linear least squares (2.36).
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In the least square problems, it holds that ‖ωiµi − ω∗i µ∗i ‖ = O(ε) and

‖A − Â‖ ≤ ‖M3 − M̂3‖+ ‖F −
r∑
i=1

q̂⊗3
i ‖ = O(ε),

where tensors A, Â are defined in (2.32). When the error ε is small, vectors ω∗i µ
∗
1, . . . , ω

∗
i µ
∗
r

are linearly independent and hence (2.36) has a unique solution for each j. By [14,

Theorem 3.4], we have

‖(σij)2 − (σ∗ij)
2‖ = O(ε).

It implies that ‖Σi−Σ∗i ‖ = O(ε), where the constants inside O(·) only depend on parameters

{(ωi, µi,Σi) : i ∈ [r]} and ξ.

2.4 Numerical Simulations

First, we show the performance of Algorithm 2.2.1 for computing incomplete

symmetric tensor approximations. For a range of dimension d and rank r, we get the

tensor F = (p1)
⊗3 + · · ·+ (pr)

⊗3, where each pi is randomly generated according to the

Gaussian distribution in MATLAB. Then, we apply the perturbation (F̂)Ω = (F)Ω + EΩ,

where E is a randomly generated tensor, also according to the Gaussian distribution in

MATLAB, with the norm ‖Eω‖Ω = ε. After that, Algorithm 2.2.1 is applied to the subtensor

(F̂)Ω to find the rank-r tensor approximation. The approximation quality is measured by

the absolute error and the relative error

abs-error := ‖(F∗ −F)Ω‖, rel-error :=
‖(F∗ − F̂)Ω‖
‖(F − F̂)Ω‖

,

where F∗ is the output of Algorithm 2.2.1. For each case of (d, r, ε), we generate 100

random instances. The min, average, and max relative errors for each dimension d and

rank r are reported in the Table 2.1. The results show that Algorithm 2.2.1 performs very
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well for computing tensor approximations.

Table 2.1. The performance of Algorithm 2.2.1

rel-error abs-error

d r ε min average max min average max time

20

3 0.1 0.9610 0.9731 0.9835 0.0141 0.0268 0.0556 0.2687

5 0.01 0.9634 0.9700 0.9742 0.0019 0.0032 0.0068 0.2392

7 0.001 0.9148 0.9373 0.9525 2.3 · 10−4 3.8 · 10−4 6.6 · 10−4 0.2638

30

4 0.1 0.9816 0.9854 0.9890 0.0094 0.0174 0.0533 0.4386

8 0.01 0.9634 0.9700 0.9742 0.0015 0.0024 0.0060 0.7957

11 0.001 0.9501 0.9587 0.9667 1.8 · 10−4 3.0 · 10−4 5.7 · 10−4 0.8954

40

6 0.1 0.9853 0.9877 0.9904 0.0099 0.0146 0.0359 1.7779

10 0.01 0.9761 0.9795 0.9820 0.0013 0.0020 0.0045 2.6454

15 0.001 0.9653 0.9690 0.9734 1.7 · 10−4 2.6 · 10−4 4.8 · 10−4 3.6785

50

7 0.1 0.9887 0.9911 0.9925 0.0081 0.0128 0.0294 4.9774

13 0.01 0.9812 0.9831 0.9854 0.0011 0.0018 0.0045 8.7655

18 0.001 0.9739 0.9767 0.9792 1.5 · 10−4 2.2 · 10−4 4.1 · 10−4 11.6248

Second, we explore the performance of Algorithm 2.3.1 for learning diagonal

Gaussian mixture models. We compare it with the classical EM algorithm, for which the

MATLAB function fitgmdist is used (MaxIter is set to be 100 and RegularizationValue

is set to be 0.0001). The dimensions d = 20, 30, 40, 50, 60 are tested. Three values of r are

tested for each case of d. We generate 100 random instances of {(ωi, µi,Σi) : i = 1, · · · , r}

for d ∈ {20, 30, 40}, and 20 random instances for d ∈ {50, 60}, because of the relatively

more computational time for the latter case. For each instance, 10000 samples are generated.

To generate the weights ω1, . . . , ωr, we first use the MATLAB function randi to generate a

random 10000−dimensional integer vector of entries from [r], then the occurring frequency

of i in [r] is used as the weight ωi. For each diagonal covariance matrix Σi, its diagonal

vector is set to be the square of a random vector generated by the MATLAB function

randn. Each sample is generated from one of r component Gaussian distributions, so
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they are naturally separated into r groups. Algorithm 2.3.1 and the EM algorithm are

applied to fit the Gaussian mixture model to the 10000 samples for each instance. For each

sample, we calculate the likelihood of the sample to each component Gaussian distribution

in the estimated Gaussian mixture model. A sample is classified to the ith group if its

likelihood for the ith component is maximum. The classification accuracy is the rate that

samples are classified to the correct group. In Table 2.2, for each pair (d, r), we report the

accuracy of Algorithm 2.3.1 in the first row and the accuracy of the EM algorithm in the

second row. As one can see, Algorithm 2.3.1 performs better than EM algorithm, and its

accuracy isn’t affected when the dimensions and ranks increase. Indeed, as the difference

between the dimension d and the rank r increases, Algorithm 2.3.1 becomes more and

more accurate. This is opposite to the EM algorithm. The reason is that the difference

between the number of rows and the number of columns of Aij[F ] in (2.10) increases as

d− r becomes bigger, which makes Algorithm 2.3.1 more robust.

Last, we apply Algorithm 2.3.1 to do texture classifications. We select 8 textured

images of 512 × 512 pixels from the VisTex database. We use the MATLAB function

rgb2gray to convert them into grayscale version since we only need their structure and

texture information. Each image is divided into subimages of 32× 32 pixels. We perform

the discrete cosine transformation(DCT) on each block of size 16× 16 pixels with overlap

of 8 pixels. Each component of ’Wavelet-like’ DCT feature is the sum of the absolute

value of the DCT coefficients in the corresponding sub-block. So the dimension d of the

feature vector extracted from each subimage is 13. We use blocks extracted from the first

160 subimages for training and those from the rest 96 subimages for testing. We refer to

[50] for more details. For each image, we apply Algorithm 2.3.1 and the EM algorithm

to fit a Gaussian mixture model to the image. We choose the number of components r

according to Remark 2.1.6. To classify the test data, we follow the Bayes decision rule that

assigns each block to the texture which maximizes the posteriori probability, where we

assume a uniform prior over all classes [17]. The classification accuracy is the rate that a
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Table 2.2. Comparison between Algorithm 2.3.1 and EM for simulations

accuracy time

d r Algorithm 2.3.1 EM Algorithm 2.3.1 EM

20

3 0.9861 0.9763 0.8745 0.1649

5 0.9740 0.9400 2.3476 0.3852

7 0.9659 0.9252 3.4352 0.6777

30

4 0.9965 0.9684 4.5266 0.2959

8 0.9923 0.9277 8.5494 0.8525

11 0.9895 0.9219 17.2091 1.4106

40

6 0.9990 0.9117 18.9160 0.6273

10 0.9981 0.8931 28.4161 1.2617

15 0.9971 0.9111 69.8013 2.0627

50

7 0.9997 0.8997 40.6810 0.8314

13 0.9995 0.9073 104.7927 1.7867

18 0.9993 0.9038 163.2711 2.6862

60

8 0.9999 0.8874 93.9836 1.1266

15 0.9998 0.8632 234.0331 2.6435

22 0.9995 0.8929 497.9371 3.5527

subimage is correctly classified, which is shown in Table 2.3. Algorithm 2.3.1 outperforms

the classical EM algorithm for the accuracy rates for six of the images.

