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Abstract

M-Theory and Heterotic String Theory on Special Holonomy Fibrations

by

Alex Kinsella

M-theory and the heterotic string are two dual ways to obtain low-energy effective

theories that may be engineered to reproduce the observed particles and forces of our

universe. To achieve four-dimensional effective theories, one must compactify a number of

extra spatial dimensions. In this dissertation, we study the particle spectra and dualities

of the E8×E8 heterotic string and M-theory compactified on special holonomy orbifolds

and local models built via torus fibrations.

After an introduction to string theory and special holonomy in Chapter 1, we inves-

tigate in Chapter 2 the way in which the heterotic gauge bundle mirrors effects from

the M-theory geometry. By fibering the duality between the E8 × E8 heterotic string

on T 3 and M-theory on K3, we study heterotic duals of M-theory compactified on G2

orbifolds of the form T 7/Z3
2. The heterotic backgrounds exhibit point-like instantons that

are localized on pairs of orbifold loci, similar to the “gauge-locking” phenomenon seen

in Hořava-Witten compactifications. While the instanton configuration looks strange

from the perspective of the E8 × E8 heterotic string, it may be understood as T-dual

Spin(32)/Z2 instantons along with winding shifts originating in a dual Type I compacti-

fication.

In Chapter 3, we consider local models on R3 resulting from a reduction of the het-

erotic string on Calabi-Yau manifolds admitting a Strominger–Yau–Zaslow fibration.

Upon reducing the system in the T 3-directions, the Hermitian Yang-Mills conditions

can be reinterpreted as a complex flat connection on R3 satisfying a certain co-closure

vii



condition. We give a number of abelian and non-abelian examples, and also compute the

back-reaction on the geometry through the α′-corrected heterotic Bianchi identity, which

includes an important correction to the equations for the complex flat connection. These

are new local solutions to the Hull-Strominger system on T 3 × R3. We also propose a

method for computing the spectrum of certain non-abelian models, in close analogy with

the Morse-Witten complex of the abelian models.
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Chapter 1

Introduction: String Theory and

M-Theory on Manifolds of Special

Holonomy

String theory is a grand project to describe all fundamental forces and matter via one

quantum theory whose fundamental constituents are extended objects. In the original

formulation of the theory, the extended objects were limited to one-dimensional strings,

but further development demonstrated that it is mathematically necessary to include

higher-dimensional objects as well. Although string theory began as a purely physical

theory, its modern incarnations are of comparable interest to mathematicians as they are

to physicists. In an expansive series of connections and implications, string theory has

linked disparate fields of mathematics and provided recipes for extending mathematical

understanding seemingly from thin air. This dissertation explores the ways in which

compactifications of M-theory and the heterotic string can illuminate the geometry and

gauge theory of special holonomy orbifolds and give rise to a 3D analog of the Hitchin

system. This introductory chapter is intended to be a survey of the physics background
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Introduction: String Theory and M-Theory on Manifolds of Special Holonomy Chapter 1

for these topics, including a brief overview of string/M-theory, its compactification on

spaces of special holonomy, and the relevant dualities that provide links throughout the

web of string/M backgrounds.

In completing the work described in this dissertation, I have relied on many resources.

Some textbooks and review papers that were particularly helpful for my work on com-

pactifications on special holonomy spaces were [1, 2, 3, 4, 5]. I found the information

compiled on the nLab 1 to be a helpful guide when navigating the literature. From a

more philosophical standpoint, I have found Greg Moore’s Strings 2014 talk and essay

on the path forward for the field of “physical mathematics” to be a central inspiration.

This introduction will include references to some key papers, but will not attempt to

be complete in citing the original literature. For a more comprehensive account of the

literature, see, for example, the bibliographic discussion in [1].

1.1 Strings, Branes, and M-Theory

Our familiar physical theories, such as electromagnetism and general relativity, de-

scribe physical objects and interactions via particles, whose worldlines extend in the time

dimension but in no spatial dimensions. The route to string theory is to consider in-

stead what a theory of spatially-extended objects would look like. We call these objects

p-branes, where p is the number of spatial dimensions that the object extends in. So, for

example, a particle is a 0-brane, and a string is a 1-brane. A basic tenet of string theory

is that the fundamental constituents of the universe are extended in multiple spatial di-

mensions, but at low energies we see only particles that arise from quantized degrees of

freedom of the extended objects.

Which types of p-branes should be included in string theories? All of them! The

1URL: https://ncatlab.org
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,���! R1,9

⌧

x

Figure 1.1: In the simplest string backgrounds, the perturbative string may be inter-
preted via an action principle for embeddings of a 2D string worldsheet into R1,9. The
worldsheet has a spatial coordinate x and a Euclidean time coordinate τ . Fluctuations
of the worldsheet fields give rise to particles in spacetime.

original perturbative string theories were formulated to include only 1-branes, but non-

perturbatively, the theory cannot have only strings. It is forced by various symmetries

and dualities to include branes of all other dimensions up to p = 9 as well. In general,

string theory tries to have every type of brane, but only those that are charged under a

(generalized) gauge symmetry are stable against decay. Which types of branes are stable

depends on which limit of string theory one examines, and this gives rise to different types

of low-energy effective theories. We will first briefly describe the perturbative string in

generality and then discuss the five consistent supersymmetric string theories as well as

M-theory.

3



Introduction: String Theory and M-Theory on Manifolds of Special Holonomy Chapter 1

1.1.1 String Theory

The original view of string theory is from the perturbative string, which is defined by

a 2D conformal field theory with a prescribed central charge [6]. The only dynamical

brane that appears in perturbation theory is the F1-brane, also known as the fundamental

string. The prototypical string background (around which we perturb) is where the

2D CFT is a non-linear sigma model that embeds the 2D string worldsheet into a d-

dimensional spacetime. Many requirements, including that the theory remain conformal

at the quantum level, restrict the spacetime dimension to d = 26 for a string with

only worldsheet bosons and d = 10 for a supersymmetric string. For the purposes of

calculation, the worldsheet is usually Wick rotated so that it is a Riemannian manifold.

Then calculations may be done using a path integral over maps from the string worldsheet

into spacetime (see Figure 1.1). The worldsheet configurations are weighted by the

Polyakov action, which measures the area of the string worldsheet. It does this in an

indirect way by introducing a worldsheet metric:

SPolyakov =
T

2

∫
d2σ
√
−hhabgµν(X)∂aX

µ(σ)∂bX
ν(σ) ,

where T is the string tension, hab is an auxiliary metric on the worldsheet, gµν is a

background metric on spacetime, and Xµ(σ) is the embedding field of the string in

spacetime. This action defines a conformal field theory on the worldsheet. We get

different CFTs for different choices of background metric gµν . We may also choose other

background fields Bµν and φ, where Bµν is the Kalb-Ramond 2-form and φ is the dilaton.

A perturbative string background may even be defined by a totally different CFT on the

worldsheet, as long as it has the correct central charge.

The reason that this formulation is called “perturbative” string theory is that a generic

4
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closed string scattering amplitude A takes the schematic form

A =
∑
g

λgAg ,

where g is the genus of the Riemann surface worldsheet configuration and λ is the string

coupling, which is related to the expectation value of the dilaton. This looks like a per-

turbation series, with λ the small parameter and g the number of loops, so we call this the

perturbative string. It is still unclear if this series approximates some “non-perturbative”

calculation of string scattering, because we do not yet have a fundamental description

of the theory from which to obtain such an exact expression. Much information can be

gathered from computing the string partition function for various choices of background

fields. The path integral sum over worldsheet topologies will include different contribu-

tions depending on if the string is open or closed, as well as oriented or non-oriented.

The worldsheet theory that we have described so far has two parameters: the string

coupling λ, which is dimensionless, and the string tension T which is dimensionful. Only

dimensionless quantities can really be thought of as parameters, and while the string

coupling is dimensionless, the string length is not. To obtain a dimensionless quantity,

one must compare the string length to an energy scale or a characteristic radius of a com-

pactification space. There are different effective descriptions of string theory depending

on where one lies in the parameter space. These effective descriptions are field theories

on the background spacetime.

What we have described of the perturbative string so far is a path integral over maps

from the worldvolume into spacetime, weighted by an action that integrates over the

string worldsheet. However, there is another way to look at string theory: the fields on

the 2D worldsheet give rise to effective 10D fields that at low energies reproduce 10D

supergravity. Both the worldsheet perspective and the spacetime perspective describe

5
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string theory in certain limits, but neither is able to describe the entire theory. In

particular, the worldsheet theory is in principle more fundamental because the string

coupling can be large, but only the spacetime theory can include certain semiclassical

effects, such as background configurations of higher-dimensional branes.

There are five consistent superstring theories in 10D (see Figure 1.2), which we may

distinguish by their numbers of supersymmetries, gauge groups, whether they have open

strings, and what types of branes are present [7]. One type of dynamical object in string

theories is the D-brane, which has multiple interpretations. Originally it was formulated

as a type of topological defect on which open strings may end, but later work also

identified it as the fundamental object charged under the RR-fields of the Type II strings

[8]. In the Type IIA string, the low-energy excitations include RR-forms of odd degree,

which couple to D-branes of even spatial dimension, and vice-versa for the Type IIB

string. The five limits of string theory are:

1. Type IIA: N = 2 supersymmetry in 10D, no gauge group, contains the closed

F1-string, NS5-brane, and D-branes of even spatial dimension (D0,D2,D4,D6,D8).

2. Type IIB: N = 2 supersymmetry in 10D, no gauge group, contains the closed

F1-string, NS5-brane, and D-branes of odd spatial dimension (D1,D3,D5,D7).

3. E8 × E8 Heterotic: N = 1 supersymmetry in 10D, gauge group (E8 × E8) o Z2,

contains the closed F1-string, NS5-brane, and no D-branes.

4. Spin(32)/Z2 Heterotic: N = 1 supersymmetry in 10D, gauge group Spin(32)/Z2,

contains the closed F1-string, NS5-brane, and no D-branes.

5. Type I: N = 1 supersymmetry in 10D, gauge group Spin(32)/Z2, contains the open

F1-string and D-branes of odd spatial dimension (D1,D3,D5,D7,D9).

6
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String/M-Theory

Low-energy 
M-theory

Type IIA

Type IIB

Type IHeterotic

Heterotic

E8 ⇥ E8

Spin(32)/Z2

Figure 1.2: A schematic of the space of vacua of string/M-theory. In the interior
of the space, the mathematical form of the theory is unknown, but there are six
boundary regions in which we have good control: the low-energy limits of the five
supersymmetric string theories and M-theory.

These theories are connected by a web of dualities in various dimensions, as further

outlined in Section 1.3 below.

1.1.2 M-Theory

The phrase “M-theory” is used in two ways. On the one hand, it can refer to the

space of string and brane theories as a whole, including the five stringy low-energy limits.

(This space of theories is also sometimes referred to as just “string theory”. In this usage,

the phrases are interchangeable.) On the other hand, it may be used to denote the strong

coupling limit of the Type IIA string, in which the low energy effective theory appears

7
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11-dimensional. In this work, we use the latter meaning of the phrase.

In the strong-coupling limit of the Type IIA string, D0-brane states arrange into the

Kaluza-Klein modes required for an eleventh dimension [9]. The bosons of the N = 1

supergravity multiplet in 11D are only the metric g and a 3-form field C that is called

the C-field. The branes that are charged under the C-field are the M2- and M5-branes,

so these are the stable extended objects of the low-energy theory. In the string case, the

10D effective theory is found as the target space into which the 2D string worldsheet

is embedded by a nonlinear sigma model. One may expect that M-theory would be

interpreted as a sigma model of the 3D M2-brane worldvolume into 11D spacetime,

but this interpretation quickly runs into problems, as the quantum theory is not well-

defined. One issue is that the worldvolume can grow long, narrow spikes that do not

cost energy, and attempting to quantize these fluctuations gives an infinite number of

massless particles. For a thorough explanation of this quantization problem, as well as

others, see [10, 11, 12, 13]. The issues with the 3D sigma model approach are subtle,

as they depend strongly on whether one is considering the bosonic or supersymmetric

version of the brane as well as whether the theory is the classical or quantum. Although

this type of interpretation has not yet been successful, it may still be a viable path toward

a fundamental description of M-theory.

The C-field plays a role in M-theory analogous to the B-field in string theories, but its

description is more subtle [14]. The gauge equivalence class (analogous to the holonomies

of a gauge field around all closed loops) of the C-field is a shifted differential character,

a higher-form generalization of the electromagnetism case. Within an equivalence class,

the field configuration itself is described in terms of a pair (c, A) of a 3-form field and an

E8 gauge field. The gauge transformations of the field involve both the 3-form and the

gauge field. The gauge field is particularly relevant to manifolds with boundary and plays

a crucial role in duality with the heterotic string in the half-K3 limit, as will be discussed

8
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in Chapter 2. The future of fundamental descriptions of M-theory rests on a better

understanding of the nature of the C-field and its charged objects, the M2-brane and

M5-brane. The worldvolume theories of these branes are complicated, especially when

there are multiple branes stacked atop one another. The theory of multiple M2-branes

on an orbifold singularity has been written down in terms of higher algebras [15, 16, 17],

but the theory of multiple M5-branes is conjectured to be non-Lagrangian.

1.2 Compactification and Low-Energy Effective The-

ories

To achieve a description of the observed four-dimensional universe, string theories

must be compactified on an internal space2. This means that we consider a string back-

ground of the form

X9,1 = R3,1 × Y 6 ,

where X9,1 is the full 10D spacetime, R3,1 is the uncompactified “visible” 4D spacetime,

and Y 6 is a 6-dimensional compact “internal” space. (Similarly, compactification of

M-theory involves a 7-dimensional space Y 7.) We then consider perturbative and non-

perturbative (to the extent possible) effects about this background configuration. In the

cases considered in this dissertation, the metric on X will be a product of the metrics

on the individual factors on the right hand side (when it is not a product metric, we say

that the compactification is warped).

The compactifications for which we have the best tools are those that retain super-

symmetry at the compactification scale. For a background to achieve this, it must satisfy

equations obtained from variations of the fermion fields. Assuming no background flux,

2The simplest compactification spaces are manifolds, but we use the general term ‘space’ to refer also
to orbifolds or even spaces that admit more severe singularities.

9
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the variation of the 10D or 11D gravitino field, δψ = 0, implies the condition ∇ε = 0 for a

spinor field ε. This condition says that the parallel transport of ε around any contractible

loop by the Levi-Civita connection is trivial. In other words, ε is a parallel spinor field.

The condition that a metric admits a parallel spinor is quite restrictive, and in particular

implies that our manifold has special holonomy, meaning that the holonomy group of

the metric connection is a proper subgroup of SO(N), where N is the dimension of the

manifold.

1.2.1 Spaces of Special Holonomy

For our purposes, the most important spaces of special holonomy will be those in

real dimensions 4, 6, and 7, corresponding to K3 surfaces, Calabi-Yau threefolds, and

G2 spaces, respectively. The relevant subgroup inclusions are SU(2) < SO(4), SU(3) <

SO(6), and G2 < SO(7). In these cases, the condition of special holonomy may also be

phrased in terms of parallel form fields supported on the spaces. For the Calabi-Yau

cases, the relevant form fields are the Kähler 2-form ωK and the holomorphic 3-form Ω,

which may be thought of as a complexified version of a volume form. One may always

choose local coordinates zi = xi+iyi, with i = 1, 2, 3 so that these fields take the canonical

forms

ωK = dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3

Ω = dz1 ∧ dz2 ∧ dz3 .

Certain form fields allow one to distinguish a class of submanifolds that are said to be

calibrated : those for which the special holonomy form fields compute the volume. Back-

ground configurations of branes extend along on submanifolds of the compact geometry

(when the submanifold itself is compact, we say the brane is “wrapped”). The configu-

10



Introduction: String Theory and M-Theory on Manifolds of Special Holonomy Chapter 1

rations of most interest are those in which the worldvolume theory itself preserves some

amount of supersymmetry. We then say that the branes are wrapped on “supersymmet-

ric cycles”, and mathematically these cycles correspond to the calibrated submanifolds

[18, 19, 20].

In Calabi-Yau threefolds, the cycles calibrated by powers of the Kähler form ωK

are the complex submanifolds. Another calibration is given by Re Ω, the real part of the

holomorphic volume form, and its calibrated submanifolds are called special Lagrangians.

As the name suggests, a special Lagrangian submanifold L is Lagrangian, i.e. ωK
∣∣
L
, and

it also has vanishing imaginary part of the holomorphic volume form: Im Ω
∣∣
L
= 0.

Special Lagrangian submanifolds are particularly relevant to mirror symmetry and M-

theory/heterotic duality, as will be discussed in Section 1.3.

To obtain an effective theory with N = 1 SUSY in 4D from M-theory, one must

compactify on a 7D space of G2 holonomy. When this space is smooth, we call it a

G2 manifold. One way to characterize these spaces is in terms of a 3-form ω called the

G2 form, which, with an appropriate choice of coordinates x1, ..., x7, may be expressed

locally in the canonical form

ω = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ dx4 ∧ dx5 + dx1 ∧ dx6 ∧ dx7 + dx2 ∧ dx4 ∧ dx6−

− dx2 ∧ dx5 ∧ dx7 − dx3 ∧ dx4 ∧ dx7 − dx3 ∧ dx5 ∧ dx6 .

Physically, this form complexifies the C-field and together they determine the action for

membrane instantons.

There are two types of calibrated submanifolds for G2 manifolds (and similarly for

G2 spaces with singularities). The associative submanifolds are those that are calibrated

by ω, while coassociative submanifolds are those that are calibrated by ?gω, where ?g is

the Hodge star with respect to the G2 holonomy metric g. The G2 manifolds of primary

11
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interest in this dissertation are those with a coassociative fibration, meaning that they

admit a projection π : X → B, where X is the G2 manifold, B is a 3-manifold base, and

the generic fiber is a coassociative submanifold. These are the spaces that participate in

a fiberwise M-theory/heterotic duality described further in Section 1.3.2 and Chapter 2.

There are two primary known types of constructions for G2 manifolds. The first

method, due to Joyce [21, 22], constructs flat orbifolds T 7/Γ of G2 holonomy, inspired

by K3 orbifolds such as T 4/Z2 (see next subsection for more about orbifolds). These

spaces are desingularized by a gluing method, creating manifolds with holonomy G2. The

other construction method is by twisted-connected sums, where two building blocks are

glued together after twisting their asymptotic boundaries so that the correct holonomy

is obtained [23, 24].

1.2.2 Orbifolds

While much is known about manifolds of special holonomy, the metrics on these spaces

have not been written down in closed form, making calculation of metric-dependent

quantities difficult. An exception to this difficulty is at special points in moduli space

where the metric is flat almost everywhere. In these cases, the curvature is confined at

singular loci. The types of singular spaces that are best-understood are called orbifolds,

where each patch is homeomorphic to Rn/Γ, where Γ is a finite group. At fixed points

of the action of Γ, the space has a singularity. The collection of orbifold singularities

may be comprised of isolated points, or it may include higher-dimensional loci; in our

examples, the orbifold loci will often have the topology of a torus.

The orbifolds that play a role in this work are those of the form T n/Γ, where T n is an

n-torus and Γ is a product of cyclic groups. We may further specialize to ADE singular-

ities, which are those singularities that come from a finite subgroup of SU(2) acting on

12
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an R4 patch. Through the McKay correspondence, these subgroups are classified by the

simply laced Dynkin diagrams, which are those of type A, D, and E. We will primarily

be interested in A1 singularities, which are those locally of the form R4/Z2, where the

action of the generator reflects all four coordinates. For example, T 4/Z2 has 16 isolated

A1 singularities and is an orbifold limit of K3 that is the prototypical special holonomy

orbifold. We will also be interested in orbifold limits of Calabi-Yau threefolds of the form

T 6/Z2
2 and G2 orbifolds of the form T 7/Z3

2. These spaces have 2- and 3-dimensional loci

of A1 singularities, respectively.

Theories made of only particles are not well-defined on orbifold geometries because

the metric singularities create infinities in the predictions of the theory. String theories,

however, do make sense on orbifolds because the theory contains extra twisted sectors

that serve to smooth the singularity in the effective theory. In fact, orbifolds provide

some of the simplest and most useful string backgrounds, because they give rise to semi-

realistic spectra while having metrics that are flat away from the singularities.

Each of the five supersymmetric string theories has its own characteristics when com-

pactified on an orbifold. In the case of the Type IIA string (as well as M-theory),

orbifold singularities are spontaneously wrapped by zero-size D2-branes (M2-branes in

the strong-coupling limit) that look like vector particles from the perspective of the low-

energy theory. The resulting gauge symmetry is that corresponding to the ADE Dynkin

diagram that represents the orbifold singularity [25]. When the Type I string is placed

on an orbifold, a tadpole cancellation condition gives rise to D-brane states that provide

extra gauge symmetry as well [26, 27]. Meanwhile, in the heterotic string, compactifi-

cations on an orbifold may be calculated algorithmically using shifts in the lattices that

define the theory. The spectrum of the heterotic string on a K3 orbifold was first de-

scribed in [28]. The heterotic string can exhibit exotic behavior on an orbifold when the

background gauge bundle configuration contains instantons that shrink to zero size and
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sit on the orbifold loci [29]. See Chapter 2 for much more about point-like instantons.

A more general notion of orbifolds allows one to quotient by actions that are not

purely geometric in spacetime. One important example is the orientifold, where one

quotients by the Z2 symmetry ΩP , the parity operator on the 2D string worldsheet. The

simplest example of this construction is to quotient a Type IIB string background by

ΩP to obtain a Type I string background; this is one way to define the Type I string.

Compactifications of the Type I string on orbifolds mentioned above and discussed in

Chapter 2 may be alternatively thought of as Type IIB orientifolds. The action of

parity reversal removes the B-field from the spectrum, allowing for strings to break,

and thus creating the fundamental open string in the Type I limit. Fixed points of the

orientation reversal action create orientifold planes, or O-planes. These objects are non-

dynamical, but they carry a charge under RR-forms, and tadpole cancellation requires

that background D-branes must be included as well to cancel the charge. This allows for

rich model-building with the Type I string.

1.2.3 Torus-Invariant Compactifications

One strategy for obtaining tractable low-energy effective theories is to assume a geo-

metric invariance in the background. This is not possible for compact manifolds of special

holonomy, which do not admit continuous isometries, but we may avoid this problem by

looking at related non-compact models. The idea is to “zoom in” on a patch of the

compact space and assume that the manifold locally admits a continuous isometry that

cannot be extended to the whole space. From this procedure, we obtain the local model

of a patch that hopefully can be stitched together with local models for other patches

into a full theory of the compact space.

The type of local model of interest in this work is one that comes from looking at

14
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the heterotic string on a local Calabi-Yau threefold. Specifically, we assume that the

portion has the topology R3 × T 3 and the background fields are invariant along the T 3-

directions, giving an effective low-energy theory on R3. The form for the local geometry is

motivated by the Strominger–Yau–Zaslow (SYZ) conjecture, which says that any Calabi-

Yau threefold that participates in mirror symmetry has a fibration where the generic

fiber is topologically T 3 and the base is topologically S3 (see Figure 1.3) [30]. Then, our

local model comes from “zooming in” to an R3 patch of the S3 base over which all fibers

are non-singular.

Following the heterotic equations, called the Hull-Strominger system, through this

procedure gives rise to a system of three equations on the R3 base that comprises a

flatness condition for a complexified field strength and a stability condition. This 3D

system of equations is analogous to the 2D Hitchin system, which arises from a similar

reduction on the 2D fibers of an elliptic fibration. In chapter 3 of this dissertation, we

will discuss the resulting system of 3D PDEs in detail and obtain a new non-abelian

solution.

1.3 String/M Dualities

By compactifying the various string theories and M-theory on spaces of special holon-

omy, one may describe the same low-energy effective theory from many different perspec-

tives. Many of these dualities may be revealed and studied via matching of moduli spaces,

i.e. the parameter space of vacua of the theory. The phrase ‘moduli space’ comes from

geometry, where a geometric object may have auxiliary structures equipped, such as a

metric or a complex structure, and there may be a continuous or discrete space of pa-

rameters, or moduli, that capture these choices. This moduli space itself is a geometric

object, and carries its own natural metric. An example of a geometric moduli space is
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T 3/Z2

Y 6

S3 Base

T 3 Fiber

Figure 1.3: A Calabi–Yau threefold Y 6 with a Strominger–Yau–Zaslow (SYZ) fibra-
tion. The generic fiber is a special Lagrangian T 3, while the base is topologically
S3. There is a singular locus (red) in the base over which the fibers degenerate to,
for example, an orbifold limit of T 3. It is conjectured that all Calabi–Yau threefolds
participating in mirror symmetry possess such a fibration.
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the moduli space of T 2 thought of as a complex curve.

In string and M-theory, the low-energy incarnations of the theories dictate specific

auxiliary structures that must be equipped on geometric objects to enhance their moduli

spaces to get their stringy incarnations. For example, the low-energy heterotic string re-

quires a choice of background vector bundle with structure group E8×E8 or Spin(32)/Z2,

while the low-energy Type II strings require choices of background higher-form fields of

varying degrees. By finding correspondences between these stringy moduli spaces, we

may identify dualities between string theories compactified on various spaces.

Dualities between theories compactified on low-dimensional manifolds may be lever-

aged to more complex situations by fibering the duality, where the theories are com-

pactified on spaces that admit a fibration where the generic fiber is the low-dimensional

manifold for which the duality is established. This strategy is best justified in the adia-

batic limit, where the geometry of the base is slowly-varying compared to that of the fiber,

so that local models are good approximations to the physics. See [31] for a discussion of

criteria for the validity of fibered dualities.

