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Abstract

Transport and Spectral Functions in Low-dimensional Quantum Spin Systems

by

Nicholas E. Sherman

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel E. Moore, Chair

Non-equilibrium properties of quantum materials are examined in low-dimensional systems using
matrix product state (MPS) simulations. The spectral function known as the dynamical structure
factor, which is directly observed in neutron scattering experiments, is studied for two classes
of novel quantum systems. First, recent work has demonstrated that the Heisenberg spin chain
exhibits anomalous super-diffusive transport at infinite temperature called Kardar-Parisi-Zhang
(KPZ) hydrodynamics. Here, it is demonstrated that signatures of KPZ physics are present in
the low-energy spectrum at experimentally relevant temperatures, and this has been detected in
KCuF3 with neutron scattering. The crossover from the ground state physics described by the
Tomonaga-Luttinger liquid theory to KPZ hydrodynamics at high temperatures is explored.

Second, the spectral function of the 𝐽1 − 𝐽2 Heisenberg model is studied using MPS simulations.
Signatures for the three primary classes of quantum spin liquid (QSL) states in the spectral function
are discussed. Our findings point to a U(1) Dirac spin liquid ground state in this model. The calcu-
lated spectrum is then compared with the triangluar lattice compounds KYbSe2 and YbZn2GaO5.
We find that KYbSe2 is well modelled by the 𝐽1 − 𝐽2 Heisenberg model in close proximity to the
QSL phase. Additionally, we find that the QSL phase of the 𝐽1 − 𝐽2 Heisenberg model captures the
essential features of the YbZn2GaO5, suggesting a realization of a Dirac spin liquid in this material.

Lastly, the effect of using an MPS to study quantum dynamics is explored. Using an MPS places a
restriction on the entanglement in the system, and we study how this modifies time dynamics in a
Kibble-Zurek process. We derive that the effect of finite entanglement on a Kibble-Zurek process
is captured by a dimensionless scaling function of the ratio of two length scales, one determined
dynamically and one by the entanglement restriction. This result is verified numerically in the
transverse field Ising model and the 3-state Potts model.
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4.4 Results for the nearest-neighbor antiferromagnetic Heisenberg model on the triangular
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shown in blue, and the dispersion relation and velocity from linear SWT in green [63].
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maximum intensity 𝑆max to view all three points on the same axis. For both the static
structure factor and the dispersion relation, we restore the 6-fold rotational symmetry
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similar path and color map as Fig. 4 in Ref. [74] for easy comparison. The maximum
intensity using Eq. (4.19) is shown in d). Lastly, we show the frequency dependence of
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with [2 = 0.02. The first and third rows show the spectral function, and the second
and last row show low frequency cuts of the spectral function. The cuts are obtained
by integrating the frequency from 0 to 0.1, and then normalize so that the maximum
intensity is 1. The black line is just to help with visualizing the data points in red. . . . 90



x

4.8 Crystal structure and phase diagram of KYbSe2. Panel a shows the crystal struc-
ture with a side view of the stacked triangular layers and a top view showing the
Yb3+ triangular lattice mediated by Se2− ions. Panel b shows a schematic phase di-
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intermediate QSL phase [434, 163, 175, 299, 389, 124, 161]. Near the quantum critical
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are on the left column, and calculated spin wave theory (SWT) are on the right column.
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4.11 Crystal structure and magnetic susceptibility a. Crystal structure of YbZn2GaO5 ;
Yb-O planes are well separated by non-magnetic Zn-O, Ga-O, and Zn-O layers along
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4.12 Line cut along high-symmetry points and theoretical calculation with different
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Chapter 1

Introduction

The development of Quantum Mechanics was a real quantum leap in our conception of the physical
world. Beyond the serious philosophical difficulties of the theory, such as the indeterministic nature
of physics, the theory demonstrates that there is a vibrant microscopic world that is governed by
seemingly completely separate laws of physics. Particles behave differently if you look at them
or if you do not, they can act as though they are in multiple places at once, and particles can be
correlated over even immense distances between them through quantum entanglement. This raises
the question of why is the macroscopic world around us so "normal" if the quantum world is so
"weird".

One key theme in condensed matter physics is the idea of emergence, and understanding how
the world around us emerges from a microscopic picture in terms of atoms. Prior to quantum
mechanics, there were successful classical theories, such as thermodynamics and hydrodynamics,
describing systems with many particles. Forming a bridge between these macroscopic theories,
and the microscopic theory of quantum mechanics, has been a major effort in modern physics.
This bridge has been difficult to form due to the complexity of the microscopic description of the
physical world. A typical chunk of material that can fit in your hand has on the order of ∼ 1023

atoms, which is essentially impossible to describe exactly.
To understand how complex the macroscopic world is, let us look at spin systems, which will

be the focus of this work, and is also among the simplest quantum systems. If we have a spin−1/2
particle, then the spin degree of freedom has a local Hilbert space of dimension 2. If we have 𝑁
such particles in our system, then the Hilbert space dimension is exponentially large and given
by 𝑑 = 2𝑁 . If we want to represent a generic state in a system with 30 spins on a computer, this
would require roughly 8 Gb of storage. Each additional spin added to the system will double this
requirement, exceeding the storage possible on even the worlds largest computers with only 40 or so
spins. This is only to store the state of the system, but we often wish to calculate quantities such as
the energy, which requires a Hamiltonian with 𝑑2 elements. If the full spectrum of the Hamiltonian
is needed, such as when looking at dynamical systems, the number of operations needed scales as
𝑑3. Given that a real material has 𝑁 ∼ 1023 particles, an exact description is virtually hopeless.

What is surprising is that the macroscopic world often has a much simpler description. For
example if we are looking at a gas of particles at equilibrium, then we only need to know a small
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number of properties about the system, such as the pressure, temperature, and volume, to fully
specify the thermodynamic properties of the system. Or in hydrodynamics, we can treat the fluid
as a continuum, and keeping track of a small number of local densities is sufficient. One goal of
this thesis, and condensed matter theory broadly, is to understand how these simple descriptions
emerge from the complicated quantum mechanical description. A second goal, and perhaps a more
interesting goal, is to identify what new materials can we predict or understand because of such a
quantum mechanical understanding. These materials are often called quantum materials, as they
require quantum mechanics to understand their behaviors. An example of a quantum material is a
superconductor, which the Bardeen–Cooper–Schrieffer (BCS) theory explains by the condensation
of Cooper pairs [19], a mechanism with no classical analog.

To bridge the microscopic and macroscopic worlds, we need a way to propose a microscopic
model, and produce a macroscopic observable. One way to do this is to make approximations, that
hopefully preserve the essential physical features of the material, that simplify the theory enough
to perform calculations. The concept of universality is useful to this end, where certain quantities
have features that are identical for large classes of systems. For example, the phase diagram for the
transition between a paramagnet and a ferromagnet, tuned by the temperature 𝑇 , is identical for
every ferromagnetic material. Specifically, near the transition temperature 𝑇𝑐, the magnetization 𝑀
scales as

|𝑀 | ∼ |𝑇 − 𝑇𝑐 |𝛼, (1.1)

and 𝛼 is the same for every material with this phase transition. Therefore if we are interested in
a universal quantity, such as the critical exponent 𝛼, then any model with this phase transition is
sufficient, no matter how simple or complicated it is. Not every quantity of interest is universal
though, or if it is, we do not always know a simple model that enables us to extract such information
analytically.

In recent years, the use of numerical simulations has become a power-house in connecting theory
and experiment, and is the primary technique used in this thesis. To overcome the exponential wall
of complexity, clever techniques have been developed to either recast the problem into a different
framework that requires less parameters, or to perform minimal approximations that do not lose
essential features of the microscopic model. For example, certain classes of states permit efficient
representations even though representing a generic state requires an exponentially large amount
of memory. Ground states, for example, are often states that have low-entanglement, and a matrix
product state (MPS) is an ansatz that can efficiently represent low-entangled states. Matrix product
states are the primary tool used in this thesis, and are discussed at length in Chapter 2.

The focus of this thesis is on studying quantum materials, and specifically identifying experi-
mentally relevant signatures of these exotic states. I focus on MPS simulations, mostly to calculate
spin spectral functions, which are directly probable with neutron scattering experiments. There are
two classes of quantum systems I look at in this work. First, a one-dimensional quantum magnet that
exhibits an anomalous spin transport that is super-diffusive, known as Kardar-Parisi-Zhang (KPZ)
hydrodynamics. Secondly, I look at quantum spin liquids (QSL), which have a lack of long-range
order even down to 𝑇 = 0, and posses exotic quasi-particle excitations such as magnetic monopoles,
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or anyons1. Lastly, I examine the effect that MPS simulations, and specifically the entanglement
restrictions imposed by the ansatz, has on the dynamics of systems near criticality.

In the remainder of this chapter, I will provide a very brief introduction to hydrodynamics and
the KPZ universality class, as well as quantum spin liquids. Then, I will briefly discuss neutron
scattering experiments, and how to compare them with theoretical calculations of spectral functions.
I will end this chapter with an outline for the remainder of this thesis.

1.1 Hydrodynamics in Spin Systems

1.1.1 Classical Hydrodynamics
From a classical perspective, we can view hydrodynamics as a course-grained description of
Newton’s laws for the dynamics of many interacting point-like particles. Generically, if we write
Newton’s Laws down for N particles, then the equation for the 𝑛thparticle would take the form

𝑚𝑛 ¥𝑥𝑛 =
∑︁
𝑖≠𝑛

𝐹𝑛𝑖 (𝑥𝑛, 𝑥𝑖) + 𝐹ext (1.2)

Where the left hand side is the mass and acceleration of the 𝑛thparticle, and the right is the
interaction between all other particles, and possibly also some external forces such as gravity, or
electromagnetic fields. On our scale, a hydrodynamical system would have 𝑁 ∼ 1023 particles,
making this approach hopeless.

What Hydrodynamics effectively provides is a simplification of Newton’s laws in the appropriate
limits. One key insight is that systems tend towards a state of equilibrium, where on average,
observables become constant in time. So, if we knock a system out of equilibrium at 𝑡 = 0, it will
eventually return to equilibrium, although possibly a different state than where it started. Initially,
the system will experience transient behavior, and then it sets into a hydrodynamical regime after
a time 𝜏, as it flows to equilibrium at 𝑡 = ∞. A cartoon of this behavior is shown in Fig. 1.1.

This time scale 𝜏 that separates transient dynamics and hydrodynamics is characterized by
the relaxation time of observables that are not conserved. Generic quantities will relax back to
equilibrium quickly, where conserved quantities are constrained, and have a longer relaxation time.
Hydrodynamics is about discussing the flow of such conserved quantities. In classical hydrodynam-
ics, there are typically three conserved quantities, the energy 𝐸 , the momentum 𝑃, and the particle
number 𝑁 .

In the continuum limit, for any extensive quantity 𝑄, we can define a local density 𝜌, such that

𝑄(𝑡) =
∫

𝑑𝑥𝜌(𝑥, 𝑡) (1.3)

If 𝑄 is conserved, then even though 𝜌 is time dependent, 𝑄 is not. The continuity equation states
that for a conserved quantity,

𝜕

𝜕𝑡
𝜌𝑖 (𝑥, 𝑡) = −∇ · 𝐽𝑖 (𝑥, 𝑡) (1.4)

1Anyons are particles with exchange statistics that are neither fermionic nor bosonic.
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Figure 1.1: A depiction of how a system that is knocked out of equilibrium relaxes back to
equilibrium.

Where 𝐽 is a current density, and the index 𝑖 labels one of a collection of conserved quantities {𝜌𝑖}.
The continuity equation alone is not sufficient to solve for the densities, and additional information
relating the densities back to the currents is needed.

A common way to close Eq. (1.4) is to assume that the conserved quantities are independent,
and that they satisfy Fick’s First Law [107]

𝐽 = −𝐷∇𝜌. (1.5)

For simplicity, let us look at the particle number 𝑁 with density 𝑛(𝑥, 𝑡) in only one dimension. This
gives rise to the diffusion equation

𝜕

𝜕𝑡
𝑛(𝑥, 𝑡) − 𝐷 𝜕2

𝜕𝑥2𝑛(𝑥, 𝑡) = 0 (1.6)

If we assume that all 𝑁 particles start at the origin, i.e. 𝑛(𝑥, 𝑡 = 0) = 𝑁𝛿(𝑥), then the solution is
given by

𝑛(𝑥, 𝑡) = 𝑁√
4𝜋𝐷𝑡

exp
(
− 𝑥2

4𝐷𝑡

)
. (1.7)

If we look at the form of Eq. (1.7), there is a particular structure that will be useful later. Note
that we can write

𝑛(𝑥, 𝑡) ∼ 𝑡−1/2 𝑓Gaussian(𝑥𝑡−1/2). (1.8)
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This is a universal scaling relation for the diffusion universality class. Diffusion describes a wide
range of systems from how heat flows through a material, to how electrons flow through a conducting
wire, as well as random walk processes. All systems exhibiting diffusive transport have a local
density that takes the form of Eq. (1.8). What this means is if we could somehow gain access
to 𝑛(𝑥, 𝑡), and it scaled as Eq. (1.8), then we can say that the transport is diffusive. This will be
helpful in the quantum case, as we do not have direct access to the simplified macroscopic transport
equations.

1.1.2 Spin Transport
The universal nature of the diffusion equation suggests that we would also anticipate diffusive
transport to emerge from a quantum mechanical perspective. In the quantum mechanical case, an
observable O evolves via

𝜕

𝜕𝑡
O =

𝑖

ℏ
[𝐻,O] + 𝜕O

𝜕𝑡
(1.9)

Where ℏ is Planck’s constant (which is likely to be set to 1 most places), and 𝐻 is the Hamiltonian
for the system. For simplicity, let us look at a spin chain, governed by the Heisenberg Hamiltonian

𝐻 = 𝐽
∑︁
𝑛

®𝑆𝑛 · ®𝑆𝑛+1. (1.10)

The magnetization is a conserved quantity of this Hamiltonian, defined by

𝑀 𝑧 (𝑡) =
∑︁
𝑥

⟨𝑆𝑧𝑥 (𝑡)⟩. (1.11)

Through analogy with the diffusion example, we can say that ⟨𝑆𝑧𝑥 (𝑡)⟩ plays the role of the local
density. This quantity in fact has trivial time-dependence, and so we examine density-density
correlations instead. Classically, we would look at

𝐶 (𝑥, 𝑡) = 𝜌(𝑥, 𝑡)𝜌(0, 0), (1.12)

which has the same scaling behavior as the density itself. The quantum analog is a two-point
correlation function of the form

𝐺 (𝑥, 𝑡) = ⟨𝑆𝑧𝑥 (𝑡)𝑆𝑧0(0)⟩. (1.13)

To test for the emergence of diffusive transport, we can examine the long-time and long-distance
behavior of this correlation function. In particular, if

𝐺 (𝑥, 𝑡) ?∼ 𝑡−1/2 𝑓Gaussian(𝑥𝑡−1/2) (1.14)

then this would be evidence of diffusive spin transport.
More generally, hydrodynamical scaling of the two-point correlation function would look like

𝐺 (𝑥, 𝑡) ∼ 𝑡−1/𝑧 𝑓𝑧 (𝑥𝑡−1/𝑧), (1.15)
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where 𝑧 is called the dynamical critical exponent, and 𝑓𝑧 is some universal function that does not
depend on the microcsopic details. This expression serves as a test for the emergence of a simplified
hydrodynamical description in quantum spin systems.

We can also examine the Fourier transform, called the dynamical structure factor

𝑆(𝑞, 𝜔) = 1
𝑁

∑︁
𝑥

∫
𝑑𝑡

2𝜋
𝑒𝑖(𝑞𝑥−𝜔𝑡)𝐺 (𝑥, 𝑡). (1.16)

Combining Eq. (1.15) and (1.16), the scaling form of 𝑆(𝑞, 𝜔) is given by

𝑆(𝑞, 𝜔) ∼ 𝑞−𝑧 𝑓𝑧 (𝜔𝑞−𝑧), (1.17)

where 𝑓𝑧 is the Fourier transform of 𝑓𝑧. The dynamical structure factor is directly probed with
neutron scattering experiments, enabling experimental validation of emergent spin hydrodynamics
as well (see Sec. 1.3 for more details).

1.1.3 Kardar-Parisi-Zhang Hydrodynamics
Here I will briefly discuss the Kardar-Parisi-Zhang (KPZ) Equation. This equation originated as a
model for the evolution of the profile of a growing interface [190], and takes the form,

𝜕𝑡ℎ(𝑥, 𝑡) − 𝐷∇2ℎ(𝑥, 𝑡) = _
2
(∇ℎ(𝑥, 𝑡))2 + [(𝑥, 𝑡). (1.18)

Here, ℎ(𝑥, 𝑡) is the height of the growing interface, and [(𝑥, 𝑡) is a stochastic noise term satisfying

⟨[(𝑥, 𝑡)[(𝑥′, 𝑡′)⟩ ∝ 𝛿(𝑥 − 𝑥′)𝛿(𝑡 − 𝑡′). (1.19)

Note that the left hand side of the KPZ equation is just the diffusion equation, and the additional terms
are the simplest non-linearity, and a noise term. Beyond the original system of a growing interface,
KPZ dynamics has been found in a wide range of systems from disordered conductors [343],
quantum fluids [203], quantum circuits [252], and traffic flow [122], and was recently predicted
also to appear in the high-temperature dynamics of some one-dimensional integrable quantum
magnets [229, 80, 92, 83]. In particular, it was observed in Ref. [229] that in the Heisenberg
Hamiltonian of Eq. (1.10), at infinite temperature that

𝐺 (𝑥, 𝑡) ∼ 𝑡−2/3 𝑓KPZ(𝑥𝑡−2/3) (1.20)

where 𝑓KPZ is the scaling function for the KPZ universality class which is known numerically
[280]. From the numerical result, it is possible to calculate the KPZ scaling function expected
for the dynamical structure factor 𝑆(𝑞, 𝜔) via Fourier transformation. This then enables a direct
method to look for KPZ hydrodynamics using neutron scattering experiments. I will discuss this
further in Chapter 3.
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a) b)

Figure 1.2: a) Picture of a triangle in the triangular lattice showing geometric frustration. b) Picture
of the resonating valence bond solid introduced by Phil Anderson [14].

1.2 Quantum Spin Liquids
It is quite difficult to give a precise definition of a quantum spin liquid (QSL), but loosely it is a
system that has strong correlations between the spins of a system, yet does not exhibit long range
order, even down to 𝑇 = 0. This definition makes it difficult to identify such phases, as it only tells
us what the spins do not do. Rather than trying to be very precise in the definition, I will discuss
some of the important features of many QSL states, and why these states are quite exotic and a
vibrant area of research.

The literature on QSLs dates back to the 1970s, with Phil Anderson’s work looking at the
antiferromagnetic Heisenberg model on the triangular lattice [14]. The Hamiltonian is given by

𝐻 = 𝐽
∑︁
⟨𝑖, 𝑗⟩

®𝑆𝑖 · ®𝑆 𝑗 , (1.21)

where the sum runs over all nearest neighbor pairs on the triangular lattice. This model has geometric
frustration, meaning the terms in the Hamiltonian can not all be satisfied simultaneously. Since the
coupling is anti-ferromagnetic, neighboring spins want to be anti-parallel. As shown in Fig. 1.2 a),
once two spins are fixed to be anti-parallel, then either orientation of the third spin will frustrate
one of the bonds.

Due to the frustration, Anderson proposed that the ground state was a resonating valence bond
(RVB) state, where the ground state is a super-position over all possible dimer-coverings in the
lattice [14]. A cartoon of the RVB state is shown in Fig. 1.2 b). This state would be an example
of a QSL, as the ground state lacks long range order, due to quantum fluctuations. In particular,
the massive super-position present in such a state is one of the hallmarks of a QSL state, which
corresponds to an anomalously large degree of entanglement [305].

After further investigations over a few decades, it has been shown that the ground state of Eq.
(1.21) does in fact order, and is not the RVB state discussed by Anderson [167, 188, 338, 66, 27, 52,
430, 387]. A modification to Eq. (1.21), adding a second-neighbor interaction, does in fact possess
a QSL ground state [434, 163, 174, 299, 389, 124, 160]. The exact nature of the ground state of
this model is still an open question, and this will be a large focus of Chapter 4.
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Figure 1.3: Image displaying the terms in the toric code Hamiltonian given by Eq. (1.22).

1.2.1 Toric Code and Anyons
A different, but relatively simple model known as the toric code model, does in fact possess a QSL
ground state that is known analytically [198]. The Hamiltonian is given by

𝐻tc = −
∑︁
𝑣

𝐴𝑣 −
∑︁
𝑝

𝐵𝑝 (1.22)

𝐴𝑣 =
∏
𝑛∼𝑣

𝜎𝑥𝑛 ; 𝐵𝑝 =
∏
𝑛∼𝑝

𝜎𝑧𝑛 . (1.23)

The degrees of freedom lie on the edges of a square lattice, 𝐴𝑣 is a product of 𝜎𝑥 on the edges
touching vertex 𝑣, and 𝐵𝑝 is a product of 𝜎𝑧 over the edges on the boundary of the plaquette 𝑝. A
picture is shown in Fig. 1.3 demonstrating these terms.

The full spectrum of this model is known exactly, and the ground state is known as a gapped
Z2 QSL. In particular, the ground state is given by

|Ω⟩ =
∏
𝑣

(
1 + 𝐴𝑣

2

)
|↑ · · · ↑⟩𝑧 . (1.24)

To understand this state, first consider a ferromagnetic state |↑ · · · ↑⟩𝑧. The action of 𝐴𝑣 on such a
state is to flip all spins connected to the vertex 𝑣, creating a star pattern of flipped spins. The state
in Eq. (1.24) is thus a massive super-position over all combinations of having stars of flipped spins
at each vertex or not. This structure is reminiscent of the RVB state proposed by Anderson [14],
and is a hallmark of QSL states.

There are two types of quasi-particle excitations in the toric code, call them 𝜖 and ` particles,
know as anyons. Anyons have exchange statistics that fall outside of the fermion-boson paradigm,
and can be utilized for quantum-information processing [38, 363]. This is an example of fraction-
alization which is another key aspect of QSL states. If you consider a bound state of an 𝜖 and a `
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state, this is in fact a fermionic particle. So you can think of the excitations as a result of a fermion
fractionalizing into two anyons. Another example of fractionalization is the idea of spin-charge
separation [364, 232, 141], where in particular materials, the electron ’splits’ into a chargeless
spin-1/2 spinon, and a spinless charged chargon.

1.2.2 Classification of Quantum Spin Liquids
Quantum spin liquids are quite exotic states, often possessing massive super-positions in the ground
state, and fractionalized quasi-particle excitations. There are three main categories of QSL states that
are distinguished by the low-energy physics. The broad idea is that we start with some Hamiltonian
for the spin degrees of freedom, but the low-energy physics is governed by a gauge-theory with
both matter and gauge fields, similar to quantum electrodynamics (QED). To see how this may be
possible, we look at the parton construction, which is an exact mapping between spin opertors and
fermions [305]. This mapping is given by

𝑆𝑖 =
1
2
𝑓 †𝛼𝜎

𝑖
𝛼𝛽 𝑓𝛽, 𝑓 †𝛼 𝑓𝛼 = 1, (1.25)

where 𝜎𝑖 is the 𝑖thPauli matrix, the indices 𝛼, 𝛽 run over the spin orientations ↑, ↓, and repeated
indices are summed over. This mapping is also possible with bosons rather than fermions, and takes
the same form. We note that the local Hilbert space for the spin system has dimension two, but the
fermion Hilbert space has dimension four, as there are two fermions corresponding to ↑ and ↓. To
make this exact, we must also include the half-filling constraint in Eq. (1.25).

Note that this mapping has a redundancy in terms of the fermion operators called spinons. In
particular, the transformation

𝑓𝛼 −→ 𝑒𝑖𝜙 𝑓𝛼 (1.26)
𝑓 †𝛼 −→ 𝑒−𝑖𝜙 𝑓𝛼 (1.27)

leaves the spin operator invariant. This is a𝑈 (1) redundancy, and if we fix 𝜙 = ±𝜋, then we would
have a Z2 redundancy. We can upgrade this redundancy to a gauge symmetry of the underlying
theory, and couple the fermions to a gauge field obeying the symmetry. This leads to three distinct
classes of QSLs, defined by the gauge symmetry. The first two are Z2, and 𝑈 (1) QSLs. The Z2
QSL is said to be "toric code like", while the 𝑈 (1) QSL is said to be "QED like". The last option
is to have only matter fields, and no gauge field at all. This theory is described by fermions with
a half-filling constraint, which is "metal like". This often leads to a fermi-surface for the spinons,
and this state is called a spinon fermi surface (SFS) state.

1.3 Neutron Scattering and Spectral Functions
Since neutrons are chargeless particles, they are quite insensitive to the electronic structure of
the material. However, since neutrons carry spin, they interact with the atomic nuclei, and probe
the magnetic properties of the material. This makes neutron scattering an excellent probe of the
magnetic excitations of a material.
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In a neutron scattering experiment, a neutron with a fixed wavevector is scattered off of a
material, and a detector on the other side of the material captures where the scattered neutron ends
up. After scattering many neutrons with different wavevectors, an interference pattern forms, which
encodes properties of the magnetic structure of the material in question.

Mathematically, we start with an incident neutron with wavevector k𝑖, that scatters off a material,
producing a neutron with a final wavevector k 𝑓 . Due to this, there is a momentum q = ℏk𝑖 − ℏk 𝑓

transferred to the material. The energy difference between the incoming and outgoing neutron is
ℏ𝜔. I will set ℏ = 1 in the remainder of this discussion.

The neutron scattering cross-section is directly probed by the dynamical structure factor
𝑆(q, 𝜔)[366, 353, 350]. For a spin system with 𝑁 lattice sites, the dynamical structure factor
is defined as

𝑆
(
𝒒, 𝜔

)
=

1
𝑁

∑︁
𝒙

∫ +∞

0

d𝑡
2𝜋
𝑒𝑖(𝜔𝑡−𝒒·𝒙)𝐺

(
𝒙, 𝑡

)
, (1.28)

where x denotes the location of a site in the lattice, and 𝐺
(
𝒙, 𝑡

)
is a two-point spin-spin correlation

function. In particular, we define

𝐺 (x, 𝑡) = ⟨Sx(𝑡) · S0(0)⟩ (1.29)

Where Sx is the operator valued spin-vector at site x, and ⟨·⟩ denotes the thermal expectation value.
The dot product of the spin operators in Eq. (1.29) produces a sum of multiple terms, so we will
define

𝐺𝛼𝛽 (𝒙, 𝑡) = ⟨𝑆𝛼x (𝑡)𝑆𝛽0 (0)⟩ (1.30)
where 𝑆𝛼x is the 𝛼 component of the spin operator at the site x. We allow 𝛼, 𝛽 to be different, as
using spin raising and lowering operators 𝑆+, 𝑆− is often advantageous. Let us also define 𝑆𝛼𝛽 (q, 𝜔)
in terms of 𝐺𝛼𝛽 (x, 𝑡).

