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Abstract: Ever since the introduction of high-throughput sequencing following the human genome
project, assembling short reads into a reference of sufficient quality posed a significant problem
as a large portion of the human genome—estimated 50–69%—is repetitive. As a result, a sizable
proportion of sequencing reads is multi-mapping, i.e., without a unique placement in the genome.
The two key parameters for whether or not a read is multi-mapping are the read length and genome
complexity. Long reads are now able to span difficult, heterochromatic regions, including full
centromeres, and characterize chromosomes from “telomere to telomere”. Moreover, identical
reads or repeat arrays can be differentiated based on their epigenetic marks, such as methylation
patterns, aiding in the assembly process. This is despite the fact that long reads still contain a modest
percentage of sequencing errors, disorienting the aligners and assemblers both in accuracy and
speed. Here, I review the proposed and implemented solutions to the repeat resolution and the
multi-mapping read problem, as well as the downstream consequences of reference choice, repeat
masking, and proper representation of sex chromosomes. I also consider the forthcoming challenges
and solutions with regards to long reads, where we expect the shift from the problem of repeat
localization within a single individual to the problem of repeat positioning within pangenomes.

Keywords: repeats; satellite; multi-mapping; reference; long reads

1. Introduction

While next-generation sequencing is increasingly used both in research and clinical
practice, a subset of sequencing reads is frequently underutilized. These are reads that cannot
be uniquely positioned within their respective genomes, and are thus multi-mapping in the
chosen reference assembly. They frequently originate from duplicated genes [1], transposable
elements [2,3], satellite repeats (e.g., centromeric and telomeric reads) [4], and more generally
a heterochromatic portion of the genome [5]. Indeed, an estimated 50–69% of the human
genome is repetitive [6,7], as is as much as 80% of the maize genome [8]. Multi-mapping reads
are also an unavoidable consequence of segmental and whole-genome duplications [9,10].
Additional sources of nearly identical sequences are allelic variants and haplotypes.

The two most important parameters for whether a read is multi-mapping are the
read length and genome complexity, whereas genome complexity can also be defined in
terms of the length of repetitive units, i.e., length-sensitive [11]. Importantly, in order to
characterize the repeat array, the reads need to be longer than r, where r is the length
of the repeat unit. What is the minimal sequencing read length required to capture the
repeat array? During PCR design, two ~20bp oligonucleotides can be anchored in the
genome. Yet, such a reaction could still yield an unspecified product if one or both primers
were positioned in the repetitive regions, requiring an optimization of the PCR reaction.
Thus, the repetitiveness of any genome can be defined in terms of read length required to
successfully assemble it. The k-mer uniqueness ratio is defined as the percentage of the
genome that is covered by unique sequences of length k or longer [12]. For a variety of
organisms, a k of at least 50 is required to cover a significant portion of their respective
genomes [12]. The mappability, where the genome is divided into windows of size k,
and the uniqueness of each window is calculated (i.e., mappability of 0.5 means exactly
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two identical windows exist in the genome), can be calculated for any k (e.g., with the
GEM library toolkit), and provided as a genome track. Note that for human, as much as
28.4% of reads are unmappable to the assembled portion of the human genome with the
read length 20, while only 2% with the read length 200 [13,14]. These numbers refer to the
assembled portion of the human genome, which increased significantly from hg19 to hg38.
The assembled portion impacts called variants [15], and is expected to rise further with the
assembly by the Telomere-to-Telomere (T2T) consortium.

Along with the technical variation (read length/error rate), there is a substantial biolog-
ical variability outside of the reference genome sequences, especially in the form of satellite
repeats. According to the “satellite library” hypothesis, an initial set of sequences can lead
to the vast variability of outcomes, generating changes in sequence and copy number in
individuals and populations [16]. Indeed, among human populations, the centromeric
array of the X chromosome can vary by an order of magnitude (0.5–5 Mb) [17]. Wei and
colleagues showed that repeat clustering did not recapitulate the expected relationships
in geographically separated populations of Drosophila [18]. In great apes, Cechova and
colleagues described vast variability among satellite repeats in great apes [19]. Intriguingly,
different sequencing technologies provide different repeat estimates, although they agree
qualitatively (abundant versus rare repeats) [19]; I discuss some potential reasons later.
Approaches and software for satellite biology are reviewed in [20] and include both short-
and long-read solutions.

Because of the intrinsic difficulty of dealing with repetitive parts of the genome, some-
times it might be advantageous to remove the repetitiveness in order to study underlying bio-
logical processes, such as cell division. As an example, an artificial, non-repetitive centromeric
region was created to study centromere genomics with the use of human artificial chromo-
somes (HACs) [21]. Last, next-generation sequencing reads, even if not multi-mapping,
can fall short of capturing the full repeat variability of individuals [22], especially when
compared to a single reference genome (i.e., limited representation of a genome).

2. Reference Genomes Are Inherently Incomplete

Reference genomes represent a simplified, linear representation of the conceivable
version of a genome of a given species [23]. Such references are incomplete: even the
best representations contain gaps in difficult, heterochromatic parts of the genome [24].
Moreover, as much as 5–10% of the human genome remains poorly characterized [25],
and up to tens of percentage points might be completely missing in other organisms,
such as birds [26], all while underestimating the copy number of repetitive regions. This
is because high-identity regions are often collapsed during the assembly process from
short sequencing reads [27] or long erroneous reads. As an example, only <0.1% of
GRCh38 reference is composed of repeats HSAT2/3 but as much as 2.6% of read bases are
HSAT2/3 [28]. When dealing with such hard-to-assemble regions, it might be advantageous
to use “the most likely representation”, rather than the reference assembled from any living
individual [17]. This idea has been implemented for centromeric arrays [17]. Instead of a
multi-megabase gap as in previous human reference genomes, GRCh38 centromeres are
composed of these presumed sequences, based on the second-order Markov models of
monomer variants. Still, complete assembly is the ultimate solution to repeats [29].

Recently, a newly established Telomere-to-Telomere consortium aimed to assemble
human chromosomes in full and present a new (near) complete sequence of a human
genome [30,31], including the first complete sequence of the human chromosome X [32].
However, gaps in reference genomes are not the sole reason why reference assemblies are
generally incomplete. The variability among individuals of a given species means that the
full sequence content simply cannot be captured by looking at a single individual [33–36].
A recent study identified an additional 300 Mbp of sequences (although predominantly
HSAT2 and HSAT3) that were not represented in the human reference (GRCh38) but found
among 910 individuals of African descent [35]. Another study found 46 Mb in 1000 Swedish
individuals [36], complementing a previous study that performed de novo assemblies of
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two Swedish genomes and revealed as much as 10 Mbps of novel sequence (originat-
ing from centromeric and telomeric regions and the chromosome Y), almost one-third of
which was different from any sequences present in existing nucleotide databases [37].
The degree to which an individual is represented by a reference also depends on ances-
try. The individuals that do not match the ancestry of the particular reference genome
built might be misrepresented, leading to false variant calls or uninterpretable GWAS
results [38,39]. One of the options is to use ancestry-specific reference builts—an example
of which might be the Japanese reference genome [40]. Similar considerations apply to dif-
ferent haplogroups, but, as expected, representing all haplotypes with a contig each leads
to a multi-mapping problem (contig from a specific haplotype is referred to as a haplotig).
In summary, reference genomes are either incomplete or introduce multi-mapping issues
at the allelic, haplogroup, or chromosomal level.