1.3.1 Type II T-Duality and Mirror Symmetry

One of the basic string dualities is Type II T-duality, where torus compactifications

of the Type IIA and IIB string give identical low-energy physics when the geometry and

background fields are related by a transformation that includes inverting the radii of some

directions of the compactification space. In this work, we will restrict ourselves to cases

where the geometry is a torus orbifold or admits a torus fibration, has a flat background

metric (away from orbifold singularities), and has vanishing B-field background. In these

cases, the geometric transformation on the affected coordinate is R → α′/R, and the

momenta and winding numbers of states in the transformed directions are interchanged.
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Figure 1.4: A collection of some string/M/F-theory dualities. These relations are
useful because they allow one to directly transfer questions between different facets of
string theory without needing to pass through the unknown interior of the space of
vacua.
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When T-duality is applied to an odd number of dimensions, it relates the Type IIA string

to the Type IIB string, but when it is applied to an even number of dimensions, it relates

either string to itself. The T-duality transformation also affects background D-branes by

interchanging Neumann and Dirichlet boundary conditions.

Another famous string duality, called mirror symmetry, has been conjectured to be

equivalent to T-duality [30]. Mirror symmetry relates the Type IIA string on Calabi-Yau

threefold X to the Type IIB string on its mirror Calabi-Yau threefold X̃, where the Hodge

diamond of X̃ is that of X reflected along a diagonal (as if in a mirror). Strominger, Yau,

and Zaslow conjectured that any Calabi-Yau threefold that admits a mirror manifold also

admits a fibration by special Lagrangian tori, and that mirror symmetry is accomplished

by applying T-duality along these T 3 fibers. In Chapters 2 and 3, we will be interested

in Calabi-Yau threefolds that admit an SYZ fibration, but we will consider the heterotic

string on such spaces instead of the Type II strings.

1.3.2 M/Type IIA/Heterotic Duality

A fundamental duality for our work in Chapter 2 is that between the Type IIA string

(or, in the correct limit, M-theory) and the E8×E8 heterotic string. Because the Type II

strings have twice as much supersymmetry in 10D as do the heterotic strings, a duality

requires the heterotic theory to be compactified on a space with twice as many parallel

spinors as the IIA space. In terms of 4D supersymmetry, there are three amounts of

symmetry often discussed:

• 4D N = 4 supersymmetry requires that the IIA string is compactified on K3× T 2

while the heterotic string is compactified on T 6.

• 4D N = 2 supersymmetry is achieved between Type IIA on a Calabi-Yau threefold

and heterotic on K3× T 2.
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• 4D N = 1 supersymmetry from Type IIA compactified on a Calabi-Yau orientifold

and heterotic compactified on a Calabi-Yau threefold.

For excellent reviews on 6D IIA/heterotic duality on special holonomy spaces, see [4, 5].

The above dualities also extend to the M-theory limit, and in the N = 1 case, one has

a duality between M-theory on a G2 manifold and heterotic on a Calabi-Yau threefold.

This is the central duality we will explore in Chapter 2.

1.3.3 Heterotic-M Theory

Another duality between the heterotic string and M-theory goes by the name of

Horava-Witten theory or heterotic-M theory3 [34, 35]. (Note that this is distinct from

the duality between M-theory on K3 and heterotic on T 3 from the previous subsection.)

In heterotic-M theory, the strong coupling limit of the E8×E8 heterotic string on a space

X is dual to M-theory on the space X × S1/Z2, with the heterotic string coupling dual

to the length of the interval S1/Z2. Anomaly cancellation shows that each 10D end of

the M-theory interval must carry an E8 gauge theory, so that the heterotic string may

be thought of as living on these hyperplanes, and the heterotic weak-coupling limit is

achieved when the interval shrinks to zero size and the planes overlap.

1.3.4 Type I/Heterotic Duality

An additional duality that we will make use of in chapter 2 is that between the Type

I string and the Spin(32)/Z2 heterotic string [36]. This is a type of S-duality, meaning

that weak string coupling on one side is related to strong string couping on the other side.

The two theories share the gauge group Spin(32)/Z2, and their low-energy supergravities

are related by a simple transformation. To test the duality beyond supergravity, one may

3See [32, 33] for reviews of model building using compactifications of this type.
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compare the branes in the two theories. The D1-brane of the Type I theory becomes

the fundamental heterotic string under the duality, as the two share the same expression

for tension. Similarly, the Type I D5-brane becomes the heterotic NS5-brane. There is

no heterotic counterpart of the Type I fundamental string, however, because Type I is

missing the B-field that would stabilize this type of brane. Thus, they are not stable at

strong Type I coupling. We will be interested in this duality in particular when the two

sides are compactified on special holonomy orbifolds.

1.3.5 Heterotic T-Duality

A final duality that we make use of in chapter 2 is heterotic T-duality. This duality

relates the two heterotic theories when compactified upon T n for n ≥ 1. The moduli

space in this case is based upon a lattice of signature (16 + n, n), and takes the form

Mhet
n = (O(16 + n,R)×O(n,R)) \O(16 + n, n;R)/O(16 + n, n;Z)

where the notation indicates quotients by both the subgroups on the left and on the

right [37, 38]. The existence of heterotic T-duality leads to the conclusion that the

two heterotic theories are distinct only in 10D; when compactified to 9D or below, any

heterotic vacuum could be described by a compactification that starts with either gauge

group in 10D. In our cases this result is particularly significant because it means that the

same heterotic point-like instantons may be describable from either heterotic perspective

when the two theories are T-dual.
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Chapter 2

Non-Perturbative Heterotic Duals of

M-Theory on G2 Orbifolds

2.1 Introduction and Summary

One of the well-known dualities in string theory relates M-theory compactified on a

K3 surface to the E8 × E8 heterotic string compactified on a three-torus [40, 9]. It was

proposed long ago that this 7D M/heterotic duality could be applied fiberwise over an S3

base to obtain a 4D duality as well [41, 42, 43]. In this case, M-theory is compactified on a

G2 manifold equipped with a coassociative K3 fibration, while the E8×E8 heterotic string

is compactified on a Calabi–Yau threefold equipped with a supersymmetric three-torus

fibration (also known as an SYZ fibration [30]).

One way to exhibit the 7D M/heterotic duality is to take the large heterotic volume

limit, which corresponds to the “half-K3” limit on the M-theory side [44]. There is a

limiting family of K3 metrics in which a long throat of the form T 3×I develops, where I is

an interval, and the complicated geometry is confined to the two ends. Each complicated

end is known as a half-K3 surface and carries a metric known as an ALH instanton [45].
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These half-K3 surfaces each determine an E8 bundle on T 3, together giving a heterotic

string gauge background [46].

One can then attempt to find a similar fiberwise picture for a G2 space X with a

coassociative K3 fibration. Under favorable conditions, there will be a family of metrics

in which a long throat of the form Y × I develops, where Y is the SYZ-fibered Calabi–

Yau threefold appearing as the heterotic dual. We call this the “half-G2” limit, and in

this chapter we will discuss aspects of M/heterotic duality in this limit that go beyond

the perturbative picture of the half-K3 limit. Our goal is to work towards a dictionary

between G2 spaces and the heterotic gauge bundle. We approach this task by trying to

answer this question in the simple case of a Joyce orbifold: how is the geometry of the

ambient G2 space reflected by the heterotic bundle, which lives only on a suborbifold?

For the simple examples studied in this chapter the topological data on the G2 side is

captured by the configuration of the orbifold singular loci and their intersections with

codimension-1 suborbifolds. This data is spread throughout the throat interval in the

half-G2 limit, as opposed to the situation of the half-K3 limit, where the singularities are

confined to the ends of the interval. On the heterotic side, this data is represented by

point-like instantons on orbifold singularities. We find point-like instanton configurations

that looks somewhat exotic from the E8 × E8 perspective, but can be understood as T-

dual Spin(32)/Z2 point-like instantons on an orbifold with a winding shift.

In general, M/heterotic duality shares many properties with heterotic/F-theory du-

ality, and in some cases the two are directly related via a duality chain. This duality

was used in [47] to study M-theory on twisted-connected sum G2 spaces that support

fibrations by K3 surfaces that are themselves elliptically fibered. Beyond the twisted-

connected sum examples, a generic compactification of M-theory on a K3-fibered G2

space is not expected to have an F-theory dual, and must be studied in terms of differen-

tial geometry instead of complex geometry. In this work we explore M/heterotic duality
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without the tools of elliptic fibrations on the M-theory side. One useful perspective in

this case is duality with the Type I string, where tadpole cancellation conditions give

additional computational tools.

It has long been recognized that M-theory needs to be compactified on spaces with

singularities in order to produce interesting gauge groups and matter content in the ef-

fective theory [48, 42]. Joyce’s work [21, 22] is celebrated for demonstrating the existence

of nonsingular compact manifolds with holonomy G2, but ironically, the singular T 7/Γ

orbifolds from which Joyce started are more relevant to the physics than their nonsin-

gular cousins. Those orbifolds have flat metrics and a natural G2 structure encoded in

an invariant three-form, which is the limit of the smooth G2 structures when the re-

solved singularities are blown back down. In this chapter we will study those orbifolds

themselves. The resulting effective theories preserve N = 1 supersymmetry and have

ADE gauge groups, but the lack of codimension 7 singularities implies that there is no

chiral matter, so that these particular Joyce orbifolds cannot produce phenomenologi-

cally realistic effective theories in this limit. However, these orbifolds produce a simple

laboratory within which to deduce properties of duality that are expected to persist for

more realistic examples.

In many of Joyce’s orbifolds, there is a fibration by flat Kummer surfaces of the form

T 4/Z2. It is precisely in such an orbifold limit that Ricci-flat metrics on K3 surfaces are

easy to construct, because in that limit those metrics are flat. The corresponding fibration

is by coassociative cycles of T 7/Γ, with Γ a finite group, and again the coassociative

condition is trivial to check because we are working with flat metrics1. The geometry of

Kummer fibrations of G2 orbifolds was analyzed in detail by Liu [49], whose work forms

part of the foundation upon which we develop heterotic duals.

1It is an open question whether on Joyce’s resolution of singularities, there are smooth K3 surfaces
which resolve the singularities of the Kummer surfaces in such a way as to form a coassociative fibration.
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To find the half-G2 limit, we identify a particular S1 ⊂ T 7 on which Γ acts as a

reflection, so that there is a fibration T 6/H → T 7/Γ → S1/Z2 with H a subgroup of Γ

and the ends of the interval S1/Z2 the location of the complicated geometry. In all of

the examples we consider, the Calabi–Yau threefold Y is also an orbifold T 6/H, and in

our N = 1 supersymmetric cases, it is an orbifold of a special type known as a Borcea–

Voisin orbifold2 [51, 52]. In fact, our N = 1 examples all live on the same Borcea–Voisin

orbifold, which is the blow-down limit of the Schoen manifold, in agreement with the

results of [47].

Identification of the heterotic dual requires specifying a background gauge bundle with

connection on the heterotic Calabi–Yau Y , which is T 6/H or its resolution. Ideally, we

would have an algorithmic procedure to determine this bundle from the M-theory data,

in analogy to the case of heterotic/F-theory duality [53], but this is made difficult by the

fact that the T 3 fibers of Y are not complex submanifolds, so we have instead identified

the dual bundle by indirect means. One useful tool is the matching of massless spectra

on the two sides. In particular, we may split the heterotic spectrum into a perturbative

part and a non-perturbative part, where the former may be seen from a CFT analysis,

while the latter comprises the effects that are non-perturbative in the (heterotic) string

coupling. These two parts of the dual heterotic spectrum are distinguished on the M-

theory side by whether individual components of the singular locus of the G2 orbifold

are transverse to the generic fiber of the K3 fibration or not, in the spirit of [54]. The

split refines our analysis of the dual pair, as we must ensure that the heterotic particles

have the correct perturbative/non-perturbative origin.

The perturbative spectrum may be obtained by breaking of primordial gauge sym-

metry by the monodromy of instanton connections sitting on the orbifold singularities.

2One of the advantages of this observation is that Gross and Wilson analyzed SYZ fibrations on
Borcea–Voisin orbifolds and on their resolutions [50].
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We expect the non-perturbative part of the heterotic spectrum to come from these in-

stantons in the singular point-like limit. Such gauge configurations are consistent with

heterotic anomaly cancellation conditions and are the best-understood sources of non-

perturbative gauge symmetry in heterotic E8 ×E8 compactifications. The massless par-

ticle contributions of point-like instantons are partially understood in simple examples,

but distinguishing between different cases can be subtle [55], and there is no complete

classification. Some of the point-like instantons that we identify in dual heterotic back-

grounds are supported on pairs of orbifold loci and do not look familiar from previous

studies of point-like instantons on orbifold singularities. This may be an analog of the

gauge locking phenomenon seen in Hořava–Witten compactifications [56, 57, 58] or a

freezing of heterotic moduli by a gauge bundle configuration [59]. In the non-singular

limit, candidate local descriptions for this type of instanton may be given by Z2-quotients

of instantons on R4 or a caloron on R3 × S1 [60, 61]. The behavior of the point-like in-

stantons is more clear from a T-dual Spin(32)/Z2 perspective [62], where the background

is acted upon by a winding shift.

This chapter is organized as follows. Section 2.2 gives an overview of the fundamental

M/heterotic duality in 7D and its fibration over a 3D base. Section 2.3 discusses M-theory

on G2 orbifolds and analyzes three examples of K3-fibered G2 orbifolds that will form the

heart of the chapter. In Section 2.4, we examine the dual heterotic geometry, a Borcea–

Voisin orbifold, that is dictated by the duality in the half-G2 limit. In Section 2.5, we

survey non-perturbative aspects of the heterotic gauge bundle, and in particular point-

like instantons on orbifold singularities. This prepares us to analyze the gauge bundles

of our dual heterotic examples in Section 2.6. In Section 2.7, we investigate the nature of

the heterotic gauge bundle via an alternative duality chain relating our M-theory setup

to Type I compactifications on orbifolds with winding shifts. Finally, in Section 2.8, we

interpret our results in terms of Hořava–Witten duals, gauge locking, and frozen moduli
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and discuss future directions.

2.2 Heterotic/M-Theory Duality

2.2.1 Duality in 7D

To obtain dual low energy effective theories in 4D, we will make use of the duality

between the 7D theories arising from the E8 × E8 heterotic string on T 3 and M-theory

on the compact 4-manifold known as a K3 surface [9]. Evidence for this duality comes

in part from the fact that these two compactifications share the same moduli space:3

M7D = [SO(3, 19;Z)\SO(3, 19;R)/SO(3;R)× SO(19;R)]× R+ .

On the M-theory side, the first factor is interpreted as the moduli space of volume-1

Einstein metrics on K3, while the R+ factor is the volume. On the heterotic side, the

first factor is instead interpreted as the Narain moduli space of heterotic compactifications

on T 3, while the R+ is the string coupling. By comparing the effective actions on each

side of the duality, one finds the relation between the R+ factors

e3γ = λ ,

where e3γ is the volume of the K3 surface and λ is the heterotic string coupling.

There are special points in the moduli space where non-abelian gauge symmetry

appears in the 7D theory. From the heterotic side, these points are those at which the

holonomy of the flat E8×E8 connection over the T 3 is non-generic. The unbroken gauge

symmetry in the effective theory is given by the centralizer of the reduced structure

3There are some subtleties concerning the discrete group action which we suppress here.
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T 4/Z2

T 3

T 3/Z2

T 3/Z2

Figure 2.1: The half-K3 limit of T 4/Z2. The space degenerates into a long throat with
cross section T 3, while the 16 orbifold points, which correspond to the complicated
geometry of the resolved space, recede to either end of the throat. If we put M-theory
on this space, then the dual heterotic theory lives on the central T 3 and has gauge
bundle determined by the distant singularities.

group of the gauge bundle with connection. In the case of a flat connection, this is the

centralizer of the holonomy group, which is generated by three commuting elements of

E8×E8
4. For a generic choice of these three elements, the gauge symmetry is reduced to

the maximal torus U(1)16, but non-generic holonomies give instead ADE gauge groups.

From the view of M-theory, the special points in the moduli space are orbifold limits

of K3 that contain ADE singularities [9]. That these singularities give rise to effective

non-abelian gauge symmetry can be seen by blowing up an A1 singularity to give an

exceptional P1: this cycle is dual to a harmonic 2-form, which gives an effective U(1)

gauge field upon Kaluza-Klein reduction of the C-field. Wrapping two M2-branes of

opposite orientation on the cycle give effective vector particles charged under the U(1).

As the P1 shrinks to zero volume, the charged particles become massless and complete

the su(2) Lie algebra. A similar argument extends to general ADE singularities.

4In this work, we only consider the identity-connected component of the space of flat connections.
See [63] for discussion of the other components.
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2.2.2 The Half-K3 and Weak Coupling Limits

The heterotic string on T 3 has two primary dimensionless parameters: the dimen-

sionless compactification volume volT 3

α′3/2
and the string coupling λ. Where possible, we

will work in the corner of the 7D parameter space where the compactification volume is

large and the string coupling is small. The large volume limit is essential to current in-

vestigations into M/heterotic duality because it is where we can differentiate the moduli

corresponding to the heterotic geometry and the gauge bundle, so that we may apply a

geometric version of the duality [44, 47]. The weak coupling limit allows us to understand

the heterotic physics via perturbation theory combined with instanton effects.

Both of these limits have a geometric realization on the M-theory side. Large heterotic

volume corresponds to what is called the “half-K3 limit” (see Figure 2.1): the K3 grows

a long throat where the geometry is slowly varying and approximately T 3 × (−r, r) for

some r ∈ R, so that all of the complicated geometry recedes to ±r [44]. In this limit,

the 7D duality is realized by splitting the K3 surface in half, cutting transverse to the

throat. This gives us two 4-manifolds with T 3 boundary - these are “half-K3 surfaces”.

Such a surface may be realized as a rational elliptic surface with a generic divisor (an

elliptic curve) removed. The dual heterotic theory is compactified on the T 3 boundary

shared by the half-K3 surfaces. The geometry of these surfaces contains the data for the

E8×E8 heterotic gauge bundle on T 3. Specifically, the moduli of a half-K3 together with

an embedded T 3 is the same as the moduli of an E8 bundle on T 3. This half-K3 limit

is analogous to the stable degeneration limit of 8D F-theory/heterotic duality, where

large volume of the heterotic T 2 is dual to a limit in which the F-theory K3 geometry

degenerates into the union of two rational elliptic surfaces meeting along the heterotic

T 2 [64].

The other parameter is the heterotic string coupling, which corresponds to K3 volume
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on the M-theory side, with weak heterotic coupling corresponding to zero volume for the

K3 surface. Going to this limit takes us out of the regime where 11D supergravity is a

reliable approximation to M-theory, but because we are considering highly supersymmet-

ric compactifications, the duality results are expected to persist when we add M2-brane

effects. Again, there is an analogous limit in 8D F/het duality: in that case, the heterotic

coupling is dual to the area of a section of the elliptic fibration, which may be interpreted

as the area of the base of the fibration [64].

2.2.3 Duality in 4D

By fibering the 7D M/heterotic duality adiabatically over an S3 base, we should be

able to obtain dual pairs that give the same 4D effective theory. From the M-theory

side, for this theory to have N = 1 SUSY, the total space of the K3 fibration must

have holonomy G2. Additionally, we want to look at effective theories with non-abelian

gauge symmetry, so that our space will be a G2 orbifold. In the large heterotic volume

limit, the heterotic geometry is determined to be a suborbifold of the G2 orbifold, and

SUSY then requires that it is an SYZ fibration of a Calabi–Yau orbifold (i.e. a special

Lagrangian T 3 fibration of such a space over an S3 base) [41]. The topology of G2 and

Calabi–Yau orbifolds requires that our fibrations have singular fibers (by which we mean

fibers with multiple components in their resolution) where the adiabatic assumption will

break down5. Such fibrations of G2 manifolds were considered in an adiabatic limit in

[65].

The large-volume limits on the heterotic side of the duality requires all geometric radii

to be large compared to the relevant dimensionful parameter, which sets up a hierarchy

of scales: we require that the T 3 fibers are large compared to (α′)3/2, but small compared

5Because of this violation of the adiabatic assumption, it is not guaranteed that the duality results
will persist in 4D. In the notation of [31], our case is of type 2(b), where duality often persists despite
the presence of singular fibers.
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to the volume of the base6. On the M-theory side, the K3 fibers on the G2 side are also

required to be small compared to the volume of the base.

For our 4D duality, we will apply the half-K3 and weak coupling limits fiberwise.

This means that we will work in a corner of the G2 moduli space where each K3 fiber,

including the singular fibers, grows a long throat and simultaneously shrinks to small

volume. This fiberwise half-K3 limit translates to a “half-G2” limit, where our G2 space

grows a long throat with a Calabi–Yau threefold fiber that degenerates at the ends. The

duality in this limit identifies the generic Calabi–Yau fiber as the heterotic geometry.

By introducing a fibration, we also introduce additional possibilities for configurations of

singularities in our half-G2 compared to our half-K3. We will restrict ourselves to orbifold

(i.e. codimension four) singularities, which live along a three-dimensional locus. These

loci may be confined to the endpoints of the throat interval, in which case we will have a

similar picture to the half-K3 limit, but they also may stretch across the throat interval

and intersect the generic Calabi–Yau fiber. In the latter case, the singularities are higher

codimension in the two boundary fibers and give rise to non-perturbative effects from

the perspective of the heterotic compactification.

2.2.4 F-Theory Duals

A useful tool in analyzing the heterotic string and M-theory has been duality with

F-theory, so this could be a candidate to use in a search for an algorithmic construction of

heterotic duals to given M-theory backgrounds, as was done in [47]. However, in our case,

where we are looking at isolated points of enhanced gauge symmetry in moduli space, the

fiberwise nature of the data and the complex structures required by the dualities prevent

a straightforward implementation of this method.

6In our torus-orbifold setup, volumes are to be interpreted as products of radii in the torus covering
space.
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To see the limitation, consider an M-theory background on a K3-fibered G2 manifold.

If we apply the 7D M/heterotic duality, we obtain bundle and flat connection data on

the T 3 fibers of the heterotic geometry Y , i.e. the duality gives the restrictions E
∣∣
A

of the heterotic gauge bundle E to each T 3 fiber A ⊂ Y . This by itself is not enough

information to reconstruct E—we have the vertical data but not the horizontal data. In

the case of an elliptic fibration, where the vertical data is given by a spectral cover, the

horizontal data is provided by a line bundle over that spectral cover [53].

In the case of M/heterotic duality, the T 3-fibration of Y is a special Lagrangian

fibration, which requires a choice of complex structure where the holomorphic coordinates

are made by pairing real coordinates on the base and on the fiber. This means that there

is no elliptic curve contained in the T 3 fibers, and therefore we do not have bundle data

on any elliptic fibration of Y . Thus an F-theory dual of the heterotic model cannot be

used to infer the missing bundle data—the F-theory dual can be constructed only after

we are able to determine the bundle by other means.

The complex structure change that would be required for an application of an F-theory

dual may be thought of in N = 2 language as a movement in the hypermultiplet moduli

space. In the case of a generic heterotic gauge bundle, where one would be moving from

one generic point of the moduli space to another, an F-theory dual may give the correct

answer (although even this generic situation may be complicated by the presence of

domain walls in the moduli space). However, our situation deals with non-generic bundles

with point-like instantons on orbifold singularities, and a shift in the hypermultiplet

moduli space is likely to change the matter spectrum, especially because the bundle

moduli of fractional-holonomy point-like instantons are coupled to the geometric moduli

of the singular spaces on which they reside [29].
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2.3 M-Theory on Joyce Orbifolds

Now we will describe the M-theory backgrounds for which we would like to find

candidate heterotic duals. For the purposes of this work, we will think of low-energy

M-theory as 11D supergravity supplemented by 7D spectra from M2 branes, as in [66].

Then, an M-theory compactification is specified by a choice of background metric, C-

field, and 7D gauge field. Here we will consider G2 orbifolds X of the form T 7/Γ, where

Γ is a finite group, and we will assume vanishing C-field and gauge field backgrounds7.

The non-abelian factors in the gauge group of the low-energy effective theory may be

read off from the locus S of orbifold singularities in X, which comes from the fixed points

of elements of Γ. Each connected component of the orbifold locus of codimension four

gives rise to gauge symmetry in the effective theory according to the ADE classification

of the singularity [9]. In the examples we consider, each component of the singular locus

is topologically T 3 or T 3/Z2. Counting these components on the M-theory side gives the

non-abelian gauge symmetry of the low energy theory. The gauge group will have an

additional abelian factor U(1)b
2
Γ(X) from the Kaluza-Klein reduction of the M-theory C-

field, where b2
Γ(X) counts the number of Γ-invariant harmonic 2-forms on T 7. Isometries

of the metric give an additional low-energy abelian gauge symmetry of dimension b1
Γ(X).

In our N = 1 supersymmetric cases, we have b1
Γ(X) = 0 and b2

Γ(X) = 0, so that the 4D

low-energy gauge group has no abelian factor.

In addition to gauge bosons, the massless spectrum of M-theory on X includes chiral

multiplets that may or may not be charged under the gauge symmetry. The number of

uncharged chiral multiplets is determined by b3
Γ(X), the number of Γ-invariant harmonic

3-forms on X. The charged matter, meanwhile, is determined by the geometry of the

7While background C-field flux on a smooth G2 manifold necessarily breaks supersymmetry [67], some
G2 orbifolds can support background C-field fluxes and gauge fields at the singular loci that together
preserve supersymmetry [68]. It would be interesting to investigate heterotic duals of these cases.
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orbifold loci: each codimension four locus component L contributes b1(L) chiral multiplets

valued in the adjoint of the gauge group factor corresponding to L [48]. Intersections of

the orbifold loci give rise to more complicated matter representations, but the examples

considered in this chapter have non-intersecting loci, so will be limited to adjoint matter.