The thermal expectation value of the operator O is defined as

⟨O⟩ := Tr
[
𝑒−𝐻/𝑘𝑏𝑇O

]
/𝑍 , 𝑍 = Tr

[
𝑒−𝐻/𝑘𝑏𝑇

]
(1.31)

where 𝐻 is the Hamiltonian for the system, and 𝑇 is the temperature. Often we examine this
expecation value at 𝑇 = 0, which is equivalent to calculating the expectation value in the ground
state of 𝐻. Lastly, the time dependence in Eq. (1.30) is interpreted in the Heisenberg picture as

O(𝑡) = 𝑒𝑖𝐻𝑡O𝑒−𝑖𝐻𝑡 . (1.32)

If we have access to the full spectrum of 𝐻, with eigenvectors |𝑛⟩ and eigenvalues 𝐸𝑛, then we
can write

𝑆𝛼𝛽 (q, 𝜔) =
∑︁
𝑛,𝑚

𝑒−𝐸𝑛/𝑘𝑏𝑇

𝑍
⟨𝑛|𝑆𝛼−q |𝑚⟩⟨𝑚 |𝑆𝛽q |𝑛⟩ 𝛿(𝜔 − [𝐸𝑛 − 𝐸𝑚]), (1.33)

with
𝑆𝛼q =

1
𝑁

∑︁
x
𝑒𝑖q·x𝑆𝛼x . (1.34)
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To gain some intuition about the dynamical structure factor, let us explore further the structure
of Eq. (1.33). For simplicity, let us look at the 𝑇 = 0 spectral function, which yields

𝑆𝛼𝛽 (q, 𝜔) =
∑︁
𝑚

[⟨Ω|𝑆𝛼−q |𝑚⟩⟨𝑚 |𝑆𝛽q |Ω⟩] 𝛿(𝜔 − [𝐸0 − 𝐸𝑚]), (1.35)

where |Ω⟩ is the ground state of 𝐻. This expression consists of two terms. First, the delta function
is a density of states type term, and the term in brackets is a selection rule term. If the selection
rule term were not present, then this quantity would count the number of energy eigenstates with
an energy 𝜔 above the ground state. The term in brackets imposes an additional constraint, to only
look for states with a particular form. For example, if we consider a ferromagnetic ground state
|Ω⟩ = |↓ · · · ↓⟩, and take 𝛼 = 𝛽 = 𝑥, then the bracketed term takes the form

⟨Ω|𝑆𝑥−q |𝑚⟩⟨𝑚 |𝑆𝑥q |Ω⟩ (1.36)

This term is only non-zero if the state |𝑚⟩ is of the form

|𝑚(q)⟩ = 1√
𝑁

∑︁
𝑥

𝑒𝑖q·x𝑆+𝑥 | ↓ · · · ↓⟩. (1.37)

Such a state is a spin-wave state in the one-magnon sector. Treating a magnon as a quasi-particle,
created by a spin flip in a ferromagnetic background, then this state represents a single magnon
with a momentum q. Looking at Eq. (1.35), we then see that the dynamical structure factor in
this example is non-zero when there is a magnon eigenstate with energy 𝜔 and momentum q.
Therefore, 𝑆(q, 𝜔) is probing the dispersion relation 𝜔(q) of the magnon excitations in the system.
This intuition is useful for more complicated systems as well.

In a real material with interactions, these spin-wave excitations are not exact eigenstates, and this
will lead to more broad spectral features, and a continuum at higher energies. When the low-energy
excitations in the system are not magnons, then the dispersion relation interpretation of 𝑆(q, 𝜔)
begins to break down. This is the case in quantum spin liquids for example, where the low-energy
excitations are spinons, which are fractionalized magnons. In such a case, the dynamical structure
factor is actually probing bound-states of spinons. This will lead to distinct features in the dynamical
structure factor, and will be discussed further in Chapter 4.

1.4 Outline
The outline for this thesis is the following.

In Chapter 2, I discuss the numerical technique used throughout the rest of the thesis known as
matrix product states (MPS). I discuss the basic framework of MPS, as well as common algorithms
for finding ground states and performing time evolution. Lastly, I discuss how we can work directly
in the thermodynamic limit, and the concept of finite-entanglement scaling.
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In Chapter 3, I discuss emergent hydrodynamics in the Heisenberg spin chain. Recent work
demonstrated that the spin transport at 𝑇 = ∞ is part of the Kardar-Parisi-Zhang (KPZ) universality
class, rather than diffusion. I show that this finding is robust down to temperatures that are exper-
imentally relevant, as well as identify signatures detectable with neutron scattering experiments.
I discuss a collaboration with the neutron scattering group at Oak Ridge National Lab detecting
these signatures in the compound KCuF3. I then discuss the crossover from the Tomonaga-Luttinger
liquid physics in the ground state of this model, to the KPZ dynamics at finite temperature. This
chapter is based on these papers [93, 308].

In Chapter 4, I examine the 𝐽1 − 𝐽2 Heisenberg model on the triangular lattice, which is a well
known model with a quantum spin liquid (QSL) ground state. I discuss the main different types
of candidate QSL states for this model, and the unique signatures they predict in the dynamical
structure factor. Using an MPS based approach, I calculate the dynamical structure factor, and
suggest that the result are most consistent with a U(1) Dirac quantum spin liquid. Then I discuss two
collaborations with neutron scattering experimental groups in the triangular lattice QSL candidate
materials KYbSe2 and YbZn2GaO5. This chapter is based on these papers [309, 331, 399].

Lastly, in Chapter 5, I look at how time evolution of a state that is represented by an MPS
with a fixed bond-dimension at all times deviates from the exact time evolved state. In particular, I
examine a time evolution process known as the Kibble-Zurek mechanism. I derive that the effect of
finite entanglement on a Kibble-Zurek process is captured by a dimensionless scaling function of
the ratio of two length scales, one determined dynamically and one by the entanglement restriction
from the MPS ansatz. This scaling behavior is then demonstrated numerically for the quantum Ising
model, and the 3-state Potts model. This chapter is based on this paper [330].
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Chapter 2

Matrix Product States Background

2.1 Matrix Product States and Operators

2.1.1 Matrix Product States
The fundamental object representing the pure state of a system is a ket |𝜓⟩, which is a unit vector
in a Hilbert space H . We can express the state in an orthonormal basis as

|𝜓⟩ =
∑︁
𝜎

𝐶𝜎 |𝜎⟩ . (2.1)

If the dimension of the Hilbert space is 𝑑, then |𝜓⟩ can be represented as a list of 𝑑 complex
numbers.

When studying a system with 𝑁 degrees of freedom, then the Hilbert space for the composite
system is determined by the tensor product. If 𝔥𝑥 is the local Hilbert space for a site at position 𝑥,
then the composite Hilbert space is given by

H = ⊗𝑥𝔥𝑥 (2.2)

A generic state in the composite Hilbert space can be written

|𝜓⟩ =
∑︁

𝜎1···𝜎𝑁

𝐶𝜎1···𝜎𝑁 |𝜎1 · · ·𝜎𝑁⟩ . (2.3)

If the local Hilbert space is dimension 𝑑, then the state can be represented as a list of 𝑑𝑁 complex
numbers. This is the exponential wall of many-body physics, and this quickly becomes intractable.
The matrix product state (MPS) ansatz circumvents this issue, and provides an efficient represen-
tation for states with low entanglement (see Sec. 2.1.3 for more details about why).

The idea of an MPS is to consider the following ansatz for the coefficients of Eq. (2.3)

𝐶𝜎1···𝜎𝑁 =
∑︁

𝛼0···𝛼𝑁

𝑀𝜎1
𝛼0,𝛼1𝑀

𝜎2
𝛼1,𝛼2 · · ·𝑀𝜎𝑁

𝛼𝑁−1,𝛼𝑁
(2.4)
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Where 𝑀𝜎𝑖 is a matrix with indices 𝛼𝑖−1, 𝛼𝑖, and the expression is just a sequence of matrix
multiplications. These matrices do not all need to be the same, but I leave out an additional index
identifying the site when it is clear to do so. The upper index, 𝜎𝑖 is called the physical index, and
𝛼𝑖−1, 𝛼𝑖 are called virtual indices. The dimension of the largest virtual index is called the bond-
dimension, and is denoted by 𝜒. The first and last virtual indices, 𝛼0 and 𝛼𝑁 , set the boundary
conditions of the Ansatz. For open boundary conditions, we drop these indices (or we can take them
to be dimension 1), and for periodic boundary conditions, 𝛼0 and 𝛼𝑁 are contracted, leading to

𝐶𝜎1···𝜎𝑁 = Tr [𝑀𝜎1 · · ·𝑀𝜎𝑁 ] . (2.5)

This ansatz is complete, in that any state in a finite Hilbert space can be expressed as an MPS if 𝜒
is large enough [316].

It is common to use diagrams to represent an MPS. First, we can draw a single tensor as

M𝛼𝑖−1

𝜎𝑖

𝛼𝑖
(2.6)

Then, the coefficient matrix in Eq. (2.4) can be drawn diagramatically as

|𝜓⟩ =
M M · · · M

𝜎1 𝜎2 𝜎𝑁

(2.7)

This diagram is an MPS for a state |𝜓⟩, with open boundary conditions. The line connecting adjacent
tensors means to contract the connected indices. For Periodic boundary conditions, there would be
an additional line connecting the left of the first tensor to the right of the last tensor.

Let us return to Eq. (2.4), and omit the virtual indices.

𝐶𝜎1···𝜎𝑁 = 𝑀𝜎1𝑀𝜎2𝑀𝜎3 · · ·𝑀𝜎𝑁 (2.8)

I want to note that the choice of matrices is not unique. In particular, for some invertible matrix 𝑋 ,
we can write

𝐶𝜎1···𝜎𝑁 = 𝑀𝜎1𝑀𝜎2𝑋𝑋−1𝑀𝜎3 · · ·𝑀𝜎𝑁 , (2.9)

and the result is left invariant. From here, we could define

�̃�𝜎2 = 𝑀𝜎2𝑋 (2.10)
�̃�𝜎3 = 𝑋−1𝑀𝜎3 , (2.11)

and arrive at
𝐶𝜎1···𝜎𝑁 = 𝑀𝜎1 �̃�𝜎2 �̃�𝜎3 · · ·𝑀𝜎𝑁 . (2.12)

This produces the same coefficient matrix, except the tensor at site 2 and site 3 are different. This
is called a gauge transformation.
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2.1.2 Canonical Forms
In the previous section, we saw that the coefficient matrix is left invariant under a gauge transfor-
mation by an invertible matrix 𝑋 . Here, we will use this gauge freedom to define useful canonical
forms for an MPS. To do this, let us take the singular value decomposition (SVD) of one of the
tensors 𝑀 . Using diagrams, we can write

M𝛼𝑖−1

𝜎𝑖

𝛼𝑖 = 𝐴𝛼𝑖−1

𝜎𝑖

𝑆 𝑉 𝛼𝑖
(2.13)

Since the left and right singular matrices are unitary, we conclude that 𝐴 satisfies the property∑︁
𝜎𝑖 ,𝛼𝑖−1

𝐴𝜎𝑖𝛼𝑖−1,` �̄�
𝜎𝑖
𝛼𝑖−1,a = 𝛿`,a (2.14)

Where the index ` is the index contracted with 𝑆 in Eq. (2.13). Diagramtically, we would write this
as

𝐴

�̄�

= (2.15)

What this means is that if 𝐴 and �̄� are contracted from the left, then the result is a new tensor, that
acts like an identity matrix.

If we return to Eq. (2.13), we can absorb 𝑆,𝑉 into the next tensor in the MPS, defining a new
𝑀𝜎𝑖+1 . If we perform this process, starting on the left most site, all the way to the last site, then we
would say that the MPS is in left canonical form, denoted by

A A · · · A

𝜎1 𝜎2 𝜎𝑁

(2.16)

Where the letter 𝐴 signifies that the tensors are in left canonical form.
We could also perform an SVD from the right, expressing 𝑀 as

M𝛼𝑖−1

𝜎𝑖

𝛼𝑖 = 𝑈𝛼𝑖−1 𝑆 𝐵 𝛼𝑖

𝜎𝑖

(2.17)

Where the 𝐵 matrices satisfy a similar relation given by

𝐵

�̄�

= . (2.18)
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Then, we say that an MPS is in right canonical form if every tensor satisfies this relation.
We could also put an MPS into a mixed canonical form, where we fix a central site 𝑐, and then

every tensor to the left (right) of 𝑐 is in left (right) canonical form. Such an MPS takes the form

𝐴 · · · 𝐴 𝐶 𝐵 · · · 𝐵 , (2.19)

where the 𝐶 tensor is at site 𝑐. Note that 𝑐 does not have to be the exact center site, it can be placed
anywhere, it just indicates the site separating left and right canonical form tensors. If we perform
an SVD on 𝐶, we can write

𝐴 𝑆 𝑉 = 𝐶 = 𝑈 𝑆 𝐵 . (2.20)

If we take the left (right) side of the equation, we can absorb the 𝑉 (𝑈) tensor into the 𝐵 (𝐴) tensor
to the right (left). Such a gauge transformation preserves the left (right) canonical form, since the
left (right) and physical indices are not effected by this transformation. With this implicit gauge
transformation in mind, we can then write

𝐴 𝑆 = 𝐶 = 𝑆 𝐵 . (2.21)

We use a diamond shape for the 𝑆 tensor to highlight that it is a diagonal tensor with only two
indices. Putting this altogether, we can then write an MPS in mixed canonical form as

𝐴 · · · 𝐴 𝑆 𝐵 · · · 𝐵 . (2.22)

2.1.3 Advantage of Matrix Product States
Let us consider an MPS in mixed canonical form, given by Eq. (2.22). Mathematically, this state
takes the form

|𝜓⟩ =
𝜒∑︁
𝛼=1

𝑠𝛼 |𝛼⟩𝐴 |𝛼⟩𝐵 (2.23)

We note that this state is already in the form of a Scmidt decomposition, for the partition separating
the system into a left part 𝐴, and a right part 𝐵. The Schmidt coefficients are precisely the singular
values of the tensor 𝑆. We note that the number of Schmidt values, called the Schmidt rank, is
precisely the bond-dimension 𝜒.

In this form, we can compute the reduced density matrix easily. In particular

𝜌𝐴 = Tr𝐵 [|𝜓⟩⟨𝜓 |] =
𝜒∑︁
𝛼=1

𝑠2
𝛼 |𝛼⟩𝐴 ⟨𝛼 |𝐴 (2.24)

𝜌𝐵 = Tr𝐴 [|𝜓⟩⟨𝜓 |] =
𝜒∑︁
𝛼=1

𝑠2
𝛼 |𝛼⟩𝐵 ⟨𝛼 |𝐵 (2.25)
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From this form, we can read off the entanglement entropy directly

𝑆𝐴|𝐵 ( |𝜓⟩) = −Tr [𝜌𝐴 log 𝜌𝐴] = −Tr [𝜌𝐵 log 𝜌𝐵] (2.26)

= −
𝜒∑︁
𝛼=1

𝑠2
𝛼 log

(
𝑠2
𝛼

)
. (2.27)

Computing the reduced density matrix depends on the bipartition into subsystems 𝐴, 𝐵, and the
initial pure state |𝜓⟩. This quantity is typically computationally intensive to compute, but arises
naturally from an MPS in mixed canonical form.

The potency of the MPS ansatz is contained within Eq. (2.27), as the Schmidt rank is given by
𝜒, which controls the number of parameters needed to specify a given state. Therefore, if a state has
"small" entanglement, then it can be represented by an MPS with "small" 𝜒. The main advantage
arises when we look at one-dimensional systems. In particular, the ground state of one-dimensional
gapped systems satisfy an entanglement area law [147]. This means the entanglement does not
scale with the system size 𝐿. Moreover, what this means is that the maximum 𝜒 needed to represent
a state remains finite, and independent of 𝐿. For open boundary conditions, this means that the
number of parameters 𝑃𝐿 needed to specify such a low entanglement state of length 𝐿 scales as

𝑃𝐿 ∼ O(𝜒2𝐿) (2.28)

Since 𝜒 is finite, the scaling with 𝐿 is linear rather than exponential.
If we are studying a system with translational invariance, then we can bake this into the MPS

ansatz by repeating the same tensor for every site (or a few tensors if the unit-cell is larger than one
site). Then, we can represent the ground state of a gapped one-dimensional system exactly, even in
the thermodynamic limit, with a finite number of parameters. This realization has revolutionized
the numerical study of many-body systems. We will discuss working in the thermodynamical limit,
as well as gapless systems in Sec. 2.4.1.

2.1.4 Thermal States
Often we are interested in studying mixed rather than pure states, such as studying the effect
of temperature with a thermal state. One way to do this within the MPS framework is via the
purification method [370], and I will briefly discuss this technique here.

When studying a mixed state, the state of the system is now represented by a density matrix 𝜌.
The density matrix for a pure state |𝜓⟩ is given by

𝜌 = |𝜓⟩⟨𝜓 | . (2.29)

In the case of a general mixed state, we can write

𝜌 =
∑︁
𝑛

𝑃𝑛 |𝜓𝑛⟩⟨𝜓𝑛 | . (2.30)
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The interpretation is that the system has a classical probability 𝑃𝑛 of being in the quantum pure
state |𝜓𝑛⟩. If the state |𝜓⟩ is a 𝑑 dimensional vector, note that 𝜌 is a 𝑑 × 𝑑 dimensional matrix. If
we think of 𝜌 as actually a 𝑑2 dimensional vector, then this suggests that we can treat 𝜌 as a pure
state in an enlarged Hilbert space. This is the idea of the purification method [370].

In the case of thermal states, the density matrix we are interested in is given by

𝜌𝑇 = 𝑒−
𝐻

𝑘𝑏𝑇 /𝑍 (2.31)

𝑍 = Tr
[
𝑒
− 𝐻

𝑘𝑏𝑇

]
(2.32)

where 𝑇 is the temperature, and 𝐻 is the Hamiltonian of the system. We can write a mixed thermal
state 𝜌𝑇 as a pure state |𝜓𝑇 ⟩ in an enlarged Hilbert space,

H → H𝑃 ⊗ H𝐴 (2.33)

where 𝐻𝑃 is the physical Hilbert space of interest, and 𝐻𝐴 is an auxiliary Hilbert space of the same
size. Then the density matrix is retrieved by the relation

𝜌𝑇 = Tr𝐴 |𝜓𝑇 ⟩⟨𝜓𝑇 | . (2.34)

The state |𝜓𝑇 ⟩ is defined by

|𝜓𝑇 ⟩ = exp
(
− 𝐻

2𝑘𝑏𝑇

)
|𝜓∞⟩ (2.35)

with 𝐻 = 𝐻𝑃 ⊗ 𝐼𝐴 the physical Hamiltonian acting only on the physical subspace, and 𝐼𝐴 the
identity acting on the auxiliary space. The state |𝜓∞⟩ can be expressed exactly as an MPS by
forming maximally entangled pairs between one site in the physical Hilbert space and one site in
the auxiliary space.

Expectation values are computed via

⟨O⟩𝑇 = ⟨𝜓𝑇 | O ⊗ 𝐼 |𝜓𝑇 ⟩ (2.36)

Where the identity on the Auxiliary space makes this equivalent to

⟨O⟩𝑇 = Tr [𝜌𝑇O] . (2.37)

Note that if we apply a unitary operation to the auxiliary degrees of freedom, then expectation
values for observables on the physical degrees of freedom are left invariant. This is often useful
when computing time dependent quantities such as two-point correlation functions of the form

⟨𝐴(𝑡)𝐵⟩𝑇 = ⟨𝜓𝑇 | 𝑒𝑖[𝐻⊗𝐼]𝑡𝐴𝑒−𝑖[𝐻⊗𝐼]𝑡𝐵 |𝜓𝑇 ⟩ (2.38)

We can evolve the auxiliary states backwards in time to write

⟨𝐴(𝑡)𝐵⟩𝑇 = ⟨𝜓𝑇 | 𝑒−𝑖[𝐼⊗𝐻]𝑡𝑒𝑖[𝐻⊗𝐼]𝑡𝐴𝑒−𝑖[𝐻⊗𝐼]𝑡𝐵𝑒𝑖[𝐼⊗𝐻]𝑡 |𝜓𝑇 ⟩ (2.39)
= ⟨𝜓𝑇 | 𝑒𝑖L𝑡𝐴𝑒−L𝑡𝐵 |𝜓𝑇 ⟩ , (2.40)
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where we have defined the Louivillian operator

L = 𝐻 ⊗ 𝐼 − 𝐼 ⊗ 𝐻. (2.41)

This is the same result as working directly with open systems, and treating density matrices as super-
kets |𝜌𝑇 ⟩⟩ where the dynamics are generated by the super-operator L [243]. This means studying
the dynamics of a thermal state numerically requires only minor adaptations from working with
pure states. Essentially the Hamiltonian is replaced by the Louivillian, and a system of length 𝐿 is
described by an MPS with 2𝐿 sites.

2.1.5 Matrix Product Operators
We can also write operators, such as a Hamiltonian 𝐻, in the MPS framework. Such an operator is
called a matrix product operator (MPO). Mathematically, we express an MPO as

𝐻 =
∑︁
®𝜎,®𝜎′

𝑊𝜎1
𝜎′

1
· · ·𝑊𝜎𝑁

𝜎′
𝑁
| ®𝜎⟩ ⟨®𝜎′| (2.42)

where ®𝜎 = (𝜎1, · · · , 𝜎𝑁 ). Diagramatically, we can express an MPO by

𝐻 = 𝑊 𝑊 · · · 𝑊

𝜎′
1 𝜎′

2 𝜎′
𝑁

𝜎1 𝜎2 𝜎𝑁

(2.43)

Representing Local Hamiltonians as a Matrix Product Operator

Let us start with a concrete example of the transverse field Ising model (TFIM) with Hamiltonian

𝐻 = −𝐽
∑︁
𝑖

𝜎𝑧𝑖 𝜎
𝑧
𝑖+1 − ℎ

∑︁
𝑖

𝜎𝑥𝑖 . (2.44)

If we only look at the terms involving site 𝑖, this include the terms

𝐻𝑖 = −𝐽𝜎𝑧𝑖−1𝜎
𝑧
𝑖 − 𝐽𝜎𝑧𝑖 𝜎𝑧𝑖+1 − ℎ𝜎𝑥𝑖 (2.45)

Since the Hamiltonian acts on a composite Hilbert space, say of 𝑁 sites, then these terms are really
given by

𝐻𝑖 = − 𝐽 [𝐼 ⊗ · · · ⊗ 𝐼 ⊗ 𝜎𝑧 ⊗ 𝜎𝑧 ⊗ 𝐼 ⊗ 𝐼 ⊗ · · · ⊗ 𝐼] (2.46)
− 𝐽 [𝐼 ⊗ · · · ⊗ 𝐼 ⊗ 𝐼 ⊗ 𝜎𝑧 ⊗ 𝜎𝑧 ⊗ 𝐼 ⊗ · · · ⊗ 𝐼] (2.47)
− ℎ[𝐼 ⊗ · · · ⊗ 𝐼 ⊗ 𝐼 ⊗ 𝜎𝑥 ⊗ 𝐼 ⊗ 𝐼 ⊗ · · · ⊗ 𝐼] (2.48)

(2.49)
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These three terms can be thought of as a particular string of fixed length 𝑁 , where the first
term would correspond to the string ”𝐼 · · · 𝐼𝑍𝑍𝐼 · · · 𝐼”. Then, the Hamiltonian is the set of strings
satisfying the rule that it includes ever string that has two 𝑍’s appearing next to each other, and
every string with a single 𝑋 , with every other slot occupied by an 𝐼. From this interpretation, this
set of strings can be generated, using a finite-state machine [316]. For the TFIM Hamiltonian, the
state machine would look like

𝑞0

𝑞1

𝑞2

𝐼

−𝐽𝜎𝑧 𝜎𝑧

−ℎ𝜎𝑥

𝐼

. (2.50)

To understand how to look at this, imagine the rule that you must start at node 𝑞0, and end at node
𝑞2, and you must perform 𝑁 transitions. Each time you perform a transition, record the expression
next to the transition arrow. The string

−𝐽𝜎𝑧 ⊗ 𝜎𝑧 ⊗ 𝐼 · · · (2.51)

would be the path through the state machine of

𝑞0
−𝐽𝜎𝑧

−→ 𝑞1
𝜎𝑧

−→ 𝑞2
𝐼−→ 𝑞2

𝐼−→ · · · . (2.52)

Where the string
𝐼 ⊗ 𝐼 ⊗ −𝐽𝜎𝑧 ⊗ 𝜎𝑧 ⊗ 𝐼 · · · (2.53)

is given by the path

𝑞0
𝐼−→ 𝑞0

𝐼−→ 𝑞0
−𝐽𝜎𝑧

−→ 𝑞1
𝜎𝑧

−→ 𝑞2
𝐼−→ 𝑞2

𝐼−→ · · · . (2.54)

Similarly, a path that connects 𝑞0 → 𝑞2 would correspond to a string including −ℎ𝜎𝑥 . From
this, it is hopefully clear that all possible strings of length 𝑁 that this state machine can generate
corresponds to all the terms in the TFIM Hamiltonian of Eq. (2.44). Then, the MPO tensor𝑊 that
represents the Hamiltonian 𝐻 is given by the adjacency matrix of the state machine. For the TFIM,
the MPO tensor would be

𝑊 = ©«
𝐼 −𝐽𝜎𝑧 −ℎ𝜎𝑥
0 0 𝜎𝑧

0 0 𝐼

ª®¬
. (2.55)

If we multiply two𝑊 matrices together, where the muplication operation is taken to mean tensor
product, the we find

𝑊 −𝑊 = ©«
𝐼 ⊗ 𝐼 −𝐽 (𝐼 ⊗ 𝜎𝑧) −𝐽 (𝜎𝑧 ⊗ 𝜎𝑧) − ℎ(𝜎𝑥 ⊗ 𝐼 + 𝐼 ⊗ 𝜎𝑥)

0 0 𝜎𝑧 ⊗ 𝐼
0 0 𝐼 ⊗ 𝐼

ª®¬
, (2.56)
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and notice the top right element is precisely the Hamiltonian density for the TFIM of Eq. (2.45).
Generalizing to other local Hamiltonians is straightforward.

