
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
ALOHA with Queue Sharing

Permalink
https://escholarship.org/uc/item/5544h1p7

Authors
Garcia-Luna-Aceves, J.J.
Cirimelli-Low, Dylan
Mashhadi, Najmeh

Publication Date
2020

Data Availability
The data associated with this publication are within the manuscript.
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5544h1p7
https://escholarship.org
http://www.cdlib.org/


ALOHA with Queue Sharing
J.J. Garcia-Luna-Aceves, Dylan Cirimelli-Low, Najmeh Mashhadi

Computer Science and Engineering Department
University of California

Santa Cruz, CA 95064, USA
jj@soe.ucsc.edu, dcirimel@ucsc.edu, nmashhad@ucsc.edu

Abstract—ALOHA with Queue Sharing (ALOHA-QS) main-
tains most of the simplicity of ALOHA with priority acknowl-
edgments (ACK) and attains the high throughput of transmission
scheduling methods that require clock synchronization. Channel
access with ALOHA-QS consists of a sequence of queue cycles,
with each cycle having one or multiple collision-free transmissions
by nodes that have joined the transmission queue and a single
request turn to join the queue. The signaling of ALOHA-QS
entails adding to packet headers the size of the shared queue,
the position of the sending node in the queue, a bit indicating the
end of transmissions by the transmitting node, and a bit stating
whether or not a new node joined the queue successfully. The
throughput of ALOHA-QS is compared with the throughput of
TDMA with a fixed transmission schedule, ALOHA with priority
ACK’s, and CSMA with priority ACK’s analytically and by
simulation.

Keywords-channel access, MAC protocols, ALOHA, CSMA

I. INTRODUCTION

The beauty of the ALOHA channel introduced by Abram-
son [1] is the simplicity of its transmission strategy: Each
node transmits-at-will and then retransmits at some future
random time if the transmission is unsuccessful. This sim-
plicity launched a revolution on packet switching over shared
multiple-access links that has led to today’s standards for WiFi
and WiMAX, among many other notable developments in
medium access control (MAC) protocols.

It is well known that the simplicity of ALOHA comes at a
price. The maximum channel utilization of the basic ALOHA
protocol is 18% of the channel capacity, which occurs when
one packet is offered to the channel every two packet times.
As a result, starting with slotted ALOHA [29], a plethora of
MAC protocols has been proposed and implemented over the
years focusing mainly on improving the efficiency of channel
access. Section II summarizes prior work on MAC protocols
intended for single-channel networks [6], [16], [19]. These
MAC protocols can be categorized as contention-based, such
as ALOHA and CSMA (carrier-sense multiple access) [22];
and contention-free, such as using reservations or elections of
time slots in TDMA transmission frames [6].

This material is based upon work sponsored by the National Science
Foundation (NSF) under Grant CCF-1733884, and by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL). Any opinions, findings, conclusions or recommendations expressed
in this material are those of the author and do not necessarily reflect the
views of NSF, DARPA, AFRL, the U.S. Department of Defense, or the U.S.
government.

Many contention-based MAC protocols are relatively simple
and improve over the performance of ALOHA, but cannot
eliminate multiple-access interference (MAI) completely or
provide maximum channel-access delay guarantees [6], [19].
On the other hand, contention-free MAC protocols can provide
high channel efficiency and delay guarantees, but are far more
complex than ALOHA and other contention-based schemes.
Attaining high channel utilization that approaches that of
collision-free transmission scheduling while maintaining most
of the simplicity of pure ALOHA has proven to be a baffling
and very difficult problem. The key contribution of this paper
is presenting the first practical solution to this problem; we call
this solution ALOHA with Queue Sharing, or ALOHA-QS.

Section III describes how ALOHA-QS operates. A node
with packets to send must first join a transmission queue. A
node in the queue is able to transmit its data packets without
any MAI every time its turn in the queue comes up. Many
approaches have been reported in the past based on similar
notions of distributed transmission queues [12], [23], [37].
The novelty of ALOHA-QS is that its transmission strategy
simply augments the one used in ALOHA with priority
acknowledgments (ACK), and yet it provides collision-free
transmissions and maximum channel-access delay guarantees.
ALOHA-QS does not require any time slotting or fixed-length
transmission frames, and does not need a control handshake
between a transmitter and a specific receiver. The signaling in
ALOHA-QS consists of including a queue-status update of just
a couple of bytes in each packet header by stating the queue
size, the position of the sending node in the shared queue, a bit
used to indicate that the transmitting node is leaving the queue,
and a bit used to indicate whether a new node succeeded in
joining the queue.

Section IV shows that ALOHA-QS enables nodes in the
queue to transmit during their turn without causing MAI, and
allows nodes wishing to be added to the queue to try to join
the queue without disrupting in-queue transmissions.

Section V uses a simple analytical model to compute the
throughput attained with ALOHA-QS, the average length of
the transmission queue, and the average delay incurred in
reaching a target queue size. This model takes into account
the effect of the number of nodes in the transmission queue
and the impact of the probability with which a node in the
queue decides to leave.

Section VI compares the performance of ALOHA-QS
against the performance of TDMA, ALOHA, and CSMA



using the numerical results from the analytical model and
discrete-event simulations in ns-3 [24]. The results show that
ALOHA-QS renders very efficient and stable channel access
using a transmission strategy that is almost as simple as that
of ALOHA with priority ACK’s. Section VII presents our
conclusions.

II. RELATED WORK

Contention-based MAC protocols developed over the years
have taken advantage of physical-layer mechanisms to improve
channel utilization. Time slotting was the first physical-layer
mechanisms proposed to improve the performance of ALOHA
[29] and has been used in many subsequent variants of slotted
ALOHA and framed slotted ALOHA [25], in which time slots
are organized into frames and users randomly select different
time slots for their transmissions. These variants of slotted
ALOHA and framed slotted ALOHA include: controlling the
probabilities with which nodes transmit in order to offer at
most one data packet to the channel per time slot [5], [39];
using machine-learning approaches [9], [10], [38], [36] for
nodes to learn which time slots are less utilized; collision-
resolution approaches that resolve collisions before allowing
new transmissions to occur (e.g., [7]); and using repetition
strategies with which each node transmits the same packet
multiple times together with physical-layer techniques like
code division multiple access (CDMA) or successive interfer-
ence cancellation (SIC) to attain multi-packet reception (e.g.,
[20], [21], [26], [30]).