Table 2.3. Classification results on 8 textures

Accuracy Algorithm 2.3.1 EM

Bark.0000 0.5376 0.8413
Bark.0009 0.5107 0.7150

Flowers.0001 0.8137 0.6315
Tile.0000 0.8219 0.7239

Paintings.11.0001 0.8047 0.7350
Grass.0001 0.9841 0.9068
Brick.0004 0.9406 0.8854
Fabric.0013 0.9220 0.9048
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Bark.0000 Bark.0009 Flowers.0001 Tile.0000

Paintings.11.0001 Grass.0001 Brick.0004 Fabric.0013

Figure 2.1. Textures from VisTex
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Chapter 3

Learning Diagonal Gaussian Mixture
Models Using Higher Order Moment

Previous work performs the incomplete tensor decomposition to learn diagonal

Gaussian mixture models using partially given entries of the moment tensor when r ≤ d
2
−1.

This result uses the first and third-order moments to recover unknown model parameters.

However, the third order moment M3 is insufficient when r > d
2
− 1. In the following

sections, we propose to utilize higher-order moments to learn Gaussian mixture models

with more components.

3.1 Incomplete Tensor Decomposition of Higher

Order

In this section, we discuss how to solve the incomplete symmetric tensor decompo-

sition problem arising from learning Gaussian mixtures with parameters {ωi, µi,Σi}ri=1.

Let Fm ∈ Sm(Cd) be the symmetric tensor. In the following, we discuss how to obtain the

decomposition of Fm given entries (Fm)Ωm .

For convenience, we denote n := d− 1. Suppose that Fm has the decomposition

Fm = ω1µ
⊗m
1 + · · ·ωrµ⊗mr , (3.1)
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where µi = ((µi)0, (µi)1, . . . , (µi)n) ∈ Cn+1. When the leading entry of each µi is nonzero,

we can write the decomposition (3.1) as

Fm = λ1

 1

u1


⊗m

+ · · ·+ λr

 1

ur


⊗m

, (3.2)

where λi = ωi((µ1)0)m, and ui = ((ui)1, . . . , (ui)n) = (µi)1:n/(µi)0 ∈ Cn.

Let 1 ≤ p ≤ m− 2 and p ≤ k ≤ n−m− p be numbers such that

(
k

p

)
≥ r and

(
n− k − 1

m− p− 1

)
≥ r.

Define the set

B0 ⊆ {xi1 · · · xip : 1 ≤ i1 < · · · < ip ≤ k} (3.3)

such that B0 consists of the first r monomials in the graded lexicographic order. Corre-

spondingly, the set B1 is defined as

B1 := {xj1 · · ·xjp+1 : 1 ≤ j1 < · · · < jp ≤ k < jp+1 ≤ n}. (3.4)

For convenience, we say α ∈ Nn is in B0 (resp. B1) if xα ∈ B0 (resp. B1). Let

α = ej1 + · · ·+ ejp + ejp+1 ∈ B1 and G ∈ CB0×B1 be a matrix labelled by monomials in

B0 and B1. We consider the polynomial

ϕj1···jpjp+1 [G](x) :=
∑

(i1,...,ip)∈B0

G(

p∑
t=1

eit ,

p+1∑
t=1

ejt)xi1 · · · xip − xj1 · · ·xjpxjp+1 .

Recall that ϕj1···jp+1 [G](x) is a generating polynomial for Fm if it satisfies (1.2), i.e.

〈ϕj1···jpjp+1 [G](x) · xβ, Fm〉 = 0 ∀β ∈ Nn
m−p−1.
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The matrix G is called a generating matrix if ϕj1···jp+1 [G](x) is a generating polynomial. If

the matrix G is a generating matrix of Fm, it should satisfy the equations

〈xs1 · · ·xsm−p−1ϕj1···jp+1 [G](x), Fm〉 = 0 (3.5)

for each α = ej1 + · · ·+ ejp + ejp+1 ∈ B1 and each tuple (s1, . . . , sm−p−1) ∈ Oα, where

Oα :=

(s1, . . . , sm−p−1) :
k + 1 ≤ s1 < . . . < sm−p−1 ≤ n,

s1 6= jp+1, . . . , sm−p−1 6= jp+1

 .

Define the matrix A[α,Fm] and the vector b[α,Fm] be such that


A[α,Fm]γ,β := (Fm)β+γ, ∀(γ, β) ∈ Oα ×B0

b[α,Fm]γ := (Fm)α+γ, ∀γ ∈ Oα.
(3.6)

The dimension of A[α,Fm] is
(
n−k−1
m−p−1

)
× r and the equations in (3.5) can be equivalently

written as

A[α,Fm] ·G(:, α) = b[α,Fm]. (3.7)

Lemma 3.1.1 proves that the matrix A[α,Fm] in (3.6) has full column rank under some

genericity conditions.

Lemma 3.1.1. Suppose that
(
k
p

)
≥ r and

(
n−k−1
m−p−1

)
≥ r. Let Fm be the tensor with the

decomposition (3.2). If vectors {[ui]B0}ri=1 and {[ui]Oα}ri=1 are both linearly independent,

then the matrix A[α,Fm] as in (3.6) has full column rank.

Proof. The matrix A[α,Fm] can be written as

A[α,Fm] =
r∑
i=1

λi[ui]Oα [ui]
T
B0
.

Therefore, A[α,Fm] has full column rank.
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Remark 3.1.2. A successful construction of B0 requires that
(
k
p

)
≥ r. The vectors

{[ui]B0}ri=1 and {[ui]Oα}ri=1 have dimensions r and
(
n−k−1
m−p−1

)
respectively. Thus, when

(
k

p

)
≥ r and

(
n− k − 1

m− p− 1

)
≥ r,

the vectors {[ui]B0}ri=1 and {[ui]Oα}ri=1 are both linearly independent for generic vectors

u1, . . . , ur in real or complex field.

Under the condition of Lemma 3.1.1, we can prove there exists a unique generating

matrix G for Fm.

Theorem 3.1.3. Let Fm be the tensor in (3.2). Suppose that conditions of Lemma 3.1.1

hold, then there exists a unique generating matrix G for the tensor Fm.

Proof. We first prove the existence of G. For k + 1 ≤ j ≤ n, we denote

dj = ((u1)j, . . . , (ur)j).

Under the assumption of Lemma 3.1.1, we can define

Nj = ([u1]B0 , . . . , [ur]B0)diag(dj)([u1]B0 , . . . , [ur]B0)
−1.

The matrix G is constructed as

G(β, ν + ej) = (Nj)ν,β

for j = k + 1, . . . , n and ν, β ∈ B0. For every α = ν + ej ∈ B1, it holds that

∑
β∈B0

G(β, α)uβi − uαi = (Nj)ν,:[ui]B0 − (ui)ju
ν
i = 0
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Thus, for every γ ∈ Nn
m−p−1, it holds that

〈xγϕα[G](x),Fm〉 =
r∑
i=1

λiu
γ
i

∑
θ∈B0

(G(θ, α)uθi − uαi ) = 0.

It proves that the matrix G is a generating matrix for Fm.

Next, we show the uniqueness. The matrix A[α,Fm] has full column rank by

Lemma 3.1.1, so the generating matrix G is uniquely determined by linear systems in

(3.7). It proves the uniqueness of G.

By Theorem 3.1.3 and Lemma 3.1.1, the generating matrix G can be uniquely

determined by solving the linear system (3.7). Let Nk+1(G), . . . , Nn(G) ∈ Cr×r be the

matrices given as (ν, β ∈ B0):

Nl(G)ν,β = G(β, ν + el) for l = k + 1, . . . , n. (3.8)

Then we have

Nl(G)[vi]B0 = (wi)l−k[vi]B0 for l = k + 1, . . . , n.

for the vectors (i = 1, . . . , r)

vi := ((vi)1, . . . , (vi)k) = (ui)1:k,

wi := ((wi)1, . . . , (wi)n−k) = (ui)k+1:n.

We select a generic vector ξ := (ξk+1, . . . , ξn) and let

N(ξ) := ξk+1Nk+1 + · · ·+ ξnNn. (3.9)

Let ṽ1, . . . , ṽr be unit length eigenvectors of N(ξ), which are also common eigenvectors

of Nk+1(G), . . . , Nn(G). For each i = 1, . . . , r, let w̃i be the vector such that its jth entry
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(w̃i)j is the eigenvalue of Nk+j(G), associated to the eigenvector ṽi. Equivalently,

w̃i := (ṽHi Nk+1(G)ṽi, · · · , ṽHi Nn(G)ṽi) i = 1, . . . , r. (3.10)

Up to a permutation of (ṽ1, . . . , ṽr), we have

wi = w̃i.