The downstream analysis—such as mapping accuracy, gene expression analysis, and
calling of structural variants—are affected by the following: (1) the specific reference
genome (that comes in multiple private and public versions) [41], (2) whether or not
the genome is repeat masked, and (3) the representation of pseudoautosomal regions
(PARs) and alternative haplotypes. The understanding of the reference genome as the
representative species genome should be uncoupled from the sequence that is to serve
as an alignment reference [23]. First, for typical applications, it might be advantageous
not to use alternative haplotigs and to mask large multi-copy sequences such as PARs
and a small subset of α-satellites that are artificially identical in the current GRC reference
genomes [41]. In this scenario, one must wary that variant calls from these regions might
originate from more than one genomic region. However, not including unplaced and
unlocalized contigs might force reads from these contigs to be mapped to the chromosomal
part of the reference and again lead to false variant calls. On the other hand, aligners
typically assign mapping quality 0 to multi-mapping reads, and such reads might be
ignored by downstream pipelines.

Sometimes, multiple reference genomes are concatenated and used as a mapping
target: good examples are the inclusion (or a lack thereof) of a mitochondrial genome
or sequences of spike-in controls. Crucially, even if one is interested only in a single
chromosome, sequencing reads still need to be mapped to a full reference genome. This
is because if no other chromosomes are offered as a mapping target, the read counts will
become overrepresented—as much as one-third of all sequencing reads could map to
a single chromosome in the case of the human genome due to repeats; this proportion
drops significantly when repeat masking is in place (see Table 1). Second, genes can
have repetitive parts (in both exons [42] and introns [43,44]) and intergenic regions can
be low-complexity; thus, repeat masking the reference genome will result in an increase
in the proportion of unmapped reads (Table 1). Third, some parts of the genomes, e.g.,
repetitive heterogametic sex chromosomes (chromosome Y in mammals and chromosome
W in birds), are often underrepresented. In summary, the particular version of the reference
genome must be carefully considered and chosen contingent on the desired application.
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Table 1. The comparison in a proportion of mapped reads (%) when using the whole-genome reference, compared to individual
chromosomes. Both full and repeat-masked references are contrasted. The SRR622461 dataset of the NA12878 female individual was
mapped with bwa mem version 0.7.17-r1188 and default parameters to either unmasked or masked human reference genome hg38. All
reads were mapped either to the full reference or to the respective chromosome only.

Chromosome Name 1 2 3 4 5 6 7 8 9 10 11 12

mapping proportion [%]
(to hg38) 7.6 7.7 6.6 6.4 6.0 5.4 5.0 4.6 3.9 4.3 4.2 4.2

mapping proportion [%]
(to itself) 33.8 34.7 32.1 32.4 31.5 30.6 31.5 30.0 30.3 30.7 29.0 29.3

mapping proportion [%]
(to masked hg38) 5.2 5.3 4.4 4.1 3.9 3.8 3.4 3.2 2.6 3.0 3.3 2.8

mapping proportion [%]
(to masked itself) 6.2 6.5 4.0 4.0 3.7 3.6 4.5 3.0 3.6 4.5 3.1 2.7

Chromosome Name 13 14 15 16 17 18 19 20 21 22 X Y 1

mapping proportion [%]
(to hg38) 3.2 2.8 2.5 2.7 2.4 2.5 1.6 2.1 1.4 1.2 4.9 0.2

mapping proportion [%]
(to itself) 27.7 28.6 27.3 27.7 27.6 26.9 25.0 26.9 25.8 26.0 29.9 23.6

mapping proportion [%]
(to masked hg38) 2.2 2.0 1.8 2.0 1.7 1.7 0.9 1.6 0.9 0.8 2.7 0.4

mapping proportion [%]
(to masked itself) 2.1 2.0 1.8 3.1 3.1 1.7 1.0 2.7 1.2 2.8 2.6 2.1

1 Note the spurious hits to the Y chromosome using the female reads.

3. Short Reads

Repetitive regions are hard to resolve and are variable among individuals and tech-
nologies: both biological and technical variability is present. If the reads are mapped to
such repetitive reference, how should the multi-mapping reads be dealt with? Four main
approaches exist: use first position or the “grouped assignment”, uniform assignment,
random assignment, and, last, context-dependent distribution (Figure 1).
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Figure 1. The mapping strategies for the multi-mapping reads. Reference genome (rainbow) with two
duplicate regions (light blue). The multi-mapping reads (light blue) are distributed among mappings
based on (A) the first position or the grouped assignment, (B) uniformly among all equally good
mappings, (C) randomly, or (D) context-dependent assignment based on the coverage of neighboring
sites. Figure created with BioRender.com.
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3.1. Methods of Multi-Mapping Read Assignment

The first approach maps reads to the first possible position out of multiple equally
good options (Figure 1A). If no further post-processing is applied, this approach can lead
to erroneous downstream conclusions (e.g., in early versions of Tophat all multi-mapping
reads were in some instances aligned to the same locus). For example, if for all duplicated
genes, only the first annotated gene copy is used as a mapping target, which then biases
read counts and an expression value towards the first gene/isoform. Alternatively, all such
reads could be annotated as a group: presenting both unique regions and the expression of
the “unassigned, multi-mapping group”.

The second approach (although rather theoretical) assigns all multi-mapping reads
uniformly: the same number of reads is assigned to each of the mapping targets (Figure 1B).
While this might not reflect the biological reality, at least it does not favor any particular
instance of a repeat.

The third approach represents a naive allocation of multi-mapping reads that ran-
domly separates reads into one of the “equally good” positions (Figure 1C). This is typically
a default option in many short-read aligners, including bwa [45], bowtie [46], HiSAT [47],
and STAR [48]. In this implementation, multiple runs will yield slightly different results.

The fourth approach represents one of the more sophisticated approaches that aim to
gauge which option is more likely biologically.

Last, reference-free approaches can be applied, such as read clustering. For example,
the authors of [49] attempted to characterize satellites directly from short unassembled reads,
using clustering and visualizations for which they offered biological interpretations [49].

