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ABSTRACT OF THE THESIS

Read Simulator

for Single Cell RNA Sequencing

by

Wenshan Li

Master of Science in Computer Science

University of California, Los Angeles, 2019

Professor Wei Wang, Chair

Techniques for single-cell RNA sequencing (scRNA-seq) has enabled unprecedented insights

into gene expressions in cell level. Drop-seq is one of the prominent scRNA-seq protocols,

and there has been a rapid growth in related analysis tools for Drop-seq data. These methods

are tested either using spike-in experiments or on simulation datasets as the real word gene

differential expressions are usually unknown. Since spike-in experiments are expensive and

time consuming, simulated datasets have become a reasonable alternative method. However,

current RNA-seq simulators mostly target at bulk RNA sequencing, which provokes the need

of a scRNA-seq simulator for the Drop-seq technology.

In this paper, we present Dropify, an end-to-end framework to simulate the sequencing

reads of a Drop-seq experiment. Dropify is able to simulate large amout of Drop-seq reads

according to the user’s experimental setting. Data generated by Dropify is a reasonable

approximation to real Drop-seq data.
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CHAPTER 1

Introduction

Single-cell RNA sequencing (scRNA-seq) has been gaining momentum due to its ability to

measure gene expression levels in an isolated cell and analyze differential gene expression

across cells. Prior to the development of scRNA-seq, populations of cells were typically

sequenced in bulk. Bulk RNA sequencing (bulk RNA-seq) measures the mean expression

level of genes but are limited when it comes to understanding heterogeneous populations of

cells [WNK13, ZPO17, KKS15]. There are many scenarios where scRNA-seq techniques are

preferred over bulk RNA-seq. To name a few applications, scRNA-seq is used to analyze cell

development for tumor progression and early embryonic stages [WNK13, KKS15, TBW09].

The technology also helps gain insight on how specific alleles affect the expression of genes,

which further leads to gene-regulatory networks and pathway analyses [KKS15, HLB18].

RNA sequencing methods can be divided into two categories: full-length methods such

as Smart-seq [RLW12], and tag-based methods such as STRT [IKM11], CEL-seq [HWS12],

inDrop [KMA15], MARS-seq [JKK14], SCRB-seq [SCS14] and Drop-seq [MBS15]. For tag-

based protocols, mRNAs are captured by a 30-bp oligo dT sequence present at the end of

all primer beads. This is also known as the priming process [ZVP17]. To be more specific,

primer beads have an affinity for any region with consecutive adenine nucleotides, including

the poly-A tail at the 3’ end of a transcript and sequences within the transcript. As a result

of the priming process, tag-based methods tend to have more reads sequenced closer to the

tagged end of a transcript (i.e., the poly-A tail at the 3’ end) [IZJ14]. In the sequencing

process, tag-based methods focus on a particular region of the transcript, and thus only a

portion of each RNA molecule is sequenced [KDA14]. For full length methods, however, the

molecule is divided and sequenced in multiple fragments. As a result, full-length methods
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aim to capture a more uniform read coverage across a transcript. While tag-based methods

lead to a non-uniform read coverage, they have a deciding advantage compared to full-length

methods. Tag-based methods eliminate amplification bias by identifying the specific tran-

script molecule that a read comes from, thus providing a more accurate gene quantification.

Due to this accuracy, tag-based methods are more preferable than full-length methods un-

der many circumstances, especially when studying gene expression between different cells

[KDA14].

Drop-seq is one of the widely-used tag-based scRNA-seq protocols [MBS15]. It can effi-

ciently profile thousands of individual cells by separating them into microdroplets. The main

advantage of this protocol is that a high number of scRNA-seq libraries can be sequenced at

low cost. [ZVP17] states that Drop-seq is the most cost-effective method compared with other

prominent scRNA-seq protocols, including Smart-seq, MARS-seq, SCRB-seq, and CEL-seq.

Due to its low costs, Drop-seq is more preferable over other methods, especially when quan-

tifying transcriptomes of large numbers of cells with low sequencing depth. As Drop-seq

continues gaining more popularity, more Drop-seq specific computational tools are devel-

oped. These tools are tested either using spike-in experiments or on simulation datasets.