All of the matter in our examples lies in real representations of the gauge group, so the

spectra are non-chiral.

Because gauge symmetry and charged matter in the low-energy theory is specified by

the orbifold singularities of X, it is independent of a choice of K3 fibration. However,

to compare this spectrum to that of a dual heterotic string, we must choose a particular

K3 fibration π : X → Q and relate the gauge theory of the 4D effective theory to that of

the 7D effective theories on the fibers. For example, the SU(2)16 gauge symmetry on a

generic T 4/Z2 fiber will be reduced to a subgroup in the 4D theory because the relevant

components of the orbifold locus intersect the generic fiber at multiple points, so that

these singularities appear to be distinct from the perspective of the theory on the fiber,

but not from the perspective of X. In other words, the monodromy action of Γ on the

singularities of the fiber reduces the gauge group to a subgroup in 4D.

2.3.1 Examples

Now we will discuss details of three M-theory backgrounds that will serve as our

examples for which we will identify candidate heterotic duals in the half-G2 limit. Our

G2 orbifolds are of the form T 7/Z3
2, where Z3

2 is generated by elements α, β, and γ. All

three examples have the same actions for α and β on T 7, but differ in the action of γ.
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The first two generators act as

α : (x1, ..., x7) 7→ (−x1,−x2,−x3,−x4, x5, x6, x7)

β : (x1, ..., x7) 7→ (−x1,
1
2
− x2, x3, x4,−x5,−x6, x7) ,

where each xi ∼ xi + 1 is a coordinate on a circle. Each of these elements fixes 16 T 3’s

in T 7, while exchanging the fixed tori of the other element in pairs. The element αβ acts

freely on T 7. Quotienting T 7 by the action of Γ1 = 〈α, β〉 gives the G2 orbifold

X1 = T 7/Γ1
∼=
(
T 6

123456/ 〈α, β〉
)
× S1

7 ,

where subscripts on tori denote their coordinates. At this stage, the orbifold does not

have full holonomy G2, and will preserve N = 2 SUSY in 4D, as discussed in the first

example below.

The 6-orbifold factor in X1 is an orbifold limit of a Borcea–Voisin Calabi–Yau three-

fold with Hodge numbers (19, 19) known as the Schoen manifold8. We will discuss this

orbifold further in Section 2.4, where it serves as the heterotic geometry in our N = 1

examples.

For our M-theory backgrounds, we will quotient the space X1 further by an action of

γ. In our first example, the action of γ is trivial and N = 2 SUSY is preserved in 4D,

while the remaining examples have nontrivial γ and preserve N = 1 SUSY in 4D.

Example 3.1: N = 2 SUSY

First, we will consider the case where the action of γ is trivial, so that we are com-

pactifying M-theory on the orbifold X1 = T 7/Γ1 above. Ultimately, we are interested in

8This orbifold may also be referred to as DW(0-2) [69, 70]
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Example
Number

γ Action Low-Energy
Gauge Symmetry

Massless Charged Matter
(N = 1 Language)

3.1 Trivial SU(2)16 × U(1)4 3 adjoint chirals per
SU(2)

3.2 Includes shift on x3 SU(2)12 3 adjoint chirals per
SU(2)

3.3 No shift on x3 SU(2)8 × SU(2)8 3 adjoint chirals for 8
SU(2) factors and 1

adjoint chiral for other 8
SU(2) factors

Table 2.1: Summary of spectra of M-Theory backgrounds

N = 1 SUSY in 4D, where the orbifolds have full holonomy G2, but non-perturbative

features of the half-G2 limit appear in this simpler situation as well, so it will serve as

our first example.

The space X1 has 16 T 3’s of A1 singularities, with 8 coming from α and 8 coming from

β. Its orbifold Betti numbers, by which we mean the counts of independent Γ1-invariant

harmonic forms, are b1
Γ1

= 1, b2
Γ1

= 3, and b3
Γ1

= 11. Thus, the gauge symmetry of the

4D theory is expected to be SU(2)16×U(1)4. The massless matter spectrum is 3 adjoint

chirals of each SU(2) plus 11 neutral chiral multiplets, where the count of adjoint chirals

comes from b1(T 3) = 3.

There are two immediate coassociative fibrations by Kummer orbifolds:

• The α-fibration π567 : T 7/Γ1 → T 3
567/ 〈β〉 with generic fiber T 4

1234/ 〈α〉

• The β-fibration π347 : T 7/Γ1 → T 3
347/ 〈α〉 with generic fiber T 4

1256/ 〈β〉

Given a choice of the F -fibration, where F is one of α or β, let Q1,F be the 3-orbifold

base of the fibration. In this case, both Q1,α and Q1,β are orbifold-equivalent to S1 × P ,

where P is the pillow 2-orbifold obtained as the quotient of T 2 by a reflection in both

coordinates. Topologically, this base is S2 × S1, and it has four non-linking circles of

singularities.
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S3

Q2,↵ Q2,� ' Q2,�

S3

Figure 2.2: The base 3-orbifolds for the α, β, and γ fibrations of the G2 orbifold X2.
In all cases, the base orbifold is of the form T 3/Z2

2, and is homeomorphic to a 3-sphere.
There is a 1-dimensional locus of singularities that in the case of the α-fibration is
the 1-skeleton of a cube, and in the β- and γ-fibrations is a doubled Hopf link. These
orbifolds serve as the bases for the fibrations of X3 as well, with Q3,α ' Q3,β ' Q2α

and Q3,γ ' Q2,β ' Q2,γ . The dual heterotic geometries are T 3 fibrations over the
same bases.

Each of these fibrations will determine a dual heterotic model. In either case, we want

to take the base orbifold to be large compared to both the fiber and the scale set by the

gravitational coupling κ, meaning in particular that the S1
7 factor is large. We are thus

in the limit of a strongly-coupled IIA model on T 6
123456/Γ1. By moving in the geometric

moduli space to small S1
7 , and thus small IIA coupling, one may apply additional tools of

IIA/het duality, but it is possible that the adiabatic assumption is violated in this limit.

See Section 2.7 for more discussion of Type IIA duals.

Example 3.2: The Simplest Joyce Orbifold

Next, let us move on to examples that preserve N = 1 SUSY in 4D. First, we will

consider the Joyce orbifold defined by the third generator

γ2 : (x1, ..., x7) 7→ (1
2
− x1, x2,

1
2
− x3, x4,−x5, x6,−x7) .
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This orbifold was first considered in [21] and studied further in [49]. Let Γ2
∼= 〈α, β, γ2〉

and X2 = T 7/Γ2. In this case, the actions of α, β, and γ2 are symmetric: γ2 fixes 16

T 3’s in T 7, just as α and β do, and it acts freely on the fixed loci of the other elements,

as they do on the 16 T 3’s fixed by γ2. Altogether, we find 12 T 3 of A1 singularities (4

from each of α, β, and γ2). The orbifold Betti numbers in this case are b1
Γ2

= 0, b2
Γ2

= 0,

and b3
Γ2

= 7. Thus in the low energy theory we expect SU(2)12 gauge symmetry with 3

adjoint chirals for each SU(2) and 7 neutral chiral multiplets.

In addition to the two coassociative Kummer fibrations inherited from X1, the orbifold

X2 has an additional fibration coming from the action of γ2. These three fibrations are:

• The α-fibration π567 : T 7/Γ2 → T 3
567/ 〈β, γ2〉 with generic fiber T 4

1234/ 〈α〉

• The β-fibration π347 : T 7/Γ2 → T 3
347/ 〈α, γ2〉 with generic fiber T 4

1256/ 〈β〉

• The γ2-fibration π246 : T 7/Γ2 → T 3
246/ 〈α, β〉 with generic fiber T 4

1357/ 〈γ2〉

Given a choice of the F -fibration, where F is one of α, β, or γ2, we let H2,F
∼= Z2

2 be

the group generated by the two generators of Γ2 other than F , and we let Q2,F be the

3-orbifold base of the fibration, which is topologically S3 in all cases. In each case, H2,F

will act trivially on one of the 7 coordinates - this is the coordinate that should be chosen

as the throat direction in the half-G2 limit.

Now, let us examine the α-fibration of X2, following example 3.1 of [49]. We will

discuss this first example of a N = 1 fibration in detail and be more brief in subsequent

examples. The action of H2,α on T 3
567 has the fixed point loci

Fix(π567 ◦ β) =
{
x5 ∈

{
0, 1

2

}
, x6 ∈

{
0, 1

2

}}
Fix(π567 ◦ γ2) =

{
x5 ∈

{
0, 1

2

}
, x7 ∈

{
0, 1

2

}}
Fix(π567 ◦ βγ2) =

{
x6 ∈

{
0, 1

2

}
, x7 ∈

{
0, 1

2

}}
,
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which are each 4 disjoint circles. We have

# [Fix(π567 ◦ β) ∩ Fix(π567 ◦ γ2) ∩ Fix(π567 ◦ βγ2)] = 8 ,

and these 8 points of intersection are the only elements in the intersection of any two of

these loci. Because any intersection of the loci involves three circles, and these circles

become line intervals S1/Z2 under the H2,α quotient, the elements in the intersection

correspond to trivalent vertices in the graph of fixed points on the base; the graph is the

1-skeleton of a cube (see Figure 2.2). Denote the base orbifold T567/H2,α by Q2,α and its

orbifold locus by ΣQ2,α .

Let us examine how the singular locus of X lies with respect to the α-fibration. The

four components that come from fixed T 3 of α become 4 disjoint multi-sections of π567,

so that they provide the 16 A1 singularities in each Kummer fiber. The remainder of the

singular locus lies over ΣQ2,α . The components coming from fixed T 3 of β project under

π567 to the edges of ΣQ2,α parallel to the x7 axis, while the components from γ2 project

onto edges parallel to the x6 axis.

The singular fibers (by which we mean fibers that have multiple components in their

resolution) of the α-fibration are those that lie above above ΣQ2,α . The fibers that project

to an edge of Σ2,Qα are acted upon by one element of H2,α and have multiplicity 2. The

fibers lying above a corner of ΣQ2,α are acted upon by all of H2,α and have multiplicity

4. Note that H2,α acts trivially on x4, so that this should be our choice of K3 throat

coordinate in this case.

If we consider instead the β-fibration, we find similar results but with a different base
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orbifold Qβ. In this case, the relevant fixed point loci are

Fix(π347 ◦ α) =
{
x3 ∈

{
0, 1

2

}
, x4 ∈

{
0, 1

2

}}
Fix(π347 ◦ γ) =

{
x5 ∈

{
1
4
, 3

4

}
, x7 ∈

{
0, 1

2

}}
Fix(π347 ◦ αγ) = ∅ .

This gives us the orbifold locus ΣQ2,β
that is four disjoint circles forming a doubled Hopf

link. See example 3.2 of [49] for details. In contrast to the cube locus of the α-fibration,

the locus Σβ has no vertices, so that the singular fibers are of multiplicity 2 only. This

makes the monodromy analysis somewhat simpler in the heterotic dual theory. Finally,

the γ2-fibration gives results identical to the β-fibration up to change of coordinates.

Example 3.3: Orbifold Singular Loci

Our second N = 1 background is similar to the previous example, except for a shift

in the action of γ. This time we define the third group generator

γ3 : (x1, ..., x7) 7→ (1
2
− x1, x2,−x3, x4,−x5, x6,−x7) ,

which is identical to γ2 except for the lack of shift on x3. The orbifold defined by this

choice of third generator was studied in [22] and used for M-theory compactification in

[41]. The element γ3 still fixes 16 T 3’s in T 7, but now 〈α, β〉 does not act freely on these

16 T 3’s, and instead orbifolds them to 8 T 3/Z2’s. The action of αβ kills two of the

harmonic 1-forms on T 3, so that b1
〈αβ〉 (T

3
246/ 〈αβ〉) = 1. This modifies the spectrum of

massless charged matter.

As before, define Γ3 = 〈α, β, γ3〉 and X3 = T 7/Γ3. The Betti numbers of X3 are

identical to those of X2, since the shifts on the coordinates do not affect the harmonic
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forms. The singular loci of X3 are 8 T 3 and 8 T 3/Z2 of A1 singularities. Thus, we

expect low-energy gauge symmetry SU(2)16, with 3 adjoint chiral multiplets each for 8 of

these SU(2) factors and 1 adjoint chiral multiplet each for the remaining SU(2) factors.

Additionally, there will be 7 neutral chiral multiplets, as in example 3.2.

The coassociative Kummer fibrations are defined in the same way for this example

as for example 3.2. The difference is that the base of the β-fibration has changed. The

singular loci ΣQ3,α and ΣQ3,β
are the 1-skeleton of a cube, as was ΣQ2,α , while the singular

locus ΣQ3,γ3
is the doubled Hopf link, as was ΣQ2,γ2

.

2.4 The Dual Heterotic Geometry

Given a G2 orbifold X = T 7/Γ with a choice of K3 fibration, we want to identify

the dual Calabi–Yau orbifold Y on which to compactify the heterotic string. To obtain

Y , we replace the K3 fibers of X by dual T 3 fibers with metric determined by the K3

data. Because we want large heterotic volume, we work in the half-G2 limit on the M-

theory side, where the heterotic geometry is given by the generic fiber transverse to the

throat direction. The complex structure on the heterotic orbifold may be determined by

demanding that the orbifold group act holomorphically on T 6, and this gives a complex

structure compatible with the SYZ condition, which requires that the T 3 fibers are special

Lagrangian. Different choices of K3 fibration on the M-theory side give rise to different

heterotic geometries, but they are biholomorphic; all of our N = 1 examples give orbifold

limits of the Schoen manifold [49], similar to the results of [47] for twisted-connected

sums. However, the T 3 fibrations of these biholomorphic spaces are inequivalent, and

in particular have bases with topologically distinct singular loci, as we saw for the K3

fibrations of the G2 orbifolds in Section 2.3.

As the heterotic geometry is a fiber of the G2 orbifold, it intersects the singular loci
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of the ambient space. In particular, in our examples, each T 3 singular locus of the G2

orbifold intersects the heterotic geometry either trivially or in two disconnected T 2. (A

helpful lower-dimensional picture is to imagine T 2 as a S1-fibration over an interval that

is branched at the two endpoints.) Thus when we have only T 3 singular loci in the G2

orbifold, the number of components of the heterotic singular locus is twice the number

of components of the M-theory singular locus that lie parallel to the throat coordinate.

The T 3/Z2 loci, on the other hand, intersect the heterotic geometry either trivially or in

only one T 2, so there is no doubling of loci. The singular loci in the heterotic geometry

are expected to give rise to non-perturbative gauge symmetry when they carry point-like

instantons, as we will discuss in detail in the following sections.

In the remainder of this section, we will describe the heterotic geometries dual to the

examples 3.1, 3.2, and 3.3 that we introduced in the previous section.

Example 4.1: N = 2 SUSY

In the N = 2 case of example 3.1, the α- and β-fibrations are equivalent up to a

change of coordinates, so we may study the dual geometry from either perspective. For

definiteness, we will choose the α-fibration. Both x3 and x4 fit our criteria for the throat

coordinate and give biholomorphic results, so we choose x4 as the throat coordinate, as

this is the option that will survive the further γ-action of theN = 1 examples. This means

that we stretch the x4 direction and look at our G2 space as a fibration π4 : X1 → S1/ 〈α〉

over the resulting long interval S1/ 〈α〉 ∼=
[
0, 1

2

]
. The fiber above a point away from the

ends of the interval is our dual geometry Y1,α = T 6
123567/ 〈β〉. (Note that the action of α

only descends to the fibers at x4 = 0, 1
2
. Away from these points, it serves only to switch

the 6-orbifold fiber with an identical “far away” fiber.)

The space Y1,α is constructed as a fibration π567 : Y1,α → Q1,α over the same base

3-orbifold Q1,α as on the M-theory side, but with the generic Kummer fiber T 4
1234/ 〈α〉
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replaced by a flat 3-torus T 3
123 and with holonomies around the singular fibers determined

by those on the M-theory side. The Betti numbers of our space are found to be

b1
〈β〉 (Y1,α) = 2, b2

〈β〉 (Y1,α) = 7, b3
〈β〉 (Y1,α) = 12 .

The complex structure of Y1,α is constrained by the SYZ condition and the holomorphy

of the action of β, but, unlike in the N = 1 cases below, this information is not enough to

fully determine the complex structure—there is an S2 of complex structures compatible

with these conditions.

For another perspective on this space, we may rewrite it as T 6
123567/ 〈β〉 ∼= (T 4

1256/ 〈β〉)×

T 2
37, so we have a trivial fibration of Kummer orbifolds T 4/Z2 over T 2. From this perspec-

tive, we see that the space has 16 T 2’s of A1 singularities, corresponding to T 2tT 2 cross

sections of the 8 T 3 singular loci of the M-theory geometry that come from β. When

projected to the base, the singular T 2’s project to the singular S1’s of Q1,α in groups of

four.

Example 4.2: Duals to Fibrations of X2

Next, we will examine the dual geometries to fibrations of X2, studied in example 3.2

above. We will begin with the α-fibration, which is similar to our previous example, but

with an additional Z2 action by γ2 (see Figure 2.3). Because γ2 acts nontrivially on x3,

the only coordinate of T 7 that can act as the throat coordinate of the half-G2 limit is

x4, so the relevant fibration for this limit is π4 : X2 → S1
4/ 〈α〉, where S1

4 is taken to be

large. The fiber above a point away from the ends of the interval is our dual geometry

Y2,α = T 6
123567/H2,α, where, as in example 3.2, H2,α = 〈β, γ2〉. The T 3 fibration dual to

the α-fibration of X is π567 : Y2,α → Q2,α, with generic fiber T 3
123. Then π567 is an SYZ
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x4 = 0

x4 = 1/2

x4 = 1/4

Y2,↵

L�

L�2

X2

Figure 2.3: A schematic view of the half-G2 limit of the G2 orbifold X2 from example
3.2 with the α-fibration. We have stretched X2 along the direction of x4, the throat
coordinate. The heterotic dual geometry Y2,α is the inverse image π−1

4

(
1
4

)
, and is

shown with its SYZ fibration of T 3 fibers (black lines) over the 3-orbifold base Q2,α

(blue disk). Some of the black lines are singular fibers that do not create singularities
in the total space; the singularities in the total space are displayed by red lines.
The α-fixed loci (vertical red lines) are confined to the ends of the x4 interval, while
the β-fixed loci Lβ and γ2-fixed loci Lγ2 stretch across the interval. These T 3 loci
that stretch across the interval intersect Y2,α in a 2-component locus T 2 t T 2. The
monodromy action of α on the singular T 2 of Y2,α fixed by β is to travel around a
loop in x4 that begins at x4 = 1

4 , passes through x4 = 0 or x4 = 1
2 , and returns to

x4 = 1
4 along the other leg of Lβ, so that the singular T 2’s are swapped in pairs.
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fibration of the Borcea–Voisin Calabi–Yau orbifold Y2,α.

The Betti numbers of this example are

b1
H2,α

(Y2,α) = 0, b2
H2,α

(Y2,α) = 3, b3
H2,α

(Y2,α) = 8 ,

and these will be the same for our remaining N = 1 heterotic geometries, which are all

homeomorphic.

To see that Yα is a Borcea–Voisin orbifold, we note that β acts nontrivially only on

the 1256 coordinates, and T 4
1256/ 〈β〉 is a Kummer surface. Furthermore, γ2 acts as (−1)

on the holomorphic 2-form dz1∧dz2 of the Kummer surface, and if we shift the coordinate

on the remaining torus T37 to be w3 = z3 − i
4
, then γ2 acts as w3 7→ −w3, as required.

Because we want an SYZ fibration by the T 3
123 fibers, the complex structure must pair

fiber and base coordinates. Additionally, we demand that H2,α acts holomorphically, and

this leaves a unique choice of complex structure:

z1 = ix1 + x5

z2 = ix2 + x6

z3 = ix3 + x7

so that our projection map π567 : T 6
123567 → T 3

567 is


z1

z2

z3

 7→ Re


z1

z2

z3


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and our group H2,α acts as

β : (z1, z2, z3) 7→
(
−z1,

i

2
− z2, z3

)
γ : (z1, z2, z3) 7→

(
i

2
− z1, z2,

i

2
− z3

)
βγ : (z1, z2, z3) 7→

(
z1 −

i

2
,
i

2
− z2,

i

2
− z3

)
.

Furthermore, if we restrict α to the heterotic geometry, we find the involution

α
∣∣
Y2,α

: (z1, z2, z3) 7→ (z1, z2, z3) ,

so in the 7D space, α acts as a complex conjugation map between Y2,α and a distant

fiber.

The singularities in our threefold are the fixed point loci

Fix(β) =
{
x1 ∈

{
0, 1

2

}
, x2 ∈

{
1
4
, 3

4

}
, x5 ∈

{
0, 1

2

}
, x6 ∈

{
0, 1

2

}}
Fix(γ2) =

{
x1 ∈

{
1
4
, 3

4

}
, x3 ∈

{
1
4
, 3

4

}
, x5 ∈

{
0, 1

2

}
, x7 ∈

{
0, 1

2

}}
Fix(βγ2) = ∅ .

The first two loci are each 16 disjoint complex curves with Fix(β) ∩ Fix(γ2) = ∅. The

action of β on Fix(γ2) identifies the curves in pairs, as does the action of γ2 on Fix(β),

so we will have 16 curves of A1 singularities in Y2,α.

Different choices of K3 fibration on the M-theory side give rise to heterotic orbifolds

that are biholomorphic, but may have different metrics (determined by the radii of the

covering T 6) and different SYZ fibrations. To illustrate this, we will look at the heterotic

geometry dual to the β-fibration of X2. The throat coordinate must now be chosen as x6,

because this is the coordinate that is inverted by β while being fixed by H2,β = 〈α, γ〉.
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Thus we take S1
6 to be large and the heterotic geometry Y2,β will be realized as the

generic fiber of π6 : X2 → S1
6/ 〈β〉. This space is again an SYZ fibration with generic

fiber T 3, but this time over the base Q2,β, which we saw in example 3.2 is inequivalent

to Q2,α, since the singular locus of the former is a doubled Hopf link, while the singular

locus of the latter is the 1-skeleton of a cube. Despite the change in base, the total

space Y2,β = T 6
123457/H2,β with the complex structure determined by SYZ and H2,β is

biholomorphic to Y2,α. Additionally, the heterotic geometry Y2,γ2 = T 6
123456/H2,γ2 that

results from the choice of the γ2-fibration is biholomorphic to the first two examples and

has an SYZ fibration equivalent to that of Y2,β.

Thus, the choice of fibration of X2 only affects the metric on the dual heterotic

geometry. Because our M/heterotic duality requires a particular geometric limit where

the throat direction is stretched and the base of the SYZ fibration is much larger than its

fibers, a change in K3 fibration on the M-theory side requires a change of metric on the

heterotic side to ensure the correct cycles are large or small. In our torus orbifold cases,

this only requires a rescaling of the radii of the covering torus. We will see in the next

example that the choice of fibration has other important effects on the heterotic gauge

bundle.

Example 4.3: Dual Geometries for Orbifold Singular Loci

Finally, let us look at heterotic dual geometries for X3, which has singular loci home-

omorphic to the nonsingular orbifold T 3/Z2. Despite this change, we find that the het-

erotic geometry is again biholomorphic to the one found in example 4.3 for all choices of

fibrations.

We begin with the α-fibration, which is similar to the α-fibration of example 4.3 except

for the configuration of the singular loci. Our geometry in this case is Y3,α = T 6
123567/H3,α,
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where H3,α = 〈β, γ3〉. The fixed loci of T 6 in this case are

Fix(β) =
{
x1 ∈

{
0, 1

2

}
, x2 ∈

{
1
4
, 3

4

}
, x5 ∈

{
0, 1

2

}
, x6 ∈

{
0, 1

2

}}
Fix(γ3) =

{
x1 ∈

{
1
4
, 3

4

}
, x3 ∈

{
0, 1

2

}
, x5 ∈

{
0, 1

2

}
, x7 ∈

{
0, 1

2

}}
Fix(βγ3) = ∅ ,

where the only change relative to the previous example is the x3 coordinate of the γ3-loci.

As before, each of β and γ3 acts on the fixed loci of the other to reduce the number of

components by a factor of 2. Thus, we again find a Calabi–Yau orbifold of the form

T 6/Z2
2 with 16 A1 singularities. The 8 T 2 in the γ3-fixed loci of Y3,α are T 2 cross-sections

of the T 3/Z2 loci in the ambient G2 orbifold. Note that the Z2 action does not descend

to the T 2 in Y3,α because it is accomplished by the element αβ ∈ Γ3, which inverts the

x4 coordinate and thus exchanges Y3,α with a different fiber of the half-G2 limit.

The β-fibration gives identical results to the α-fibration (unlike in example 4.2), and

the γ3-fibration gives identical results to that of the γ2-fibration of example 4.3. Thus,

all of our N = 1 fibration examples have biholomorphic heterotic geometries. This is

not surprising in light of the results of [47], where it was found that all smooth TCS G2

backgrounds have heterotic duals based on the same Schoen Calabi–Yau. The complexity

of heterotic compactifications come from the choices of gauge bundles, and indeed we will

see in Section 2.6 that the heterotic duals of the α- and γ-fibrations of example 3.3 have

different instanton configurations.
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2.5 The Heterotic Gauge Bundle

Now we move on to the more subtle part of the heterotic background: the gauge

bundle9. The information necessary to construct this bundle is contained in the data of

the M-theory metric, C-field background, and 7D gauge field background. Given a K3

fibration of a G2 manifold, we may apply 7D M/heterotic duality to each fiber to find

the restriction of the heterotic gauge bundle to each dual T 3 fiber.