The choice of the multi-mapping strategy can artificially bias read counts related
to specific annotations, yet I believe that the effect sizes of these strategies are largely
unknown in the scientific literature.

3.2. Multi-Mapping Reads in RNA-Seq, Chip-Seq, Hi-C, and Exome Sequencing

For RNA-Seq, the most common pipelines deal with multi-mapping reads as fol-
lows; HTSeq-count and STAR geneCounts ignore them, while Cufflinks can either split
reads equally or use uniquely mapped reads as guidance; the latter option could be prob-
lematic for small noncoding RNAs, especially those located in the introns [50]. For a
comprehensive review on handling multi-mapping reads in RNASeq datasets, see the
work in [50]. In general, it is believed that the expression levels for the genes that contain
multi-mapping reads are underestimated [51]; and that hundreds of genes, many of which
are relevant for human health, could be affected [51]. One solution is to use group-level
expression (for a set of genes) to circumvent the multi-mapping problem [51]. Thus, read
counts could be calculated separately for the input genes and merged genes, as was imple-
mented in the tool mmquant, applying a gene clustering strategy [52]. More sophisticated
approaches involve hierarchical allocation of reads: first resolving ambiguities among
genes, followed by isoforms and individual alleles. A similar approach was implemented
in the software MMSEQ [53] or EMASE (Expectation-Maximization for Allele-Specific
Expression) [54]. Algorithms implementing EM or Expectation-Maximization are impor-
tant for assigning multi-mapping reads in RSEM [55], and for pseudoalignments with
Kallisto/Salmon [56,57]. Instead of mapping reads to a reference, pseudoalignments esti-
mate which transcripts could have generated them. As short sequencing reads still contain
a limited number of sequencing errors, some methods have attempted to extend the array
of possible mapping contexts, thus accounting for these errors, in order to identify the most
likely mapping in RNA-Seq experiments [58].

Analogous approaches have been used for ChIP-seq datasets; when analyzing tran-
scription binding sites, some regions in the genome are known to bind transcription factors
based on the information from the uniquely mapped reads. Thus, one might choose to
distribute multi-mapping reads preferentially to those regions (Figure 1D). Zhang and
colleagues have proposed models that use local concentrations of directional reads and
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account for local genome repetitiveness (using whole-genome read mappability profiles)
while differentiating between adjacent binding sites [59].

The typical pipelines for a chromosome conformation capture, such as Hi-C, filter
out multi-mapping reads, as they are not considered useful for delineating chromatin
interactions. However, this disproportionally affects repetitive parts of the genome, such
as the Y chromosome, where ampliconic regions span as much as almost half and over half
of the male-specific euchromatic proportion in human and chimpanzee, respectively [60].
Ampliconic regions host large inverted repeats, i.e., palindromes, which are then omitted
from traditional pipelines. Using a probabilistic approach implemented in the package
mHi-C [61], Cechova, Vegesna, and colleagues were able to analyze palindromic arms of
human palindromes and found a higher density of chromatin interactions; none of these
regions could be analyzed if multi-mapping reads had been excluded [62].

Last, multi-mapping reads also affect whole-genome and exome sequencing data,
as well as small RNAs [63], where the effect is especially pronounced due to biologically
constrained read lengths, and finally metagenomics, where only subtle differences might
exist between various strains [64].

3.3. Repeat Masking and Its Consequences

Repeat masking refers to a process in which the underlying sequence gets marked as
repetitive (typically with repetitive parts in lowercase letters: soft-masking) or fully sup-
pressed (typically replaced by Ns/Xs: hard-masking). Soft-masking is relevant whenever
the specific part of the sequence is visually inspected (e.g., during primer design or when
examining gaps in the assembly), as a repeat-masked sequence might hint why the given
region was challenging to analyze. In contrast, hard-masking might be advantageous in
specific applications (e.g., the pseudoautosomal region on the chromosome Y is typically
hard-masked). Importantly, masking will not only affect heterochromatic parts of the
human reference genome but also genes and other regulatory sequences that may carry
repeats. In summary, repeat masking (especially hard-masking) will have an effect on all
downstream processes that depend on the read mapping, including, but not limited to,
variant calling, gene expression, and chromatin capture analysis.

3.4. Sex Chromosomes

In order to build a new reference genome, only the homogametic sex is typically
sequenced, as heterogametic sex chromosomes are harder to assemble at any given se-
quencing coverage (there is always fewer data for a given sex chromosome compared to
an autosome) and because chromosomes Y/W tend to be repetitive [65]. The omission of
sex chromosomes is especially prominent in the GWAS studies [66–68]. Sex chromosomes
require special considerations during the mapping process. The reads from chromosomally
male and female individuals will align differently depending on whether the reference
even contains the Y/W chromosome [69]. The tool XYalign can identify XX and XY individ-
uals across different experimental conditions (including low-coverage samples and exome
sequencing), as well as improve variant calling on sex chromosomes [69]. Moreover, X and
Y chromosomes share a pseudoautosomal region, in which homologous sequences have a
high degree of identity and still recombine. Accounting for sex chromosomes can increase
the number of unique genes identified as differentially expressed between the sexes and to
increase expression estimates in the pseudoautosomal region of the X chromosome [70].

4. Long Reads

The biggest promise of long (yet erroneous but see HiFi reads) reads is to span difficult,
repetitive, and heterochromatic regions in the genomes or populations of interest [71–74].
Long reads, especially in combination with other orthogonal technologies enhancing the
assembly contiguity (such as chromatin captures/Hi-C [75] or optical maps [76]), are now
turning near-complete or complete reference genomes into reality [31,32,77]. Additionally,
traditionally difficult regions, such as the Major Histocompatibility Complex (MHC), have
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been recently characterized in detail with PacBio and Nanopore sequencing [73,78–81].
This opens up the possibility to also survey the satellite content, either directly from long
reads [82] or from assemblies/references [83,84]. Hundreds of kilobase pairs in read length
ensure that many repeat arrays are fully encompassed within the sequencing reads. Indeed,
Cechova and colleagues demonstrated that depending on the species, 90–95% and 99%
of abundant repeat arrays were fully nested within individual reads in Nanopore and
PacBio, respectively [19]. Moreover, the intra-repeat array variability was present: among
the 39 most abundant repeats in the great ape genomes, at least 10–25% of all arrays were
composed of a mix of different repeated motifs [19]. Such satellites can either be surveyed
de novo (when the set of repeats in the genome is unknown; this is difficult due to the
intermixing of sequencing errors and rare variants) or by searching for a specific set of
repeats when the presumed errors can be “canceled out”, as was implemented in the
Noise-cancelling repeat finder (NCRF) [82]. Specifically, NCRF can identify long satellite
arrays in Nanopore and PacBio reads, notwithstanding their length or error rate. However,
the variability in such satellite arrays is challenging to capture in standard file formats such
as Variant Call Format (VCF). Comparing VCF files across experiments requires accounting
for both the combination of sequencing errors (potentially shifting starting positions) and
tandem representation of biologically imperfect repeats. Even in the most simple scenario
of small Illumina variants, multiple equivalent representations are possible [85]. The tools
for the reconciliation of long tandem arrays, and their comparisons, are currently being
developed [86]. Satellite arrays inside the existing assemblies/references can be curated,
e.g., with TandemTools, a novel tool for the polishing and quality assessment of extra-long
tandem repeats (ETRs) [87]. Specific long-read mappers can be used to align reads to
highly repetitive reference sequences [88], while accounting for the allele bias (so that
non-reference allele within a repeat does not penalize the alignment) [89]. In summary,
long reads are much better equipped to characterize the variable satellite content and to
assemble and span difficult, repetitive parts of the genome.

