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Crocidolite Asbestos Induces Apoptosis of
Pleural Mesothelial Cells: Role of Reactive
Oxygen Species and Poly(ADP-ribosyl)
Polymerase

V. Courtney Broaddus,'? Lin Yang,'2 Louis M. Scavo,?
Joel D. Ernst,? and Alice M. Boylan3

1San Francisco General Hospital, San Francisco, California;
2Cardiovascular Research Institute, University of California,

San Francisco, California; 3Medical University of South Carolina,
Charleston, South Carolina

Mesothelial cells, the progenitor cells of the asbestos-induced tumor mesothelioma, are
particularly sensitive to the toxic effects of asbestos, although the molecular mechanisms by
which asbestos induces injury in mesothelial cells are not known. We asked whether asbestos
induced apoptosis in mesothelial cells and whether reactive oxygen species were important.
Rabbit pleural mesothelial cells were exposed to crocidolite asbestos or control particles (1-10
pg/cm?) over 24 hr and evaluated for oligonucleosomal DNA fragmentation, loss of membrane
phospholipid asymmetry, and nuclear condensation. Asbestos fibers, not control particles,
induced apoptosis in mesothelial cells by all assays. Induction of apoptosis was dose dependent;
crocidolite (5 ug/cm?) induced apoptosis (15.0 + 1.1%, mean + SE; n=12) versus control particles
(<4%), as measured by appearance of nuclear condensation. Apoptosis induced by asbestos, but
not by actinomycin D, was inhibited by extracellular catalase, superoxide dismutase in the
presence of catalase, hypoxia (8% oxygen), deferoxamine, and 3-aminobenzamide (an inhibitor of
the nuclear enzyme, poly(adenosine diphosphate-ribosyl) polymerase). We conclude that
asbestos induces apoptosis in mesothelial cells via reactive oxygen species. We speculate that
escape from this pathway could allow the abnormal survival of mesothelial cells with asbestos-
induced mutations. — Environ Health Perspect 105(Suppl 5):1147-1152 (1997)

Key words: oxygen radicals, annexin V, flow cytometry, deferoxamine, internalization

Introduction

Asbestos fibers produce neoplasms,
inflammation, and fibrosis of the lung and
pleura, although the molecular mechanisms
by which asbestos induces these biologic
effects have not been established (7).
Asbestos is particularly toxic to mesothelial
cells, the progenitor of the asbestos-induced
tumor mesothelioma (2). In in vitro studies
with mesothelial cells, asbestos leads to inhi-
bition of growth (3), disruption of mitosis

(4), induction of DNA and chromosomal
damage (2), and disruption of the cell mem-
brane consistent with necrotic cell death (5).
However, we observed that rabbit pleural
mesothelial cells exposed to crocidolite
asbestos become small and shrunken (6),
features that are more consistent with apop-
tosis than cellular necrosis. Unlike necrosis,
apoptosis is an active process under genetic
control (7). Apoptosis is important for the
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elimination of injured cells such as those
injured by viruses, irradiation, or oxygen
radicals (7). The loss of normal apoptotic
responses has been implicated in oncogene-
sis because cells with DNA damage that
would normally die can survive as one step
in the multistep process leading to neoplas-
tic transformation (8,9). Because of the
importance of apoptosis in the regulation of
cell populations and the deletion of dam-
aged cells, we asked whether asbestos fibers
induce apoptosis of pleural mesothelial cells.

Of the diverse stimuli that induce
apoptosis, reactive oxygen species may play a
central role; not only do they induce apop-
tosis when directly added to cells, but they
may be a common pathway for action of
many seemingly unrelated stimuli (10,117).
One of the ways that reactive oxygen species
may initiate apoptosis is via their damage to
DNA. In some models, DNA strand breaks
may induce apoptosis by the intermediate
activation of poly (adenosine diphosphate
[ADP]-ribosyl) polymerase, a nuclear
enzyme associated with DNA repair.
Reactive oxygen species are produced by
asbestos fibers, either alone or via ingestion
by phagocytic cells (12), although it is not
agreed whether asbestos-induced reactive
oxygen species lead to mesothelial cell
injury (13-17). Thus, it is unclear whether
asbestos-induced reactive oxygen species
play a role in mesothelial cell apoptosis.