We denote the sets

J1 := {xi1 · · ·xip : 1 ≤ i1 < · · · < ip ≤ k},

J−j1 := J1 ∩ {xi1 · · ·xip : i1, . . . , ip 6= j},

J2 := {(xi1 · · ·xim−p−1 : k + 1 ≤ i1 < · · · < im−p−1 ≤ n},

J3 := {xi1−k · · ·xim−p−1−k : (i1, . . . , im−p−1) ∈ J2}.

(3.11)

The tensors λ1v
⊗p
1 , . . . , λrv

⊗p
r satisfy the linear equation

r∑
i=1

λiv
⊗p
i ⊗ w̃

⊗(m−p−1)
i = (Fm)0,[1:k]p,[k+1:n](m−p−1) .

Thus, λ1[v1]J1 , . . . , λr[vr]J1 can be obtained by the linear equation

min
(γ1,...,γr)

∥∥∥∥∥(Fm)J1·J2 −
r∑
i=1

γi ⊗ [w̃i]J3

∥∥∥∥∥
2

. (3.12)

We denote the minimizer of (3.12) by (γ̃1, . . . , γ̃r).

The vectors v1, . . . , vr satisfy the linear equation

r∑
i=1

vi ⊗ λiv⊗pi ⊗ w̃
⊗(m−p−1)
i = (Fm)[1:k]p+1×[k+1:n](m−p−1) .
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For each j ∈ [k], we solve the linear least square problem

min
(v1,...,vr)

∥∥∥∥∥(Fm)xj ·J−j1 ·J2
−

r∑
i=1

(vi)j · γ̃i ⊗ [w̃i]J3

∥∥∥∥∥
2

. (3.13)

We denote the minimizer of (3.13) as (ṽ1, . . . , ṽr).

The scalars λ1, . . . , λr in (3.2) satisfy the linear equation

λ1

 1

ũ1


⊗m

+ · · ·+ λr

 1

ũr


⊗m

= Fm, (3.14)

where ũi = (ṽi, w̃i) for i = 1, . . . , r. They can be solved by the following linear least square

problem

min
(λ1,...,λr)

∥∥∥∥∥∥∥(F)Ωm −
r∑
i=1

λi ·


 1

ũi


⊗m

Ωm

∥∥∥∥∥∥∥
2

. (3.15)

Let (λ̃1, . . . , λ̃r) be the minimizer of (3.15).

Concluding everything above, we obtain the decomposition of Fm

Fm = q⊗m1 + · · ·+ q⊗mr ,

where qi := (λ̃)1/m(1, ṽi, w̃i), for i = 1, . . . , r. All steps to obtain the decomposition are

summarized in Algorithm 3.1.4

Algorithm 3.1.4. (Incomplete symmetric tensor decompositions.)

Input: Rank r, dimension d, constant p and subtensor (Fm)Ωm in (3.2).

Step 1. Determine the matrix G by solving (3.7) for each α = ej1 + · · ·+ ejp+1 ∈ B1.

Step 2. Let N(ξ) be the matrix as in (3.9), for a randomly selected vector ξ. Compute the

vectors w̃i as in (3.10).
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Step 3. Solve the linear least squares (3.12), (3.13) and (3.15) to get the scalars λ̃i and

vectors ṽi.

Output: The tensor decomposition Fm = q⊗m1 + · · ·+ q⊗mr , for qi = (λ̃)1/m(1, ṽi, w̃i).

Theorem 3.1.5. Let Fm be the tensor in (3.2). If Fm satisfies conditions of Lemma

3.1.1 and the matrix N(ξ) in (3.9) has distinct eigenvalues, then Algorithm 3.1.4 finds the

unique rank-r decomposition of F .

Proof. Under the assumptions of Lemma 3.1.1, the tensor Fm has a unique generating

matrix by Theorem 3.1.3 and the generating matrix G is uniquely determined by solving

(3.7). The matrix N(ξ) in (3.9) has distinct eigenvalues, so the vectors w̃i are determined

by (3.10). Lemma 3.1.1 assumes {[ui]Oα}ri=1 are linearly independent, it implies that

{[w̃i]J3}ri=1 are also linearly independent. Thus, the systems (3.12) and (3.13) both have

unique solutions. By the uniqueness of every step in the Algorithm 3.1.4, we conclude

that Algorithm 3.1.4 finds the unique rank-r decomposition of Fm.

Algorithm 3.1.4 requires the tensor Fm to satisfy the condition of Lemma 3.1.1.

Thus, the rank r should satisfy

r ≤ min

{(
k

p

)
,

(
n− k − 1

m− p− 1

)}
.

In the following, we will find the largest rank that Algorithm 3.1.4 can compute for the

given order m.

Lemma 3.1.6. If n ≥ max{2m− 1, m
2

4
− 1}, then

max

((
k∗

p∗

)
,

(
n− k∗ − 2

m− p∗ − 1

))
(3.16)

= max
p∈N∩[1,m−2]

max
k∈N∩[p,n−m+p]

(
min

((
k

p

)
,

(
n− k − 1

m− p− 1

)))
,

where p∗ = bm−1
2
c and k∗ is largest k such that

(
k
p∗

)
≤
(
n−k−1
m−p∗−1

)
.
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Proof. For a fixed p ∈ [1, m−1
2

] ∩ N, it holds that
(
k
p

)
is increasing in k and

(
n−k−1
m−p−1

)
is

decreasing in k. For the fixed p, let kp be the largest k such that

(
k

p

)
≤
(
n− k − 1

m− p− 1

)
.

It holds that

rp := max
k∈N∩[p,n−m+p]

(
min

((
k

p

)
,

(
n− k − 1

m− p− 1

)))
= max

((
kp
p

)
,

(
n− kp − 2

m− p− 1

))
.

For p ∈ (m−1
2
,m− 2] ∩ N and k ∈ [p, n−m + p], let p′ = m− p− 1 and k′ = n− k − 1.

We can verify that p′ ∈ [1, m−1
2

], k′ ∈ [p′, n−m+ p′], and

min

((
k

p

)
,

(
n− k − 1

m− p− 1

))
= min

((
k′

p′

)
,

(
n− k′ − 1

m− p′ − 1

))
.

Therefore, it holds that maxp∈N∩[1,m−2] rp = maxp∈N∩[1,p∗] rp. Next, we will prove maxp rp =

rp∗ by showing rp ≥ rp−1 for p ∈ N ∩ [2, p∗].

When p ≤ m−1
2

and n ≥ 2m−1, we have p ≤ m−p−1 ≤ n−1−bn−1
2
c−p. Hence,

(
bn−1

2
c

p

)
≤
(
n− 1− bn−1

2
c

p

)
=

(
n− 1− bn−1

2
c

n− 1− bn−1
2
c − p

)
≤
(
n− 1− bn−1

2
c

m− p− 1

)
.

The above equation implies kp ≥ bn−1
2
c ≥ n−2

2
.

If kp−1 < kp, then it holds that

rp−1 ≤
(
kp−1 + 1

p− 1

)
≤
(

kp
p− 1

)
=

(
kp
p

)
p

kp − p+ 1
≤
(
kp
p

)
m− 1

n−m
≤
(
kp
p

)
≤ rp.

In the following proof, we show rp−1 ≤ rp if kp−1 ≥ kp.
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Case 1:
(
kp
p

)
>
(
n−kp−2
m−p−1

)
. In this case, rp =

(
kp
p

)
. It holds that

(
k′p − C
p′ + 1

)
=

(
k′p
p′

)
k′p − p′

p′ + 1
ΠC
i=1

k′p − i− p′

k′p − i+ 1
,

(
kp + C

p− 1

)
=

(
kp
p

)
p

kp − p+ 1
ΠC
i=1

kp + i

kp − p+ 1 + i
,

for C ≥ 0, p′ = m− p− 1, k′p = n− kp − 1. By direct computation, we have

k′p − i− p′

k′p − i+ 1

kp + i

kp − p+ 1 + i
≤ 1⇔ kpm− np+ n− kp + im− i ≥ 0.