4.1. Long-Read Sequencing Strategies

The biggest challenge before fully utilizing long reads is their elevated raw error rate,
previously (2019) reported at 14.90% and 16.10% in PacBio and Nanopore, respectively,
and continuously improving since. The most recent reports suggest 95% (and higher)
accuracy for raw Nanopore reads [90], especially due to the improvements in pore design
and basecalling algorithms. Raw reads can further be used to build consensus, which is the
preferred strategy for PacBio; consensus HiFi reads are both long (>10 kbp), and accurate
(>99.9%) [91,92]. This is because HiFi reads require circularizing of the DNA, so that it can
be read multiple times over to increase accuracy, rendering them an effective technology
for the genome assembly problem (see below).

PacBio and Nanopore differ in their estimates of the repeat copy number and overall
repeat content, even for the same individual [19,83] and also present with a strand bias [83].
The repeat content differs even after sequencing reads are subsampled to the common length
distribution for both technologies, to account for the potential differences in read lengths [19].
The potential explanations include distinct library preparation protocols, DNA damage, DNA
quality (that could potentially decline during prolonged sequencing at room temperature),
and non-canonical DNA structures, as reviewed in [19]. Thus, some of the repeats discovered
using just one technology might not be confirmed in another, and vice versa.

The multi-mapping problem I described for the short reads has in some ways shifted to
larger scales—from arrays spanning a few kilobases we are now able to resolve megabase-
long arrays. However, the sequencing errors still disorient the aligners both in accuracy
and speed [93]. The alignments are bound to contain some “chance” alignments due to a
matching subset of “chance” nucleotides. With the continued progress in basecalling, it is
expected that the error rates will continue to decline, and that additional factors (such as
epigenetic modifications) will be responsible for the ambiguous calls.
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4.2. Differentiating (Nearly) Identical Repeat Arrays

Small variants in otherwise homogeneous repeat arrays are especially useful to aid in
the assembly process and can be used to create a tiling path across repeats. For example,
these distinct unique markers were reported on average every 2.3 kb in the centromeric
satellite array on the X chromosome (DXZ1), with a maximum spacing of 42 kb [32]. Such
spacing makes long reads especially useful in delineating repetitive arrays based on their
unique markers, and assemblers HiCanu [91] and hifiasm [29] capitalize on this property.
However, what if no unique markers are available? Is there a way one could differentiate
between identical sequences of the same origin? What if we could, together with the
sequence information, also capture the epigenetic modifications associated with these
sequencing, and use them to differentiate among otherwise identical sequences to provide
an “epigenetic phasing”? This is now possible with both PacBio and Nanopore, for PacBio
using kinetic profiles (and recording the pausing of the polymerase) [94] and for Nanopore
with electric signals (methylated bases modulate the raw signal) [95]. This can be done
either directly [96–98] or through a base conversion in which a matched modified sample
is created [99,100]. Therefore, unique markers in combination with epigenetic modification
in the long reads are becoming increasingly useful in deciphering long satellite arrays, such
as those in centromeres [32].

4.3. Long-Read Assemblies

Long reads, and especially accurate long reads (e.g., those delivered by the consensus
HiFi reads from Pacific Biosciences, Menlo Park, CA, USA), are critical not only to improve
the assembly quality and contiguity, but also importantly for haplotype phasing (especially
in polyploid and allopolyploid genomes). Highly heterozygous genomes, high repeat
content, and the presence of segmental duplications all add to the challenge. Several recent
algorithms aim to address it. Segmental Duplication Assembler (SDA) [101] enables the
partition of the assembly into distinct paralogs, recovering copy-number-variable paralogs
that are absent from the human reference genome. To aid phasing, one can make use of
the parental genomes (via “trio binning” [102] and derived algorithms). In this approach,
each part of an assembly is partitioned into haplotypes (pre-binning strategy) and each
haplotype is assembled separately with corresponding reads. This is implemented in
HiCanu [91], a modification of the Canu assembler for HiFi reads. In contrast, hifiasm
uses graph-binning strategy, allowing the correction of misassigned reads, and attempt-
ing to resolve all haplotypes, thus consistently delivering larger assembly contiguity [29].
Ultra-long Oxford Nanopore reads are structurally accurate and can be used to anchor
highly accurate assembled HiFi contigs. This strategy was employed to produce a complete
assembly of the human chromosome 8 by the T2T consortium [31]. Other strategies require
no pedigree information for phasing and combine long reads with Hi-C [103] or single-
cell strand sequencing data [104], or make use of several sequencing technologies [105].
Importantly, even if the genome size remains unaffected by the choice of an assembler
or assembly parameters, the gene assembly can still be affected, especially when assem-
bling highly heterozygous genomes [106]. This is due to regional sequence expansions or
collapses in difficult-to-assemble regions [106]. To conclude, perfect haplotype-resolved
assemblies with accurate MHC variants, satellite DNAs, and segmental duplications, all
with complete repeat annotations—are now within reach. Last, I expect that after solving
the heterochromatin and satellite repeats within a single individual, the focus will shift
towards the problem of repeat positioning within pangenomes.

