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ABSTRACT OF THE DISSERTATION

On the Scalable Construction of Measure Transport Maps and Applications in Health Analytics

by

Marcela Patricia Mendoza Martinez

Doctor of Philosophy in Bioengineering

University of California San Diego, 2018

Professor Todd P. Coleman, Chair

Characterizing and sampling from probability distributions is useful to reason about

uncertainty in large, complex, and multi-modal datasets. One established and increasingly

popular method to do so involves finding transformations or transport maps between one

distribution to another. The computation of these transport maps is the subject of the field of

Optimal Transportation, a rich area of mathematical theory that has led to many applications in

machine learning, economics, and statistics. Finding these transport maps, however, usually

comprises computational difficulties, particularly when datasets are large both in dimension and

the number of samples to learn from.

Building upon previous work in our group, we introduce a formulation to find transport

xiii



maps that is parallelizable and solvable with convex optimization methods. We show applications

in the field of health analytics encompassing scalable Bayesian inference, density estimation,

and generative models. We show how this formulation is scalable with the dimension of data

and can be parallelized utilizing a sweep of architectures such as cloud computing services and

Graphics Processing Units. Within the context of Bayesian inference, we present a distributed

framework for finding the full posterior distribution associated with LASSO problems and show

advantages compared to traditional methods of computing this posterior. Finally, we discuss

novel methods to reduce the number of parameters necessary to approximate transport maps.

xiv



Chapter 1

A Distributed Framework for the
Construction of Transport Maps

1.1 Introduction

While scientific problems of interest continue to grow in size and complexity, managing

uncertainty is increasingly paramount. As a result, the development and use of theoretical and

numerical methods to reason in the face of uncertainty, in a manner that can accommodate

large datasets, has been the focus of sustained research efforts in statistics, machine learning,

information theory and computer science. The ability to construct a mapping which transforms

samples from one distribution P to another distribution Q enables the solution to many problems

in machine learning.

One such problem is Bayesian inference, [17, 8, 51], where a latent signal of interest is

observed through noisy observations. Fully characterizing the posterior distribution is in general

notoriously challenging, due to the need to calculate the normalization constant pertaining to

the posterior density. Traditionally, point estimation procedures are used, which obviate the

need for this calculation, despite their inability to quantify uncertainty. Generating samples

from the posterior distribution enables approximation of any conditional expectation, but this

is typically performed with Markov Chain Monte Carlo (MCMC) methods [22, 1, 26, 18, 37]

despite the following drawbacks: (a) the convergence rates and mixing times of the Markov chain

are generally unknown, thus leading to practical shortcomings like “sample burn in” periods;
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and (b) the samples generated are necessarily correlated, lowering effective sample sizes and

propagating errors throughout estimates [47]. If we let P be the prior distribution and Q the

posterior distribution for Bayesian inference , then an algorithm which can transform independent

samples from P to Q, without knowledge of the normalization constant in the density of Q,

enables calculation of any conditional expectation with fast convergence.

As another example, generative modeling problems entail observing a large dataset

with samples from an unknown distribution P (in high dimensions) and attempting to learn a

representation or model so that new independent samples from P can be generated. Emerging

approaches to generative modeling rely on the use of deep neural networks and include variational

autoencoders [32], generative adversarial networks [23] and their derivatives [35], and auto-

regressive neural networks [33]. These models have led to impressive results in a number of

applications, but their tractability and theory are still not fully developed. If P can be transformed

into a known and well-structured distribution Q (e.g. a multivariate standard Gaussian), then the

inverse of the transformation can be used to transform new independent samples from Q into

new samples from P.

While these issues relate to the functional attractiveness of the ability to characterize

and sample from non-trivial distributions, there is also the issue of computational efficiency.

There continues to be an ongoing upward trend of the availability of distributed and hardware-

accelerated computational resources. As such, it would be especially valuable to develop

solutions to these problems that are not only satisfactory in a functional sense, but are also

capable of taking advantage of the ever-increasing scalability of parallelized computational

capability.

1.1.1 Main Contribution

The main contribution of this work is to extend our previous results on finding transport

maps to provide a more general transport-based push-forward theorem for pushing independent

samples from a distribution P to independent samples from a distribution Q. Moreover, we show

2



how given only independent samples from P, knowledge of Q up to a normalization constant,

and under the traditionally mild assumption of the log-concavity of Q, it can be carried out in

a distributed and scalable manner, leveraging the technique of alternating direction method

of multipliers (ADMM) [12]. We also leverage variational principles from nonequilibrium

thermodynamics [28] to represent a transport map as an aggregate composition of simpler maps,

each of which minimizes a relative entropy along with a transport-cost-based regularization term.

Each map can be constructed with a complementary, ADMM-based formulation, resulting in

the construction of a measure transport map smoothly and sequentially with applicability in

high-dimensional settings.

Expanding on previous work on the real-world applicability of these general-purpose

algorithms, we showcase the implementation of a Bayesian LASSO-based analysis of the Boston

Housing dataset [25] and a high-dimensional example of using transport maps for generative

modeling for the MNIST handwritten digits dataset [34].

1.1.2 Previous Work

A methodology for finding transport maps based on ideas from optimal transport within

the context of Bayesian inference was first proposed in [16] and expanded upon in conjunction

with more traditional MCMC-based sampling schemes in [40, 44, 45, 52].

Our previous work used ideas from optimal transport theory to generalize the posterior

matching scheme, a mutual-information maximizing scheme for feedback signaling of a message

point in arbitrary dimension [39, 38, 54]. Building upon this, we considered a relative entropy

minimization formulation, as compared to what was developed in [16], and showed that for the

class of log-concave distributions, this is a convex problem [30]. We also previously described a

distributed framework [41] that we expand upon here.

In the more traditional optimal transportation literature convex optimization has been used

to varying success in specialized cases [42], as well as gradient-based optimization methods [46,

7, 6]. The use of stochastic optimization techniques in optimal transport is also of current interest
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[20]. In contrast, our work below presents a specific distributed framework where extensions to

stochastic updating have been previously developed in a general case. Incorporating them into

this framework remains to be explored.

Additionally, of much recent interest is the efficient and robust calculation of Wasserstein

barycenters (center of mass) across partial empirical distributions calculated over batches of

samples/data [15, 14], and has also found application in Bayesian inference [53]. While related,

our work focuses instead on calculating the full empirical distribution through various efficient

parameterizations discussed below.

Building on much of this, there is growing interest in specific applications of these

transport problems in various areas [2, 55]. These derived transport problems are proving to be a

fruitful alternative approach and are the subject of intense research. The framework presented

below is general purpose and could benefit many of the derived transport problems.

Excellent introductory and references to the field can be found in [57, 49].

The rest of this paper is organized as follows: in Section 1.2, we provide some necessary

definitions and background information; in Section 1.3, we describe the distributed general push-

forward framework and provide several details on its construction and use; in Section 1.4, we

formulate a specialized version of the objective specifically tailored for sequential composition; in

Section 1.5, we discuss applications and examples of our framework; and we provide concluding

remarks in Section 1.6.

1.2 Preliminaries

In this section we make some preliminary definitions and provide background information

for the rest of this paper.

1.2.1 Definitions and Assumptions

Assume the space for sampling is given by W ⊂ RD, a convex subset of D-dimensional

Euclidean space. Define the space of all probability measures on W (endowed with the Borel
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sigma-algebra) as P(W). If P ∈ P(W) admits a density with respect to the Lebesgue measure,

we denote it as p.

Assumption 1. We assume that P,Q ∈ P(W) admit densities p,q with respect to the Lebesgue

measure.

This work is fundamentally concerned with trying to find an appropriate push-forward

between two probability measures, P and Q:

Definition 1.2.1 (Push-forward). Given P,Q ∈ P(W) we say that a map S : W→W pushes

forward P to Q (denoted as S#P = Q) if a random variable X with distribution P results in

Y , S(X) having distribution Q.

Of interest to us is the class of invertible and “smooth” push-forwards:

Definition 1.2.2 (Diffeomorphism). A mapping S is a diffeomorphism on W if it is invertible,

and both S and S−1 are differentiable. Let D be the space of all diffeomorphisms on W.

A subclass of these, are those that are “orientation preserving”:

Definition 1.2.3 (Monotonic Diffeomorphism). A mapping S ∈D is orientation preserving, or

monotonic, if its Jacobian is positive-definite:

JS(u)� 0, ∀u ∈W

Let D+ ⊂D be the set of all monotonic diffeomorphisms on W.

The Jacobian JS(u) can be thought of as how the map “warps” space to facilitate the

desired mapping. Any monotonic diffeomorphism necessarily satisfies the following Jacobian

equation:
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Lemma 1.2.4 (Monotonic Jacobian Equation). Let P,Q ∈ P(W) and assume they have densities

p and q. Any map S ∈D+ for which S#P = Q satisfies the following Jacobian equation:

p(u) = q(S(u))det(JS(u)) ∀u ∈W (1.1)

We will now concern ourselves with two different notions of “distance” between

probability measures.

Definition 1.2.5 (KL Divergence). Let P,Q ∈ P(W) and assume they have densities p and q.

The Kullback-Leibler (KL) divergence, or relative entropy, between P and Q is given by

D(P‖Q) = EP

[
log

p(X)

q(X)

]

The KL divergence is non-negative and is zero if and only if p(u) = q(u) for all u.

Definition 1.2.6 (Wasserstein Distance). For P,Q∈P(W) with densities p and q, the Wasserstein

distance of order two between P and Q can be described as

d(P,Q)2 , inf
{
EPX ,Y [‖X−Y‖2] : X ∼ P,Y ∼ Q

}
(1.2)

The following theorem will be useful throughout:

Theorem 1.2.7 ([13, 56]). Under Assumption 4, d(P,Q) can be equivalently expressed as

d(P,Q)2 , inf
{
EP[‖X−S(X)‖2] : S#P = Q

}
(1.3)

and there is a unique minimizer S∗ which satisfies S∗ ∈D+.

Note that this implies the following corollary:

Corollary 1.2.8. For any P,Q satisfying Assumption 4, there exists a S ∈D+ for which S#P = Q,

or equivalently, for which (3.1) holds.
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1.3 KL Divergence-based Push-Forward

In this section, we present the distributed push-forward framework that relies on our

previously published relative entropy-based formulation of the measure transport problem, and

discuss several issues related to its construction.

1.3.1 General Push-Forward

Figure 1.1. General Push-Forward: Probability measures P, P̃(·;S) and Q are represented as
points in P(W). When Q is assumed to be constant, an arbitrary map S ∈D+ can be thought of
as inducing a distribution P̃(·;S). Thus, S pushes P̃(·;S) to Q (the solid black line labeled S in
the figure).

According to Lemma 3.2.4, a monotonic diffeomorphism pushing P to Q will necessarily

satisfy the Jacobian equation (3.1). Note that although we think of a map S as pushing from P to

Q, we have written (3.1) so that p appears by itself on the left-hand side, while S is being acted

on by q on the right-hand side. This notation is suggestive of the following interpretation: If we

think of the destination density q as an anchor point, then for any arbitrary mapping S ∈D+, we

can describe an induced density for p̃(u;S) according to Eq. (3.1) as:

p̃(u;S) = q(S(u))det(JS(u)) for all u ∈W (1.4)

With this notation, we can interpret (p̃(u;S) : S ∈D+) as a parametric family of densities, and

for any fixed S ∈D+, p̃(u;S) is a density which integrates to 1. We note that by construction, any

S ∈D+ necessarily pushes P̃(·;S) to Q: S#P̃(·;S) = Q. We can then cast the transport problem
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as finding the mapping S ∈D+ that minimizes the relative entropy between P and the induced P̃.

S∗ = arg min
S∈D+

D(P‖P̃(·;S)) (1.5)

This perspective is represented visually in Fig. 1.1.

If we again make another natural assumption:

Assumption 2. P admits a density p such that:

E [|log p(X)|]< ∞

We can expand Eq. (3.2) and combine with (1.4) to write:

S∗ = arg min
S∈D+

D(P‖P̃(·;S))

= arg min
S∈D+

EP

[
log

p(X)

p̃(X ;S)

]
= arg min

S∈D+

−h(p)−EP [log p̃(X ;S)] (1.6)

= arg min
S∈D+

−EP [log p̃(X ;S)] (1.7)

= arg min
S∈D+

−EP [logq(S(X))+ logdetJS(X)] (1.8)

where in (3.3), h(p) is the Shannon differential entropy of p, which is fixed with respect to S;

(3.4) is by Assumption 2 and Jensen’s inequality implying that |h(p)|< ∞ and the non-negativity

of KL divergence; (3.5) is by combining with (1.4).

We now make another assumption for which we can guarantee efficient methods to solve

for (3.2).

Assumption 3. The density q is log-concave.

We can now state the main theorem of this section [31, 41]:
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Theorem 1.3.1 (General Push-Forward). Under Assumptions 4-3,

min
S∈D+

D(P‖P̃(·;S)) (GP)

is a convex optimization problem.

Proof. For any S, S̃∈D+, we have that JS,JS̃� 0. For any λ ∈ [0,1] we have that S̃λ , λS+(1−

λ )S̃ and JS̃λ
= λJS +(1−λ )JS̃ � 0. Since logdet is strictly concave over the space of positive

definite matrices [11], and by assumption logq(·) is concave, we have that −EP [log p̃(X ;S)] is

a convex function of S on D+. Existence of S∗ ∈D+ for which D
(
P‖P̃(·;S∗)

)
= 0 is given by

Corollary 1.2.8.

An important remark on this theorem:

Remark 1. Theorem 1.3.1 does not place any structural assumptions on P. It need not be

log-concave, for example.

Beginning with Eq. (3.5) above, we see that Problem (GP) can then be solved through

the use of a Monte-Carlo approximation of the expectation, and we arrive at the following

sample-based version of the formulation:

S∗ = arg min
S∈D+

1
N

N

∑
i=1

[− logq(S(Xi))− logdet(JS(Xi))] (1.9)

where Xi ∼ p(X).

1.3.2 Consensus Formulation

The stochastic optimization problem in (1.9) takes the general form of:

min
S

N

∑
i=1

fi(S)
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From this perspective, S can be thought of as a complicating variable. That is, this optimization

problem would be entirely separable across the sum were it not for S. This can be instantiated as

a global consensus problem:

min
S

N

∑
i=1

fi(Si)

s.t. Si−S = 0

where the optimization is now separable across the summation, but we must achieve global

consensus over S. With this in mind, we can now write a global consensus version of (1.9) as:

min
Si∈D+

− 1
N

N

∑
i=1

logq(Si(Xi))+ logdet(JSi(Xi))

s.t. Si = S, i =,1 . . . ,N (1.10)

In this problem, we can think of each (batch of) sample as independently inducing some random

P̃i through a function Si. The method proposed below can then be thought of as iteratively

reducing the distance between each P̃i and the true P by reducing the distance between each Si.