We therefore asked whether asbestos
induces apoptosis in mesothelial cells and, if
so, if this induction of apoptosis is mediated
by reactive oxygen species. For these studies,
we focused on crocidolite asbestos, the type
of fiber most associated with the mesothelial-
derived tumor mesothelioma (7). First,
apoptosis was identified by analysis of DNA
fragmentation. Apoptosis was then quanti-
fied by analysis of the loss of membrane
phospholipid asymmetry using annexin V
binding and by morphologic evaluation of
acridine orange-stained, condensed nuclei.
Finally, the role of reactive oxygen species
was evaluated by exposure of cells to asbestos
in the presence of antioxidant enzymes, in a
hypoxic environment, with chelation of iron
by deferoxamine, and with an inhibitor of
poly (ADP-ribosyl) polymerase.

Materials and Methods
Reagents

Crocidolite asbestos (National Institute of
Health and Safety, Research Triangle Park,
NC) and the control fiber wollastonite, a
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- relatively nonpathogenic calcium silicate
fiber (Nyglos I, NYCO Minerals, Willsboro,
NY), were used at comparable fiber counts.
The control particles riebeckite, a non-
fibrous particle of mineral content identi-
cal to crocidolite asbestos (B Mossman,
University of Vermont, Burlington VT),
and glass beads (mean diameter 1.6 +£0.3
pm) (Duke Scientific, Palo Alto, CA) were
used at comparable weight.

Catalase (bovine liver, thymol-free;
0.048 pg/U), superoxide dismutase ([SOD]
bovine erythrocytes; 0.24 pg/U), xanthine
oxidase, purine, 3-aminobenzamide (3-
ABA), 3-aminobenzoic acid (3-ABOA),
bovine serum albumin ([BSA] fraction V),
acridine orange, and propidium iodide were
obtained from Sigma Chemical (St. Louis,
MO). Hydrogen peroxide was from Fisher
Scientific (Pittsburgh, PA). Deferoxamine
mesylate USP (deferoxamine B) was
obtained from CIBA (Summit, NJ).
Actinomycin D (Act D) was obtained from
Merck (West Point, PA). Catalase and SOD
were freshly dissolved in phosphate-buffered
saline (PBS) for each experiment. Enzyme
activity was confirmed by the ability of
catalase to degrade hydrogen peroxide, as
measured in an assay of horseradish peroxi-
dase-dependent oxidation of phenol red
(18), and the ability of SOD to remove the
superoxide generated by the mixture of xan-
thine oxidase (0.2 U/ml) and purine (0.5
mM) and measured by the reduction of fer-
ricytochrome C (18). Catalase was inacti-
vated by boiling for 1 hr, and SOD by
boiling for 3 hr; inactivity was confirmed by
the above assays prior to use.

Cell Culture

Rabbit mesothelial cells were harvested as
previously described (19). Rabbit cells
were grown in standard media: iron-free
medium (RPMI) 1640/Dulbecco’s modi-
fied Eagle medium, HEPES (10 mM),
10% heat-inactivated fetal calf serum
(Hyclone Laboratories, Logan, UT), L-glut-
amine (2 mM), penicillin (100 U/ml), and
streptomycin (100 pg/ml), and studied
in experimental media (standard media
without fetal calf serum).

Asbestos Preparation

Fibers and control particles that had
been autoclaved and found to be free of
endotoxin by Limulus assay (Whittaker
Bioproducts, Walkersville, MD) were soni-
cated (60 W for 5 sec) (Branson 450 soni-
fier, Danbury, CT) in cell culture medium,
then added to cells at the desired surface
concentration. For experiments on the role
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of iron, crocidolite fibers were incubated
overnight with freshly prepared deferoxam-
ine (5 mM) in 50 mM NaCl (Chelex-100
treated, Bio-RAD, Hercules, CA) or in
Chelex-treated NaCl alone, washed in
Chelex-treated saline, and sonicated prior
to addition to cell monolayers. Experiments
using deferoxamine-treated fibers were per-
formed in RPMI, an iron-free medium,
and in the dark to minimize reduction
of iron (20).