5. Future

A Pan-genome can be defined as a collection of genomic sequences to be analyzed
jointly or to be used as a reference [107]. The incorporation of thousands of individuals into
a single reference will avoid “reference bias”, and mapping reads to such a pan-genome will
improve variant calling, especially in regions with a high density of complex variants [107].
While many of the proposed pan-genome implementations represent genomes as graphs



Genes 2021, 12, 48 9 of 13

with shared and private variants, some of the new approaches have proposed elegant ways
of creating pan-genome graphs while preserving linear coordinates [108]. In the future,
ultra-long accurate reads, coupled with complete reference pan-genomes, will enable the
full understanding of the underlying functional variation hidden in the repetitive parts of
the genome. Until then, the considerations outlined in this review, such as reference choice,
repeat masking, proper representation of sex chromosomes, and appropriately dealing
with multi-mapping reads, will remain essential.
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16. Ugarković, Ð.; Plohl, M. Variation in satellite DNA profiles—Causes and effects. EMBO J. 2002, 21, 5955–5959. [CrossRef]
17. Miga, K.H.; Newton, Y.; Jain, M.; Altemose, N.; Willard, H.F.; Kent, W.J. Centromere reference models for human chromosomes X

and Y satellite arrays. Genome Res. 2014, 24, 697–707. [CrossRef]
18. Wei, K.H.-C.; Grenier, J.K.; Barbash, D.A.; Clark, A.G. Correlated variation and population differentiation in satellite DNA

abundance among lines of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2014, 111, 18793–18798. [CrossRef]

http://doi.org/10.3390/genes11091046
http://www.ncbi.nlm.nih.gov/pubmed/32899740
http://doi.org/10.1038/hdy.2009.165
http://www.ncbi.nlm.nih.gov/pubmed/19935826
http://doi.org/10.1186/s13100-017-0107-y
http://www.ncbi.nlm.nih.gov/pubmed/29308093
http://doi.org/10.1016/j.yexcr.2020.112127
http://doi.org/10.1038/nature13907
http://doi.org/10.1371/journal.pgen.1002384
http://doi.org/10.1038/s41588-020-0671-9
http://doi.org/10.1371/journal.pcbi.1003754
http://doi.org/10.1086/431652
http://doi.org/10.1186/1471-2105-16-S17-S3
http://www.ncbi.nlm.nih.gov/pubmed/26678826
http://doi.org/10.1101/gr.101360.109
http://www.ncbi.nlm.nih.gov/pubmed/20508146
http://doi.org/10.1186/1471-2105-15-2
http://www.ncbi.nlm.nih.gov/pubmed/24386976
http://doi.org/10.3389/fgene.2014.00381
http://www.ncbi.nlm.nih.gov/pubmed/25426137
http://doi.org/10.1186/s12859-019-2620-0
http://doi.org/10.1093/emboj/cdf612
http://doi.org/10.1101/gr.159624.113
http://doi.org/10.1073/pnas.1421951112


Genes 2021, 12, 48 10 of 13

19. Cechova, M.; Harris, R.S.; Tomaszkiewicz, M.; Arbeithuber, B.; Chiaromonte, F.; Makova, K.D. High satellite repeat turnover in
great apes studied with short- and long-read technologies. Mol. Biol. Evol. 2019, 36. [CrossRef]

20. Lower, S.S.; McGurk, M.P.; Clark, A.G.; Barbash, D.A. Satellite DNA evolution: Old ideas, new approaches. Curr. Opin. Genet.
Dev. 2018, 49, 70–78. [CrossRef]

21. Logsdon, G.A.; Gambogi, C.W.; Liskovykh, M.A.; Barrey, E.J.; Larionov, V.; Miga, K.H.; Heun, P.; Black, B.E. Human artificial
chromosomes that bypass centromeric DNA. Cell 2019, 178, 624–639.e19. [CrossRef] [PubMed]

22. Miga, K.H. Centromeric satellite DNAs: Hidden sequence variation in the human population. Genes 2019, 10, 352. [CrossRef]
[PubMed]

23. Schröder, J.; Girirajan, S.; Papenfuss, A.T.; Medvedev, P. Improving the power of structural variation detection by augmenting the
reference. PLoS ONE 2015, 10, e0136771. [CrossRef] [PubMed]

24. Zhao, T.; Duan, Z.; Genchev, G.Z.; Lu, H. Closing human reference genome gaps: Identifying and characterizing gap-closing
sequences. G3 2020, 10, 2801–2809. [CrossRef]

25. Altemose, N.; Miga, K.H.; Maggioni, M.; Willard, H.F. Genomic characterization of large heterochromatic gaps in the human
genome assembly. PLoS Comput. Biol. 2014, 10, e1003628. [CrossRef]

26. Peona, V.; Weissensteiner, M.H.; Suh, A. How complete are “complete” genome assemblies? An avian perspective. Mol. Ecol.
Resour. 2018, 18, 1188–1195. [CrossRef]

27. Salzberg, S.L.; Yorke, J.A. Beware of mis-assembled genomes. Bioinformatics 2005, 21, 4320–4321. [CrossRef]
28. Li, H. Identifying centromeric satellites with dna-brnn. Bioinformatics 2019, 35, 4408–4410. [CrossRef]
29. Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-resolved de novo assembly with phased assembly graphs.

arXiv 2020, arXiv:2008.01237v1.
30. GIS. The (Near) Complete Sequence of a Human Genome. Available online: https://genomeinformatics.github.io/CHM13v1/

(accessed on 25 October 2020).
31. Logsdon, G.A.; Vollger, M.R.; Hsieh, P.; Mao, Y.; Liskovykh, M.A.; Koren, S.; Nurk, S.; Mercuri, L.; Dishuck, P.C.; Rhie, A.; et al.

The structure, function, and evolution of a complete human chromosome 8. bioRxiv 2020. [CrossRef]
32. Miga, K.H.; Koren, S.; Rhie, A.; Vollger, M.R.; Gershman, A.; Bzikadze, A.; Brooks, S.; Howe, E.; Porubsky, D.; Logsdon, G.A.; et al.

Telomere-to-telomere assembly of a complete human X chromosome. Nature 2020, 585, 79–84. [CrossRef] [PubMed]
33. Liu, Y.; Koyutürk, M.; Maxwell, S.; Xiang, M.; Veigl, M.; Cooper, R.S.; Tayo, B.O.; Li, L.; LaFramboise, T.; Wang, Z.; et al.