This problem is still over an infinite dimensional space of functions S ∈D+, however.

1.3.3 Transport Map Parameterization

To address the infinite dimensional space of functions mentioned above, as in [41, 30, 31,

40] we parameterize the transport map over a space of multivariate polynomial basis functions

formed as the product of D-many univariate polynomials of varying degree. That is, given

some x = (x1, . . . ,xa, . . . ,xD) ∈W ⊂ RD, we form a basis function φj(x) of multi-index degree

j = ( j1, . . . , ja, . . . , jD) ∈J using univariate polynomials ψ ja of degree ja as:

φj(x) =
D

∏
a=1

ψ ja(xa)
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This allows us to represent one component of S ∈D+ as a weighted linear combination of basis

functions with weights wd,j as:

Sd(x) = ∑
j∈J

wd,j φj(x)

where J is a set of multi-indices in the representation specifying the order of the polynomials in

the associated expansion, and d denotes the dth component of the mapping. In order to make this

problem finite-dimensional, we must truncate the expansion to some fixed maximum-order O.

J =

{
j ∈ ND :

D

∑
i=1

ji ≤ O

}

We can now approximate any nonlinear function S ∈D+ as:

S(x) =WΦ(x)

where K , |J | the size of the index-set, Φ(x) = [φj1(x), . . .φjK(x)]
T , and W ∈RD×K is a matrix

of weights.

With this, we can now give a finite-dimensional version of (1.10) as:

min
Wi∈RD×K

− 1
N

N

∑
i=1

[logq(WiΦ(Xi))+ logdet(WiJΦ(Xi))]

s.t. Wi =W, WiJΦ(Xi)� 0, i = 1, . . . ,N

(1.11)

with:
Wi = [w1, . . . ,wK] D×K

Φ(·) =
[
φj1(·), . . . ,φjK(·)

]T K×1

JΦ(·) =
[

∂φji

∂x j
(·)
]

i, j
K×D

where we have made explicit the implicit constraint that det(JS)≥ 0 by ensuring that WJΦ � 0.
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We now provide two important remarks:

Remark 2. In principle, any basis of polynomials whose finite-dimensional approximations

are sufficiently dense over W will suffice. In applications where P is assumed known, the basis

functions are chosen to be orthogonal with respect to the reference measure P:

∫
W

φj(x) φi(x) p(x)dx = 1i=j

Within the context of Bayesian inference, for instance, this greatly simplifies computing

conditional expectations, corresponding conditional moments, etc. [50].

Remark 3. When it is important to ensure that the approximation satisfies the properties of a

diffeomorphism, we can project S(x) onto D+ with solving a quadratic optimization problem, as

discussed in Section 1.8.

We also note that the polynomial representation presented above is chosen to best

approximate a transport map, independent of a specific application or representation of the data

(Fourier, wavelet, etc.). As mentioned in Remark 7 above, in principle any dense basis will

suffice.

1.3.4 Distributed Push-Forward with Consensus ADMM

In this section we will reformulate (3.6) within the framework of the alternating direction

method of multipliers (ADMM), and provide our main result, Corollary 1.3.2.

Distributed Algorithm

Using ADMM, we can reformulate (3.6) as a global consensus problem to accommodate

a parallelizable implementation. For notational clarity, we write Φi , Φ(Xi) and Ji , JΦ(Xi).

We then introduce the following auxiliary variables:

Wi , B, BΦi , pi, BJi , Zi
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We can now write (1.10) as:

min
{W,Z,p}i,B

1
N

N

∑
i=1
− logq(pi)− logdetZi +

1
2

ρ‖Wi−B‖2
2

+
1
N

N

∑
i=1

1
2

ρ‖BΦi− pi‖2
2 +

1
2

ρ‖BJi−Zi‖2
2

s.t. BΦi = pi : γi (D×1)

BJi = Zi : λi (D×D)

Wi−B = 0 : αi (D×K)

Zi � 0

where in the feasible set, we have denoted the Lagrange multiplier that will be associated

with each constraint to the right. We can now raise the constraints to form the fully-penalized

Lagrangian as:

Lρ(W,Z, p,B;γ,λ ,α) =
1
N

N

∑
i=1
− logq(pi)− logdetZi

+
1
N

N

∑
i=1

1
2

ρ‖Wi−B‖2
2 +

1
2

ρ‖BΦi− pi‖2
2

+
1
N

N

∑
i=1

1
2

ρ‖BJi−Zi‖2
2 + γ

T
i (pi−BΦi)

+
1
N

N

∑
i=1

tr
(
λ

T
i (Zi−BJi)

)
+ tr

(
α

T
i (Wi−B)

)
The key property we leverage from the ADMM framework is the ability to minimize this

Lagrangian across each optimization variable sequentially, using only the most recently updated

estimates. After simplification (details can be found in the Appendix), the final ADMM update
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equations for the remaining variables are:

Bk+1 = Bi ·Bs (1.12a)

W k+1
i =− 1

ρ
α

k
i +Bk+1 (1.12b)

Zk+1
i = QZ̃iQT (1.12c)

γ
k+1
i = γ

k
i +ρ(pk+1

i −Bk+1
Φi) (1.12d)

λ
k+1
i = λ

k
i +ρ(Zk+1

i −Bk+1Ji) (1.12e)

α
k+1
i = α

k
i +ρ(W k+1

i −Bk+1) (1.12f)

pk+1
i = arg min

pi

− logq(pi)+pen(pi) (1.12g)

We look first at the consensus variable Bk+1. We can separate its update into two pieces: a static

component Bs, and an iterative component Bi:

Bi =
1
N

N

∑
i=1

[
ρ

(
W k

i + pk
i Φ

T
i +Zk

i JT
i

)
+ γ

k
i Φ

T
i +λ

k
i JT

i +α
k
i

]
(1.13a)

Bs =

[
ρ

(
I +

1
N

N

∑
i=1

ΦiΦ
T
i + JiJT

i

)]−1

(1.13b)

The consensus variable can then be thought of as averaging the effect of all other auxiliary

variables, and forming the current best estimate for consensus among the distributed

computational nodes.

The p-update is the only remaining minimization step that cannot necessarily be solved

in closed form, as it completely contains the structure of the q density. In its penalization, all

other optimization variables are fixed:

pen(pi) =
1
2

ρ‖Bk+1
Φi− pi‖2

2 + γ
kT
i (pi−Bk+1

Φi)

The formulation of (1.12) has the following desirable properties:
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• Eqs. (1.12a), (1.12b), (3.12c) and (3.12e) to (3.12g) admit closed form solutions. In

particular, Eqs. (1.12b) and (3.12e) to (3.12g) are simple arithmetic updates;

• Eq. (1.12g) is a penalized d-dimensional-vector convex optimization problem that entirely

captures the structure of Q. In particular, any changes to the problem specifying a different

structure of Q will be entirely confined in this update; furthermore, algorithm designers

can utilize any optimization procedure/library of their choosing to perform this update.

With this, we can now give an efficient, distributed version of the general push-forward

theorem:

Corollary 1.3.2 (Distributed Push-Forward). Under Assumption 4 and Assumption 3,

min
Wi∈Rd×K

− 1
N

N

∑
i=1

logq(WiΦi)+ logdet(WiJi)

s.t. Wi =W, WJi � 0 i = 1, . . . ,N

(1.14)

is a convex optimization problem.

Remark 4. ADMM convergence’s properties are robust to inaccuracies in the initial stages of

the iterative solving process [12]. Additionally several key concentration results provide very

strong bounds for averages of random samples from log-concave distributions, showing that the

approximation is indeed robust [9, Thrm 1.1, 1.2].

The above framework, under natural assumptions, facilitates the efficient, distributed and

scalable calculation of an optimal map that pushes forward some P to some Q.

1.3.5 Structure of the Transport Map

An important consideration in ensuring the construction of transport maps is efficient

is their underlying structure. In Section 1.3.3 we described a parameterization of the transport

map through the multi-index set J - the indices of polynomial orders involved in the expansion.
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However, this parameterization tends to be unfeasible to use in high dimension or with high

order polynomials due to the exponential rate at which the number of polynomials increases with

respect to these two properties.

In [40], two less expressive, but more computationally feasible map structures that can be

used to generate the transport map were discussed, which we briefly reproduce here, along with

some useful properties. For more specific details and examples of multi-index sets pertaining to

each mode for implementation purposes, see Section 1.8

The first alternative to the map pertaining to the fully-expressive mapping is the Knothe-

Rosenblatt map [10], which our group also previously used within the context of generating

transport maps for optimal message point feedback communication [38]. Here, each component

of the output, Sd , is only a function of the first d components of the input, resulting in a mapping

that is lower-triangular. Both the Knothe-Rosenblatt and dense mapping described above

perform the transport from one density to another, but with different geometric transformations.

An example of these differences can be found in Figures 3 and 4 of [38].

A Knothe-Rosenblatt arrangement gives the following multi-index set (note that the

index-set is now sub-scripted according to dimension of the data denoting the dependence on

data component):

J KR
d =

{
j ∈ ND :

D

∑
i=1

ji ≤ O∧ ji = 0,∀i > d

}
,d = 1, . . . ,D

An especially useful property of this parameterization is the following identity for the

Jacobian of the map:

logdet(JS(Xi)) =
D

∑
d=1

log∂dSd(Xi) (1.15)

where ∂dSd(Xi) represents the partial derivative of the dth component of the mapping
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with respect to the dth component of the data, evaluated at Xi.

Furthermore, the positive-definiteness of the Jacobian can equivalently be enforced for a

lower-triangular mapping by ensuring the following:

∂dSd > 0, 1≤ d ≤ D (1.16)

We can then write a Knothe-Rosenblatt special-case version of Eq. (1.10) as:

min
Si∈DKR

+

− 1
N

N

∑
i=1

logq(Si(Xi))+
D

∑
d=1

log∂dSd
i (Xi)

s.t. Si = S, i = 1, . . . ,N (1.17)

Indeed, we use this to our advantage in Section 1.4.

Finally, in the event that the Knothe-Rosenblatt mapping also proves to have too high of

model complexity, an even less expressive mapping is a Knothe-Rosenblatt mapping that ignores

all multivariate polynomials that involve more than one data component of the input at a time,

resulting in the following multi-index set:

J KRSV
d =

{
j ∈ ND :

D

∑
i=1

ji ≤ O∧ ji jl = 0,∀i 6= l∧ ji = 0,∀i > d

}
, d = 1, . . . ,D

Although less expressive and less precise than the total order Knothe-Rosenblatt map,

these maps can often still perform at an acceptable level of accuracy with respect to many

problems.
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1.3.6 Algorithm for Inverse Mapping with Knothe-Rosenblatt Transport

It may be desirable to compute the inverse mapping of a given sample from Q, that is,

S−1(X),X ∼Q. When the forward mapping S is constrained to have Knothe-Rosenblatt structure,

and a polynomial basis is used to parameterize the mapping, the process of inverting a sample

from Q reduces to solving a sequential series of polynomial root-finding problems [40]. We

give a more detailed implementation-based explanation of this process alongside a discussion of

implementation details for the Knothe-Rosenblatt maps in Section 1.8.

1.4 Sequential Composition of Optimal Transportation
Maps

Figure 1.2. A visual representation of the effect a sequential composition has over the density of
a set of samples shown at intermediary stages of the mapping sequence. P is a 2-dimensional
bimodal distribution, and Q is standard Gaussian

In this section, we introduce a scheme for using many individually computed maps

in sequential composition to achieve an overall effect of a single large mapping from P to Q.

By using a sequence of maps to transform P to Q instead of a single one-shot map, one can
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theoretically rely on models of lower complexity to represent each map in the sequence, as

although each map is, on its own, “weak” in the sense of its ability to induce large changes in the

distribution space, the combined action of many such maps together can potentially successfully

transform samples as desired. This is especially attractive for model structures that increase

exponentially in complexity with problem size, such as the dense polynomial chaos structure

discussed on the previous section. This sequential composition process is visually represented in

Figure 1.2.

Moving forward, we first take a brief look at a non-equilibrium thermodynamics

interpretation of this methodology to further justify the use of such a scheme, and then derive a

slightly different ADMM problem to implement it.

1.4.1 Non-Equilibrium Thermodynamics and Sequential Evolution of
Distributions

One approach to interpreting sequential composition of maps is to borrow ideas from

statistical physics, where we can interpret q as the equilibrium density (ρ∞) of particles in a

system, which at time 0 is out of equilibrium with density P (also termed ρ0). Since q is an

equilibrium density, it can be written as a Gibbs distribution (with temperature equal to 1 for

simplicity): q(u)≡ ρ∞(u) = Z−1 exp(−Ψ(u)). For instance, if Q pertains to a standard Gaussian,

then Ψ(u) = 1
2u2. Assuming the particles obey the Langevin equation, it is well known that

the evolution of the particle density as a function of time (ρt : t ≥ 0) obeys the Fokker-Planck

equation. It was shown in [29] that the trajectory of (ρt : t ≥ 0) can be interpreted from variational

principles. Specifically,

Theorem 1.4.1 ([29] Thm 5.1). Define ρ0 = p and ρ∞ = q and assume that D(ρ0‖ρ∞)< ∞. For

any h > 0, consider the following minimization problem:

A(ρ) ,
1
2

d(ρk−1,ρ)
2 +hD(ρ‖ρ∞) (1.18)

ρk , arg min
ρ∈P(W)

A(ρ) (1.19)

19



Then as h ↓ 0, the piecewise constant interpolation which equals ρk for t ∈ [kh,(k + 1)h)

converges weakly in L1(RD) to (ρt : t ≥ 0), the solution to the Fokker-Planck equation.

The log-concave structure of q we have exploited previously also has implications for

exponential convergence to equilibrium with this statistical physics perspective:

Theorem 1.4.2 ([5]). If q is uniform log-concave, namely

∇
2
Ψ(u)� λ ID

for some λ > 0 with ID the D×D identity matrix, then:

D(ρt‖ρ∞) ≤ e−2λ tD(ρ0‖ρ∞) .

Note that if q is the density of a standard Gaussian, this inequality holds with λ = 1.

1.4.2 Sequential Construction of Transport Maps

We now note that for any h > 0, (1.19) encodes a sequence (ρk : k ≥ 0) of densities

which evolve towards ρ∞ ≡ q. For notational conciseness in this section, we will be using the

subscript on S to denote the position of the map in a sequence of maps. As such, from corollary

Corollary 1.2.8, there exists an S1 ∈D+ for which S1#ρ0 = ρ1, and more generally, for any k≥ 0,

there exists an Sk ∈D+ for which Sk#ρk−1 = ρk.

Lemma 1.4.3. Define B : D+→ R as

B(S) ,
1
2
Eρk−1

[
‖X−S(X)‖2]+hD(ρk−1‖ p̃(·;S))

Sk , arg min
S∈D+

B(S) (1.20)

Then A(ρk) = B(Sk) and Sk#ρk−1 = ρk.