Suppose we wanted to add a long-range interaction of the form∑︁
𝑛,𝑚

𝛾𝑚−𝑛𝐴𝑚𝐵𝑛, 0 < 𝛾 < 1, (2.57)

to the TFIM, then the state machine would be updated to look like

𝑞0

𝑞1

𝑞2

𝑞3

𝐼

−𝐽𝜎𝑧 𝜎𝑧

−ℎ𝜎𝑥
𝛾𝐴

𝛾𝐼

𝐵

𝐼

. (2.58)

The corresponding MPO tensor𝑊 would take the form

𝑊 =
©«

𝐼 −𝐽𝜎𝑧 𝛾𝐴 −ℎ𝜎𝑥
0 0 0 𝜎𝑧

0 0 𝛾𝐼 𝐵
0 0 0 𝐼

ª®®®¬
. (2.59)

2.2 Basic Operations
Here I will discuss some basic operations with matrix product states. First, let us define a "bra"
MPS written as

⟨𝜓 | =
�̄� �̄� · · · �̄�

𝜎1 𝜎2 𝜎𝑁

, (2.60)

where �̄� means the complex conjugate of all the elements of 𝑀 . Then, if we have two states |𝜓(𝑀)⟩
and |𝜙(𝑁)⟩, then the overlap is given by

⟨𝜙(𝑁) | 𝜓(𝑀)⟩ =

�̄� �̄� · · · �̄�

M M · · · M
. (2.61)

Note that the overlap has no free indices, and thus produces a number, as desired.
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Expectation Values of Local Operators

Let us look at the expectation value of an on-site operator O at site 𝑥. Then, if we put an MPS into
mixed canonical form, with the center site at 𝑥, then the overlap is given by

⟨O𝑥⟩ =

𝐴 · · · 𝐴 𝐶 𝐵 · · · 𝐵

O

�̄� · · · �̄� �̄� �̄� · · · �̄�

(2.62)

Using the left (right) canonical form properties of Eq. (2.15) and (2.18), this then reduces to

⟨O𝑥⟩ =

𝐶

O

�̄�

. (2.63)

Where the only contractions needed to compute are the ones that occur at site 𝑥.
If we wish to compute correlation functions of two on-site operators separated by a distance 𝑟,

then this is also simple. For simplicity, let us define the transfer matrices

𝐴

�̄�

=𝑇𝐴 ,

𝐵

�̄�

=𝑇𝐵 (2.64)

Then, a two-point correlation function would take the form

⟨O0O𝑟+1⟩ = 𝑇𝐵

𝐶

�̄�

Ō

𝐵

Ō

�̄�

𝑟

(2.65)

Where we inserted 𝑟 copies of the transfer matrix to connect sites 0 and 𝑟 + 11. There is an
analogous expression using the 𝑇𝐴 transfer matrix, with 𝐶 on the right, and 𝐴 on the left. More
complicated expectation values, such as for N-point (N>2) correlation functions, or local but not
on-site operators, can be treated in a similar way.

1The expression for ⟨O0O𝑟+1⟩ true for a translationally symmetric state. For an open system, the transfer matrix
𝑇𝐵 will be different at each site, and will require the multiplication of these 𝑟 different matrices.
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This expression for the correlation function allows us to extract the correlation length b quite
easily. To see this, we first note that if 𝑟 is large, then

⟨O0O𝑟⟩ ∼ 𝑒−𝑟/b (2.66)

When looking at the transfer matrix, if we apply 𝑟 copies of the tensor with itself, then what survives
are only the largest eigenvectors. Due to normalization, the largest eigenvalue must be 1, and this
is uninteresting. However, the first eigenvalue less than 1, call it _𝑇 will encode the decay of the
correlation function. Thus, from the MPS representation of the correlation function, we also have
for large 𝑟 that

⟨O0O𝑟⟩ ∼ _𝑟𝑇 (2.67)

Comparing these, we find
b ∼ − 1

ln_𝑇
. (2.68)

.
Note that the structure of Eq. (2.65) necessitates the the long distance form given in Eq.

(2.66). This means that systems which exhibit power-law scaling in their correlations can not be
represented exactly by an MPS. An important example of such systems are critical systems, where
the correlation length diverges. I will discuss this further in Sec. 2.4.2.

2.2.1 Addition of MPS
Let us suppose we have two MPS with periodic boundary conditions taking the form

|𝜓⟩ =
∑︁
®𝜎

Tr (𝐴𝜎1 · · · 𝐴𝜎𝑁 ) | ®𝜎⟩ , |𝜙⟩ =
∑︁
®𝜎

Tr (𝐵𝜎1 · · · 𝐵𝜎𝑁 ) | ®𝜎⟩ , (2.69)

where ®𝜎 is a short hand for 𝜎1, · · · , 𝜎𝑁 , and we do not assume any particular canonical form. Then
we seek to find the MPS that represents

|𝜓⟩ + |𝜙⟩ =
∑︁
®𝜎

Tr (𝐶𝜎1 · · ·𝐶𝜎𝑁 ) | ®𝜎⟩ . (2.70)

Note that if we write
𝐶𝜎𝑖 =

(
𝐴𝜎𝑖 0
0 𝐵𝜎𝑖

)
(2.71)

then, we can see that

Tr (𝐶 · · ·𝐶) = Tr
(
𝐴 · · · 𝐴 0

0 𝐵 · · · 𝐵
)
= Tr (𝐴 · · · 𝐴) + Tr (𝐵 · · · 𝐵) . (2.72)

Thus, Eq. (2.72) produces the correct coefficient in the summed state. If we work with open
boundary conditions, the result is essentially the same, but the boundary tensors have to be handled
with care [316].
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One thing to note is that if the bond-dimension of |𝜓⟩ is 𝜒𝐴, and of |𝜙⟩ is 𝜒𝐵, then the bond-
dimension of the sum is 𝜒𝐶 = 𝜒𝐴 + 𝜒𝐵. This has two implications. First, that the set of MPS
with bond-dimension 𝜒 is not closed under addition. Second, the operation of addition increases
the computational complexity of any subsequent operations. For this reason, it is best to avoid
the operation of addition where possible within the MPS framework. If a sequence of additions
is needed in a calculation, then often we will need to compress the resulting MPS, to get a close
approximation that is computationally efficient. We will discuss compression in Sec. 2.2.3.

2.2.2 MPO-MPS product
Let us examine the action of an MPO on an MPS, and the structure of the resulting MPS. Suppose
we have an MPS |𝜓⟩, and MPO 𝐻 taking the form

|𝜓⟩ =
∑︁
®𝜎

Tr (𝑀𝜎1 · · ·𝑀𝜎𝑁 ) | ®𝜎⟩ (2.73)

𝐻 =
∑︁
®𝜎,®𝜎′

𝑊𝜎1
𝜎′

1
· · ·𝑊𝜎𝑁

𝜎′
𝑁
| ®𝜎⟩ ⟨®𝜎′| . (2.74)

Then the resulting state |𝜙⟩ = 𝐻 |𝜓⟩ takes the form

|𝜙⟩ = 𝐻 |𝜓⟩ =

∑︁
®𝜎,®𝜎′

𝑊𝜎1
𝜎′

1
𝑊𝜎2
𝜎′

2
· · ·𝑊𝜎𝑁

𝜎′
𝑁
| ®𝜎⟩ ⟨®𝜎′|


[∑︁
®𝜎′
𝑀𝜎′

1𝑀𝜎′
2 · · ·𝑀𝜎′

𝑁 | ®𝜎′⟩
]

(2.75)

=
∑︁
®𝜎,®𝜎′

[
𝑊𝜎1
𝜎′

1
𝑀𝜎′

1

]
· · ·

[
𝑊𝜎𝑁

𝜎′
𝑁
𝑀𝜎′

𝑁

]
| ®𝜎⟩ (2.76)

:=
∑︁
®𝜎

Φ𝜎1 · · ·Φ𝜎𝑁 | ®𝜎⟩ (2.77)

Where the resulting MPS tensor at site 𝑖 is the product of the two tensors coming from 𝐻 and |𝜓⟩.
Let us look at the 𝑖thnew tensor diagramatically

Φ

𝑀

𝑊

=𝛾𝑖−1 𝛾𝑖

𝜎𝑖

𝛼𝑖−1 𝛼𝑖

𝛽𝑖−1 𝛽𝑖

𝜎𝑖

(2.78)

From this image, we interpret 𝛾𝑖 = (𝛼𝑖, 𝛽𝑖) as a super index, obtained by the tensor product of 𝑀
with 𝑊 . This means that the bond-dimension of |𝜙⟩, is the product of the bond-dimension of 𝑀
and𝑊 , 𝜒𝜙 = 𝜒𝑀 · 𝜒𝑊 .
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This is a striking result when contrasted against traditional representations of linear algebra
using vectors and matrices. Many state of the art linear algebra algorithms are based on repetitve
applications of matrix-vector multiplications, such as Krylov-subspace based methods [298]. For
example, a ground state search using the Lanczos algorithm [206] can find the ground state of a
Hamiltonian 𝐻 accurately with on the order of 101−102 applications of 𝐻 on some random starting
vector. However, here, if we perform 𝑁 matrix multiplications with an MPO with bond-dimension
𝜒𝑊 , on a starting state with bond-dimension 𝜒𝑀 , then the resulting state will have bond-dimensions
𝜒 ∼ O(𝜒𝑁𝑊 𝜒𝑀), which is exponential in 𝜒𝑊 . For this reason, these common algorithms are not well
suited for the MPS framework, and other methods are preferred.

2.2.3 Compression
Often in the MPS framework, we have an MPS with bond-dimension 𝜒, and we wish to compress
the state down to an MPS with bond-dimension �̃� < 𝜒. One option is to perform an SVD, and
only keep the �̃� largest singular values and singular vectors for a given tensor. This is often done in
combination with bringing a state into a particular canonical form, as we discussed in Sec. 2.1.2.
Bringing a state into, say, left canonical form requires a sequence of SVD starting with site 1, and
ending on site 𝑁 . While doing this, we can keep only the �̃� largest singular values at each step,
effectively compressing the MPS.

The problem with performing this sequence of SVDs with truncations is that it will propagate
errors through the MPS. On the first site, there is some error from the compression, which then gets
absorbed into the second tensor before performing the SVD and compressing it further. Another
procedure is to say we desire a state |�̃�⟩ with bond-dimension �̃� such that |�̃�⟩ minimizes

��|𝜓⟩ − |�̃�⟩
��2.

We can write ��|𝜓⟩ − |�̃�⟩
��2 = ⟨𝜓 |𝜓⟩ + ⟨�̃� |�̃�⟩ − ⟨�̃� |𝜓⟩ − ⟨𝜓 |�̃�⟩ (2.79)

Then the optimum would be the solution to system of equations

𝜕

𝜕�̄� (𝑖)
[⟨�̃� |�̃�⟩ − ⟨�̃� |𝜓⟩] = 0, (2.80)

where the derivative is interpreted element-wise. For simplicity, let us look at a system with 𝑁 = 3,
but larger 𝑁 is straightforward. Diagramatically, this equation takes the form

¯̃𝑀 ¯̃𝑀

�̃� �̃� �̃�

=

¯̃𝑀 ¯̃𝑀

𝑀 𝑀 𝑀

(2.81)

This can be interpreted as an equation solving for the tensor at site i �̃� (𝑖) shown in blue. If �̃� (𝑖) is
removed from the left hand side, define the remainder of the network 𝑃. Define the right hand side
as the three index tensor 𝑁 . Then, this is equivalent to the system of equations

𝑃�̃� (𝑖) = 𝑁 (2.82)
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which can be solved with typical linear algebra algorithms such as the conjugate gradient method.
We can simplify this, however, if we put the MPS for the state |�̃�⟩ into mixed canonical form

first, with tensors 𝐴,𝐶, 𝐵 as discussed in Sec. 2.1.2. Using Eq. (2.15) and Eq. (2.18), then Eq.
(2.81) would take the form

�̃� =

¯̃𝐴 ¯̃𝐵

𝑀 𝑀 𝑀

, (2.83)

which gives �̃� (𝑖) directly.
In practice, we start with some initial guess for the MPS |�̃�⟩, put the state into left canonical

form, and then update the first tensor using Eq. (2.83). With the updated tensor, use that to update
the tensor at site two, and continue through the full network forward and backward. This process is
called a sweep, and this idea is a common aspect of MPS algorithms. After a full sweep, you have a
new updated approximation to the compressed state. Then iterate on this process until convergence
is reached.

2.3 Algorithms

2.3.1 Ground State Search: Density Matrix Renormalization Group
The density matrix renormalization group (DMRG) is an algorithm for calculating the ground state
of a Hamiltonian within the MPS framework. It is a variational algorithm over the set of MPSs at
a fixed bond-dimension 𝜒. In particular, we seek to solve

min
|𝜓⟩∈H𝜒

[⟨𝜓 | 𝐻 |𝜓⟩ − _ ⟨𝜓 |𝜓⟩] , (2.84)

where H𝜒 is the manifold of states that can be represented with a bond-dimension at most 𝜒, and the
second term is a Lagrange multiplier to enforce normalization. We will convert this into a matrix
equation, by differentiating one tensor at a time to get a sequence of equations. If 𝜓 has tensor 𝑀 (𝑖)

at site 𝑖, then we can write that the solution to Eq. (2.84) would satisfy
𝜕

𝜕�̄� (𝑖) [⟨𝜓 | 𝐻 |𝜓⟩ − _ ⟨𝜓 |𝜓⟩] = 0 (2.85)

where the derivative is interpreted element-wise. Diagramatically, this equation takes the form

�̄� �̄�

𝑊 𝑊 𝑊

𝑀 𝑀 𝑀

= _

�̄� �̄�

𝑀 𝑀 𝑀

(2.86)
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We can think of the terms on both sides of the equation as linear operators acting on the tensor
𝑀 (𝑖) shown in blue. If 𝑀 (𝑖) is removed from the left side, define the remainder of the network as
𝐻𝑖, and similarly on the right side defining 𝑆𝑖, then this is equivalent to writing

�̃�𝑖𝑀
(𝑖) = _𝑆𝑖𝑀 (𝑖) . (2.87)

If we treat 𝑀 (𝑖) as a vector, then we can interpret this as a generalized eigenvector problem to solve
for 𝑀 (𝑖) .

Similarly to the case of compression, this expression can be simplified if we work in mixed
canonical form, and expressing |𝜓⟩ in terms of the tensors 𝐴,𝐶, 𝐵. This results in the following
diagram equation

�̄� �̄�

𝑊 𝑊 𝑊

𝐴 𝐶 𝐵

= _ 𝐶 , (2.88)

which simplifies Eq. (2.87) to
�̃�𝑖𝐶

(𝑖) = _𝐶 (𝑖) (2.89)

which is now a simple eigenvector problem. Solving this for each site 𝑖 would then produce the
lowest energy state.

One subtlety is that �̃�𝑖 depends on the other optimized tensors 𝑀 ( 𝑗) when contracting the
network. Because of this, in practice, we sweep through the system in a manner similar to the case
of compression. We start at site 1, and solve for an updated tensor 𝑀 (1) , which is used to create �̃�2
to update 𝑀 (2) , and then both updated tensors are used to create �̃�3 and so on. We continue this
process through the full network forward and then backward, for a single sweep. After each sweep,
we check for convergence, and stop the algorithm when the convergence criteria is met.

This local optimization procedure does not guarantee convergence to the true ground state, and
can get caught in local minima. Modifications of this algorithm have been proposed to help address
the local minima problem, and are discussed in Ref. [316].

2.3.2 Time Evolution: Time-Evolving Block Decimation
The problem of interest is finding a state |𝜓(𝑡)⟩ given some starting state |𝜓(0)⟩. The starting point
for this problem is Schrodinger’s equation

𝑖𝜕𝑡 |𝜓(𝑡)⟩ = 𝐻 (𝑡) |𝜓(𝑡)⟩ . (2.90)
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In the most general case, where 𝐻 is a time-dependent Hamiltonian, without further structure, the
solution takes the form

|𝜓(𝑡)⟩ = 𝑈 (𝑡) |𝜓(0)⟩ (2.91)

𝑈 (𝑇) = T exp
(
−𝑖

∫ 𝑇

0
𝑑𝑡 𝐻 (𝑡)

)
(2.92)

where T (·) is the time ordering operator. If we write 𝑡𝑛 = 𝑛Δ𝑡, and 𝑇 = 𝑡𝑁 , then this is equivalent
to writing

𝑈 (𝑡) = lim
𝑁→∞

[
𝑒−𝑖𝐻 (𝑡𝑁 )Δ𝑡 · · · 𝑒−𝑖𝐻 (𝑡0)Δ𝑡

]
. (2.93)

Conceptually, this amounts to treating the Hamiltonian as piecewise constant over an interval of
size Δ𝑡, and the exact time evolution is found in the limit that Δ𝑡 → 0. For finite Δ𝑡, treating the
Hamiltonian as piecewise constant produces an error of order O(Δ𝑡).

Since we can treat a time-dependent Hamiltonian as piece-wise constant, we will only look at
time evolution for constant Hamiltonians. We will look at a simple and widely used approach to
time evolution know as the time-evolving block-decimation (TEBD) algorithm [375, 316]. This
technique is most applicable for Hamiltonians with nearest neighbor interactions, and I will only
look at that case here.

We start with a general, nearest-neighbor Hamiltonian in one-dimension,

𝐻 =
∑︁
𝑛

ℎ𝑛,𝑛+1. (2.94)

From here, we rearrange the Hamiltonian into two separate terms, correpsonding to sums over even
and odd bonds

𝐻 = 𝐻𝑂 + 𝐻𝐸 :=
∑︁
𝑛 odd

ℎ𝑛,𝑛+1 +
∑︁
𝑛 even

ℎ𝑛,𝑛+1 (2.95)

The trick is that now these two terms separately, are sums of commuting terms, even though
[𝐻𝑂 , 𝐻𝐸 ] ≠ 0 in general. Then we can approximate the full evolution by

𝑒−𝑖𝐻Δ𝑡 = 𝑒−𝑖𝐻𝑂Δ𝑡𝑒−𝑖𝐻𝐸Δ𝑡 + O(Δ𝑡). (2.96)

Higher order decompositions are also possible, leading to reduced errors [113].
Looking at the odd term, we find that

𝑒−𝑖𝐻𝑂Δ𝑡 =
∏
𝑛 odd

𝑈𝑛,𝑛+1(Δ𝑡) (2.97)

𝑈𝑛,𝑛+1(Δ𝑡) = 𝑒−𝑖Δ𝑡ℎ𝑛,𝑛+1 (2.98)

since all the terms in 𝐻𝑂 commute. An analogous expression is found by looking at the even term.
The𝑈𝑛,𝑛+1(Δ𝑡) term only acts on a single bond, and is often called a Trotter gate.
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Let us look closer at applying a single Trotter gate to an MPS. Let us assume that an MPS is in
mixed canonical form, where the Trotter gate is being applied to the center bond. Let us define the
result of a Trotter gate as the tensor Θ which takes the form

Θ
=

𝐴 𝑆 𝐵

𝑈

(2.99)

The resulting tensor Θ is a two-site wave-function. To decompose this into separate tensors for
each site, we can perform an SVD resulting in

Θ SVD−−−→ �̃� 𝑆 �̃� (2.100)

yielding updated tensors �̃�, 𝑆, �̃�. We then can repeat this procedure for each bond to complete
a full time step.

As the state time evolves, the entanglement in the system grows, and so compression often
becomes necessary. This can be achieved by truncating the SVD needed in Eq. (2.100), or by
performing a sweep compression after a full time step is complete ((see Sec. 2.2.3 for more details).

the TEBD algorithm can also be used to perform imaginary time evolution. In particular,
calculating a state of the form

|𝜓(𝜏)⟩ = 𝑒−𝐻𝜏 |𝜓(0)⟩ (2.101)

This can serve as a ground state calculator by noting that

|𝜓0⟩ = lim
𝜏→∞ 𝑒

−𝐻𝜏 |𝜓(0)⟩ . (2.102)

The equation for a thermal state in Eq. (2.35) is of the same form, and thus TEBD can be used to
calculate such a state as well.

Another useful time evolution algorithm is the time-dependent variational principle (TDVP).
I will skip the technical details of this technique here, but the interested reader can learn more in
Ref. [137, 135, 138, 367, 412]. One major advantage of TDVP is that it performs the time-evolution
using an MPO representation of 𝐻, rather than using Trotter gates. This means that it naturally
handles long-range interactions, so long as an MPO representation is available. This is especially
useful when working with two-dimensional systems that are curled into a cylinder, and then mapped
to quasi-one-dimensional system producing long range interactions.
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2.4 Infinite MPS and Finite Entanglement Scaling

2.4.1 Infinite MPS
Often in the thermodynamic limit, the state of interest is a translationally invariant state. If this is
the case, then we could represent the state with an infinite matrix product state (iMPS). An iMPS
is a generalization of Eq. (2.4), where we keep track of a tensor for each site in the unit-cell, and
then repeat that unit-cell everywhere. The infinite number of tensors is only considered analytically,
where algorithms only keep track of a single unit-cell. For simplicity, we will assume the unit-cell
is one site in the discussions here, but extending this to larger unit cells is straightforward.

Let us look at some of the operations discussed for an MPS to see how they are modified for an
iMPS. We can write an iMPS as

|𝜓(𝑀)⟩ =
∑︁

···𝜎𝑛,𝜎𝑛+1,···
Tr [· · ·𝑀𝜎𝑛𝑀𝜎𝑛+1 · · · ] |· · · , 𝜎𝑛, 𝜎𝑛+1, · · ·⟩ . (2.103)

If we have another iMPS |𝜙(𝑁)⟩, then the overlap of two iMPS takes the form

⟨𝜙(𝑁) |𝜓(𝑀)⟩ =

· · · �̄� �̄� �̄� · · ·

· · · 𝑀 𝑀 𝑀 · · ·
= lim

𝐿→∞
Tr

©«

 �̄�

𝑀


𝐿ª®®®®¬
. (2.104)

If _𝑁𝑀 is the largest eigenvalue of the tensor in the brackets, then this expression becomes

⟨𝜙(𝑁)𝜓(𝑀)⟩ = lim
𝐿→∞

_𝐿𝑁𝑀 . (2.105)

Note that if the states are normalized, then _𝑁𝑀 ≤ 1. Thus, taking the limit of 𝐿 → ∞, we have that

⟨𝜙(𝑁) |𝜓(𝑀)⟩ =
{
1 if |𝜙(𝑁)⟩ = |𝜓(𝑀)⟩
0 otherwise . (2.106)

This is an interesting result, saying that any two iMPS are either equal, or orthogonal.
If we wish to calculate expectation values of local observables using iMPS, then the results are

identical to those found in Sec. 2.2. This is because the use of canonical forms will truncate the
infinite contractions to either side of the local operators in an analogous way.

We can define an iMPO as the generalization of Eq. (2.42) to the thermodynamic limit, analogous
to how we define an iMPS. Computing the expectation value of an iMPO 𝐻 in the iMPS |𝜓⟩, this
is a bit more tricky to work with. Let us assume the iMPS is in mixed canonical form, then we have

⟨𝜓 |𝐻 |𝜓⟩ =

· · · �̄� �̄� �̄� �̄� �̄� · · ·

· · · 𝑊 𝑊 𝑊 𝑊 𝑊 · · ·

· · · 𝐴 𝐴 𝐶 𝐵 𝐵 · · ·

. (2.107)
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We can define the tensors 𝐿 (𝑅) as the result of the semi-infinite contraction to the left (right), and
then we have

⟨𝜓 |𝐻 |𝜓⟩ =

�̄�

𝑊

𝐶

𝐿 𝑅 . (2.108)

The tensor 𝐿 can be found by repeated application of the transfer matrix 𝐴 − 𝑊 − �̄� until
converged. However, as the number of contractions gets large, this will converge to the leading
eigenvector of the transfer matrix. Thus, 𝐿 can be found via

�̄�

𝑊

𝐴

𝐿 = 𝐿 (2.109)

This can be solved numerically, via an eigensolver. Moreover, for specific forms of the Hamiltonian,
such as local Hamiltonians with an MPO as discussed in Sec. 2.1.5, an analytical expression is
known [272]. An analogous procedure can be done to compute 𝑅. With 𝐿 and 𝑅, this enables
constructing an effective Hamiltonian, similar to 𝐻𝑖 in Eq. (2.86) for performing DMRG directly
in the thermodynamic limit [316]. The TEBD algorithm is almost identical in the thermodynamic
limit, since the Trotter gates only act on two sites at a time [316].

2.4.2 Finite Entanglement Scaling
In Sec. 2.1.3, we discussed that the bond-dimension 𝜒 for an MPS is related to the entanglement
in the state that is being represented. Additionally, for gapped one-dimensional local Hamiltonians,
the ground state satisfies an area-law [147], permitting exact MPS representations, even in the
thermodynamic limit. However, for gapless systems, such as critical systems, the entanglement
often diverges logarithmically [374]. Although this forbids an exact MPS representation, if one
performs multiple simulations at different 𝜒, then a scaling analysis is possible. This is the so
called finite entanglement scaling, and is analogous to finite size scaling [53]. This work has been
examined in depth in a series of papers [357, 277, 274], and I will discuss the highlights here.

When a system is perturbed away from criticality, it develops a length scale b, and the entan-
glement entropy scales as [47]

𝑆 ∼ 𝑐

6
log b, (2.110)
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where 𝑐 is the central charge of the conformal field theory (CFT) describing the low-energy physics
of the critical theory.

Such a scaling relation seems plausible when examining how the entanglement entropy scales
with the bond-dimension 𝜒. Looking at Eq. (2.26), we have that a maximally entanglement state
scales as

𝑆 ∼ log 𝜒 (2.111)

which suggests a connection between 𝜒, and some length scale introduced, call it b𝜒. Tagliacozzo
et al. [357] found numerically that in the quantum ising model, the entropy at the critical point
scaled as

𝑆 ∼ 𝑐

6
log 𝜒^ (2.112)

with ^ ≈ 2.011. Matching this with Eq. (2.110), we find

b𝜒 ∼ 𝜒^ . (2.113)

This result suggests that the effect of finite 𝜒 when representing the critical ground state is to
effectively introduce a length scale b𝜒 into the problem, analogous to finite-size scaling, or the
effect of a relevant perturbation.

A followup by Pollman et al. [277] used general results about CFT to pin down the exponent ^,
conjecturing that

^ =
6

𝑐

[√︃
12
𝑐 + 1

] . (2.114)

Combining Eq. (2.112) and Eq. (2.114) yields

𝑆 =
1√︃

12
𝑐 + 1

log 𝜒, (2.115)

which they verified numerically in several critical spin chains.
These results suggest that representing a critical state with an MPS at finite 𝜒 has an effect

analogous to a relevant perturbation, introducing a length scale b𝜒 ∼ 𝜒^, and ^ only depends on
the central charge 𝑐 of the critical theory. This both provides a means to extract the central charge
through such a finite entanglement scaling analysis, as well as provides a means to extrapolate to the
𝜒 = ∞ result. I will discuss these ideas further in a dynamical context for a Kibble-Zurek process
in Chapter 5.
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Chapter 3

Kardar-Parisi-Zhang Hydrodynamics in the
Heisenberg Spin Chain

In this chapter, I discuss a form of emergent hydrodynamics in one-dimensional quantum magnets,
known as Kardar-Parisi-Zhang (KPZ) hydrodynamics. In particular, KPZ hydrdoynamics is present
in the spin transport of the one-dimensional spin-1/2 Heisenberg model at high temperatures. This
model is one of the most well studied models of a quantum magnet, and yet the emergence of such an
anomalous spin transport remained unnoticed until recently [229]. Typically, the high temperature
regime behaves classically, as the thermal fluctuations tend to drown out any present quantum
fluctuations. However, in the classical Heisenberg spin chain, where the spins are modelled by unit
vectors, the spin transport is governed by diffusion rather than KPZ. Moreover, at low temperatures,
this model is governed by the Tomonaga-Luttinger liquid (TLL) theory [142, 119], which does
not exhibit KPZ hydrodynamics. This makes the presence of KPZ hydrodynamics, in the spin-1/2
Heisenberg model at high temperatures, surprising, and fundamentally a quantum phenomena.