General Experimental Procedure

Mesothelial cells were plated onto mouse
laminin-coated dishes (10 pg/ml) (Gibco,
Gaithersburg, MD) and allowed to adhere
overnight in standard media. One hour
prior to the experiment, the cells were
incubated in experimental media contain-
ing various blockers (e.g., catalase, SOD,
3-ABA) or their negative controls (e.g.,
inactive catalase, inactive SOD, 3-ABOA).
After the 1 hr incubation, fibers or other
particles were added directly to the media
for an additional incubation, usually 24 hr.
In all experiments unless otherwise stated,
after exposure to fibers, floating cells
were collected and combined with adher-
ent cells detached with trypsin (0.25%)
and EDTA (0.5 mM) before processing for
the following assays.

Analysis of DNA Fragmentation

DNA fragmentation into nucleosomal
bands was detected by agarose gel elec-
trophoresis with slight modifications
(21). After exposure to experimental
conditions, mesothelial cells were col-
lected, washed twice with ice-cold PBS,
and the pellet containing 1 to 4x10°6
cells was resuspended in 500 pl of lysis
buffer (Tris 500 mM, pH 9.0; EDTA 2
mM; NaCl 10 mM, sodium dodecyl sul-
fate 1% w/v; proteinase K 1 mg/ml
[Boehringer Mannheim, Indianapolis, IN])
and incubated at 48°C for 48 hr. DNA was
extracted with phenol/chloroform and
precipitated with ethanol. The centrifuged
pellets were air dried, dissolved in Tris
EDTA buffer (pH 8.0), and incubated
with bovine pancreatic RNase (5 pg/ml)
(Boehringer Mannheim) at room tempera-
ture for 1 to 2 hr. DNA (20-25 pg) was
loaded onto an agarose gel (1.5% w/v), elec-
trophoresed at 1.5 V/cm, stained with
ethidium bromide (0.5 pg/ml, Gibco) and
photographed under ultraviolet light.

Annexin V Staining

Entry into apoptosis is associated with
exposure of phosphatidylserine on the outer

leaflet of the plasma membrane (22), a
process that can be detected by the binding
of annexin V, a member of a family of
proteins that bind to acidic phospholipids
(23). For detection of exposed phos-
phatidylserine in subpopulations of cells,
cells were incubated with fluorescein isoth-
iocyanate (FITC)-labeled annexin V pre-
pared as described (24), and analyzed
using flow cytometry (25). After exposure
to fibers or particles, mesothelial cells were
collected and centrifuged (1500 rpm, 10
min). The cell pellet was washed and
resuspended in HEPES buffer (Hank’s, 15
mM HEPES, 2 mM CaCl,), stained with
FITC-labeled annexin V (3 pg/ml in
HEPES buffer) for 10 min on ice, and
washed. Propidium iodide (15 pg/ml,
Sigma) was added just prior to analysis
using a FACSort flow cytometer (Becton
Dickinson, San Jose, CA), with acquisi-
tion and data analysis performed using
CELLQuest Software (Becton Dickinson).
Ten thousand events per sample were
acquired to ensure adequate mean data.
The specificity of annexin V staining was
determined by a lack of binding in cal-
cium-free buffer, reversibility of binding
after addition of 5 mM EDTA, and lack of
binding in face of an excess of unlabeled
annexin V (40 pg/ml).