The inequalities n−m+ p ≥ kp ≥ n−2
2
, p ≤ m−1

2
, n ≥ 2m− 1, i ≥ 0 imply

kpm− np+ n− kp + im− i ≥ n−m+ i(m− 1) + 1 ≥ 0.

It proves
k′p − i− p′

k′p − i+ 1

kp + i

kp − p+ 1 + i
≤ 1, for i ≥ 0. (3.17)

If p = m−1
2

, then p = m− p− 1 = p′ and kp = bn−1
2
c. If n is even, then kp = n−2

2

and
(
kp
p

)
=
(
n−kp−2
m−p−1

)
, which does not satisfy the assumption of Case 1. If n is odd, then

kp = n−1
2

and kp = k′p. Thus, we have
(
k′p
p′

)
=
(
kp
p

)
and

k′p−p′

p′+1
p

kp−p+1
= kp−p

p+1
p

kp−p+1
< 1.

These inequalities and (3.17) imply that

(
kp + C

p− 1

)(
k′p − C
p′ + 1

)
<

(
kp
p

)2

⇒ min

((
kp + C

p− 1

)
,

(
k′p − C
p′ + 1

))
< rp.
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Then, we consider p ≤ m−2
2

. Under the assumption of Case 1, we have

(
k′p − C
p′ + 1

)
=

(
k′p
p′

)
k′p − p′

p′ + 1
ΠC
i=1

k′p − i− p′

k′p − i+ 1

=

(
k′p − 1

p′

)
k′p

k′p − p′
k′p − p′

p′ + 1
ΠC
i=1

k′p − i− p′

k′p − i+ 1

<

(
kp
p

)
k′p

p′ + 1
ΠC
i=1

k′p − i− p′

k′p − i+ 1
.

It holds that
k′p
p′+1

p
kp−p+1

≤ 1 if and only if kpm+m+ (p−m− n)p ≥ 0. We observe that

kpm+m+ (p−m− n)p is increasing in kp and decreasing in p. When p ≤ m−2
2

, we have

kpm+m+ (p−m− n)p ≥ n− 2

2
m+m+ (

m− 2

2
−m− n)

m− 2

2
= n+ 1− m2

4
.

As a result,
k′p
p′+1

p
kp−p+1

≤ 1 when n ≥ m2

4
− 1. This inequality and (3.17) imply

(
kp + C

p− 1

)(
k′p − C
p′ + 1

)
<

(
kp
p

)2

⇒ min

((
kp + C

p− 1

)
,

(
k′p − C
p′ + 1

))
< rp.

For all choices of p, the above inequality holds. Under the assumption that kp−1 ≥ kp,

we have rp−1 = min
((

kp+C
p−1

)
,
(
k′p−C
p′+1

))
for some C ≥ 0. It proves that rp > rp−1 when

n ≥ max{2m− 1, m
2

4
− 1} under the assumption of Case 1.

Case 2:
(
kp
p

)
≤
(
n−kp−2
m−p−1

)
. In this case, rp =

(
n−kp−2
m−p−1

)
. Similar to Case 1, we can

show (
kp + 1 + C

p− 1

)
<

(
k′p − 1

p′

)
kp + 1

kp + 1− p
p

kp − p+ 2
ΠC
i=1

kp + 1 + i

kp − p+ 2 + i(
k′p − 1− C
p′ + 1

)
<

(
k′p − 1

p′

)
k′p − p′ − 1

p′ + 1
ΠC
i=1

k′p − p′ − 1− i
k′p − i

and kp+1+i

kp−p+2+i

k′p−p′−1−i
k′p−i

≤ 1 for i ≥ −1. We observe that kp+1

kp+1−p
p

kp−p+2

k′p−p′−1

p′+1
is decreasing
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in kp and increasing in p. Recall that k ≥ n−2
2
, p ≤ m−1

2
, so we can show

kp + 1

kp + 1− p
p

kp − p+ 2

k′p − p′ − 1

p′ + 1
≤ 1⇐ 4n2 − βn+ γ ≥ 0, (3.18)

where β = m2 − 2m − 8 and γ = m3 − 4m2 − 4m + 16. The inequality on the right of

(3.18) is quadratic in n, so it holds when β2− 16γ ≤ 0 or n ≥ β+
√
β2−16γ

8
. The assumption

n ≥ max{2m− 1, m
2

4
− 1} implies that

n ≥ m2

4
− 1 ≥ β

4
≥ β +

√
β2 − 16γ

8
.

Therefore, the inequality (3.18) holds. Similar to Case 1, it concludes the proof of rp > rp−1

for Case 2.

Summarizing everything above, we prove that (3.16) holds for n ≥ max{2m −

1, m
2

4
− 1}.

The following Theorem 3.1.7 provides the largest rank that Algorithm 3.1.4 can

compute based on the result of Lemma 3.1.1.

Theorem 3.1.7. Let Fm ∈ Sm(Cn+1) be the tensor as in (3.2). When n ≥ max(2m −

1, m
2

4
− 1), the largest rank r of Fm that Algorithm 3.1.4 can calculate is

rmax = max(

(
k∗

p∗

)
,

(
n− 2− k∗

m− 1− p∗

)
), (3.19)

where p∗ = bm−1
2
c and k∗ is largest integer k such that

(
k
p∗

)
≤
(
n−k−1
m−p∗−1

)
.

Proof. By Theorem 3.1.5, Algorithm 3.1.4 requires
(
k
p

)
≥ r and

(
n−k−1
m−p−1

)
≥ r to find a

rank-r decomposition of tensor Fm. For the given tensor Fm with dimension n+ 1 and

order m, the largest computable rank of Algorithm 3.1.4 is

rmax = max
k,p

(
min

((
k

p

)
,

(
n− k − 1

m− p− 1

)))
, (3.20)
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where p ∈ [1, m− 2] and k ∈ [p+ 1, n−m+ p− 1]. Therefore, (3.19) is a direct result of

Lemma 3.1.6.

Remark 3.1.8. The k∗ in Theorem 3.1.7 can be obtained by solving

(
k

p∗

)
=

(
n− k − 1

m− 1− p∗

)
, (3.21)

where the above binomial coefficients are generalized to binomial series for real number k.

Let k̃ ∈ R be the solution to (3.21), then k∗ = bk̃c. Especially, when m is odd, we have

p∗ = m− 1− p∗ = m−1
2

, k∗ = bn−1
2
c, and the corresponding largest rank is

rmax =

(
bn−1

2
c

m−1
2

)
.

There is no uniform formula for the largest ranks when m is even. The largest ranks for

some small orders are summarized in Table 3.1.

Table 3.1. The largest rank r that Algorithm 3.1.4 can compute.

m the largest r

3 bn−1
2
c

4 b2n−1−
√

8n−7
2

c

5
(bn−1

2
c

2

)
6

max(
(bk̃c

2

)
,
(
n−bk̃c−2

3

)
), where ∆ = 9

4
n4 − 47

2
n3 + 353

4
n2 − 412

3
n+ 1889

27

and k̃ = 3

√
−3

2
(n− 3)(n− 4) +

√
∆ + 3

√
−3

2
(n− 3)(n− 4)−

√
∆ + n− 3

7
(bn−1

2
c

3

)
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3.2 Incomplete Tensor Approximations and Error

Analysis

When learning Gaussian mixture models, the subtensor (Fm)Ωm is estimated from

samples and is not exactly given. In such case, Algorithm 3.1.4 can still find a good

low-rank approximation of Fm. In this section, we discuss how to obtain a good tensor

approximation of Fm and provide an error analysis for the approximation.