Since spike-in experiments are expensive, simulated datasets have become a reasonable al-

ternative. However, current RNA-seq simulators mostly target at bulk RNA-seq. This

provokes the need of a specific scRNA-seq simulator for Drop-seq.ate

Drop-seq is a tag-based protocol, and its read distribution has an inherent bias across

every transcript. In this paper, we refer this bias as the poly-A bias. We define a poly-A

region as a consecutive sequence of 20 or more adenine nucleotides. The poly-A bias is

generally observed from locations that are close to a poly-A region, which can be either the

3’ end poly-A tail or the poly-A sequence inside the transcript. Compared to other locations

on a transcript, more reads are generated near the poly-A regions, resulting in a skewed read

distribution. The poly-A bias needs to be taken into account when developing simulation

tools for Drop-seq. A successful simulator must be able to capture this positional bias in the

sequencing process.

Current efforts in simulating RNA-seq target the more mature field of bulk RNA-seq as
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opposed to scRNA-seq. ART [HLM11], Flowsim [BML10], Grinder [AWR12], FASTQsim

[Shc14] and Polyester [FJL15] are widely-used bulk RNA-seq simulators that can provide

a successful approximation of real data. While reads from Drop-seq are not uniformly dis-

tributed across a transcript due to the poly-A bias, current bulk RNA-seq simulators either

assume a completely uniform distribution of reads, or generate the location of reads based

on GC bias due to the PCR amplification [ERP16]. In other words, existing bulk RNA-seq

simulators are not feasible for Drop-seq or any other tag-based scRNA-seq techniques. Since

scRNA-seq is relatively new, the existing simulating techniques focus on simulating gene

expression counts. Current simulation methods, including Splatter [ZPO17], Lun [LBM16],

Lun 2 [LM17] and BASiCS [VMR15], aim to model the highly variable gene coverage and

high dropout rates seen in scRNA-seq gene expression. They are successful in capturing

scRNA-seq gene expression trends; however, they do not generate sequencing reads based

on counts. As a result, a read simulator specifically targeting the Drop-seq technology must

be developed, with the ability to generate sequencing reads and capture the trends found in

Drop-seq data, namely the poly-A bias caused by the priming process.

In this paper, we propose Dropify, an end-to-end framework to simulate the sequencing

reads of a Drop-seq experiment. Affected by the poly-A bias, reads are not uniformly drawn

at the positions of a transcript, but have a higher probability being generated from positions

near a poly-A region. A poly-A bias model is learned through the read distribution of differ-

ent transcripts from real Drop-seq data. Based on the model, each position in a transcript

is assigned with a different probability to be selected as the start position of a read. To

simulate a new set of reads, Dropify begins with taking a list of reference transcripts to

be sequenced and a transcript count matrix which specifies the number of transcripts per

cell. Based on the learned probability, a list of starting positions of reads are generated with

the positional sequencing biases. Polyester [FJL15] is then applied to generate reads for

each starting position and implant sequencing error on reads. Lastly, to identify reads from

different mRNA molecules and cells, we add the cell and molecular barcode to each read.

Dropify is a read level simulator for scRNA-seq data. It is a framework designed to provide

reasonable simulation of Drop-seq data according to the user’s experimental setting. Reads
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generated by Dropify serve as a robust approximation to real data. Our results demonstrate

that Dropify is able to simulate reads from various genes, and even different species. With the

help of Dropify, researchers are able to avoid conducting complex experiments but simulate

large amount of Drop-seq reads in a flexible and efficient way.
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CHAPTER 2

Method

We propose a framework, Dropify, to simulate RNA-seq reads from the Drop-seq technology

[MBS15]. Figure 2.1 demonstrates the overall framework. The input to the simulator is a list

of reference transcripts and a matrix containing the number of transcripts for every cell in the

experiment. The transcript count matrix can either be user defined or produced by a gene

expression quantification simulator, such as Splatter [ZPO17] or BASiCS [VMR15]. Due to

the poly-A bias caused by the priming process, reads are not uniformly distributed across a

transcript. To simulate reads generated by Drop-seq, we learn the poly-A bias from real data.

This is done by generating the probability for sequencing a read at different positions along

a transcript. The probability distribution is then applied to the input transcripts, where

we sample the starting positions accordingly for reads. Polyester [FJL15] takes these read

positions paired with the input transcript sequences to generate sequencing reads. Lastly,

we create unique barcodes for each transcript-cell combination to form the paired-end reads.