Discovery of common sequences absent in the human reference genome using pooled samples from next generation sequencing.
BMC Genom. 2014, 15, 685. [CrossRef] [PubMed]

34. Li, R.; Tian, X.; Yang, P.; Fan, Y.; Li, M.; Zheng, H.; Wang, X.; Jiang, Y. Recovery of non-reference sequences missing from the human
reference genome. BMC Genom. 2019, 20, 746. [CrossRef]

35. Sherman, R.M.; Forman, J.; Antonescu, V.; Puiu, D.; Daya, M.; Rafaels, N.; Boorgula, M.P.; Chavan, S.; Vergara, C.; Ortega, V.E.; et al.
Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat. Genet. 2019, 51, 30–35. [CrossRef] [PubMed]

36. Eisfeldt, J.; Mårtensson, G.; Ameur, A.; Nilsson, D.; Lindstrand, A. Discovery of novel sequences in 1.000 Swedish genomes.
Mol. Biol. Evol. 2020, 37, 18–30. [CrossRef] [PubMed]

37. Ameur, A.; Che, H.; Martin, M.; Bunikis, I.; Dahlberg, J.; Höijer, I.; Häggqvist, S.; Vezzi, F.; Nordlund, J.; Olason, P.; et al. De novo
assembly of two Swedish genomes reveals missing segments from the human GRCh38 reference and improves variant calling of
population-scale sequencing data. Genes 2018, 9, 486. [CrossRef]

38. Tian, C.; Gregersen, P.K.; Seldin, M.F. Accounting for ancestry: Population substructure and genome-wide association studies.
Hum. Mol. Genet. 2008, 17, R143–R150. [CrossRef]

39. Martin, A.R.; Kanai, M.; Kamatani, Y.; Okada, Y.; Neale, B.M.; Daly, M.J. Clinical use of current polygenic risk scores may
exacerbate health disparities. Nat. Genet. 2019, 51, 584–591. [CrossRef]

40. Nagasaki, M.; Kuroki, Y.; Shibata, T.F.; Katsuoka, F.; Mimori, T.; Kawai, Y.; Minegishi, N.; Hozawa, A.; Kuriyama, S.; Suzuki, Y.; et al.
Construction of JRG (Japanese reference genome) with single-molecule real-time sequencing. Hum. Genome Var. 2019, 6, 27. [CrossRef]

41. Li, H. Which Human Reference Genome to Use? Available online: https://lh3.github.io/2017/11/13/which-human-reference-
genome-to-use (accessed on 14 October 2020).

42. Song, S.; Huang, Q.; Guo, J.; Li-Ling, J.; Chen, X.; Ma, F. Comparative component analysis of exons with different splicing
frequencies. PLoS ONE 2009, 4, e5387. [CrossRef]

43. Liang, D.; Wilusz, J.E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014, 28, 2233–2247.
[CrossRef] [PubMed]

44. Lozada-Chávez, I.; Stadler, P.F.; Prohaska, S.J. Genome-wide features of introns are evolutionary decoupled among themselves
and from genome size throughout Eukarya. bioRxiv 2018. [CrossRef]

45. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760.
[CrossRef] [PubMed]

46. Langmead, B. Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinform. 2010, 11. [CrossRef] [PubMed]
47. Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12,

357–360. [CrossRef] [PubMed]
48. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast

universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [CrossRef] [PubMed]

http://doi.org/10.1093/molbev/msz156
http://doi.org/10.1016/j.gde.2018.03.003
http://doi.org/10.1016/j.cell.2019.06.006
http://www.ncbi.nlm.nih.gov/pubmed/31348889
http://doi.org/10.3390/genes10050352
http://www.ncbi.nlm.nih.gov/pubmed/31072070
http://doi.org/10.1371/journal.pone.0136771
http://www.ncbi.nlm.nih.gov/pubmed/26322511
http://doi.org/10.1534/g3.120.401280
http://doi.org/10.1371/journal.pcbi.1003628
http://doi.org/10.1111/1755-0998.12933
http://doi.org/10.1093/bioinformatics/bti769
http://doi.org/10.1093/bioinformatics/btz264
https://genomeinformatics.github.io/CHM13v1/
http://doi.org/10.1101/2020.09.08.285395
http://doi.org/10.1038/s41586-020-2547-7
http://www.ncbi.nlm.nih.gov/pubmed/32663838
http://doi.org/10.1186/1471-2164-15-685
http://www.ncbi.nlm.nih.gov/pubmed/25129063
http://doi.org/10.1186/s12864-019-6107-1
http://doi.org/10.1038/s41588-018-0273-y
http://www.ncbi.nlm.nih.gov/pubmed/30455414
http://doi.org/10.1093/molbev/msz176
http://www.ncbi.nlm.nih.gov/pubmed/31560401
http://doi.org/10.3390/genes9100486
http://doi.org/10.1093/hmg/ddn268
http://doi.org/10.1038/s41588-019-0379-x
http://doi.org/10.1038/s41439-019-0057-7
https://lh3.github.io/2017/11/13/which-human-reference-genome-to-use
https://lh3.github.io/2017/11/13/which-human-reference-genome-to-use
http://doi.org/10.1371/journal.pone.0005387
http://doi.org/10.1101/gad.251926.114
http://www.ncbi.nlm.nih.gov/pubmed/25281217
http://doi.org/10.1101/283549
http://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://doi.org/10.1002/0471250953.bi1107s32
http://www.ncbi.nlm.nih.gov/pubmed/21154709
http://doi.org/10.1038/nmeth.3317
http://www.ncbi.nlm.nih.gov/pubmed/25751142
http://doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886


Genes 2021, 12, 48 11 of 13

49. Novák, P.; Ávila Robledillo, L.; Koblížková, A.; Vrbová, I.; Neumann, P.; Macas, J. TAREAN: A computational tool for identification
and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017, 45, e111. [CrossRef]

50. Deschamps-Francoeur, G.; Simoneau, J.; Scott, M.S. Handling multi-mapped reads in RNA-seq. Comput. Struct. Biotechnol. J. 2020,
18, 1569–1576. [CrossRef]

51. Robert, C.; Watson, M. Errors in RNA-Seq quantification affect genes of relevance to human disease. Genome Biol. 2015, 16, 177. [CrossRef]
52. Zytnicki, M. mmquant: How to count multi-mapping reads? BMC Bioinform. 2017, 18, 411. [CrossRef]
53. Turro, E.; Su, S.-Y.; Gonçalves, Â.; Coin, L.J.M.; Richardson, S.; Lewin, A. Haplotype and isoform specific expression estimation

using multi-mapping RNA-seq reads. Genome Biol. 2011, 12, R13. [CrossRef] [PubMed]
54. Raghupathy, N.; Choi, K.; Vincent, M.J.; Beane, G.L.; Sheppard, K.S.; Munger, S.C.; Korstanje, R.; Pardo-Manual de Villena, F.;

Churchill, G.A. Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression. Bioinformatics 2018, 34,
2177–2184. [CrossRef] [PubMed]

55. Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioin-
form. 2011, 12, 323. [CrossRef]

56. Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Erratum: Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol.
2016, 34, 888. [CrossRef]

57. Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript
expression. Nat. Methods 2017, 14, 417–419. [CrossRef]

58. Bonfert, T.; Csaba, G.; Zimmer, R.; Friedel, C.C. A context-based approach to identify the most likely mapping for RNA-seq
experiments. BMC Bioinform. 2012, 13, S9. [CrossRef]

59. Zhang, X.; Robertson, G.; Krzywinski, M.; Ning, K.; Droit, A.; Jones, S.; Gottardo, R. PICS: Probabilistic inference for ChIP-seq.
Biometrics 2011, 67, 151–163. [CrossRef]