20



Proof. From the definition of p̃S,Q in (1.4) and the invariance of relative entropy under an

invertible transformation, any S ∈D+ satisfies

D(ρk−1‖ p̃(·;S)) = D
(
ρk−1‖S−1#ρ∞

)
= D(S#ρk−1‖ρ∞) .

As such, moving forward with the proof, we will exploit how B(S) = B̃(S) where

B̃(S),
1
2
Eρk−1

[
‖X−S(X)‖2]+hD(S#ρk−1‖ρ∞) .

From Theorem 1.2.7, d(ρk−1,S#ρk−1)≤ Eρk−1

[
(X−S(X))2] for any S ∈D+. Also, since the

relative entropy terms of B̃(S) and A(S#ρk−1) are equal, it follows that follows that B̃(S) ≥

A(S#ρk−1) for any S ∈D+. Moreover, from Corollary 1.2.8, we have that there exists an Sk ∈D+

for which Sk#ρk−1 = ρk and

Eρk−1

[
‖X−Sk(X)‖2]= d(ρk−1,ρk)

2.

Thus B̃(S) = A(S#ρk−1).

As such, a natural composition of maps underlies how a sample from P≡ ρ0 gives rise

to a sample from ρk:

ρk = Sk#ρk−1 = Sk ◦Sk−1#ρk−2 = Sk ◦ · · · ◦S1#ρ0 (1.21)

Moreover, since as h ↓ 0, ρk ' ρk−1 and so Sk approaches the identity map. Thus for

small h > 0, each Sk should be estimated with reasonable accuracy using lower-order maps. That

is, S can be described as the composition of T maps as

S(x) = ST ◦ . . .◦S2 ◦S1(x) (1.22)
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for all x ∈ Rd , such that each Si is of relative low-order in the polynomial chaos expansion.

Note that B(S) as written above involves a sum of expectations with respect to ρk−1.

Since our scheme operates sequentially, we have already estimated S1,S2, . . . ,Sk−1 and can

generate approximate i.i.d. samples from ρk−1 by first generating (Xi : i≥ 1) i.i.d. from ρ0 ≡ p

and constructing

Zi = Sk−1 ◦ · · · ◦S1(Xi), i≥ 1.

We below will demonstrate efficient ways to solve the below convex optimization problem which

replaces the expectation with respect to ρk−1 instead with the empirical expectation with respect

to (Zi : i = 1, . . . ,N).

min
S∈D+

1
N

N

∑
i=1

[
1
2
‖Zi−S(Zi)‖2−h log p̃(Zi;S)

]

To reiterate, we consider a distribution ρk−1 formed by the sequential composition of

previous mappings as

ρk−1 = S∗k−1 ◦ · · · ◦S∗1#ρ0,

where ρ0≡ p. We then try to find a map S∗k that pushes ρk−1 forward closer to ρ∞≡Q. Each Sk is

solved by the optimization problem (1.20), which we term SOT. As the number of compositions

T in (1.22) increases, ρT approaches ρ∞. When q is uniform log-concave, this greedy, sequential

approach still guarantees exponential convergence.

In the context of Knothe-Rosenblatt maps, for every map in the sequence we can solve

the following optimization problem (in the following equation, we will be dropping the subscript

k that indicates the sequential map index, as the formulation is not dependent on position in the

map sequence, and we will once again be replacing the subscript with i to indicate the distributed
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variables for the consensus problem instead):

min
Si∈DKR

+

θ ||Si(Xi)−Xi||22−
1
N

N

∑
i=1

logq(Si(Xi))+
D

∑
d=1

log∂dSd(Xi) (1.23)

s.t. Si = S, ∀0≤ i≤ N

where θ = h−1 can be interpreted as an inverse “step-size” parameter.

Though each map in the sequence must be calculated sequentially after the previous one,

each mapping can still be calculated in the distributed framework described above. This implies

that at each round, one could adaptively decide the parameters for the next-round’s solve.

1.4.3 ADMM Formulation for Learning Sequential Maps

We now showcase an ADMM formulation for the optimal transportation-based objective

function, similar in spirit to that of Eq. (1.12).

We first introduce the following conventions:

• Φd
i represents the partial derivative of Φi taken with respect to the dth component.

Therefore, BΦd
i = ∂dS(Xi), and ∂dSd(Xi) is the dth component of BΦd

i .

• 1d represents a one-hot vector of length D with the one in the dth position

We can then introduce a finite-dimensional representation of the transport map, as well

as auxiliary variables and a consensus variable to Eq. (1.23) and rewrite the problem as:
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min
{W,p}i,{Y,Z}d

i ,B
θ ||BΦi− xi||22 +

1
N

N

∑
i=1
− logq(pi)

+
1
2

ρ||Wi−B||22 +
1
2
||BΦi− pi||22

+
D

∑
d=1
− logZd

i +
1
2

ρ(Y d
i 1d−Zd

i )
2 +

1
2

ρ||BΦ
d
i −Y d

i ||22

s.t BΦi = pi γi (D×1)

Wi−B = 0 αi (D×K)

Y d
i 1d = Zd

i β
d
i (1×1)

BΦ
d
i = Y d

i λ
d
i (D×1)

Zd
i > 0

(1.24)

where we have once again denoted the corresponding Lagrange multipliers to the right of

each constraint. The superscript d notation represents the fact that in this formulation, in addition

to having separable variables for each data sample, some variables are now unique to an index

over dimension as well. For example, there are DN-many Z variables that must be solved for.

We can now raise the constraints to form the fully-penalized Lagrangian as:

Lρ,θ (W,Z,Y, p,B;γ,α,β ,λ )

= θ ||BΦi− xi||22 +
1
N

N

∑
i=1
− logq(pi)

+
1
2

ρ||Wi−B||22 +
1
2

ρ||BΦi− pi||22

+ γ
T
i (pi−BΦi)+ tr(αT

i (Fi−B))

+
D

∑
d=1
− logZd

i +
1
2

ρ(Y d
i 1d−Zd

i )
2 +

1
2

ρ||BΦ
d
i −Y d

i ||22

+β
d
i (Z

d
i −Y d

i 1d)+λ
dT
i (Y d

i −BΦ
d
i )

(1.25)
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The final ADMM update equations for each variable are once again all closed-form, with

the exception of the optimization over pi. For the sake of brevity, we refer the reader to Section

1.8 of the Appendix for the exact update equations.

However, one notable difference between this formulation and that of Section 1.3.4 as

noted in the previous section is that the update for Zd
i has been simplified from requiring an

eigenvalue decomposition, to requiring a simple scalar computation, thus significantly reducing

computation time, especially in higher dimensions.

1.4.4 Scaling Parallelization with GPU Hardware

Given the parallelized formulations given above, we implemented our algorithm using

the Nvidia CUDA API to get as much performance as possible out of our formulation, and to

maximize the problem sizes we could reasonably handle, while keeping computation time as

short as possible. To test the algorithm’s parallelizability, we ran our implementation on a single

Nvidia GTX 1080ti GPU, as well as on a single p3.16xlarge instance available on Amazon Web

Services, which itself contains 8 on-board Tesla V100 GPUs.

For this test, we have sampled synthetic data from a bimodal P distribution specified as a

combination of two Gaussian distributions, for a wide range of problem dimensions, specifically

D = 5,10,20,50,100,150,200, and a constant number of samples from P set to N = 1000. We

then find a transport pushing P to Q = N (0,I), composed of a sequence of 10 individual

Knothe-Rosenblatt maps with no mixed multivariate terms. We then monitor the convergence of

dual variables for proper termination of the algorithm.

Figure 1.3 shows the result of this analysis. The 1 GPU curve corresponds to performance

using the single GTX 1080ti, and the AWS curve corresponds to the performance using the

8-GPU system on Amazon Web Services. The trending of the curves shows that, as expected,

as problem dimension increases, a multi-GPU system will continue to maintain reasonable

computation times, at least with respect to a single-GPU system, however fewer GPU’s will

begin to accumulate increasingly high computational costs. In addition, the parallelizability
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of our algorithm also has a subtle benefit of helping with memory-usage issues; since we can

distribute samples across multiple devices, we can also subsequently distribute all corresponding

ADMM variables as well. Indeed, the single GTX 1080ti ran out of on-board memory roughly

around D = 230, whereas the 8-GPU system can go well beyond that.

Figure 1.3. A comparison of using a single-GPU system vs. an 8-GPU system to compute maps
in increasingly high dimension. The trending of the two plots clearly shows the more reasonable
growth in computation time of the 8-GPU system relative to the single-GPU system, as the
samples from P are distributed among the multiple devices

1.5 Applications

The framework presented above is general-purpose, and works to push-forward a

distribution P to a log-concave distribution Q. Below we discuss some interesting applications,

namely Bayesian inference and a generative model, and show results with real-world datasets.

1.5.1 Bayesian Inference

A very important instantiation of this framework comes when we consider P ≡ PX to

represent a prior distribution, and Q≡ PX |Y=y to be a Bayesian posterior:

fX |Y=y(x) =
fY |X(y|x) fX(x)

βy
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where βy is a constant that does not vary with x, given by:

βy =
∫

v∈X
fY |X(y|v) fX(v)dv

Using Eq. (3.1) and combining with Bayes’ rule above we can write:

fX(x) = fX |Y=y(S
∗
(y)(x))det

(
JS∗

(y)(x)

)
=

fY |X(y|S∗(y)(x)) fX

(
S∗(y)(x)

)
βy

det
(

JS∗
(y)(x)

)
where the notation S∗(y)(x) indicates that the optimal map is found with respect to

observations y. We note that since q(u) =
fX (u) fY |X (y|u)

βy
, log-concavity of q is equivalent to

log-concavity of the prior density fX(u) and log-concavity of the likelihood density fY |X(y|u) in

u: the same criterion for an MAP estimation procedure to be convex. Thus Corollary 1.3.2

extends to the special case of Bayesian inference; i.e. we can generate i.i.d. samples from the

posterior distribution by solving a convex optimization problem in a distributed fashion.

Due to the unique way the ADMM steps were structured, this special case only requires

specifying a particular instance of Eq. (1.12g):

p∗i = arg min
pi

− log fY |X(y|pi)︸ ︷︷ ︸
likelihood

− log fX(pi)︸ ︷︷ ︸
prior

+pen(pi)

Remark 5. This specific case establishes an important property. If the prior is chosen so that it

is easy to sample from, and the prior and likelihood are both log-concave, then a deterministic

function S can be efficiently computed that takes I.I.D samples from the prior distribution, and

results in I.I.D samples from the posterior distribution. The assumption of log-concavity is also

typically used in large-scale point estimates, though this framework goes beyond point estimates

and generates I.I.D samples form the posterior.

As an instantiation of this framework, we consider a Bayesian estimation of regression
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parameters x1, ...,xd in the model y = µ111nnn +Φx+ ε , where y is the n-dimensional vector of

responses, µ is the overall mean, Φ is a n× d regressor matrix, and ε ∼N (0,σ2) is a noise

vector. The LASSO solution,

x∗ = arg min
x∈Rd

||y−Φx||22 +λ ||x||1 (1.26)

for some λ ≥ 0 induces sparsity in the latent coefficients. The solution to (2.1) can be

seen as a posterior mode estimate when the regression parameters are distributed accordingly to

a Laplacian prior.

p(x;λ ) =
d

∏
i=1

λ

2
e−λ |xi| (1.27)

A number of Bayesian LASSO Gibbs samplers, which are Markov Chain Monte Carlo

algorithms, are used as standard methods by which to sample from the posterior associated with

problem (2.1) [43], [24].

We study the accuracy and modularity of our measure transport methodology through

a Bayesian LASSO analysis of the Boston Housing data set, first analyzed by Harrison and

Rubinfeld [25], which is a common dataset used when comparing regression problems. We

compare our results to those obtained from utilizing a corresponding Gibbs sampler. The Boston

Housing data set consists of 13 independent predictors of the median value of owner occupied

homes and 506 cases. We are interested in which combination of these 13 variables best predict

the median value of homes observed in y, and if we can eliminate variables that do not contribute

much to prediction. The LASSO gives an automatic way for feature selection by forcing the

coefficients of the predictors represented by x∗ to be zero. The Bayesian LASSO solution,

allows for uncertainty quantification of feature selection, as we can obtain credible intervals

corresponding to the coefficients of the estimates.

We used a Gibbs sampler as presented in [24] where the variance variable σ2 is non-

random. We used 3000 samples of burn-in and sampled 10000 samples from the posterior

distribution with a fixed λ chosen by minimizing the Bayes Information Criterion (BIC) [59]. We
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compared that to sampling from a generated transport map with the same λ . We used N = 2000

samples from a Laplace prior to learn a fourth-order transport map of interest. In this case, we

used a one-shot, dense map structure as described in Section Section 1.3.

We note that the modularity of our problem allows for sampling from the posterior

distribution of the Bayesian LASSO, by only specifying the optimization problem of Eq. (1.12g)

to correspond to the likelihood and prior.

Figure 1.4 shows the posterior median estimates and the corresponding 95% credible

intervals for the marginal distributions of the first 10 variables of the Boston housing data set.

The LASSO estimates are shown for comparison. Figure 1.5 shows the Kernel Density Estimates

for these variables constructed with 10000 samples of either the Bayesian LASSO Gibbs sampler

or the measure transported samples. The density estimates of both methods are similar, verifying

the accuracy of our methodology.

Figure 1.4. Posterior median Bayesian LASSO estimates and corresponding credible intervals
for the ten first variables of the Boston Housing dataset. Median estimates were obtained with
samples from a Gibbs sampler and a Measure Transport map. LASSO estimates are shown for
comparison.

1.5.2 High-Dimensional Maps Using the MNIST Dataset

The parallelizability of our formulation of the optimal transportation-based mapping

for sequential transport maps also allows us to efficiently compute maps for relatively high-

dimensional data. As a demonstration of this, we used the MNIST handwritten digits dataset

[34] as a subject of experimentation.

Similar to the density estimation case, we assume that samples from each class of MNIST

data is drawn from some Pdigit , where digit denotes the MNIST written digit associated with that
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Figure 1.5. Kernel Density Estimate comparisons of marginal posteriors for the Boston Housing
data set.

distribution. We then attempt to construct a (sequential) mapping, S(digit) that pushes Pdigit to a

reference distribution, Q = N (0,I). Again, similar to before, the selection of the Q density to

be a standard Gaussian is expressly for the purpose of analytical simplicity; Q can theoretically

be anything we like, so it benefits us during the generative step to select Q such that it is easy

to sample from. Each image in MNIST is a 28x28 pixel image, therefore after flattening each

image into a vector of data, our maps operate in D = 784. We then solve for each map S(digit) for

every handwritten digit class in the MNIST set.