Carrier sensing [22] has been used in many contention-
based MAC protocols since the introduction of CSMA and
has been used together with additional signaling for collision
avoidance, collision resolution, and collision detection [6],
[12], [13]. Today, carrier sensing with collision avoidance is
an integral part of widely used MAC protocol standards (e.g.,
WiFi and WiMAX).

Many contention-free MAC protocols have been proposed,
and most of them assume the use of transmission frames
consisting of a fixed number of time slots, or at least assume
the existence of a time-slotted channel [6], [31]. The signal-
ing mechanisms that have been used for scheduling include
distributed elections of time slots for broadcast or unicast
transmissions [3], [4], [27], and the reservation of time slots
based on voting or node-to-node handshakes. [32], [33], [35],
[40].

The MAC protocols most relevant to the design of ALOHA-
QS are based on the use of distributed queue or a transmission
group shared among all nodes accessing the channel.

The Distributed Queue Random Access Protocol (DQRAP)
[37] is arguably the first example of this approach, and
its design was inspired by the Distributed Queue Dual Bus
(DQDB) protocol (IEEE 802.6) [5] and collision-resolution
schemes [5], [7]. DQRAP assumes that the channel is time
slotted and that each time slot consists of a data slots and
multiple control mini-slots. The control mini-slots are used for
collision resolution of requests to be added to the distributed
data queue and the data mini-slots are used to transmit data

packets without interference. Several variants of DQRAP have
been reported over the years for applications ranging from
satellite networks to the Internet of Things; however, they
require the use of time slots and mini-slots (e.g., see [11]).

Group Allocation Multiple Access (GAMA) [23] improves
on DQRAP by eliminating the need for time slotting and the
use of control mini-slots. GAMA organizes channel access
into cycles, with each consisting of a contention period and
a group-transmission period. Maximum channel-access delay
guarantees can be attained by limiting the number of transmis-
sions per cycle. A collision avoidance handshake is used in the
contention period of a cycle to add new members to the group-
transmission period. GAMA uses two signaling packets to
manage cycles. A begin-transmission-period packet is sent by
each node stating, as a minimum, the position of the sending
node in the transmission group and the size of the group; and
a transmit-requests packet is sent by the last member of the
transmission group after it has transmitted its data.

CARMA-NTS [12] integrates collision avoidance and res-
olution in the contention periods of GAMA, which results
in each contention period having additions to the group-
transmission period.

Sync-less Impromptu Time-Divided Access (SITA) [18]
uses a collision-avoidance handshake as in GAMA, but works
on the basis of reservations of bandwidth by each node in
the form of periodic transmissions by that node. Each node
maintains its own version of the state of the queue.

The limitations of prior protocols based on distributed
queues is that they rely on either: (a) time slotting and
transmission frames, or (b) explicit signaling between spe-
cific transmitter-receiver pairs that requires senders to know
whether specific intended receivers are present before the
transmission queue can be built.

III. ALOHA-QS

The objectives in ALOHA-QS are to: (a) maintain much of
the simplicity of pure ALOHA with priority ACK’s; (b) attain
collision-free transmissions and delay guarantees accessing
the channel; (c) eliminate the need for carrier sensing, clock
synchronization, transmission frames consisting of a fixed
number of time slots, the ability to distinguish between time
periods when the channel is idle or has collisions, or signaling
addressed to specific nodes before they become part of the
transmission queue.

The design of ALOHA-QS is based on: (a) establishing
shared transmission queues by making minor modifications
to the transmission strategy used in ALOHA with priority
ACK’s, and (b) sharing the state of the queue with each packet
transmitted.

A. Transmission Strategy

The “transmit-at-will” transmission strategy of ALOHA is
slightly modified when priority ACK’s are used, so that nodes
with packets to send that have received a data packet correctly
back off to give the impending ACK priority over their own
transmission attempts [34]. The simplest transmission strategy



that can be adopted for this purpose is a non-persistent strategy
in which a node that obtains a local packet to send while it
is waiting for an ACK for another packet to be heard simply
backs off. ALOHA-QS augments this strategy to establish a
transmission queue in which transmissions take place without
any MAI.

A node in ALOHA-QS trying to join the shared queue
transmits after the last turn of the transmission queue. If
the attempt is not successful, the node retransmits after the
last turn of the transmission queue sometime in the future.
Accordingly, channel sharing in ALOHA-QS is a sequence of
queue cycles. Each queue cycle consists of a sequence of zero
or more queue turns with transmissions by nodes that have
joined the queue, followed by a queue-joining period during
which nodes can transmit their requests to join the queue. A
request to join the queue is simply a packet. The joining period
of a cycle is limited to a single request turn. Accordingly, at
most one node can be added to the transmission queue at the
end of a given queue cycle.

Nodes wishing to join the transmission queue give priority
to transmissions by the nodes that have successfully joined
the queue. Requests to join the queue can be transmitted only
during the persistence interval of the current cycle, and any
request outside the interval must back off for a randomly
chosen number of queue cycles. The persistence interval is
defined to be one or multiple queue turns, and for the sake
of simplicity we assume that it consists of the last queue turn
of a cycle. Any request to join the queue is transmitted at the
beginning of the request turn in a cycle. A queue turn and
the request turn can last at most one maximum channel access
time (MCAT), so that no node can monopolize the channel.
An MCAT includes: (a) a fixed transmission delay equal to
a maximum propagation delay to allow all nodes to hear the
transmission in the previous turn, (b) the maximum receive-
to-transmit turn-around time, (c) the time needed to transmit
the largest packet allowed, and (d) a maximum propagation
time of a packet. A turn with a successfully transmitted packet
lasts at most one MCAT, and an empty turn and a turn with
collisions is assumed to last one MCAT.

Fig. 1. Transmission strategy in ALOHA-QS

Fig. 1 illustrates the transmission strategy of ALOHA-QS
with an example in which a cycle k has Q queue turns and a
request turn. Only those requests arriving during the last queue
turn of the queue cycle are allowed to take place during the
request turn of the cycle together with backlogged requests
from some prior cycles. All other requests to join the queue

are scheduled for transmission at the end of randomly chosen
queue cycles taking place in the future.

B. Queue-Departure Strategy

Nodes leave the transmission queue according to a queue-
departure discipline, which can be very simple. In fact, in
most practical networks, a node joining the transmission queue
would simply remain in the queue while active and use its
turns to transmit data or control packets as needed.

The strategy assumed in this paper consists of having nodes
that join the transmission queue stay in the queue, until the
queue size is one more turn than a target size m. After that,
the node that has spent the most time in the queue leaves the
queue during a given cycle with some probability. To ensure
that transmissions occur only at the beginning of queue turns
or request turns once the queue is started, a node that perceives
itself as the first node in the queue continues to transmit a
packet after one MCAT (corresponding to a request turn), until
the second node joins the queue successfully.