60. Hughes, J.F.; Skaletsky, H.; Pyntikova, T.; Graves, T.A.; van Daalen, S.K.M.; Minx, P.J.; Fulton, R.S.; McGrath, S.D.; Locke, D.P.;
Friedman, C.; et al. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature
2010, 463, 536–539. [CrossRef]

61. Zheng, Y.; Ay, F.; Keles, S. Generative modeling of multi-mapping reads with mHi-C advances analysis of Hi-C studies. eLife 2019,
8, e38070. [CrossRef]

62. Cechova, M.; Vegesna, R.; Tomaszkiewicz, M.; Harris, R.S.; Chen, D.; Rangavittal, S.; Medvedev, P.; Makova, K.D. Dynamic
evolution of great ape Y chromosomes. Proc. Natl. Acad. Sci. USA 2020, 117, 26273–26280. [CrossRef]

63. Johnson, N.R.; Yeoh, J.M.; Coruh, C.; Axtell, M.J. Improved placement of multi-mapping small RNAs. G3 2016, 6, 2103–2111.
[CrossRef] [PubMed]

64. Nielsen, H.B.; Almeida, M.; Juncker, A.S.; Rasmussen, S.; Li, J.; Sunagawa, S.; Plichta, D.R.; Gautier, L.; Pedersen, A.G.;
Le Chatelier, E.; et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using
reference genomes. Nat. Biotechnol. 2014, 32, 822–828. [CrossRef] [PubMed]

65. Tomaszkiewicz, M.; Medvedev, P.; Makova, K.D. Y and W chromosome assemblies: Approaches and discoveries. Trends Genet.
2017, 33, 266–282. [CrossRef] [PubMed]

66. Clayton, D.G. Sex chromosomes and genetic association studies. Genome Med. 2009, 1, 110. [CrossRef]
67. Anonymous. Accounting for sex in the genome. Nat. Med. 2017, 23, 1243. [CrossRef]
68. König, I.R.; Loley, C.; Erdmann, J.; Ziegler, A. How to include chromosome X in your genome-wide association study. Genet. Epi-

demiol. 2014, 38, 97–103. [CrossRef]
69. Webster, T.H.; Couse, M.; Grande, B.M.; Karlins, E.; Phung, T.N.; Richmond, P.A.; Whitford, W.; Wilson, M.A. Identifying, understanding,

and correcting technical artifacts on the sex chromosomes in next-generation sequencing data. Gigascience 2019, 8. [CrossRef]
70. Olney, K.C.; Brotman, S.M.; Andrews, J.P.; Valverde-Vesling, V.A.; Wilson, M.A. Reference genome and transcriptome informed

by the sex chromosome complement of the sample increase ability to detect sex differences in gene expression from RNA-Seq
data. Biol. Sex Differ. 2020, 11, 42. [CrossRef]

71. Wick, R.R.; Holt, K.E. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Research 2019, 8,
2138. [CrossRef]

72. Jain, M.; Olsen, H.E.; Turner, D.J.; Stoddart, D.; Bulazel, K.V.; Paten, B.; Haussler, D.; Willard, H.F.; Akeson, M.; Miga, K.H. Linear
assembly of a human Y chromosome centromere. Nat. Biotechnol. 2018, 36, 321. [CrossRef]

73. Jain, M.; Koren, S.; Miga, K.H.; Quick, J.; Rand, A.C.; Sasani, T.A.; Tyson, J.R.; Beggs, A.D.; Dilthey, A.T.; Fiddes, I.T.; et al. Nanopore
sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 2018, 36, 338–345. [CrossRef] [PubMed]

74. Vollger, M.R.; Logsdon, G.A.; Audano, P.A.; Sulovari, A.; Porubsky, D.; Peluso, P.; Wenger, A.M.; Concepcion, G.T.; Kronen-
berg, Z.N.; Munson, K.M.; et al. Improved assembly and variant detection of a haploid human genome using single-molecule,
high-fidelity long reads. Ann. Hum. Genet. 2020, 84, 125–140. [CrossRef] [PubMed]

75. Dudchenko, O.; Batra, S.S.; Omer, A.D.; Nyquist, S.K.; Hoeger, M.; Durand, N.C.; Shamim, M.S.; Machol, I.; Lander, E.S.;
Aiden, A.P.; et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 2017,
356, 92–95. [CrossRef] [PubMed]

76. Howe, K.; Wood, J.M.D. Using optical mapping data for the improvement of vertebrate genome assemblies. GigaScience 2015, 4, 10.
[CrossRef] [PubMed]

http://doi.org/10.1093/nar/gkx257
http://doi.org/10.1016/j.csbj.2020.06.014
http://doi.org/10.1186/s13059-015-0734-x
http://doi.org/10.1186/s12859-017-1816-4
http://doi.org/10.1186/gb-2011-12-2-r13
http://www.ncbi.nlm.nih.gov/pubmed/21310039
http://doi.org/10.1093/bioinformatics/bty078
http://www.ncbi.nlm.nih.gov/pubmed/29444201
http://doi.org/10.1186/1471-2105-12-323
http://doi.org/10.1038/nbt0816-888d
http://doi.org/10.1038/nmeth.4197
http://doi.org/10.1186/1471-2105-13-S6-S9
http://doi.org/10.1111/j.1541-0420.2010.01441.x
http://doi.org/10.1038/nature08700
http://doi.org/10.7554/eLife.38070
http://doi.org/10.1073/pnas.2001749117
http://doi.org/10.1534/g3.116.030452
http://www.ncbi.nlm.nih.gov/pubmed/27175019
http://doi.org/10.1038/nbt.2939
http://www.ncbi.nlm.nih.gov/pubmed/24997787
http://doi.org/10.1016/j.tig.2017.01.008
http://www.ncbi.nlm.nih.gov/pubmed/28236503
http://doi.org/10.1186/gm110
http://doi.org/10.1038/nm.4445
http://doi.org/10.1002/gepi.21782
http://doi.org/10.1093/gigascience/giz074
http://doi.org/10.1186/s13293-020-00312-9
http://doi.org/10.12688/f1000research.21782.1
http://doi.org/10.1038/nbt.4109
http://doi.org/10.1038/nbt.4060
http://www.ncbi.nlm.nih.gov/pubmed/29431738
http://doi.org/10.1111/ahg.12364
http://www.ncbi.nlm.nih.gov/pubmed/31711268
http://doi.org/10.1126/science.aal3327
http://www.ncbi.nlm.nih.gov/pubmed/28336562
http://doi.org/10.1186/s13742-015-0052-y
http://www.ncbi.nlm.nih.gov/pubmed/25789164