Ideally, the restriction of the bundle to each T 3 fiber, along with the monodromies

around the singular fibers, would allow us to reconstruct the gauge bundle over the entire

Calabi–Yau space. In the case of an elliptic fibration of a Calabi–Yau manifold, the work

of [53] allows one to do exactly that. However, their methods rely on the fact that

the elliptic curve is a complex manifold, so their results are not so easily generalized to

T 3 fibers. As described in Section 2.4, part of the data required for the gauge bundle

reconstruction of [53] is a choice of line bundle over a spectral cover which corresponds

in F-theory to an instanton bundle on the background D7-branes. The analogous data

in an M-theory compactification would seem to be a background instanton configuration

for the gauge theories living on the singular loci, but such backgrounds have not been

thoroughly studied.

Reconstructing the bundle in general cases may be possible with better understanding

of the special Lagrangian structure of the fibers within the Calabi–Yau, but we do not yet

have the tools to work with this data. For now, we will study the gauge bundle from the

perspective of the point-like instantons required to cancel anomalies. These instantons

give rise to non-perturbative gauge symmetry and matter, and we may attempt to match

their spectra with the M-theory side. Insight into instanton behavior may also be found

from dual Type I models, where D5-branes play the role of the dual object [62, 71, 72].

9Because we are working with orbifolds, we are really constructing gauge sheaves or orbibundles, but
we will continue to informally use the word “bundle” for these objects.
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There are at least three levels of checks one may perform to give evidence for a

conjectured dual pair:

1. The most coarse check is to ensure that the two sides give the same effective 4D

gauge symmetry. In the case of point-like instantons, we may refine this criterion

by splitting the gauge symmetry into a perturbative and non-perturbative part

from the heterotic perspective, and checking that each part of the gauge symmetry

matches with what is given on the M-theory side.

2. Next, one can check that the massless charged matter agrees on the two sides.

For point-like instantons on orbifold singularities, the massless spectrum is well-

understood only in simple examples.

3. A third level to check is that the low energy effective action agrees on the two sides

of the duality. Unfortunately, the action associated to excitations about point-

like instantons on orbifold singularities has not been investigated, so there are not

currently quantitative checks to be made. However, one can reason qualitatively

about the action by considering which modes should be massive or massless at

specific points in moduli space.

In this work, we will focus primarily on the coarsest check: the gauge symmetry of

the low-energy effective theory. We will start by describing the split between heterotic

perturbative and non-perturbative spectra and reviewing some results about spectra of

point-like instantons on orbifold singularities.

2.5.1 Perturbative vs. Non-Perturbative Spectra

Although we work in the weak heterotic string coupling limit λ→ 0 where possible,

anomaly cancellation guarantees that near the singular loci of our heterotic geometry,
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the background will exhibit phenomena that are non-perturbative in the string coupling,

such as point-like instantons. Thus the massless spectrum from the heterotic string is

best understood as a sum of a perturbative part (the spectrum seen by a 2D CFT de-

scription) and a non-perturbative part, which cannot be seen from the CFT perspective.

This approach was refined in heterotic orbifold compactifications in [71], where it was ar-

gued that because the string worldsheet perspective cannot describe the non-perturbative

part of the massless spectrum, the perturbative spectrum is no longer constrained by

modular invariance. Instead, the requirement is that the combined perturbative and

non-perturbative spectra have no anomalies in the low-energy effective theory.

Relevant examples of perturbative spectra may be constructed from non-singular in-

stantons on orbifold loci. A basic configuration is the SU(2)-instanton on R4/Z2 described

in [62], which is obtained as a Z2-quotient of the standard SU(2)-instanton configuration

with c2 = 1 centered at the origin of R4. If we write SO(4) = (SU(2)L × SU(2)R) /Z2 and

embed the gauge group SU(2) as either SU(2)L or SU(2)R, the resulting SO(4)-connection

has a monodromy M on the lens space S3/Z2 at infinity given by M = −I4, where I4

is the rank-4 identity matrix. Denote this connection on R4/Z2 by A0. We will use

this type of instanton in Section 6 to build non-singular bundle configurations on our

heterotic orbifolds that reproduce the perturbative spectra seen in our dual M-theory

models. When these instantons shrink to zero size, they produce additional effects, as

we will discuss in the next subsection. Similar non-singular instantons may be built

by starting with calorons, instantons on R3 × S1 periodic up to a gauge transformation

[60, 61]. These configurations are made of constituent BPS monopoles and are naturally

centered at pairs of points, making them more relevant to the examples at hand.

For M/heterotic duality in 7 non-compact dimensions, the entire spectrum is visible

perturbatively in the half-K3 limit, since the moduli space of M-theory on K3 coincides

with that of the perturbative heterotic string on T 3. When this duality is fibered over a
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3D base, we expect the singular fibers to introduce phenomena that are non-perturbative

from the heterotic side. We can identify the effects that come from singular fibers by the

same geometric criterion that is used in heterotic/F-theory duality [54]: the gauge sym-

metry and matter that come from components of the singular locus that meet the generic

K3 fiber transversely should be visible perturbatively on the heterotic side, while that

coming from components that project to nonzero codimension on the base should come

from mechanisms that are invisible to perturbation theory10. An alternative character-

ization used in IIA/heterotic duality is that degenerate K3 fibers on the IIA side that

require multiple components in their resolution correspond to non-perturbative effects

on the heterotic side [73].

The perturbative dictionary tells us that the data for an E8 bundle on T 3 is stored

in the choice of a half-K3 surface whose boundary is the given T 3. This is analogous

to Looijenga’s theorem that the data for an E8 bundle on an elliptic curve is contained

in an embedding of the curve into a k = 8 del Pezzo surface [74, 75]. Meanwhile, the

non-perturbative part of the gauge symmetry will come from point-like instantons sitting

on orbifold singularities. Singular gauge bundles coming from point-like instantons on

orbifold singularities are not fully understood or classified, but we will review some of

what is known.

2.5.2 Point-Like Instantons on Orbifold Singularities

In our flat orbifold examples, the inclusion of point-like instantons is required by the

heterotic anomaly cancellation condition:

dH = α′ (trF ∧ F − trR ∧R) ,

10Note that this rule applies only to matter from singular loci that are codimension-four in the total
space, as in our examples. Codimension-seven loci, for instance, give perturbative matter while projecting
to nonzero codimension on the base
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which for dH = 0 forces a gauge bundle for which the second Chern character (i.e. the

Poincare dual of the homology class of the instanton distribution) agrees with that of the

tangent sheaf of the orbifold (at least in a formal sense). In other words, we are forced to

place instantons along the orbifold loci. In the dimensions transverse to the loci, these

look like point-like instantons. The right-hand side of the anomaly cancellation condition

may be modified non-perturbatively by the presence of background NS5-branes. We work

in a limit where any wrapped NS5-branes are represented by point-like instantons [76], so

that both perturbative and non-perturbative contributions are contained in the trF ∧ F

term.

This type of configuration is further motivated by the supersymmetry conditions:

because we are working in the half-K3 limit, α′ corrections are suppressed, and the

supersymmetry condition requires that we have a Hermitian-Yang-Mills connection on

our bundle. This condition, in combination with anomaly cancellation, requires the

connection to be flat away from the singular loci, while on these loci it has instanton

number matching the background metric. To see this, we write the anomaly cancellation

condition as trF ∧ F = 0 and the SUSY D-term equation as ?F = −ω ∧ F , where ω is

the Kahler form. Wedging F with both sides and then taking a trace gives us

tr (F ∧ ?F ) = −ω ∧ tr (F ∧ F ) = 0 .

The left hand side is the norm-squared of the gauge field strength, so it vanishes away from

orbifold loci. Together, these conditions tell us that we must place point-like instantons

on our orbifold loci, and that there is no freedom to vary the connection away from

these loci other than choosing holonomies. It is possible that the gauge fields could have

nontrivial profiles along the singular loci, but because we chose a trivial background

configuration for the 7D gauge fields on the M-theory side, we expect the profiles to be
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trivial on the heterotic side as well.

In our N = 1 examples, we have additional constraints on the gauge bundles that

arise from the properties of the massless spectrum calculated from M-theory:

1. There is no abelian gauge symmetry in the 4D effective theory, meaning no tensor

multiplets in a local 6D description near a singular locus.

2. All charged matter in 4D is in the adjoint representation. Because point-like in-

stantons typically come with fundamental multiplets, this suggests that there may

be Higgsing of the non-perturbative spectrum.

With these points in mind, we can look at the effects of point-like instantons on the

massless spectrum. A point-like instanton comes with extra massless particles that are

non-perturbative in the string coupling. There are several ways to understand this phe-

nomenon: one can think of it as a stringy “smoothing” of an apparent geometric singular-

ity via extra massless particles, or as the massless sector of the worldvolume theory of a

wrapped NS5-brane or a wrapped M5-brane in a dual theory, or as a theory of tensionless

strings. Point-like instantons behave differently in the E8×E8 and Spin(32)/Z2 heterotic

theories. Because our primary duality gives an E8×E8 model, one may expect that only

E8 × E8 point-like instantons are relevant. However, the instantons in our backgrounds

behave like T-dual Spin(32)/Z2 instantons, similar to cases examined in [62, 71].

First let us briefly review what happens when you shrink E8 point-like instantons to

zero size on a smooth 6D geometry [77, 78]. Because this case isn’t directly relevant to

us, we will just summarize the spectrum: on a smooth point, an E8 point-like instanton

gives rise to an extra massless tensor and no extra gauge symmetry. From the point

of view of heterotic-M theory, with M-theory compactified on Y × S1/Z2, where Y is a

Calabi–Yau threefold, a point-like instanton may be thought of as an M5-brane wrapped

on Y that moves from the interior of the interval to the boundary [79]. In this picture,
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the VEV of the scalar in the tensor multiplet controls the position of the M5-brane along

the interval.

Note that in this case and in the later cases, the extra massless particles can be blocked

by the presence of a nontrivial B-field holonomy on the orbifold point [55]. Indeed, to

fully specify a heterotic dual, we must choose a background of B-field holonomies on

the 2-cycles of our space. The holonomies on the T 3 fibers are determined by the shape

of the K3 fibers of the G2 orbifold, as shown in [80] by matching moduli. There can

be no holonomies on the base, as it is homeomorphic to S3, but there may be B-field

holonomies with one leg along a fiber and one leg along the base. This case includes the

singular loci as well as any extra 2-cycles of the space.

In our examples, the point-like instantons reside on orbifold points of the geometry.

Because this is a worse bundle singularity than the point-like instantons on a smooth

point, extra nonperturbative multiplets can arise [29, 81, 55, 82]. For point-like instantons

on an orbifold point, the holonomy of the gauge bundle may be nontrivial, since the lens

space surrounding the orbifold point has nontrivial fundamental group. The case with

trivial holonomy was investigated in [29]. In [81], simple cases of nontrivial holonomy

were worked out. It was established in [55] that an E8 × E8 point-like instanton with

nontrivial holonomy on an orbifold point does not give rise to a tensor multiplet, but

retains its non-perturbative gauge symmetry and charged matter. This can be understood

from the heterotic-M theory perspective, where a wrapped M5-brane cannot move from

the orbifold point into the bulk because it must preserve its holonomy. Thus a point-

like instanton with nontrivial holonomy may be thought of as a frozen singularity in the

bundle. In some cases, this may be interpreted in terms of fractional M5-branes [83].

In the cases considered in this chapter, the orbifold singularities of the heterotic

geometry look locally like an A1 singularity C2/Z2, so we will review options for fractional

E8×E8 instantons on such a space, following section 4.3 of [5]. The only nontrivial option
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for the holonomy is Z2, and there are two ways that this may be embedded in E8, up to

conjugacy:

1. It may be embedded so as to have centralizer (E7 × SU(2)) /Z2. This gives instan-

ton number c2 = 1/2 and no tensor multiplet nor gauge symmetry.

2. It may be embedded so as to have centralizer Spin(16)/Z2. This gives c2 = 1 and

a non-perturbative SU(2), but no tensor.

We may combine these types of instantons to get new examples. For instance, we may

place both a trivial holonomy instanton and the c2 = 1/2 instanton on an A1 singularity

to get an instanton with c2 = 3/2 that gives no tensor multiplet, but a non-perturbative

SU(2) so that the gauge symmetry in the visible sector becomes E7× SU(2). This is the

situation that corresponds to the tangent sheaf of C2/Z2.

What kinds of instantons are allowed when there are multiple singularities? The case

of the tangent sheaf of T 4/Z2, which has 16 A1 singularities, is discussed in [55, 84] and

has the behavior of 16 independent instantons, each with c2 = 3/2. The behavior of the

heterotic backgrounds in our examples suggests that there exist also configurations where

the instantons residing on different loci are not independent. In other words, we seem to

have instantons that are only semi-localized, so that they spread their instanton number

evenly over two loci. In the case of an instanton semi-localized on an A1⊕A1 singularity,

the resulting non-perturbative gauge symmetry is only SU(2). The gauge fields localized

on the two singularities must take values in the diagonal su(2) subalgebra of the su(2)⊕

su(2) that would arise from separate instantons on the two loci. A compactification

on T 4/Z2 with 8 such semi-localized instantons suggests that each one has instanton

number c2 = 3, the sum of the instanton numbers for each locus. One candidate for

these instantons is the singular limit of a Z2-quotient of an SU(2) caloron.

While our main duality relates M-theory to the E8 × E8 heterotic string, we will
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also be interested in an alternate duality to the Spin(32)/Z2 string. This dual model

involves point-like instantons as well, so we will review some properties of this case. The

Spin(32)/Z2 point-like instantons behave oppositely to the E8 × E8 ones with respect

to their spectrum: they produce non-perturbative vector multiplets when placed on a

smooth point, and augment these with tensor multiplets when placed on orbifold singu-

larities [29, 85]. There are multiple types of Spin(32)/Z2 instantons, but we are interested

in particular in those that live on Z2 orbifold singularities and participate in the duality

with Type I on T 4/Z2 [27, 26, 62]. In the case that on the Type I side distributes one

half-D5-brane at each fixed point, the heterotic background carries a combination of two

point-like instantons at each fixed point. Each points has a “hidden” c2 = 1 instanton

with no low-energy gauge symmetry or tensor multiplets. On top of this background,

there is a configuration of fractional D5-branes, which may also be interpreted as point-

like instantons. When the D5-branes are distributed evenly across the fixed points, and

in the absence of Wilson lines, the gauge group is SU(16)×U(1), where a rank 16 factor

has been removed by a Green-Schwarz-type mechanism [62].

2.5.3 Point-Like Instanton Spectra

Ideally, we would be able to verify that the spectra of our heterotic backgrounds agree

with those of their purported M-theory duals. This goal is hampered by the fact that

calculating spectra of point-like instantons on orbifold singularities is challenging and still

not fully understood in the literature. Existing results are generally based on 6D anomaly

cancellation (e.g. [82, 71]) or F-theory duals (e.g. [55, 84]). A pattern seems to emerge

that E8 × E8 point-like instantons on orbifold singularities do not give rise to adjoint

matter; their charged matter appears to be fundamental matter in all existing examples.

This provides a challenge for matching such spectra to those of M-theory on our G2
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orbifolds, because the latter have only adjoint matter. The semi-localized instantons

suggested in the previous section, perhaps combined with a Wilson line background,

likely give rise to matter valued in the adjoint of the diagonal subgroup.

The spectrum of a heterotic orbifold with point-like instantons is not limited to the

non-perturbative spectrum of the instanton, but also comprises a perturbative spectrum,

split as usual into untwisted and twisted sectors. A recipe for calculating the perturbative

spectrum is given in [71], where it is shown that an additional energy term must be

included in the left-moving twisted sector mass formula to account for the magnetic flux of

the instantons sitting at the fixed point, thought of as wrapped M5-branes. In this chapter

we are interested in the non-perturbative gauge sector, so we leave an investigation of

the perturbative spectrum using this recipe for future work.

One particularly relevant example appears in section 5 of [71], where anomaly can-

cellation in an E8 × E8 background on T 4/Z3 is achieved by adding a non-perturbative

SU(2)9 factor to the gauge group along with charged hypermultiplets. This is interpreted

as a spectrum arising from frozen fivebranes in the T-dual Spin(32)/Z2 theory. We will

argue for a similar interpretation of our non-perturbative gauge symmetry in section 7.

2.6 Example Dual Pairs

Equipped with preliminary analysis of the heterotic geometry and gauge bundle, we

now explore aspects of our candidate dual pairs. Because we are primarily interested

in the non-perturbative aspects of the half-G2 limit, we will give only a brief descrip-

tion of the perturbative part of the analysis, but we include a construction method for

non-singular instantons that replicate the perturbative spectra. We will begin with a

description of the 7D duality shared by all three examples, and then discuss the details

of each example individually.
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Example
Number

Fibration Perturbative Gauge
Symmetry

Non-Perturbative Gauge
Symmetry

6.1 α, β SU(2)8 × U(1)4 SU(2)8

6.2 α, β, γ SU(2)4 SU(2)8

6.3 α, β SU(2)4 SU(2)12

6.3 γ SU(2)8 SU(2)8

Table 2.2: Summary of gauge symmetry in heterotic duals

In all of our examples of M-theory on K3 fibrations, the generic fibers are at the same

Z2 orbifold point in K3 moduli space, so they share the same effective 7D theory. In

this case, the heterotic dual background is a flat T 3 with three Wilson lines that branch

E8 × E8 to SU(2)16 [86, 87]. The only non-gravitational supermultiplet in 7D is the

vector multiplet, so there is no charged matter from a 7D perspective. When further

compactified on T 3 to 4D, this perturbative spectrum becomes SU(2)16 gauge symmetry

with 3 adjoint chiral supermultiplets for each SU(2) (which is just the 4D N = 4 vector

multiplet in 4D N = 1 language). Additionally, there are abelian factors in the gauge

group as well as neutral chiral multiplets, but we will ignore these parts of the spectrum,

as they are not our primary interest. In the following examples, we will use this 4D

perturbative spectrum as a starting point and add in the additional orbifold actions as

well as non-perturbative effects.

2.6.1 N = 2 Example

First, we will discuss the heterotic dual of the M-theory background of example 3.1,

which has a trivial action of γ. There are 16 disjoint T 3’s of A1 singularities in the G2

orbifold X1, with 8 coming from α and 8 from β. We saw that there are two choices of

coassociative Kummer fibration in this example, but they give equivalent heterotic dual

geometries. In either case, half of the singular loci of X1 have a transverse intersection

with the generic fiber, meaning that we expect SU(2)8 perturbative gauge symmetry and
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SU(2)8 non-perturbative gauge symmetry on the heterotic side.

For definiteness, consider the α-fibration, where we view the M-theory geometry as

a T 4
1234/ 〈α〉-fibration over T 3

567/ 〈β〉. In example 4.1, we saw that the dual geometry in

this case is a T 3
123-fibration over the same base. We may write our heterotic geometry

as the trivial Kummer fibration Y1 = T 4
1256/ 〈β〉 × T 2

37. This space has 16 disjoint T 2’s

of A1 singularities, all from β. Note that the SYZ T 3 fibers are not fully contained

within the K3 fibers, so that the perturbative Wilson lines along the T 3 fibers prevent

the heterotic gauge bundle from factorizing into a K3 component and a T 2 component,

which complicates potential applications of IIA/heterotic duality.

From a perturbative orbifold perspective, we have the Wilson lines described above

on each T 3
123 fiber, and we also must determine a Z2-action of β on the perturbative

heterotic gauge bundle. We will assume that β acts by the outer automorphism that

swaps the perturbative E8 factors, as this is the gauge bundle action that corresponds

to the geometric origin of the gauge symmetry on the M-theory side: in the G2 orbifold,

the action of β on the fixed loci of α is to swap them in pairs, reducing the resulting

non-perturbative gauge symmetry from SU(2)16 to SU(2)8. This agrees with the choice

of the action of β on the heterotic gauge bundle, which will break to the diagonal E8,

and branch this to SU(2)8 when combined with the Wilson lines. The adjoint chiral

multiplets are identified in pairs as well, leaving us with 3 adjoint chirals for each SU(2).

The non-perturbative part of the non-abelian spectrum is the same as the perturba-

tive part: an additional SU(2)8 with 3 adjoint chiral multiplets each. This part of the

spectrum should come from point-like instantons on the β-loci, meaning that we should

get SU(2)8 gauge symmetry from 16 T 2’s of A1 singularities. This appears to be a puzzle,

because there is nothing to distinguish 8 of the loci as those that produce gauge symme-

try, while the others do not. However, the loci are paired by the monodromy action of α

within the ambient space. We illustrate this with an example (see Figure 2.4).
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x4 = 3
4 x4 = 1

4
x1 = 3

4x1 = 1
4x1 = 1

4x1 = 3
4

T 4

Figure 2.4: The action of α-monodromy on a T 2 singular locus in the N = 2 example.
Pictured is the T 4 within the covering T 7 that is defined by x2 = x5 = x6 = 0. The
x3- and x7-dimensions are suppressed, so that each colored circle represents a T 2. The
fibers π−1

4 (1/4) and π−1
4 (3/4) are pictured, represented by the x1-direction only. The

two T 2’s represented by red circles are interchanged by the action of α, as are those
represented by blue circles. By following the green contour from the x4 = 1/4 fiber
to the x4 = 3/4 fiber and applying α, one ends up with a monodromy action by α on
the singular loci of the x4 = 1/4 fiber.
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Within the heterotic geometry Y1,α = π−1
4

(
1
4

)
, consider the singular T 2 that is the

image of
(

1
4
, 0, x3,

1
4
, 0, 0, x7

)
⊂ T 7, where x3 and x7 are the T 2 coordinates. Suppose we

translate along the throat direction x4 to a different Calabi–Yau fiber located at x4 = 3
4
.

Because our T 7 is identified under the action of α, which inverts the first four coordinates,

we have ended up back at x4 = 1
4
, and thus back within Y1,α at the point

(
3

4
, 0,−x3,

1

4
, 0, 0, x7

)
.

If we perform this translation for every (x3, x7), we obtain a monodromy action by α

that exchanges these two singular T 2 within Y1,α. In general, this monodromy action

pairs up the 16 singular T 2 of Y1,α. Our task is to reproduce the effect of this geometric

action within the heterotic theory itself. The natural guess, given our constraints, is

a semi-localized instanton that is evenly distributed over the two T 2, as described in

section 5.2. This instanton ought to give rise to an SU(2) gauge symmetry with three

adjoint chiral multiplets (or, in N = 2 language, an SU(2) gauge symmetry with one

adjoint hypermultiplet). Thus we conjecture that the heterotic dual gauge bundle is

comprised of 8 instantons of this type distributed across pairs of the singular T 2 loci.

This semi-localization may be understood from a T-dual perspective as coming from a

winding shift, as we will discuss in the next section.

Although the instanton is distributed over a disconnected locus, the separation is

small because of the geometric limits required for our duality with M-theory to be valid.

The loci that are paired by the instantons are separated only within the T 3 fiber, which

is assumed to be small compared to the base for our duality to hold, as described in

section 2. In our example above, the two singular T 2 both lie over (0, 0, x7) in the

base, and their separation in the x1-direction is infinitesimal compared to the radius of

x7. On the other hand, the separation in the x1-direction is very large compared to
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√
α′, so the disconnectedness demonstrated by this instanton is small compared to the

compactification volume, but large compared to the string scale. The Spin(32)/Z2 T-

dual model of this configuration is an asymmetric orbifold, as will be discussed below,

and thus a (weakly) non-geometric compactification. This non-geometric aspect is not

reflected in the geometry of the E8 × E8 model, but it leaves a remnant in the gauge

bundle.

We may construct candidate configurations that reproduce the perturbative spectrum

by deforming away from the point-like instanton limit and building a smooth instanton

configuration on the orbifold Y1 using copies of the connection A0 described in Section

5.1. We may use the monodromy M = −I4, where I4 denotes the rank-4 identity matrix,

to match the Wilson line monodromies dictated by the half-K3 limit. We will work with

the Spin(32)/Z2 string for convenience, but the procedure is similar for the E8 × E8

string. Consider the triple of Spin(32)/Z2-monodromies

W1 = (−I4,−I4,−I4,−I4, I4, I4, I4, I4)

W2 = (−I4, I4,−I4, I4,−I4, I4,−I4, I4)

W3 = (I4,−I4, I4,−I4, I4,−I4, I4,−I4) ,

where the notation indicates a block-diagonal matrix in Spin(32)/Z2. This triple breaks

Spin(32)/Z2 → SO(4)8. (In the case of the E8 × E8 string, we must instead replace

W1 by the Wilson line that breaks E8 → SO(16).) Let AW be the flat connection on

(T 3
123 × T 3

567) / 〈β〉 that has monodromy Wi along the xi-direction for i = 1, 2, 3. We will

embed the SO(4)-instanton A0 into SO(4)8 and place it at various fixed points of T 6/〈β〉.

Far from the fixed points, the instantons decay and match to the flat connection AW .

First, embed the connection A0 in the first four SU(2)L factors, and choose vanishing
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connections for all other SU(2) factors of SO(4)8. Denote this connection on R4/Z2 by

A1 = [(gL, 1) (gL, 1) (gL, 1) (gL, 1) (1, 1) (1, 1) (1, 1) (1, 1) ;W1] ,

where the notation indicates which components carry the instantons connections, and

that the connection has monodromy W1 around the x1 direction. This connection com-

mutes locally with

(1, gR) (1, gR) (1, gR) (1, gR) (gL, gR) (gL, gR) (gL, gR) (gL, gR) ,

which generates SU(2)12. We place the connection A1 on a collection of the sixteen T 2

loci of R4/Z2 singularities to be discussed below.