2.0.1 Generating Read Positions

To incorporate the poly-A bias in read simulation, a probability model is learned from

a training dataset (described in Section 3) to mimic the skewed read distribution across

transcripts obeserved in Drop-seq. A poly-A region is defined as a consecutive sequence of

n adenine nucleotides or more (n = 20 by default). The model specifies the probability

of generating a read at each position in relation to a poly-A region. Using a transcript’s

reference sequence and the learned poly-A bias model, we generate a transcript specific

probability distribution of generating a read at different positions. We sample from the

transcript’s probability distribution to obtain a list of positions. The positions selected from
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Figure 2.1: The simulator pipeline. The simulator takes a list of transcript and a transcript–

cell counts matrix as input. The input transcripts should be provided in FASTA format; the

transcript count matrix contains rows which represent a transcript, columns which represent

a cell, and entries which specify the number of transcripts per cell. The simulation process

begins with generating read positions, where we adapt our learned poly-A bias probability

distribution to transcripts to sample read start positions. During fragmentation, the input

reference transcripts are broken into short fragments and sequenced beginning at the start

positions obtained in the previous step. Single-end RNA-seq reads are generated from each

fragment containing concrete cDNA sequences. Finally, cell barcodes and molecular bar-

codes (UMI) are simulated by randomly generating sequences of nucleotides and added to

the appropriate read. The result of the simulator is saved in FASTA format, where each file

contains the reads for one cell.
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this step are used as the read start positions.

2.0.1.1 Model Training

As discussed in Section 1, the priming process in Drop-seq experiments to capture mRNA

molecules causes a significant poly-A bias in read distribution. The probability of observing

a read at each position along a transcript is not equal, yet with a higher probability for

positions closer to a poly-A region. We present a learned poly-A bias model to describe the

distribution of reads affected by the poly-A bias in Drop-seq data, and use that to assign

the probability of generating a read based on the distance to the nearest poly-A region on a

transcript.

The model is built on a training datasetD consisting of reads from a Drop-seq experiment.

The reads are aligned to the reference genome. We identify the corresponding transcript for

each read by comparing the aligned position from the alignment results with the transcript’s

genome position. A read distribution is generated for each transcript, which specifies the

read count at each position along the transcript. To incorporate the poly-A bias, for every

position at a given transcript, we calculate its distance to the nearest poly-A region. Since

the sequencing process starts with the 3’ end, only poly-A regions on the 3’ end side are

considered when calculating the distance. Specifically, if there is no poly-A sequence within

the transcript, the distance to the nearest poly-A region is same as the distance to the 3’

end. Eventually, for every transcript j in training data D, we generate a read distribution

for that transcript with respect to the distance to a poly-A region. To be more specific, the

read distribution Gj for transcript j specifies the read count dij at each distance i to its

nearest poly-A region.

We use a mixture model to estimate the sampling probability at different distances. Let

H be the probability distribution for a transcriptome, i be the distance to the nearest poly-A

region, andD is the training data. The probability of generating a read at distance i is defined

in Equation 2.1. The probability is determined by two components, the raw probability ri

and a length factor L determined by the read length. We use a weight function w(i) to
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adjust how ri and L contribute to the sampling probability at distance i. w is defined in

Equation 2.2.

H(x = i|D) = w(i)
1

L
+ (1− w(i))ri (2.1)

w(i) =


1 if i ≤ L

1
i

if i > L

(2.2)

The raw probability ri from Equation 2.1 serves as one factor to estimate the sampling

probability. We calculate ri based on the amount of reads observed in the training data.

Suppose xij is the read count at distance i from the transcript read distribution Gj, max(xj)

is the maximum read count of Gj, and |T | is the number of transcripts in D. ri is defined

in Equation 2.3. Since it is possible that reads are mapped to wrong location during the

alignment process, we normalize the read count per transcript to avoid risking that tran-

scripts with a great number of incorrectly mapped reads skew the average of all data. For

each transcript, the read count at distance i is normalized by its maximum read count. We

calculate ri by summing over the normalized read count at distance i over all transcripts,

and taking the average of the result. ri is regarded as the raw probability of generating a

read at distance i.

ri =
1

|T |

|T |∑
j=0

xij
max (xj)

(2.3)

The read length serves as the other factor that affects the sampling probability. The read

length is adjustable in Drop-seq experiments. It has been shown that for scRNA-seq data,

different read length has an impact on the read coverage distribution across a transcript

[REL17]. For short transcripts of which the length is close to the read length, the reads

tend to be uniformly distributed instead of showing the poly-A bias trend. Generally, for

nucleotides closer to a poly-A region, the read distribution is almost uniform. Therefore,

we adopt a uniform sampling strategy for the first L nucleotides starting from the poly-A
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region. By default, L = 4R nucleotides, where R is the read length. We choose L based on

cross validation results, but user may change L depending on the experimental setting.