Morphological Analysis
of Apoptosis

For quantification of apoptosis by
morphologic criteria, cells were stained
with both acridine orange and propidium
iodide in a modification of a standard assay
(26). Apoptotic cells are characterized by a
highly condensed nucleus that stains
vividly with DNA dyes. In early apoptosis,
acridine orange enters the cell, but propid-
ium iodide is excluded and the nucleus is
stained green; in late apoptosis with loss of
membrane integrity, both dyes enter the
cell and the nucleus is stained orange-red.
After exposure to fibers for 24 hr, mesothe-
lial cells were collected, centrifuged, and
washed with PBS before staining with acri-
dine orange (10 pg/ml) and propidium
iodide (25 pg/ml) for 4 min. Cells were
then washed in PBS, fixed in glutaralde-
hyde (2.5% v/v; Sigma) for 30 min in the
dark, and pipetted on glass slides. Dual
stained cells were viewed using a fluores-
cence microscope equipped to detect each
probe separately, as described by Zimmerli
et al. (27). At least 200 cells in each of
duplicate wells were analyzed by an observer
blinded to the experimental condition, then
coded as either early apoptotic (bright green,
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ASBESTOS INDUCES APOPTOSIS OF PLEURAL MESOTHELIAL CELLS

highly condensed chromatin), late apoptotic
(bright orange, highly condensed chro-
matin), or necrotic cells (bright orange
nucleus without condensed chromatin)
(26). Data are expressed as the total
number of apoptotic cells (early + late) as a
percent of the total.

603 —

310 —

B Crocidolite, pg/cm?
0 1 3 5

10 ActD

Figure 1. Crocidolite asbestos, not control fibers or par-
ticles, induces oligonucleosomal DNA fragmentation in
mesothelial cells in a dose-dependent fashion. After
exposures of 24 hr, pleural mesothelial cells (free float-
ing and adherent) were harvested for isolation of DNA.
DNA was electrophoresed on a 1.5% agarose gel,
stained with ethidium bromide, and photographed under
ultraviolet light. (A) Rabbit mesothelial cells were
exposed to medium alone, crocidolite (3 pg/cm?), wollas-
tonite (6 pg/cm?), riebeckite (3 pg/cm?), or glass beads (3
pg/cm?). (B) Rabbit pleural mesothelial cells were
exposed to experimental medium alone, crocidolite
asbestos at increasing concentrations, or Act D (0.3 pM).
Molecular weight markers are indicated in base pairs.

Environmental Health Perspectives = Vol 105, Supplement 5 = September 1997

Analysis of Apoptosis

at Different Oxygen Tensions
Mesothelial cells grown in plastic Falcon
flasks (25cm?, phenolic cap; Corning,
Corning, NY) were exposed to asbestos
fibers in hypoxic or normoxic conditions.
The flasks were filled completely with exper-
imental media and bubbled either with
100% nitrogen (0% oxygen) to deplete oxy-
gen or with air (21% oxygen) as a control,
then placed in an airtight glass jar and
flushed for 10 min with either nitrogen or
air. After 24 hr, the mesothelial cells
exposed to asbestos were collected as above
and stained for apoptotic morphology. Over
24 hr, the average partial pressure of oxygen
of the normoxic media was 165+5 mm Hg
(21.6% oxygen), while that of the hypoxic
media was 61 mm Hg (8% oxygen). There
were no differences between the two groups
in average partial pressure of carbon dioxide
(21 +5 mm Hg) or pH (7.65 + 08).
Statistical Analysis

Data are expressed as mean + 1 SEM, unless
indicated. Statistical differences among
groups were determined by one-way analysis
of variance with Tukey’s test to discriminate

where the differences were (28). A p value
<0.05 represented a significant difference.

Results

Crocidolite asbestos, but not control
particles, induced oligonucleosomal DNA
fragmentation characteristic of apoptosis in
mesothelial cells at 24 hr (Figure 1A).
Oligonucleosomal DNA fragmentation was
seen in a dose-dependent fashion in response
to asbestos (Figure 1B). Act D caused exten-
sive apoptosis of rabbit pleural mesothelial
cells and was used as a positive control.