In Sec. 3.1, I discuss the signatures of KPZ hydrdoynamics in the neutron scattering cross-
section. I then discuss a collaboration with the neutron scattering group at Oak Ridge National
Lab to detect these signatures experimentally in the material KYbSe2. In Sec. 3.2, I discuss the
crossover between the TLL physics exhibited at low temperatures, and the recently discovered high
temperature KPZ hydrodynamics.

3.1 Detection of Kardar-Parisi-Zhang hydrodynamics in a
quantum Heisenberg spin-1/2 chain

3.1.1 Introduction
Classical hydrodynamics is a remarkably versatile description of the coarse-grained behavior of
many-particle systems once local equilibrium has been established [207]. The form of the hy-
drodynamical equations is determined primarily by the conserved quantities present in a system.
Some quantum spin chains are known to possess, even in the simplest cases, a greatly expanded



CHAPTER 3. KARDAR-PARISI-ZHANG HYDRODYNAMICS IN THE HEISENBERG SPIN
CHAIN 34

set of conservation laws, and recent work suggests that these laws strongly modify collective spin
dynamics even at high temperature [54, 30]. Here, by probing the dynamical exponent of the one-
dimensional Heisenberg antiferromagnet KCuF3 with neutron scattering, we find evidence that the
spin dynamics are well described by the dynamical exponent 𝑧 = 3/2, which is consistent with
the recent theoretical conjecture that the dynamics of this quantum system are described by the
Kardar-Parisi-Zhang universality class [190, 229]. This observation shows that low-energy inelas-
tic neutron scattering at moderate temperatures can reveal the details of emergent quantum fluid
properties like those arising in non-Fermi liquids in higher dimensions.

Interacting magnetic moments (“spins”) governed by the laws of quantum mechanics can exhibit
a vast set of complex phenomena such as Bose-Einstein condensation and superfluidity [121],
topological states of matter [143], and exotic phase transitions [300, 103]. Understanding quantum
magnets is therefore a challenging task, connecting experiments with intensive theoretical modeling
and state-of-the-art numerical simulations. In that respect, linear arrangements of spins (“spin
chains”) at temperatures close to absolute zero have been influential because the one-dimensional
(1D) setting produces especially prominent quantum fluctuations [120].

The most celebrated model magnetic system realized in nature is the Heisenberg spin-half
chain, where isotropic magnetic moments are coupled by a nearest-neighbor antiferromagnetic
exchange interaction of strength 𝐽. It is characterized by fractional quasiparticles excitations called
spinons (Fig. 3.1b) with a dispersion relation given by ℏ𝜔(𝑄) = 𝐽 𝜋2 | sin(𝑄𝑎) |, where 𝑎 is the
lattice spacing unit (following convention for 1D chains, we set 𝑎 = 1 in this study). They are
responsible for the physical properties of the system and can be identified by the dynamical spin
response function, as measured in inelastic neutron spectroscopy. Spinons are created in pairs,
leading to a continuum in the neutron scattering spectrum, and interact with one another. In fact, in
the ground state, two-spinon states accounting for 71% of the total spectral weight have an upper
bound ℏ𝜔(𝑄) = 𝐽𝜋 | sin(𝑄/2) |, which gives its distinctive shape to the spectrum (Fig. 3.2a), and
including the four-spinon contribution on top of the two-spinon exhausts 98% of the weight [55],
etc.

As temperature increases and many spins are excited, the spin dynamics at frequencies ℏ𝜔 ≪
𝑘B𝑇 is usually thought of in terms of collective thermal rather than quantum effects. This high-
temperature regime has not been the focus of experimental study, but recent theoretical progress
in 1D quantum systems suggests that it nevertheless holds precious information on the underlying
quantum features [54, 30, 45]. One can make an analogy with the phenomenological derivation of
the equations of fluid dynamics, based on the continuity equations of conserved quantities (such
as mass, energy, or momentum): depending on the intrinsic quantum conservation laws of the
system, one expects the emergence of different kinds of coarse-grained hydrodynamic behaviors
for the spins at high-temperature. Remarkably, some 1D quantum systems, known as integrable
— including the Heisenberg spin-half chain — possess an infinite number of nontrivial conserved
quantities. They strongly constrain the overall dynamics of integrable systems and can endow
them with peculiar hydrodynamic properties, some of which have been observed experimentally
in a 1D cloud of trapped 87Rb atoms [314]. In the case of magnets, three universal regimes have
been identified [92, 83] and are classified by the dynamical exponent 𝑧, governing the length-time
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Figure 3.1: 1D physics in KCuF3. a Crystal structure of KCuF3, showing the orbital order of the
Cu 𝑥2 − 𝑦2 orbitals. This order leads to strong magnetic exchange interactions along the 𝑐 (vertical)
axis and weak exchange interactions along 𝑎 and 𝑏, such that the Cu2+ ions effectively make 1D
chains. b Schematic illustration of spinon excitations in a 1D Heisenberg antiferromagnet (based
on Ref. [143]). c Schematic illustration of three possible length-time scaling behaviors |𝑥 | ∼ 𝑡1/𝑧

observed at high temperature in 1D quantum magnets, classified by the dynamical exponent 𝑧: 𝑧 = 2
corresponds to diffusion (green curve), 𝑧 = 3/2 to superdiffusive (blue curve) and 𝑧 = 1 to ballistic
dynamics.

scaling, i.e., length ∼ time1/𝑧: 𝑧 = 2 corresponds to diffusion, 𝑧 = 1 to ballistic, and 𝑧 = 3/2 to
superdiffusive dynamics (Fig. 3.1c).

The presence of ballistic spin dynamics in integrable systems is theoretically established by
showing that at least part of the spin current 𝑗s in an initial state persists to infinite time, resulting
in an infinite spin dc conductivity. Quantitatively, this can be achieved by looking at the long-time
asymptote of the spin current-current correlation lim𝑡→∞

〈
𝑗s(𝑡) 𝑗s(0)

〉
, where saturation to a nonzero

value signals ballistic spin transport and a nonzero Drude weight. Although challenging for many-
body quantum systems, the Drude weight can be accessed numerically [191] and a lower bound can
often be obtained analytically [438, 282]. Diffusive behavior, one of the other universal regimes,
is typically recovered for systems with zero Drude weight, which implies eventual relaxation of
spin currents and finite transport coefficients. Unexpectedly, an intermediate scenario was recently
unveiled [172, 229, 127, 80]: a zero Drude weight but a slowly decaying (typically algebraically
with time) spin current-current correlation, giving rise to superdiffusive dynamics with 𝑧 = 3/2.
The intermediate scenario was found numerically [229] by calculation of the full scaling function
to belong to the Kardar-Parisi-Zhang (KPZ) universality class in 1+1 dimension, reproduced in
Sec. 3.3.2; a theoretical scenario for how KPZ dynamics emerges in the Heisenberg chain has been
proposed [44].

This universality class originates from the classical non-linear stochastic partial differential
equation of the same name [190], initially introduced to describe the evolution in time of the profile
of a growing interface. Generally speaking, a system is considered to be in the KPZ universality class



CHAPTER 3. KARDAR-PARISI-ZHANG HYDRODYNAMICS IN THE HEISENBERG SPIN
CHAIN 36

00

50

100
 (m

eV
)

spinon
continuum

a

00

2

4

6

8

cut a

cut b
cut c

=  meV
SEQUOIA
coverage

b

00

2

4

6

8

 (m
eV

)

75 K
c

0

300 K
d

0

2

4

6

 (a.u.)

Figure 3.2: Measured neutron spectrum of KCuF3. a Cartoon of the KCuF3 spinon spectrum. The
gray region at the bottom shows the region measured. b Zoom in on the region measured in the
SEQUOIA experiment, also showing three cuts (cut a, cut b, and cut c) used to approximate the
ℏ𝜔 → 0 scattering. c and d show measured spectra at 75 K and 100 K, respectively. Cut a is
indicated by the horizontal red bar. It is not possible to directly measure the magnetic scattering at
ℏ𝜔 → 0 due to the strong elastic incoherent scattering. Therefore, we take the lowest energy cuts
where magnetic scattering dominates, cut a, as shown in Fig. 3.4.

if its long-time dynamics shows the same scaling laws as appear in the KPZ equation itself. Besides
interface growth [358], such scaling has been found in disordered conductors [343], quantum
fluids [203], quantum circuits [252], traffic flow [122], and was recently predicted also to appear
in the high-temperature dynamics of some one-dimensional integrable quantum magnets [229, 80,
92, 83], although its exact microscopic origin is still under active research in this case.

Here, using neutron scattering experiments on KCuF3 1 , which realizes a nearly ideal quantum
Heisenberg spin-half chain, we report on the observation of KPZ dynamics at various temperatures
in the range 𝑇 = 75 K to 𝑇 = 300 K. Combining experimental measurements with extensive
numerical simulations based on a microscopic description of the system, we identify a characteristic

1The experiments of KCuF3 were conducted by my collaborators at Oak Ridge National Lab. See Ref. [308] for
more information about the researchers and their contributions.
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power-law ∝ 𝑄−3/2 behavior in the neutron scattering spectrum, in agreement with the KPZ
universality class predictions [280].

3.1.2 Methods
Here I will discuss the methods used to perform the numerical simulations. Additional information
about the experimental setup can be found in Sec. 3.3.1. The numerical simulations are based
on a matrix product state (MPS) method [316] using the ITensor library [108] to simulate the
finite-temperature spin dynamics of the 1D quantum Heisenberg spin-half chain of Eq. (3.6). We
use the purification method to represent the finite-temperature quantum state �̂�𝑇 (mixed state) as
a pure state |𝜓𝑇 ⟩ in an enlarged Hilbert space [370]. The construction of |𝜓𝑇 ⟩ is done using the
time-evolving block decimation (TEBD) algorithm [375] along with a fourth order Suzuki-Trotter
decomposition [113]. Details about constructing |𝜓𝑇 ⟩ and the TEBD algorithm can be found in
Chapter 2.

When the state |𝜓𝑇 ⟩ is obtained and normalized such that ⟨𝜓𝑇 |𝜓𝑇 ⟩ = 1 (this corresponds to
setting the partition function of the system to 1), we use a method expanding the desired spectral
function S(𝑄, 𝜔) in terms of Chebyshev polynomials [157, 390]. The dynamics is generated by
the Louivillian operator L̂ = ĤP ⊗ 𝐼Q − 𝐼P ⊗ ĤQ, i.e., the dynamical structure factor is expressed
directly in frequency space as [20, 362],

S (
𝑄, 𝜔

)
=

〈
�̂�−𝑄𝛿

(
ℏ𝜔 − L̂

)
· �̂�𝑄

〉
, (3.1)

with the momentum space spin operators defined by,

�̂�𝑄 =

√︂
2

𝐿 + 1

𝐿∑︁
𝑟=1

sin
(
𝑄𝑟

)
�̂�𝑟 , (3.2)

with 𝐿 the total number of spins in the system with lattice spacing taken equal to unity; 𝑟 labels
the spin index on the chain. Because MPS are more efficient at simulating systems with open
boundary conditions, we have used a slightly different version of the Fourier transform in the
above equation compared to the usual definition [25]; both are equivalent in the thermodynamic
limit 𝐿 → +∞. Here, the allowed momentum by the finite-length geometry are 𝑄 = 𝑘𝜋/(𝐿 + 1)
with 𝑘 = 1, 2, . . . , 𝐿. Because the Heisenberg model is isotropic with respect to the different spin
components, we can make the substitution

〈
�̂�−𝑄𝛿

(
𝜔 − L̂) · �̂�𝑄〉 → 3

〈
𝑆𝛼−𝑄𝛿

(
𝜔 − L̂)

𝑆𝛼𝑄
〉

and only
compute the dynamics associated with the 𝛼 ∈ [𝑥, 𝑦, 𝑧] spin component. In practice we choose
𝛼 ≡ 𝑧, and ignore the factor of 3 as the overall scale is adjusted to compare with experiments whose
spectral intensity is in arbitrary units (a.u.).

To compute the spectral function numerically, we expand the delta function of Eq. (3.1) in a
Chebyshev series [157, 390]. An expansion in Chebyshev polynomials, 𝑇𝑛 (𝑥) = cos

[
𝑛 arccos(𝑥)] ,

is only permitted for 𝑥 ∈ [−1, 1]. Thus, we rescale the spectrum of L̂ and 𝜔 by an amount 𝑊 to
ensure that the spectral function S(𝑄, 𝜔) is only non-zero in the range 𝜔 ∈ [−1 + 𝜖, 1 − 𝜖]. Using
a small 𝜖 > 0 helps with numerical stability. The rescaled quantities are defined by,

L̂′ = L̂/
𝑊, 𝜔′ = 𝜔

/
𝑊. (3.3)
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Then, the dynamical structure factor is written

S (
𝑄, 𝜔

)
=

1
𝑊𝜋

√
1 − 𝜔′2

∞∑︁
𝑛=0

(
2 − 𝛿𝑛0

)
`𝑛

(
𝑄

)
𝑇𝑛

(
𝜔′) , (3.4)

with `𝑛 (𝑄) = ⟨𝑡0 |𝑡𝑛⟩ the Chebyshev moments and |𝑡𝑛⟩ = 𝑇𝑛
(L̂′)𝑆𝑧𝑄 |𝜓𝑇 ⟩ the Chebyshev vectors.

They can be calculated iteratively by

|𝑡𝑛⟩ = 2L̂′|𝑡𝑛−1⟩ − |𝑡𝑛−2⟩, (3.5)

with |𝑡0⟩ = 𝑆𝑧𝑄 |𝜓𝑇 ⟩ and |𝑡1⟩ = L̂′|𝑡0⟩ as a starting point. For comparison between experiments and
numerical simulations, we use a system size of 𝐿 = 128 spins, a bond dimension 𝜒 = 256, and the
order of the Chebyshev expansion is 𝑁 = 3000. We chose𝑊 = 𝐿/2(1−𝜖) together with 𝜖 = 0.0125
for this work.

3.1.3 Searching for Kardar-Parisi-Zhang Hydrodynamics
KCuF3 has long been studied as a model of 1D Heisenberg antiferromagnetism with 𝑆 = 1/2 spins
borne by Cu2+ ions [152, 360, 204]. Due to the Cu2+ 𝑑𝑥2−𝑦2 orbital order (Fig. 3.1a), the magnetic
exchange interaction is limited to nearest-neighbor spins and is spatially anisotropic. It is dominant
along the 𝑐 axis (𝐽𝑐 = 33.5 meV) while the interchain coupling is much weaker (𝐽𝑎,𝑏 = −1.6 meV),
leading to effective one-dimensional 𝑐 axis spin-half chains. Although the system magnetically
orders at 𝑇𝑁 = 39 K due to the inherent presence of a finite exchange interaction 𝐽𝑎,𝑏, its behavior
for 𝑇 ≳ 𝑇𝑁 is a good approximation to an ideal 1D Heisenberg antiferromagnet which can be
modeled by the following Hamiltonian,

Ĥ = 𝐽𝑐
∑︁

𝑛
�̂�𝑛 · �̂�𝑛+1, (3.6)

with �̂�𝑛 the spin-1/2 operator on the site index 𝑛.
At equilibrium, the spin dynamics can be characterized through the correlation function be-

tween two spatially separated spins at different moments in time, and whose Fourier transform to
momentum and frequency spaces is the dynamical spin structure factor S (

𝑄, 𝜔
)
. This quantity is

directly proportional to the measured inelastic neutron scattering intensity, and can be computed
numerically for the model (3.6) using matrix product state (MPS) techniques (See Sec. 3.1.2), allow-
ing for a direct comparison between theory and experiments. Especially, the universal dynamical
exponent 𝑧 is expected to manifest itself in the form [280],

S (
𝑄, 𝜔→ 0

) ∼ 𝑄−𝑧, (3.7)

in the limit of small momentum 𝑄 and vanishing energy ℏ𝜔, with KPZ behavior identified by
𝑧 = 3/2.
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Figure 3.3: Deviations from 𝑄−3/2 KPZ behavior at finite temperature and finite energy transfer.
Each curve shows the fitted exponent for the MPS simulated low-𝑄 scattering as a function of
energy. At infinite temperature and ℏ𝜔 = 0, the exponent is −3/2. As temperature decreases, the
exponent generally increases. However, above 200 K, the KPZ behavior is still dominant. Error bars
indicate one standard deviation.

The simple scaling behavior of Eq. (3.7) is only exact as ℏ𝜔 → 0. However, elastic incoherent
scattering prevents the experiment from isolating the magnetic scattering at ℏ𝜔 → 0, so we take
the 0.7 < ℏ𝜔 < 2 meV scattering to be an approximation to the ℏ𝜔 → 0 spectrum. To evaluate the
robustness of this approximation, we consider three different energy ranges with ℏ𝜔 > 0.7 meV
(this is empirically where elastic incoherent scattering background is negligible), as indicated in
Fig. 3.2. Due to this experimental limitation, we examine the effect of the power-law behavior within
this energy range using MPS simulations. We still find a power-law region in the MPS simulations,
and we examine how the exponent depends on the energy window used, as well as the temperature
in Fig. 3.3. The main take away from this is that, for temperatures of 200 K and above, the exponent
drops as the frequency window increases, and as ℏ𝜔 → 0, the 𝑧 = 3/2 exponent is recovered.
Therefore an exponent close to, but lower than, 𝑧 = 3/2 would be consistent with KPZ scaling.

3.1.4 Results
A quantitative test to distinguish different kinds of hydrodynamics is the scattering intensity behavior
at small energy versus 𝑄 near the ferromagnetic wavevector 𝑄 = 0, see Eq. (3.7). We first compare
these data to MPS simulations integrated over the same energy range in Fig. 3.4. There is a very
good agreement between the two, with deviations only appearing at the low temperature (mainly
75 K). This discrepancy is attributed to the inherent interchain couplings (not present in the pure
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Figure 3.4: Power law behavior of KCuF3 around 𝑄 = 0. The left column shows experimental data
integrated over 0.7 < ℏ𝜔 < 2 meV (cut a in Fig. 3.2) symmetrized about 𝑄 = 0 compared with
the MPS simulations. The same multiplicative scaling factor is used for all temperatures, and the
agreement is quite good above𝑄 ≈ 0.2, below which finite-size effects are significant for MPS (see
Sec. 3.3.2). The right column shows the data fitted to a phenomenological power law. As a part of
the fit, the 𝑄 = 𝜋 peak was also fitted to a power law and subtracted off as background. The fitted
power is very close to −3/2 at all temperatures. Comparison to 𝑧 = 2 and 𝑧 = 1 exponents are
given in panel l. (Note that 𝑄 is unitless 0 → 2𝜋 as in Fig. 3.2.) Error bars indicate one standard
deviation.
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1D model), and which lead to antiferromagnetic ordering at 𝑇𝑁 = 39 K. In fact, it was theoretically
shown [94] that for dynamical quantities, the 1D temperature crossover in quasi-one-dimensional
systems such as KCuF3 is spoiled for 𝑇 ≲ 3𝑇𝑁 . Furthermore the spectral intensity at low-energy in
a strictly 1D system away from 𝑄 → ±0 and ±𝜋 is greatly suppressed with temperature, making
an accurate estimation from numerical simulations difficult; hence the non-physical oscillatory
behavior in the MPS data of Fig. 3.4 at 100 K and 75 K for intermediate 𝑄 values. The 𝑄 ≲ 0.1
experimental data deviates from power law behavior, partly because of𝑄 resolution broadening, and
partly because of the dispersion peaking away from𝑄 = 0 at finite energy. Moreover, the numerical
simulations do not allow us to reliably access the 𝑄 ≲ 0.2 regime: this is because simulations are
performed on finite-length chains (typically a hundred spins on the lattice) which introduces an
artificial cutoff at low𝑄 as ℏ𝜔 → 0 when it comes to the dynamics, as compared to a system in the
thermodynamic limit (see Sec. 3.3.2 for more details).

Having identified the temperature window where 1D physics take place, we consider in Fig. 3.4
the same experimental data from which a phenomenological 𝑄 = 𝜋 power-law background is
subtracted. This highlights the 𝑄 → 0 regime, where power-law fits of the form ∝ 𝑄−𝑧 give
an exponent close to 𝑧 ≈ 1.5 at all temperatures. Note that fits without this phenomenological
background yield results which are equivalent to within uncertainty, and are discussed further in
the Appendix 3.3.1. (Also note that experimental resolution broadening increases the fitted power
by 2-3%, also shown in Sec. 3.3.1, so the true 300 K exponent may be closer to 𝑄−1.31(5)). This
correction notwithstanding, the fitted exponent, while not𝑄−3/2 exactly, is clearly closer to that value
than to either 𝑄−1 (ballistic) or 𝑄−2 (diffusive). See Fig. 3.4l for a comparison between the three
cases. At 𝑇 = 300 K, the discrepancy between the expected 𝑄−3/2 behavior and the experimental
fit 𝑄−1.35(5) can be explained by the fact that we are not measuring at exactly ℏ𝜔 = 0. This effect
is experimentally unavoidable, and we thus consider our experimental results, in conjunction with
a comprehensive numerical study observing the same trend, to be clearly more consistent with the
KPZ universality class behavior than either of the conventional possibilities, ballistic or diffusive
behavior. A different experiment (e.g., with polarized neutrons or a spin-echo spectrometer) may
be able to measure the magnetic scattering at the elastic line.

In measuring the low-energy KCuF3 neutron spectrum, we also noticed a previously unreported
feature, shown in Fig. 3.5: as temperature increases, the dispersion around 𝑄 = 0 softens. In
other words, the split between ±𝑄 modes increases, showing a decreased dispersion velocity:
190(20) meV·Å at 100 K (within uncertainty of the theoretical 𝑇 = 0 velocity 207 meV·Å) to
84(9) meV·Å at 300 K. This feature is also captured by the MPS simulations, as shown in Fig. 3.5g-
l. This temperature dependent mode softening has not been noticed before, and indicates that the
excitation velocity is renormalized by interaction with other quasiparticles; such spin wave velocity
renormalization also exists in the two-dimensional quantum Heisenberg antiferromagnet.[56] We
leave it an open question whether this mode softening may relate to KPZ physics or be an apparent
shift from broadening by material-dependent damping.
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Figure 3.5: Temperature evolution of the KCuF3 neutron spectra around 𝑄 = 0. (𝑄 units are
defined in Fig. 3.2.) Panels a - f show colormap plots of the spectra (white dashed lines are fitted
linear dispersions), and panels g - l show constant energy cuts of 4 < ℏ𝜔 < 5 meV. The lower
panel also includes theoretical curves for comparison. (Panel g shows the zero-temperature Müller
ansatz [250] scaled to match the 𝑄 = 𝜋 intensities, the rest show the MPS calculations. Resolution
broadening has been applied to the theoretical curves, see Sec. 3.3.2 for details.) These show the
spinon modes splitting more as temperature increases, indicating a significant mode softening.
Error bars indicate one standard deviation.

3.1.5 Conclusion
Our results experimentally show the presence of KPZ-like physics in KCuF3, characterized by the
dynamical exponent 𝑧 = 3/2. The observation of this superdiffusive scaling in the high-temperature
dynamics of a Heisenberg chain demonstrates that inelastic neutron scattering can complement
transport as a probe of quantum coherent collective phenomena, even when those phenomena
do not have an interpretation in terms of a small number of quasiparticles. In some situations
transport measurements are prohibitively difficult, like in many non-chiral 1D systems where even
trace impurities or small defects simply interrupt macroscopic transport. In such cases, neutron
scattering can probe subtle fluid properties where the dynamical exponent 𝑧 around the low-energy
dispersion reveals the nature of the collective quasiparticle flow.

In higher dimensions, this approach can provide insight into analogues of non-Fermi liquid
scaling and other behaviors hypothesized to exist from transport, with the advantage of an in-
creased degree of quantum coherence and a precise characterization of the model Hamiltonian. In
one dimension, this work goes significantly beyond previous efforts with other techniques to see
generalized hydrodynamics from integrability by revealing a different scaling regime. Theoreti-
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cally, there remain important questions to be understood, such as how to characterize the crossover
regime when integrability is broken by interchain couplings or other residual interactions (dis-
cussed further in Sec. 3.2). In particular, there are spin chains where the field-theory description
at low temperatures shows emergent integrability but the lattice-scale physics is not integrable,
unlike for the Heisenberg model, and it should be possible to apply our combined experimental and
computational approach to this category of systems as well.

3.2 Spatiotemporal Crossover Between Low- and
High-Temperature Dynamical Regimes in the Quantum
Heisenberg Magnet

3.2.1 Introduction
At low temperatures, reduced spatial dimensionality greatly enhances quantum fluctuations in
physical systems, giving rise to exotic properties. In that regard, one-dimensional (1D) quantum
many-body systems have always been influential and generically fall into two classes [142, 119]: on
the one hand, gapless low-energy excitations described in the framework of Tomonaga-Luttinger
liquid (TLL), and on the other, a gapped behavior. Theoretical predictions have been intensively
checked by experiments in various contexts, ranging from ultracold atom setups to quantum mag-
nets [118, 388].

At energy ℏ𝜔 ≪ 𝑘B𝑇 , the physics is usually thought of in terms of thermal rather than quantum
effects. This regime had not been thought to hold phenomena as compelling as its low-temperature
counterpart until very recently. Indeed, recent theoretical progress suggests that the equilibrium
and out-of-equilibrium dynamics of some 1D quantum systems can exhibit peculiar behaviors and
contain information about the intrinsic quantum features, even at very high temperatures [30, 54,
45].

While such many-particle systems are governed at the microscopic level by the Schrödinger
equation, they display in the long-time and long-wavelength limits an emergent coarse-grained
hydrodynamic behavior. An analogy can be made with classical fluid dynamics: one does not de-
scribe individual particles with Newton’s laws of motion but relies instead on phenomenological
continuous differential equations, ideally more amenable. The derivation of hydrodynamic equa-
tions is based essentially on continuity equations of conserved quantities (e.g., mass, energy, etc.),
assuming local equilibrium [207].

Quantum systems also possess conservation laws, and depending on those, one expects the
emergence of different kinds of coarse-grained hydrodynamic descriptions. Singularly in 1D, a class
of quantum systems—known as integrable—has an infinite set of nontrivial conserved quantities
that can lead to anomalous dynamical behaviors [438, 339, 340, 282, 437, 192, 171, 30, 54, 45, 79,
129, 254, 9, 229, 80, 127, 9, 128, 92, 83, 82, 111, 10, 173, 44, 29, 231, 81, 308].
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Integrable systems are typically described by very fine-tuned models but some of them can
be reliably realized in the lab (e.g., the Lieb-Liniger model representing a gas of one-dimensional
bosons with contact repulsion [226, 225]) and found with high fidelity in nature (e.g., the spin-1/2
Heisenberg chain of magnetic moments coupled by a nearest-neighbor exchange interaction [119]).
In that context, some of the theoretical predictions have been successfully tested on 1D cloud
of trapped 87Rb [314, 239] and 7Li [184] atoms for out-of-equilibrium dynamics and by neutron
scattering on the quantum magnet KCuF3 at thermal equilibrium [308].