C. Queue Sharing Strategy

The only physical-layer feedback used in ALOHA-QS con-
sists of the reception of packets received without interference
or errors caused by physical-layer effects. Hence, a node is
unable to distinguish between an idle channel or the presence
of collisions. Each packet transmitted in ALOHA-QS states the
size of the queue (Q), the entry turn indicating the position
of the node in the queue (E), a data-ending bit (D) that is
set to indicate the last transmission by the node in turn E
in the queue, and an acknowledgment bit (A) that is set to
indicate that a node succeeded joining the queue at the end of
the prior queue cycle. This added information would represent
only a few extra bytes of added packet-header overhead in
networks of even hundreds of nodes, and allows nodes to
track the current queue position that should be transmitting,
determine when a new cycle must start, eliminate empty turns
when nodes decide to leave the transmission queue, and decide
when attempts to join the transmission queue are successful.

A node maintains five local variables to implement channel
access based on a distributed transmission queue: the queue
size q, the current transmission turn c in the queue, the local
transmission turn l occupied by the node, the entry turn e
proposed by the node when it attempts to join the transmission
queue, and an ACK flag a stating whether or not there was a
successful attempt to join the queue at the end of the previous
queue cycle. Nodes share information about their state in the
queue with each packet they transmit. More specifically, the
header of each packet transmitted includes the queue size Q,
the entry turn E of the transmitting node, the data-ending bit
D, and the ACK bit A.

Fig. 2 shows the state machine describing the operation of
ALOHA-QS. Each state transition specifies: (a) the event that
causes the transition and the resulting update to the state of
node, if any; and (b) the transmission by the node if there
is any. ALOHA-QS has four states: IDLE, JOIN, BACKOFF,
and QUEUE. In addition to the reception of packets, a node



reacts to other types of input events when it transitions to or
remains in one of those states, and events are indicated in
bold font The state machine assumes that a node monitors the
channel independently of whether or not the node has joined
the transmission queue. Furthermore, all nodes experience
the same channel conditions and no channel capture effects
occur. Accordingly, a packet transmitted without MAI is either
decoded correctly by all the nodes or by none of them, and
no packet subject to MAI can be decoded.

Fig. 2. ALOHA-QS state machine

A packet received or transmitted by a node is denoted by
D(Q, E, D, A) and states the queue size Q, the turn of the
transmitting node E, the data-ending bit D, and the ACK bit
A as perceived by the node that sends the packet.

The occurrence of a perceived idle period is denoted by I. If
the transmission queue is not empty, such an idle period lasts
one MCAT and may occur due to: a node in the transmission
queue not transmitting during its turn, physical-layer effects
affecting the reception of a transmitted packet, the occurrence
of MAI on packets sent to join the queue at the end of a queue
cycle, or the absence of requests at the end of a queue cycle.
If the transmission queue is empty, the perceived idle period
ends with the first packet received without MAI. The event
that a node in the transmission queue is ready to finish its
turn in the queue is denoted by F. The event that a node that
is not in the transmission queue has obtained local packets
ready for transmission is denoted by L. The event that a node
in the BACKOFF state decides to transmit is denoted by T.

A node is initialized with the values q = 0, l = 0, c = 0,
e = 0 and a = 0; starts in the IDLE state; and remains in that
state until it has local packets to transmit. A node that joins the
transmission queue can transmit only at the beginning of its
queue turn and must transmit at least one more packet stating
that it is leaving the queue by setting the D bit to 1. A node
that is not in the queue and has local packets to transmit can
access the channel only after the last queue turn of the current
cycle. All packets sent to join the transmission queue state
A = 1, and packets sent during a queue turn state A = a. The

ACK flag is reset a = 0 by nodes in the queue (i.e., in the
QUEUE state) when no request is received correctly during
the request turn of a cycle.

A node in the IDLE state monitors the activity in the channel
and transitions to the JOIN or BACKOFF state depending on
input events. A node is in the JOIN state when it is attempting
to join the transmission queue. A node is in the BACKOFF
state if it must wait to attempt to join the queue. A node is
in the QUEUE state if it succeeded joining the transmission
queue. The node activity that takes place in the four states in
ALOHA-QS is somewhat similar to what occurs in ALOHA
with priority ACK’s, which can be viewed as ALOHA-QS
with a zero-length transmission queue. More specifically: A
node with nothing to send is in an idle state waiting for a
packet to send; a node that transmits a packet waits for an
ACK (as in the JOIN state); nodes that hear a data packet
wait for the ACK to be transmitted (similar to the QUEUE
state but without transmissions); and nodes that fail to receive
ACK’s for their transmitted packets enter the BACKOFF state.

IDLE state: The set of steps taken by the node as a result of
monitoring the reception of packets or perception of idle turns
in the IDLE state is denoted by M in Fig. 2. These monitoring
steps consist of updating the size of the queue q, the value of
the current turn c, and the value of the ACK flag a with each
packet received. The node advances the current turn modulo
q + 1 even when idle turns occur. The same monitoring steps
are also carried out by a node while in the other three states;
this is indicated by M next to those states for brevity.

The ACK flag is set to 1 with the first packet received with
A = 1; hence, a node trying to join the transmission queue
receives an ACK if its transmission succeeds and at least one
transmission from nodes already in the queue is received in
spite of physical-layer effects. If a node receives a packet with
the D bit set, the node eliminates from the transmission queue
the turn that just took place by reducing the size of the queue
by one turn and by not incrementing the value of the current
turn. If the D bit is not set the value of the queue size is
unchanged and the current turn is incremented. This is shown
in Fig. 2 by using the value of the D bit as an integer.

A node in the IDLE state that receives local packets to
send when the transmission queue is empty or during a turn
of a non-empty queue that is not the last transmission turn
must transition to the BACKOFF state. In that case, the node
computes a random integer R corresponding to the number of
queue cycles for its queue backoff (QB). On the other hand,
a node in the IDLE state transitions to the JOIN state if it
receives local packets to send during the last turn of a non-
empty transmission queue. Its packet states: Q = q + 1 to
indicate an additional turn, E = q+ 1 to request the last turn,
D = 0, and A = 1. The node remembers the value of the
requested transmission turn by setting e = q+ 1 and resets its
local turn l to 0. Fig. 1 illustrates this aspect of the operation
of ALOHA-QS. Only those nodes in the IDLE state that have
arrivals in the last turn of the transmission queue can transmit
packets after the last turn ends in order to join the queue. If
the queue is empty, there is no last transmission turn in the



queue and any node in IDLE state that obtains local packets to
send transitions to the BACKOFF state. Requiring a backoff
when the transmission queue is empty forces nodes to listen to
the channel for a period of time that is long enough to detect
packets transmitted without MAI.