Crocidolite asbestos induced annexin V
binding to mesothelial cells that was evi-
dent by 6 hr after exposure. At 24 hr,
asbestos-exposed mesothelial cells under-
went significantly more early apoptosis
(annexin V, positive; propidium iodide,
negative) than cells not exposed to asbestos,
wollastonite, or riebeckite (Table 1). At 24
hr, of the cells exposed to asbestos, the per-
centage of cells with early apoptosis was sig-
nificantly greater than the percentage with
either necrosis or late apoptosis (propidium
iodide, positive; Table 1). When sorted,
counterstained with acridine orange, and
examined using fluorescent microscopy,
annexin V positive cells had condensed
nuclei characteristic of apoptosis.

Asbestos, but not control particles,
induced apoptotic morphology in a dose-
dependent fashion in rabbit pleural mesothe-
lial cells (Figure 2). Act D (0.3 pM) induced
rabbit mesothelial cells to undergo extensive
apoptosis (71.0+4.2% at 24 hr, n=9).
Hydrogen peroxide (3040 uM for 24 hr)
induced apoptosis (20.3 +2.4% of cells). At
higher concentrations cells died by necrosis.

Apoptosis induced by asbestos, but not
by Act D, was significantly inhibited by
incubation of cells with antioxidant enzymes.
When used alone, catalase (10,000 U/ml)
inhibited apoptosis by 59% (Figure 3)
(p<0.04). There was no effect either of
BSA at a comparable concentration (480
pg/ml) (Figure 3) or of inactive catalase
(data not shown). SOD alone had no
effect on apoptosis; however, when added
in the presence of catalase, SOD had an
additive inhibitory effect (Figure 3). When
inactive SOD was added in the presence of
catalase, there was no additional inhibition
of apoptosis (Figure 3).

Table 1. Percentage of early apoptosis versus late apoptosis/necrosis in asbestos-exposed pleural mesothelial

cells at 24 hr as determined by annexin V binding.

Early apoptosis Necrosisor late
(annexin V+, apoptosis (annexin V+,
Concentration, propidium iodide—), propidium iodide+),
pg/em? total gated cells, % total gated cells, %
Rabbit pleural cells
Crocidolite 25.0+6.0"* 18.0+4.3*
Waollastonite 10 57+09 53+12
Riebeckite 5 35+15 50+20
Glass beads 5 45£15 30£1.0
No asbestos - 31+05 48+1.1
Actinomycin D a 53.8+8.0%* 245+36*

0.3 M. Cells were exposed to fibers, particles, or actinomycin D for 24 hr before harvesting both free-floating and
adherent cells for labeling with FITC-labeled annexin V and propidium iodide. Labeled cells were analyzed by ﬂow
cytometry and gated to exclude signals with low forward scatter. *, different from control fibers and particles; *
different from control fibers and the propidium iodide positive group, p<0.03. Data represent mean + SE from
three experiments; 10,000 cells analyzed in each condition.
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Figure 2. Asbestos induces apoptosis of mesothelial
cells in a dose-dependent fashion. Rabbit mesothelial
cells were exposed to media containing asbestos fibers
including crocidolite or to experimental media, wollas-
tonite (Woll), riebeckite (Rieb), or glass beads (GB). Cells
were stained with acridine orange and propidium iodide
and examined using fluorescence microscopy for the per-
centage of cells with apoptotic nuclei. Data are means +
SE. *, different from apoptosis due either to wollastonite
or to no asbestos; **, different from apoptosis at lower
fiber concentrations. p=0.03, n=5 experiments; 200 cells
counted per condition in each experiment.

A hypoxic environment inhibited
crocidolite asbestos-induced apoptosis
(Figure 4). Incubation of crocidolite fibers
overnight with deferoxamine (5 mM) to
inactivate iron-catalyzed oxygen radical pro-
duction also significantly decreased asbestos-
induced apoptosis (saline-coated crocidolite
[5 pg/cm?), 13.8 +0.9% apoptosis; deferox-
amine-coated crocidolite, 5.3 £1.2%;
<0.01, n=3). This inhibition was observed
only in RPMI and was eliminated by addi-
tion of iron (FeCl; 5 mM) or by the use of
iron-containing media (data not shown). 3-
ABA, an inhibitor of a poly(ADP-ribosyl)
polymerase, significantly inhibited asbestos-
induced apoptosis compared to 3-ABOA, a
structural analogue with no blocking activity
(29) (Figure 5). 3-ABA did not inhibit Act
D-induced apoptosis.