H is the learned poly-A bias distribution. w determines the weight of two components.

When the distance i to the nearest poly-A region is below the threshold L, the model adopts a

uniform sampling strategy. The probability of each distance to be sampled is equal. However,

as the distance increases, the read distribution is no longer uniform but transforms into a

skewed shape affected by the poly-A bias. Therefore, once the distance exceeds the threshold

L, the other component ri is introduced into the model, the raw probability estimated from

the transcript read distribution form the training data. With the distance increasing, the

uniform sampling strategy is weighed less, and ri becomes the major factor. When the

distance is large, the sampling probability is almost completely dominated by ri. H is used

as the probability distribution when we sample read start positions for individual transcripts.

2.0.1.2 Sampling Positions

The probability of generating a read at each position along a transcript is based on the

learned distribution H and the locations of poly-A regions on a transcript. For a given

transcript t, we create a probability distribution Pt(x = i|H) as defined in equation 2.4

describing the probability of generating a read at each position i in relation to the 3’ end of

the transcript.

N represents the number of poly-A regions between position i and the 3’ end contained

on the transcript, dij is the distance from position i to the jth poly-A region, c serves as the

weight factor that determines the weight of the poly-A tail at the 3’ end of the transcript.

pi and pdij are calculated from the learned poly-A bias model, that specifies the probability

of generating a read at position i and dij as defined in equation2.5.

Pt(x = i|H) =


cpi + 1−c

N

∑N
j=1 pdij , if N ≥ 1

pi, N = 0

(2.4)

pi = H(x = i|D) (2.5)
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The calculation of Pt considers both the poly-A tail at the 3’ end and the poly-A regions

within a transcript. If there is no poly-A region between position i and the 3’ end, the

poly-A tail is the only factor that contributes to the bias. If there are at least one poly-A

region between position i and the 3’ end, the model calculates the poly-A tail and the poly-A

regions inside the transcript separately.

We use c as the weight factor to adjust the weight of the poly-A tail. The length of a

poly-A region can affect the ability to attract primer beads. If a poly-A tail is longer than

the poly-A regions contained in the transcript, it could be beneficial to weigh the probability

due to the distance from the poly-A tail more heavily than the probability due to contained

poly-A regions. Since most transcripts do not contain a long consecutive sequence of adenine

nucleotides, c is set to 0.5 by default.

We calculate pi and pdij from the poly-A bias distribution H estimated from the training

data. After generating the probability distribution Pt for each individual transcript, we

sample from Pt to obtain a list of read starting positions.

As a result of computational analysis of Drop-seq data, the raw sequence reads are trans-

formed into a digital gene expression matrix, which measures the number of times each

gene is expressed in each individual cell. Since the mRNA molecules are augmented dur-

ing the amplification process to guarantee sufficient read coverage for individual transcript,

the counts from the digital gene expression matrix do not represent the actual number of

sequenced reads. An amplification factor is introduced to determine the amount of reads

sequenced from each transcript. To be more specific, the amplification factor determines the

number of time we sample from the probability distribution Pt for each individual transcript.

2.0.2 Sequencing

Given a list of starting positions and the reference transcript sequences, we use Polyester

[FJL15] to generate sequence fragments for the input transcripts. Based on these fragments,

Polyester simulates reads with certain probability of sequencing error.

During fragmentation, transcript sequences are broken into short fragments. Polyester
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is applied to generate these fragments. The fragment lengths are sampled from a normal

distribution provided in Polyester, with fragment mean µ = 100 and fragment standard

deviation σ = 10. We apply a list of positions sampled from the transcript probability

distribution Pt in the previous step as the start positions of each fragment. Single-end reads

are drawn from the first R nucleotides of the fragments, where R is the read length.

Drop-seq sequencing data is presented in the form of paired-end reads, where the first

read yields the cell barcode and molecular barcode (UMI), and the second read represents

part of the transcript sequence. The second read is generated by Polyester. For the sequenc-

ing error model, since Drop-seq data is sequenced on the Illumina platform, we apply the

empirical error model provided by Polyester to simulate the sequencing errors. The empirical

model is estimated from Illumina data. It calculates the probabilities of making each of the

four possible sequencing errors at each position in the read. Users may also choose other

sequencing error models provided by Polyester. The output of this step is in the form of

single end reads and is written to FASTA format.