In the case of quantum magnets, it has been numerically conjectured, based on microscopic
simulations, that in the limit of infinite temperature, the spin dynamics of the 𝑆 = 1/2 Heisenberg
chain is anomalous and belongs to the Kardar-Parisi-Zhang (KPZ) universality class in 1 + 1
dimensions [190, 229]. It is characterized by a dynamical exponent 𝑧 = 3/2, controlling the
length-time scaling of the dynamical properties. This exponent has been recently observed in
the high-temperature neutron spectrum of KCuF3 [308] (discussed in Sec. 3.1), which is directly
proportional to the dynamical structure factor, probing spin-spin correlations.

Here, we seek to reconcile the low-temperature physics of the 𝑆 = 1/2 Heisenberg chain, falling
within the gapless TLL category, with the recently found infinite-temperature KPZ hydrodynam-
ics. Whereas both regimes have been studied independently, no work has attempted to bring them
together. We precisely define the long-time and long-wavelength limits for the emergence of anoma-
lous dynamics versus the temperature. We find that these limits define a spatiotemporal crossover
beyond which hydrodynamics take place. As the temperature is lowered, the crossover is pushed
toward infinity and eventually disappears at exactly zero temperature, see Fig. 3.6. This scenario
allows one to recover the well-known zero temperature results where KPZ hydrodynamics is absent.
Moreover, because experimental dynamical condensed matter probes such as neutron scattering
or nuclear magnetic resonance (NMR) work for all practical purposes at a finite frequency and
finite temperatures, it is paramount to better understand and quantitatively define the theoretical
limits. We discuss the implication of our results for experiments and confront our findings to
earlier high-temperature NMR experiments on the nearly ideal Heisenberg spin-1/2 compound
Sr2CuO3 [361].

3.2.2 Model and Method
The 1D spin-1/2 Heisenberg model is described by the lattice Hamiltonian,

Ĥ = 𝐽
∑︁

𝑗
�̂� 𝑗 · �̂� 𝑗+1, (3.8)

with �̂� 𝑗 = (𝑆𝑥𝑗 , 𝑆𝑦𝑗 , 𝑆𝑧𝑗 ) and 𝐽 > 0 the nearest-neighbor antiferromagnetic exchange. To investigate
the thermal equilibrium spin dynamics, we consider the time-dependent spin-spin correlation
function

𝐶
(
𝑇, 𝑥, 𝑡

)
= tr

[
�̂�𝑥

(
𝑡
) · �̂�0

(
0
)
�̂�𝑇

] ∈ C, (3.9)
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Figure 3.6: Log-scale intensity plot of the Euclidean norm of the spin-spin correlation (3.9) at
𝑇 = 0.25. Simulation obtained for 𝐿 = 256 with 𝜒 = 1024. The goal of this Letter is to determine
and study the superdiffusive region delimited by the spatiotemporal crossover 𝑡★ of Eq. (3.10)
versus the temperature (white circles and dashed white line). As the temperature is decreased, we
find that the superdiffusive region is shifted vertically to longer and longer times by a factor ∝ 1/𝑇 ,
and eventually disappears at exactly zero temperature.

with �̂�𝑇 = e−Ĥ/𝑘B𝑇/tr(e−Ĥ/𝑘B𝑇 ) as the thermal density matrix of the system at temperature 𝑇 and
�̂� 𝑗

(
𝑡
)
= e𝑖Ĥ 𝑡/ℏ�̂� 𝑗e−𝑖Ĥ 𝑡/ℏ as the time-dependent spin operator in the Heisenberg picture. We set

𝐽 = 𝑘B = ℏ = 1 in the following. We compute the correlation function (3.9) based on a numerical
matrix product state (MPS) approach [315, 108], where we represent the mixed state as a pure state
in an enlarged Hilbert space [371, 440]. We use the time-evolving block decimation algorithm [376]
along with a fourth-order Trotter decomposition [148] to handle the exponential operators [1].

At fixed distance 𝑥 and temperature𝑇 , the hydrodynamics regime is characterized by an algebraic
decay of the Euclidean norm of the spin-spin correlation (3.9) function at long time,��𝐶 (

𝑇, 𝑥, 𝑡
) �� ∝ 𝑡−1/𝑧 for 𝑡 ≳ 𝑡★

(
𝑥, 𝑇

)
, (3.10)

with 𝑧 as the dynamical exponent. The long-time limit is denoted by the crossover time 𝑡★, which
we aim to identify, see Fig. 3.6. Depending on the microscopic model, three values for the exponent
𝑧 have been reported for 1D quantum magnets: 𝑧 = 3/2 corresponding to superdiffusion, 𝑧 = 1
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Figure 3.7: Time dependence of the norm of the spin-spin correlation (3.9) at 𝑥 = 0 for various
temperatures 𝑇 . Simulations obtained for 𝐿 = 256 with 𝜒 = 1024. At long time, it displays an
algebraic decay with time, according to Eq. (3.10). It is well fitted by the form Υ(𝑇) 𝑡−2/3 with
Υ(𝑇), a temperature-dependent prefactor decreasing with the temperature reported in Fig. 3.8(b).
The deviation from the genuine power law at long time is the result of the bond dimension being
too small.

for ballistic, and 𝑧 = 2 for diffusion [92, 83]. Superdiffusion is expected for the isotropic spin-1/2
Heisenberg model of Eq. (3.8).

3.2.3 Autocorrelation
We first consider the autocorrelation function (𝑥 = 0) versus time for different temperatures, as
plotted in Fig. 3.7. Two regimes are clearly visible, delimited by the crossover time 𝑡★(𝑥 = 0, 𝑇)
(see Sec. 3.3.4 for more details). Beyond the crossover time and for all temperatures, one finds the
expected power-law decay ∝ 𝑡−2/3 of superdiffusive hydrodynamics. Note that the rapid change of
slope from the genuine power-law, at the longest times displayed, is the result of the bond dimension
being too small and not a physical effect.

With high-temperature physics beyond 𝑡★, one can suspect low-temperature features at shorter
times. For instance, the oscillating behavior observed in the norm of the autocorrelation is rem-
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iniscent of a change of sign in the real and imaginary part (see Sec. 3.3.4 for more details),
signaling antiferromagnetic correlations as the temperature is lowered. The long-time asymptotic
of 𝐶 (𝑇 = 0, 𝑥 = 0, 𝑡) has been studied at exactly zero temperature [271, 270]. It is composed
by several power-law decaying contributions with the slowest one being ∝ 𝑡−1 (up to logarithmic
corrections inherent to the isotropic spin-1/2 Heisenberg antiferromagnet [6, 258, 100, 359, 7,
24, 23, 90]). We cannot identify this regime in Fig. 3.7, which we attribute to insufficiently low
temperatures, and discussed further in Sec. 3.3.4.

We now turn our attention to the temperature dependence of the crossover time 𝑡★(𝑥 = 0, 𝑇).
It is plotted in Fig. 3.8(a) versus the inverse temperature and shows a linear dependence. It can be
understood as follows. It is well known that a finite temperature induces a thermal correlation length
b which diverges as 𝑇 → 0 as ∝ 𝑢/𝑇 (up to logarithmic corrections [258]) with 𝑢 the velocity of
low-energy excitations in the spin-1/2 chain. Moreover, the dynamical correlation function (3.9)
can also be thought of as measuring the spreading of a spin excitation. In this picture, the system
behaves like a TLL for 𝑡 ≲ b/𝑢, which can be identified as the crossover time 𝑡★(𝑥 = 0, 𝑇) ∝ 1/𝑇 .
Hence, the onset of superdiffusive hydrodynamics simply takes place as the low-energy physics
gets suppressed by the finite temperature. It is only at zero temperature that the system is strictly
critical and thus does not display any sign of anomalous high-energy dynamics. In addition to the
linear dependence with ∝ 1/𝑇 , there is an 𝑂 (1) constant in Fig. 3.8(a) that coincides with the very
short-time dynamics where |𝐶 (𝑇, 𝑥 = 0, 𝑡 ≃ 0) | ≃ 0.75.

At infinite temperature, it has been established that the dynamics belong to the 1 + 1 KPZ
universality class [190, 229], as it shows the same scaling laws as appear in the KPZ equation
itself: 𝜕𝑡ℎ = 1

2_
(
𝜕𝑥ℎ

)2 + a𝜕2
𝑥 ℎ +

√
𝜎[ with ℎ ≡ ℎ(𝑥, 𝑡), [ ≡ [(𝑥, 𝑡) a normalized Gaussian white

noise, and _, a, and 𝜎 parameters. It is a Langevin equation, with no quantum roots—and which
makes the observation of its physics in a quantum magnet rather puzzling. In the right limits, the
noise-averaged slope correlations behave as [349, 348]

𝐶KPZ
(
𝑥, 𝑡

) ≃ 𝜒s
(
_KPZ𝑡

)−2/3
𝑓KPZ

[
𝑥
(
_KPZ𝑡

)−2/3
]
, (3.11)

with 𝜒s = 𝜎/2a as the static spin susceptibility, _KPZ =
√

2_, and 𝑓KPZ as the KPZ scaling func-
tion [280]. The numerical observation of the scaling (3.11) for the Heisenberg spin chain through
the spin-spin correlation (3.9) served as a conjecture regarding the nature of its dynamics [229].
A theoretical scenario for how KPZ hydrodynamics emerges in the Heisenberg chain has been ad-
vanced [44]. A relation between the parameters of the KPZ equation with those of the microscopic
quantum model has been proposed [82]. Here, by identifying the prefactor of 𝐶KPZ(𝑥 = 0, 𝑡) in
Eq. (3.11) with the prefactor Υ(𝑇) of the power-law decay ∝ 𝑡−2/3 shown in Fig. 3.8(b), we are able
to report on the temperature dependence of the parameters. The high-temperature data points are
compatible with Ref. [82]. In addition, for 𝑇 ≲ 1, we find that Υ(𝑇) = 0.13(1)𝑇2, and therefore that
𝜒s_

−2/3
KPZ 𝑓KPZ(0) ∝ 𝑇2. We argue in Sec. 3.3.3 that this behavior is compatible with earlier NMR

experiments on Sr2CuO3 [361].
The definition of the crossover time 𝑡★ in Eq. (3.10) for the onset of superdiffusion is related to

the power-law dependence ∝ 𝑡−2/3 and not 𝑓KPZ of Eq. (3.11). It is well known that unambiguously
identifying the scaling function from microscopic simulations with 𝑓KPZ requires great numerical
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Figure 3.8: The data points are extracted from Fig. 3.7. (a) Temperature dependence of the crossover
timescale 𝑡★

(
𝑥 = 0, 𝑇

)
beyond which the algebraic decay ∝ 𝑡−2/3 for superdiffusive hydrodynamics

emerges, see Eq. (3.10). It shows a linear dependence with the inverse temperature (dashed line).
(b) Temperature dependence of the prefactor Υ(𝑇) of the algebraic decay ∝ 𝑡−2/3 for superdiffusive
hydrodynamics. At low temperatures 𝑇 ≲ 1, it follows a quadratic dependence ∝ 𝑇2 (dashed line).

precision and long-time data for all distances 𝑥 [229]. This is beyond the capability of our simulations
at low temperatures. Instead, we consider the spatial dependence of 𝑡★ for |𝑥 | > 0.

3.2.4 Spatiotemporal Crossover
The time-dependent spin-spin correlation function (3.9) is associated with a light-cone structure
and we therefore expect 𝑡★(𝑥, 𝑇) to be an increasing function with the distance |𝑥 |. It is verified in
Fig. 3.9(a) where we plot its time dependence at fixed temperature (𝑇 = 0.25). As |𝑥 | increases,
the onset of superdiffusion takes place at longer and longer times, and we display the crossover
timescale in Fig. 3.9(b) for different temperatures. Because we can only reliably estimate it for
|𝑥 | ≲ 30, it is difficult to draw a definite conclusion on its scaling. Nevertheless it is compatible
with a superdiffusive length-time scaling of the form,

𝑡★
(
𝑥, 𝑇

)
= 0.4(9) + 6.8(4)

𝑇
+ 0.17(3)

�� 𝑥 ��3/2
, (3.12)
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Figure 3.9: (a) Time dependence of the norm of the spin-spin correlation (3.9) at 𝑇 = 0.25 for
various distances 𝑥. Simulations obtained for 𝐿 = 256 with 𝜒 = 1024. The curves have been
shifted vertically for visibility. At long time, it displays an algebraic decay with time, according to
Eq. (3.10), well fitted by the form ∝ 𝑡−2/3. The deviation from the genuine power law at long time
is the result of the bond dimension being too small. (b) Spatial dependence of the crossover time
𝑡★(𝑥, 𝑇) beyond which the algebraic decay ∝ 𝑡−2/3 for superdiffusive hydrodynamics emerges, see
Eq. (3.10). The dashed lines are fits of the form 𝐴 + 𝐵 |𝑥 |3/2 with 𝐴 ≡ 𝑡★(0, 𝑇) and 𝐵 = 0.17(3)
found to be temperature independent (see Sec. 3.3.4 for more details).

with the first two terms obtained from the 𝑡★(𝑥 = 0, 𝑇) data, see Fig. 3.8(a). The prefactor of |𝑥 |3/2

is found independent of the temperature (see Sec. 3.3.4 for more details). The reported numerical
parameters are obtained by least-square fitting. The spatiotemporal crossover time (3.12) is plotted
on top of the norm of the spin-spin correlation in Fig. 3.6 for 𝑇 = 0.25. Note that based on
this picture, we expect logarithmic corrections for the temperature dependence, but they are not
detectable from our simulations [2].

3.2.5 Experimental Consequences
Although we have focused on the norm of the spin-spin correlation (3.9), we find that

|ℑ𝔪𝐶 (𝑇, 𝑥, 𝑡) | ≪ |ℜ𝔢𝐶 (𝑇, 𝑥, 𝑡) | for 𝑡 ≳ 𝑡★, (3.13)
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and that the superdiffusive power law ∝ 𝑡−2/3 only holds for the real part, which therefore hosts the
relevant high-temperature physics. For instance, superdiffusion was observed in KCuF3 by neutron
scattering in the limit of small momentum and vanishing frequency [308], which probes the Fourier
transform to momentum and frequency spaces of 𝐶 (𝑇, 𝑥, 𝑡).

Another promising experimental technique for investigating high-temperature hydrodynamics
is NMR, which has been successfully used to characterize the low-temperature TLL regime in
numerous spin compounds [199, 36, 182, 183, 90, 71, 28, 94, 159]. Nuclear spins are polarized via
a static magnetic field (ideally weak) and then perturbed by an electromagnetic pulse of frequency
𝜔0, chosen to target specific nuclei as per the Zeeman splitting. Following the perturbation, the
nuclear spins relax over time with an energy transfer to the electrons. When the nuclear and
electronic spins belong to the same atom, the relaxation rate is related to the autocorrelation
function, 1/𝑇1 ∼

∫ 1/𝜔0
0 ℜ𝔢𝐶 (𝑇, 𝑥 = 0, 𝑡) d𝑡 [4, 158, 341]. With 𝜔0 of the order of a few mK, it

usually leads to a frequency-independent 1/𝑇1 as long as the correlation decays quickly enough.
Here, the hydrodynamics regime should lead instead to 1/𝑇1 ∝ 𝜔1/𝑧−1

0 and give access to 𝑧 in
the right frequency regime. According to Eq. (3.12), the corresponding crossover frequency scale
𝜔★ ∼ 1/𝑡★ goes as ∝ 𝑇 , and superdiffusion will be visible if 𝜔0 ≪ 𝜔★ ∼ 𝑇 . Considering the
experimental range of 𝜔0, this condition is fulfilled even at low temperatures, where measurements
are often less noisy and less subject to spoiling effects such as phonons.

Thus, the existence of a finite spatiotemporal crossover 𝑡★(𝑥, 𝑇) in the form of Eq. (3.12) confirms
that superdiffusive hydrodynamics is within the experimentally relevant window of parameters with
respect to temperatures, time and length scales for quantities involving ℜ𝔢𝐶 (𝑇, 𝑥, 𝑡).

In fact, a power-law behavior of the form 1/𝑇1 ∝ 𝜔−𝛼
0 has been reported in the nearly ideal

spin-1/2 Heisenberg antiferromagnet Sr2CuO3 (𝐽 ≃ 2200 K) at 𝑇 = 295 K a couple of decades
ago [361]. NMR was performed on the 17O, coupled symmetrically to the Cu2+ carrying the relevant
electronic spin, which filtered out the 𝑞 = ±𝜋 contributions in the 1/𝑇1 due to form factors, but not
the long-wavelength modes 𝑞 = 0 holding hydrodynamics. Although the measurement accuracy
was not sufficiently precise to extract the exponent 𝛼, the results are compatible with 𝛼 ≈ 0.33,
which corresponds to 𝑧 = 3/2. In addition, the authors find that at fixed frequency, the NMR
relaxation rate may be approximated by an empirical form 1/𝑇1𝑇 ≈ 𝑎 + 𝑏𝑇 for 𝑇 ≪ 𝐽 with 𝑎 and
𝑏 fitting constants. When dropping 𝑎, this is compatible with Υ(𝑇) ∝ 𝑇2 reported in Fig. 3.8(b),
which relates to the temperature dependence of the parameters of the KPZ equation.

Today’s theoretical understanding of the dynamics of 1D quantum systems and our results call
for new NMR experiments on spin chains at high temperatures. It would provide a complementary
probe to neutron scattering [308] to access anomalous spin transport in quantum materials.

3.2.6 Conclusion
Building on large-scale MPS calculations, we reconciled the well-established low-temperature
dynamics of the quantum Heisenberg spin-1/2 chain with the recently predicted high-temperature
superdiffusive regime related to KPZ hydrodynamics. We have found that both coexist, and the
transition from one to the other takes the form of a spatiotemporal crossover. The crossover is
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controlled by the temperature: as the temperature is lowered, the growing quantum correlations
between degrees of freedom push the onset of superdiffusion to longer length and timescales as
∝ 1/𝑇 . We also reported on the temperature dependence of the parameters of the KPZ equation,
which should provide useful guidance in relating them to the microscopic parameters of the quantum
model. We also showed that only the real part of the spin-spin correlations holds the superdiffusive
hydrodynamics. Finally, we discussed the experimental consequences of our results for condensed
matter probes. We motivated NMR experiments as a great way to measure spin transport in quantum
materials and showed that earlier results are compatible with the current theoretical understanding
yet calling for new experiments in quantum spin chains. Because NMR requires the use of a
static magnetic field to polarize the nuclear spins, it would be insightful to study the effect of this
perturbation on the dynamics of the 𝑆 = 1/2 Heisenberg chain studied in this Letter. We believe
that it would induce another crossover from superdiffusion to ballistic dynamics, which needs to be
characterized.

3.3 Appendix

3.3.1 Experimental Details
In this section of the appendix, I discuss additional information regarding the experiment conducted
in KCuF3 by my collaborators at Oak Ridge National Lab. I was not involved directly with conduct-
ing the experiments, but the experimental detection of KPZ hydrodynamics is an important part of
this thesis work, and so I include additional details here.

Data collection

To search for effects of KPZ behavior, we measured the inelastic KCuF3 neutron spectrum using the
SEQUOIA spectrometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Our
sample was a 6.86 g KCuF3 single crystal mounted with the 𝑐 axis perpendicular to the incident
beam. To probe hydrodynamic signatures, we focused on the low-energy part of the spectrum. We
measured with an incident energy 𝐸𝑖 = 8.2 meV, which gives access to the very bottom of the
spectrum (the total KCuF3 bandwidth is 105 meV [204]), as shown in Fig. 3.2, with a resolution
full width at half maximum 0.25 meV.

We measured six temperatures of KCuF3 with the 𝑐 axis perpendicular to the incident neutron
beam, and an incident energy of 𝐸𝑖 = 8.2 meV, shown in Fig. 3.10. Data were integrated over all
directions perpendicular to 𝐿 [205]. At each temperature, the spectra was measured for eight hours
at nominal 1.4 Mw operation [244], with choppers set to 120 Hz (SEQ-100-2.0-AST chopper with
2 mm slit spacing). Data were corrected for the form factor by calculating the magnitude of 𝑄 for
each pixel and dividing by the anisotropic 𝑑𝑥2−𝑦2 Cu2+ form factor [32, 415]:

𝑓 (Q) = ⟨ 𝑗0⟩ + 5
7
(3 cos2 𝛽 − 1)⟨ 𝑗2⟩ + 3

56
(35 cos4 𝛽 − 30 cos2 𝛽 + 35 sin4 𝛽 cos 4𝛼 + 3)⟨ 𝑗4⟩ (3.14)
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Figure 3.10: Temperature dependent neutron spectra of KCuF3.

where 𝛽 is the angle between Q and the 𝑧 axis of the 𝑑𝑥2−𝑦2 orbital, and 𝛼 is the 𝑥𝑦-plane angle
from the 𝑥 axis. We used Cu2+ ⟨ 𝑗𝑛⟩ constants from Ref. [41]. As shown in Fig. 3.11, each pixel at
nonzero 𝑄𝐿 (along the chain) or ℏ𝜔 includes a nonzero 𝑄𝐻𝐻 component

𝑄𝐻𝐻 =
√︃
𝑘2
𝑓 −𝑄2

𝐿 − 𝑘𝑖 (3.15)

where 𝑘 𝑓 and 𝑘𝑖 are the magnitudes of the incident and final neutron wavevectors. Taking this into
account, we calculated the anisotropic form factor for the two 𝑑𝑥2−𝑦2 orbital orientations shown in
Fig. 1(a) in the main text, averaging over both orientations. The final calculated form factor for this
geometry is in Fig. 3.11b. Fig. 3.12 compares the isotropic and anisotropic Cu2+ form factors: the
difference is noticeable but small. The fitted 300 K dynamic exponent is 1.36(5) with the isotropic
form factor correction, and 1.35(5) with the anisotropic form factor correction: no difference to
within uncertainty.

In order to estimate the experimental resolution of the SEQUOIA spectrometer for this ex-
periment, we simulated an antiferromagnetic linear chain spin wave dispersion with a bandwidth
52.7 meV (the lower bound of the spinon continuum) using MCViNE virtual neutron experiment
[227]. The Monte Carlo ray tracing simulations of SEQUOIA [130] were run using McVine for
2 × 1010 incident neutron packets using the exact incident energy and chopper settings used during
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Figure 3.12: Comparison of the isotropic Cu2+ to the anisotropic Cu2+ form factor. a Color contour
map of the isotropic Cu2+ form factor compared to b the anisotropic 𝑑𝑥2−𝑦2 Cu2+ form factor for
KCuF3. The differences are subtle: the anisotropic form factor falls off faster with 𝑄𝐿 but more
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Figure 3.13: Simulated neutron spectrum of a 1D antiferromagnetic spin chain in the SEQUOIA
experiment, in order to show resolution width. The inelastic spectra is assumed to be the semi-
classical linear spin wave theory dispersion, and the𝑄 resolution has a FWHM 0.08. Panel a shows
the spectrum, and panel b shows constant-energy cuts. At 4.5 meV, the two modes of the dispersion
are just barely distinguishable.

the experiment. The results are shown in Fig. 3.13, and indicate a 𝑄 resolution has a FWHM
0.08. Note that the finite-temperature mode softening and the power law in 𝑄 are absent from this
simulated data, indicating that they are intrinsic to KCuF3 and not resolution effects.

To estimate the impact of experimental resolution on the fitted power law, we used the resolution
function defined by the MCViNE simulations in Fig. 3.13, and convolved the 300 K MPS data with
a Gaussian resolution width, shown in Fig. 3.14. We find that the fitted exponent of the broadened
data increases slightly (by 2.7%) because of the sharp 𝑄 = 0 feature becoming smoothed out to
higher 𝑄. This means that the experimental fits slightly overestimate the dynamic exponent: the
true 300 K KCuF3 dynamic exponent may be closer to 1.31(5) than 1.35(5).

Data fitting

We show the power law fit for different choices of the energy window at the temperatures relevant
for experiments in Fig. 3.17, analogous to Fig. 3.16. In this case, the trends are more clear: at lower
temperatures, the fitted power is larger, and larger energy windows suppresses the fitted power at
high temperatures, and enhances the fitted power at the lowest temperatures.

In Fig. 3.4, we subtract a phenomenological power law at 𝑄 = 𝜋 in order to isolate the power
law at 𝑄 = 0. The fitted power laws are shown in Fig. 3.15, showing that the power near 𝑄 = 𝜋
dramatically varies with temperature both in theory and experiment. We also chose the lowest
energy window (“cut a” in Fig. 3.2) to approximate the ℏ𝜔 = 0 scattering. If we do not do this, but
instead define a constant background based off the lowest temperature data, the fitted exponents are
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Figure 3.14: Effect of resolution broadening on the fitted power law, demonstrated using the MPS
300 K simulation. The resolution-broadened fit increases the fitted exponent by 2.7%, which means
that the fitted experimental data slightly overestimates the dynamic exponent.

shown in Fig. 3.16. We also show the results of fits to cuts b and c. Forgoing the phenomenological
background means that the power law is visible over a narrower range in 𝑄, but in nearly every
case the fitted powers agree to within uncertainty. Meanwhile, an increase in the energy window
yields slightly different fitted powers, generally decreasing as the window increases. All fits were
performed with the scipy least squares routine [378].

3.3.2 Spectral Function Additional Information
Gaussian broadening

Extracting an analytic spectral function from simulations is difficult due to the discrete spectrum for
any finite system. A common technique is to broaden the delta functions with a smooth distribution,
such as a Gaussian. Here, this is achieved by scaling the moments, `𝑛 (𝑄), by a damping factor 𝑔𝑛
that also smooths out the Gibbs oscillations that occur from truncating the series in Eq. (3.4) to a
finite value 𝑁 . This can be achieved via Jackson damping [383], with

𝑔𝑛 =
𝑁 − 𝑛 + 1
𝑁 + 1

cos
( 𝜋𝑛

𝑁 + 1

)
+ 1
𝑁 + 1

sin
( 𝜋𝑛

𝑁 + 1

)
cot

( 𝜋

𝑁 + 1

)
. (3.16)

Note that 𝑔𝑛 is a monotonic function of 𝑛 that decays from 1 to 0, and in the limit 𝑁 → +∞,
𝑔𝑛 → 1 for all 𝑛. Jackson damping has the effect of smoothing out the finite system spectral
peaks with a Gaussian with an 𝜔 dependent width. This Gaussian broadening procedure is used in
Figs. 3.22, 3.21, and 3.5.
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Figure 3.15: Power law fits for KCuF3 scattering showing the fitted phenomenological power law
at 𝑄 = 𝜋. The left column shows the data with the 𝑄 = 0 and 𝑄 = 𝜋 fitted power laws, the middle
column shows the 𝑄 = 𝜋 power law with the 𝑄 = 0 (dynamic exponent) subtracted, and the right
column shows the experimental data compared to MPS simulations in the vicinity of 𝑄 = 𝜋. The
data near 𝑄 = 𝜋 follows a power law very well, but it dramatically varies with temperature. The
right column shows this is the case for both theory and experiment. Error bars indicate one standard
deviation.
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Figure 3.16: Power law fits for low-𝑄 KCuF3 scattering for three different energy windows: 0.7 <
ℏ𝜔 < 2 meV (cut a, left column), 0.7 < ℏ𝜔 < 3 meV (cut b, middle column), and 0.7 < ℏ𝜔4 meV
(cut c, right column). No background has been subtracted, and the window where data was fitted is
indicated in gray. Note that these powers, in most cases, agree to within uncertainty with those in
Fig. 4 in the main text. Error bars indicate one standard deviation.