We can then treat the inverse map as a generative model; with the maps S(digit) in hand,

we can theoretically draw samples from Q, and push these samples through the inverse map,

S−1
(digit), resulting in randomly generated samples from Pdigit .

Fig. 1.6 shows the result of this process using a sequential composition of 15 maps, with

maximum order of the basis of each sequential map being set to 2, and each sequential map using

the Knothe-Rosenblatt basis with no mixed multivariate terms from Section 1.3.5. Our results

show that even in high dimension, and even while using a relatively weak polynomial basis per

sequential map, the resulting transport maps can effectively generate approximate samples from

Pdigit in this way.
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Figure 1.6. A comparison of original MNIST data samples vs. random samples drawn using the
inverse map. The left-most 10 columns of images pertain to randomly selected data examples
from the original MNIST set, and the rightmost 10 columns of images are randomly generated by
the inverse map, S−1

(digit)(X),X ∼Q. Each mapping for this example was a sequential composition
of 15 maps of maximum order 2, using the Knothe-Rosenblatt mapping with no mixed terms.

1.6 Discussion

In this work, we have proposed a general purpose framework for pushing independent

samples from one distribution P to independent samples from another distribution Q through

the efficient and distributed construction of transport maps, with only independent samples

from P, and knowledge of Q up to a normalization constant. We showed that when the target

distribution Q is log-concave, this problem is convex. Using ADMM, we instantiated two finite

dimensional problems for finding both one-shot and sequential transport maps, and provided

distributed algorithms for carrying out the underlying optimization problems. As our framework

is distributed by nature, we can continue to take advantage of the ever-increasing availability and

evolution of distributed computational resources to further speed up computation, with little to

no changes to our formulation whatsoever.

We applied our framework to a Bayesian LASSO problem, that, while it requires that

the prior and likelihood to be log-concave, is no different than existing frameworks that carry

out efficient point estimates in that regard; however, by contrast, our framework does succeed in

efficiently generating independent samples from the actual target distribution Q. We emphasize

that the class of log-concave distributions is quite large and widely used in various applications
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[4], and that this is the same convexity condition required for Bayesian point (MAP) estimation

using many modern techniques. As such, we have shown that from the perspective of convexity,

we can go from point estimation to fully Bayesian estimation, without requiring significantly

more.

Finally, we applied our framework to a high-dimensional problem of approximating a

generative model for the MNIST dataset, and provided a qualitatively striking demonstration

of how well the construction of sequential transport maps can give rise to such a model. The

connection and comparison of this method to other generative models, especially deep learning-

based methods such as generative adversarial networks [23] and variational autoencoders [32],

remains to be explored and is the subject of future work. We believe that this alternate form

of generative model, one based on calculating a transport map that is parameterized over the

space of polynomial basis functions orthogonal to the distribution of the data, stands in contrast

to the black-box nature of neural networks. Moreover, although certain works have explored

the invertibility of deep neural networks [36], [21], in general a single output of a neural

network might map to multiple latent vectors. Our transport maps, chosen over the space of

diffeomorphisms, remain necessarily invertible and indeed this property is exploited in the

generation of samples. One can surmise that this invertibility leads to more tractability of the

generative model. The general connection to Optimal Transport and deep generative models is a

subject of recent interest and has incited pertinent work in the literature [19], [48].

We also stress that ADMM and other related large-scale optimization methods have

many existing refinements [27, 29, 58, 3] from which this framework would immediately benefit.

Future work could explore these refinements, and applications as approximations to non-convex

problems.

Although we have established convexity of these schemes, further work needs to be

done characterizing the fundamental limits of sample complexity of this approach, and can help

guide how these architectures may possibly be soundly implemented. Optimizing architectures

for hardware optimization, and understanding performance-energy-complexity trade-offs, will
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further allow for wider exploration of these methods within the context of emerging applications.
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1.8 Appendix

Here we provide some additional details on several aspects of the main paper.

Derivation of Dense ADMM Formulation

Here we show a more complete derivation of the ADMM formulation from Section 1.3.4.

ADMM yields the following sequential updates to the penalized Lagrangian:

Bk+1 = arg min
B

Lρ(W k,Zk, pk,B;γ
k,λ k,αk) (1.28a)

W k+1 = arg min
W

Lρ(W,Zk, pk,Bk+1;γ
k,λ k,αk) (1.28b)

Zk+1 = arg min
Z�0

Lρ(W k+1,Z, pk,Bk+1;γ
k,λ k,αk) (1.28c)

pk+1 = arg min
p

L(W k+1,Zk+1, p,Bk+1;γ
k,λ k,αk) (1.28d)

γ
k+1
i = γ

k
i +ρ(pk+1

i −Bk+1
Φi) 1≤ i≤ n (1.28e)

λ
k+1
i = λ

k
i +ρ(Zk+1

i −Bk+1Ji) 1≤ i≤ n (1.28f)

α
k+1
i = α

k
i +ρ(W k+1

i −Bk+1) 1≤ i≤ n (1.28g)

The closed form solutions to the equations (2.24), (2.26a), and (2.26b) are given as
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follows:

Firstly, as for (2.24), the cost function C(Bk+1) is given by:

C(Bk+1) =
1
N

N

∑
i=1

1
2

ρ‖W k
i −B‖2

F +
1
2

ρ‖BΦi− pk
i ‖2

2

+
1
N

N

∑
i=1

1
2

ρ‖BJi−Zk
i ‖2

F + γ
kT
i (pk

i −BΦi)

+
1
N

N

∑
i=1

tr
(

λ
kT
i (Zk

i −BJi)
)
+ tr

(
α

kT
i (W k

i −B)
)
. (1.29)

The first-order derivative of the equation (1.29) in terms of Bk+1 is expressed as

∂C(Bk+1)

∂Bk+1 =
1
N

N

∑
i=1

ρ(B−W k
i )+ρ(BΦi− pk

i )Φ
T
i

+
1
N

N

∑
i=1

ρ(BJi−Zk
i )J

T
i − γ

k
i Φ

T
i

+
1
N

N

∑
i=1
−λ

k
i Ji−α

kT
i . (1.30)

By setting the equation (1.30) to zero and expressing it in terms of B, we get

B

[
ρ

(
I +

1
N

N

∑
i=1

ΦiΦ
T
i + JiJT

i

)]

=
1
N

N

∑
i=1

[
ρ

(
W k

i + pk
i Φ

T
i +Zk

i JT
i

)
+ γ

k
i Φ

T
i +λ

k
i JT

i +α
k
i

]
. (1.31)

If we define

L ,

[
ρ

(
I +

1
N

N

∑
i=1

ΦiΦ
T
i + JiJT

i

)]
(1.32)

and

M ,
1
N

N

∑
i=1

[
ρ

(
W k

i + pk
i Φ

T
i +Zk

i JT
i

)
+ γ

k
i Φ

T
i +λ

k
i JT

i +α
k
i

]
(1.33)
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Then we have:

Bk+1 = M ·L−1 (1.34)

Secondly, as for (2.26a), the cost function C(W k+1
i ) is given by

C(W k+1
i ) =

1
2

ρ‖Wi−Bk+1‖2
2 + tr

(
α

kT
i (Wi−Bk+1)

)
(1.35)

The first-order derivative of the equation (1.35) in terms of W k+1
i is expressed as

∂C(W k+1
i )

∂W k+1
i

= ρ(Wi−Bk+1)+α
k
i . (1.36)

Thus,

W k+1
i =− 1

ρ
α

k
i +Bk+1 (1.37)

Lastly, as for (2.26b), following the steps in [12], the first-order optimality condition

using the equation (2.26b) is expressed as

−Z−1
i +ρ(Zi−Bk+1Ji)+λ

k
i = 0. (1.38)

Rewriting this, we get
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ρZi−Z−1
i = ρBk+1Ji−λ

k
i . (1.39)

First, take the orthogonal eigenvalue decomposition of the right-hand side,

ρBk+1Ji−λ
k
i = QΛQT (1.40)

where Λ = diag(ν1, ...,νd), and QT Q = QQT = I. Multiplying (1.39) by QT on the left and by

Q on the right gives

ρZ̃i− Z̃−1
i = Λ (1.41)

where Z̃i = QT ZiQ. A diagonal solution of this equation is given by

Z̃i,( j j) =
ν j +

√
ν2

j +4ρ

2ρ
, (1.42)

and the final solution is given as

Zk+1
i = QZ̃iQT . (1.43)

Derivation of Knothe-Rosenblatt ADMM Formulation and Final Updates

In similar fashion, here we outline the derivation of the ADMM formulation from

Section 1.4.3.
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First, we note that the closed-form updates for Wi and pi are identical as for the original

formulation. So here we will show the derivation only for the remainder of updates. In what

follows, ADMM iteration superscripts, k, are now enclosed in parentheses so as not to confuse

them with the d superscript indexing over dimension:

The cost function C(B(k+1)) is given by:

C(B(k+1)) =
1
N

N

∑
i=1

1
2

ρ||W (k)
i −B||22 +θ ||BΦi−Xi||22

+
1
2

ρ||BΦi− p(k)i ||
2
2 + γ

(k)T
i (p(k)i −BΦi)+

+ tr(α(k)T
i (W (k)

i −B))

+
D

∑
d=1

1
2

ρ||BΦ
d
i −Y d(k)

i ||22 +λ
d(k)T
i (Y d(k)

i −BΦ
d
i )

(1.44)

Taking the first-order derivative of Eq. (1.44) and setting to 0, we arrive at the following

expression:

B

[
ρ(I+

1
N

N

∑
i=1

ΦiΦ
T
i +

2θ

ρ
ΦiΦ

T
i +

D

∑
d=1

Φ
d
i Φ

dT
i )

]

=
1
N

N

∑
i=1

ρW (k)
i +ρ p(k)i Φ

T
i +2θXiΦ

T
i + γ

(k)
i Φ

T
i +α

(k)T
i

+
D

∑
d=1

ρY d(k)
i Φ

dT
i +λ

d(k)
i Φ

dT
i

(1.45)

If we define

Bs , ρ

(
I+

1
N

N

∑
i=1

ΦiΦ
T
i +

2θ

ρ
ΦiΦ

T
i +

D

∑
d=1

Φ
d
i Φ

dT
i

)
(1.46)
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and

Bi ,
1
N

N

∑
i=1

ρW (k)
i +ρ p(k)i Φ

T
i +2θXiΦ

T
i + γ

(k)
i Φ

T
i +α

(k)T
i

+
D

∑
d=1

ρY d(k)
i Φ

dT
i +λ

d(k)
i Φ

dT
i

(1.47)

then we have:

B(k+1) = Bi ·B−1
s (1.48)

The loss function associated with Zd
i for a given i and d is the following:

C(Zd(k+1)
i ) =− logZd

i +
1
2

ρ(Y d(k)
i 1d−Zd

i )
2

+β
d(k)
i (Zd

i −Y d(k)
i 1d)

Taking the derivative and setting to 0, we get the following quadratic expression:

ρZd2
i +(β

d(k)
i −ρY d(k)

i 1d)Zd
i −1 = 0 (1.49)

As we would like Zd(k+1)
i to be greater than 0 according to our constraints, we set the

closed-form solution to the positive root of this quadratic equation:

Zd(k+1)
i =

ρY d(k)
i 1d−β

d(k)
i +

√
(ρY d(k)

i 1d−β
d(k)
i )2 +4ρ

2ρ
(1.50)

The loss function associated with Y d
i for a given i and d is the following:

C(Y d(k+1)
i ) =

1
2

ρ(Y d
i 1d−Zd(k+1)

i )2 +
1
2

ρ||B(k+1)
Φ

d
i −Y d

i ||22

+β
d(k)
i (Zd(k+1)

i −Y d
i 1d)+λ

d(k)T
i (Y d

i −B(k+1)
Φ

d
i )

(1.51)
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Taking the derivative with respect to Y d
i and setting to 0, we get the following expression:

Y d(k+1)
i = (ρZd(k+1)

i 1T
d +ρB(k+1)

Φ
d
i +β

d(k)
i 1T

d −λ
d(k)T
i ) (1.52)

· (ρ1d1T
d +ρI)−1

Finally, our complete set of updates is:

B(k+1) = Bi ·Bs (1.53a)

W (k+1)
i =− 1

ρ
α
(k)
i +B(k+1) (1.53b)

Zd(k+1)
i =

ρY d(k)
i 1d−β

d(k)
i +

√
(ρY d(k)

i 1d−β
d(k)
i )2 +4ρ

2ρ
(1.53c)

Y d(k+1)
i = (ρZd(k+1)

i 1T
d +ρB(k+1)

Φ
d
i +β

d(k)
i 1T

d −λ
d(k)T
i ) (1.53d)

· (ρ1d1T
d +ρI)−1

γ
(k+1)
i = γ

(k)
i +ρ(p(k+1)

i −B(k+1)
Φi) (1.53e)

α
(k+1)
i = α

(k)
i +ρ(W (k+1)

i −B(k+1)) (1.53f)

λ
d(k+1)
i = λ

d(k)
i +ρ(Y d(k+1)

i −B(k+1)
Φ

d
i ) (1.53g)

β
d(k+1)
i = β

d(k)
i +ρ(Zd(k+1)

i −Y d(k+1)
i 1d) (1.53h)

p(k+1)
i = arg min

pi

− logq(pi)+pen(pi) (1.53i)

where the pi update can once again be performed using any number of appropriate

optimization techniques.
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Transport Map Multi-Indices Details

In this section, we give a few concrete examples of the various multi-index-sets presented

in Section 1.3.5 for clarification in practical use-cases, as well as for actual implementation

purposes.

In the case of a dense map, recall the index set:

J D =

{
j ∈ Nd :

d

∑
i=1

ji ≤ O

}

For example, in the case where D = O = 3, the resulting index set will have the following

form:

J D =
[

0 1 2 3 0 0 0 1 1 2 0 0 0 1 1 2 0 0 1 0
0 0 0 0 1 2 3 1 2 1 0 1 2 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 3

]
where every jth column is one D-long multi-index for a single multivariate polynomial

basis term, φj.

The size of this set K , |J D| for any given maximum polynomial order O is:

K =

(
D+O

O

)

In the case of the Total Order Knothe-Rosenblatt map, the index set is:

J KR
d ={
j ∈ Nd :

d

∑
i=1

ji ≤ O∧ ji = 0,∀i > d

}
,d = 1, . . . ,D

In this case, the size of the set Kd , |J KR
d | becomes dependent on the component of the

mapping.