Genes 2021, 12, 48 12 of 13

77. Hoang, P.T.N.; Fiebig, A.; Novák, P.; Macas, J.; Cao, H.X.; Stepanenko, A.; Chen, G.; Borisjuk, N.; Scholz, U.; Schubert, I.
Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford
Nanopore libraries. Sci. Rep. 2020, 10, 19230. [CrossRef]

78. Suzuki, S.; Ranade, S.; Osaki, K.; Ito, S.; Shigenari, A.; Ohnuki, Y.; Oka, A.; Masuya, A.; Harting, J.; Baybayan, P.; et al. Reference grade
characterization of polymorphisms in full-length HLA class I and II genes with short-read sequencing on the ION PGM system and
long-reads generated by single molecule, real-time sequencing on the PacBio platform. Front. Immunol. 2018, 9, 2294. [CrossRef]

79. Turner, T.R.; Hayhurst, J.D.; Hayward, D.R.; Bultitude, W.P.; Barker, D.J.; Robinson, J.; Madrigal, J.A.; Mayor, N.P.; Marsh, S.G.E.
Single molecule real-time DNA sequencing of HLA genes at ultra-high resolution from 126 international HLA and immunogenet-
ics workshop cell lines. Hladnikia 2018, 91, 88–101. [CrossRef]

80. Albrecht, V.; Zweiniger, C.; Surendranath, V.; Lang, K.; Schöfl, G.; Dahl, A.; Winkler, S.; Lange, V.; Böhme, I.; Schmidt, A.H. Dual
redundant sequencing strategy: Full-length gene characterisation of 1056 novel and confirmatory HLA alleles. Hladnikia 2017, 90,
79–87. [CrossRef]

81. Chin, C.-S.; Wagner, J.; Zeng, Q.; Garrison, E.; Garg, S.; Fungtammasan, A.; Rautiainen, M.; Aganezov, S.; Kirsche, M.; Zarate, S.; et al.
A diploid assembly-based benchmark for variants in the major histocompatibility complex. Nat. Commun. 2020, 11, 4794. [CrossRef]

82. Harris, R.S.; Cechova, M.; Makova, K.D. Noise-cancelling repeat finder: Uncovering tandem repeats in error-prone long-read
sequencing data. Bioinformatics 2019, 35, 4809–4811. [CrossRef]

83. Mitsuhashi, S.; Frith, M.C.; Mizuguchi, T.; Miyatake, S.; Toyota, T.; Adachi, H.; Oma, Y.; Kino, Y.; Mitsuhashi, H.; Matsumoto, N.
Tandem-genotypes: Robust detection of tandem repeat expansions from long DNA reads. Genome Biol. 2019, 20, 58. [CrossRef] [PubMed]

84. Ummat, A.; Bashir, A. Resolving complex tandem repeats with long reads. Bioinformatics 2014, 30, 3491–3498. [CrossRef] [PubMed]
85. Sun, C.; Medvedev, P. VarMatch: Robust matching of small variant datasets using flexible scoring schemes. Bioinformatics 2017,

33, 1301–1308. [CrossRef] [PubMed]
86. Mousavi, N.; Margoliash, J.; Pusarla, N.; Saini, S.; Yanicky, R.; Gymrek, M. TRTools: A toolkit for genome-wide analysis of tandem

repeats. Bioinformatics 2020. [CrossRef]
87. Mikheenko, A.; Bzikadze, A.V.; Gurevich, A.; Miga, K.H.; Pevzner, P.A. TandemTools: Mapping long reads and assess-

ing/improving assembly quality in extra-long tandem repeats. Bioinformatics 2020, 36, i75–i83. [CrossRef]
88. Jain, C.; Rhie, A.; Zhang, H.; Chu, C.; Walenz, B.P.; Koren, S.; Phillippy, A.M. Weighted minimizer sampling improves long read

mapping. Bioinformatics 2020, 36, i111–i118. [CrossRef]
89. Jain, C.; Rhie, A.; Hansen, N.; Koren, S.; Phillippy, A.M. A long read mapping method for highly repetitive reference sequences.

Cold Spring Harb. Lab. 2020, 2020, 363887.
90. Nanopore Technologies. R10.3: The Newest Nanopore for High Accuracy Nanopore Sequencing. Available online: https://

nanoporetech.com/about-us/news/r103-newest-nanopore-high-accuracy-nanopore-sequencing-now-available-store (accessed
on 5 November 2020).

91. Nurk, S.; Walenz, B.P.; Rhie, A.; Vollger, M.R.; Logsdon, G.A.; Grothe, R.; Miga, K.H.; Eichler, E.E.; Phillippy, A.M.; Koren, S.
HiCanu: Accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res.
2020, 30, 1291–1305. [CrossRef]

92. Wenger, A.M.; Peluso, P.; Rowell, W.J.; Chang, P.-C.; Hall, R.J.; Concepcion, G.T.; Ebler, J.; Fungtammasan, A.; Kolesnikov, A.;
Olson, N.D.; et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human
genome. Nat. Biotechnol. 2019, 37, 1155–1162. [CrossRef]

93. Salari, F.; Zare-Mirakabad, F.; Sadeghi, M.; Rokni-Zadeh, H. Assessing the impact of exact reads on reducing the error rate of read
mapping. BMC Bioinform. 2018, 19, 406. [CrossRef]

94. Mondo, S.J.; Dannebaum, R.O.; Kuo, R.C.; Louie, K.B.; Bewick, A.J.; LaButti, K.; Haridas, S.; Kuo, A.; Salamov, A.; Ahrendt, S.R.; et al.
Widespread adenine N6-methylation of active genes in fungi. Nat. Genet. 2017, 49, 964–968. [CrossRef] [PubMed]

95. Ding, H.; Bailey, A.D.; Jain, M.; Olsen, H.; Paten, B. Gaussian mixture model-based unsupervised nucleotide modification number
detection using nanopore-sequencing readouts. Bioinformatics 2020, 8, 4928–4934. [CrossRef] [PubMed]

96. Beaulaurier, J.; Zhu, S.; Deikus, G.; Mogno, I.; Zhang, X.-S.; Davis-Richardson, A.; Canepa, R.; Triplett, E.W.; Faith, J.J.;
Sebra, R.; et al. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat.
Biotechnol. 2018, 36, 61–69. [CrossRef] [PubMed]

97. Schatz, M.C. Nanopore sequencing meets epigenetics. Nat. Methods 2017, 14, 347–348. [CrossRef] [PubMed]
98. Schreiber, J.; Wescoe, Z.L.; Abu-Shumays, R.; Vivian, J.T.; Baatar, B.; Karplus, K.; Akeson, M. Error rates for nanopore discrimina-

tion among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proc. Natl. Acad. Sci. USA
2013, 110, 18910–18915. [CrossRef] [PubMed]
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