Let F̂m be approximations of Fm. Given the subtensor (F̂m)Ωm , we can find a

low-rank approximation of Fm following Algorithm 3.1.4. We define the matrix A[α, F̂m]

and the vector b[α, F̂m] in the same way as in (3.6), for each α ∈ B1. Then we have the

following linear least square problem

min
gα∈CB0

∥∥∥A[α, F̂m] · gα − b[α, F̂m]
∥∥∥2

. (3.22)

For each α ∈ B1, we solve (3.22) to get Ĝ[:, α] which is an approximation of G[:, α].

Combining all Ĝ[:, α]’s, we get Ĝ ∈ CB0×B1 approximating the generating matrix G.

Similar to (3.8), for l = k + 1, . . . , n, we define Nl(Ĝ) as an approximation of Nl(G) and

let

N̂(ξ) := ξk+1Nk+1(Ĝ) + · · ·+ ξnNn(Ĝ), (3.23)

where ξ = (ξk+1, . . . , ξn) is a generic vector. Let v̂1, . . . , v̂r be the unit length eigenvectors

of N̂(ξ) and

ŵi := (v̂Hi Nk+1(Ĝ)v̂i, · · · , v̂Hi Nn(Ĝ)v̂i) i = 1, . . . , r. (3.24)

For the sets J1, J
−j
1 , J2, J3 defined in (3.11), we solve the linear least square problem

min
(γ1,...,γr)

∥∥∥∥∥(F̂m)J1·J2 −
r∑
i=1

γi ⊗ [ŵi]J3

∥∥∥∥∥
2

. (3.25)

Let (γ̂1, . . . , γ̂r) be the minimizer of the above problem. Then, we consider the following

55



linear least square problem

min
(v1,...,vr)

∥∥∥∥∥(F̂m)xj ·J−j1 ·J2
−

r∑
i=1

(vi)j · γ̂i ⊗ [ŵi]J3

∥∥∥∥∥
2

. (3.26)

We obtain (v̂1, . . . , v̂r) by solving the above problem for j = 1, . . . , k. Let û = (v̂, ŵ). Then,

we have the following linear least square problem

min
(λ1,...,λr)

∥∥∥∥∥∥∥(F̂m)Ωm −
r∑
i=1

λi ·


 1

ûr


⊗m

Ωm

∥∥∥∥∥∥∥
2

. (3.27)

Denote the minimizer of (3.27) as (λ̂1, . . . , λ̂r). For i = 1, . . . , r, let

q̂i := (λ̂i)
1/m(1, v̂i, ŵi).

Now, we obtain the approximation of the tensor Fm

Fm ≈ (q̂1)⊗m + · · ·+ (q̂r)
⊗m.

This result may not be optimal due to sample errors. We can get a more accurate

approximation by using (q̂1, . . . , q̂r) as starting points to solve the nonlinear optimization

min
(q1,...,qr)

∥∥∥∥∥(F̂m)Ωm −
r∑
i=1

(q⊗mi )Ωm

∥∥∥∥∥
2

. (3.28)

We denote the minimizer of the optimization (3.28) as (q∗1, . . . , q
∗
r).

We summarize the above calculations as a tensor approximation algorithm in

Algorithm 3.2.1.

Algorithm 3.2.1. (Incomplete symmetric tensor approximation.)

Input: The rank r, the dimension d, the constant p, and the subtensor (F̂m)Ωm as in
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(3.30).

Step 1. Determine the generating matrix Ĝ by solving (3.22) for each α ∈ B1.

Step 2. Choose a generic vector ξ and define N̂(ξ) as in (3.23). Calculate unit length

eigenvectors of N̂(ξ) and corresponding eigenvalues of each Ni(Ĝ) to define ŵi as in

(3.24).

Step 3. Solve (3.25), (3.26) and (3.27) to obtain the coefficients λ̂i and vectors v̂i.

Step 4. Let q̂i := (λ̂i)
1/m(1, v̂i, ŵi) for i = 1, . . . , r. Use q̂1, . . . , q̂r as start points to solve

the nonlinear optimization (3.28) and get an optimizer (q∗1, . . . , q
∗
r).

Output: The incomplete tensor approximation (q∗1)⊗m + · · ·+ (q∗r)
⊗m for F̂m.

We can show that Algorithm 3.2.1 provides a good rank-r approximation when the

input subtensor (F̂m)Ωm is close to exact tensors Fm.

Theorem 3.2.2. Let Fm = ω1(µ1)⊗m + · · ·+ ωr(µr)
⊗m as in (3.1) and constants k, p be

such that min
((

k
p

)
,
(
n−k−1
m−p−1

))
≥ r. We assume the following conditions:

(i) the scalars ωi and the leading entry of each µi are nonzero;

(ii) the vectors {[(µi)1:n]B0}ri=1 are linearly independent;

(iii) the vectors {[(µi)1:n]Oα}ri=1 are linearly independent for all α ∈ B1;

(iv) the eigenvalues of the matrix N(ξ) in (3.9) are distinct from each other.

Let qi = (ωi)
1/mµi and q∗i be the output vectors of Algorithm 3.2.1. If the distance

ε := ‖(F̂m −Fm)Ωm‖ is small enough, then there exist scalars η̃i, η
∗
i such that

(η̂i)
m = (η∗i )

m = 1, ‖η̂iq̂i − qi‖ = O(ε), ‖η∗i q∗i − qi‖ = O(ε),
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up to a permutation of (q1, . . . , qr), where the constants inside O(·) only depend on Fm

and the choice of ξ in Algorithm 3.2.1.

Proof. The vectors (1, u1), . . . , (1, ur) in (3.2) are scalar multiples of µ1, . . . , µr respectively.

By Conditions (ii) and (iii), the vectors {[ui]B0}ri=1 and {[ui]Oα}ri=1 are both linearly

independent, which satisfies the condition of Lemma 3.1.1. Thus Conditions (i)-(iii) imply

that there exists a unique generating matrix G for Fm by Theorem 3.1.3 and it can be

calculated by (2.11). By Lemma 3.1.1, the matrix A[α,Fm] has full column rank. It holds

that

‖A[α,Fm]− A[α, F̂m]‖ ≤ ε, ‖b[α,Fm]− b[α, F̂m]‖ ≤ ε, (3.29)

for α ∈ B1. When ε is small enough, the matrix A[α, F̂m] also has full column rank. Then

the linear least square problems (3.22) have unique solutions and the collection of solutions

Ĝ satisfies that

‖G− Ĝ‖ = O(ε),

where O(ε) depends on Fm (see [14, Theorem 3.4]). Since Nl(Ĝ) is part of the generating

matrix Ĝ for each l = k + 1, . . . , n, we have

‖Nl(Ĝ)−Nl(G)‖ ≤ ‖Ĝ−G‖ = O(ε), l = k + 1, . . . , n,

which implies that ‖N̂(ξ) − N(ξ)‖ = O(ε). By condition (iv) we know that the matrix

N̂(ξ) has distinct eigenvalues ŵ1, . . . , ŵr if ε is small enough. So the matrix N(ξ) has a

set of eigenvalues w̃i such that

‖ŵi − w̃i‖ = O(ε).

This follows from Proposition 4.2.1 in [8]. The constants inside the above O(·) depend only

on Fm and ξ. The vectors w̃1, . . . , w̃r are multiples of the vectors (µ1)k+1:n, . . . , (µr)k+1:n

respectively. Thus, we conclude that [w̃1]J3 , . . . , [w̃r]J3 are linearly independent by condition
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(iii). When ε is small, the vectors [ŵ1]J3 , . . . , [ŵr]J3 are also linearly independent. For

optimizers γ̂i, v̂i, λ̂i of linear least square problems (3.25), (3.26) and (3.27), by [14,

Theorem 3.4], we have

‖γ̂i − γi‖ = O(ε), ‖v̂i − vi‖ = O(ε), ‖λ̂i − λi‖ = O(ε),

where constants inside O(·) depend on Fm and ξ. By Theorem 3.1.5, we have Fm =∑r
i=1 q̃

⊗m
i where q̃i = (λ̃)1/m(1, ṽi, w̃i).The rank-r decomposition of Fm is unique up to

scaling and permutation by Theorem 3.1.5. Thus, there exist scalars η̂i such that (η̂i)
m = 1

and η̂iq̃i = qi, up to a permutation of q1, . . . , qr. Then for q̂i = (λ̂)1/m(1, v̂i, ŵi), we have

‖η̂iq̂i − qi‖ = O(ε) where constants inside O(·) depend on Fm and ξ.