2.0.3 Barcode Simulation

The Drop-seq technology generates reads in paired-end. The first end contains a 12-nt

cell barcode and 8-nt molecular barcode (UMI). The cell barcodes are identical across all

the primers on one bead, but different from the ones on other beads, indicating the cell

of origin, while a UMI is different on each primer. In Drop-seq, both cell barcodes and

molecular barcodes are constructed through the completion of ”split-and-pool” synthesis

cycles[MBS15]. In the simulation process, the cell barcode is a permutation of different

DNA bases (A, G, C, or T) with size 12, and the UMI is a permutation with size 8. Based

on the input transcript count matrix, each cell is distributed with a unique cell barcode,

and each transcript is distributed with a unique UMI. Reads that originated from the same

transcript have the same UMI, but reads from different transcripts possess different UMIs.

11



CHAPTER 3

Datasets

We use public Drop-Seq datasets available on Gene Expression Omnibus (GEO)1 to train and

evaluate our model. The first dataset (accession number GSM1544798) contains a mixture of

human and mouse cells, with a read length of 50bp. The second dataset (accession number

GSM2177570) is composed of the mouse retina cells, with a read length of 60bp. Reads of the

mouse cells from GSM1544798 are used for training; the rest of the data are used as the test

sets for evaluation. We follow the Drop-seq core computational protocol suggested by Steve

McCarroll’s lab [MBS15] for data pre-processing. Reads are alinged by STAR [DDS13]. The

reference genome and isoform annotation information is based on hg19 for human and mm10

for mouse. Since reads are generally shorter than transcripts from which they are derived,

a single read may map to multiple genes and isoforms, complicating expression analyses

[LRS09]. Therefore, we discard reads that map to multiple locations in order to reduce the

uncertainty. In efforts to remove potential noises in the data, we filter out the reads that

have a base quality score less than 10.

The training set consists of reads from the mouse cells in sample GSM1544798. We add

more stringent rules for filtering this dataset. Since multiple isoform genes add ambiguities

and uncertainties when performing expression analyses [LRS09], the model is only trained

on single isoform transcripts. We also remove less expressed transcripts whose average read

depth per nucleotide is less than 2. This leaves us with 401 transcripts to train our model

on.

1https://www.ncbi.nlm.nih.gov/geo/
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CHAPTER 4

Experiment

4.0.1 Evaluation Metrics

To demonstrate reads generated by Dropify exhibit realistic properties, we must be able to

measure how well the read distribution of our simulated reads matches those of the true

Drop-seq reads. When we create a read using Dropify, we already know which transcript

the read has been sequenced from and we can directly plot a read to its transcript of origin.

However, the alignment process, as a required step to generate the read distributions, can

potentially map reads to incorrect locations. Alignment error exists when reads are either be

mapped to the wrong transcript or completely unmapped. To reintroduce the bias caused

by the aligner to the simulated data, we run the same alignment tool (the RNA-seq aligner

STAR [DDS13]) on the simulated reads before evaluation.

After aligning the simulated data, there becomes a discrepancy between the total number

of reads on a given transcript before alignment and after alignment. This makes it difficult

to determine whether differences between the simulated data and real data are due to the

fact that there is a difference in the read counts, or if there is actually a difference in the

general shape of the distributions. Therefore, a normalization step is required to correct for

the reduced read counts of simulated reads after alignment. To normalize the data, the read

count at each position is scaled by the total number of reads before alignment to the total

number of reads after alignment. For a specific transcript, let p be the read distribution

before alignment, a be the read distribution after alignment, ai represents the read count at

position i on the transcript after alignment. We define ni as the read count at position i

after normalization. ni is calculated as shown in Equation 4.1. The result from alignment

and normalization process is shown in Figure 4.1. The whole process corrects for the bias
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Figure 4.1: This is an example of how the alignment and normalization process affects an

individual transcript’s read distribution. Gaps in the aligned read distribution such as the

one between position 180 to 280 mean that reads originally generated from that region are

either mapped to another location or completely thrown out. As a result, the aligned line

(green) has much fewer reads than the line before alignment (orange, which is also the

simulated line). We need to normalize the read count to correct for the effects of the aligner.