JOIN state: A node in the JOIN state remains in the
JOIN state until it can transition to the QUEUE state or must
transition to the BACKOFF state. If he node is attempting
to start the transmission queue, it waits for positive feedback
for a timeout interval TO that is longer than an MCAT.
The node transitions to the QUEUE state if it receives a
packet stating Q > 1 and A = 1, which indicates that its
request packet was sent without MAI. The node transitions
to the BACKOFF state if it obtains any of the following
indications that its request was unsuccessful: (a) no node in the
transmission queue transmits a packet stating A = 1; (b) the
node attempted to start the transmission queue and the TO to
receive a packet from any other node expires; or (c) the node
attempted to start the transmission queue and receives a packet
stating Q = E = 1, which indicates that its own packet was
unsuccessful.

If a node transitions to the QUEUE state, it updates the
queue size q, and the current turn c in the same way as it
does while in the IDLE state. In addition, it sets is local turn l
to the turn value e it proposed in its attempt to join the queue.
If the node transitions from the JOIN state to the BACKOFF
state, it sets its queue backoff QB to a positive random integer
stating the number of queue cycles that the node will wait
before attempting to join the queue again.

BACKOFF state: A node in the BACKOFF state decre-
ments the value of QB after each complete queue cycle occurs,
and processes an input event carrying out the set of monitoring
steps M while in the BACKOFF state.

A node remains in the BACKOFF state while QB > 0 or
QB = 0 and the request turn of the current cycle has not
been reached. The node transitions to the JOIN state when
either: (a) QB = 0 and the request turn of the current queue
cycle is reached (c = q + 1); or (b) the queue is empty, the
node receives a packet D(1, 1, 0, 1) starting the queue, and the
node decides with some probability to try to join the queue
(indicated by T in Fig. 2). In the first case, the node updates
the queue size q if needed, sets c = q + 1 and transmits a
packet indicating that it wants to occupy turn q + 1 > 0 of
the queue by stating D(q + 1, q + 1, 0, 1). In the second case,
the node updates q = 1 and c = 2, and transmits a packet
D(2, 2, 0, 1).

QUEUE state: A node in the QUEUE state remains in that
state until it receives a local signal to end its transmissions,
which is denoted by event F in Fig. 2. The node simply carries
out the set of monitoring steps M after an input event when
the current turn is not the last turn of the cycle and is not the
queue turn of the node (l 6= c ≤ q).

A node in the QUEUE state that does not receive a packet
during the request turn of the current cycle sets c to 1 and
resets its ACK flag a to 0. This is done to account for the
start of a new queue cycle without a successful join request

in the previous cycle. If the node receives a packet correctly
during the request turn of the current cycle, the node increases
the queue size by one, sets c to 1 and sets its ACK flag a to 1
to account for the start of a new cycle with a successful join
request in the previous cycle. The handling of the ACK flag at
the end of a queue cycle is illustrated in the example shown in
Fig. 3. Nodes a to x in Fig. 3 reset a = 0 at the end of cycle
k, because collisions took place, and the same would occur
if either no packet were transmitted or physical-layer effects
prevented the reception of the packet transmitted during the
request turn of cycle k.

While a node does not need to end its turn (event F is not
true) and the current turn corresponds to the turn of the node
(c = l), then the node increments the value of the current turn
by one and transmits a data packet stating Q = q, E = l,
D = 0, and A = a. If a node needs to transmit its last packet
(event F is true) and the queue turn of the node corresponds to
the current turn (c = l), the node transmits its last packet with
the current values of the queue size and queue turn, ACK
flag, and D = 1 to announce its departure. The node then
decrements by 1 the values of queue size and current queue
turn and sets l = 0 to account for its own departure.

Fig. 3. Example of failed attempts to join transmission queue

IV. CORRECTNESS OF ALOHA-QS

The service provided by ALOHA-QS consists of allowing
any node that joins the transmission queue to transmit packets
without MAI and with maximum channel-access delay guar-
antees. The following theorem proves that this is true under the
following assumptions: (a) The channel introduces no errors;
(b) the maximum propagation delay between any two nodes
is finite; (c) all nodes have direct radio connectivity with one
another; and (d) one MCAT is longer than the time needed for
a request packet to be received and processed by all nodes.

Theorem 1: ALOHA-QS guarantees that data packets trans-
mitted by nodes that have joined the transmission queue are
received without MAI.

Proof: The proof is by induction on the number of nodes
Q in the transmission queue.

Basis Case: Nodes must enter the BACKOFF state when
they have packets to send and find an empty transmission
queue. Accordingly, when the queue is empty, each node with
packets to send must wait for a random number of turns, each
lasting one MCAT, before it transitions to the JOIN state and
transmits its request to start the queue. Once a first node n1

successfully transmits a request packet stating Q = E =
A = 1, all nodes must update q = Q = 1, c = 2, and



a = A = 1. As a result, nodes other than n1 must be on
the IDLE or BACKOFF state, and can transmit their request
packets only during the request turn following the reception of
a packet from n1. By design, n1 keeps transmitting a packet
stating Q = E = A = 1 after waiting a multiple of MCATs,
until another node n2 succeeds transmitting a request packet
stating Q = E = 2 and A = 1. Packets sent in the request
turn cannot cause MAI on packets from n1 when Q = 1
because request packets can start only after a packet from n1

is received, and must end before an MCAT elapses.
If n2 succeeds, n1 transitions to the QUEUE state and

updates q = Q = 2, c = 3, and a = A = 1, and n2 must
receive the packet from n1 and transitions to the QUEUE state
also setting q = Q = 2 and a = A = 1. MAI cannot occur on
packets from n1 or n2 when Q = 2 because: (a) n2 sends a
packet in its queue turn, which starts after any packet from n1

is sent; (b) nodes other than n1 and n2 can transmit request
packets only in a request turn, which starts after any packet
from n2 is sent; and (c) n1 cannot start transmitting a packet
until a request turn elapses, which lasts longer than any request
packet that may be sent during that turn.