A similar connection A2 with monodromy W2, to be supported on a distinct set of

four singular loci, is given by

A2 = [(1, gR) (1, 1) (1, gR) (1, 1) (gL, 1) (1, 1) (gL, 1) (1, 1) ;W2] .

This connection commutes with a different SU(2)12 such that the sum of A1 and A2 gives

a SO(4)8-connection whose centralizer is SU(2)8, generated by

(1, 1) (1, gR) (1, 1) (1, gR) (1, gR) (gL, gR) (1, gR) (gL, gR) .

Thus this instanton configuration reproduces the desired perturbative gauge symmetry

for the N = 2 supersymmetric example. The matter spectrum of the candidate instanton

configuration is three adjoint chiral multiplets per SU(2) factor, as desired. These arise

as the remaining freedom to choose flat connections for the unbroken SU(2) factors: the

six directions of the covering T 6 give six adjoints, which form three chiral multiplets.
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This method of building instanton configurations creates the correct perturbative

spectrum, but it is not immediately clear how to place the summands A1 and A2 on the

correct T 2 loci as dictated by the half-G2 limit. In the point-like limit, we expect a Z2

symmetry such that every SU(2)-instanton is associated to a pair of T 2 loci. However,

placing separate A0 instantons on these loci does not give the correct counting of c2. The

instanton configuration that behaves appropriately in the point-like limit likely begins

with an instanton on (R3 × S1) /Z2 that does not arise from local R4/Z2 instantons.

Such a solution may be built from a Z2-quotient of a configuration of calorons, which

are instantons on R3 × S1 that are made from pairs of BPS monopoles [60, 61]. With

the correct choice of parameters, the caloron is symmetric between pairs of points, and

in the point-like limit it may provide a candidate building block for the singular gauge

configuration required for this heterotic dual model.

2.6.2 Simplest N = 1 Example

We continue to our first N = 1 example, which is similar in most regards to the

N = 2 example. In this case, we have a G2 orbifold X2 with 12 T 3 of A1 singularities

and three possible choices of K3 fibration. Although the base 3-orbifold of the fibration

differs for the different choices, our analysis of the heterotic gauge bundle is unaffected

by this change. For our analysis, we will choose the α-fibration, which gives the heterotic

geometry Y2,α = T 6
123567/ 〈β, γ2〉 described in example 3.2.

For the perturbative part of the spectrum, in addition to the T 3 Wilson lines described

above, we must choose an action of H2,α = 〈β, γ2〉 on the perturbative gauge bundle. We

choose β to act as the outer automorphism of E8 × E8 as in example 6.1, while γ2 must

act in a way that swaps two SU(2)4 factors within the SU(2)8 subgroup of E8 that is

preserved by the Wilson lines. These group actions accomplish the monodromy seen on
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the G2 orbifold side, where β and γ2 each act on the 16 fixed loci of α so as to identify

them in fours. There are two Z2 elements of E8 (corresponding to nodes on the Dynkin

diagram with Dynkin label 2), familiar from T 4/Z2 orbifolds, that are candidates for the

action of γ2. The computation of the perturbative spectrum must additionally take into

account shifts in left-moving energy from point-like instantons, as described in section

5.3.

Now we investigate the non-perturbative spectrum. The heterotic geometry Y2,α

has 16 T 2 of A1 loci, half from β and half from γ2. As in the previous example, we

must produce SU(2)8 non-perturbative gauge symmetry from these 16 loci. Again, the

monodromy action of α in the ambient space interchanges the β-loci in pairs, and now

they interchange the γ2-loci in pairs as well. Thus we again expect the gauge bundle to

be made of 8 semi-localized instantons that reside on pairs of T 2 and come with 3 adjoint

chirals each.

The most intuitive description of this gauge bundle configuration (and that of the

previous example) is via a “sequential orbifold”, where the monodromy action of α on

the β- and γ2-loci is captured by a heterotic orbifold by the full Γ2 (instead of only the

subgroup H2,α that acts nontrivially on the geometry). To make sense of this prescription,

the elements of the orbifold group are taken to act in a certain order, where α acts upon

the non-perturbative H2,α-orbifold: we think of the model as X2/Γ2 = (X2/H2,α) / 〈α〉.

Because Γ2 is abelian, we are free to order the elements in this way, although a fully

satisfactory interpretation of this model would consider the non-perturbative effects of

all of Γ2 at once.

Because α acts to swap the heterotic geometry with another fiber of π4 : X2,α →

S1
4/ 〈α〉, only H2,α descends to the heterotic geometry, which we identify with the orb-

ifold Y2,α = T 6
123567/H2,α. Nonetheless, we may think of this string background as a Γ2

background where α acts trivially on the geometry, but has a nontrivial action on the
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gauge bundle, identifying SU(2) factors in pairs. The action of α on the gauge bundle

may be thought of as identifying components of the connection that take values in pairs of

su(2) summands. These Lie algebra summands correspond to SU(2) factors of the gauge

group that arise non-perturbatively from fixed loci of β and γ2, so for this interpretation

to reproduce the intuitive picture from the 7D geometry, we must choose a specific order

for the orbifold actions. We construct an orbifold background on T 6/H2,α with a non-

perturbative spectrum from standard point-like instantons, such as those found on the

tangent sheaf, and then act on the resulting theory with a further orbifold action by α

that identifies components of the resulting connection.

Given these results, we can ask how they inform our understanding of the half-G2

map. In the 7D case of the half-K3 limit, the heterotic gauge symmetry may be read off

from the complicated geometry at the ends of the interval, because all singularities were

isolated, and therefore able to be moved to the complicated ends. In our half-G2 limit,

this remains true for the perturbative gauge symmetry, since those loci are transverse

to the generic fiber, but the singular fibers that give rise to the non-perturbative gauge

symmetry necessarily stretch all the way across the interval (see Figure 2.3). In the

example at hand, each singular T 3 that stretches across the interval intersects the generic

fiber in two components, while it intersects the end fiber in only one component. This

means that looking only at the complicated ends of the interval will not determine the

heterotic gauge bundle configuration, because this information would not tell you which

pairs of T 2 loci in the heterotic geometry join into one in the complicated end. In other

words, to reconstruct the α-monodromy, one must look at the entire interval to follow the

loci through the 6D fibers. So we conclude that the information of the heterotic gauge

bundle may be spread throughout the half-G2 interval, even when the metric in the bulk

of the interval is trivial.

We may again consider non-singular instanton configurations that reproduce the cor-
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rect perturbative spectrum. In this case, we add a third summand to the instanton

configuration:

A3 = [(1, 1) (1, gR) (1, 1) (1, gR) (1, 1) (gL, 1) (1, 1) (gL, 1) ;W3] .

Then the centralizer of the sum of A1,A2, and A3 is SU(2)4, embedded in SO(4)8 as

(1, 1) (1, 1) (1, 1) (1, 1) (1, gR) (1, gR) (1, gR) (1, gR) .

Again, we get three chiral multiplets per unbroken SU(2) from freedom to specify flat

connections on the covering T 6.

2.6.3 Orbifold Singular Locus Example

Lastly, we will look at our N = 1 example with T 3/Z2 singular loci, which exhibits

different point-like instanton behavior than the previous examples and also varying bun-

dle configurations for different choices of fibration. We will first consider the α-fibration,

in which case we have 8 singular T 2 loci from β and an additional 8 from γ3. The β-

loci come from the intersection of 4 T 3 loci with the heterotic geometry, while the γ3-loci

come from the intersection with 8 T 3/Z2 loci. So we expect SU(2)4 gauge symmetry with

3 adjoint chirals per SU(2) from the 8 β-loci while we expect SU(2)8 gauge symmetry

with only 1 adjoint chiral per SU(2) from the 8 γ3-loci. Thus it is clear that the two loci

support different types of point-like instantons.

We can understand the difference between the loci based on the monodromy actions

in the ambient space. The action of α on the β-loci is identical to the previous example,

but it does not interchange the γ3-loci, as it did for the γ2-loci in the that case. To see

this, we will consider an example locus in the covering space. The throat coordinate is
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x4, and the heterotic geometry is Y3,α = π−1
4

(
1
4

)
. Consider the γ3-locus

L =

(
1

4
, x2, 0,

1

4
, 0, x6, 0

)
,

where x2 and x6 can vary. We must keep in mind that this T 2 in the covering space

represents the same T 2 as if we act upon this with β:

βL =

(
3

4
,
1

2
− x2, 0,

1

4
, 0,−x6, 0

)
.

Because x2 and x6 are free coordinates, the only change is in the x1 coordinate. On the

other hand, we may consider the effect of α-monodromy on L. We shift along the throat

coordinate to x4 = 3
4

and apply α, which gives us

αLx4+ 1
2

=

(
3

4
,−x2, 0,

1

4
, 0, x6, 0

)
.

We see that the α-monodromy accomplishes the same interchange of the γ3-loci in the

covering space as does β, so the action on the γ3-loci in Y3,α is trivial. Because of this,

each T 3/Z2 intersects the heterotic geometry only once, and therefore the associated

instantons are fully localized on a single T 2.

However, the monodromy of α does eliminate harmonic one-forms on T 3/Z2 (as can

be seen by the action of αβ on either of the end-fibers of the x4-interval), so that the

instanton should come with only one adjoint chiral multiplet. In N = 2 language, the

resulting gauge theory should be pure N = 2 SU(2) SYM. The existing 6D point-like

instanton classification does not appear to include a c2 = 3/2 instanton that gives non-

perturbative gauge symmetry with no charged matter, so this gauge bundle configuration

may also be previously undescribed. Note that the charged matter could be blocked by

a B-field holonomy, as in [55], but this would block the gauge symmetry as well.
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Theory Perturbative SU(2)8 Non-perturbative SU(2)8

M 8 T 3 α-loci 8 T 3 β-loci
IIA D6-branes on orientifold planes 8 T 2 β∗-loci

I Subgroup of D9-brane
Spin(32)/Z2

D5-branes on 16 singularities
with winding shift

SO(32) Subgroup of primordial
Spin(32)/Z2

Point-like instantons on 16
singularities with winding shift

E8 Subgroup of primordial E8 × E8 T-dual point-like instantons on
16 singularities

Table 2.3: Origin of non-abelian gauge symmetry in the N = 2 model at each stage
of the duality chain. “Perturbative” and “Non-perturbative” labels refer to the string
coupling of the heterotic theories.

The β-fibration of X3 gives identical results, but the γ3-fibration provides a het-

erotic dual with a different gauge background. In this case, the geometry is Y3,γ3 =

T 6
123456/ 〈α, β〉, which has singular loci as in example 6.2. The non-perturbative part of

the spectrum should be described, as in that case, by 8 semi-localized instantons on pairs

of loci. The difference this time is in the perturbative part of the compactification: as

discussed for the α-fibration, the monodromy actions of α and β on the γ3 loci in the

T 7 covering space are identical. Therefore, in the γ3-fibration, where the γ3 loci give rise

to perturbative gauge symmetry on the heterotic side, the actions of α and β on the

perturbative gauge bundle must be chosen accordingly. In particular, if we choose α to

act on the perturbative gauge bundle as the outer automorphism of E8 × E8, we must

choose β as an element of E8 that commutes with the resulting SU(2)8, but reduces the

charged matter spectrum from 3 adjoint chirals per SU(2) to 1 adjoint chiral per SU(2).

2.7 An Alternate Duality Chain via Type I

To understand the gauge symmetry and particle spectrum seen in our M-theory orb-

ifold backgrounds, it is informative to look at another chain of dualities that relates
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M-theory to the Spin(32)/Z2 heterotic string. The point-like instanton effects we have

seen in heterotic dual models look odd from the E8 ×E8 perspective, but may be better

understood as Spin(32)/Z2 point-like instantons, which naturally appear with symplec-

tic gauge groups and without tensor multiplets. The appearance of T-dual Spin(32)/Z2

point-like instantons in E8 ×E8 heterotic string theories was found in a similar setup in

[62], where they resolve confusions that arose from mistakenly attributing their effects

to E8 × E8 point-like instantons. They were also found to explain the spectrum of an

E8 ×E8 compactification in [71]. Our duality chain begins with M-theory, proceeds to a

IIA orientifold, then a T-dual Type I theory, and finally an S-dual Spin(32)/Z2 heterotic

model. The latter theory may be related to the E8 × E8 heterotic string theory by an

additional T-duality.

2.7.1 N = 2 Example

Beginning with our N = 2 example of section 3.1, if we take the x4-direction as the

M-theory circle, we may obtain a dual theory from Type IIA on T 6
123567 orientifolded by

the group

Γ∗1 =
〈

(−1)FL α∗Ω, β∗
〉

=
〈

(−1)FL R123Ω, R1234σ2

〉
,

where FL is the left-moving fermion number, Ω is the worldsheet parity operator, α∗ =

α
∣∣
123567

, and similarly for β∗ [88]. We also write the action in terms of the reflection

operator R, which flips the coordinates shown in its subscripts, and the shift operator

σi that performs an order-two shift on coordinate xi. In this IIA background, an SU(2)8

gauge symmetry arises from the D6-branes required to cancel the RR charges created by

O6-planes along the 123-directions. An additional SU(2)8 gauge symmetry comes from

D2-branes wrapped on the loci of A1 singularities created by β∗, which are exchanged

in pairs by α∗. In choosing the x4 direction as the M-theory circle, requiring a weakly-
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coupled Type IIA dual would violate the limits in which we previous formulated our

M/heterotic duality. Before, we chose the x4 direction as the throat direction of the half-

G2 limit and required it to be large compared to the other dimensions of the K3 fiber.

Thus, if we want to compare our IIA model directly to M-theory in the half-G2 limit,

we must work with strong IIA coupling. We could instead choose the x7 direction as the

M-theory circle, but this radius would also be required to be large due to the adiabatic

limit.

Next, we apply T-duality along the 123-directions to obtain a Type I dual. This

perspective gives a conceptual advantage because the entire spectrum is expected to be

visible perturbatively on the Type I side, and the tadpole cancellation conditions give

a powerful tool for computations. Early examples of spectrum computations using this

method include [26, 89, 90, 91, 72]. In our case, T-duality gives Type IIB on T 6
1̂2̂3̂567

orientifolded by the dual group

Γ̃∗1 =
〈

Ω, β̃∗
〉

= 〈Ω, R1234σ̃2〉 ,

where β̃∗ has a winding shift in the x2 direction instead of the momentum shift in β∗

(signified by the tilde on σ̃2). The hat notation on the torus coordinates signifies that the

radii of the first three coordinates of the torus are inverted by T-duality. The operation

also transforms the D6-branes to D9-branes that generate an SU(2)8 gauge symmetry

as a subgroup of Spin(32)/Z2. Meanwhile, the possible presence of D-branes at the A1

singularities, and the resulting gauge symmetry, is complicated by the presence of the

winding shift.

Momentum and winding shifts were originally discussed in the heterotic context in

[92], and their effects were studied in the Type I context in [93, 94], where they give rise

to supersymmetry breaking via stringy variants of the Scherk-Schwarz mechanism [95].
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In these Type I models, the shifts take place in directions along which the reflections do

not act. In our case, the shifts are in directions that are acted upon by the reflection, but

they cannot be removed by coordinate redefinitions. The role of the Type I winding shift

may be understood via its dual action in the Type IIA model. Relative to the IIA model

without a shift, the momentum shift on x2 blocks the appearance of a second sector of

D6-branes that would intersect the first sector of D6-branes. Thus, it cuts in half the

gauge symmetry and reduces the matter spectrum. This is exactly the behavior that we

want to attribute to the semi-localized point-like instantons in the E8×E8 heterotic dual.

Aside from the winding shift, our Type I model is similar to the Z2-orbifold of Type I

considered in [27, 26]. A variant of this model with a momentum shift was considered in

[91].

The last step of the duality chain is an S-duality to the Spin(32)/Z2 heterotic string.

The Type I D9-brane gauge symmetry becomes the perturbative gauge symmetry SU(2)8

within the primordial Spin(32)/Z2 gauge group. The other SU(2)8 is non-perturbative

and is expected to come from Spin(32)/Z2 point-like instantons effects. The background

orbifold is unchanged when passing from Type I to the heterotic string, so the heterotic

dual inherits the winding shift, which interacts with the point-like instantons to create

the SU(2)8 gauge symmetry.

The E8×E8 heterotic string may be reached by a final T-duality between the two het-

erotic string theories. From this perspective, the instanton configuration appears to be

spread across two disconnected singular loci. This duality chain provides a sequence that

transforms the geometric data from the G2 space into the bundle data of the E8×E8 het-

erotic compactification. At the initial M-theory stage, there are 8 singular loci that give

rise to a rank-8 gauge group. In the final E8×E8 heterotic stage, the same rank-8 gauge

group comes from 16 singular loci. In the intervening Type I and Spin(32)/Z2 heterotic

stages, the compactification is weakly non-geometric due to the winding shift, so there
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isn’t a clear answer to the number of singular loci, but the winding shift accomplishes

the same rank-8 gauge group as the initial and final stages.

An alternative duality chain may be obtained in this N = 2 case by starting with

a different Type IIA limit. Our M-theory background is T 7/ 〈α, β〉, where none of the

elements in the orbifold group act on the final coordinate, x7. Thus, we may take this

coordinate as the M-theory circle and obtain a IIA dual on T 6
123456/ 〈α, β〉, which is again

the orbifold limit of the Borcea–Voisin manifold of Hodge numbers (19, 19). The geomet-

ric limits discussed in section 3 require that the radius of x7 is large, meaning that this

IIA dual is strongly-coupled. For our purposes, the only relevant non-perturbative effects

are the massless states that arise from wrapped D2-branes on the orbifold singularities.

Type I and heterotic duals to this model were considered in [96], where it was found

that the Type I dual includes momentum or winding shifts along the invariant T 2. This is

in contrast to the Type I duals found in our duality chain above, where these shifts were

along a direction of a T 4 on which the orbifold group acts nontrivially. The massless states

in the heterotic dual of [96] were found to all be of non-perturbative origin, suggesting

that this heterotic dual is distinct from the one obtained in the half-G2 limit, which has

a mixture of perturbative and non-perturbative gauge symmetry. This second duality

chain is not available in the N = 1 cases, because there is no coordinate on which the

M-theory orbifold group acts trivially, so we may not obtain a IIA orbifold dual in the

same manner.

An additional Type IIB dual may be obtained by applying T-duality along only the

x3-direction instead of the x123-directions. In this case, we find Type IIB compactified

on T 6
123̂567

/ 〈ΩR12, R1234σ2〉. Cancellation of the O7-plane charge created at fixed points

of ΩR12 will create a D7-brane background, so this dual model should be expressible in

terms of F-theory, along the lines of [47].
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2.7.2 The N = 1 Examples

In the N = 1 cases, we also must take into account the nontrivial action of γ as we

go through the steps of the duality chain. A similar Type I orbifold was studied in [90],

and further examples are given in [71, 72]. A similar duality chain was considered for

M-theory on Spin(7) orbifolds in [97]. Our model differs from that of [90] by the inclusion

of winding shifts in multiple directions that avoid an intersecting brane interpretation

and reduce the rank of the gauge symmetry. In the N = 1 cases, discrete torsion is a

nontrivial choice in the orbifold backgrounds as well. In our cases, it is expected to be

present, as in [98].

For the IIA dual of our M-theory model on T 7/ 〈α, β, γ2〉 of example 3.2, we take x4 to

be the M-theory direction, so that we obtain the dual theory IIA on T 6
123567 orientifolded

by

Γ∗2 =
〈

(−1)FL α∗Ω, β∗, γ∗2

〉
=
〈

(−1)FL R123Ω, R1256σ2, R1357σ1σ3

〉
.

This is the dual model labeled as “Orientifold B” in [88]. Applying T-duality in the

123-directions gives us Type IIB on T 6
1̂2̂3̂567

orientifolded by

Γ̃∗2 =
〈

Ω, β̃∗, γ̃∗2

〉
= 〈Ω, R1256σ̃2, R1357σ̃1σ̃3〉 .

The winding shifts persist in the S-dual Spin(32)/Z2 heterotic model as well. If we apply

T-duality to convert this to an E8 × E8 heterotic model, we end up with an instanton

configuration that looks locally similar to the N = 2 case.

The M-theory background of example 3.3, which lives on the space T 7/ 〈α, β, γ3〉, is

similarly dual to Type IIB on T 6
123567 orientifolded by

Γ̃∗3 =
〈

Ω, β̃∗, γ̃∗3

〉
= 〈Ω, R1256σ̃2, R1357σ̃1〉 ,
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where the only difference from the previous example is the lack of a winding in the x3-

direction. Thus, while the instantons in models 6.2 and 6.3 look rather different from

the E8 ×E8 heterotic perspective, the models differ on the Spin(32)/Z2 side only by the

inclusion of a winding shift on one coordinate, just as they differed on the M-theory side

by only a momentum shift. Explicit calculations of the effect of winding shifts on the

T 6/Z2
2 background of [90] would further explain the instanton effects, but is beyond the

scope of this work.

2.8 Discussion

To better understand the types of point-like instantons that appear in our E8 × E8

backgrounds, we may compare examples 6.2 and 6.3, our two N = 1 cases. These ex-

amples live on the same Calabi–Yau orbifold, so the difference in their non-perturbative

gauge symmetry cannot come from any mechanism that depends on the geometry alone.

For example, one might expect that the superpotential contributions from worldsheet

instantons could lift gauge bundle moduli in a way that differentiates the two cases.

However, the presence of worldsheet instanton effects at lowest order is controlled only

by the existence of rigid rational curves, so it is a property only of the geometry [99].

Thus, if we are to appeal to some part of the heterotic background to explain the dif-

ferences in non-perturbative behavior, it must be the background gauge field or B-field.

A particularly attractive mechanism is Wilson line backgrounds. We have already spec-

ified the perturbative Wilson line background via the half-K3 limit, but there may be

additional Wilson line effects involving the non-perturbative part of the gauge group,

and these may break this part of the gauge symmetry in the low energy effective theory.

To further understand the behavior of the non-perturbative spectra in our examples, we

will discuss the relation to two other heterotic phenomena: Hořava–Witten duals and
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coupled heterotic moduli.

2.8.1 Gauge Locking in Hořava–Witten Duals

As observed in [41], Hořava–Witten theory [34, 35] suggests that our heterotic models

should have an additional M-theory dual on a background of the form T 6/H × S1/Z2.

Then, via the heterotic string, we should have an M-theory/M-theory duality between

compactifications on G2 spaces and Hořava–Witten compactifications. One interesting

aspect of this duality is how the heterotic point-like instantons are represented on each

side. In the heterotic duality with Hořava–Witten theory, point-like instantons on orbifold

singularities are thought of as fractional M5-branes wrapped on the singularity. On the

other hand, in the duality with M-theory on G2, the instantons correspond to M2-branes

wrapped on degenerate K3 fibers. This is an example of electromagnetic duality for the

C-field that interchanges M2 and M5 branes [100, 101]. Thus, Hořava–Witten theory

offers an electromagnetically dual perspective from which to investigate our phenomena.

In the dual pairs of examples 6.1 and 6.2, we found that the M-theory geometry

dictates a spectrum that looks subtle from the E8 × E8 heterotic side, where gauge

symmetries from different singular loci are united. This phenomenon is familiar from

studies of heterotic orbifolds via Hořava–Witten theory, where it has been found that

7-planes stretching between the 10-plane ends of the M-theory interval can carry gauge

degrees of freedom that “lock” together, reducing to a smaller subgroup [56, 57, 58, 102].

An example considered first in [56] and later in [58] is a heterotic compactification on

T 4/Z2 with perturbative gauge group SO(16) × E7 × SU(2) (up to Z2 quotients). The

point-like instantons required to cancel the magnetic charge of the 16 A1 singularities

would naively contribute a non-perturbative gauge symmetry of SU(2)16, but it can be

shown by duality with F-theory that all SU(2) factors are broken to a common diagonal
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SU(2), denoted SU(2)∗, so that the full gauge group is SO(16)×E7×SU(2)∗. In this sense,

all of the non-perturbative SU(2) factors and the perturbative SU(2) factor are “locked”

together. The M-theory mechanism invoked to describe this phenomenon is nonzero

G-flux required by anomaly cancellation, deforming the Hořava–Witten geometry away

from a metric product. The gauge locking explains how the perturbative twisted spectrum

can include matter charged under both E8 factors, even though they are separated at

either end of the Hořava–Witten interval—the singular 7-planes carry the gauge quantum

numbers between the two ends.

In [102], similar phenomena were found for the Hořava–Witten picture of a heterotic

T 6/Z3 orbifold. In this case, the effective theory is 4D and the states charged under

the two E8 factors are not localized to one side. Instead, the states that carry the

bifundamental representation of SU(3) subgroups of the two E8 factors are spread over

the length of the interval in a meson-like configuration.

These Hořava–Witten phenomena—gauge locking and delocalized bundle configurations—

are very similar to the semi-localized instantons that we observe in our examples, so it

is possible that they are incarnations of the same type of phenomenon seen from dual

perspectives. However, our examples do not have a topological defect analogous to an

orbifold 7-plane to carry quantum numbers between matter loci. Additionally, the gauge

locking is achievable on heterotic backgrounds that lack a momentum shift, so its inter-

pretation in a dual Type I model may be quite different from that of the semi-localized

instantons. The relation between these phenomena is an interesting question for future

work.
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2.8.2 Coupled Heterotic Moduli

An important feature of heterotic compactifications is that the moduli space does

not factorize into complex structure and gauge bundle moduli: the two are coupled by

the fact that the gauge bundle must remain holomorphic, so that a particular bundle

configuration is compatible with only certain deformations of the complex structure [59].