CHAPTER 3. KARDAR-PARISI-ZHANG HYDRODYNAMICS IN THE HEISENBERG SPIN
CHAIN 58

10 2

100

 (a
.u

.) 75 K
. ( ) 

a

. < <  meV
75 K

. ( ) 

b

. < <  meV
75 K

. ( ) 

c

. < <  meV

10 2

 (a
.u

.) 100 K. ( ) 

d

100 K. ( ) 

e

100 K. ( ) 

f

10 2

10 1

 (a
.u

.) 150 K. ( ) 

g

150 K. ( ) 

h

150 K. ( ) 

i

10 1

 (a
.u

.) 200 K. ( ) 

j

200 K. ( ) 

k

200 K. ( ) 

l

10 1

 (a
.u

.) 250 K. ( ) 

m

250 K. ( ) 

n

250 K. ( ) 

o

10 1 100

10 1

 (a
.u

.) 300 K. ( ) 

p
10 1 100

300 K. ( ) 

q MPS simulation
10 1 100

300 K. ( ) 

r

Figure 3.17: Power law fits to the low-𝑄 MPS simulated spectrum for three different energy
windows: 0.7 < ℏ𝜔 < 2 meV (cut a, left column), 0.7 < ℏ𝜔 < 3 meV (cut b, middle column),
and 0.7 < ℏ𝜔 < 4 meV (cut c, right column). The window where data was fitted is indicated in
gray. Note that the finite energy transfer causes the exponent to deviate from the ℏ𝜔 = 0 value
of 𝑧 = 3/2: too large at low temperatures, and too high at high temperatures. Also note that the
exponent magnitude is suppressed as the energy transfer window increases.
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Figure 3.18: The absolute value of the Chebyshev moments, |`𝑛 |, as a function of 𝑛 for the case
of 𝑇 = 75 K, and 𝑄 = 1.680. The vertical line in red illustrates 𝑁∗, the value of 𝑛 for which we
terminate the series in Eq. (3.4).

Chebyshev moments and convergence

The Chebyshev moments, `𝑛 (𝑄), are the expansion coefficients in Eq. (3.4), and dictate the conver-
gence of the numerical simulations. The moments have an envelope that decays exponentially [390],
and if `𝑛 (𝑄) is not “sufficiently close to zero”, then our simulations are unreliable. We fit the en-
velope of the moments to a decaying exponential of the form ∝ 𝑒−𝑛/b , and if b > 500, we say the
moments are not converged. This procedure defines a minimum 𝑄 value, 𝑄min, and we don’t show
𝑄 < 𝑄min when comparing with experiments. Numerical error can spoil the iterative process of
Eq. (3.5), and can cause `𝑛 to rapidly drop to near zero, and then diverge for values of 𝑛 > 𝑁∗.
When this happens, we zero out the moments for all 𝑛 > 𝑁∗ when computing S(𝑄, 𝜔) in the sum
of Eq.(3.4), effectively truncating the series at 𝑁∗. This occurs only at 𝑇 = 100 K, and 𝑇 = 75 K,
and for 𝑄 values larger than the power law region. The lowest value of 𝑁∗ used is 2600, and we
show in Fig. 3.18 the moments for this case.

We include 𝑁 = 3000 terms in Eq. (3.4) for comparison with experiments. 𝑁/𝑊 is a pseudo-
time parameter in this method, and larger values produce greater 𝜔 resolution. The 𝑄 dependence
at small 𝜔 is illustrated in Fig. 3.20 and Fig. 3.19, where we see the simulations are well converged
in the region where comparison with experiments is made. Convergence is not found for very small
𝑄 < 𝑄min, which is understood when making the analogy between 𝑁 and time 𝑡. Exactly at 𝑄 = 0,
then 𝑆𝑧𝑄=0 is a conserved quantity, and so for very low 𝑄, very large 𝑡 (and equivalently very large
𝑁) is needed to accurately resolve the 𝜔 dependence.
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Figure 3.19: The left columns shows the 𝑄 dependence of S(𝑄, 𝜔) for 0.7ℏ𝜔 < 2 meV with
different choice of the number of terms, 𝑁 , used in Eq. (3.4). The vertical green line corresponds to
the value 𝑄 = 𝑄min. The right column is the absolute value of the Chebyshev moments appearing
in Eq. (3.4) as a function of the number of iterations 𝑛 for several values of 𝑄. Only the moments
with even values of 𝑛 are shown for clarity. The green curve in each plot depicts 𝑄 = 𝑄min, the
red curves are 𝑄 < 𝑄min, and the black curves are 𝑄 > 𝑄min. The temperatures shown are a, b
𝑇 = +∞, c, d 300 K, e, f 250 K, and g, h 200 K.
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Figure 3.20: The left columns shows the 𝑄 dependence of S(𝑄, 𝜔) for 0.7 < ℏ𝜔 < 2 meV with
different choice of the number of terms, 𝑁 , used in Eq. (3.4). The vertical green line corresponds to
the value 𝑄 = 𝑄min. The right column is the absolute value of the Chebyshev moments appearing
in Eq. (3.4) as a function of the number of iterations 𝑛 for several values of 𝑄. Only the moments
with even values of 𝑛 are shown for clarity. The green curve in each plot depicts 𝑄 = 𝑄min, the
red curves are 𝑄 < 𝑄min, and the black curves are 𝑄 > 𝑄min. The temperatures shown are a, b
𝑇 = 150 K, c, d 100 K, and e, f 75 K.
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Full spectral function temperature dependence

The full 𝜔 dependence of 𝑆(𝑄, 𝜔) is computed, and shown in Fig. 3.21 and Fig. 3.22 for various
temperature values. Jackson damping is used in these figures [383]. As temperature is lowered,
agreement with the low-energy spectrum is observed. The region near (𝑄, 𝜔) = (0, 0) relevant for
the neutron scattering experiments is also shown. We see strong intensity at (𝑄, 𝜔) = (0, 0) with
bifurcating dispersion lines emerging as we move away from this point. We note that the bifurcation
point appears to occur at finite 𝜔 from the numerical data, but this is a finite size effect, and does
not seem to occur in the experimental data. To verify this, we show the frequency bifurcation, 𝜔c
as a function of the Chebyshev expansion order 𝑁 in Fig. 3.23. As 𝑁 → +∞, we’re approaching
the thermodynamic limit, and we see this bifurcation point tends towards 𝜔c = 0.

Kardar-Parisi-Zhang scaling function

The scaling function for the 1 + 1 KPZ universality class 𝑓 (·) is known numerically exactly [280]
in real space 𝑥 and time 𝑡. In particular, Ref. [280] provides raw data for the scaling function 𝑓 (𝑦)
with 𝑦 ∝ 𝑥𝑡−2/3, and following this work, we Fourier transform this data to arrive at the scaling
function 𝑓 (·) in momentum 𝑄 and frequency 𝜔 space. The relation to the spectral function, in the
hydrodynamic regime is given by

S(𝑄, 𝜔) = 𝑐1𝑄
−3/2 𝑓

(
𝑐2𝜔𝑄

−3/2
)
, (3.17)

where 𝑐1 and 𝑐2 are system-dependent constants that we use as fitting parameters to compare with
the numerical simulations. We found 𝑐1 ≃ 0.026 and 𝑐2 ≃ 0.639 by fitting 𝑓 to the numerical data
at 𝑇 = +∞ and 𝑄 = 𝑄min for the optimum simulation parameters used in this work. Comparison
with our numerical simulations and the scaling functions for KPZ are shown in Fig. 3.24.

3.3.3 Revisiting Experimental NMR Data for Sr2CuO3

Characterizing anomalous spin transport

We revisit in Fig. 3.25 the experimental data of Fig. 3(d) in Ref. [361]. In this work, a power-law
behavior of the form 1/𝑇1 ∝ 𝐻−𝛼 assuming 𝛼 = 0.5 (corresponding to diffusion) was reported for
the nearly ideal spin-1/2 Heisenberg antiferromagnets Sr2CuO3. Here, in addition to the diffusive
behavior, we show the best superdiffusive fit of the form ∝ 𝐻−1/3, which is the expected behavior
for the quantum spin-1/2 Heisenberg chain, based on today’s knowledge. We also show the best
constant fit of the form ∝ 𝐻0 corresponding to ballistic transport.

From a purely theoretical perspective, we expect ballistic spin transport in the infinite time
limit due to the external magnetic field. However, the magnetic field being extremely small (14 T)
compared to the spin exchange coupling in this compound (𝐽 ≃ 2200 K), the crossover might
happen beyond the timescale related to the NMR frequency, making the dynamics look effectively
supper-diffusive. The effect of the magnetic field needs to be precisely studied and we leave that for
future work. For instance, for the low-energy physics studied in Refs. [361] and [359], the effect of
the magnetic field was irrelevant.
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Figure 3.21: The spectral function, S(𝑄, 𝜔) at a, b 𝑇 = +∞, c, d 300 K, e, f 250 K, and g, h 200 K.
The left column illustrates the full spectrum, and the right column zooms in around (𝑄, 𝜔) = (0, 0),
the region relevant for comparison with experiments.
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Figure 3.22: The spectral function, S(𝑄, 𝜔) at a, b 𝑇 = 150 K, c, d 100 K, and e, f 75 K. The left
column illustrates the full spectrum, and the right column zooms in around (𝑄, 𝜔) = (0, 0), the
region relevant for comparison with experiments.
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Figure 3.23: The value of ℏ𝜔c at which the spinon mode splitting occurs at𝑄 = 0 versus the inverse
of the number of terms used in the sum of Eq. (3.4). The different subplots correspond to a 𝑇 = +∞,
b 300 K, c 250 K, d 200 K, e 150 K, f 100 K, and g 75 K.
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Figure 3.25: The data reported on this figure is extracted from Fig. 3(d) of Ref. [361]. It corresponds
to the NMR relaxation rate 1/𝑇1 versus the strength of the applied external magnetic field 𝐻 for
Sr2CuO3 at𝑇 = 295 K (the exchange coupling is 𝐽 ≃ 2200 K). The NMR was performed on the 17O
nuclei, coupled symmetrically to the Cu2+ ions carrying the relevant electronic spins 𝑆 = 1/2. As a
result, the NMR relaxation rate 1/𝑇1 filters out 𝑞 = ±𝜋 components but conserves nonetheless the
long-wavelength modes 𝑞 = 0 holding hydrodynamics. The applied field is directly proportional to
the NMR frequency 𝜔0 as per the Zeeman splitting.

In any case, three data points are not enough to unambiguously identify the correct behavior,
calling for new and dedicated NMR experiments on the issue of anomalous spin transport in one-
dimensional spin chains. In particular, we believe that the present numerical abilities to efficiently



CHAPTER 3. KARDAR-PARISI-ZHANG HYDRODYNAMICS IN THE HEISENBERG SPIN
CHAIN 67

simulate the microscopic dynamics of interacting 1D quantum models could greatly help in guiding
experiments.

The behavior Υ(𝑇) ∝ 𝑇2 for 𝑇 ≪ 𝐽 is compatible with experimental observations

We approximate the real part of the spin-spin correlation ℜ𝔢𝐶 (𝑇, 𝑥 = 0, 𝑡) by Υ(𝑇)𝑡−2/3, which
is the correct behavior in the long-time limit, see Fig. 2 in the main text. We get for the NMR
relaxation rate,

1
𝑇1

∼
∫ 1/𝜔0

0
ℜ𝔢𝐶 (𝑇, 𝑥 = 0, 𝑡) d𝑡 ∼ Υ(𝑇)𝜔−1/3

0 =⇒ 1
𝑇1

∼ 𝑇2𝜔−1/3
0 for 𝑇 ≪ 𝐽, (3.18)

where we found that Υ(𝑇) ∼ 𝑇2 for 𝑇 ≪ 𝐽, see Fig. 3(b) in the main text. As discussed in the
main text, Υ(𝑇) relates to the temperature dependence of the parameters of the KPZ equation:
𝜒s_

−2/3
KPZ 𝑓KPZ(0) ∼ Υ(𝑇).

In Fig. 4(a) of Ref. [361], the authors find that for 𝑇 ≪ 𝐽, the NMR relaxation rate of Sr2CuO3
at fixed frequency 𝜔0 may be approximated by an empirical form 1/𝑇1 ≈ 𝑎𝑇 + 𝑏𝑇2 for 𝑇 ≪ 𝐽
with 𝑎 and 𝑏 fitting constants. Up to the term with linear temperature dependence 𝑎𝑇 , this is the
behavior obtained in Eq. (3.18).

Neglecting the experimental data points for very low temperatures (𝑇 ≲ 100 K), the experimental
data of Fig. 4(a) in Ref. [361] is compatible with 1/𝑇1 ∼ 𝑇2. Substituting the real part of the correlator
by its asymptotic behavior in Eq. (3.18) becomes less and less valid at very low temperatures: the
low-temperature physics of the real part of the correlator, not taken into account in the approximation
of Eq. (3.18) becomes dominant over high-temperature superdiffusive regime. In other words, in the
time window 𝑡 ∈ [0, 1/𝜔0], the two regimes coexist with the low-temperature one for 𝑡 ≲ 𝑡★ and the
high-temperature one for 𝑡 ≳ 𝑡★, with 𝑡★ ∼ 1/𝑇 (see main text). In Eq. (3.18), it is assumed that the
high-temperature regime is dominant. In this picture, we interpret the small flattening observed for
very low temperatures (𝑇 ≲ 100 K) in Fig. 4(a) of Ref. [361], and which gives rise to the linear term
𝑎𝑇 , as the onset of low-temperature physics characterized by 1/𝑇1 ≃ ln−1/2 (𝐽/𝑇 )

[359, 23, 90]. In
fact, this logarithmic divergence was reported in Ref. [359] for the same compound (Sr2CuO3) for
temperatures 𝑇/𝐽 ≲ 0.05, corresponding to 𝑇 ≃ 100 K, i.e., the regime where a linear term 𝑎𝑇 is
necessary to fit the experimental 1/𝑇1 data.

For these reasons, we believe that the behavior 1/𝑇1 ∼ 𝑇2 reported in Eq. (3.18) is compat-
ible with earlier experimental measurements on Sr2CuO3 [361], and relates to the temperature
dependence of the parameters of the KPZ equation.

3.3.4 KPZ Crossover Parameter Fitting
Real part versus imaginary part of the dynamical spin-spin correlation

While we display the norm of the spin-spin correlation function in the main text, we compute both
the real and imaginary parts. We show them independently in Fig. 3.26. We observe that the real
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Figure 3.26: Time dependence of the real part “ℜ𝔢” and imaginary part “ℑ𝔪” part of the spin-spin
correlation of Eq. (2) in the main text at 𝑥 = 0. Simulations obtained for 𝐿 = 256 and 𝜒 = 1024 at
three different temperatures (a) 1/𝑇 = 0.5, (b) 1/𝑇 = 2.0, and (c) 1/𝑇 = 6.0. We observe that the
superdiffusive power-law regime ∝ 𝑡−2/3 only holds for the real part (dashed black line) and that in
this regime we have |ℑ𝔪𝐶 (𝑇, 𝑥 = 0, 𝑡) | ≪ |ℜ𝔢𝐶 (𝑇, 𝑥 = 0, 𝑡) |.

part hosts the characteristic power-law dependence ∝ 𝑡−2/3, not the imaginary part. In fact, in the
hydrodynamics regime, we find that |ℑ𝔪𝐶 (𝑇, 𝑥, 𝑡) | ≪ |ℜ𝔢𝐶 (𝑇, 𝑥, 𝑡) |, meaning that at long time,
the imaginary part plays no role in the superdiffusive dynamics of the spin-1/2 Heisenberg chain.

Low-temperature versus zero temperature

By plotting the different system sizes for the spin-spin correlation of Eq. (2) in the main text at 𝑥 = 0
and𝑇 = 0, see Fig. 3.27(e) we show that the “flattening” observed at long times is a finite size effect.
In Figs. 3.27(a)–3.27(d) we show the effect of the finite bond dimension, which is qualitatively very
small.

Our data confirm the ∝ 1/𝑡 decay (up to logarithmic corrections) of the 𝑥 = 0 spin-spin
correlation at zero temperature for the spin-1/2 Heisenberg chain [271, 270] in Fig. 3.27(e). In-
cluding logarithmic corrections, the decay follows ∝ ln1/2 (𝑡/𝑡0) /𝑡, with 𝑡0 ≈ 0.5 a fitting parameter.

We also confirm that the finite-temperature data (down to 1/𝑇 = 6.0 in the main text) is actually
not small enough to observe the genuine low-temperature dynamics. We see in Fig. 3.28 that at
least 1/𝑇 ≳ 20.0 is required to have an overlap between zero-temperature and finite-temperature
data in a reasonable time window. This rather slow convergence of the finite-temperature data onto
the zero-temperature ones is also observed for the spatial dependence at 𝑡 = 0 in Fig. 3.29(a). It is
understood from the absolute value of the thermal correlation length of Eq. (3.19).

Note that the numerical simulations for zero temperature 𝑇 = 0 are carried out with a slightly
different method than for 𝑇 > 0. In particular, we do not need to use the trick representing a
mixed state as a pure state in an enlarged Hilbert space, the state at 𝑇 = 0 being a pure state
(it is the ground state). The ground state is obtained with the density matrix renormalization
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Figure 3.27: Time dependence of the norm of the spin-spin correlation of Eq. (2) in the main text
at 𝑥 = 0 for various system sizes 𝐿 = 64, 128, and 256 and bond dimensions 𝜒 = 64, 128, 256, 512,
and 1024 at zero temperature (𝑇 = 0). (a) 𝐿 = 64, (b) 𝐿 = 128, (c) 𝐿 = 256, and (d) 𝐿 = 512 for
various bond dimensions 𝜒. (e) 𝜒 = 1024 for various system sizes 𝐿. The dashed line is a fit of the
form ∝ ln1/2 (𝑡/𝑡0) /𝑡, with 𝑡0 ≈ 0.5 a fitting parameter.

group algorithm [385, 316, 108], and the time evolution is then performed using time-evolving
block decimation algorithm [376] along with a fourth-order Trotter decomposition [148] with step
𝛿 = 0.1 leading to a negligible discretization error 𝑂

(
𝛿5) .

Temperature dependence of the correlation length

The thermal correlation length b of the spin-1/2 Heisenberg chain diverges at low temperature as
1/𝑇 , plus additional log corrections which at first order gives [258],

b ≃ 1
2𝑇

[
1 + 1

2 ln
(
𝑇
/
𝑇0

) ]−1
, (3.19)

with 𝑇0 ≈ 2.68 a nonuniversal constant. Here, we have used the value of 𝑇0 obtained in Ref. [258]
computed by the thermal Bethe ansatz. The agreement in Fig. 3.29 is extremely good for 1/𝑇 ≳ 5.
Yet, for the range of temperatures considered in this work, the data could be fitted equally well
without the log corrections.

The data of Fig. 3.29 together with Eq. (3.19) shows why one needs to go to extremely low
temperatures to observe the genuine low-temperature physics of the spin-1/2 Heisenberg chain: the
prefactor of the temperature dependence of the correlation length b ≃ 1/2𝑇 is small. It explains
why in the time-dependent data of Fig. 3.28 it is difficult to observe a good overlap between zero-
temperature and finite-temperature data for the temperatures accessible in this work; this overlap is
equally hard to observe for the spatial dependence in Fig. 3.29(a).
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Figure 3.28: Time dependence of the norm of the spin-spin correlation of Eq. (2) in the main text
at 𝑥 = 0 for various temperatures 𝑇 . Simulations obtained for 𝐿 = 256 with 𝜒 = 1024 at finite
temperature and for 𝐿 = 512 with 𝜒 = 1024 at zero temperature. Same data as in Fig. 2 of the main
text plus the zero temperature (1/𝑇 = ∞), 1/𝑇 = 8.0, 1/𝑇 = 10.0, 1/𝑇 = 16.0, and , 1/𝑇 = 20.0
data. The dashed line next to the zero temperature data is a fit of the form ∝ ln1/2 (𝑡/𝑡0) /𝑡, with
𝑡0 ≈ 0.5 a fitting parameter.

Temperature dependence of the parameters of the KPZ equation

By identifying the prefactor of 𝐶KPZ(𝑥 = 0, 𝑡) of Eq. (4) in the main text with the prefactor Υ(𝑇)
of the power-law decay ∝ 𝑡−2/3 shown in Fig. 3.30(a), we find Υ(𝑇) = 0.13(1)𝑇2 for 𝑇 ≲ 1, and
therefore that 𝜒s_

−2/3
KPZ 𝑓KPZ(0) ∝ 𝑇2. It is established that in this temperature range, the static spin

susceptibility of the spin-1/2 Heisenberg chain takes the form [100],

𝜒s
(
𝑇
)
=

∑︁
𝑥

〈
�̂�𝑥 · �̂�0

〉
≃ 3𝑇
𝜋2

[
1 − 1

2 ln
(
𝑇
/
𝑇 ′

0
)
]
, (3.20)

with 𝑇 ′
0 ≈ 7.7 a nonuniversal constant obtained in Ref. [100] through Bethe ansatz (there are also

higher order log corrections). The form of Eq. (3.20) is verified in Fig. 3.30(b). Isolating _KPZ, we
find that,

_KPZ
(
𝑇
)
=

(
Υ

𝜒s 𝑓KPZ(0)

)−3/2
≃




0.13(1)𝑇𝜋2

3 𝑓KPZ(0)

[
1 − 1

2 ln
(
𝑇
/
𝑇 ′

0
)
]−1


−3/2

, (3.21)

which we plot in Fig. 3.30(c). The high-temperature data points are compatible with Ref. [82].
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Figure 3.29: (a) Spatial dependence of the norm of the spin-spin correlation of Eq. (2) in the main
text at 𝑡 = 0 for system size 𝐿 = 256 and bond dimension 𝜒 = 1024. From the lower left corner to the
upper right one, the solid lines correspond to the following temperatures: 1/𝑇 = 0.1, 0.2, 0.5, 1.0,
2.0, 3.0, 4.0, 5.0, 8.0, 10.0, 16.0, and 20.0. The dashed line is the zero temperature data (1/𝑇 = ∞).
Except for the zero temperature data which decay as ∝ ln1/2 (𝑥/𝑥0

) /
𝑥, the finite temperature data

decay exponentially at long distance 𝑥. A fit of the form ∝ exp
(−𝑥/b) gives access to the correlation

length b. (b) Correlation length b plotted versus the inverse temperature 1/𝑇 . The dashed line is
the expression of Eq. (3.19) valid as 𝑇 → 0 and derived in Ref. [258] with 𝑇0 ≈ 2.68.
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the algebraic decay ∝ 𝑡−2/3 for superdiffusive hydrodynamics at 𝑥 = 0. At low temperatures 𝑇 ≲ 1,
it follows a quadratic dependence ∝ 𝑇2 (dashed line). (b) Temperature dependence of the static spin
susceptibility 𝜒s(𝑇) defined in Eq. (3.20). The dashed line is the expression reported in Eq. (3.20)
valid as 𝑇 → 0 and derived in Ref. [100] with 𝑇 ′

0 ≈ 7.7. (c) By identifying Υ(𝑇) = 𝜒s_
−2/3
KPZ 𝑓KPZ(0),

we get 𝑓 −3/2
KPZ (0) × _KPZ(𝑇) = (Υ/𝜒s)−3/2, and plot its temperature dependence. Based on the

reported results for Υ(𝑇) and 𝜒s(𝑇), the dashed line has a dominant ∝ 𝑇−3/2 behavior plus
additional log corrections originating from 𝜒s(𝑇), see Eq. (3.21).
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Spatial dependence of the crossover time

We show in Fig. 3.31 the temperature dependence of the prefactor of the spatial dependence of
𝑡★

(
𝑥, 𝑇

)
of Eq. (5) in the main text, i.e., the term ∝ |𝑥 |3/2. It is extracted from a least-square fitting

of the data of Fig. 4(b) of the main text. While it fluctuates slightly from one temperature to the
next, there is no clear trend observed, and the data is consistent with a constant prefactor with value
0.17(3).
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Figure 3.31: Temperature dependence of the prefactor of the spatial dependence of 𝑡★
(
𝑥, 𝑇

)
of

Eq. (5) in the main text. The prefactor, which is plotted here, is extracted from a least-square fitting
of the data of Fig. 4(b) of the main text. It is roughly independent of temperature with a value
compatible with 0.17(3).

Extraction of the crossover time from the microscopic simulations

There is a degree of appreciation in defining the crossover time 𝑡★
(
𝑇, 𝑥

)
from the numerical

simulations, precisely because it is related to a crossover and not, e.g., a sharp transition. We have
defined two quantities to extract 𝑡★

(
𝑇, 𝑥

)
,

RA
(
𝑇, 𝑥, 𝑡

)
=



�����𝐶 (
𝑇, 𝑥, 𝑡

) �� − Υ
(
𝑇, 𝑥

)
𝑡−3/2

�����𝐶 (
𝑇, 𝑥, 𝑡

) ��


𝑡±2

, and RB
(
𝑇, 𝑥, 𝑡

)
=

����ℑ𝔪 𝐶
(
𝑇, 𝑥, 𝑡

)
ℜ𝔢 𝐶

(
𝑇, 𝑥, 𝑡

)
����
𝑡±2

. (3.22)

The first one returns the relative difference between the norm of the spin-spin correlation of Eq. (2)
in the main text with the superdiffusive decay Υ

(
𝑇, 𝑥

)
𝑡−3/2. The second one returns the relative

weight of the imaginary part ℑ𝔪 versus the real part ℜ𝔢 of the spin-spin correlation of Eq. (2) in
the main text. In Eq. (3.22), 𝑇 and 𝑥 are set to given values and the quantities are looked at versus
the time 𝑡. The symbol (−)𝑡±2

means that the data at time 𝑡 actually corresponds an average from
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the range ∈ [𝑡 − 2, 𝑡 + 2]. The effect is to smoothen the local oscillations in 𝐶
(
𝑇, 𝑥, 𝑡

)
, and make the

extraction more reliable.
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Figure 3.32: Panels (a) and (b) correspond to the quantities RA
(
𝑇, 𝑥 = 0, 𝑡

)
and RB

(
𝑇, 𝑥 = 0, 𝑡

)
of

Eq. (3.22), respectively. The system size is 𝐿 = 256 and the bond dimension 𝜒 = 1024. From the
lower left corner to the upper right one, the solid lines correspond to the following temperatures:
1/𝑇 = 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0. The intersection of the data with the horizontal dashed line
at RA,B

(
𝑇, 𝑥 = 0, 𝑡

)
= 0.1 is used to extract the crossover time 𝑡★

(
𝑇, 𝑥

)
.

The time at which RA
(
𝑇, 𝑥, 𝑡

)
and RB

(
𝑇, 𝑥, 𝑡

)
hit the value 0.1 is used as the definition of

the crossover time 𝑡★
(
𝑇, 𝑥

)
. The definition of RB

(
𝑇, 𝑥, 𝑡

)
uses the fact that in the hydrodynamics

regime we have |ℑ𝔪𝐶 (𝑇, 𝑥, 𝑡) | ≪ |ℜ𝔢𝐶 (𝑇, 𝑥, 𝑡) |. Both quantities lead to comparable estimates of
𝑡★

(
𝑇, 𝑥

)
. The error bar reported on 𝑡★

(
𝑇, 𝑥

)
reflects the small difference between the two estimates.