Inductive Step: Assume that the result is true for a trans-
mission queue of size Q. Nodes n1 to nQ are in the QUEUE
state and other nodes are in the IDLE, JOIN, or BACKOFF
state. Therefore, they can only transmit their requests in the
request turn starting after a packet from nQ is received or one
MCAT elapses for the queue turn of nQ. Packets sent in a
queue turn cannot cause MAI because each queue turn lasts
at least as long as a packet sent during the turn and only one
node can transmit in a queue turn. No request packet sent can
cause MAI on packets sent by n1, because n1 waits a request
turn after receiving the last packet from nQ, and a request
turn either results in a request with no MAI or lasts is longer
than the collisions of any request packets. Node nQ+1 joins
the transmission queue when its request, sent after the packet
from nQ, does not have any MAI. Hence, the result is true.

V. PERFORMANCE ANALYSIS OF ALOHA-QS
A. Model and Assumptions

We assume the same traffic model first introduced by
Abramson [1] to analyze ALOHA. According to this model,
a very large number of stations constitute a Poisson source
sending data packets of equal length δ to the the channel with
an aggregate mean rate of λ packets per unit time. A node
that is forced to backoff does so for a random amount of
time that is much larger than the time needed for a successful
packet transmission and such that packet transmissions for new
arrivals and backlogged arrivals can be assumed to be inde-
pendent of one another. Multiple access interference (MAI) is
the only source of errors, multiple concurrent transmissions
to the common channel must all be retransmitted and any
packet propagates to all nodes with the same propagation
delay. The only physical-layer feedback is the decoding of
packets received without MAI. The system operates in steady
state, with no possibility of collapse.

Requests to join the transmission queue occur with an
aggregate mean rate of λ packets per unit time. Nodes that
join the transmission queue stay in the queue waiting for the
queue size to reach a target value m. Once the queue size
is m + 1, nodes follow a first-in, first-out (FIFO) discipline
in which the node that has spent the most time in the queue
leaves the queue during a given cycle with probability q. A
fixed turn-around time of ω seconds is assumed for transitions
from receive-to-transmit or transmit-to-receive modes.

B. Throughput of ALOHA-QS

The throughput of a MAC protocols is the percentage of
time that the channel is used for the transmission of packets
without MAI. Given that ALOHA-QS establishes transmission
cycles consisting of queue turns followed by a request turn,
its throughput can be stated as a function of the average size
of the transmission queue Q̄ and the length of each queue
turn and request turn. The following theorem states this result
assuming that each queue turn or request turn lasts T seconds.

Theorem 2: The throughput of ALOHA-QS is

S =
δ
(
µQ̄+ Ps

)
T (Q̄+ 1)

(1)

where µ is the probability that a node transmits a packet
during its queue turn, Q̄ is the average size of the transmission
queue, T is the duration of a transmission turn, and Ps is the
probability of success during the request turn of a cycle.

Proof: The throughput of ALOHA-QS is simply the ratio
of the time Ū spent transmitting packets without MAI in an
average queue cycle divided by the time C̄ that such a cycle
lasts. C̄ equals T (Q̄ + 1) given that the average queue cycle
has Q̄ + 1 turns and each turn lasts T seconds. Each queue
turn of a cycle contains a successful packet with probability
µ lasting δ seconds and the request turn of a cycle contains
a successful packet with probability Ps. Therefore, Ū equals
δ(µQ̄+ Ps). The result follows by taking the ratio Ū/C̄.

Taking into account our assumption that the arrival of re-
quests to join the transmission queue is Poisson with parameter
λ leads to the following result.

Corollary 1: The throughput of ALOHA-QS is

S =
δ
(
µQ̄+ λTe−λT

)
T (Q̄+ 1)

(2)

Proof: The result follows from Theorem 1 and the fact
that Ps equals the probability that only one request occurs
during the last queue turn of an average cycle, which is
λTe−λT .

We observe that making Q̄ = 0 and T = δ in Eq. (2)
results in the known throughput result of slotted ALOHA [29]
with λT = G. This should be expected, given that slotted
ALOHA can be viewed as ALOHA-QS when the size of
the transmission queue is kept empty, MAC-level ACK’s in
ALOHA-QS are sent in packet headers, and nodes establish
virtual time slotting.



C. Average Size of Transmission Queue in ALOHA-QS

Given that at most one node may join or leave the transmis-
sion queue in any cycle, a cycle of length k must be followed
by a cycle whose length can only be k − 1, k, or k + 1,
depending on whether a node leaves the transmission queue
and a node joins the transmission queue.

Fig. 4 illustrates channel utilization in ALOHA-QS. The
figure shows cycle k having a queue with m turns and a single
request to join the queue, which results in a success and hence
cycle k + 1 has m+ 1 nodes in the queue. Three requests to
join the queue take place in cycle k + 1, which results in a
failure and cycle k + 2 has again m + 1 nodes in the queue.
One node leaves the queue after transmitting and no requests
to join the queue occur during cycle k + 2, which results in
cycle k + 3 having m queue turns again. The example also
shows two join requests occurring in cycle k+3, which results
in a failure to increase the queue size.

Fig. 4. Channel utilization in ALOHA-QS

The following theorem states the average queue size in
ALOHA-QS as a function of the target value of the queue
size.

Theorem 3: The average queue size in ALOHA-QS is

Q̄ = m+
Ps(1− q)
q − Ps

with Ps < q (3)

where m is the target queue size, q is the probability that the
first node that joined the queue leaves in a given cycle, and
Ps is the probability of success during the request turn of a
cycle.

Proof: The proof of this theorem is presented in [15] in
the context of QSMA, which is a MAC protocol that uses a
queue-sharing approach that is very similar to the design of
ALOHA-QS.

Assuming that the arrival of requests to join the transmission
queue is Poisson distributed with parameter λ leads to the
following result by substituting λTe−λT for Ps in Eq. (3).

Corollary 2: If the arrival of requests to join the transmis-
sion queue is Poisson with parameter λ the average queue size
in ALOHA-QS is

Q̄ = m+
(1− q)λTe−λT

q − λTe−λT
with λTe−λT < q (4)

D. Average Delay Reaching Target Queue Size

Fig. 5 illustrates the random evolution of reaching a target
queue size of m starting with the first packet that is transmitted
successfully into the channel. Each node in the figure repre-
sents the number of queue turns in a given queue cycle. The
arrows represent the transition from state k to either state k+1
or state k itself for k = 1, 2, ...,m−1. Given that the system is

in equilibrium, there must be a first packet transmitted without
MAI with probability 1. Once that first packet is transmitted,
all nodes must transmit their own packets during the request
turn that follows the first packet, and in general by the last
packet transmitted during a queue turn. A packet transmitted
during a request turn succeeds with probability Ps. Therefore,
for any given k between 1 and m − 1 the queue size k
increases by one with probability Ps and remains the same
with probability 1− Ps.