This may allow our semi-localized point-like instantons to lift moduli that are unphysical

from the M-theory perspective by coupling bundle moduli to the Kahler and complex

structure moduli of the loci on which they are supported. For instance, in example 6.2,

because the T 3 loci of the G2 orbifold intersect the heterotic geometry in T 2 t T 2 loci,

the T 2 loci cannot be blown up or deformed independently, but must have their moduli

coupled, as they are part of the same T 3 locus in the ambient space. Thus, coupling

of these moduli by semi-localized instantons of the gauge bundle looks quite natural.

In this sense, we may think of the singularities of the heterotic orbifold as “partially

frozen”, since the directions of moduli space that correspond to independent resolutions

of singular loci have become massive.

2.8.3 Future Directions

This chapter is based on the half-G2 limit and point-like instantons on orbifold sin-

gularities, neither of which has been fully understood in the literature. Consequently,

there are many directions in which this work can be taken to deepen our knowledge of

non-perturbative aspects of M/heterotic duality.

• As discussed in previous sections, there are several perturbative and non-perturbative

spectrum computations that would elucidate the relations between our M-theory,

heterotic, and Type I backgrounds, but were beyond the scope of this work. Of

particular interest would be a calculation of the Type I spectra with the effects of
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winding shifts, as described in section 7, as well as a calculation of the heterotic

spectra taking into account Wilson lines and the lack of modular invariance, as in

[71].

• In this chapter, we restricted ourselves to A1 singularities, but there exist examples

of G2 orbifolds with other ADE singularities. How does the half-G2 map operate

in those situations? The choice of a throat coordinate was made simple by the fact

that the elements of Γ acted as reflections, but the choice may not be so obvious if

the group elements act in more complicated ways.

• A next step in the understanding of the half-G2 map would be to consider more

general M-theory backgrounds that include nontrivial profiles for the C-field and

7D gauge fields. Additionally, studying G2 orbifolds with intersecting codimension

4 singularities and/or codimension 7 singularities will allow for a greater variety of

matter representations. The Type I tadpole cancellation conditions in the alternate

duality chain of section 7 give another way to look at the presence or absence of

singularities in the G2 moduli space.

• The examples of G2 orbifolds that we look at in this chapter are non-generic in

the sense that they have multiple K3 fibrations, giving us extra tools to work with

in determining the heterotic gauge bundle. In particular, extra K3 fibrations on

the M-theory side will guarantee a K3-fibration on the heterotic side (in the half-

G2 limit), which simplifies our treatment of point-like instantons by increasing the

amount of supersymmetry in the local theory. Eventually, the half-G2 map should

be generalized to K3-fibered G2 orbifolds that have only one fibration and dual

heterotic orbifolds that only enjoy an SYZ fibration.

• Reconstruction of heterotic gauge bundles from fiberwise data on a T 3 fibration is
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not yet well-understood, but progress is being made in that direction via the 3D

Hitchin system and related spectral cover descriptions of heterotic gauge bundles

[103, 104, 105, 106]. These methods give a promising route toward a rigorous algo-

rithm for constructing non-perturbative heterotic duals of M-theory backgrounds.
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Chapter 3

T 3-Invariant Heterotic

Hull-Strominger Solutions

3.1 Introduction

Since the early days of string theory, heterotic compactifications have been a fruitful

road towards realistic models of particle physics, beginning with the seminal paper of

Candelas, Horowitz, Strominger, and Witten [107]. It is common practice to look for su-

persymmetric solutions by compactifying on a six-dimensional Calabi–Yau manifold with

a gauge bundle, at least as a zeroth-order geometry. However, α′-corrections generically

induce torsion [108, 109], whereby the geometry is described by a more complicated set of

equations known as the Hull-Strominger system. The geometric features of the torsional

Hull-Strominger system are much more mysterious than their Calabi–Yau cousins. Part

of the purpose of this chapter is to shed light on the local geometry of these solutions by

considering a certain dimensional reduction of the geometry and studying local solutions

to the system in this limit. In fact, the reduced solutions we present constitute new

T 3-invariant local solutions of the Hull-Strominger system.
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Another route to physically realistic effective theories is via M-theory on singular G2

holonomy spaces [42]. Specifically, G2 holonomy spaces with codimension-7 singularities

sitting in codimension-4 orbifold loci may give a geometry on which M-theory can produce

realistic models of particle physics. One tool to investigate M-theory compactifications

is the duality between M-theory on a K3 surface and the E8 × E8 heterotic string on

T 3 [9]. This duality is simplest in the limit of large heterotic volume, which corresponds

on the M-theory side to the half-K3 limit, where the K3 surface is stretched along one

direction (analogous to the stable degeneration limit of F-theory). This duality may

be adiabatically fibered over a 3D base to obtain 4D effective theories: when the G2

holonomy space of the M-theory geometry carries a coassociative K3 fibration, we expect

it to be dual to the E8×E8 heterotic string compactified on a Calabi–Yau threefold with

a fibration by special Lagrangian 3-tori, known as an SYZ fibration [30]. The conditions

of N = 1 supersymmetry additionally require that the heterotic background gauge field

must satisfy the Hermitian Yang-Mills equations. The equations we study in this chapter

may be understood as an approach to this duality from the heterotic side, where they

give the lowest order α′-corrections to the heterotic large volume (i.e. M-theory half-K3)

limit. This is a step towards the α′-corrected heterotic dual of Donaldson’s local adiabatic

limit of co-associative fibered G2 manifolds [65], applicable in the M-theory setting.

Compact spaces of the required type for physically realistic effective theories are not

yet available: on the M-theory side, no compact G2 holonomy spaces with codimension-7

singularities sitting inside orbifold loci have been constructed, and on the heterotic side,

Hermitian Yang-Mills connections over compact SYZ fibrations are not well-understood.

Thus we are currently limited to working with local models of such geometries. The

Hull-Strominger system, when reduced on the fibers of a local model T 3×R3 of the SYZ

geometry, gives an α′-corrected version of the equations for a stable complex flat connec-

tion in 3D, which were introduced in [68]. These equations give a fruitful playground for
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understanding the matter spectrum of G2 (and heterotic) compactifications, and have

been studied in various ways in the literature. A method for computing spectra of solu-

tions via Morse cohomology was given in [103], and the method was extended and applied

in [104] to reduced models of twisted connected sum G2 holonomy spaces [110, 23, 24].

The cohomology method was further extended to local G2 holonomy spaces in [111]. The

first non-abelian solution was given in [105], where an SU(3) solution was constructed

from the M-theory perspective via T-branes [112]. The authors of [105] point out that

such non-abelian solutions can allow for chiral zero-modes, even if the upstairs G2 ge-

ometry locally has only a codimension six singularity, and they present a local example

with an explicit construction of such a chiral mode.

In this chapter, we study non-abelian stable complex flat connections from a heterotic

perspective. We present a Morse-Witten type cohomology that can be used to compute

the index of such solutions. If we make some additional assumptions for the types of non-

abelian solutions considered, we can also use this cohomology to compute the spectrum.

We also investigate how α′-corrections coming from the local reduced Hull-Strominger

system correct and change the tree-level solutions. We consider how α′-corrections may

modify the generic behavior of solutions near sources, and how the metric and D-term

stability condition receive non-trivial corrections due to the heterotic Bianchi-Identity

close to the sources. In particular, for generic non-abelian solutions, we are forced to

introduce a two-form field which alters the equations in an interesting way.

The chapter is organized as follows. In Section 3.2, we introduce the Hull-Strominger

system, reduce it on a local model for an SYZ-fibered Calabi–Yau threefold, and compute

the α′-corrections to the resulting 3D equations for a stable complex flat connection. In

Section 3.3, we explore solutions to this system of equations, beginning with abelian

solutions and then examining a non-abelian monopole-type solution. In Section 3.4, we

introduce a method for computing the chiral spectrum or chiral index of non-abelian
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solutions that become asymptotically abelian near sources of the Higgs field, or at least

remain well-behaved. In Section 3.5, we present examples of spectrum computations. In

Section 3.6, we give our conclusions and further directions.

3.2 The Hull-Strominger System

We start by first recalling the α′-corrected system of equations that must be satisfied

by the geometry, gauge bundle, dilaton, and B-field of an N = 1 heterotic background.

The manifolds of interest admit an SU(3) structure (X,Ω, ω), where Ω is a complex

nowhere vanishing three-form and ω is a real two-form of maximal rank. The form Ω is

also required to be locally decomposable, which implies that it endows X with an almost

complex structure J [113]. Moreover, Ω is a (3, 0) form with respect to J .

The forms Ω and ω now satisfy the usual SU(3) structure relations

i
||Ω||2 Ω ∧ Ω = 1

6
ω ∧ ω ∧ ω , ω ∧ Ω = 0 . (3.1)

The first equation identifies the volume forms defined by the two structure forms, while

the second relation says that ω is of type (1, 1) with respect to J . For supersymmetric

heterotic compactifications to four dimensional Minkowski space,

M9,1 =M3,1 ×X , (3.2)
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the internal geometry X is required to satisfy the relations [108, 109, 114]

d(e−2φΩ) = 0 (3.3)

d(e−2φω ∧ ω) = 0 (3.4)

i(∂ − ∂)ω = H , (3.5)

where φ denotes the heterotic dilaton and H is given by

H = dB + α′

4
(ωCS(A)− ωCS(∇)) . (3.6)

Here A is the gauge connection of a vector bundle with structure group contained in

either E8 × E8 or SO(32), while ∇ is an End(TX) valued connection which will play

less of a role for us1. The two-form B is the heterotic Kalb-Ramond field, which has to

transform under gauge transformations in order that the flux H remains gauge invariant

[121]. The three form then satisfies the heterotic Bianchi identity

dH = 2i∂∂ω = α′

4
(tr F ∧ F − trR ∧R) , (3.7)

where F and R are the curvatures of A and∇ respectively. For our local explicit solutions,

the last term on the right hand side will be of cubic order in α′ and will hence be dropped

from now on. However, this term will be important when one considers compact global

issues.

The first condition (3.3) implies that the complex structure defined by Ω is integrable,

so (X, J) is a complex manifold. The second condition (3.4) is known as the conformally

balanced condition, while the third condition (3.5) identifies the heterotic NS three-form

1The freedom to choose ∇ has been discussed extensively in the literature, see e.g. [115, 116, 117,
118, 119, 120].
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flux in terms of the internal geometry. In addition, the gauge bundle is required to satisfy

the supersymmetry conditions

F ∧ Ω = 0 , ω ∧ ω ∧ F = 0 , (3.8)

often referred to as the Hermitian Yang-Mills conditions. Indeed the first condition

implies that F is of type (1, 1), which means that the bundle is holomorphic. The second

condition is the Yang-Mills constraint, which implies that the bundle is poly-stable by

the Donaldson–Uhlenbeck–Yau theorem [122, 123].

The system of equations (3.3)-(3.5) together with the heterotic Bianchi identity (3.7)

and the Hermitian Yang-Mills conditions (3.8) are often referred to as the Hull-Strominger

system. It is (perturbatively) accurate modulo cubic corrections in α′.

3.2.1 Reducing the Hull-Strominger system on T 3 ×M3

We are interested in solutions of the Hull-Strominger system on local models for

Calabi–Yau manifolds, or more generally torsional models solving the Hull-Strominger

system. In particular, we assume that the internal geometry has a special Lagrangian T 3

fibration [30]. Locally we can model such a geometry as

X = T 3 ×M3 . (3.9)

We will also assume the fibers T 3 to be sufficiently small, so that we can have our solution

depend nontrivially only on the M3 coordinates. In this chapter we will take M3 to be

either S3 or R3 for local models of M3. Let us proceed to consider such local models

where M3 = R3.

The tree-level (α′ = 0) geometry then consists of a Calabi–Yau metric on this space,
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with a local complex structure given by

dzi = dxi + idφi , (3.10)

where {x1, x2, x3} are the coordinates on M3, while {φ1, φ2, φ3} are the coordinates of

the three-torus. Other ansatze for the geometry are of course possible. In particular,

we discuss an ansatz in appendix A with relevance for local heterotic/F-theory duality,

which also turns out to result in a α′-corrected version of the t’Hooft-Polyakov monopole

[124, 125].

Locally on T 3×R3 we have the corresponding complex top-form and Hermitian form

given by

Ω0 = dz1 ∧ dz2 ∧ dz3 , ω0 = λ2

3∑
i=1

dxi ∧ dφi = g0ijdx
i ∧ dφj , (3.11)

where λ denotes a constant size parameter. This model SU(3) structure corresponds

to a flat tree-level metric. We will use this as our model for explicit R3 computations

throughout this chapter, leaving reductions to more generic curved backgrounds for future

work.

Let us then reduce the Hermitian Yang-Mills equations on this system. We first

expand

A = Axi dx
i + Aφi dφi , (3.12)

where Ax and Aφ are assumed to depend only on the non-compact coordinates. We have

dA = d + A , F = dA+ A ∧ A . (3.13)
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Plugging this into the holomorphic constraint gives

F x = Aφ ∧ Aφ (3.14)

dAxA
φ = 0 , (3.15)

where dAx is the exterior covariant derivative with respect to the connection Ax, and

where Aφ = Aφi dxi transforms as a one-form on R3 due to a topological twist. This

twisting occurs because the T 3 fiber is a special Lagrangian, so that its normal bundle

is isomorphic to its tangent bundle [48]. The F-term equations (3.14) and (3.15) can be

recast as the equation for a complex flat connection

A = Ax + i Aφ , FA = dA+A ∧A = 0 . (3.16)

Reducing the Yang-Mills conditions gives a co-closure constraint on Aφ. At zeroth order

in α′, the equation reads

d†AxA
φ = 0 . (3.17)

where the dagger denotes an adjoint taken with respect to the tree-level metric from

(3.11). This equation can be viewed as a stability condition on the flat connection [126].

Together, the F-term equation (3.16) and D-term equation (3.17) comprise the equations

for a stable complex flat connection in 3D.

Including α′-corrections modifies the D-term co-closure equation while preserving the

F-term flatness condition, as we will see in the next subsection.
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3.2.2 The Back-Reacted Geometry

Now we will consider α′-corrections to our equations. Instanton configurations of the

type (3.14)-(3.24) will back-react on the geometry through the heterotic Bianchi identity

(3.7) and supersymmetry conditions (3.3)-(3.5). Such back-reactions will only become

relevant close to sources, and so we restrict ourselves to a local patch containing the

source.

A short computation using (3.14)-(3.15) reveals that for the reduced geometry, the

Pontryagin class may be written as

trF∧F = −dxd̃xtr
(
Aφ ∧ Ãφ

)
+ 2

3
dxtr

(
Ãφ ∧ Ãφ ∧ Ãφ

)
− 2

3
d̃xtr

(
Aφ ∧ Aφ ∧ Aφ

)
, (3.18)

where dx = dxi∂i, d̃x = dφi∂i and Ãφ = dφiAφi . Using the Hodge decomposition of M3,

it follows that

2
3

d̃xtr
(
Aφ ∧ Aφ ∧ Aφ

)
= d̃xdxB (3.19)

for some real two-form B ∈ Ω2(M3). We then find

trF ∧ F = dxd̃x

(
B + B̃ − tr

(
Aφ ∧ Ãφ

))
, (3.20)

where B̃ = 1
2
Bijdφ

ij. From the Bianchi identity (3.7), it follows that ω is corrected to

ω = ω0 − α′

16

(
tr
(
Aφ ∧ Ãφ

)
−B − B̃

)
, (3.21)

where ω0 is the tree-level solution, which satisfies

dxd̃xω0 = 0 . (3.22)
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Locally on R3 we will take ω0 to be given by (3.11) above, i.e. corresponding to the flat

metric. From ω we get a corrected metric

gmn = g0mn − α′

16
tr
(
AφmA

φ
n

)
, (3.23)

on M3, where g0 is the metric derived form ω0.

Before we consider the α′-correction to (3.17), let us first make an observation con-

cerning the two-form B we introduced above. It is tempting to speculate that by giving

an appropriate α′-correction to the complex structure ansatz (3.10), we can absorb B,

leaving a Hermitian form as in (3.11) but with g0ij = λ2δij replaced by gij. However, it

turns out that if the deformed complex structure is to remain integrable, then B must

be a closed two-form if it is to be cancelled by such a deformation. As only the exterior

derivative of B appears in the Bianchi identity, we see that such a deformation cannot

absorb B.

The α′-corrections to the D-term supersymmetry equation, which is the reduction of

the Yang-Mills condition for the gauge sector, reads

gmn∇x
mA

φ
n = α′

16
BnqAφnA

φ
q , (3.24)

where indices are raised and lowered using gmn, and∇x
m acts as the Levi-Civita connection

on space-time indices. Note at zeroth order in α′ this is just the co-closure condition,

but for general non-abelian connections where B 6= 0, the equation gets corrected even

at first order in α′. The appearance of the Levi-Civita connection for the α′-corrected

metric does not come directly from reduction of the Hermitian Yang-Mills equations, but

is implied by the topological twist discussed in the previous subsection. Interestingly, the

additional terms in the covariant derivative required by the Levi-Civita connection vanish
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to first order in α′ when contracted with the inverse metric, so the different choices of

connection are equivalent to the order to which the Hull-Strominger system is corrected.

We also need to check the conformally balanced condition (3.4). A somewhat lengthy

computation gives the dilaton factor as

dxφ = α′

64
dx
(
tr(AφmA

φm) + α′

32
tr(AφmA

φ
n)tr(Aφ

m
Aφ

n
) + α′

32
κ f − α′

32
BmnB

mn
)
, (3.25)

where we have used (3.24), and where one must also choose B so that

∇mBmn = 0 . (3.26)

Here indices are again raised and the adjoint is taken with respect to the metric g. We

are free to assume B is co-exact, given in terms of a function f as

Bnp = ∇m(f εmnp) . (3.27)

The constant κ is the part of tr(Aφ ∧ Aφ ∧ Aφ) proportional to the volume form

2
3

tr(Aφ ∧ Aφ ∧ Aφ) = dxB + κ ∗ 1 . (3.28)

On R3 this can be absorbed in dxB, as any three-form on R3 is exact by the Poincare

lemma.

Finally, we can also check that (3.3) is satisfied, provided that we take

Ω = e2φΩ0 . (3.29)

Additionally, it can be verified that the SU(3) conditions (3.1) are also satisfied.
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3.3 Solutions to the Reduced System

The natural place to begin a search for stable complex flat connections is smooth

solutions of finite energy. However, in analogy to the 4D Hitchin system on R4, it seems

likely that any smooth, finite energy stable complex flat connection is gauge equivalent

to the trivial solution. We will show below that this is true if one assumes strong enough

fall-off conditions on the Higgs field. The implications are that finite energy solutions

must not be smooth, which we take to mean that the Higgs field has singularities along

a configuration of sources.

To see that the claim is true for strong enough fall-off conditions, we look at a corollary

of the Bochner-Weitzenboch identity that holds for solutions of the complex Yang-Mills

equations (and thus for solutions of (3.16)-(3.17)):

1

2
∆
∣∣Aφ∣∣2 − ∣∣∇AxA

φ
∣∣2 − ∣∣Aφ ∧ Aφ∣∣2 = 0

where Ax + iAφ satisfies the complex Yang-Mills equations and we have specialized to

R3 to drop a term involving the Ricci curvature [127]. We then integrate this equation

over R3. The Laplacian term may be integrated via Stoke’s theorem, and with strong

enough fall-off conditions on Aφ, this tells us that the integral of this term vanishes. In

that case, we have that the sum of the other two terms vanishes. Because these terms

are negative semidefinite, we conclude that

∇AxA
φ = 0, Aφ ∧ Aφ = 0

The second equation tells us that F x is zero (via the F-term equation) and because we

are on R3, we may then choose a gauge in which ∇Ax = d, and then the above equations

imply that Aφ is trivial.
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It seems likely that the 6D finite energy condition, when reduced to 3D, will provide

strong enough fall-off conditions for the vanishing of the integrated Laplacian above. To

prove this hypothesis would require additional analysis of 3D gauge theory that we leave

for future work.

The above argument applies only to the tree level α′ = 0 equations. For the α′-

corrected system, we do not have access to a Bochner-Weitzenboch identity, so cannot

rule out smooth solutions in the same way. However, in the cases examined below,

including α′-corrections to a solution that is singular at tree level does not smooth out

the singularity, and instead worsens the singularities (at least at O(a′), where the solution

is reliable).

3.3.1 Abelian Solutions

The simplest solutions to the reduced Hull-Strominger system are found by taking the

gauge group to be abelian. It turns out that, as we will see below, these are also relevant

to certain non-abelian solutions with sources. Indeed, we will argue that for a certain

type of non-abelian solution, the part of the connection which sees the source effectively

becomes abelian. It thus makes sense to investigate closer the local geometry of such

solutions near sources. These solutions were also extensively studied as local models for

M-theory compactifications on G2 manifolds in [42, 103, 104, 105, 128].

The Higgs field of an abelian solution satisfies Aφ ∧ Aφ = 0, which by (3.14) implies

F x = 0. Assuming we are on a simply connected space M3, we may then choose Ax = 0.2

Thus we can decouple the gauge and tangent bundle factors of Aφ and search for Aφ ∈

Ω1(M3) satisfying the F-term and D-term equations

dAφ = d†Aφ = 0 , (3.30)

2Our space will either be S3 or the local model R3.
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where the adjoint is taken with respect to the α′-corrected metric. Thus we are looking

for harmonic 1-forms on M3. We will work in a patch, so that the closure condition on

Aφ implies by the Poincare lemma that we can set

Aφ = dψ , (3.31)

for some real function ψ. The co-closure condition then becomes

d†dψ = 0 , (3.32)

and so we are looking for harmonic functions on R3, which may blow up at sources. Note

that the metric is given as

gmn = g0mn − α′

8
∂mψ∂nψ , (3.33)

where the factor of 2 relative to (3.23) comes from the trace, and the form of g0 is given

by (3.11). The dilaton is

φ = α′

64
gmn∂mψ∂nψ + α′2

32×64
(gmn∂mψ∂nψ)2 , (3.34)

where we have set the constant part of the dilaton to zero. Let us go on to consider some

common local solutions on R3 and their α′ corrections.

At zeroth order, the radially symmetric solution is the standard monopole harmonic

function

ψ(r) = C
r

+O(α′) , (3.35)

for some constant C corresponding to the charge of the monopole. Given the monopole
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solution (3.35) for ψ, we find that the dilaton is

φ =
α′C2

64λ2 r4
+O(α′2) . (3.36)

The only component of the metric that is corrected is grr:

grr = λ2 + α′C2

8r4 +O(α′2) . (3.37)

Note that both the dilaton and metric blow up as r → 0.

Exact Solution and large charge limit

Local solutions to torsional heterotic compactifications and the Hull-Strominger sys-

tem with abelian bundles have been studied from different perspectives before [129, 130,

131, 132]. The benefits of studying abelian bundles is that a particular double scaling

limit can be employed, where the charge of the gauge field is sent to infinity, while α′ is

sent to zero in a controlled manner. This results in a finite correction to the geometry at

first order in α′, while higher corrections vanish. The solution is one-loop exact.

We consider the exact solution to the reduced Hull-Strominger system with a radially-

symmetric potential field ψ(r). If we solve equation (3.24) using the α′-corrected metric,

we find

ψ′(r) = − C√
r4−α′ C

2

8λ2

(3.38)

This Higgs field no longer blows up at the origin, but at a non-zero radius. From this

Higgs field, we can calculate the metric, which again is corrected only in its grr component:

grr = λ2

1−α′ C2

8λ2r4

. (3.39)
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This Higgs field, metric, and Riemann curvature blow up at the finite radius r4
0 = α′C2

8λ2 ,

indicating that there is a spherical source at this radius. The Higgs field becomes imag-

inary inside r = r0, so our solution is unphysical inside this radius and cannot tell us

about the interior. The radius r0 depends on the size parameter λ such that in the large

volume limit λ→∞, the singularity becomes concentrated near the origin. We also see

from (3.39) that the appropriate double scaling limit to consider when sending α′ to zero

is to rescale the charge so that α′C2 remains finite.

There are no further corrections to the Higgs field or metric from the Hull-Strominger

system. However, outside of the large charge limit the D-term equation itself is expected

to receive further corrections at O(α′2), so the exact solution to the O(α′) equation may

not be physically reliable at higher orders in the SUGRA expansion. One may also extend

this analysis to the case of multiple monopole sources in a straightforward way.

We can also consider the solution close to a one-dimensional source. This is effectively

a two-dimensional problem with cylindrical symmetry. The zeroth order solution now

reads

ψ(ρ) = C log(ρ) +O(α′) , (3.40)

where now C denotes the charge density along the source. The results for this case are

very similar to the monopole case, but with the substitution r2 → ρ. In particular, the

fully corrected Higgs field and metric are now

ψ′(r) = − C√
ρ2−α′ C

2

8λ2

(3.41)

and

gρρ = λ2

1−α′ C2

8λ2ρ2

(3.42)

This solution blows up at a nonzero radius in the plane transverse to ρ = 0, indicating a
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cylindrical source surrounding this line.

One may also examine solutions of the reduced Hull-Strominger system with negative

α′, which have interesting behaviors, though their physical relevance is less clear. In

this case, for the radially-symmetric solution, we find that the Higgs field is everywhere

smooth, while the metric has a curvature singularity at the origin, but is smooth at

r = r0. We may imagine smoothly adjusting α′ from a positive to a negative value and

tracking the behavior of the Higgs field singularity along the way: for α′ > 0, there is

a singular horizon at r = r0(α′), which contracts as we decrease α′. When α′ = 0, the

singularity sits at the origin in the Higgs field only, and when we continue to α′ < 0, the

singularity moves instead to the metric only, where it becomes a curvature singularity at

the origin.