40



Revisiting our previous example with D = O = 3 we have:

J KR
1 =

{
j ∈ N3 :

3

∑
i=1

ji ≤ O∧ j2 = j3 = 0

}

=
[

0 1 2 3
0 0 0 0
0 0 0 0

]
J KR

2 =

{
j ∈ N3 :

3

∑
i=1

ji ≤ O∧ j3 = 0

}

=
[

0 1 2 3 0 0 0 1 1 2
0 0 0 0 1 2 3 1 2 1
0 0 0 0 0 0 0 0 0 0

]
J KR

3 =

{
j ∈ N3 :

3

∑
i=1

ji ≤ O

}

=
[

0 1 2 3 0 0 0 1 1 2 0 0 0 1 1 2 0 0 1 0
0 0 0 0 1 2 3 1 2 1 0 1 2 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 3

]
In contrast to a dense mapping, this construction yields a weight matrix that has

|J KR
d |=

(
d +O

O

)
(1.54)

many non-zero weights per row d, for a total of:

D

∑
d=1

(
d +O

O

)
(1.55)

non-zero weights. In terms of implementation, note that we can enforce a lower-triangular

structure of the mapping simply by constructing Φ according to the full index set ordering of

J KR
D , and constraining the coefficient matrix W to have zeros embedded with the following

structure:

Definition 1.8.1 (Lower-Triangular Weight Matrix). A weight matrix W ∈ RD×K corresponds to
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a lower-triangular transport map if it can be expressed as:

W =


wwwT

1 0 0 0 0 0 0

. . . wwwT
d . . . 0 0 0

. . . wwwT
D . . .


where each wwwd is a vector in R|J KR

d |.

When constructed as such, WΦi = S(Xi), where S is a Knothe-Rosenblatt map.

In the case of the Single Univariate Knothe-Rosenblatt map, the index set becomes the

following subset of J KR, again dependent on the component d:

J KRSV
d ={
j ∈ Nd :

d

∑
i=1

ji ≤ O∧ ji jl = 0,∀i 6= l∧ ji = 0,∀i > d

}
,

d = 1, . . . ,D

Revisiting our previous example with D = O = 3, we have the following multi-index

sets:

J KRSV
1 =

{
j ∈ N3 :

3

∑
i=1

ji ≤ O∧ j2 = j3 = 0∧ ji jl = 0,∀i 6= l

}

=
[

0 1 2 3
0 0 0 0
0 0 0 0

]
J KRSV

2 =

{
j ∈ N3 :

3

∑
i=1

ji ≤ O∧ j3 = 0∧ ji jl = 0,∀i 6= l

}

=
[

0 1 2 3 0 0 0
0 0 0 0 1 2 3
0 0 0 0 0 0 0

]
J KRSV

3 =

{
j ∈ N3 :

3

∑
i=1

ji ≤ O∧ ji jl = 0,∀i 6= l

}

=
[

0 1 2 3 0 0 0 0 0 0
0 0 0 0 1 2 3 0 0 0
0 0 0 0 0 0 0 1 2 3

]
Here, all multivariate polynomial basis terms that are a product of mixed univariate
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polynomial terms are eliminated from the basis, resulting in a weight matrix that has:

|J KRSV
d |= dO+1 (1.56)

many non-zero weights per row d, for a total of:

D

∑
d=1

dO+1 (1.57)

non-zero weights. In terms of implementation, the 0-embedding strategy from the Total

Order Knothe-Rosenblatt mapping still applies, as long as the complete index set is constructed

as J KRSV
D .

Ensuring Diffeomorphism Properties of Parameterized Maps

For any S̃ ∈D+ parameterized as in Section 1.3.3

S̃K(x) =WΦ(x) (1.58)

We must ensure that WJΦ(x) is positive definite for all x ∈W. Here we will define an

additional optimization problem to ensure this property. We begin with the Euclidean Projection

or the Proximal Operator of the indicator function of D+.

SW (x) = arg min
m(x)=WΦ(x):JΦ(x)≥0

||m(x)−WΦ(x)||2 (1.59)

As such, SW retains the properties of a diffeomorphism.
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Inverse Map Details

Computing the inverse map also becomes straightforward given the above methodology

of representing B and Φi

We begin by first showing the Knothe-Rosenblatt property of the map in the complete

forward-map equation assuming we are using our polynomial basis representation for a given Xi:



b11 b12 . . . b1(K1)
. . . 0 0 0

b21 b22 . . . . . . b2(K2)
. . . 0 0

...

bD1 bD2 . . . . . . . . . . . . . . . bD(KD)


︸ ︷︷ ︸

B



Φ(X1
i )

Φ(X1
i ,X2

i )

...

Φ(X1
i , . . . ,XD

i )


︸ ︷︷ ︸

Φi

=



S(X1
i )

S(X2
i )

...

S(XD
i )



(1.60)

where Xd
i represents the dth component of the ith sample.

Here, to fulfill our KR assumption, we assume that Φi is a column vector of the

polynomial bases evaluated at Xi, ordered according to how many components of Xi the bases

are a function of. I.e., if Kd = |J KR
d |, then Φ(X1

i ) are the first K1 basis functions that are only a

function of X1, Φ(X1
i ,X

2
i ) are the K2−K1 basis functions that are only a function of X1 and X2,
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and so on. As such, as only the first Kd elements of every dth row of B are (potentially) non-zero,

the map should have the appropriate Knothe-Rosenblatt structure by construction.

In the case where we want to invert a sample S(Xi), this defines a system of equations that

can be solved row by row for each component of the solution, S(Xd
i ), in the form of a polynomial

root-finding problem for each row. For example, we first solve for X1
i , the solution of which we

can call X1∗
i by finding the (single variable) root of:

[
b11 b12 . . . b1(K1)

]Φ(X1
i )

= S(X1
i ) (1.61)

Subsequently, we can solve for X2
i plugging X1∗

i into the second equation:

[
b21 b22 . . . . . . b2(K2)

]



Φ(X1∗
i )

Φ(X1∗
i ,X2

i )


= S(X2

i ) (1.62)

and so on. Note that this results in D-many single variable root-finding problems per

sample to invert, and the order of the polynomial that must be solved for will be equal to the

order of the polynomial chosen to represent the basis.
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Chapter 2

Bayesian Lasso Posterior Sampling via
Parallelized Measure Transport

2.1 Introduction

A quintessential formulation for sparse approximation is Tibshirani’s Lasso, which

simultaneously induces shrinkage and sparsity in the estimation of regression coefficients [30].

The formulation of the standard Lasso is as follows:

x∗ = arg min
x∈Rd

||y−Φx||22 +λ ||x||1 (2.1)

where y ∈Rn is a vector of responses, Φ is a n×d matrix of standardized regressors, and x ∈Rd

is the vector of regressor coefficients to be estimated.

It is known that the Lasso can be interpreted as a Bayesian posterior mode estimate with

a Laplacian prior [30]. Imposing a Laplacian prior is equivalent to L1-regularization, which

has desirable properties, including robustness and logarithmic sample complexity [22]. Various

algorithms for solving (2.1) are typically employed, including iterative soft-thresholding and

its successors [6], [1], [11]. These methods are scalable, yet they only provide the maximum a

posteriori (MAP) estimate, a point estimate. With i.i.d. samples Z1, . . . ,ZK from the posterior

distribution, for any set of possible decisions D , and any loss function l : Rd×D→R, the Bayes

optimal decision, d∗(y), can be approximately found by minimizing the empirical conditional
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expectation:

d∗(y) = arg min
d∈D

E[l(X ,d)|Y = y]' arg min
d∈D

1
N

K

∑
k=1

l(Zk,d) (2.2)

Previous approaches have been developed [23, 13] to sample from the posterior

distribution corresponding to the Lasso problem based on Markov Chain Monte Carlo methods

(MCMC). However these methods necessarily introduce correlations between the generated

samples, are sequential in nature, and do not often scale well with dataset size or model

complexity [14],[21], [17].

We here consider a framework to generate i.i.d. samples Z1, . . . ,ZK from the posterior

distribution associated with the Lasso through a measure transport approach. We show a

formulation for obtaining a transport map that transforms samples from the Laplacian prior to

samples from the posterior distribution. We exploit previous results casting Bayesian inference

as a measure transport problem [8], [19] and the Bayesian Lasso posteriors log-concavity to

represent such a transport map with polynomial chaos and perform a relative entropy

minimization, which results in a convex optimization problem amenable to parallelization [16],

[20]. We further show that finding the optimal map that transforms prior Laplacian samples to

posterior samples can be found with off-the-shelf Lasso solvers and closed-form linear algebra

updates.

2.1.1 Relevant Work

Park and Casella proposed a Gibbs sampler for the Bayesian Lasso problem, based on

a hierarchical formulation of the prior structure[23], where the Gauss-scale mixture property

of the Laplacian prior distribution is exploited to formulate a fully Bayesian Lasso inference

procedure, where latent scale variables also have a prior distribution. This structure leads to

a tractable three-step Gibbs sampler that can be used to draw approximate samples from the

posterior and construct credibility intervals. Hans [13] obviated the need for hyper-parameters

and used a direct characterization of the posterior distribution to develop a Gibbs sampler to
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generate posterior samples. As an MCMC algorithm, the Gibbs sampler generates a Markov

chain of samples, each of which is correlated with its previous sample. The correlation between

these samples can decay slowly and lead to burn-in periods where samples have to be discarded

[26]. Although theoretical upper bounds on the convergence of Gibbs samplers have been proved

[25], these guarantees are weaker in the case of Bayesian Lasso. [24] developed a two-step Gibbs

sampler for the Bayesian Lasso with improved convergence behavior. However, a way to derive

i.i.d. samples from the Bayesian Lasso posterior without burn-in periods has remained elusive.

Moshely et al. first proposed an alternative method for directly sampling from the

posterior distribution based on a measure transport approach [8], [19], where a mapping is

developed to transform samples from one distribution to another, using a polynomial chaos

expansion [10]. Bayesian inference can be cast as a special case of this, where the original

distribution is the prior (which in many cases is easy to sample from) and the target distribution is

the posterior. Recently, Kim et al. further investigated the Bayesian transport sampling problem

and showed that when the prior and likelihood satisfy a log-concavity property, the relative

entropy minimization approach to find a transport map is a convex optimization problem [16].

Mesa et al. introduced an Alternating Direction Method of Multipliers (ADMM) reformulation

and showed that minimization can be performed by solving a series of convex optimization

problems in parallel [20]. Wang et al. used a measure transport approach to extend the randomize-

then-optimize MCMC approach to sample from posteriors with L1 priors by transforming the L1

prior distribution to a Gaussian distribution [32].

2.1.2 Our Contribution

We present a technique to sample from the Bayesian Lasso posterior based on a measure

transport approach [8], [16]. The formulation is conceptually different from the Gibbs sampler

methodology, as the target computation are not samples from the posterior, but rather a transport

map that once computed for a certain dataset can continually be used to generate an arbitrary

number of posterior samples. We show that this transport map can be computed in a parallel
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fashion based on an Alternating Direction Method of Multipliers (ADMM) formulation as in [20].

Furthermore, our solution only requires off-the-shelf Lasso solvers and linear algebra updates.

Once the transport map is computed, we need only draw i.i.d. samples from the (Laplacian) prior

and transform them with the transport map into i.i.d. samples from the posterior.

We exploit the ability to draw i.i.d. samples from the posterior to develop an Expectation

Maximization algorithm for maximum likelihood estimation of the Bayesian Lasso parameter.

Additionally, we compare our results to a traditional Bayesian Lasso Gibbs sampler and show

that we achieve similar results when analyzing the diabetes dataset presented in [7]. We then

show empirically in simulation that posterior sampling convergence to the Bayes risk with our

sampling method is superior to doing so with Gibbs sampling. Finally we show that our parallel

framework is amenable to implementation in GPU systems and architectures that leverage

parallelization. We provide an example of our Bayesian Lasso framework implemented in a

GPU.

The rest of the paper is organized as follows: in Section II, we provide some preliminaries

and definitions. In Section III, we introduce a relative entropy minimization formulation for

Bayesian Lasso posterior sampling via measure transport, and how this can be performed with

ADMM methods from convex optimization formulation. We then show how this formulation

can be reduced to solving a collection of Lasso problems in parallel and performing closed-form

linear algebra updates. In Section IV, we derive an expectation maximization algorithm to find

the regularization parameter associated with the Lasso. In Section V, we compare our Bayesian

Lasso framework to a traditional Gibbs sampler Bayesian Lasso through the analysis of the

diabetes dataset from Efron et al [7]. We also show empirical convergence results for our measure

transport sampler and the Gibbs sample in attaining the Bayes Risk. In Section VI, we present a

framework for a GPU implementation. In Section VII, we conclude and discuss future potential

directions.
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2.2 Definitions

We consider the following generative model of how a latent and sparse x ∈ Rd relates to

a measurement y ∈ Rn:

y = Φx+ ε (2.3)

and the measurement noise satisfies ε ∼N (0,σ2I).

We assume an i.i.d. Laplacian statistical model on x. Therefore, the following Bayesian

Lasso regression model is specified as

p(y|x;σ
2) = N (y|Φx,σ2IIIn) (2.4)

p(x;τ) =
d

∏
i=1

τ

2
e−τ|xi| (2.5)

where N (t|m,S) represents the density function, evaluated at t, of a multivariate normal random

variable with expectation m and covariance matrix S. Throughout the paper, we assume that Φ,

τ , and σ are fixed and non-random. We note that the negative log posterior density satisfies

− log p(x|y;σ
2,τ) ∝

1
2σ2‖y−Φx‖2

2 + τ||x||1 (2.6)

As such, the standard Lasso problem for a given λ ≡ 2τσ2

x∗ = arg min
x∈Rd

||y−Φx||22 +λ ||x||1 (2.7)

is a maximum a posteriori estimation problem for the Laplacian prior in (2.5).

In the model above and throughout our methodology, we assume that the parameter σ2

is fixed and known, deviating from the results from the Bayesian Lasso Gibbs sampler first

presented in [23], for which σ2 is imparted with a prior. As such, we are considering the posterior
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distribution associated with the original Bayesian interpretation to Lasso, for which the solution

to (2.1) is the MAP estimate.

Park and Casella [23] constructed a hierarchical model to facilitate implementation of a

Gibbs sampler for the Bayesian Lasso. The Gibbs sampler exploits that the double exponential

(Laplace) distribution can be represented as a scale mixture of normals. (2.5) is replaced by the

following prior:

p(xxx|t2
1 , ..., t

2
d) = Nd(000,Dt) Dt = diag(t2

1 , ..., t
2
d) (2.8)

p(t2
1 , ..., t

2
d ;τ) =

d

∏
j=1

τ2

2
e−τ2t2

j /2dt2
j

[23] additionally extend the Bayesian Lasso regression model to account for uncertainty in

the hyperparameters by placing a prior on σ2 leading to the following hierarchical representation

of the posterior:

p(xxx,σ2|y;τ) ∝ (2.9)

π(σ2)(σ2)−(n−1)/2 exp− 1
2σ2 (y−Φxxx)T (y−Φxxx)− τ ∑

d
j=1 |x j|

with prior

p(xxx|t2
1 , ..., t

2
d ,σ

2) = Nd(000,σ2Dt) Dt = diag(t2
1 , ..., t

2
d) (2.10)

p(t2
1 , ..., t

2
d ;τ) =

d

∏
j=1

τ2

2
e−τ2t2

j /2dt2
j

p(σ2) = π(σ2)dσ
2
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2.3 Bayesian Lasso via Measure Transport

In this section we provide background on measure transport theory and show that we

can find a transport map that pushes samples from the prior distribution in (2.5) to the Bayesian

Lasso posterior. We utilize the ADMM framework introduced in [20] and develop a distributed

Bayesian Lasso solver. Furthermore, we show that Bayesian Lasso can be formulated as a

batch of Lasso problems, which themselves can be solved with existing sparse approximation

algorithms in a parallel manner.