Since ‖η̂iq̂i−qi‖ = O(ε), we have ‖Fm−(
∑r

i=1(q̂i)
⊗m)Ωm‖ = O(ε). For the minimizer

(q∗1, . . . , q
∗
r) of (3.28), it holds that

∥∥∥∥∥
(
F̂m −

r∑
i=1

(q∗i )
⊗m

)
Ωm

∥∥∥∥∥ ≤
∥∥∥∥∥
(
F̂m −

r∑
i=1

(q̂i)
⊗m

)
Ωm

∥∥∥∥∥ = O(ε).

For the tensor F∗m :=
∑r

i=1(q∗i )
⊗m, we have

‖(F∗m −Fm)Ωm‖ ≤ ‖(F∗m − F̂m)Ωm‖+ ‖(F̂m −Fm)Ωm‖ = O(ε)

If we apply Algorithm 3.2.1 to (F∗m)Ωm , we will get the exact decomposition

F∗m =
∑r

i=1(q
∗
i )
⊗m. By repeating the above argument, similarly we can obtain that

‖η∗i q∗i − qi‖ = O(ε) for some η∗i such that (η∗i )
m = 1, where the constants in O(·) only

depend on Fm and ξ.
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3.3 Learning General Diagonal Gaussian Mixture

Let y be the random variable of a diagonal Gaussian mixture model and y1, . . . , yN

be i.i.d. samples drawn from the model. The moment tensors Mm := E[y⊗m] can be

estimated as follows

M̂m :=
1

N
(y⊗m1 + · · ·+ y⊗mN ).

Recall that Fm =
∑r

i=1 ωiµ
⊗m
i . By Corollary 1.8 and (1.10), we have

(Mm)Ωm = (Fm)Ωm ,

where Ωm is the index set defined in (1.9). Let F̂m be such that

(F̂m)Ωm := (M̂m)Ωm . (3.30)

We can apply Algorithm 3.2.1 to find the low-rank approximation of F̂m. Let F̂m ≈∑r
i=1(q

∗
i )
⊗m be the tensor approximation generated by Algorithm 3.2.1. By Theorem

3.2.2, when ε = ‖(M̂m)Ωm − (Mm)Ωm‖ is small, there exists ηi ∈ C such that ηmi = 1 and

‖ηiq∗i − (ωi)
1/mµi‖ = O(ε). The ηi appears here because the vector q∗i can be complex

even though F̂m is a real tensor. But ωi, µi are both real in Gaussian mixture models. In

practice, we can choose the ηi from all mth roots of 1 that minimizes ‖Im(ηiq
∗
i )‖. Let

q̌i := (ηiq
∗
i ). (3.31)

We expect that q̌i ≈ (ωi)
1/mµi. Then, we consider the tensor

Ft = ω1µ
⊗t
1 + · · ·+ ωrµ

⊗t
r ≈ (ω1)

m−t
m (q̌1)⊗t + · · ·+ (ωr)

m−t
m (q̌r)

⊗t,
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where t is the smallest number such that
(
d
t

)
≥ r. It holds that (Ft)Ωt = (Mt)Ωt ≈ (M̂t)Ωt ,

so we obtain the scalars (ωi)
m−t
m by solving the linear least square problem

min
(β1,...,βr)∈Rr+

∥∥∥∥∥(M̂t)Ωt −
r∑
i=1

βi
(
(q̌i)

⊗t)
Ωt

∥∥∥∥∥
2

. (3.32)

Let the optimizer of (3.32) be (β∗1 , . . . , β
∗
r ), then

ω̂i = (β∗)
m
m−t and µ̂i = q∗i /(β

∗
i )

1
m−t (3.33)

should be reasonable approximations of ωi and µi respectively.

To obtain more accurate results, we can use (ω̂1, . . . , ω̂r, µ̂1, . . . , µ̂r) as starting

points to solve the following nonlinear optimization


min

ω1,...,ωr,
µ1,...,µr

‖(M̂m)Ωm −
r∑
i=1

ωi(µ
⊗m
i )Ωm‖2 + ‖(M̂t)Ωt −

r∑
i=1

ωi(µ
⊗t
i )Ωt‖2

subject to ω1 + · · ·+ ωr = 1, ω1, . . . , ωr ≥ 0,

(3.34)

and obtain the optimizer (ω∗1, . . . , ω
∗
r , µ

∗
1, . . . , µ

∗
r).

Next, we will show how to calculate the diagonal covariance matrices. We define a

label set

Lj = {(j, j, i1, . . . , im−2) : 1 ≤ i1 < · · · < im−2 ≤ d, and i1 6= j, . . . , im−2 6= j}.

For (j, j, i1, . . . , im−2) ∈ Lj, we have

(Mm)j,j,i1,...,im−2 =
r∑
i=1

ωi

(
(µi)j(µi)j(µi)i1 · · · (µi)im−2 + Σ

(i)
jj (µi)i1 · · · (µi)im−2

)
.

The above equation is a direct result of (1.8) since all covariance matrices are diagonal.
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Let

A := Mm −Fm, Â := M̂m − (q̌1)⊗m − · · · − (q̌r)
⊗m. (3.35)

To get the estimation of covariance matrices Σi = diag(σ2
i1, . . . , σ

2
id), we solve the nonnega-

tive linear least square problems (j = 1, . . . , d)


min

(θ1j ,...,θrj)

∥∥∥∥(Â)
Lj
−

r∑
i=1

θijω
∗
i ((µ∗i )

⊗m−2)L̂j

∥∥∥∥2

subject to θ1j ≥ 0, . . . , θrj ≥ 0

(3.36)

where L̂j = {(i1, . . . , im−2) : (j, j, i1, . . . , im−2) ∈ Lj}. The vector ((µ∗i )
⊗m−2)L̂j has

length
(

n
m−2

)
≥
(
k
p

)
≥ r, where k, p are constants in Algorithm 3.2.1. Therefore,

((µ∗1)⊗m−2)L̂j , . . . , ((µ
∗
r)
⊗m−2)L̂j are generically linearly independent and hence (3.36) has

a unique optimizer. Suppose the optimizer is (θ∗1j, . . . , θ
∗
rj). The covariance matrix Σ̂i can

be approximated as

Σ∗i := {diag((θ∗i1, . . . , θ
∗
id))}, σ∗ij :=

√
θ∗ij. (3.37)

The following is the complete algorithm to recover the unknown parameters

{µi,Σi,Ωi}ri=1.

Algorithm 3.3.1. (Learning diagonal Gaussian mixture models.)

Input: The mth order sample moment tensor M̂m, the tth order sample moment tensor

M̂t, and the number of components r.

Step 1. Apply Algorithm 3.2.1 to subtensor (F̂m)Ωm defined in (3.30). Let (q∗1)⊗m + · · ·+

(q∗r)
⊗m be the output incomplete tensor approximation for F̂m.

Step 2. For i = 1, . . . , r, we choose ηi such that ηmi = 1 and it minimizes ‖Im(ηiq
∗
i )‖. Let

q̌i = Re(ηiq
∗
i ) as in (3.31).

Step 3. Solve (3.32) to get the optimizer (β∗1 , . . . , β
∗
r ) and compute ω̂i, µ̂i as in (3.33) for

i = 1, . . . , r.
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Step 4. Use (ω̂1, . . . , ω̂r, µ̂1, . . . , µ̂r) as starting points to solve (3.34) to obtain the optimizer

(ω∗1, . . . , ω
∗
r , µ

∗
1, . . . , µ

∗
r).

Step 5. Solve the optimization (3.36) to get optimizers θ∗ij and then compute Σ∗i as in

(3.37).