3.3.2 SU(N) Solutions

Let us now look for solutions to the reduced Hull-Strominger system for non-abelian

gauge fields. In particular, we will restrict ourselves to gauge group SU(N), and our

main example will have an SU(2) gauge group. We will first consider the configurations

at tree-level in α′, and then discuss α′-corrections at the end of the section.

Our complex connection on R3 is given by

dAx = d + Ax , (3.43)

where Ax is a one-form valued in the Lie-algebra of SU(2), i.e. the span of the anti-

Hermitian Pauli matrices (in math conventions). A complex connection A can now be

constructed as

A = Ax + i Aφ , (3.44)
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where we require both Ax and Aφ to be anti-Hermitian, valued in su(2) with legs now

on the three-dimensional base. This implies that A takes values in the Lie algebra of

SL(2,C). The flatness condition on A then implies that

A = G−1dG , (3.45)

where G ∈ SL(N,C), at least locally. Because we are working on a local model, we may

take (3.45) as our ansatz. We thus have the real and imaginary parts of A given by

Ax = 1
2

(
G−1dG− dG†(G†)−1

)
(3.46)

Aφ = − i
2

(
G−1dG+ dG†(G†)−1

)
. (3.47)

We now use the polar decomposition which states that any invertible matrix can be

represented as

G = HU , (3.48)

where U is unitary and H is Hermitian matrix of positive eigenvalues. When G has

unit determinant, which we will assume, both H and U may be chosen to have unit

determinant as well, so that U ∈ SU(N). A transformation

G→ GŨ , (3.49)

where Ũ ∈ SU(N) transforms the gauge field and Higgs field as

Ax → Ũ †AxŨ + Ũ †dŨ (3.50)

Aφ → Ũ †AφŨ . (3.51)
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This then corresponds to usual gauge transformations. We can use this to make G

Hermitian, since there is always a gauge where

G = H . (3.52)

In this gauge, the gauge field and Higgs field read

Ax = 1
2
[H−1, dH] (3.53)

Aφ = − i
2
{H−1, dH} , (3.54)

where curly brackets denote the anti-commutator. An anti-Hermitian matrix of unit

determinant has N2 − 1 degrees of freedom (the dimension of SU(N)). The co-closure

condition

d†AxA
φ = 0 (3.55)

then gives a non-linear second order differential equation to be solved for H.

SU(2) Solutions

Now let us specialize to N = 2. We may further parameterize H as

H = H0 + c I2 , (3.56)

where H0 is traceless, c ∈ R, and I2 is the rank-2 identity matrix. We expand H0 in Pauli

matrices as

H0 =
∑
i

aiσi , (3.57)
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The condition that H has unit determinant is then

c2 −
∑
i

aiai = 1 . (3.58)

We are hence left with an overall number of four parameters {c, a1, a2, a3} describing the

complex flat connection, subject to the constraint (3.58).

In terms of H, the one-forms Ax and Aφ now read

Ax = −1
2
[H0, dH0] (3.59)

Aφ = i (H0dc− c dH0) , (3.60)

where we have used the relation (3.58), which implies that

d(H2
0 ) = d(c2)I2 . (3.61)

We now come to the tree-level stability equation

∂iA
φ
i + [Axi , A

φ
i ] = 0 . (3.62)

Plugging in (3.59) and (3.60) into this equation, we find the following nonlinear differen-

tial equation

−c2∆am + (∆c)am + 2a2∂ic∂iam − ∂ic∂i(a2)am − c∂i(a2)∂iam + 2c(∂iaj)(∂iaj)am = 0 ,

(3.63)

where a2 = ajaj and ∆ = ∂i∂i. Multiplying by c and using (3.58), this can be simplified
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a bit to

−c2∆am + (c∆c)am − 1
2
∂i(a

2)∂i(a
2)am − ∂i(a2)∂iam + 2c2(∂iaj)(∂iaj)am = 0 . (3.64)

Recall that the function c is determined by the ai’s through (3.58).

This is a rather complicated nonlinear differential equation, and it is not practical

to find a general solution. One might try to simplify matters by, for example, assuming

that the field c can be taken to be constant. This leads to the simpler equation

∆am − 2(∂iaj)(∂iaj)am = 0 , (3.65)

where by (3.58) we have used that a2 will also be constant in this case. Contracting this

equation by am and using (3.58) again, we find

(∂iaj)(∂iaj)(2a
2 + 1) = 0 , (3.66)

which can only be satisfied if ∂ia = 0. We conclude that in order to have nontrivial

solutions to (3.64), we need ∂ic 6= 0.

3.3.3 Monopole-Type Solution

We would like to find a Hermitian matrix that satisfies the constraint (3.58) and

solves equation (3.62). As we have seen, the general equation is quite complicated, but

the hope is that we can find a clever parameterization of H which solves the system.

To get a foothold, let us consider again (3.58). A convenient parameterization of c and
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a2 = aiai then reads

c = cosh(u(xi)) (3.67)

a2 = sinh(u(xi)) (3.68)

for some function u(xi). We will assume that u(xi) is radially symmetric, so that it

depends only on the radius r. We then write

H0 = sinh(u(r))ãiσi , (3.69)

where we have introduced the normalized ãi so that ãiãi = 1. We want to allow the

ãi to depend on coordinates other than r, since otherwise the field Aφ will square to

zero and the curvature is flat everywhere. We may try a simple ansatz inspired by the

t’Hooft-Polyakov monopole [124, 125]:

ãi = x̂i = xi
r
. (3.70)

In this case, the eigenvalues of H are given by e±u.

Plugging this ansatz into the equations and solving the system using Mathematica,

we find that the reduced Hull-Strominger system is indeed solved provided the function

u satisfies the equation

2r2 ∆u(r) = sinh(4u(r)) . (3.71)

where ∆ is the Laplacian. Equation (3.71) becomes even simpler if we view it in terms

of the inverse variable

t = 1
r
, (3.72)
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which gives

2t2 u′′(t) = sinh(4u(t)) . (3.73)

Note that this equation implies that the second derivative of u(t) always takes the sign

of u(t). In particular, a solution that tends to zero at large r must necessarily blow up

at some small r. To see this, assume that u(t)→ 0 as t→ 0. Then the equation to first

order in t is

4u(t)− 2t2 u′′(t) = 0 , (3.74)

with solution

u(t) = C1 t
2 + C2

t
. (3.75)

To avoid a singularity at t = 0, we must set C2 = 0. The remaining solution will continue

to grow for larger t, i.e. as r tends to zero.

Equation (3.75) is a good approximation for the solution in a region of t when u(t)

is small, but the non-linear effects in (3.73) from the hyperbolic sine will sooner or later

come into play. Numerical results suggest that these non-linear effects force the solution

to blow up at finite t. Thus any solution that tends to zero at t = 0 will at best be

defined on an interval of the form (0, t1), while a solution that tends to zero at t =∞ is

at best defined on an interval (t1,∞), where the solution blows up at t1 > 0. Switching

back to the r coordinate, it is also interesting to note that for solutions that tend to zero

at the origin, we have u growing linearly in r away from zero. Hence, the eigenvalues of

H are not smooth at the origin for such solutions, although it can be checked that the

complex flat connection is nonetheless well-defined and smooth. See Figure 3.1 for a plot

of an example solution.

We have sources where u(r)→ ±∞, meaning that the sources are spherical, as in the

earlier α′-corrected abelian example. We will consider later what happens to the solution
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Figure 3.1: A particular solution to the D-term equation for the boundary condition
u(1) = 1, u′(1) = 0, with α′ = 0.01. At zeroth order and first order in α′, the
solutions show similar behavior, with two finite-r singularities. The exact solution
instead removes the small-r singularity and pushes the other to r →∞.

as we approach such sources.

α′-Corrections

Now we will add the α′-corrections to the monopole-type solution. To do so, we keep

the same ansatz for the complex flat connection, but we modify our D-term equation to

(3.24). Again, this matrix equation reduces to an ODE for the function u(r):

∆g̃u(r) =
512r2 sinh(4u(r)) + 8α′ sinh2(2u(r))

(
4u(r) + sinh(4u(r))

)(
32r2 + α′ sinh2(2u(r))

)2 , (3.76)

where ∆g̃ is the Laplacian with respect to the α′-corrected metric defined in (3.23).

Unlike the abelian case, it is difficult to define a large-charge limit. The α′-corrections

are generically not one-loop exact, and we find qualitatively different results when solving

the equations to O(α′) or exactly in α′. This is as expected, because the Hull-Strominger
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system includes only the first order correction in α′, and higher order effects are expected

to enter from supergravity and gauge theory sectors beginning at O(α′2).

Numerical solutions of the equation truncated to first order in α′ suggest that the

singularity behavior for solutions to the one-loop equation are similar to that of the

uncorrected equation, with generic solutions existing on an interval (r1, r2) (see Figure

3.1). Meanwhile, numerical solutions to the exact D-term equation have no singularities

in u(r) or its first derivative for finite r, although u(r) blows up linearly as r → ∞.

The solution approximates the zeroth order solution and α′-corrected solution well in

the interval (r1, r2). Thus, when compared to the α′ = 0 solution, the exact solution to

the α′-corrected equation seems to smear the non-abelian sources such that the finite-r

singularities disappear. The exact α′-corrected metric exhibits interesting behavior as

well, as it becomes approximately anti-de Sitter outside of the region (r1, r2). However,

these behaviors must be interpreted with caution because of the unknown higher-order

α′-corrections.

For additional analysis of the D-term equation, we will work in a different gauge,

where instead of choosing the complex gauge transformation G to be Hermitian, we

choose it to be of the form

G = UD (3.77)

with U ∈ SU(2) and D a diagonal matrix with positive eigenvalues. For the monopole-

type solution, these matrices are

D =

 eu(r) 0

0 e−u(r)

 , U =

 cos(θ/2) eiφ sin(θ/2)

−e−iφ sin(θ/2) cos(θ/2)

 , (3.78)

where (θ, φ) are the usual angles of R3. The function u(r) satisfies the same D-term
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equation (3.76). In this gauge, the complex flat connection is

A =

 −iu′(r)dr − sin2(θ/2)dφ 1
2
eiφe−2u(r)(−idθ + sin θdφ)

1
2
e−iφe2u(r)(idθ + sin θdφ) iu′(r)dr + sin2(θ/2)dφ

 . (3.79)

Near sources for the Higgs field, both u(r) and u′(r) blow up, so some components of

A will blow up as well. We can examine the rates at which components of A blow up

near the sources at r = r1 and r = r2 to determine the behavior of A. In particular,

the ratio of u′(r) to e2u(r) determines whether the diagonal or off-diagonal components of

A dominate in the limit. The behavior of u(r) is controlled by the D-term equation, so

we see that α′-corrections may influence the behavior of A near the sources. Numerical

results suggest that ∣∣ u′(r)/e2u(r)
∣∣→ c (3.80)

for a constant c that is positive when u(r) satisfies the tree-level or one-loop D-term

equation. Thus, all terms in A are of the same order, and the solution is fully non-abelian

near the singularities. We may also consider the exact solution to the α′-corrected D-

term equation, for which there is no singularity at r1 and r2 → ∞. In this case, we

find that c = 0 for the singularity at ∞, so that the off-diagonal components dominate.

Furthermore, the lower left component of A dominates the top right one, so that for

a fixed (θ, φ), the connection sits asymptotically in an abelian subalgebra of sl(2;C).

However, the dependence of the differentials on θ and φ ensure that A sits in a different

abelian subalgebra at every point on the celestial sphere.

The behavior of the Higgs field near sources determines what methods may be used

to calculate its spectrum, as will be discussed in the next section. In the present case

of the monopole-type solution, its non-abelian behavior near sources prevents us from

calculating its spectrum directly, but we may reliably calculate its chiral index, as will
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be described below.

3.4 Localized Chiral Matter

Now we will consider the matter spectrum associated to non-abelian solutions to the

reduced Hull-Strominger system. In the abelian case, the spectrum is computed via the

relative cohomology of M3 with respect to the sources for the Higgs field. For non-abelian

solutions, the computation will not always be so straightforward, but in some cases we

may apply the same techniques as in the abelian case.

For our spectrum computations, we will assume a complex flat connection A with

trivial holonomy on the three-manifold M3. We write our connection as A = G−1dG

with a polar-decomposed gauge transformation G = ŨH, where Ũ is unitary and H is

Hermitian with non-negative eigenvalues. We may additionally choose a gauge in which

G = UD for a different unitary U and a diagonal D.3 We assume that A satisfies the

D-term equation, so that it provides a solution to the reduced Hull-Strominger system.

In this chapter we will assume that G is globally defined, but singular at points. The

implications of this are discussed further below. This resembles the common assumption

made for abelian Higgs fields φ = df where f is a global but singular function; other

generalizations of this abelian setup have been studied in, for example, [103, 111].

The effect of α′-corrections on the spectrum computation is only to modify the metric

on M3, which may modify the spectrum, but the method itself is independent of which

order in α′ we consider. Thus, we will not choose a particular order in α′ for this section.

We leave the case of A with nontrivial monodromies for future work.

3Note that we will use the same symbols A and G for the connection and SU(N)-valued function for
different choices of gauge. Because we will fix a certain gauge in each instance, this should not cause
ambiguity.
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3.4.1 Behavior Near Sources

Our analysis of the matter spectrum is dependent on the asymptotic form of the

Higgs field near its sources. We may classify the behavior of such solutions near a source

into three cases:

• Type 1: The connection A becomes abelian near the source, meaning that there exists

an abelian subalgebra h ⊂ g such that the norm of A becomes dominated by the

components along h as one approaches the source. In this case, we may calculate

the spectrum using methods analogous to those for an abelian solution.

• Type 2: The connection A = G−1dG does not become abelian near the source, but

U remains nonsingular, where U is the unitary matrix in G = UD. In this case,

the tools we develop to compute the spectrum using relative cohomology don’t

apply, but we may at least compute the chiral index reliably. We can do this by

smoothly deforming away U to obtain an abelian Higgs field, which may change

the spectrum, but not its index.

• Type 3: The connection A does not become abelian near the source and U becomes

singular. In this case, there is currently nothing we can say about the spectrum.

In this section, we will first consider the computation of the spectrum for Type 1 solutions,

and use deformation theory to address the chiral spectrum of Type 2 solutions. The

cohomology methods used in this section are a generalization of those introduced for flat

solutions in [103] and [104] to certain non-abelian solutions.

For a Type 1 solution with the Hermitian gauge choice, the flat connection may be

written asA = H−1dH in terms of a Hermitian matrix H which approaches the factorized
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form

H →

 D̃ 0

0 H̃

 , (3.81)

where D̃ is diagonal and gives rise to the abelian part of the connection, which blows

up near the source. The other block, H̃, is Hermitian and gives rise to the rest of

the connection, which may remain non-abelian near the source, but has a vanishing

contribution to the norm of A in this limit. This is the form we will assume a Type 1

solution approaches close to any source.

Note that for the particular set of equations studied here, i.e. non-abelian solutions

to the reduced Hull-Strominger system, we do expect stringy corrections to the equations

when we approach the sources. While the flatness condition will be unaffected, as it is

derived from an F-term, the D-term stability equation will receive corrections. There is

hence a small tubular neighborhood around any source wherein we do not know what

equations we are solving, except that the complex connection remains flat. Since finding

the true equations to solve is beyond the scope of this chapter, we will instead model

the true solution within this neighborhood by a flat connection of the above form, i.e.

with an abelian part containing the sources, plus a non-abelian part commuting with the

singular part. This can always be done since the boundary of the tubular neighborhood

is a Riemann surface Σ, and all maps from Σ into SU(N) are homotopy equivalent.

3.4.2 Matter Field Excitations

As in the case of abelian solutions, fermions can be represented as poly-forms ψR ∈

Ω∗(M3, ER), where ER is the vector bundle associated to the representation R of SU(N)

or its complexification, SL(N ;C). Chiral fermions correspond to odd forms while anti-
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chiral fermions are even. They solve the Dirac equation

DAψR = dAψR + d†AψR = 0 . (3.82)

We are interested in solutions that are localized appropriately away from the boundary

of the geometry4 or any singularities of the complex flat connection. We can then further

impose that

dAψR = 0 , d†AψR = 0 , (3.83)

which follows from a simple integration by parts argument. We may also assume without

loss of generality that ψR has a given form degree p. These equations are equivalent to

d (Gα · ψαR) = 0 , d
(
(Gα†)−1 · ∗ψαR

)
= 0 , (3.84)

in a local patch Uα, where Gα ∈ Γ(Uα, SL(N ;C)) is the local gauge transformation that

gives rise to the flat connection A. Here the dot denotes the action of G on the given

representation. (For example, if ψR is in the fundamental representation, it is just matrix

multiplication on a vector, whereas if R = Ad(SU(N)) it is the adjoint action.) The ∗

denotes the three-dimensional Hodge-star. The polar decomposition in a local patch is

given as

Gα = HUα , (Gα†)−1 = H−1Uα . (3.85)

Hence, solving the equations (3.84) is equivalent to solving the equations

d(H · ψ̃R) = 0 , d
(
H−1 · ∗ψ̃R

)
= 0 , (3.86)

4We will define more clearly what we mean by appropriately localized away from boundaries below.
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for ψ̃R = Uα · ψαR. Note that we have dropped the superscript α as ψ̃R is a global object,

i.e. ψ̃αR = ψ̃βR on overlaps Uα ∩ Uβ. We will also drop the tilde from here on.

Our matrix function H is globally defined because we have assumed that A has trivial

monodromies. But even if H were not global, we must still have

(Hα)−1dHα = (Hβ)−1dHβ (3.87)

on overlaps Uα ∩ Uβ. Using this and the fact that Hα and Hβ are positive definite

matrices, we see that

d(Hα · ψR) = 0 ⇔ d(Hβ · ψR) = 0 (3.88)

on overlaps. With this in mind we may as well take Hα and try to extend it to a full

global solution H. The obstructions for doing so will be the monodromies of A, which

can be trivialized by removing a submanifold of positive codimension, analogous to a

branch cut. Such an operation will modify the boundary conditions for the Higgs field,

which affects the spectrum.

Now we will go to a gauge where G = UD, where U is unitary and D is diagonal.

Again, because A has trivial monodromies, both U and D are globally defined. In this

gauge we have

d ((UD) · ψR) = 0 , d
(
(UD−1) · ∗ψR

)
= 0 , (3.89)

or equivalently

dA(D · ψR) = 0 , dA(D−1 · ∗ψR) = 0 , (3.90)

where A = U−1dU is a flat connection. If D is regular on M3, then solutions to the set
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of equations (3.86) are counted by the cohomology

H∗dA(M3;R) ∼= H∗d(M3;R) , (3.91)

where the isomorphism is due to the fact that A is a globally trivial flat connection.

However, as in the abelian case [103], if the eigenvalues of D blows up, we need to restrict

to solutions ψR with appropriate vanishing properties at those singular loci. This means

that we should compute a relative cohomology.

3.4.3 The Relative Cohomology

We are now in a position to define the relative cohomology in question. Let us rewrite

the closure equation in analogy with the abelian case as

d(Dψ̃) = 0 , (3.92)

where we have defined

ψ̃ = (D−1UD) · ψ , (3.93)

and we have dropped the R-label on the fields. Note that because U factorizes at the

singularities, and in particular becomes the identity matrix for the eigenvalues corre-

sponding to sources, the SL(N ;C)-valued invertible matrix D−1UD is regular over the

three-manifold. Indeed, in the region of singularities U becomes block-diagonal and

the identity matrix for the given eigenvalues of D which blow up or vanish. As in the

abelian case, we will require the component ψ̃i (or equivalently ψi) to vanish where the

corresponding eigenvalue λi blows up.
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The co-closure equation reads

d(D−1 ∗ H̃ · ψ̃) = 0 , (3.94)

where we have defined the Hermitian metric on the bundle

H̃ = DUD−2U †D . (3.95)

We note that by the above reasoning, the metric H̃ is also regular over M3. In par-

ticular, it also approaches a block-diagonal form near the sources where it becomes the

identity matrix for the given eigenvalues of D which blow up or vanish. Again, as in

the abelian case we require the component ∗ψ̃i (or equivalently ∗ψi) to vanish where the

corresponding eigenvalue λi goes to zero.

We now come to defining the relative cohomology. Let us first comment on what we

take to be the domain of the component ψ̃i of ψ̃ corresponding to the ith eigenvalue of

D. As in the abelian case, we will take this to be M i
3 = M3 \∆+

i ∪∆−i , where ∆+
i and

∆−i are small tubular neighborhoods of the positive and negative sources corresponding

to λi →∞ and λi → 0 respectively. We can then define the inner-product

(ψ1, ψ2) =
∑
i

∫
M i

3

ψ
1

i ∧ ∗(H̃ · ψ2)i , (3.96)

where the bar denotes complex conjugation. We will denote ∂∆±i = Σ±i . Note that as

we approach these boundaries, (H̃ · ψ2)i → ψ2
i .

Note that the harmonic types of R-valued k-forms ψ̃ we are considering (where ψ̃

vanishes when restricted to Σ+ and ∗ψ̃ vanishes when restricted to Σ−)5 form part of a

5Note that a form vanishing when restricted to a sub-manifold Σ does not imply that its Hodge-dual
will vanish as well, because normal components of the form might still be non-zero.
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Hodge-type decomposition of forms

{ψ̃} ⊕ {dDβ} ⊕ {d†̃Dγ} , (3.97)

with respect to the above inner-product. Here β is an R-valued (k − 1)-form and γ

is an R-valued (k + 1)-form. However, this does not span all the allowed forms, as

restrictions are put on ψ̃, β, and γ at the boundaries. Here dD = D−1 ◦ d ◦ D, and

d†̃D = H̃−1D ◦ d† ◦ D−1H̃ is the adjoint of dD with respect to the above inner product.

In addition to the above restrictions on ψ̃, we also restrict βi to vanish at the positively

charged boundaries Σ+
i , while ∗γi vanishes at the negatively charged boundaries Σ−i . We

can confirm that the individual components are orthogonal with respect to the inner

product. For example,

(ψ̃, d†̃Dγ) =
∑
i

∫
M i

3

ψ̃i ∧ ∗(Dd†D−1H̃ · γ)i = −
∑
i

∫
Σ+
i ∪Σ−i

ψ̃i ∧ ∗(H̃ · γ)i ,

where we have integrated by parts and used that ψ̃ is harmonic and so dD-closed. Because

the Hermitian metric H̃ becomes the identity on the boundaries, we end up with

(ψ̃, d†̃Dγ) = −
∑
i

∫
Σ+
i ∪Σ−i

ψ̃i ∧ ∗γi = 0 , (3.98)

since ψ̃i vanishes at Σ+
i while ∗γi vanishes at Σ−i . It can be checked that the other terms

in the Hodge decomposition are similarly orthogonal.

We then claim that the ψ̃ that give rise to stable complex flat connections are in one-

to-one correspondence with the relative cohomology classes of dD, which acts on forms

that vanish on the positive boundaries exactly as in the abelian case. Indeed, consider

a dD-closed form α which vanishes at the positive boundaries and is orthogonal with
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respect to the above inner product to the set {dDβ} in the above Hodge decomposition.

We require

0 = (dDβ, α) = (β, d†̃Dα) +
∑
i

∫
Σ−i

βi ∧ ∗αi . (3.99)

If this is to vanish for all β (which vanish appropriately at positive boundaries), we see

that we need to require d†̃Dα = 0 in addition to ∗αi vanishing at the negative bound-

aries Σ−i . Hence, α is harmonic with respect to the above definition. The one-to-one

correspondence between harmonic forms and cohomology classes follows.

So we see that to find the spectrum we proceed just as in the abelian case. We

find the chiral and anti-chiral modes are counted using the eigenvalues of log(D) in the

appropriate representation as Morse functions when computing the relative cohomology.

We may hence compute the number of chiral zero-modes NχR and anti-chiral zero-modes

NχR in this representation as

NχR =

nR∑
i=1

h1(M i
3,Σ

+
i ) (3.100)

NχR =

nR∑
i=1

h2(M i
3,Σ

+
i ) , (3.101)

where we also note that, as in the abelian case, the zeroth and third order cohomologies

vanish. Indeed, for the zeroth order cohomology, for instance, we are again looking

for constant functions which vanish at the boundaries of the charged regions, or global

harmonic functions if the Morse functions for the given representation are regular. This

can only happen if the function vanishes. Further details of how to compute these

cohomologies for a given source configuration are given in [103, 104].

The index counting the net chirality is then

Index(DR) = NχR −NχR (3.102)
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for the Dirac operator DR in the representation R. We finish this section by remarking

that even if the above-mentioned factorization of the complex flat connection into an

abelian and a non-abelian part near the charged sources should not happen for a par-

ticular solution, we still expect the net chiral index to be counted by equation (3.102).

Indeed, as we will see below, given a complex flat connection in terms of an SL(N ;C)-

valued matrix G = UD, assuming a regular U -matrix so we are not infinitely far away

from a diagonal G in deformation space, and keeping the behavior of D near the sources

fixed, we can always smoothly deform G to be diagonal. On general grounds we expect

the index to be topological, and hence insensitive to such deformations. In the end, we

expect the index to compute the number of massless modes in R, and we expand on this

in Section 3.5.