2.3.1 Fully Bayesian Inference via Measure Transport

As an alternative to the sampling approaches described above, we consider finding

transformations, or transport maps, between probability measures. Finding a mapping between

two measures is the central problem in Optimal Transport Theory, a rich field with a wide variety

of applications [31]. We seek a transport map S that transforms the prior distribution p to the

posterior distribution q.

We restrict our search for S to the set of diffeomorphisms with positive-definite Jacobian:

D+ ,
{

S : Rd → Rd, JS � 0
}
.

If an S ∈D+ satisfies

p(u) = q(S(u))det(JS(u)) for all u ∈ Rd (2.11)

, then S is said to push p to q, i.e. it transforms a sample W from p into a sample Z = S(W ) from

q. We note that we can always find a transport map in D+ that will satisfy (2.11) [4]. Given such

a map we can sample from the posterior distribution by mapping i.i.d. samples from the prior

X1, ...,XK to i.i.d. samples from the posterior S(X1), ...,S(Xk). Figure 2.1 shows the effect of a

transport map on samples from the Laplacian prior in (2.5).
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(a)
(b)

Figure 2.1. Effect of transport map S on prior samples (a) kernel density estimate of
prior (Laplacian) distribution constructed by samples (b) kernel density estimate of samples
transformed through transport map S; posterior density

2.3.2 A Convex Optimization Formulation

Recent work [16, 15] has shown that for the problems where the prior and likelihood are

log-concave, developing a map that transforms i.i.d. samples from the prior into i.i.d. samples

from the posterior can be performed with convex optimization.

Given an arbitrary S ∈D+, then there will be an induced P̃S for which S pushes P̃S to q.

That is:

P̃S(u) = q(S(u))det(JS(u)) for all u ∈ Rd (2.12)

From this perspective, we can cast the transport problem as finding the transport map S∗

that minimizes a distance between an induced P̃ and the true p. We use the Kullback-Leibler

Divergence and arrive at the following optimization problem:

S∗ = arg min
S∈D+

D
(
P‖P̃S

)
(2.13)
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By defining

g(z),−[log fY |X(y|z)+ log fX(z)] (2.14)

where the densities refer to the likelihood and prior, (2.13) becomes

S∗ = argmax
S∈D+

EP
[
−g(S(X))+ logdet

(
JS(X)

)]
(2.15)

Moreover, when q is log-concave (equivalently when g is convex), this

(infinite-dimensional) optimization problem is convex.

Parametrization of the Transport Map:

In order to solve (2.15), we parametrize the problem to arrive at a finite-dimensional

convex optimization problem. We approximate any S ∈ D+ as a linear combination of basis

functions through a Polynomial Chaos Expansion (PCE) [33], [9] where φ are the polynomials

orthogonal with respect to the prior p:

S(x) = ∑
j∈J

b jφ
( j)(x) (2.16)

∫
x∈X

φ
(i)(x)φ ( j)(x)p(x)dx = δi, j (2.17)

with δi, j being 1 if i = j and 0 otherwise. Now define K = |J | and we have that for X ⊂ R:

F = [b1, . . . ,bK], d×K (2.18)

A(x) = [φ (1)(x), . . . ,φ (K)(x)]T , K×1 (2.19)

S(x) = FA(x), d×1 (2.20)

J(x) =

[
∂φ (i)

∂x j
(x)

]
i, j

, K×d (2.21)

JS(x) = FJ(x) d×d. (2.22)

We can then approximate the expectation from (2.15) using an empirical expectation based

57



upon i.i.d. samples from p. Letting Ai , A(Xi) and Ji , J(Xi), we arrive at the following

finite-dimensional problem:

F∗ = argmax
F :FJi�0

1
N

N

∑
i=1
−g(FAi)+ logdet(FJi) (2.23)

Whenever q is log-concave (equivalently g is convex), this is a finite-dimensional convex

optimization problem. Moreover, as K→ ∞, from the PCE theory, the map F∗A(x) converges to

the optimal map S∗ that pushes p to q.

2.3.3 Parallelized Convex Solver with ADMM

More recently, [20] demonstrated a scalable framework to solve (2.23) which only

requires iterative linear algebra updates and solving, in parallel, a number of quadratically

regularized point estimation problems. The distributed architecture involves an augmented

Lagrangian and a concensus Alternating Direction Method of Multipliers (ADMM) formulation:

min
F,Z,p,B

1
N

N
∑

i=1
g(pi)− logdetZi+

1
2

ρ‖Fi−B‖2
2

+ 1
N

N
∑

i=1

1
2ρ‖BAi− pi‖2

2+
1
2

ρ‖BJi−Zi‖2
2

s.t. BAi = pi : γi (d×1)

BJi = Zi : βi (d×d)

Fi−B = 0 : αi (d×K)

Zi � 0

for any fixed ρ > 0.
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A penalized Lagrangian is solved iteratively by first solving for Bk+1

Bk+1 =
1
N

N

∑
i=1

[
ρ

(
Fk

i + pk
i AT

i +Zk
i JT

i

)
+ γ

k
i AT

i +β
k
i JT

i +α
k
i
]
M , (2.24)

M ,

[
ρ

(
I +

1
N

N

∑
i=1

AiAT
i + JiJT

i

)]−1

(2.25)

and then solving, in parallel for 1≤ i≤ N, the other variable updates:

Fk+1
i =− 1

ρ
α

k
i +Bk+1 (2.26a)

Zk+1
i =QZ̃iQT (2.26b)

pk+1
i =arg min

pi

g(pi)+
1
2

ρ‖Bk+1Ai− pi‖2
2

+ γ
kT
i (pi−Bk+1Ai) (2.26c)

γ
k+1
i =γ

k
i +ρ(pk+1

i −Bk+1Ai) (2.26d)

β
k+1
i =β

k
i +ρ(Zk+1

i −Bk+1Ji) (2.26e)

α
k+1
i =α

k
i +ρ(Fk+1

i −Bk+1) (2.26f)

ADMM guarantees convergence to the optimal solution [3]. To emphasize, each ith update in

(2.26) can be solved in parallel. As (2.26b) is an eigenvalue-eigenvector decomposition (details

can be found in [20]), it follows that all the updates involve linear algebra with the exception of

(2.26c), which is a quadratically regularized point estimation problem.

2.3.4 Efficiently Solving the Bayesian Lasso

We exploit the unique problem structure of Bayesian Lasso to simplify a scalable

implementation.

Lemma 2.3.1. The PCE for the Laplacian distribution is φL(x) = φE(|x|) where φE are the
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Laguerre polynomials.

Proof.

∞∫
−∞

φ
i
E(|x|)φ

j
E(|x|)pL(x)dx =

∞∫
−∞

φ
i
E(|x|)φ

j
E(|x|)

1
2

pE(|x|)dx

= 2
∞∫

0

φ
i
E(x)φ

j
E(x)

1
2

pE(x)dx

= δi, j (2.27)

Where the first equality holds because the Laplacian density pL(x) is related to the exponential

density pE(x) by pL(x) = 1
2 pE(|x|), the second equality holds by symmetry of the function being

integrated, and the third follows because the PCE for the exponential distribution is obtained

with the Laguerre polynomials φ
( j)
E [33].

We now show that for Bayesian Lasso, the only ADMM update that is not linear algebra

is simply a Lasso problem.

Theorem 2.3.2. For the Bayesian Lasso statistical model given by (2.6), the ADMM update

(2.26c) is a d-dimensional Lasso point estimation problem:

pk+1
i = arg min

pi

||ŷ− Φ̂
T pi||22 +λ ||pi||1 (2.28)

where Φ̂ and ŷ satisfy

Φ̂
T

Φ̂ = Φ
T

Φ+
1
2

ρI (2.29)

ŷ =

([
yT

Φ+
1
2

ρ(Bk+1Ai)
T − 1

2
γ

kT
i

]
Φ̂

+

)T

and Φ̂+ represents the pseudo-inverse.
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Proof. Dropping indices of (2.26c), becomes

p∗ = arg min
p

quad(p)+λ ||p||1,

quad(p), pT (ΦT
Φ+

1
2

ρI)p+(γT −2yT
Φ−ρ(BA)T )p.

= pT
Φ̂

T
Φ̂p+(γT −2yT

Φ−ρ(BA)T )p (2.30)

where (2.30) follows from performing a Cholesky decomposition to build a unique Φ̃ ∈ Rd×d

and then zero padding to build Φ̂ ∈ Rn×d , obeying the relationship given in (2.29). Then we

complete the square in order to get an equation of the form ‖Φ̂p‖2
2−2ŷT Φ̂p+‖ŷ‖2

2 = ‖ŷ−Φ̂p‖2
2:

−2ŷT
Φ̂p = (γT −2yT

Φ−ρ(BA)T )p.

Remark 6. The problem of finding a map S∗ to generate i.i.d. samples from the Bayesian Lasso

posterior can be solved iteratively. Each step involves solving – in parallel – linear algebra

problems and d-dimensional Lasso problems (2.1).

The procedure for Bayesian Lasso via measure transport is outlined in Algorithm 1.

2.4 Choosing λ via Maximum Likelihood Estimation

The parameter of the standard Lasso in (2.1), λ , can be chosen by cross-validation,

generalized cross-validation, and ideas based on unbiased risk minimization [30]. Park and

Casella used Empirical Bayes Gibbs Sampling [5] to find a maximum likelihood estimate of

λ via an Expectation Maximization (EM) algorithm [23]. This empirical scheme, however, is

specific to the Gibbs sampler and the hierarchical model introduced in [5]. Here, we propose an

Expectation Maximization algorithm to calculate a marginal Maximum Likelihood Estimate of

λ .
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Algorithm 1: Distributed Bayesian Lasso
1 function BayesianLasso (x1, ...,xN ∈ Rd , y ∈ Rn, Φ ∈ Rn×d , λ , ρ , K);

Input :Samples x1, ...,xN from prior in (2.5)
Output :B∞ holds coefficients of map S such that S(x) = B∞A(x)

2 Construct Ai and Ji via Polynomial Chaos Expansion for i = 1, ...,N as in (2.19) and
(2.21);

3 Construct M as in (2.25);
4 Initialize B0 and F0

i ,Z
0
i , p0

i ,γ
0
i ,β

0
i ,α

0
i randomly for i = 1, ...,N;

5 while Bk has not converged do
6 Update Bk+1 as in (2.24) ;
7 Update in parallel for i = 1, ...,N Fk+1

i ,Zk+1
i ,γk+1

i ,β k+1
i ,αk+1

i as in (2.26)
8 pk+1

i with a Lasso solver as in (2.28) ;
9 k = k+1

10 end

In the Expectation Maximization framework, the basic problem is to find an estimate of

the parameter λ that maximizes the likelihood function f (y|λ ) for a given observation y. That is,

λ̂ = argmax
λ

log f (y|λ ) (2.31)

= argmax
λ

log
∫

p(x,y|λ )dx (2.32)

= argmax
λ

log
∫

g(x)[
p(x,y|λ )

g(x)
dx] (2.33)

Where p(x,y|λ ) represents the joint distribution of X and the observation Y and g(x) is

an arbitrary density.

The EM algorithm alternates between an expectation and a maximization step. The “E

step” finds a lower bound, a density g(x), that is equal to the log-likelihood function at the current

parameter estimate λk. The “M step” generates the next estimate λk+1 as the parameter that

maximizes this greatest lower bound.

It can be shown that choosing the posterior distribution g(x) = p(x|y,λk) maximizes the

lower bound in the kth E step. Thus the E step involves taking an expectation with respect to the
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posterior distribution of the complete-data log likelihood under the current iterate λ k:

d log(λ )−λEλ k [||x||1|y]+C (2.34)

where C represents terms not involving λ .

The M step then maximizes (2.34) with respect to λ to get the next iterate λ k+1. The

M-step leads to a simple analytical solution.

λ
k+1 =

d

∑
d
i=1 Eλ k [|xi| |y]

(2.35)

Since the expectation is taken with respect to the posterior, we can approximate it with

i.i.d. posterior samples from our approach.

For our Bayesian Lasso the steps are as follows:

1. Choose an initial λ (0)

2. Perform Algorithm 1 with λ = λ (0) to find S and generate N samples from the posterior

distribution as z j = S(x j) for j = 1...N where x j is a sample from the prior in (2.5).

3. (E-Step):Approximate the expected complete data log likelihood by substituting averages

for the expectation in (2.34)

4. (M-step) Let λ k+1 be the value of λ that maximizes the expected log likelihood of the

previous step, namely (2.35)

5. Return to step 2 until convergence.

A setback to this algorithm is that one has to compute a transport map at each iteration

which may be computationally challenging. One could alternatively approximate λ with the

Empirical formulation presented in [23] and set λ (0) to this value, decreasing the number of

iterations to approximate λ .
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2.5 Comparisons to Gibbs Sampling

We now present comparisons of our measure transport methodology with a Gibbs sampler

for Bayesian Lasso based on the diabetes data of Efron et al [7], which has d = 10. We will

follow the analysis presented in [23] and compare results with the respective Gibbs sampler. We

note that our Bayesian Lasso model differs from that in [23] in that we do not place a prior on

σ2. We compare regression estimates obtained with both methodologies. Then, using a Gibbs

sampler that operates in an equivalent model (with prior (2.9)), we show empirically that samples

from our methodology outperform samples from a Gibbs sampler in attaining the Bayes Risk.

2.5.1 Analysis on Diabetes Data

We analyze a diabetes data set [7] and compare results when using the Gibbs sampler

presented in [23] which utilizes a prior on σ2 as in (2.10) and when using samples from our

transport based methodology. We show that despite our treatment of σ2 as fixed, we achieve

similar results as we capture the complexity of the posterior distribution in this real dataset.