After increasing the number of reads to match that of the reads before alignment, we obtain a

distribution that can be evaluated against the original Drop-seq distribution (blue) as shown

by the normalized line (red).
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introduced by the aligner, thus providing a more reasonable approach to evaluate the model.

ni =

∑
p∑
a
ai (4.1)

To evaluate the performance of our model, we show how closely we can model the read

count distribution along a transcript. We allow for slight positional variability by binning

together multiple nucleotides at a time and taking average of those nucleotides as the read

count value. A sliding window of 100 nucleotides is applied along a transcript to produce a

smoother distribution as shown in figure 4.2. After producing these distributions, we use two

different metrics to quantitatively score how closely the simulated distributions match up

to real Drop-seq distributions. The first score is the pearson correlation coefficient defined

in equation 4.2. N is the number of bins in the transcript, x is the read count at each

position in our simulated distribution and y is the read count at each position in the Drop-

seq sequenced distribution. The pearson score is a value from 0 to 1 where 1 means that the

two distributions are very similar.

Pearson =
N

∑
xy − (

∑
x ∗

∑
y)√

N
∑
x2 − (

∑
x)2

√
N

∑
y2 − (

∑
y)2

(4.2)

The second score that we use is BC distance defined in 4.3, which generates a number

between 0 and 1, and 0 means that the distributions are very similar.

BC dist =

∑
(|x− y|)∑
(x+ y)

(4.3)

4.0.2 Naive vs. Our Model

This section compares how well Dropify performs against an industry baseline method. Cur-

rent simulators either use a uniform model or apply CG bias to generate reads across a

transcript [ZVP17]. However, to model the read distribution form a tag-based scRNA-seq

protocol such as Drop-seq, the simulator must include positional bias, namely the poly-A

bias, which results in an increase in number of reads near poly-A regions. [AC18] suggests

that there is a strong 3’ end peak in read coverage, as a long poly-A tail exists at the 3’ end
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Figure 4.2: The read distribution shown on the left has slight variability in position. For

example, the blue line starts around position 100 which could vary based on indescribable

features. We allow for slight variability using the binning process. The figure on the right

shows the same read counts binned by 100 nucleotides.

Figure 4.3: These plots show examples of transcript read distributions from simulated reads

by Dropify against the naive model on Drop-seq sequenced data. The blue line represents

Drop-seq data, the orange line represents the simulated data by Dropify, and the green line is

the simulated data by the naive model. All the simulated results are plotted after alignment

and normalization.
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of the transcript. An intuitive approach to generate this peak would be to sample from a

distribution where the probability of generating a read at the 3’ end is significantly higher

than at any other positions. Equation 4.4 defines a distribution that follows this trend,

where i is the distance from a nucleotide to the 3’ end of the transcript. P (x = i) defines

the probability of generating a read at position i. We use P (x) as the baseline model.

P (x = i) =
1

i
(4.4)

Table 4.1 presents the evaluation results of simulated reads by Dropify in comparison

to those by the naive model on the training and testing datasets. Dropify performs bet-

ter than the naive model by 55.7% in terms of pearson correlation coefficient. Figure 4.3

shows the read coverage of Drop-seq data, Dropify, and the naive model for transcripts

ENSMUST00000005705, ENSMUST00000030348, and ENSMUST00000030346. The naive

model consistently overproduces reads at the 3’ end of the transcript suggesting that it

doesn’t describe the true read coverage distribution over a transcript. As seen in transcript

ENSMUST00000005705, both models generate a peak at the 3’ end with a decline in number

of reads as distance from the 3’ end increases. However, the naive model still overproduces

reads at the 3’ end of the transcript. The same trend is more obvious as shown in tran-

script ENSMUST00000030348 which is a slightly shorter transcript. The read distribution

is relatively flattened, yet the naive model generates a sharp peak at the 3’ end. Despite

this notion, the naive model can perform well on a few transcripts such as the one shown

in ENSMUST00000030346 where the distribution from the real data has a relatively high

peak. This case is a small subset of the data, and Dropify performs better on the data as a

whole.

4.0.3 Transcripts from Multiple Isoform Genes vs. Single Isoform Genes

Multiple isoform genes present an interesting problem for analyzing scRNA-seq data. If

there is a read mapped to the 3’ end of a transcript and the only distinct differences between

isoforms are regions other than the 3’ end, then it is extremely difficult to determine which
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Naive Model Our Model

Pearson BC Distance Pearson BC Distance

GSM1544798 mouse

(training set)
0.546 0.437 0.710 0.488

GSM2177570

(test set)
0.510 0.414 0.794 0.312

Table 4.1: Comparison between naive model and our empirically produced model. We

calculate these results using all the transcripts in each sample that have reads mapped to

them. Our model performs better in terms of pearson correlation and BC distance.