A Comment on Yukawa Couplings

Methods for computing Yukawa couplings have been developed in the case of sta-

ble abelian complex flat connections using the gradient flow trajectories of the Morse

functions [103, 104]. These Yukawa couplings are given by multi-linear maps from the

cohomologies computing the chiral spectrum into C. For example, the third order cou-

plings are of the form

Yuk(R1,R2,R3) : H1(M3;R1)×H1(M3;R2)×H1(M3;R3)→ C , (3.103)

where there must be at least one non-trivial singlet in the tensor product R1 ⊗ R2 ⊗

R3. The Yukawa couplings in the non-abelian case are given by similar multi-linear

maps. Using the isomorphism between the cohomologies, we can hence map a non-

abelian Yukawa to an abelian Yukawa, where we can use the gradient flow method to

compute the coupling.
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3.4.4 Deforming Solutions

Having seen in the previous section that abelian and non-abelian solutions are closely

related in the way the chiral spectrum is computed, one may wonder if one can deform

a given non-abelian background to an abelian one. Equivalently, are the non-abelian

solutions in question simply deformations of abelian ones? We will argue here in the

affirmative of this, at least for non-abelian solutions that are well-behaved enough. As

before, assume an SU(N)-valued function G = UH in polar decomposed form, where U

is unitary and H is a positive matrix. We may write H = Ũ−1DŨ for a unitary matrix Ũ

and a diagonal matrix D of positive eigenvalues. Now let U ′ = UŨ−1, so that G = U ′DU .

Our ‘well-behaved’ assumption is then that U ′ is non-singular, which corresponds to the

Type 2 classification described at the beginning of this section.

To turn a non-abelian complex flat connection into an abelian one is then equivalent to

turning off U ′ (as we may eliminate the other unitary matrix, U , by a gauge transforma-

tion). We note that a given U ′ corresponds to a map from M3 into SU(N) and hence has

a representative homotopy class in [M3, SU(N)]. For M3 = S3 this is π3(SU(N)) = Z.

If the representative of U ′ is the trivial class, we can always turn off U ′ by deformation.

If the class of U ′ is non-trivial, we can deform U ′ to be the identity matrix inside of a

tubular neighborhood of the singularities of the eigenvalues of D. Indeed, we assume

the singularities have co-dimension at least one in M3, and U ′ can always be trivialized

on a graph or Riemann surface. Simultaneously, we deform D to be the identity matrix

outside of the tubular neighborhood. Thus, at every point, either U ′ or D is the identity

matrix so that the deformed matrices commute. We may then write G = DU ′U , and

the unitary factor U ′U may be removed by a global gauge transformation, leaving G as

diagonal and thus giving rise to an abelian connection.

In the deformations involved in the above steps, the chiral spectrum may be modified,
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but the chiral index should remain the same because it is invariant under smooth defor-

mation. Thus, in the case of Type 2 non-abelian complex connections, we expect that

the chiral index of the spectrum may be reliably computed by an abelian deformation.

The above describes a way of deforming a given non-abelian flat connection to an

abelian one, or equivalently a deformation of an abelian solution to a non-abelian one.

This is a solution to the Maurer-Cartan equation

dAα + α ∧ α = 0 , (3.104)

where α is the deformation of the connection. We keep the part of the connection which

blows up at a source fixed at this source under such deformations. Recall that this part is

assumed to become abelian, commuting with the rest of the connection. For the deformed

connection to satisfy (3.17), we must also impose that the deformation of the co-closure

condition holds. Before we consider this equation, we note that A should be thought

of as a holomorphic function on the complex parameter space of complex connections.

Indeed, as shown in [68], reduction of the six-dimensional holomorphic Chern-Simons

functional gives the superpotential

W (A) =

∫
M3

tr
(
A ∧ dA+ 2

3
A ∧A ∧A

)
. (3.105)

Hence, when considering such a holomorphic deformation ∆, we should set ∆A = α and

∆A† = 0. Imposing this on the co-closure condition for such deformations, we find

(dA)†α = 0 . (3.106)
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This equation imposes that the dA-exact part of α in the Hodge decomposition

α = αh + dAβ + d†Aγ (3.107)

vanishes. Given a solution to the Maurer-Cartan equation (3.104), we can always do a

Laurent series-type expansion

α(Z) = ZAαA + 1
2
ZAZBαAB + ... , (3.108)

where ZA denote holomorphic coordinates on the moduli space. If α then contains a

dA-exact part, it can be checked that this can be removed by redefining α order by order

in this expansion, thus also solving the co-closure equation. Holomorphy and the Laurent

theorem then guarantees that the resulting series can be re-summed.

We see that when considering a deformation in a holomorphic direction ∆, the first

order deformations αA are harmonic and hence counted by the relative cohomologies

NAd(N) =

nAd(N)∑
i=1

h1(M i
3; f iAd(N)) , (3.109)

where f iAd(N) are the Morse functions of the adjoint representation Ad(N) of SU(N). In

this chapter we have restricted to flat backgrounds of the form A = G−1dG where G is

global (but with singularities) as a direct generalization of abelian solutions. We want to

preserve this ansatz under deformations, so in general not all of the above deformations

will be considered. To find the relevant deformations, consider part of the long exact

sequence used to compute H i(M i
3,Σ

+
i ):

...→ Hq(M i
3,Σ

+
i )

i∗p−→ Hq(M i
3)

p∗p−→ Hq
d(Σ+

i )
αp−→ Hq+1(M i

3,Σ
+
i )→ ... . (3.110)
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By the long exact sequence we have

H1(M i
3,Σ

+
i ) ∼= Im(α0)⊕ Im(i∗1) . (3.111)

The deformations which preserve the global triviality of the complex flat connection

correspond to the modes in the image of the connecting homomorphism α0 in the above

direct sum. Assuming each M i
3 are connected, there are precisely n+

i − 1 such modes,

where n+
i denotes the number of connected positively charged regions in M i

3, i.e. the

number of components where the given Morse function f iAd(N) blows up. As explained

above, these directions are necessarily unobstructed.

Writing the deformation α as an N×N -matrix, there is a Morse function correspond-

ing to each element αpq, which takes the form

fpq = fp − fq , (3.112)

where fp = log(λp) is the Morse function of the pth eigenvalue of log(D) as an N × N

matrix. We are hence counting the number of positive sources for these Morse functions.

Note in particular that starting with an abelian solution, the Morse functions for the

diagonal directions that keep the solution abelian vanish, and we need to turn on off-

diagonal non-abelian directions in order to deform the solution non-trivially.

Had we instead considered real deformations ∆ + ∆ of the complex flat connection,

the zeroth order co-closure equation becomes

(
d†Aα− d†A†α

†
)
− [αm, α†m] = 0 . (3.113)

At first glance, this equation may put potential obstructions on the deformations α.

However, as we argued above, the zeroth order Morse cohomologies vanish. Using this
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fact, this equation may also be solved order by order by the usual methods of perturbative

deformation theory.

3.5 Matter Spectrum Examples

Before we move to discuss examples, let us first see why in the end it is the index of

the Dirac operator DA which counts the number of massless states in the final low-energy

theory. In a heterotic compactification on a six-dimensional SU(3) structure manifold

X, the zero-modes in a representation R are counted by the cohomology H
(0,1)

∂A
(X;R).

Reality considerations of the decomposition of the gauge group implies that for (0, 1)-

modes in R we also expect to look for (0, 1)-modes in R, i.e. counted by H
(0,1)

∂A
(X;R).

Such modes can couple in the superpotential. For example, a fundamental mode ac can

couple with an anti-fundamental mode bd via an adjoint mode αdc ∈ H(0,1)

∂A
(X; End(V ))

in a Yukawa coupling of the form

Yuk(a, b, α) =

∫
X

ac ∧ bd ∧ αdc ∧ Ω , (3.114)

where Ω is the holomorphic top-form on X. Generically, such couplings are expected to

remove modes in R and R in pairs, such that the true massless spectrum is counted by

the index of ∂A in the given representation.

Lets see how this works in the reduced three-dimensional setting. In the three-

dimensional theory, a (0, 1)-mode in the representation R reduces to a one-form mode on

the three-manifold M3, i.e. an element of the cohomology H1(M3;R). Note then that in

six dimensions, taking the Hodge dual of a ∂A-harmonic (0, 1)-modes in R correspond to

a ∂A-harmonic R-valued (2, 3)-form which also corresponds to a ∂A-harmonic R-valued

(2, 0)-form. Complex conjugation then gives a ∂A-harmonic R-valued (0, 2)-form. In the
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reduction these give rise to R-valued two-form modes on the three-dimensional space,

i.e. elements of the cohomology H2(M3;R). We therefore expect couplings between such

one- and two-form modes, and the true massless spectrum is computed by the index of

dA in the R-representation.

3.5.1 Example: Breaking patterns of SU(4)

To get a feel for how this goes, let us consider breaking SU(4) to SU(3) by turning

on an abelian Higgs field corresponding to an SU(4) generator of the form log(D) =

diag(f, f, f,−3f), and consider the spectrum of Ad(SU(4)). A similar example breaking

SU(6) to SU(5) is given in [103]. We have

Ad(SU(4)) = Ad(SU(3)) + 31 + 3−1 + 1 . (3.115)

The subscripts denote the charges under the (broken) U(1). For such a configuration,

one finds that the adjoint action of SU(4) gives f as the Morse function counting modes

in the fundamental representation 3, while −f counts the modes in the anti-fundamental

one 3.

We can instead consider breaking SU(4) → U(1) by turning on a non-trivial SU(3)

within SU(4), e.g. by choosing a non-abelian configuration with log(D) = diag(f1, f2,−f1−

f2, 0). Chiral and anti-chiral modes of positive charge (transforming in the fundamental

of the SU(3)) are then computed by the Morse cohomologies of f1, f2 and f3 = −f1−f2,

while −fi’s compute negatively charged modes. For example, one could imagine a model

on S3 where f1 has a single positive point source and a single negative point source,

while f2 has a single positive source overlapping the one of f1 and a single negative point

source. Consider positively charged matter. A straight forward computation in relative
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cohomology shows that we get

h1(M3; f3) = 1 , (3.116)

while all other h1/2(M3; fi) vanish. Hence, such a model would give a single chiral mode

of positive charge, and the chiral index in this representation is one.

3.5.2 Example: Monopole-type Solution

Consider the monopole-type solution on R3 described in Section 3.3.3 above. We

focus for now on the zeroth and first order (non-exact) solutions, where the eigenvalues

have finite radius singularities. For this case we have

D =

 eu 0

0 e−u

 , U =

 cos(θ/2) eiφ sin(θ/2)

−e−iφ sin(θ/2) cos(θ/2)

 , (3.117)

where (θ, φ) are the usual angles of R3 and u satisfies the equation (3.71) in the tree-level

case or the O(α′) part of (3.76) in the α′-corrected case. Set λ1 = eu and λ2 = e−u. We

would like to compute the spectrum of the fundamental representation in SU(2). Note

that we then need to consider the modes of both f1 = u and f2 = −u. We will consider

some examples of configurations of u for this setup. But before we do, we note that

the zeroth order solution in α′ for this ansatz does not satisfy the assumption that the

solution becomes abelian near the sources (though the exact α′-corrected solution does

satisfy this criteria). The individual cohomology computations at zeroth order might

hence be less trustworthy. Note however that as the matrix U is regular, we still expect

the index computation to be reliable as we can smoothly deform U to the identity.

To avoid issues concerning the U being ill-defined at r = 0, let us consider an example

where u tends to negative infinity at a small finite r and blows up at a larger r. The

space is now a three-dimensional annulus, that is, an open ball with a hole at the origin.
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It is easy to compute both

h1(M3; f1/2) = 0 , h2(M3; f1/2) = 0 , (3.118)

and so this geometry has no chiral or anti-chiral modes. Let us also consider a u that

blows up at a small r and a large r. The space is again a three-dimensional annulus.

There are again no zero modes for degree zero and three, but we now find for f1

h1(M3; f1) = 1 , h2(M3; f1) = 0 . (3.119)

so we have a chiral zero mode. From a relative cohomology perspective, this mode corre-

sponds to exact forms df where f approaches different constant values on the boundaries

∂+M3. However, if we consider f2 = −u we find

h1(M3; f2) = 0 , h2(M3; f2) = 1 , (3.120)

so the net chirality or index of the solution is zero.

Next, we consider a solution of f1 that vanishes at infinity and blows up at finite

radius. In order to avoid complications regarding harmonic modes on non-compact ge-

ometries, we assume that the solution can be embedded in a large three-sphere, with a

flat metric where the solution is non-trivial. Hence our space is S3 minus an open ball.

Again, we find

h1(M3; f1/2) = 0 , h2(M3; f1/2) = 0 , (3.121)

and so the chiral index of the spectrum is trivial for this solution as well.
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3.5.3 Chiral index of SU(2) representations

The vanishing of the chiral index for SU(2) representations is actually much more

general. Indeed, consider some SU(2) solution which we have deformed to an abelian

solution by the procedure described above. Then, given a normalizable chiral mode

ψ0 ∈ Ω1(M3,2) of the form

ψ0 =

 ψa

ψb

 , (3.122)

that solves the Dirac equation, it is clear that the anti-chiral mode

ψ̃0 =

 ∗ψb
∗ψa

 (3.123)

will solve the Dirac equation as well. Hence the Chiral index of the fundamental repre-

sentation of SU(2) solutions vanishes. It can be checked that this is also the case for the

adjoint representation 3, and is thus also true for the singlet as

2⊗ 2 = 1 + 3 . (3.124)

Inductively, it is easy to convince oneself that the chiral index will vanish for all higher

irreducible representations as well, by taking higher tensor products with the fundamental

representation. Hence it does not appear that SU(2) solutions on R3 or S3 support a

non-trivial chiral index in any representation.

One can imagine embedding SU(2) into a larger group, and in this way achieve a

spectrum of non-vanishing chiral index. For example, let us assume that in the example

above, the fundamental representation is also charged with respect to a U(1) whose Morse
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function is 2u.6 The solution where g tends to infinity at a small and a large r would

then have two chiral modes and zero anti-chiral modes in the representation 21.

3.5.4 Example: Non-abelian T-brane solution of Barbosa et al.

Of course, it may happen that the complex flat connection cannot be written as

A = G−1dG for a global (but singular) G. This is the case when A has monodromies of

various sorts. An example of this kind turns out to be the non-abelian local solution of

[105]. Let us briefly discuss this example now.

The non-abelian explicit solution constructed in [105] is an SU(3) example on R3 with

coordinates (x, y, t). The authors consider the decomposition SU(3) → SU(2) × U(1)

and the complex connection A = Ax + iAφ with

Ax =


1
2

(∂zf dz − ∂zf dz) 0 0

0 −1
2

(∂zf dz − ∂zf dz) 0

0 0 0

 (3.125)

Aφ =


i
3
dh −vze−f(z,z)dz + ε ef(z,z)dz 0

vze−f(z,z)dz − ε ef(z,z)dz i
3
dh 0

0 0 −2i
3

dh

 , (3.126)

where ε and v are real constants, h(z, z, t) is the function

h = κ
8
(z + z)2 − κ

2
t2 (3.127)

for a real constant κ, and the D-term condition demands that f(z, z) satisfies the differ-

6This Morse-function will generically obey a different co-closure equation, but we take it to be 2u for
illustration purposes.
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ential equation

1
4

(
frr + 1

r
fr
)

= ε2 e2f − v2r2e−2f , (3.128)

where r = |z|. In the case where ε 6= 0, this equation may be transformed into a Painlevé

III differential equation, while in the ε = 0 case it becomes a modified Liouville equation.

We may attempt to apply our methods to solutions of this form, but we will see that we

run into obstacle for computing the spectrum for both choices of ε.

Case 1: ε 6= 0

To analyze this solution, we want to examine limiting forms of the connection near

the sources. In the case of ε 6= 0, the only source is at infinity, so we consider the solution

at large distances in the (x, y)-plane and at large t, with the intention of studying the

asymptotic behavior of the Morse functions to determine a charge distribution at infinity.

If we take the limit where r = |z| and t are large, then the asymptotic behavior of the

Painlevé III transcendental reveals the approximate form

A →


−1

3
dh+ dz

8z
− dz

8z
−ipr−1/2zdz + ipr1/2dz 0

ipr−1/2zdz − ipr1/2dz −1
3
dh− dz

8z
+ dz

8z
0

0 0 2
3
dh

 , (3.129)

where p =
√
εv. With this asymptotic form of A, the equation dG = GA can be solved

explicitly, and we find the asymptotic gauge transformation

G = i+
√

3
2


eiθ/4−h(z,t)/3 cosh s −e−iθ/4−h(z,t)/3 sinh s 0

ieiθ/4−h(z,t)/3 sinh s −ie−iθ/4−h(z,t)/3 cosh s 0

0 0 e2h(z,t)/3

 , (3.130)
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where

s = 4
3
pr3/2 sin(3θ/2) . (3.131)

As discussed above, in order to compute the spectrum as if the solution were abelian

we need to check that the solution becomes asymptotically abelian at the sources. By

examining the asymptotic form of A, we see that it will be dominated by the diagonal,

and thus asymptotically abelian, as long as we approach infinity in a direction where

cos θ 6= 0. The directions in which the source does not become asymptotically abelian

are of measure zero on the celestial sphere, but it is unclear if this fully justifies the use

of abelian methods.

However, we also see that despite the fact that A is a flat connection on R3, our G is

not single-valued due to the fractional dependence on θ, and instead should be defined

on a four-sheeted cover. This means that we cannot work with a globally defined G, so

that we cannot apply our method for computing spectra or the chiral index. It would be

interesting to generalize the methods we have proposed to this setting.

As another route of investigation, we may examine the behavior of the solution near

the origin. A solution for G to fourth order in the coordinates on R3 is given by


G11 G12 0

G12 G22 0

0 0 G33

 , (3.132)
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where the entries are given by

G11 = 1 + k2

2
zz − kl

6
(2z3 + z3) + κ

24
(4t2 − (z + z)2)

G12 = ikz − il
2
z2 + ik3

2
z2z + iκ

24
kz(4t2 − (z + z)2)

G22 = 1 + k2

2
zz − kl

6
(z3 + 2z3) + κ

24
(4t2 − (z + z)2)

G33 = 1− κ
12

(4t2 − (z + z)2) ,

where the constants k and l are defined in terms of the constants ε, v, c, and κ of [105]

as follows:

k = c ε1/3v1/3 (3.133)

l =
ε2/3v2/3

c
. (3.134)

This G is single-valued, so we could, in theory, use it to compute the saddle point behavior

of Morse functions near the origin, which could give a hint toward their behavior at the

source. However, the matrix D in the gauge-fixed polar decomposition G = UD is not

smooth at the origin in this case, which again hampers the use of our methods.

From this, we may calculate the Morse functions in a neighborhood of the origin as

f̃1 = 1
8

(
κ
(
(z + z)2 − 4t2

)
+

8kzz−2l(z3+z3)√
zz

)
(3.135)

f̃2 = 1
8

(
κ
(
(z + z)2 − 4t2

)
− 8kzz−2l(z3+z3)√

zz

)
. (3.136)

These local Morse functions share the same saddle point behavior as the asymptotic Morse

functions, reinforcing our confidence in their behavior. However, there may be additional

saddle points at intermediate radii that are not seen by either of these approximations.
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Case 2: ε = 0

We may also consider the ε = 0 case, where the D-term equation for u(r) becomes a

modified Liouville equation whose solution has a singularity at r0 = 1/
√
v. This means

that the domain of the solution is all of R3 exterior to a cylinder at r = r0 that extends

infinitely in the positive and negative t directions. Our method for computing the chiral

matter is hampered in this case by the presence of a nontrivial monodromy around any

loop enclosing the cylinder. The Wilson loop around a circular loop Lr at fixed r may

be computed as

W (A, Lr) = Tr exp

(
−
∫ 2π

0

dθAθ
)

= 1 + 2 cos 4πv2r4

1−v2r4 , (3.137)

where the path ordering is trivial because the quantity in the exponent lies in an abelian

subalgebra. In particular, this holonomy comes from the gauge field, while the Higgs

field has trivial holonomy. As r approaches r0, the value of the Wilson loop oscillates

rapidly, so that the gauge field has a singularity at r0 as does the Higgs field.

A consequence of nontrivial monodromy is that we cannot find a global solution G

to the equation A = G−1dG, which again means that the direct computation of the

chiral spectrum would require more sophisticated techniques than those presented in the

previous section.

Besides investigating the spectrum, we may also consider the first order α′-corrections

to this example. For any choice of ε, the 2-form B introduced in (3.19) vanishes, so that

the corrected D-term equation (3.24) remains in the same form as in the α′ = 0 case,

but with respect to an α′-corrected metric given by (3.23). All components of the metric

receive nontrivial corrections, so that the co-closure condition becomes a complicated

differential equation.
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3.6 Conclusions and Outlook

In this chapter, we have considered heterotic string compactifications on SU(3)-

structure manifolds and their reduction to the equations for a stable complex flat connec-

tion on a three-dimensional submanifold. We saw that upon reduction of the heterotic

equations, the complex connection remains flat, but the D-term co-closure condition gets

corrected even at first order in α′ due to torsional effects of the 6D Hull-Strominger geom-

etry and the non-trivial heterotic Bianchi identity. In this chapter we have studied local

solutions on R3 for the α′-corrected system, including both abelian and non-abelian exam-

ples of bundles and their back-reaction on the geometry. These solutions constitute new

local T 3-invariant solutions to the Hull-Strominger system. It would be interesting to con-

sider the reduced Hull-Strominger system also for more generic compact three-manifolds,

and to investigate both the physical and mathematical/topological implications of these

corrections.

We also introduced a way of computing the spectrum (or at least the index) of a

particular set of non-abelian solutions with a non-flat gauge field, with the caveat that

the complex flat connection A = G−1dG is given by a global but singular matrix G, similar

to the common assumption made for abelian Higgs fields φ = df where f is a global but

singular function.7 Assuming an appropriate behavior of G near singularities (Type 1 or

2 in the classification of Section 4.1), the index computation resembles that of abelian

Higgs fields. We find that a monopole-type nonabelian solution has vanishing chiral

index, while the non-abelian local example of [105] does not have the correct behavior

for our current methods to apply.

Another avenue to explore is to ask what these α′-corrections correspond to on the

M-theory side, following the M-theory/heterotic duality. Given that α′-corrections corre-

7It would be interesting to see how our methods may generalize to the case when A has non-trivial
monodromies.
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spond to higher curvature corrections from a supergravity point of view, it is conceivable

that they correspond to higher curvature corrections on the M-theory side as well, pos-

sibly with an incorporation of four-form G-flux. Since α′-corrections are vital for under-

standing properties of heterotic compactifications such as the moduli problem, Yukawa

couplings, and moduli metric, both in the three-dimensional reduced system and also

the upstairs Hull-Strominger geometry [133, 134, 135, 136, 137, 138, 139, 140], a better

understanding of these corrections might therefore lead to better insight into such issues

on the M-theory side as well.

Recently, much progress has been made in the study of the heterotic moduli problem

[133, 134, 135, 136, 141, 140, 142, 143, 144, 145]. It would be interesting to reduce the

corresponding moduli structures to the three-dimensional setting as well, and study the

resulting equations generalizing that of the moduli problem of a complex flat connection.

Indeed, the geometric structures and moduli problem in particular are expected to retain

much of the important physical and mathematical properties of the upstairs geometry,

hence the reason for doing such a reduction in the first place. Moreover, the three-

dimensional system has the advantage of being much more explicit, which gives hope

for a more hands on approach for understanding the geometric structures and moduli,

particularly in terms of explicit solutions. It was recently discovered that the moduli

problem of the Hull-Strominger system is governed by an interesting quasi-topological

theory which has flavors of both Kodaira-Spencer and Donaldson-Thomas theory [142]. A

reduction of this theory to three dimensions opens the door to more explicit computations,

such as, for example, its partition function on the three-sphere.
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Appendix A

An N = 2 Solution: The

t’Hooft-Polyakov Monopole

Instead of the complex structure of the SYZ fibration, we can alternatively endow R3×T 3

with the following complex structure,

z1 = x1 + i x2

z2 = x3 + i φ1

z3 = φ2 + i φ3 . (A.1)

That is, the coordinate z3 is the complex coordinate of an elliptic curve. This is more

reminiscent of the local geometric structure required by heterotic duality with F-theory,

and may thus be important for studying the local nature of this duality. The duality

is again done fiber-wise, with the elliptic curve now playing the role of T 3 in the Hull-

Strominger system reduction. We also point out that the reduced geometry we study

in this example now preserves N = 2 supersymmetry rather than N = 1, and so a

continuous deformation to the reduced system of a stable complex flat connection is
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unlikely to exist.

A reduction of the holomorphic Yang-Mills equations to R3, assuming a flat connec-

tion on the elliptic curve spanned by {φ2, φ3}, is then given by

F x = ∗3dAxψ , (A.2)

where we have defined Ay = ψ(x)dφ1. This is precisely the equation satisfied by the

t’Hooft-Polyakov monopole [124, 125]. The reduction of the Bianchi identity (3.7) now

becomes

∗3∆de
Φ = α′

2
tr (dAxψ ∧ ∗3dAxψ) = α′

2
d ∗3 (tr (ψdAxψ)) = α′

4
d ∗3 d

(
trψ2

)
, (A.3)

where Φ is the dilaton, and the corresponding three-dimensional metric is conformally

flat given by gij = eΦδij. In the second equality, we have used (A.2) and the Bianchi

identity for F x. Equation (A.3) is solved by

eΦ = −α′

4
trψ2 + C , (A.4)

for some constant C which can be thought of as an overall volume modulus.

The geometric system in this case is far simpler than the α′-corrected equations for a

stable complex flat connection, and can indeed be solved exactly if we have solutions to

(A.2), for example the exact solution of [146]. This is perhaps not surprising due to the

enhanced supersymmetry.
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