The node that starts the transmission queue continues to
transmit its request packet after a random backoff number of
MCATs elapses. If the average number of backoff MCATs
incurred between consecutive transmissions of request packets
is R when k = 1, then the average number of transmission
turns to advance to state k = 2 or remain in state k = 1
is R + 2 to account for two successful transmission turns or
one successful turn followed by an idle or unsuccessful turn.
For k > 1, the number of transmission turns incurred in the
attempt is k + 1.

Fig. 5. Random evolution reaching target queue size m in ALOHA-QS

The success of a request to join the queue is independent
of any other request. Accordingly, the average delay incurred
in growing the queue size to m starting from state 1 can be
obtained from the following equations:

D̄1 = Ps((R + 2)T + D̄2) + (1 − Ps)((R + 2)T + D̄1) (5)

D̄k = Ps((k + 1)T + D̄k+1) + (1 − Ps)((k + 1)T + D̄k)

with k = 2, ...,m− 2 (6)

D̄m−1 = Ps(m T ) + (1 − Ps)(m T + D̄m−1) (7)

Solving Eqs. (5) to (7) for D̄1 provides the desired average
delay in reaching the target queue size, which is

D̄(m) =

(
m(m + 1)

2
+ R− 1

)
T

Ps
(8)

The above result is intuitive. On average, it takes P−1
s queue

cycles to increase the queue size in the current state, and each
queue cycle at state k has k + 1 turns. If we only consider
the number of cycles needed to reach the target queue size of
m from 1 and set R = 0 we obtain C̄(m) = (m − 1)P−1

s .
Furthermore, given an average queue size Q̄, the average delay
D̄Q̄ incurred in adding a new node to the transmission queue
can be obtained as in Eq. (7), that is, D̄Q̄ = Ps(Q̄ T ) + (1−
Ps)(Q̄ T + D̄Q̄), which results in D̄Q̄ = Q̄TP−1

s .
If the arrival of new and retransmitted queue-join requests

is Poisson with parameter λ, then PS = λTe−λT . Substituting
in Eq. (8) we have

D̄(m) = [m(m+ 1) + 2(R− 1)]eλT /2λ (9)



E. Impact of Limited Signaling Overhead on Throughput

A transmission turn lasts T = δ+ω+τ , which accounts for
the turn-around time and the time to transmit and propagate
a packet. As Eq. (2) indicates, the throughput of ALOHA-QS
quickly approaches δ/T as the average queue size Q̄ grows.
This constitutes very high throughput, because δ � ω + τ .

VI. PERFORMANCE COMPARISON

We compare the performance of ALOHA-QS with the per-
formance of three other MAC protocols that are representative
of contention-based and schedule-based channel access using
numerical results from our analytical model and simulations
carried out using ns-3 [24]. We consider CSMA with ACK’s,
and ALOHA with ACK’s because the design of ALOHA-
QS seeks to maintain most of their simplicity. We consider
TDMA with a fixed transmission schedule because it attains
the highest throughput of a schedule-based MAC protocol
using time slots. The source code of the ns-3 simulations we
discuss is publicly available [8].

A. Numerical Results from Analytical Model

Results are normalized to the length of a data packet
by making δ = 1. and using G = λ × δ, where λ is the
arrival rate of all packets.The normalized value of each other
variable, which equals its ratio with δ.

1) Throughput Results: We make some simplifying as-
sumptions about packet arrivals to compare the throughput of
ALOHA-QS, ALOHA with ACK’s, and CSMA with ACK’s,
and TDMA with a fixed transmission schedule. The combined
arrival of all packets is Poisson with parameter λ. For ALOHA
and CSMA this means data-packet arrivals. For ALOHA-QS,
a node in the queue is assumed to transmit during its own
queue turn, provided that it has a data-packet arrival during
the previous queue turn, or request turn if the node has the first
queue turn. Furthermore, if there is one or multiple arrivals in
a given turn (a queue turn or a request turn), then there is
at least one arrival for the next turn in the cycle. A similar
simplifying assumption is made for TDMA.

With these simplifying assumptions, the intensity of traffic
from nodes in the queue in ALOHA-QS and active nodes
in TDMA correlates with the total traffic intensity, and also
means that µ = 1− e−λT in Eq. (1).

Given that the only overhead incurred in TDMA with a fixed
schedule is the extra time per time slot needed to account for
turn-around times and propagation delays, the throughput of
TDMA is simply

Stdma = δµ/(δ + ω + τ) (10)

Fig. 6 shows the throughput of TDMA (Eqs. (10)), ALOHA-
QS (Eqs. (3) and (4)), ALOHA with priority ACK’s (Eq. (20)
in [14]), and CSMA with priority ACK’s (Eq. (18) in [13],
which is similar to Eq. (26) in [34]) assuming a channel data
rate of 1 Mbps, physical distances of 500 meters, and data
packet of 1500 bytes, which renders a normalized propagation
delay of 1× 10−4. The turn-around time ω is assumed to be

the same as a propagation delay, and an ACK in ALOHA
and CSMA consists of 40 bytes. Making ω = τ results in the
length of a transmission turn in ALOHA-QS being T = δ+3τ
(see Section V-E), and the length of a time slot in TDMA being
δ + 2τ .

The results illustrate the high efficiency and stability of
ALOHA-QS. Even when the queue size is very small (e.g.,
just five turns as Fig. 6 illustrates), ALOHA-QS is far more
efficient than ALOHA and CSMA. In addition, ALOHA-QS
is stable at any load and quickly approaches the throughput
attained with TDMA as the size of the transmission queue
increases. This is remarkable, given that no special physical-
layer support is required in ALOHA-QS other than the decod-
ing of received packets.

Fig. 6. Throughout of TDMA with a fixed schedule, ALOHA-QS, ALOHA
with ACK’s, and CSMA with ACK’s

Fig. 7. Average delay in transmission turns reaching target queue size

2) Delay Results: Fig. 7 shows the average delay in terms
of transmission turns incurred in ALOHA-QS to reach differ-



ent target queue sizes as a function of the normalized number
of join requests, which is set to G = λT with T = δ when
p = 1 and R = 0. It is clear from Eq. (9) and the figure that the
average delay incurred in reaching a target queue size would
become very large when m is large and the average number
of requests per request turn is much larger than 1. This is
because each success takes many cycles to occur and each
cycle has many queue turns. In a finite network, the arrival
rate of queue-join requests decreases as more nodes join the
queue. This makes the results more promising, because they
indicate that a queue size that includes all active nodes can be
easily reached in just a few seconds in networks with hundreds
of nodes.