Discussion

Asbestos has a myriad of effects in cultured
cells, including mesothelial cells, such as
induction of gene expression (30), pro-
duction of growth factors and cytokines
(19), inhibition of growth (16), induction
of damage to chromosomes (2,31) and
DNA (16), transformation (32), and necro-
sis (5). In this and in other recent reports

(33,34), apoptosis has been identified as a
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20
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B Crocidolite, 5 pug/cm?
B Crocidolite, 5 ug/cm? + Catalase, 5000 U/ml

T
L

Apoptosis, % of total cells

~ 480 600 1000 5000 10,000 0 100 400 600 600
No BSA, S0OD, Catalase, S0D, Inactive
asbestos pg/ml U/ml U/ml U/ml S0D, U/ml

Figure 3. Catalase and SOD (in the presence of catalase), but not SOD alone, inhibit crocidolite-induced apoptosis
in mesothelial cells. After rabbit pleural mesothelial cells were incubated for 1 hr with catalase, SOD alone, SOD
in the presence of catalase (5000 U/ml), or various controls, crocidolite asbestos (5 pg/cm?) was added for an addi-
tional 24 hr. Cells were harvested, stained with acridine orange and propidium, and examined for the percentage
of cells with apoptotic nuclei, using fluorescence microscopy. Data are means + SE. *, different from asbestos
alone or asbestos plus BSA. **, different from catalase (5000 U/ml) without SOD or with inactive SOD. p=0.03,
n=5 experiments; 200 cells counted per condition in each experiment. —, no antioxidant.

new and potentially important mechanism
by which pleural mesothelial cells respond
to asbestos. We suspect that apoptosis
may not have been recognized previously
because of its inapparent nature. Cells
dying by apoptosis become small, shrunken,
and, if in the early stage of apoptosis or if
phagocytosed by neighboring cells, never
release cellular contents such as lactate
dehydrogenase to the extracellular environ-
ment. By two different quantitative assays,
we found that apoptosis involved a large
percentage of cells (15-25% of cells
exposed to crocidolite 5 pg/cm?), which
exceeded the percentage of cells undergo-
ing necrosis. Apoptosis may be an impor-
tant response of mesothelial cells and one
that should be considered in future studies
of asbestos pathogenesis.

In these studies active oxygen species
played a key role in the induction of
asbestos-induced apoptosis of mesothelial
cells. The extracellular antioxidant enzymes,
catalase and SOD in the presence of cata-
lase, but not inactivated enzymes or BSA,
inhibited almost all asbestos-induced "apop-
tosis. Although it is possible that the cata-
lase may have penetrated intracellularly, as
was recently shown for vascular smooth
muscle cells (35), it is more likely that the
antioxidant enzymes functioned extracellu-
larly, perhaps adjacent to fibers that were

internalized while still enveloped in a cellular
membrane (6). In the moderately hypoxic
environment of 8% oxygen, asbestos-medi-
ated apoptosis was reduced by 60%. This
level of oxygen has been associated with
lower levels of reactive oxygen species (36)

and inhibits certain types of oxygen-depen-
dent apoptosis (37). The action of oxygen
species in mesothelial cell apoptosis was spe-
cific to asbestos because antioxidant enzymes
had no effect on apoptosis induced by Act D
(38). Deferoxamine coating, known to
decrease hydroxyl radical production from
asbestos (39), also decreased apoptosis signif-
icantly. Reactive oxygen species mediate tox-
icity from asbestos in many in vitro and in
vivo models (12,16,40), although their role
in injury to mesothelial cells is unclear
(13-15). In these studies, we identified a
novel and important biologic effect from
asbestos-dependent reactive oxygen species
on mesothelial cells.