Output: Mixture Gaussian parameters (ω∗i , µ
∗
i ,Σ

∗
i ), i = 1, . . . , r.

When the sampled moment tensors are close to the accurate moment tensors, the

parameters generated by Algorithm 3.3.1 are close to the true model parameters. The

analysis is shown in the following theorem.

Theorem 3.3.2. Given a d-dimensional diagonal Gaussian mixture model with parameters

{(ωi, µi,Σi) : i ∈ [r]} and r no greater than the rmax in (3.19). Let {(ω∗i , µ∗i ,Σ∗i ) : i ∈ [r]}

be the output of Algorithm 3.3.1. If the distance ε := max(‖M̂m−Mm‖, ‖M̂t−Mt‖) is small

enough, (µ⊗t1 )Ωt , . . . , (µ
⊗t
r )Ωt are linearly independent, and the tensor Fm =

∑r
i=1 ωiµ

⊗m
i

satisfies the conditions of Theorem 3.2.2, then

‖µ∗i − µi‖ = O(ε), ‖ω∗i − ωi‖ = O(ε), ‖Σ∗i − Σi‖ = O(ε),

where the constants inside O(·) depend on parameters {(ωi, µi,Σi) : i ∈ [r]} and the choice

of ξ in Algorithm 3.3.1.

Proof. We have

‖(F̂m −Fm)Ωm‖ = ‖(M̂m −Mm)Ωm‖ ≤ ε,

‖(F̂t −Ft)Ωt‖ = ‖(M̂t −Mt)Ωt‖ ≤ ε.

and Fm, Ft satisfy conditions of Theorem 3.2.2. They imply that ‖η∗i q∗i − qi‖ = O(ε) for

some (η∗i )
m = 1 by Theorem 3.2.2. The constants inside O(ε) depend on the parameters
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of the Gaussian model and vector ξ. Since vectors qi are real, we have ‖Im(η∗i q
∗
i )‖ = O(ε).

When ε is small enough, such η∗i minimizes ‖Im(η∗i q
∗
i )‖ and we have

‖Re(η∗i q
∗
i )− qi‖ ≤ ‖η∗i q∗i − qi‖ = O(ε).

Let q̌i := Re(η∗i q
∗
i ). When ε is small, vectors (q̌⊗t1 )Ωt , . . . , (q̌

⊗t
r )Ωt are linearly independent

since (µ⊗t1 )Ωt , . . . , (µ
⊗t
r )Ωt are linearly independent by our assumption. It implies that the

problem (3.32) has a unique solution. The weights ω̂i and mean vectors µ̂i can be calculated

by (3.33). Since ‖(M̂t −Mt)Ωt‖ ≤ ε and ‖q̌i − qi‖ = O(ε), we have ‖ωi − ω̂i‖ = O(ε) (see

[14, Theorem 3.4]). The approximation error for the mean vectors is

‖µ̂i − µi‖ = ‖q̌i/(ω̂i)1/m − qi/(ωi)1/m‖ = O(ε).

The constants inside O(ε) depend on parameters of the Gaussian mixture model and ξ.

We obtain optimizers ωi and µi by solving the problem (3.34), so it holds

∥∥∥∥∥(M̂m)Ωm −
r∑
i=1

ω∗i
(
(µ∗i )

⊗m)
Ωm

∥∥∥∥∥ = O(ε).

Let F∗m :=
∑r

i=1 ω
∗
i (µ
∗
i )
⊗m and F∗t :=

∑r
i=1 ω

∗
i (µ
∗
i )
⊗t, then

‖(F∗m −Fm)Ωm‖ ≤ ‖(F̂m −Fm)Ωm‖+ ‖(F̂m −F∗m)Ωm‖ = O(ε).

‖(F∗t −Ft)Ωt‖ ≤ ‖(F̂t −Ft)Ωt‖+ ‖(F̂t −F∗t )Ωt‖ = O(ε).

By Theorem 3.2.2, we have ‖(ω∗i )1/mµ∗i − qi‖ = O(ε). Since we are optimizing (3.34), it

also holds that

∥∥∥∥∥(M̂t)Ωt −
r∑
i=1

ωi
(
(µ∗i )

⊗t)
Ωt

∥∥∥∥∥ =

∥∥∥∥∥(M̂t)Ωt −
r∑
i=1

(ω∗i )
m−t
m

(
((ω∗i )

1/mµ∗i )
⊗t)

Ωt

∥∥∥∥∥ = O(ε).
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Combining the above with ‖(M̂t −Mt)Ωt‖ = O(ε), we get ‖(ω∗i )
m−t
m − ω

m−t
m

i ‖ = O(ε) by

[14, Theorem 3.4] and hence ‖ω∗i − ωi‖ = O(ε). For mean vectors µi we have

‖µ∗i − µi‖ = ‖((ω∗i )1/mµ∗i )/(ω
∗
i )

1/m − qi/(ωi)1/m‖ = O(ε).

The constants inside the above O(·) only depend on parameters {(ωi, µi,Σi) : i ∈ [r]} and

ξ.

We obtain the covariance matrices Σi by solving (3.36). It holds that

‖ω∗i (µ∗i )⊗(m−2) − ωiµ⊗(m−2)
i ‖ = O(ε),

‖Â − A‖ ≤ ‖M̂m −Mm‖+ ‖
r∑
i=1

(q∗i )
m −Fm‖ ≤ O(ε),

where Â and A are defined in (3.35). The tensor Fm satisfies the condition of Theo-

rem 3.2.2, so the tensors µ
⊗(m−2)
1 , . . . , µ

⊗(m−2)
r are linearly independent. It implies that

{ω∗i (µ∗i )⊗(m−2)}ri=1 are linearly independent when ε is small. Therefore, (3.36) has a unique

solution for each j. By [14, Theorem 3.4], we have

‖(σ∗ij)2 − (σij)
2‖ = O(ε).

It implies that ‖Σ∗i−Σi‖ = O(ε), where the constants inside O(·) only depend on parameters

{(ωi, µi,Σi) : i ∈ [r]} and ξ.

Remark 3.3.3. Given the dimension d and the highest order of moment m, the largest

number of components in the Gaussian mixture model that Algorithm 3.3.1 can learn is

the same as the largest rank rmax as in Theorem 3.1.7, i.e.,

rmax = max(

(
k∗

p∗

)
,

(
d− 3− k∗

m− 1− p∗

)
),
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where p∗ = bm−1
2
c and k∗ is largest integer k such that

(
k

p∗

)
≤
(
d− k − 2

m− p∗ − 1

)
.

Given a d-dimensional Gaussian mixture model with r components, we can use Theorem

3.1.7 to obtain the smallest order m required for the Algorithm 3.3.1 and then apply

Algorithm 3.3.1 to learn the Gaussian mixture model using the mth order moment.

3.4 Numerical Experiments

First, we present numerical experiments for Algorithm 3.1.4. We construct

Fm =
r∑
i=1

q⊗mi ∈ Sm(Rd) (3.38)

by randomly generating each qi ∈ Rd in Gaussian distribution by the randn function in

MATLAB. Then we apply Algorithm 3.1.4 to the subtensor (Fm)Ωm to calculate the rank-r

tensor decomposition. The relative error of tensors and components are used to measure

the decomposition result

decomp-errm :=
‖(Fm − F̃m)Ωm‖
‖(Fm)Ωm‖

, vec-err-max := max
i

‖qi − q̃i‖
‖qi‖

,

where F̃m, q̃i are output of Algorithm 3.1.4. We choose the values of d,m as

d = 15, 25, 30, 40, m = 3, 4, 5, 6, 7,

and r as largest computable rank in Theorem 3.1.7 given d and m. For each (d,m, r),

we generate 100 random instances, except for the case (40, 7, 969) where 20 instances are

generated due to the long computation time. The min, average, and max relative errors

of tensors for each dimension d, order m, and the average relative errors of component
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vectors are shown in Table 3.2. The results show that Algorithm 3.1.4 finds the correct

decomposition of randomly generated tensors.