B. Results from Simulation Experiments

1) Simulation Setup and Scenario: We compare TDMA
with a fixed schedule, ALOHA-QS, ALOHA with ACK’s,
and CSMA with ACK’s using the ns-3 simulator [24]. The
scenario assumes fully-connected topologies of 10 or 50 nodes
that always have data packets to send. The experiment uses a
300m× 300m grid for random placement of nodes, resulting
in propagation delays of 1415 ns or less. No channel capture
or channel errors occur, the MAC data rate is 10Mbps, and the
transmission rate for the PLCP (Physical Layer Convergence
Procedure) preamble and header of 24 bytes is 1 Mbps in the
three protocols. We measure the average throughput of the
four protocols and the time that a node takes in ALOHA-QS
to transition to the QUEUE state from the time when a it first
receives a packet to send.

All contention-based protocols use a binary exponential
backoff scheme with a maximum backoff of 256 epochs, where
each epoch lasts 100 µs. ACK’s in ALOHA and CSMA are set
to 14 bytes used in 802.11 ACK’s. Data packets in ALOHA-
QS add two bytes, which suffices to carry the Q, E, D, and
A feedback for up to 128 nodes. The target queue size in
ALOHA-QS is set to accommodate any number of nodes,
and the time slots in fixed-schedule TDMA accommodate the
largest packet size.

2) Throughput Results: Table I shows the normalized
throughput for TDMA, ALOHA, CSMA and ALOHA-QS.

TABLE I
NORMALIZED THROUGHPUT OF MAC PROTOCOLS

Network
Size Protocol Packet Size (bytes)

218 50% / 50% 1500
10 nodes ALOHA .271 .132 .096

CSMA .649 .813 .872
TDMA .263 .631 .999
ALOHA-QS .941 .975 .984

50 nodes ALOHA .028 .003 <.001
CSMA .647 .811 .870
TDMA .263 .631 .999
ALOHA-QS .984 .993 .995

We consider data payloads of 218 bytes, which correspond
to a typical VoIP frame [28];1500 bytes, which is the typical
payload MTU of an IP packet [17]; and an even combination of
them. Results are shown for networks with 10 and 50 nodes.

The table shows the mean of 10 trials for each experiment
lasting 10 min. Standard deviations were much smaller than
.01% for all MAC protocols because of the long duration
of each experiment. As the results show, ALOHA-QS attains
far better throughput than ALOHA and CSMA independently
of the network size or payload type, with better than 90%
throughput in all cases. The small throughput degradation with
small payloads in ALOHA-QS results from the relatively lager
overhead of propagation delays and turn-around times in queue
turns with short packets.

CSMA performs better with large payloads, because the
overhead of priority ACK’s is comparatively smaller than with
small data packets.

ALOHA performs much worse with large and mixed pay-
loads because the average vulnerability period of a data packet
is larger. As predicted in [2], the throughput degradation for
the case of mixed payloads results from small data packets
interfering with large packets that occupy the channel for large
portions of time. The throughput of ALOHA vanishes as the
network size increases due to the amount of multiple access
interference they create.

TDMA with a fixed schedule performs better than ALOHA-
QS only when large data packets are transmitted most of the
time, each occupying most of a time-slot time. ALOHA-QS
outperforms TDMA when either small packets are transmitted
or data traffic involves a heterogeneous mix of packet lengths.
The small throughput in TDMA with small data packets and
mixed payloads can be addressed either by using short time-
slot times or packing multiple packets in the same time slot.
However, using short time slots requires large data packets to
be fragmented and transmitted in multiple time slots, which
adds considerable overhead and results in much longer delays
in the delivery of large data packets. On the other hand,
packing multiple data packets in each time slot makes the
channel access protocol more complex.

3) Delay Results: Fig. 8 shows the average delay incurred
by each node to join the distributed queue in ALOHA-QS
in the order in which each node joins the queue when data
packets payloads have 1500 bytes.

Fig. 8. Normalized delay joining the queue per node in ALOHA-QS

It should be noted that nodes do no reset their backoff ex-
ponent as in ALOHA or CSMA, and nodes that fail repeatedly



can face long delays joining the queue, even when the network
has a few nodes attempting to join. Furthermore, as the shared
queue grows in size, each queue cycle becomes longer, which
increases the time a node must wait before re-transmitting a
join request. Fortunately, each node needs only one success
to join the queue, which results in all the nodes joining the
queue in a very short period of time for practical purposes.

The simulation experiments show that all nodes join the
queue well within 18 seconds, which would be more than
adequate in most network deployments. However, the sim-
plistic queue-joining approach assumed in this paper can and
should be improved to make ALOHA-QS more effective in
the presence of long propagation delays.

VII. CONCLUSIONS AND FUTURE WORK

We introduced ALOHA-QS, a MAC protocol that quickly
attains collision-free transmissions and provides maximum
channel-access delay guarantees in fully-connected wireless
networks without the need for time slotting at the physical
layer or the use of explicit handshakes that require transmitters
to know the identity of intended receivers before such nodes
have joined the transmission queue.

The signaling overhead in ALOHA-QS is very small. Each
packet header simply states the queue size, a position in the
queue, a bit informing whether the transmitter is leaving the
queue, and a bit serving as an ACK to a request to join the
queue. In addition, request packets are much smaller than
average-length data packets

The performance-comparison results show that ALOHA-QS
provides the best features of contention-based and schedule-
based MAC protocols. ALOHA-QS is almost as simple as
ALOHA with priority ACK’s, and renders channel efficiency
comparable to or better than what TDMA provides.

Several ALOHA-QS optimizations can be made and deserve
further study. In particular, the efficiency of ALOHA-QS could
be further improved by making the queue-joining mechanism
more aggressive when the queue size is small and recent join
requests are successful, and less aggressive otherwise. Multiple
requests turns could be allowed in a transmission cycle to
reduce the delays incurred in reaching target queue sizes.
Lastly, carrier sensing could be used in the context of shared
transmission queues; an approach that does this is presented
in [15].

REFERENCES

[1] N. Abramson, “The ALOHA System–Another Alternative for Computer
Communications,” Proc. Fall Joint Computer Conference ‘70, 1970.

[2] N. Abramson, “The Throughput of Packet Broadcasting Channels,” IEEE
Transactions on Communications, Jan. 1977.