Inhibition of poly(ADP-ribosyl) poly-
merase inhibited asbestos-induced apopto-
sis. This nuclear enzyme, which is activated
by DNA strand breaks and utilizes cellular
nicotinamide adenine dinucleotide (NAD)
in a possible repair function, has been
implicated as a central mediator of cellular
injury in response to oxidants (47). As a
sensor of DNA injury, it may function to
signal apoptosis in the face of extensive

Environmental Health Perspectives = Vol 105, Supplement 5 = September 1997



ASBESTOS INDUCES APOPTOSIS OF PLEURAL MESOTHELIAL CELLS

15
B Normoxia

[ Hypoxia

Apoptosis, % of total cells

Crocidolite, pg/cm?

Figure 4. Moderate hypoxia inhibits asbestos-induced
apoptosis in rabbit mesothelial cells. Mesothelial cells
were exposed to crocidolite asbestos (5 or 10 pg/cm?)
or media alone in the presence of normoxia (21% oxy-
gen) or hypoxia (8% oxygen). After 24 hr, cells were
stained using acridine orange and propidium iodide
and examined for the percentage of apoptotic cells
using fluorescence microscopy. Data are means + SE.
*, different from apoptosis in cells exposed to an
equivalent concentration of asbestos under normoxic
conditions. p=0.03, n=3 experiments; 200 cells
counted per condition in each experiment.

DNA damage, presumably by depleting
NAD (42). To inhibit poly(ADP-ribosyl)
polymerase, we used 3-ABA at low concen-
trations (1, 2.5 mM) reported to have mini-
mal effects on cell metabolism (43) and to
inhibit the enzyme specifically (44) and
which did not alter fiber uptake. 3-ABA,
but not a closely related structural analogue
3-ABOA, significantly reduced apoptosis
due to asbestos (29). The reduction of
apoptosis by inhibition of this enzyme sup-
ports a role for asbestos-induced DNA
damage in mediating apoptosis. Indeed,
asbestos induces DNA strand breaks as
early as 2 hr after exposure (45) and
induces unscheduled DNA synthesis within
24 hr (46). Asbestos also induces produc-
tion of poly(ADP-ribosyl) polymerase (46)

25

EEE Crocidolite, 5 ug/cm2

20

Apoptosis, % of total cells

5 5 -
No 3- 3-
asbestos ABA, ABOA,

mM mM

*
*
25 5 1 25 5
+3-ABA, mM +3-AB0A, mM

Figure 5. Inhibition of poly(ADP-ribosyl) polymerase by 3-ABA inhibits crocidolite-induced apoptosis of rabbit
pleural mesothelial cells. Mesothelial cells were incubated for 1 hr with either 3-ABA, an inhibitor of poly(ADP-
ribosyl) polymerase, or 3-ABOA, an inactive structural analogue, before addition of either crocidolite (5 pg/cm?) or
media for an additional 24 hr. Mesothelial cells, were harvested, stained with acridine orange and propidium
iodide, and examined for the the percentage of apoptotic cells using fluorescence microscopy. Data are means +
SE. *, different from cells exposed to crocidolite in the presence of 3-ABOA. p=0.03, n=3 experiments; 200 cells

counted per condition in each experiment.

and blocks the enzyme that has been
protective in some studies of asbestos-
induced injury (47-49). Thus, our results
implicate poly(ADP-ribosyl) polymerase as a
link between the DNA damage that results
from asbestos to asbestos-induced apoptosis.

In conclusion, we have shown that a
significant percentage of pleural mesothelial
cells undergo apoptosis after exposure to
asbestos, a clinically relevant stimulus. Our

studies identify reactive oxygen species and
the poly(ADP-ribosyl) polymerase enzyme
as important mediators of this response. We
speculate that apoptosis represents a mecha-
nism by which mesothelial cells possessing
DNA damaged by asbestos are deleted. If
so, escape from the normal apoptotic path-
way may be one important step in the mul-
tistep process leading to the development of
asbestos-induced neoplasia.
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