As an example, we show RA
(
𝑇, 𝑥, 𝑡

)
and RB

(
𝑇, 𝑥, 𝑡

)
for 𝑥 = 0 in Fig. 3.32. The corresponding value

𝑡★
(
𝑇, 𝑥 = 0

)
is reported in Fig. 3(a) in the main text.
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Chapter 4

Quantum Spin Liquids and Triangular
Lattice Compounds

In this chapter, I discuss quantum spin liquids (QSL), with a focus on those found in triangular
lattice models and materials. A QSL is an exotic phase of matter with no long-range order even
down to zero temperature. In the triangular lattice systems studied here, the antiferromagnetic
coupling, together with the lattice geometry, gives rise to frustration in the spins. Specifically, once
one spin of a triangle is fixed, the antiferromagnetic coupling leads to anti-parallel neighbors, but
the triangular lattice forbids this pattern. The result is a state with strong quantum fluctuations,
often times with fractionalized quasi-particle excitations, where the properties of these materials
require a quantum mechanical description.

In Sec. 4.1 I discuss the so-called 𝐽1 − 𝐽2 Heisenberg model, which hosts a QSL phase as one
of the three ground state phases in the model. I primarily examine the dynamical structure factor
𝑆(𝑞, 𝜔), the quantity relevant for neutron scattering experiments. I further discuss the technique
used to calculate 𝑆(𝑞, 𝜔) within the MPS framework, and how to overcome some of the hurdles
present in simulating two-dimensional systems. In Sec. 4.2, I discuss a collaboration with the
neutron scattering group at Oak Ridge National Lab examining the triangular lattice compound
KYbSe2. Lastly, in Sec. 4.3 I discuss a collaboration with a neutron scattering group at Duke
examining the triangular lattice compound YbZn2GaO5.

4.1 Spectral Function of the 𝐽1 − 𝐽2 Heisenberg Model on the
Triangular Lattice

4.1.1 Introduction
Two-dimensional quantum systems host exciting physics: reduced dimensionality leads to strong
quantum fluctuations, yet provides more possibilities than in one dimension as continuous symmetry
can be spontaneously broken and lead to long-range order [245, 155, 248, 120, 300]. While such
conventional ordered states of matter are fairly well understood, some disordered states remain
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elusive. Among those are quantum spin liquids (QSL) found in frustrated quantum magnets [305,
200, 322, 39] as a result of competing ordered phases. These states possess no long-range order,
even at zero temperature, and often result in fractionalized excitations with non-trivial statistics.

One of the most promising geometries for realizing a QSL phase is the triangular lattice,
which has a rich history starting with Anderson’s proposed resonating valence bond state [14].
However, the simplest lattice spin model, namely the spin-1/2 nearest-neighbor antiferromagnetic
Heisenberg model, has been shown to have 120◦ magnetic long-range ordering [167, 188, 338,
66, 27, 52, 430, 387]. Yet, quantum fluctuations lead to the order parameter magnitude being
significantly smaller than its classical value, implying the order is weak and potentially easy to
disrupt. For instance, with the introduction of a small next-nearest-neighbor interaction, this model
exhibits a QSL phase [434, 163, 174, 299, 389, 124, 160]. Early studies using the density matrix
renormalization group (DMRG) [386] suggested that the QSL phase was a Z2 gapped QSL [434,
163, 299]. This was later challenged by simulations using variational quantum Monte Carlo (QMC),
which found that a gapless𝑈 (1) Dirac spin liquid was most energetically favorable [174]. This was
later supported by a DMRG study on an infinite cylinder with an external Aharonov-Bohm flux,
claiming unambiguous evidence for a gapless𝑈 (1) Dirac spin liquid [160]. However, this has been
challenged by a recent DMRG study [186], as well as by Schwinger-boson theory [117], suggesting
the phase is a gapped Z2 QSL.

The simplicity and realistic form of the Hamiltonian has attracted many experiments to probe
triangular lattice materials, in the quest for a realization of such a QSL phase. Experiments conducted
on triangular lattice systems range from organic compounds such as 𝑘−(BEDT-TTF)2Cu2(CN)3,
Et𝑛Me4−𝑛Sb[Pd(DMIT)2]2, and other similar structures [409, 276, 240, 3, 319, 333, 273, 102, 253,
112, 275, 402, 247, 265, 297, 177, 114, 242, 201, 251, 146, 208, 240, 179, 178, 115, 37, 405, 193,
257, 406, 408, 407, 241], to Ba3CoSb2O9 [334, 354, 255, 202, 284, 233, 176, 189, 211, 237, 419],
and many Yb3+-based materials [217, 222, 219, 400, 215, 262, 214, 221, 422, 18, 328, 423, 85, 33,
289, 287, 303, 416, 224, 336, 336, 396, 87, 238, 394, 17, 418, 133, 428, 268, 398, 74, 397, 234,
393, 291, 235, 313]. In particular, recent neutron scattering data in KYbSe2 has shown that the
material is well modelled by a spin one-half Heisenberg model on a triangular lattice with nearest-
and next-nearest-neighbor antiferromagnetic interactions, i.e., a 𝐽1 − 𝐽2 Heisenberg model [313]
(further details in Sec. 4.2). The authors also found critical scaling in the dynamical structure
factor near the corner of the Brillouin zone, suggesting the close proximity of this material to a
second-order quantum phase transition.

Despite a plethora of experimental studies in triangular lattice compounds, the presence and
nature of a QSL phase is still under debate, as smoking-gun signals for such phases are challenging
to identify. One main signature is a lack of long-range order, which is also present in other phases
such as spin-glass states [98, 292]. In fact, the actively studied spin liquid candidate YbMgGaO4 has
been conjectured to be a spin-glass, based on susceptibility measurements in its sister compound
YbZnGaO4 [235]. Another key signature is the presence of fractionalized quasi-particles which
are hard to detect directly. Recent proposals to look at the entanglement content of the triangular
lattice compound KYbSe2 [313], through the quantum Fisher information [169, 149] and other
entanglement measures [43, 70, 13, 295, 21, 12], may prove fruitful. This challenge calls for
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further theoretical understanding, and improved numerical simulations of experimentally relevant
quantities to identify signatures of QSL phases.

Neutron scattering is potentially an excellent experimental tool to detect quantum spin liquid
physics, as it directly probes the excitations in the system through the spin-spin correlation function
[366, 353]. On the theoretical side, making a direct comparison with neutron scattering experiments
requires calculating the dynamical structure factor, which is notoriously difficult to compute. QMC
struggles to probe this quantity directly, and relies on analytic continuation from imaginary time
simulations [181]. However, analytic continuation is numerically ill-posed due to the inherent
statistical uncertainty of Monte Carlo sampling. Nevertheless, QMC supplemented by the maximum
entropy method [337, 132] for analytic continuation or the stochastic analytic continuation [323]
is still the dominant method to probe spectral functions in two- and higher-dimensional systems,
with reliable results obtained in various frustration-free contexts [283, 324, 94, 335, 51, 164].
Unfortunately, frustrated systems, such as the triangular lattice Heisenberg model, plague QMC
with the infamous sign problem, preventing efficient simulations [230, 365].

In one dimension, DMRG [386], and the later reformulation in terms of matrix product states
(MPS) [315], have been revolutionary. Their main success is due to the entanglement area-law in
gapped systems, which leads to a finite entanglement entropy even in the thermodynamic limit [147].
Even for gapless one-dimensional systems, the deviations from the exact answer are understood
through a finite-entanglement scaling analysis [278]. However, in two dimensions, an area law state
still has an entanglement entropy that grows with the system size, which makes standard MPS
calculations struggle to capture the thermodynamic limit. Other tensor-network-based approaches,
such as projected entangled pair states (PEPS) [370, 68, 67], have been proposed to work in higher
dimensions. Recent work using PEPS to study the dynamical structure factor in a model near a
QSL phase [64], has found great accuracy in comparison with neutron scattering experiments in
Ba3CoSb2O9 [237]. Other methods for two-dimensional spectral functions include higher-order
spin wave theory [62, 351, 63, 249], series expansion methods [431, 429], and variational QMC
[106, 104].

Utilizing DMRG on the triangular lattice wrapped into a cylinder, yielding a quasi-one-
dimensional system, has proven useful in studying static properties of QSL states [434, 163,
299, 160, 123, 356, 8, 72, 355, 187, 186]. We focus on this approach in this study, and extend
this work into the realm of dynamics, with a similar method as was used in Ref. [368]. We use
this approach to examine the full phase diagram of the 𝐽1 − 𝐽2 Heisenberg model on the triangular
lattice.

4.1.2 Models, Definitions, and Methods
In this work, we primarily focus on the spin one-half Heisenberg model with nearest and next-nearest
neighboring interactions on the triangular lattice,

𝐻 = 𝐽1
∑︁
⟨𝑖, 𝑗⟩

𝑺𝑖 · 𝑺 𝑗 + 𝐽2
∑︁
⟨⟨𝑖, 𝑗⟩⟩

𝑺𝑖 · 𝑺 𝑗 , (4.1)
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Figure 4.1: A 6 × 6 triangular lattice illustrating the relevant parameters used in this work. An
example of a nearest neighbor couplings 𝐽1 and next-nearest neighbor couplings 𝐽2 are shown in
green. We also show the circumference 𝐶, length 𝐿. The lattice vectors 𝒂1 = (1/2,

√
3/2) and

𝒂2 = (1, 0) are shown in blue. We also show the three expected phases of the Hamiltonian given in
Eq. (4.1) and the approximate phase boundaries [174].

where 𝑺𝑖 = (𝑆𝑥𝑖 , 𝑆𝑦𝑖 , 𝑆𝑧𝑖 ) are spin-1/2 operators; ⟨𝑖, 𝑗⟩ and ⟨⟨𝑖, 𝑗⟩⟩ denote nearest- and next-nearest
neighbor exchange interactions, respectively. We show in Fig. 4.1 the lattice with circumference 𝐶
(we will use periodic boundary conditions along this direction in the following), length 𝐿, lattice
vectors 𝒂1 and 𝒂2, the couplings 𝐽1 and 𝐽2, and the three expected phases of this model [434,
163, 174, 299, 389, 124, 160]. We also examine the same Hamiltonian on the square lattice with
only nearest-neighbor interactions (𝐽2 = 0, Heisenberg model) which serves as a benchmark to
compare our results against quantum Monte Carlo supplemented by analytic continuation following
Ref. [324]. We set ℏ = 𝐽1 = 1 in the following.

Spectral Function

The spectral function of interest in this study is the dynamical spin structure factor, relevant for
neutron scattering experiments [366, 353], defined by

𝑆
(
𝒒, 𝜔

)
=

1
𝑁

∑︁
𝒙

∫ +∞

0

d𝑡
2𝜋
𝑒𝑖(𝜔𝑡−𝒒·𝒙)𝐺

(
𝒙, 𝑡

)
, (4.2)

with 𝑁 the number of sites in the lattice. 𝐺 (𝒙, 𝑡) is a two-point spin-spin correlation function
defined by

𝐺 (𝒙, 𝑡) = ⟨Ω| 𝑺𝒙 (𝑡) · 𝑺𝒄 (0) |Ω⟩ , (4.3)

with 𝒄 being the center site in the lattice taken to be the origin when defining 𝒙, and |Ω⟩ the ground
state of the Hamiltonian 𝐻 with energy 𝐸0.
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Another useful related quantity we examine is the static spin structure factor defined by

𝑆
(
𝒒
)
=

1
𝑁

∑︁
𝒙

cos(𝒒 · 𝒙)𝐺 (
𝒙, 𝑡 = 0

)
. (4.4)

Since the Hamiltonian we examine is rotationally invariant and the ground state on a finite system
cannot spontaneously break the continuous SU(2) symmetry of the model (4.1), it suffices to just
consider the 𝑧-component of the spin. Hence, what we compute in this study reduces to

𝐺
(
𝒙, 𝑡

)
= 3 ⟨Ω| 𝑆𝑧𝒙 (𝑡)𝑆𝑧𝒄 |Ω⟩ . (4.5)

We drop the factor of 3 in this work. There are methods to compute the frequency dependence
of Eq. (4.2) directly, such as the correction vector method [256], and the Chebyshev expansion
method [157, 391]. However, both of these methods require many operator-state products between
some initial state and the Hamiltonian 𝐻. In two dimensions, the bond dimension of the matrix
product operator (MPO) representation of 𝐻 is large, making such operations quite inefficient.

Instead, we compute the correlation functions directly by writing,

𝐺 (𝒙, 𝑡) = ⟨Ω| 𝑒𝑖𝐻𝑡𝑆𝑧𝒙𝑒−𝑖𝐻𝑡𝑆𝑧𝑐 |Ω⟩
= 𝑒𝑖𝐸0𝑡 ⟨Ω| 𝑆𝑧𝒙𝑒−𝑖𝐻𝑡𝑆𝑧𝑐 |Ω⟩ . (4.6)

Then the computation of 𝐺 (𝒙, 𝑡) is reduced to finding the ground state |Ω⟩, time evolving the
state 𝑆𝑧𝑐 |Ω⟩, and then computing its matrix elements of 𝑆𝑧𝒙 with the ground state for all positions 𝒙.

In the definition of 𝑆(𝒒, 𝜔) in Eq. (4.2), formally infinite time and infinite space data is required,
but this is not possible numerically. This forces us to truncate at a maximum distance 𝑹max and
time 𝑇max. Introducing such a cutoff is not unique, and we discuss practical advice on how to extract
the dynamical structure factor from only finite data in the following.

Finite Geometry

How to approximately represent the infinite system with a finite one is not unique, and each
representation has its own pros and cons. Possibly the first choice to consider is just a finite patch
of the infinite system, which we will call open boundary conditions. When using MPS, we need
to represent the finite system as a quasi-one-dimensional system, and doing this creates long-range
interactions. If the two-dimensional system has a depth 𝐶 and a length 𝐿 ≥ 𝐶, then the long-
range interactions are at best 𝑂 (𝐶). If we use the the standard Schur form to represent 𝐻 as an
MPO [246], then the bond dimension will also be 𝑂 (𝐶). If we roll the lattice into a cylinder with
circumference 𝐶, this causes a minimal decrease in computational efficiency as compared to open
boundary conditions. Since this partially restores the translation symmetry of the infinite system
with a marginal penalty, this is considered standard practice. Due to computational limitations, 𝐶
is quite small, and so we take 𝐿 ≫ 𝐶.
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Figure 4.2: Allowed 𝒒 values highlighted in blue for the triangular lattice wrapped into a cylinder
with a circumference 𝐶 = 6. We form the cylinder using 𝑌𝐶 boundary conditions in a) and 𝑋𝐶
boundary conditions in b). The orange lines in both figures are the 𝒒 values that are rotations of the
allowed 𝒒 values by the 𝐶6 symmetry of the triangular lattice. In green and red are the two paths
through the Brillouin zone that we examine. We note that 𝑌 = 𝑀/2 and 𝑌1 = 𝐾/2.

Since𝐶 is small, this restricts the allowed 𝒒 values quite dramatically. How one forms a cylinder
out of the triangular lattice is subtle, as the choice of boundary conditions modifies which momenta
in the Brillouin zone are allowed. In the literature, there are two primary boundary conditions for
the triangular lattice denoted as the 𝑋𝐶 and 𝑌𝐶 geometries [356]. The boundary conditions in Fig.
4.1 is the 𝑋𝐶 boundary condition, and the 𝑌𝐶 boundary condition would be if we identified the
left and right edges rather than the top and bottom. In Ref. [356], the authors recommend the 𝑌𝐶
boundary conditions generically, as the circumference is larger in units of the lattice spacing for the
same number of lattice points. However, by examining Fig. 4.2, we see that the 𝒒 values permitted
by these two geometries are dramatically different. Since most of the high symmetry 𝒒 values are
permitted by the 𝑋𝐶 geometry, we use the 𝑋𝐶 geometry throughout this work.

To find the allowed 𝒒 = (𝑞𝑥 , 𝑞𝑦) values for the 𝑋𝐶 geometry, we note that two conditions need
to be met due to the periodic boundary conditions along the circumference and open boundary
conditions along the length. For the periodic boundary conditions, we need

𝑒𝑖𝒒·𝐶𝒂1 = 𝑒𝑖𝒒·
𝐶
2 𝒂2 =⇒ 𝑒𝑖

√
3

2 𝐶𝑞𝑦 = 𝑒𝑖2𝜋𝑛 (4.7)

𝑞𝑦 =
4𝜋√
3𝐶
𝑛, 𝑛 ∈

(
−𝐶

2
,
𝐶

2

]
∩ Z (4.8)

The allowed values for 𝑞𝑥 are the standard allowed values for a system with length 𝐿, meaning

𝑞𝑥 =
2𝜋
𝐿
𝑛, 𝑛 ∈

(
−𝐿

2
,
𝐿

2

]
∩ Z. (4.9)
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We can improve upon the heavily restricted allowed 𝒒 values by generating other points in the
Brillouin zone by rotating the 𝒒 value by a symmetry in the lattice, as discussed in Ref. [368]. In
particular, if 𝑅 is a rotation that leaves the lattice invariant, then in the thermodynamic limit any
momentum resolved operator 𝑂 satisfies

𝑂 (𝑅𝒒) = 𝑂 (𝒒). (4.10)

We use this relation when examining quantities on the entire Brillouin zone, to fill in much of
the Brillouin zone to gain a better glimpse into the thermodynamic result. We show the allowed 𝒒
values in blue, and the additional 𝒒 values generated in this manner in orange in Fig. 4.2.

Other geometries are possible, but we have found these choices the most relevant. Other possible
procedures to form a cylinder out of the infinite plane are discussed in Ref. [356].

Time Evolution

The standard MPS time evolution procedure in one dimension is the Time-Evolving Block Dec-
imation (TEBD) method [375]. This method expresses the time evolution operator in terms of
unitary gates acting only on the bonds in the model. This method is exceptionally well-suited for
models with only nearest neighbor interactions, but the quasi-one-dimensional systems we study
here have long-range interactions. One can implement swap gates to bring distant sites near each
other, and then apply the unitary gate, but this becomes inefficient rapidly as the circumference 𝐶
is increased. Moreover, each time step in this method increases the bond dimension, which then
requires a truncation of the resulting state, which introduces errors.

An in-depth discussion of the most common time evolution techniques for MPS can be found
in Ref. [266]. In this work, we opt to use the Time-Dependent Variational Principle (TDVP) [137,
135, 138, 367, 412] to implement the time evolution. This method automatically finds the optimum
time-evolved state at the given bond dimension, and obeys conservation laws such as energy.

For any finite system, Eq. (4.2) will be come a finite sum of delta functions, as opposed
to an analytical function in the thermodynamic limit. To remedy this, we broaden the peaks
by convolution with a distribution, typically a Gaussian. This also doubles to serve the role of
controlling the truncation of the infinite time integral in a smooth way rather than a sharp cutoff at
some max time 𝑇max. Formally, we write

𝐺 (𝒙, 𝑡) −→ 𝑓[ (𝑡)𝐺 (𝒙, 𝑡) (4.11)

Then we can choose 𝑓[ to be a properly normalized dampening factor. The typical choices for
dampening are

𝑓[ (𝑡) =


Θ

(
𝑡 − [−1) Sharp
𝑒−[

2𝑡2 Gaussian
𝑒−[ |𝑡 |

/
𝜋 Lorentzian

(4.12)
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The dampening factor labelled sharp is equivalent to truncation of the time integration in Eq.
(4.2) at a maximum time 𝑇max = [−1. The broadening factor is an inverse time scale that is taken
to be [ ∼ 𝑂 (𝑇−1

max), where 𝑇max is the maximum times reliably obtained during the time evolution
process. The choice of dampening factor to use depends on the problem of interest, but the general
purpose choice is the Gaussian dampening. Note though, that the introduction of broadening by a
Gaussian will modify the intensity and sharpness of peaks in the spectrum, and so if precision in
the peaks is required, using the sharp cutoff can be useful [308].

We want to note that there is nothing that prevents one from time evolving to arbitrarily large
times, as this just requires longer run times of the simulations. However, it is not the case that the
data is necessarily reliable for these larger times. To determine the reliability of the time evolved
data, we use a physically motivated criterion, namely that the spectral function must be positive
for all frequencies. We broaden the spectral function using the Gaussian dampening factor in Eq.
(4.12), and we choose [ as small as possible so that the spectral function is positive. The maximum
time 𝑇max for which the correlation function is reliable is approximated by 𝑇max ∼ [−1.

Fourier Transform

There are two Fourier transforms necessary to achieve 𝑆(𝒒, 𝜔), one in space and one in time.
Since we only have data for finite time and finite space, we must truncate the integrals in Eq.
(4.2). One issue with just naively truncating Eq. (4.2) is that 𝑆(𝒒, 𝜔) generically will acquire a
non-zero imaginary part that is not physical. From there, one could only look at the real part, or the
magnitude, but we propose an alternative that enforces reality of 𝑆(𝒒, 𝜔).

If we have a translationally invariant system, then we have the following properties,

𝐺 (−𝒙, 𝑡) = 𝐺 (𝒙, 𝑡) and 𝐺 (𝒙,−𝑡) = 𝐺 (𝒙, 𝑡)∗. (4.13)

With these properties, we can write

𝑆
(
𝒒, 𝜔

)
=

1
𝜋𝑁

∫ ∞

0
d𝑡

∑︁
𝒙

cos
(
𝒒 · 𝒙)

×
(
cos(𝜔𝑡)Re𝐺 (𝒙, 𝑡) − sin(𝜔𝑡)Im𝐺 (𝒙, 𝑡)

)
. (4.14)

Simulation Parameters

In these simulations, we always work with a cylinder of circumference 𝐶 = 6 and length 𝐿 = 36.
We also use a bond dimension 𝜒 = 512. The ground state is obtained using the DMRG [386, 315]
working in the zero magnetization sector with the magnetization conserved. The time evolution is
performed using single-site TDVP [137, 135, 138, 367, 412] with a time step of 𝛿𝑡 = 0.1, and a
maximum time 𝑇max = 40. The simulations are performed in real-space, and the Fourier transform
to 𝒒 and 𝜔 is performed using Eq. (4.14), with a Gaussian broadening factor as in Eq. (4.12).
The broadening width [ used is [2 = 0.03 for the square lattice, and [2 = 0.02 for the triangular
lattice in the 120◦ and QSL phases, and [2 = 0.05 in the striped antiferromagnetic phase. For the
triangular lattice, we use the 𝑋𝐶 geometry as described in Sec. 4.1.2. Our simulations utilize the
ITensor library [108].
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Figure 4.3: Ground state energy per site for the 𝐽1 − 𝐽2 Heisenberg model on the triangular lattice
for the 𝐽2 values examined in this study. To find the ground state, we used DMRG with a bond
dimension 𝜒 = 512. We use a cylindrical geometry with circumference 𝐶 and length 𝐿 = 𝐶2.
The stars represent the best estimate of the infinite system ground states, using variational QMC,
reported in Ref. [174].

In Fig. 4.3 we show the ground state energy per site as a metric for the accuracy of the ground
state. We note that with only two circumferences, a finite size scaling analysis is difficult. However,
we also show the best estimates for the infinite system energy density for 𝐽2 = 0 and 𝐽2 = 0.125
reported in Ref. [174] as a reference.

4.1.3 Quantum Spin Liquid Signatures
There are currently three dominant predictions about the nature of quantum spin liquid ground state
of the 𝐽1 − 𝐽2 Heisenberg model on the triangular lattice, given by Eq. (4.1). These predictions are
a gapped Z2 spin liquid [434, 299, 163, 117, 186], a gapless𝑈 (1) Dirac spin liquid [174, 104, 160],
and a spinon Fermi surface [123]. In this work, we will focus on the signatures in the dynamical
structure factor, 𝑆(𝒒, 𝜔) in Eq. (4.2), for these three spin liquids. For all three spin liquid states,
the low-energy theory is formulated in terms of spinons, which can be understood from the parton
construction [305]. In this formalism, the spin operator is written as

𝑺 =
1
2
𝑓 †𝛼𝝈𝛼𝛽 𝑓 𝛽, 𝑓 †𝛼 𝑓𝛼 = 1 (4.15)

where 𝑓𝛼 are spin-1/2 fermions, 𝛼, 𝛽 represent either spin up or spin down, and repeated indices are
summed over. This construction has an inherent Z2 and𝑈 (1) redundancy. Because of this, the low-
energy theory can be promoted to fermions coupled to either a Z2 or 𝑈 (1) gauge field, producing
the associated quantum spin liquid state. In the case of gapped Z2 spin liquids, the spinons can be
bosons, but a gapless state is unstable to boson condensation [305]. The signatures for each spin
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Spin liquid state Signature in 𝑆(𝒒, 𝜔)
Gapped Z2

◦ At the 120◦ transition,
gap closes at only 𝒒 = 𝐾 .

Gapless𝑈 (1)
Dirac

◦ gapless at
𝒒 = 𝐾 and 𝒒 = 𝑀 .

Spinon Fermi
surface

◦ V-shape at 𝒒 = Γ.
◦ Broad continuum.

◦ 𝑆(𝒒, 𝜔 = 0+) > 0 ∀𝒒.

Table 4.1: Table of the three spin liquid candidates, and their corresponding signatures in the
dynamical structure factor, 𝑆(𝒒, 𝜔), defined by Eq. (4.2).

liquid state is summarized in Table 4.1, and we provide an explanation for these predictions in this
section.

First let us look at the Z2 spin liquid. In Ref. [380], the authors discuss two possibilities for
a gapped Z2 spin liquid on the triangular lattice, called the zero-flux and 𝜋-flux states. In the
zero-flux state, the spinon dispersion relation is minimized at the corner of the Brillouin zone,
𝒒 = 𝐾 . The magnons, which are two-spinon bound states, thus order at 𝒒 = 2𝐾 = 𝐾 . For the
𝜋-flux state, the spinon dispersion relation is minimized at 𝒒 = 𝑌 , and thus the magnon ordering
wave-vector is 𝒒 = 2𝑌 = 𝑀 . As the next nearest neighbor coupling is tuned, the gap closes, leading
to magnon-condensation and a continuous transition into an ordered state. Via this process, the
zero-flux state leads to the 120◦ state, and the 𝜋-flux state leads to the stripe ordered phase. Recent
neutron scattering experiments in KYbSe2 suggest that the transition from the 120◦ to the spin
liquid phase is second order [313]. This is also observed in a prior variational QMC study [174],
and the authors also find that the striped to spin liquid phase transition is first order. These findings
are not consistent with the 𝜋-flux state. Moreover, if the ground state is the zero-flux gapped Z2
QSL, then a signature to look for is the spectrum being gapless at 𝒒 = 𝐾 , and only 𝒒 = 𝐾 , at the
transition point from the 120◦ to the spin liquid phase. We note that precisely this prediction was
observed with the Schwinger-boson formalism starting from the 120◦ phase [313, 117].