[3] L. Bao and J.J. Garcia-Luna-Aceves, “A New Approach to Channel
Access Scheduling for Ad Hoc Net-works,” Proc. ACM MobiCom ‘01,
July 2001.

[4] L. Bao and J.J. Garcia-Luna-Aceves, “Hybrid Channel Access Scheduling
in Ad Hoc Networks,” Proc. IEEE ICNP ‘02, Nov. 2002.

[5] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, 1992.
[6] A. Boukersche, et al., Handbook of Algorithms for Wireless Networking

and Mobile Computing, CRC Press, 2005.
[7] J. Capetanakis, “Tree Algorithm for Packet Broadcasting Channel,” IEEE

Transactions on Information Theory, 1979.
[8] D. Cirimelli-Low and J.J. Garcia-Luna-Aceves, “ns-3 Simulation of

QSMA.” Online: https://github.com/DylanCirimelli-Low/QSMA-Sim

[9] Y. Chu et al., “ALOHA and Q-Learning based Medium Access Control
for Wireless Sensor Networks,” Proc. IEEE ISWCS ‘12, 2012.

[10] Y. Chu et al, “Application of Reinforcement Learning to Medium Access
Control for Wireless Sensor Networks,” Engineering Applications of
Artificial Intelligence, 2015.

[11] A. Laya et al., “Goodbye, ALOHA!,” IEEE Access, April 2016.
[12] R. Garces and J.J. Garcia-Luna-Aceves, “Collision Avoidance and

Resolution Multiple Access with Transmission Groups,” Proc. IEEE
INFOCOM ‘97, April 1997.

[13] J.J. Garcia-Luna-Aceves, “Carrier-Sense Multiple Access with Collision
Avoidance and Detection,” Proc. ACM MSWiM ‘17, 2017.

[14] J.J. Garcia-Luna-Aceves, “KALOHA: ike i ke ALOHA,” Proc IEEE
MASS ‘19, Nov. 2019.

[15] J.J. Garcia-Luna-Aceves and D. Cirimelli-Low, “Queue-Sharing Multi-
ple Access,” Proc. ACM MSWIM ‘20, Nov. 2020.

[16] A.C.V. Gummalla and J.O. Limb, “Wireless Medium Access Control
Protocols,” IEEE Communications Surveys & Tutorials, 2000.

[17] C. Horning, “A Standard for the Transmission of IP Datagrams over
Ethernet Networks,” RFC 894, IETF, April 1984.

[18] G. Jakllari and R. Ramanathan, “A Sync-less Time-Divided MAC
Protocol for Mobile Ad-hoc Networks,” IEEE MILCOM ‘09, Oct. 2009.

[19] R. Jurdak et al., “A Survey, Classification and Comparative Analysis
of Medium Access Control Protocols for Ad Hoc Networks,” IEEE
Communications Surveys & Tutorials, 2004.

[20] E. Khaleghi et al., “Near-Far Effect on Coded Slotted ALOHA,” Proc.
IEEE PIMRC 2017 Workshop on The Internet of Things (IoT), Oct. 2017.

[21] C. Kissling, “Performance Enhancements for Asynchronous Random
Access Protocols over Satellite,” Proc. IEEE ICC ‘11, June 2011.

[22] L. Kleinrock and F. A. Tobagi, “Packet Switching in Radio Channels:
Part I - Carrier Sense Multiple-Access Modes and Their Throughput-
Delay Characteristics,” IEEE Transactions on Communications, 1975.

[23] A. Muir and J.J. Garcia-Luna-Aceves, “An Efficient Packet-Sensing
MAC Protocol for Wireless Networks,” Mobile Networks and Applica-
tions, 1998.

[24] ns3 Network Simulator. On-line: https://www.nsnam.org
[25] H. Okada et al., “Analysis and Application of Framed ALOHA Channel

in Satellite Packet Switching Networks - FADRA Method,” Electron.
Commun. in Japan, 1977

[26] E. Paolini, G. Liva, and M. Chiani, “Coded Slotted ALOHA: A Graph-
Based Method for Uncoordinated Multiple Access,” IEEE Transactions
on Information Theory, Dec. 2015.

[27] S. Ramanathan and E.L. Lloyd, “Scheduling Algorithms for Multihop
Radio Networks,” IEEE/ACM Transactions on Networking, 1993.

[28] M. Ramalho et al., “RTP Payload Format for G.711.0,” RFC 7655, IETF,
Nov. 2015.

[29] L.G. Roberts, “ALOHA Packet System with and without Slots and
Capture,” ACM SIGCOMM CCR, April 1975.

[30] F. C. Schoute, “Dynamic Frame Length ALOHA,” IEEE Transactions
on Communications, 1983.

[31] A. Sgora et al., ,“A survey of TDMA Scheduling Schemes in Wireless
Multihop Networks,” ACM Computing Surveys, 2015.

[32] Z. Tang and J.J. Garcia-Luna-Aceves, “A Protocol for Topology-
Dependent Transmission Scheduling,” Proc. IEEE WCNC ‘99, Sept. 1999.

[33] Z. Tang and J.J. Garcia-Luna-Aceves, “Hop Reservation Multiple Access
(HRMA) for Ad-Hoc Networks,” Proc. IEEE INFOCOM ‘99, 1999.

[34] F. Tobagi and L. Kleinrock, “The Effect of Acknowledgment Traffic on
the Capacity of Packet-Switched Radio Channels,” IEEE Transactions on
Communications, June 1978.

[35] D. J. Vergados et al., “Local Voting: Optimal Distributed Node Schedul-
ing Algorithm for Multihop Wireless Networks,” INFOCOM Workshop
‘17 , 2017.

[36] S. Wang et al., , “Deep Reinforcement Learning for Dynamic Multi-
channel Access in Wireless Networks,” IEEE Transactions on Cognitive
Communications and Networking, 2018.

[37] W. Xu and G. Campbell, “A Distributed Queuing Random Access
Protocol for a Broadcast Channel,” Proc. ACM SIGCOMM ‘93, Oct. 1993.

[38] Y. Yan et al., “Adaptation of the ALOHA-Q Protocol to Multi-Hop
Wireless Sensor Networks,” Proc. IEEE European Wireless ‘14, May
2014.

[39] J. Yu and L. Chen, ‘Stability Analysis of Frame Slotted Aloha Protocol,”
IEEE Transactions on Mobile Computing, May 2017.

[40] C. Zhu and M. S. Corson, “A Five Phase Reservation Protocol (FPRP)
for Mobile Ad Hoc Networks,” Proc. IEEE INFOCOM ‘98, 1998.