Figure 4.4: These graphs shows some examples pulled from the testing set coming from

sample GSM2177570. All of these transcripts have only one isoform. We compare how

closely the simulated reads by Dropify match the read distribution of Drop-seq reads. We

plot the simulated line after alignment and normalization.
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Figure 4.5: These graphs show some examples of transcripts that have more than one isoform

from sample GSM2177570. We compare how closely the simulated reads by Dropify match

the read distribution of Drop-seq reads. We plot the simulated line after alignment and

normalization.

transcript the read was originally sequenced from [AC18]. Most gene quantification tools are

especially burdened by the multiple isoform issue and are only able to report quantification

at the exon level as opposed to at the transcript level [AC18]. Despite these challenges,

Dropify is able to accurately simulate read coverage distribution of transcripts with multiple

isoforms. Table 4.2 shows how well Dropify simulates read coverage on transcripts coming

from single isoform genes verses all transcripts.

Transcripts from single isoform genes perform with a pearson correlation coefficient of

0.857 which is better than that of multiple isoform genes. Figure 4.4 presents some examples

of the read distribution along individual transcripts. Transcripts ENSMUST00000103811

and ENSMUST00000082678 are shorter, so they are more affected by the beginning part of

the poly-A bias probability distribution. Because of this, there is no definitive tail following

the 3’ end peak. Transcript ENSMUST00000180369 is longer and therefore, it is apparent

that there are less reads further from the 3’ end.

Dropify performs slightly better on the single isoform case than the multiple isoform

case. The pearson correlation for the single isoform case in our training set is 14% higher

than the multiple isoform case. However, that gap decreases in the testing data. The

pearson correlation coefficient is 1% higher in the single isoform case than the multiple
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Single Isoform Transcripts All Transcripts

Pearson BC Distance Pearson BC Distance

GSM1544798 mouse

(training set)
0.857 0.634 0.710 0.488

GSM2177570

(test set)
0.804 0.186 0.794 0.312

Table 4.2: Comparison between transcripts from single isoform genes and the entire set of

transcripts.

isoform case from the testing data. A possible reason behind why the training correlation

for the single isoform case is higher is that we trained the poly-A bias model on that case,

whereas the other sets are not used in generating the model. Figure 4.5 shows some isolated

transcripts that come from multiple isoform genes. Transcripts ENSMUST00000010550 and

ENSMUST00000020552 follow the 3’ end peak trend which Dropify is able to reproduce.

Many transcripts also appear to look like transcript ENSMUST00000042166 where there is

no clear 3’ end peak with a gradual decline. Instead, there might be sporadic peaks and gaps

in read distribution. These artifacts are due to the aligner. Even though the aligner modifies

the true read coverage distribution, we can still evaluate our model since we reintroduce the

biases from the alignment process in our evaluation metrics.

4.0.4 Testing Different Species

In previous sections, we test Dropfiy using a dataset composed of mouse cells. To test the

robustness of the simulator, we also compare how well Dropify produces reads for mouse data

against human data. Table 4.3 shows the results from the different species testing datasets.

The human testing set of reads from our simulated data appear to be more correlated to

real Drop-seq data than the mouse testing set. One potential explanation could be that the
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Different Species

Pearson BC Distance

GSM1544798 mouse

(training set)
0.710 0.488

GSM2177570

(test set)
0.794 0.312

GSM1544798 human

(training set)
0.834 0.285

Table 4.3: Comparison of mouse and human read coverage distribution correlation.
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sample of human cells comes from the same experiment that we trained our model on. The

major takeaway from this experiment is that human transcript sequences are completely

novel to the model. Regardless, Dropify is able to be extended and simulate these new

transcripts because they appear to follow the same poly-A bias as the training data.
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CHAPTER 5

Conclusion

In this paper, we propose an end-to-end framework for producing simulated reads from a

Drop-seq experiment. Dropify uses an empirically produced probability distribution to model

positional bias in read coverage. By sampling from this distribution, we are able to generate

the positions of reads where the simulated reads follow the trend found in Drop-seq data.

Reads generated by Dropify exhibit realistic properties and are useful in practice.
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