Figure 2.2 compares our measure transport Bayesian Lasso posterior median estimates

2.2c with the ordinary Lasso 2.2a and the Gibbs sampler posterior median estimates 2.2b. We

take the vector of posterior medians as the one that minimizes the L1 norm loss averaged over

the posterior. For all three methods, the Lasso and Bayesian Lasso estimates were computed

by sweeping over a grid of values for λ . We ran our Bayesian Lasso with a Polynomial Chaos

Expansion order of 3, and trained with N = 500 prior samples to find a transport map. The

specifications for the Gibbs sampler were to use a scale-invariant prior on σ2 and to run for

10,000 iterations after 1000 iterations of burn-in.

Figure 2.2c shows the resulting optimal λ (depicted with a vertical line) found by the EM

algorithm presented in Section 4. The vertical line in Figure 2.2b is the optimal λ found by [23]

by running a Monte Carlo EM algorithm corresponding to the particular Gibbs implementation.

The vertical line in the Lasso graph 2.2a represents the estimate chosen by n-fold cross validation.
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(a) (b) (c)

Figure 2.2. Comparison of Linear Regression Estimates on Diabetes Data trace plots for
estimates of the diabetes data regression parameters for (a) Lasso (b) Gibbs sampler Bayesian
Lasso; (c) our measure transport Bayesian Lasso method The vertical line represents the λ

estimate.

Despite treating σ2 as fixed, the L1 paths are very similar to the Bayesian Lasso imparted

with a prior on σ2. As already noted in previous work, the Bayesian Lasso paths are smoother

than the Lasso estimates.

We further compare the 95% credible intervals for the diabetes data obtained with a fixed

λ (the optimal λ corresponding to the Gibbs sampler) for the marginal posterior distributions of

the Bayesian Lasso estimates. Figure 2.3 shows the corresponding result for the Lasso, Gibbs

sampler, and our proposed methodology.

We also show Kernel Density Estimation (KDE) plots (Figure 2.4 ) of two of the

regression variables using both methods. The kernel density estimates are similar in shape and

support.

2.5.2 Performance Comparisons

As stated in the introduction, the class of Markov Chain Monte Carlo (MCMC) methods,

including Gibbs sampling, are widely used to generate samples from a target distribution.

Samples are obtained by iterating through a Markov Chain whose invariant distribution is the the

posterior. However, the convergence times and mixing rates of the Markov chain are generally

unknown [26]. In practice, one often discards an initial set of samples (burn-in) to avoid biases.
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Figure 2.3. Posterior median Bayesian Lasso estimates and corresponding 95 percent credible
intervals for a Gibbs sampler and our Measure Transport methodology. Lasso estimates are also
shown for comparison.

(a) (b)

Figure 2.4. Marginal posterior density estimates for variables 5 and 6 of the Diabetes dataset.
Kernel density estimates were constructed using 10,000 samples from a Gibbs sampler or a
transport map respectively.
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In addition, since adjacent samples are necessarily correlated, the effective sample sizes are

reduced when constructing estimators.

A major advantage of our transport-based methodology is that with a good approximation

to the transport map we can generate i.i.d. samples from the posterior. However, the accuracy of

the approximation to the transport map (and effectively, the accuracy of the samples drawn) ,

will depend on the set of parameters used to construct such a transport map.

In this section, we formulate a way to compare the performance of samples from a

Bayesian Lasso Gibbs sampler utilizing prior (2.9) with that of samples obtained from a Bayesian

Lasso transport map utilizing prior (2.5) through empirical risk minimization ideas.

Bayes Risk Comparisons

In a Bayesian setting, a natural question to ask is how well an estimator of the posterior

behaves in terms of its risk. Consider a latent random variable X ∈ X, a measured random

variable Y ∈ Y, and a set of possible decisions D . Let l : Rd×D → R , be a loss function, so

that l(x,d) is the loss incurred when the latent random variable is x and the decision taken is d.

The risk is defined as

R(PX ,d) = E[l(X ,d(Y ))] (2.36)

Where the expectation is taken over all (x,y) pairs. We also define the Bayes risk as the minimum

possible risk over all possible d : Y →D

R∗(PX) = inf
d∈D

R(PX ,d) (2.37)

As stated in (2.2), the Bayes Optimal decision scheme , d∗, which attains the Bayes Risk

can be approximated with i.i.d. samples from the posterior Z1, ...,Zk

arg min
d∈D

E[l(X ,d)|Y = y]' arg min
d∈D

1
N

K

∑
k=1

l(Zk,d) (2.38)
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With d∗, for a set of latent variables X1:T inducing observations Y1:T , we can approximate

(2.37) for Bayesian Lasso with an L1 loss.

R∗(PX) '
1
T

T

∑
t=1

l(Xt ,d∗(Yt)) (2.39)

=
1
T

T

∑
t=1
||Xt−d∗(Yt)||1 (2.40)

Here, we formulate a way to compare two posterior sampling schemes, a Gibbs sampler

and samples generated from a transport map S by their ability to approximate (2.37).

In Algorithm 1, it is clear that the number of samples N from the prior used to calculate

the posterior is a crucial parameter affecting the accuracy of the obtained transport map. Since

we can generate as many samples as we wish once we have a transport map, we disadvantage our

algorithm by setting the number of training samples from the prior to N and drawing the same

number of samples from the posterior. We keep all other parameters fixed using a PCE order of

5. We compare this to drawing N samples from a Gibbs sampler (we do not use burn-in).

Specifically, we generate two sequences of decision making schemes dN and d̃N from

i.i.d. samples from our scheme and from samples from a Gibbs sampler respectively and we

use these sequences to approximate (2.37) as R(PX ,dN) and R(PX , d̃N) respectively. As N grows

large, both schemes should approach the Bayes Risk. To approximate the expectation as in

(2.40), we set T=500 and generate (Xt ,Yt) pairs as in (2.3), where dim(X) = 3,dim(Y ) = 10 ,

Φ is fixed, and ε ∼N (0,1). Using each observation Yt , and the prior in (2.5), we generate

samples from the posterior using both a Gibbs sampler and a transport map computed with N

prior samples.

Figure 2.5 shows the Bayes risk approximation attained with a Gibbs sampler for the

Bayesian Lasso and that with samples from a transport map. We show that the risk on both

methods reaches the same value (the Bayes risk) after N is large enough ( to be fixed). Our
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Figure 2.5. Approximation of the Bayes Risk: R(PX ,dN) generated with Gibbs samples and
R(PX , d̃N) generated with Optimal Transport samples plotted against N

methodology attains the Bayes Risk with a fewer number of training samples. Since our

methodology produces i.i.d. samples from a distribution that approximates the posterior , it

conserves effective sample sizes and approximates the Bayes Risk at a faster rate than Gibbs

samples which are correlated. We also note that if N is large enough, we can generate an

accurate transport map S with which we generate as many i.i.d. samples from a distribution that

approximates the Bayesian Lasso posterior without any additional computation costs per sample.

In contrast, the Gibbs sampling computation time is proportional to the number of samples

generated.

2.6 Parallelized Implementation and Applications

The fundamentally parallel nature of our Bayesian Lasso formulation allows for solution

implementation on a variety of platforms. The fact that our solution relies solely on linear algebra

and Lasso solvers allows for it to be deployed in a variety of architectures for parallel computing.
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In order to leverage the parallel nature of the algorithm presented above, we here present

implementation with a Iterative-Reweighted Least Squares (IRLS) Lasso solver implemented in

a Graphics Processing Unit (GPU) solution.

2.6.1 IRLS solver within a GPU Implementation

In the last several years Graphical Processing Units (GPUs) have gained significant

attention for their parallel programmability. In this work, we made use of the ArrayFire library

that abstracts low-level GPU programming and provides highly parallelized and optimized linear

algebra algorithms [18].

We implemented Algorithm 1 using ArrayFire. To solve N Lasso problems of (2.7)

we implemented a generalized iterative re-weighted least-squares (GIRLS) [2] algorithm. The

GIRLS algorithm requires solving only least-squares sub-problems with linear algebra operations

thus facilitating its implementation in ArrayFire.

Figure 2.6 shows execution times of computing a transport map with N = 500 and PCE

order of 3 running a Python implementation on an Intel Core i7 processor at 2.40 GHz(4 CPUs)

and running with the ArrayFire implementation on an NVIDIA GeForce 840M GPU. As the

complexity of the problem increases (determined by increasing d), the ArrayFire implementation

readily outperforms the Python implementation. This showcases the future possibilities for rapid

computation of transport maps on architectures that feature parallelization capabilities.

2.7 Discussion and Conclusion

We have shown that an i.i.d. posterior Bayesian Lasso sampler can be constructed with a

measure transport framework with iteratively solving a standard LASSO problem and performing

closed-form linear algebra updates. There is a clear advantage to drawing i.i.d. samples from the

Bayesian Lasso posterior that is seen in the faster convergence of posterior sampling methods,

in comparison to Gibbs samplers, to approach the Bayes Risk. This formulation enables the

leverage of the diversity of Lasso solvers to sample from posterior. For example, we show how
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Figure 2.6. Execution times for computing a transport map in Python and using a GPU. The
horizontal axis represents the dimension of the latent variable x.

posterior Bayesian Lasso transport samplers can be constructed with a GPU. We also note that

this algorithm could be readily implemented in other systems for parallelization such as cloud

computing.

Another potential application for inference with this transport-based approach is within

the context of the Internet-of-Things (e.g. wearable electronics). In these settings, energy

efficiency is of paramount importance, and wireless transmission usually is the most energy-

consuming. Developing a framework such as ours where inference is performed on chip,

thus obviating the need to transmit collected waveforms, enables only the need to transmit

information about the posterior distribution, which is a sufficient statistic for any Bayesian

decision making problem. In our case, this boils down to transmission of coefficients of the

polynomials representing the transport map. From there, in the cloud for instance, i.i.d. prior

samples may be transformed into i.i.d. posterior samples. Figure 2.7 shows a potential use of our

posterior transmission scheme and a comparison to current transmission schemes.

Another energy-efficient application could be achieved by implementing our Bayesian

Lasso algorithm in analog systems. The Local Competitive Algorithm (LCA) first presented

in [27] is an analog dynamical system inspired by neural image processing and exactly solves

(2.1). This system has already been implemented in field-programmable analog arrays [29] and

integrate-and-fire neurons [12], thus showing promising results for reduced energy in hardware
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Figure 2.7. (A) shows conventional wireless transmission schemes where signals are acquired
and wirelessly transmitted; (B) shows our proposed scheme where inference is performed locally
and only the posterior distribution is transmitted.

implementations.

In the LCA, a set of parallel nodes, each associated with an element of the basis Φm ∈Φ,

compete with each other for representation of the input. The dynamics of LCA are expressed

by a set of non-linear ordinary differential equations (ODEs) which represent simple analog

components. The system’s steady-state is the solution to (2.1). Using the formulation presented

in Theorem 2.3.2, we could solve (2.26c) by presenting the LCA dynamics in terms of ŷ and Φ̂.

u̇m(t) =
1
τ

[
〈Φ̂m, ŷ〉−um(t)− ∑

n6=m
〈Φ̂m,Φ̂n〉an(t)

]
an(t) , Tλ (un(t)) = max(0,un(t)−λ )

Tλ is a thresholding function that induces local non-linear competition between nodes.

We have presented a framework to find a posterior for the Bayesian Lasso, however this

parallelizable formulation could be easily extended to other L1 priors and sparsity problems.

Dynamic formulations for spectrotemporal estimation of time series [28] could be extended to a

fully-Bayesian perspective to enable improved statistical inference and decision making.
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Chapter 3

L1-Penalized Distributed Measure
Transport

3.1 Introduction

Recently, the ability to find transformations between distributions has been the subject

of much research. The general idea is to find a transformation or“transport map” between a

reference measure P and a target measure Q. These transport maps have been increasingly

useful and popularized in many Machine Learning applications [8]. The mathematical theory

of Optimal Transport is a rich one that dates back to the 17th century [13]. Despite recent

advances in algorithms to compute Measure Transport maps, the computation of these maps is

still challenging, especially when the measures of interest lie in high dimensions. More recently,

there has been interest in finding computationally efficient measure transport maps. Kim et al

[7] showed that a map from a measure P to Q could be obtained through convex optimization

methods and by parametrizing a map through a polynomial basis expansion. More recently,

Mesa et al [11] showed that this convex optimization could be solved in a distributed manner

by reformulation via an Alternating Direction Method of Multipliers (ADMM). Furthermore,

this distributed formulation allows for exploiting parallelizable computational resources to find

transport maps where the measures are in relatively high dimensions.

While the ability to exploit computational resources has enabled many applications, the

number of parameters needed to accurately approximate a transport map is prohibitive when
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these resources are limited. For measure transport maps parametrized with a basis of finite

order polynomials O, the number of parameters needed is an exponential function in O and the

dimension of the reference measure d [15].

Marzouk et al [10] and Mesa et al [11] have proposed other parametrizations of measure

transport maps that are less “expressive” such as using a Knothe-Rosenblatt map [4], which

is a lower-triangular map, as well as using radial basis functions. In this work, however, we

are concerned with exploring the traditional or“dense” polynomial parametrization of transport

maps and exploring more data-driven methods to reduce the number of parameters used to

approximate them. In particular, we are interested in exploring whether a well-chosen“sparse”

set of parameters will faithfully represent a transport map.

A powerful and well-known statistical model selection procedure is L1 penalization. In

the statistics literature, the Lasso [12] has been explored extensively for selecting pertinent

features in regression problems. The Lasso uses L1 penalization to drive the coefficients of the

regressors to zero, providing a method for model selection. However, L1 penalization is known

to systemically shrink the magnitude of the coefficients of all regressors [5], thus, several studies

have suggested to fit an OLS solution with the regressors selected by LASSO in order to better

estimate their coefficient magnitudes. This is also known as re-fitting [5, 3, 9]. In the applications

setting, Wu et al [14] used a similar method for first choosing relevant features for genome-wide

association studies by Lasso regression and running an un-penalized solution with the chosen

features.

Inspired by Lasso model selection and least-squares refitting techniques in regression,

we propose using an L1 penalized estimator of transport maps to first select a subset of the

initial parameters that approximate a transport map. We empirically show that these set of

parameters are usually captured by a cap in the order of the polynomials O. Then we run an

un-penalized form of the problem with restricted polynomial order O to find a transport map.

We also show model-selection algorithms to best choose the parameter of the L1 regularization

which determines the number of parameters that are excluded from the model. We showcase our
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methodology with simulated data to show that our algorithms indeed capture the inherent order

of a known transport map. We then showcase our algorithm with real data using composition of

maps as described in [11].

The remainder of the paper is organized as follows: In Section 2 we provide definitions

and notation conventions. In Section 3 we introduce the L1-Penalized formulation and

reformulation technique to find a Measure Transport Map using a relative entropy minimization

approach as well as a distributed version of the L1-Penalization optimization. We also introduce

methodology to choose the level of L1 penalization for transport maps. In Section 4 we

showcase results with simulated data. In Section 5 we showcase results with real data. In

Section 6 we conclude.

3.2 Definitions

In this section we make some preliminary definitions and provide background information

for the rest of this paper.