Table 3.2. The performance of Algorithm 3.1.4

decomp-errm

d m r min average max vec-err-max

15

3 6 1.7 · 10−15 3.1 · 10−12 1.7 · 10−10 1.1 · 10−11

4 8 4.0 · 10−15 7.8 · 10−10 7.7 · 10−8 1.2 · 10−10

5 15 1.9 · 10−14 2.5 · 10−11 8.7 · 10−10 9.1 · 10−11

6 20 5.2 · 10−13 2.3 · 10−10 1.2 · 10−8 9.5 · 10−10

7 20 7.4 · 10−14 1.7 · 10−10 1.3 · 10−8 3.4 · 10−10

25

3 11 9.3 · 10−15 7.3 · 10−12 6.3 · 10−10 1.3 · 10−11

4 16 6.1 · 10−14 1.0 · 10−10 9.1 · 10−9 3.5 · 10−10

5 55 2.9 · 10−12 4.4 · 10−9 1.2 · 10−7 3.8 · 10−8

6 84 9.3 · 10−11 7.2 · 10−8 1.7 · 10−6 4.6 · 10−7

7 165 1.4 · 10−10 1.4 · 10−7 4.1 · 10−6 1.7 · 10−6

30

3 14 3.2 · 10−14 7.1 · 10−12 2.2 · 10−10 4.3 · 10−11

4 21 3.6 · 10−13 1.6 · 10−10 2.4 · 10−8 3.9 · 10−10

5 91 3.3 · 10−11 1.5 · 10−7 5.3 · 10−6 6.2 · 10−7

6 136 1.0 · 10−10 1.7 · 10−7 8.3 · 10−6 1.9 · 10−6

7 364 2.4 · 10−8 2.4 · 10−6 2.7 · 10−5 4.1 · 10−5

40

3 19 9.4 · 10−14 5.9 · 10−12 7.6 · 10−11 2.4 · 10−11

4 29 4.1 · 10−13 5.4 · 10−11 6.9 · 10−10 1.4 · 10−10

5 171 1.6 · 10−10 1.3 · 10−7 1.4 · 10−6 1.1 · 10−6

6 286 4.5 · 10−9 5.9 · 10−6 1.1 · 10−4 6.0 · 10−5

7 969 7.8 · 10−7 1.2 · 10−5 4.3 · 10−5 3.7 · 10−4

Then we present numerical experiments for exploring the incomplete symmetric

tensor approximation quality of Algorithm 3.2.1. We first randomly generate the rank-r

symmetric F as in (3.38). Then we generate a random tensor E with the same dimension

and order as Fm and scale it to a given norm ε, i.e. ‖Em‖ = ε. Let F̂m = Fm + Em.

Algorithm 3.2.1 is applied to the subtensor (F̂m)Ω to compute the rank-r approximation

F∗m. The approximation quality of F∗m can be measured by the absolute error and the
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relative error

abs-errm := ‖(F∗m −Fm)Ωm‖, rel-errm :=
‖(F∗m − F̂m)Ωm‖
‖(Em)Ωm‖

.

We choose the values of d, m, ε as

d = 15, 25, m = 3, 4, 5, 6, ε = 0.1, 0.01, 0.001,

and r as largest computable rank in Theorem 3.1.7 given d and m. For each (d, m, r, ε),

we generate 100 instances of F̂m(for the case (25, 6, r, ε), 20 instances are generated due

to long computational time) and record the minimum, average, maximum of abs-errm,

rel-errm respectively. For the case when d = 15, the results are reported in Table 3.3. For

the case when d = 25, the results are reported in Table 3.4. For all instances, the output

tensor of Algorithm 3.2.1 provides a good rank-r approximation.

Table 3.3. The performance of Algorithm 3.2.1 when d = 15

rel-error abs-error

m r ε min average max min average max

3 6

0.1 0.8452 0.8953 0.9258 0.0378 0.0444 0.0534

0.01 0.8549 0.8947 0.9280 0.0037 0.0045 0.0052

0.001 0.8581 0.8969 0.9337 3.5 · 10−4 4.4 · 10−4 5.1 · 10−4

4 8

0.1 0.9382 0.9544 0.9666 0.0256 0.0298 0.0346

0.01 0.9409 0.9569 0.9700 0.0024 0.0029 0.0034

0.001 0.9333 0.9547 0.9692 2.5 · 10−4 3.0 · 10−4 3.6 · 10−4

5 15

0.1 0.9521 0.9612 0.9689 0.0248 0.0275 0.0306

0.01 0.9529 0.9613 0.9690 0.0025 0.0028 0.0030

0.001 0.9539 0.9615 0.9704 2.4 · 10−4 2.7 · 10−4 3.0 · 10−4

6 20

0.1 0.9625 0.9697 0.9767 0.0215 0.0244 0.0271

0.01 0.9620 0.9694 0.9737 0.0023 0.0025 0.0027

0.001 0.9619 0.9696 0.9769 2.1 · 10−4 2.4 · 10−4 2.7 · 10−4
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Table 3.4. The performance of Algorithm 3.2.1 when d = 25

rel-error abs-error

m r ε min average max min average max

3 11

0.1 0.9248 0.9377 0.9488 0.0316 0.0347 0.0380

0.01 0.9257 0.9380 0.9484 0.0032 0.0035 0.0038

0.001 0.9239 0.9383 0.9504 3.1 · 10−4 3.4 · 10−4 3.8 · 10−4

4 16

0.1 0.9809 0.9840 0.9861 0.0166 0.0178 0.0194

0.01 0.9813 0.9839 0.9868 0.0016 0.0018 0.0019

0.001 0.9808 0.9838 0.9860 1.7 · 10−4 1.8 · 10−4 1.9 · 10−4

5 55

0.1 0.9854 0.9870 0.9878 0.0156 0.0161 0.0170

0.01 0.9858 0.9871 0.9884 0.0015 0.0016 0.0017

0.001 0.9856 0.9870 0.9882 1.5 · 10−4 1.6 · 10−4 1.7 · 10−4

6 84

0.1 0.9938 0.9940 0.9943 0.0106 0.0109 0.0111

0.01 0.9939 0.9942 0.9946 0.0011 0.0011 0.0011

0.001 1.0001 1.0046 1.0102 1.6 · 10−4 1.8 · 10−4 2.1 · 10−4

Next, we explore the performance of Algorithm 3.3.1 for learning diagonal Gaussian

mixture model. We compare it with the classical EM algorithm using the MATLAB function

fitgmdist (MaxIter is set to be 100 and RegularizationValue is set to be 0.001). The

dimension d = 15 and the orders of tensors m = 3, 4, 5, 6 are tested. The largest possible

values of r as in Theorem 3.1.7 are tested for each (d,m). We generate 20 random instances

of {(ωi, µi,Σi) : i = 1, . . . , r} for each (d,m). For the weights ω1, . . . , ωr, we randomly

generate a positive vector s ∈ Rr and let ωi = si∑r
i=1 ωi

. For each diagonal covariance matrix

Σi ∈ Rd×d, we use the square of a random vector generated by MATLAB function randn to

be diagonal entries. Each example is generated from one of r component Gaussians and the

probability that the sample comes from the ith Gaussian is the weight ωi. Algorithm 3.3.1

and EM algorithm are applied to learn the Gaussian mixture model from samples. After

obtaining estimated parameters (ωi, µi, Σi) of the model, the likelihood of the sample

for each component Gaussian distribution is calculated and we assign the sample to the
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group that corresponds to the maximum likelihood. We use classification accuracy, i.e.

the ratio of correct assignments, to measure the performance of two algorithms. The

accuracy comparison between two algorithms is shown in Table 3.5. As one can see, the

performance of Algorithm 3.3.1 is better than EM algorithm in all tested cases.

Table 3.5. Comparison between Algorithm 3.3.1 and EM for learning Gaussian mixtures

accuracy

d m r Algorithm 3.3.1 EM

15

3 6 0.9839 0.9567

4 8 0.9760 0.9451

5 15 0.9639 0.9382

6 20 0.9423 0.9285
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