3.2.1 Definitions and Assumptions

Assume the space for sampling is given by W ⊂ RD, a convex subset of D-dimensional

Euclidean space. Define the space of all probability measures on W (endowed with the Borel

sigma-algebra) as P(W). If P ∈ P(W) admits a density with respect to the Lebesgue measure,

we denote it as p.

Assumption 4. We assume that P,Q ∈ P(W) admit densities p,q with respect to the Lebesgue

measure.

Definition 3.2.1 (Push-forward). Given P,Q ∈ P(W) we say that a map S : W→W pushes

forward P to Q (denoted as S#P = Q) if a random variable X with distribution P results in

Y , S(X) having distribution Q.

Of interest to us is the class of invertible and “smooth” push-forwards:
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Definition 3.2.2 (Diffeomorphism). A mapping S is a diffeomorphism on W if it is invertible,

and both S and S−1 are differentiable. Let D be the space of all diffeomorphisms on W.

A subclass of these, are those that are “orientation preserving”:

Definition 3.2.3 (Monotonic Diffeomorphism). A mapping S ∈D is orientation preserving, or

monotonic, if its Jacobian is positive-definite:

JS(u)� 0, ∀u ∈W

Let D+ ⊂D be the set of all monotonic diffeomorphisms on W.

The Jacobian JS(u) can be thought of as how the map “warps” space to facilitate the

desired mapping. Any monotonic diffeomorphism necessarily satisfies the following Jacobian

equation:

Lemma 3.2.4 (Monotonic Jacobian Equation). Let P,Q ∈ P(W) and assume they have densities

p and q. Any map S ∈MD for which S#P = Q satisfies the following Jacobian equation:

p(u) = q(S(u))det(JS(u)) ∀u ∈W (3.1)

3.3 L1-Penalized Measure Transport

3.3.1 Relative Entropy Minimization

We start with the general relative entropy minimization formulation.

We can then cast the transport problem as finding the mapping S ∈D+ that minimizes

the relative entropy between P and the induced P̃.

S∗ = arg min
S∈D+

D(P‖P̃) (3.2)
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We can expand Eq. (3.2) and combine with (3.1) to write:

S∗ = arg min
S∈D+

D(P‖P̃)

= arg min
S∈D+

EP

[
log

p(X)

p̃(S(X))

]
= arg min

S∈D+

−h(p)−EP [log p̃(S(X))] (3.3)

= arg min
S∈D+

−EP [log p̃(S(X))] (3.4)

= arg min
S∈D+

−EP [logq(S(X))+ logdetJS(X)] (3.5)

3.3.2 Parametrization of Transport Maps

To address the infinite dimensional space of functions mentioned above, as in [11, 7,

10] we parameterize the transport map over a space of multivariate polynomial basis functions

formed as the product of D-many univariate polynomials of varying degree. That is, given

some~x = (x1, . . . ,xa, . . . ,xD) ∈W ⊂ RD, we form a basis function φ~j(~x) of multi-index degree

~j = ( j1, . . . , ja, . . . , jD) ∈J using univariate polynomials ψ ja of degree ja as:

φ~j(~x) =
D

∏
a=1

ψ ja(xa)

This allows us to represent one component of S ∈D+ as a weighted linear combination of basis

functions with weights wd,~j as:

Sd(~x) = ∑
~j∈J

wd,~j φ~j(~x)

where J is a set of multi-indices in the representation specifying the order of the polynomials in

the associated expansion, and d denotes the dth component of the mapping. In order to make this
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problem finite-dimensional, we must truncate the expansion to some fixed maximum-order O.

J =

{
~j ∈ ND :

D

∑
i=1

ji ≤ O

}

We can now approximate any nonlinear function S ∈D+ as:

S(~x) =WΦ(~x)

where K , |J | the size of the index-set, Φ(~x) = [φ~j1(~x), . . .φ~jK(~x)]
T , and W ∈RD×K is a matrix

of weights.

With this, we can now give a finite-dimensional version of (3.5) as:

min
W∈RD×K

− 1
N

N

∑
i=1

[logq(WΦ(Xi))+ logdet(WJΦ(Xi))]

s.t. WJΦ(Xi)� 0, i = 1, . . . ,N

(3.6)

with:
W = [w1, . . . ,wK] D×K

Φ(·) =
[
φ~j1

(·), . . . ,φ~jK(·)
]T

K×1

JΦ(·) =

[
∂φ~ji
∂x j

(·)

]
i, j

K×D

where we have made explicit the implicit constraint that det(JS)≥ 0 by ensuring that WJΦ � 0.

We now provide two important remarks:

Remark 7. In principle, any basis of polynomials whose finite-dimensional approximations

are sufficiently dense over W will suffice. In applications where P is assumed known, the basis

functions are chosen to be orthogonal with respect to the reference measure P:

∫
W

φ~j(~x) φ~i(~x) p(x)dx = 1~i=~j
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The total number of expansion terms in this truncated representation K can be calculated,

where for a reference measure that is in D dimensional space by the following formula:

K =
(D+O)!

D!O!
(3.7)

Thus we see that the number of terms for the parametrization grows exponentially with

the dimension and maximum order of the polynomials. This causes problems when we are trying

to compute transport maps with computational resources. In general, for high-dimensional and

complex datasets, we will need a higher order polynomial representation to achieve an accurate

transport map, and thus a high number of parameters to represent the map.

Other works, including our own [11, 10], have looked into parametrizing problem (3.5)

with different types of bases and map structures. Specifically using a radial basis and using a

Knothe-Rosenblatt transport map, which is a lower-triangular representation. These formulations,

although useful, are less expressive than a dense polynomial parametrization as presented above.

In this paper, we present a method of uncovering the inherent maximum order O of a

transport map by using a regularization method to select a subset of parameters that faithfully

represent a transport map.

3.3.3 L1 Group Regularization on Parameters

In this section we present the following L1 regularized optimization problem for measure

transport. Since columns of the coefficient matrix W represent coefficients from a particular

basis function φ~j(~x), we resort to a group shrinkage regularization term. This formulation retains

convexity.

Noting that

min
W∈RD×K

− 1
N

N

∑
i=1

[logq(WΦ(Xi))+ logdet(WJΦ(Xi))]+β ||W ||1,2

s.t. WJΦ(Xi)� 0, i = 1, . . . ,N

(3.8)
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The L1 term in (3.8) induces a penalty for the magnitude of the coefficient terms in W

and drives some of these terms to zero.

The methodology here proposed is as follows:

1. Find a solution to (3.8) that induces sparse coefficients

2. determine Osparse , the maximum order of non-zero coefficients from solution above

3. run a dense and truncated version of (3.6) with maximal polynomial order Osparse ≤ O

3.3.4 Distributed Formulation via ADMM

Similar to Mesa et al [11] we conjure a consensus ADMM formulation. This formulation,

however , differs from the one in [11] since the regularization term is included.

min
Wi∈RD×K

− 1
N

N

∑
i=1

[logq(WiΦ(Xi))+ logdet(WiJΦ(Xi))+β ||Wi||1,2]

s.t. Wi =W, WiJΦ(Xi)� 0, i = 1, . . . ,N

(3.9)

The theory of ADMM enables a formulation where each term Wi can be solved in parallel.

Introducing auxiliary variables and concensus variables:
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min
{W,p,Z}i,Y,B

1
N

N

∑
i=1
− logq(pi)− logdet(Zi)

+
1
2

ρ||Wi−B||2F +
1
2
||BΦi− pi||22

+
1
2

ρ||BJi−Zi||2F +
1
2

ρ||B−Y ||2F

+β ||Y ||1,2

s.t BΦi = pi γi (D×1)

Wi−B = 0 αi (D×K)

BJi = Zi λi (D×D)

B−Y = 0 η (D×K)

Zi � 0

(3.10)

A fully penalized Lagrangian formulation of this problem is introduced and has the

following form:

Lρ,β (W,Z, p,B,Y ;γ,λ ,α,η)

=
1
N

N

∑
i=1
− logq(pi)− logdetZi

+
1
2

ρ||Wi−B||2F +
1
2

ρ||BΦi− pi||22

+
1
2

ρ||BJi−Zi||2F +
1
2

ρ||B−Y ||2F

+ γ
T
i (pi−BΦi)+ tr(αT

i (Wi−B))

+ tr(λ T
i (Zi−BJi))

+ tr(ηT (B−Y ))+β ||Y ||1,2

(3.11)

The updates are as follows
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B(k+1) = Bi ·Bs (3.12a)

W (k+1)
i =− 1

ρ
α
(k)
i +B(k+1) (3.12b)

Zk+1
i = QZ̃iQT (3.12c)

Y (k+1) = arg min
Y

1
2

ρ||B(k+1)−Y ||2F + tr(ηT (B(k+1)−Y ))+β ||Y ||1,2 (3.12d)

γ
k+1
i = γ

k
i +ρ(pk+1

i −Bk+1
Φi) (3.12e)

λ
k+1
i = λ

k
i +ρ(Zk+1

i −Bk+1Ji) (3.12f)

α
k+1
i = α

k
i +ρ(W k+1

i −Bk+1) (3.12g)

η
(k+1) = η

(k)+ρ(B(k+1)−Y (k+1)) (3.12h)

p(k+1)
i = arg min

pi

− logq(pi)+pen(pi) (3.12i)

Theorem 3.3.1. The Y update above from equation (3.12d) is given by a Group LASSO problem

which can be solved in closed-form

Proof.

Y (k+1) = arg min
Y

1
2

ρ||B(k+1)−Y ||2F + tr(ηT (B(k+1)−Y ))+β ||Y ||1,2 (3.13)

= arg min
Y

1
2

ρ||B(k+1)−Y +
1
ρ

η ||2F −
1
2

ρ|| 1
ρ

η ||+β ||Y ||1,2 (3.14)

= arg min
Y

1
2

ρ||B(k+1)−Y +
1
ρ

η ||2F +β ||Y ||1,2 (3.15)

= arg min
Y

1
2
||B(k+1)+

1
ρ

η−Y ||2F +
β

ρ
||Y ||1,2 (3.16)

= arg min
Y

1
2
||IY −C||2F +

β

ρ
||Y ||1,2 (3.17)

Where C = B(k+1) + 1
ρ

η . Noticing that (3.17) is a group LASSO that satisfies the

orthonormal regressor matrix condition ( since the identity matrix is orthonormal), the proof
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follows.

3.3.5 Choosing the Level of Sparsity

The method above reduces overfitting by selecting a set of sparse coefficients of a

transport map. The level of sparsity is determined by the parameter β . In order to estimate

β we can use cross-validation or other model selection techniques. We chose to use a model

that penalizes for the number of degrees of freedom as represented by the number of non-zero

coefficients. We look at the model of the transport map and induce a penalty as a function of the

number of active parameters K:

PNNLL(K) =− 1
m

log P̃K(X ;S,β )+penalty(K) (3.18)

Where the first term is represented by (3.5), the un-penalized problem. We used the

Akaike Criterion [1] and the minimum description length (MDL) [2] as penalties.

penalty(K) =


K
m AIC

K logm
2m MDL

(3.19)

β is chosen by finding the local minimum of the corresponding criterion.

3.4 Results with Simulated Data

In order to demonstrate the capability of regularization in uncovering the inherent order

of a transport map, we show examples with simulated data. In particular, we consider

transformations for which the inherent order O of the transport map is known. For example, we

know that if a random variable Z distributed according to a Gaussian distribution then Z2 will be

χ2 (Chi-square) distributed. Thus there exists a push-forward S that performs a transformation

from Gaussian to Chi-square with order O = 2.

Table 3.1 shows the list of transformations simulated, where P refers to the reference
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Table 3.1. Table of simulated transformations with corresponding polynomial order

Table of Transformations
P Q Order
Z ∼N (µ,Σ) N (µ +B,AΣ) 1
Z ∼N (µ,Σ) χ2 2
Z ∼ Pareto(a =
3)

Unif[0,1] 3

distribution and Q refers to the target distribution. Thus we expect that an L1 penalized map

would uncover the order of the map.

We first obtain a dense transport map (3.6) with a relative high order O = 5. Then we

obtain a penalized map for the above transformations by solving (3.8)with β chosen either by

AIC and MDL criterion.

Figure 3.1 shows that the penalized maps do not choose coefficients which are higher

than the maximum order of the map , as opposed to the regular maps. We see this as ”uncovering”

the maximum order of polynomials needed to represent a transport map S. However, we also

see that the L1 term systemically shrinks all coefficients. Therefore finding a map with (3.6)

and a capped order Os parse performs better than the L1 maps. We observed this by measuring

and comparing the KL divergence between samples from an initial map and those of either a

penalized map or a truncated map.

3.5 Results with Real Data

We showcase our algorithm within the context of density estimation. As shown in [11]

the framework for learning a transport map can be used for density estimation of real datasets.

We build on this work and show that we can learn the inherent transport map order of the dataset

presented in [6] and learn a truncated version of the map that estimates the density of this dataset

comparably good to the higher order map.

Note that a transport map Ŝ can arrive at a density estimate P̂ utilizing the Jacobian
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Gaussian to Gaussian Gaussian to Gaussian

Gaussian to Chi Square Gaussian to Chi Square

Pareto to Uniform Pareto to Uniform

Figure 3.1. Magnitude of coefficients for varying known transformations.
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Unregularized Map Regularized Map

Figure 3.2. Magnitude of coefficients of transport map for light sleep data

equation.

p̂(x) = q(Ŝ(x))detJŜ(x) (3.20)

We here look at the power of two electroencephalography (EEG) frequency bands when

a patient is in “light” sleep and we wish to estimate the density associated with that stage of sleep

Plight . We obtained real data from electroencephalography (EEG) analysis taken from a window

of light sleep. Plight in R2 thus is the distribution over two important EEG frequency bands in

determining light sleep. The problem then becomes constructing a transport map S∗ that pushes

Plight to a known Q = N (µ,Σ). In this scenario, Q is a “dummy” density whose only purpose is

to be known and well-behaved.

We first construct a transport map S∗dense with a set basis order of 5 and estimate Plight

with it. Then we construct a penalized map S∗pen to uncover the inherent order which in this case

appeared to be 2 (see Figure 3.2). Finally, we construct a truncated map S∗trun of PCE order 2.

Figure 3.3 shows the density estimation estimates for the truncated and the original dense

map. The density estimation is preserved by a lower order map without compromising the

complexity of the density.
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Regular Map Truncated Map

Figure 3.3. Density estimation of alpha and beta frequency bands in light sleep using a regular
and a truncated polynomial order map

3.6 Conclusion

We have shown that using L1 group regularization , we can find transport maps

parametrized by polynomials that choose a sparse set of polynomial bases represented by a

lower polynomial order Osparse than that of the un-penalized problem. By this we show that a

truncated map retains the expressivity of the original map.
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