Next, let us examine the 𝑈 (1) Dirac spin liquid state. The low-energy theory on the triangular
lattice is 𝑁 𝑓 = 4 QED3 [345]. In this theory, there are four spin-1/2 Dirac fermions (with two spin
and two ’valley’ labels), which correspond to two Dirac cones at 𝒒 = ±𝑌 in the spinon dispersion
relation. This theory permits two distinct types of gapless modes, fermion bilinears, and monopoles
[345, 344, 151, 11]. There are in total 16 fermion bilinears [150], which produce gapless spin
singlets and spin triplets at both 𝒒 = Γ and 𝒒 = 𝑀 [345]. As for the monopoles, they produce
spin-singlets at 𝒒 = 𝑌1, and spin-triplets at 𝒒 = 𝐾 [345, 344]. The dynamical structure factor
probes spin-1 excitations, and thus can not detect the fermion bilinears and monopoles that are
spin-singlets. Also, due to the𝑈 (1) symmetry in Eq. (4.1), it follows that 𝑆(𝒒 = Γ, 𝜔) = 0 for all 𝜔,
independent of the phase. This leaves that gapless modes should be detected at 𝒒 = 𝐾 and 𝒒 = 𝑀
if the ground state is a 𝑈 (1) Dirac spin liquid. This signature has been observed in a prior DMRG
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calculation, where they looked at where the correlation length diverges under flux insertion [160].
We want to note that within mean field theory for the𝑈 (1) Dirac spin liquid, without enforcing the
half-filling constraint in Eq. (4.15), the spectrum is gapped at 𝒒 = 𝐾 [326, 88]. However, enforcing
the constraint via variational Monte Carlo has a dramatic effect on the spectrum, and produces a
gapless mode at 𝒒 = 𝐾 as expected [104]. The free fermion mean-field theory and the effect of the
half-filling constraint on the spectrum can be seen in Fig. 8 of Ref. [104].

The last spin liquid state to talk about is the state with a spinon Fermi surface. The idea here is
that the low-energy theory is described by a metallic state with a half-filled band, leading to a Fermi
surface, and many low energy excitations [326, 212]. In Ref. [212], they start with a mean-field
Hamiltonian for free fermions at half-filling of the form

𝐻MFT = −𝑡1
∑︁
⟨𝑖, 𝑗⟩,𝛼

𝑓 †𝑖𝛼 𝑓 𝑗𝛼 − 𝑡2
∑︁

⟨⟨𝑖, 𝑗⟩⟩,𝛼
𝑓 †𝑖𝛼 𝑓 𝑗𝛼

−`
∑︁
𝑖,𝛼

𝑓 †𝑖𝛼 𝑓𝑖𝛼 (4.16)

This Hamiltonian is quadratic, and thus diagonalizable, and the chemical potential enforces half-
filling. Then, the dynamical structure factor is given by Eq. (4.2), with

𝐺 (𝒙, 𝑡) = ⟨Ω| 𝑆−𝒙 (𝑡)𝑆+𝒄 (0) |Ω⟩ , (4.17)

In terms of the fermion operators, we have

𝑆+𝒒 =
∑︁
𝒌

𝑓 †[𝒌+𝒒]↑ 𝑓𝒌↓ (4.18)

This means that 𝑆(𝒒, 𝜔 = 0+) > 0 if 𝒒 can be written as 𝒌1 + 𝒌2, with 𝒌1, 𝒌2 located at the
Fermi-surface. Due to the half-filling constraint, this is actually possible for every 𝒒. This model
makes three predictions about the dynamical structure factor: (i) 𝑆(𝒒, 𝜔 = 0+) > 0 ∀𝒒, (ii) a
V-shape upper excitation edge near 𝒒 = Γ, and (iii) a broad continuum throughout the Brillouin
zone, with no sharp magnon branches [326, 212, 305]. These features can be observed in Extended
Data Figure 5 of Ref. [326], and Fig. 2 of Ref. [328]. Although we do not expect the spin liquid
phase of the 𝐽1 − 𝐽2 Heisenberg model to be described by such a state, we discuss this state due
to reported signatures of this state in neutron scattering experiments in YbMgGaO4 [326, 328], as
well as in NaYbSe2 [74].

4.1.4 𝐽1 − 𝐽2 Spectral Functions
The 𝐽1 − 𝐽2 Heisenberg model on the triangular lattice hosts three distinct phase as we tune the
coupling constant 𝐽2. For intermediate values of 𝐽2, there is a quantum spin liquid phase, and the
exact nature of this phase is an active area of current research [434, 163, 174, 299, 389, 124, 160].
Because of this, there is a great interest in reliable simulations in this region. On the experimental
side, the material KYbSe2 is a promising candidate to realize this QSL phase [313] (see Sec. 4.2
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for more details). In that study, it was observed that KYbSe2 is well modelled by Eq. (4.1), with
𝐽2/𝐽1 ∼ 0.05, which is close to the boundary of the QSL phase which is approximately 𝐽2/𝐽1 ∼ 0.08
[174]. Applying pressure to this material could push it into the QSL phase, and so signatures of
the QSL phase are desired from the theory side. We explore the full phase diagram of the 𝐽1 − 𝐽2
Heisenberg model here.

The 120◦ Magnetic Long-Range Ordered Phase

The 𝐽2 = 0 phase of the triangular lattice Heisenberg model has a rich history starting back with
Anderson postulating the ground state as a candidate for a resonating valence bond state [14], but
more recently evidence suggests the state realizes a 120◦ ordering antiferromagnetic state [167,
188, 338, 66, 27, 52, 430, 387]. In Fig. 4.4 a) we show the static structure factor obtained from
DMRG, and see ordering at 𝒒 = 𝐾 as expected. In Fig. 4.4 b), we show the full spectrum, the
dispersion relation obtained using

𝜖 (𝒒) := argmax
𝜔

𝑆(𝒒, 𝜔), (4.19)

as well as the dispersion relation from SWT [63], for path 1 in Fig. 4.2. The discontinuity in 𝜖 (𝒒) in
the middle of the path from 𝒒 = Γ → 𝐾 we believe to be an artifact of the definition in Eq. (4.19),
as there are two branches of near equal spectral weight in this momentum range. We also note that
near 𝒒 = 𝐾 , we anticipate 𝜖 (𝒒) to overestimate the real dispersion relation due to finite size effects,
and reduced resolution for small 𝜔 due to finite time.

Despite the overestimation of the dispersion relation, we compute the velocity of excitations,
which would be robust to a systematic overestimation of the dispersion relation. Near 𝒒 = 𝐾
we anticipate the velocity to be independent of the direction, and so we take the direction from
𝒒 = 𝐾 → Γ, as this has the most allowed 𝒒 values in the linear region of SWT. We show the
comparison of our MPS results with SWT in Fig. 4.4 c). We see an almost uniform increase of the
dispersion relation compared to SWT. We fit the data to a line of the form 𝑣𝑞 + Δ, which provides
an estimate to the velocity, as well as the gap. Again we do not include the value at 𝒒 = 𝐾 , as
this is the least accurate point since we expect gapless modes from SWT. We find the velocity is
close to SWT, with a slight decrease. The fit parameter Δ, as well as the value of 𝜖 (𝒒 = 𝐾) provide
an estimate to the gap, but this should be viewed as an upper bound rather than a quantitatively
accurate result. Analogously to the square lattice case, there is a finite-size gap that we expect to
scale as Δ ∼ 1/𝐿𝐶, as well as minimum frequency resolution on the order of 𝜔min ∼ [ ≈ 0.14,
making the gap challenging to resolve accurately.

We look at the dispersion relation for the entire Brillouin zone in Fig. 4.4 d). It has been
previously seen that there is a reduction from the linear spin wave theory results most noticeably
at the 𝒒 = 𝑀 and 𝒒 = 𝑌1 points in the Brillouin zone [368, 104]. This reduction in the dispersion
relation at 𝒒 = 𝑌1 leads to a surprising stabilization of quasi-particles, preventing their decay [368].
The reduction is not as clear here when looking at the dispersion relation in Fig. 4.4 d). However,
in Fig. 4.4 b) and e), we can clearly see a low energy roton mode near 𝒒 = 𝑀 , and low energy
spectral weight at 𝒒 = 𝑌1, as expected. These low energy peaks are also visible in Fig. 4.4 f). Since
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Figure 4.4: Results for the nearest-neighbor antiferromagnetic Heisenberg model on the triangular
lattice, defined by Eq. (4.1) with 𝐽2 = 0. We show the static structure factor 𝑆(𝒒) defined by Eq.
(4.4) in a). In b) and e) we show the dynamical structure factor 𝑆(𝒒, 𝜔) defined by Eq. (4.2) for
path 1 and path 2 shown in Fig. 4.2 respectively. We show the dispersion relation using Eq. (4.19)
for momentum values near 𝒒 = 𝐾 = (4𝜋/3, 0) on the path towards 𝒒 = Γ = 0 in c). We fit these
points to a line of the form 𝑣𝑞 + Δ shown in blue, and the dispersion relation and velocity from
linear SWT in green [63]. The dispersion relation using Eq. (4.19) is shown in d). Lastly, We show
the frequency dependence of 𝑆(𝒒, 𝜔) at fixed high symmetry momentum values in f), and compare
with the SWT results at those momenta shown with a star. We divide the values by the maximum
intensity 𝑆max to view all three points on the same axis. For both the static structure factor and the
dispersion relation, we restore the 6-fold rotational symmetry of the lattice in the thermodynamic
limit, as discussed in Sec. 4.1.2.

these low energy branches are not the maximum intensity frequency at these momentum values,
our definition of the dispersion relation does not pick them out. However, if we do not damp the data
with a Gaussian factor, then these low energy peaks do become the frequency with the maximum
intensity. We note that in Fig. 4.4 f), it appears this low energy branch near 𝒒 = 𝑀 peaks at a
frequency lower than the peak at 𝒒 = 𝐾 , suggesting a smaller gap at 𝒒 = 𝑀 . However, with perfect
frequency resolution, the gap is better defined as the value of 𝜔 where the spectral weight becomes
non-zero. Since the spectral weight at 𝒒 = 𝐾 is at least one order of magnitude larger than at 𝒒 = 𝑀 ,
it is unlikely that the gap would be lower at 𝒒 = 𝑀 .

We show the dynamical structure factor in Fig. 4.4 e) for path 2 in Fig. 4.2, to easily compare
with recent neutron scattering results in Ba3CoSb2O9 [176, 237], PEPS results [64], and Schwinger-
boson theory [117]. We find the maximum spectral weight resides at 𝒒 = 𝐾 , and we also see the
low energy roton-like mode at 𝒒 = 𝑀 seen in prior simulations [368, 104, 64], as well as neutron
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Figure 4.5: Results for the 𝐽1 − 𝐽2 Heisenberg model on the triangular lattice, defined by Eq. (4.1)
with 𝐽2/𝐽1 = 0.5. We show the static structure factor 𝑆(𝒒) defined by Eq. (4.4) in a). In b) and e)
we show the dynamical structure factor 𝑆(𝒒, 𝜔) defined by Eq. (4.2) for path 1 and path 2 shown in
Fig. 4.2 respectively. We show the dispersion relation using Eq. (4.19) for momentum values near
𝒒 = 𝑀 = (0, 2𝜋/√3) on the path towards 𝒒 = 𝐾 = (2𝜋/3, 2𝜋/√3) in c). We fit these points to a line
of the form 𝑣𝑞 + Δ shown in blue. The dispersion relation using Eq. (4.19) is shown in d). Lastly,
We show the frequency dependence of 𝑆(𝒒, 𝜔) at fixed high symmetry momentum values in f). We
divide the values by the maximum intensity 𝑆max to view all three points on the same axis. For both
the static structure factor and the dispersion relation, we restore the 6-fold rotational symmetry of
the lattice in the thermodynamic limit, as discussed in Sec. 4.1.2.

scattering experiments in Ba3CoSb2O9 [176, 237] and KYbSe2 [313]. We note that the roton-like
mode is not fully captured in the Schwinger-boson formalism, but the behavior near 𝒒 = 𝐾 appears
to be well captured.

The Stripe Ordered Phase

For large, 𝐽2/𝐽1, the Hamiltonian given by Eq. (4.1) exhibits a striped antiferromagnetic ground
state. We use 𝐽2/𝐽1 = 0.5 to study this phase. We show the full spectrum given in Fig. 4.5 b) and
e) for the paths shown in Fig. 4.2. We also show the dispersion relation from Eq. (4.19) in Fig. 4.5
d). For both the static structure factor and the dispersion relation, we restore the 6-fold rotational
symmetry of the lattice in the thermodynamic limit, as discussed in Sec. 4.1.2. The striped phase
does in fact break this symmetry, and so this would illustrate the symmetric state formed as a
superposition of the three symmetry broken states.

We show the velocity near 𝒒 = 𝑀 in Fig. 4.5 c), as well as the gap determined from the linear
fit. Again we omit the value of 𝜖 (𝒒 = 𝑀) from the fit, and can compare the value with the value
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Δ obtained in the fit. Similarly, we anticipate the largest deviations to be near where we expect
gapless excitations, which is at 𝒒 = 𝑀 in the striped phase. In the previous systems discussed
earlier, we found that the dispersion relation away from these gapless points had good quantitative
agreement with SWT and/or QMC, and so we anticipate the same here. We also show the frequency
dependence at 𝒒 = 𝐾, 𝑀 , and 𝑌1 in Fig. 4.5 f) for reference.

The Quantum Spin Liquid Phase

Lastly, we examined the quantum spin liquid phase, with 𝐽2/𝐽1 = 0.12, which is right in the middle
of the two boundaries of the QSL phase as predicted by Ref. [174]. We find the maximum intensity
is spread across the Brillouin zone boundary in the static structure factor shown in Fig. 4.6 a), a
feature also present in kagome lattice spin liquid systems [84, 332, 433, 281, 144]. We show the
full spectrum in Fig. 4.6 b) and e), along the paths through the Brillouin zone illustrate in Fig. 4.2.
We note the low energy spectral weight lies along the entire Brillouin zone boundary, seen in the
path from 𝒒 = 𝐾 → 𝑀 . This is indicative of a competition between the 120◦ and the stripe ordered
phases, which order at 𝒒 = 𝐾 and 𝒒 = 𝑀 , respectively. In Fig. 4.6 b) we see a faint high-energy
branch near 𝒒 = Γ, in agreement with Ref. [104]. However, we find a continuum extending to higher
energies, and this branch lies fully within this continuum as opposed to being isolated. We believe
this difference is because our simulations do not rely on an ansatz for the excitations, and can probe
the full spectrum.

We also see the low energy spectral weight along the Brillouin zone boundary by looking at the
dispersion relation shown in Fig. 4.6 d), obtained using Eq. (4.19). It is more accurate to call this
just the maximum intensity as a function of momentum 𝒒. The dispersion relation interpretation
assumes well define magnon modes, which we do not expect in the QSL phase. Nevertheless, it
does indicate that there is low energy spectral weight across the Brillouin zone boundary, but low
energy spectral weight is absent near the center of the Brillouin zone. We note that in Fig. 7 e), the
spectrum looks flat from 𝒒 = 𝐾 → 𝑀 , but this is an artifact of the frequency resolution and using
color to display the spectrum. If we look at Fig. 4.7, we see that there is structure between these
two points. Lastly we show the frequency dependence of 𝑆(𝒒, 𝜔) at the high symmetry 𝒒 points in
Fig. 4.6 f). We want to emphasize the similarity between 𝒒 = 𝐾 and 𝒒 = 𝑀 , which is unique to the
QSL phase. We also note that the maximum intensity is suppressed as compared to the 120◦ phase
in Fig. 4.4 f), and the striped phase in Fig. 4.5 f).

Let us now examine what these results have to say about the nature of the QSL ground state.
First, we show in Fig. 4.6 c) the spectrum with a similar colormap and momentum path as Fig.
4 in Ref [74] for easy comparison. We see the V-shape spectrum near 𝒒 = Γ, as is observed in
previous neutron scattering experiments in NaYbSe2 [74], and in YbMgGaO4 [326, 328]. This
is a hallmark of a QSL with a spinon Fermi surface, as discussed in Sec. 4.1.3. However, we
also see that near 𝒒 = Γ there is a small gap Δ ≈ 0.25 in the spectrum which is not seen in the
experiments. If NaYbSe2 is similar to KYbSe2, which has been shown to be well modelled by a
𝐽1 − 𝐽2 Heisenberg model with 𝐽1 ≈ 0.56 meV [313], then the gap would be Δ ≈ 0.14 meV, which
is below the lowest frequency 𝜔min ≈ 0.2 meV accesible in Ref. [74]. This discrepancy means that
either these materials are not well modelled by the 𝐽1 − 𝐽2 Heisenberg model, or that the lowest



CHAPTER 4. QUANTUM SPIN LIQUIDS AND TRIANGULAR LATTICE COMPOUNDS 89

Smax= 1.0 x 10
-2

Smax= 8.3 x 10
-3

Smax= 6.9 x 10
-4

a)

d)

b)

f)e)

c)

Figure 4.6: Results for the 𝐽1 − 𝐽2 Heisenberg model on the triangular lattice, defined by Eq. (4.1)
with 𝐽2/𝐽1 = 0.12. We show the static structure factor 𝑆(𝒒) defined by Eq. (4.4) in a). In b) and e)
we show the dynamical structure factor 𝑆(𝒒, 𝜔) defined by Eq. (4.2) for path 1 and path 2 shown in
Fig. 4.2 respectively. In c) we show the spectral function using a similar path and color map as Fig.
4 in Ref. [74] for easy comparison. The maximum intensity using Eq. (4.19) is shown in d). Lastly,
we show the frequency dependence of 𝑆(𝒒, 𝜔) at fixed high symmetry momentum values in f). We
divide the values by the maximum intensity 𝑆max to view all three points on the same axis. For both
the static structure factor and the dispersion relation, we restore the 6-fold rotational symmetry of
the lattice in the thermodynamic limit, as discussed in Sec. 4.1.2.

energies accessible in these experiments is not low enough to probe this gap on the order of 𝐽1/4.
In either case, the presence of the gap in the spectrum rules out the spinon Fermi surface state as
ground state of this model.

Next we wish to distinguish the gapped Z2 from the gapless𝑈 (1) Dirac spin liquid. To do this,
we look at how the full spectrum changes as we tune 𝐽2 through all three phases, illustrated in
Fig. 4.7. As discussed in Sec. 4.1.3, we want to look at what happens at 𝒒 = 𝐾 and 𝒒 = 𝑀 , as we
approach the QSL phase from the 120◦ phase. What we find is that there is a sharp low energy
magnon branch near 𝒒 = 𝑀 that softens and decreases as the critical point is approached, and
remains this way into the QSL phase. This feature has also been observed in a recent variational
QMC study [104]. This is a key signature of a gapless𝑈 (1) Dirac QSL, suggesting the spectrum is
gapless at both 𝒒 = 𝐾 and 𝒒 = 𝑀 in the QSL phase, in agreement with a recent DMRG study [160].
This feature is not captured within the Schwinger-boson formalism [313, 117], which finds that the
gap 𝒒 = 𝑀 remains gapped as 𝐽2 is tuned towards the critical point. This suggests that Schwinger-
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Figure 4.7: The dynamical structure factor given by Eq. (4.2) for the 𝐽1 − 𝐽2 Heisenberg model
on the triangular lattice defined by Eq. (4.1) along path 2 shown in Fig. 4.2. We show multiple 𝐽2
values across the entire phase diagram. This model is in the spin liquid phase for 0.08 ≲ 𝐽2 ≲ 0.16
[174]. We use a Gaussian broadening defined by Eq. (4.12), with [2 = 0.02. The first and third rows
show the spectral function, and the second and last row show low frequency cuts of the spectral
function. The cuts are obtained by integrating the frequency from 0 to 0.1, and then normalize so
that the maximum intensity is 1. The black line is just to help with visualizing the data points in
red.

boson theory does not capture the QSL phase well, even though it has remarkable agreement with
PEPS [64], and the neutron spectrum of Ba3CoSb2O9 [176, 237], near the 𝐽2 = 0 point.

To further examine the behavior at 𝒒 = 𝐾 and 𝒒 = 𝑀 across all three phases, we show 𝑆(𝒒, 𝜔 =
0+) as well in Fig. 4.7. To compute 𝑆(𝒒, 𝜔 = 0+) we integrate 𝑆(𝒒, 𝜔) for 𝜔min ≤ 𝜔 ≤ 𝜔max,
with 𝜔min = 0, and 𝜔max = 0.1. We also adjusted the integration window, with 𝜔min ∈ [0, 0.1],
and 𝜔max ∈ [0, 0.2], as well as just using the value at 𝜔 = 0, with no qualitative difference. Thus,
the low frequency cuts are robust and not just probing frequencies lower than can be resolved
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numerically. If this quantity is non-zero, then this would mean that there are gapless modes in the
spectrum, which produce spectral weight down to the lowest energies. We find that deep in the
120◦ phase, that the low energy spectral weight is near zero, except at 𝒒 = 𝐾 . As 𝐽2 increases, low
energy spectral weight develops at 𝒒 = 𝑀 . Inside the QSL phase, we find appreciable weight at
both 𝒒 = 𝐾 and 𝒒 = 𝑀 , suggesting the spectrum is gapless at both these momenta, implying a
gapless𝑈 (1) Dirac spin liquid. Moreover, through all three phases, the spectral weight near 𝒒 = Γ
is zero, within machine precision. This provides further evidence against a spinon Fermi surface
state, which would be non-zero everywhere within the QSL phase[305].

We want to note that separating zero from small is a challenging task numerically, and so we
cannot definitively rule out the gapped Z2 or spinon Fermi surface spin liquid states. However, we
believe the most likely interpretation of our data in the QSL phase is that the spectral weight is
localized around 𝒒 = 𝐾 and 𝒒 = 𝑀 , and broadened to yield non-zero weight along the full Brillouin
zone boundary. These results are most consistent with a𝑈 (1) Dirac QSL ground state.

4.1.5 Conclusions
Summary

In this work we examine the dynamical structure factor for the full phase diagram of the 𝐽1 − 𝐽2
Heisenberg model on the triangular lattice. We also look at the square lattice for the same model
with 𝐽2 = 0 as a benchmark for our method. For the square lattice, we compute the full spectrum,
𝑆(𝒒, 𝜔), and find great qualitative agreement with the results from QMC in Ref. [324]. From
this, we extract the magnon dispersion relation 𝜖 (𝒒) using Eq. (4.19), and then we compare this
quantitatively with QMC [324] and SWT [170]. We find great agreement, except for wave-vectors
𝒒 close to gapless modes. Nevertheless, we were able to extract the magnon velocity near 𝒒 = 𝑀
from the dispersion relation, and found excellent agreement with the velocity in Ref. [321], which
uses highly accurate methods based on static properties. The success on the square lattice provides
confidence on utilizing this method to study the triangular lattice.

In the 120◦ magnetic long-range ordered phase, we compare our results against linear SWT [63].
We find low energy branches at frequencies much lower than the SWT prediction, at 𝒒 = 𝑀 and
𝒒 = 𝑌1. This reduction in the energy has been linked to avoided quasi-particle decay [368], and also
observed in variational QMC [104]. This produces a roton-like mode at 𝒒 = 𝑀 which is not captured
by linear SWT, and has been observed in neutron scattering experiments in Ba3CoSb2O9 [176, 237],
and KYbSe2 [313], as well as simulations using PEPS [64]. Away from 𝒒 = 𝑀 and 𝒒 = 𝑌1, we also
find good agreement with Schwinger-boson theory [117].

In the stripe ordered phase, we show the spectral function, dispersion relation, and velocity near
𝒒 = 𝑀 as a reference for future work. As far as we know, there are no other simulations of the full
spectrum in this phase to compare against. In the static structure factor, we find ordering at 𝒒 = 𝑀 ,
as observed previously [163].

In the QSL phase, we find from the static structure factor that there is no unique ordering
wave-vector. The maximal intensity occurs at both 𝒒 = 𝐾 and 𝒒 = 𝑀 , which are the ordering wave-
vectors for the 120◦ and striped phase respectively. This demonstrates frustration in the system, as
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it struggles to satisfy simultaneously the 𝐽1 and 𝐽2 interactions, which is precisely what is expected
to give rise to a QSL phase.

We look for the signatures in the low energy spectrum predicted by the three dominant phases,
which are summarized in Table 4.1. We find a V-shape spectrum near 𝒒 = Γ, a key signature of
a spinon Fermi surface. However, we find at low energies, a gap opens near 𝒒 = Γ, in contrast to
the spinon Fermi-surface which is gapless everywhere [305, 212]. This V-shape pattern has been
observed in neutron scattering experiments in NaYbSe2 [74], and in YbMgGaO4 [326, 328], which
has been attributed to a spinon Fermi surface. If NaYbSe2 is similar to KYbSe2, which has been
shown to be well modelled by a 𝐽1 − 𝐽2 Heisenberg model with 𝐽1 ≈ 0.56 meV [313], then the
gap would be Δ ≈ 0.14 meV, which is below the lowest frequency 𝜔min ≈ 0.2 meV accesible in
Ref. [74]. The absense of a low energy gap developing near 𝒒 = Γ in these experiments means one
of two things. Either, these materials are not well modelled by the 𝐽1 − 𝐽2 Heisenberg model, and
spin anisotropies or longer range interactions lead to different QSL phases than what is found in
the 𝐽1 − 𝐽2 Heisenberg model. Or, the gap appears at energies lower than what was accessible in
these experiments. This calls for future neutron scattering experiments at lower energies, as well
as ab-initio calculations, to elucidate the underlying microscopic models of these materials, and
associated energy scales.

As we increase 𝐽2/𝐽1 up from 0, we find that the low energy branch near 𝒒 = 𝑀 softens,
and eventually leads to the gap closing at the critical point, ruling out a gapped Z2 QSL. This
finding is consistent with the variational QMC study in Ref. [104]. We also find the high-energy
branch near the Γ point observed in their work. However, we find a continuum extending to higher
energies, and this branch lies fully within this continuum as opposed to being isolated. We believe
this difference is due to our method probing the full spectrum, and does not assume an ansatz for
the excitations. The gap closing at 𝒒 = 𝑀 as the critical point is approached was not observed
in the Schwinger-boson formalism [313, 117]. We note that recent neutron scattering experiments
in KYbSe2 suggest it is well modelled by a 𝐽1 − 𝐽2 Heisenberg model near the quantum critical
point [313]. By applying hydrostatic pressure to KYbSe2, and possibly the other triangular lattice
materials, neutron scattering experiments may be able to give insights into what is happening near
𝒒 = 𝑀 as the material approaches quantum criticality.

Due to finite resolution in our simulations, we cannot definitively rule out a small gap at 𝒒 = 𝑀 ,
which would imply a Z2 spin liquid, as recently claimed [313, 117, 186]. We also cannot definitively
distinguish zero spectral weight from small spectral weight near 𝒒 = Γ, as expected in a spinon
Fermi surface state [212, 305], and recently seen in neutron scattering experiments [74, 326, 328].
However, the most likely interpretation of our results is that there are gapless modes localized at
𝒒 = 𝐾 and 𝒒 = 𝑀 , implying a gapless𝑈 (1) Dirac spin liquid, in agreement with Ref. [160].

Perspectives

Distinguishing the gapped Z2 from a gapless Dirac spin liquid remains a challenging task. Our
results favor the gapless case, but future studies are needed to provide a definitive answer to this
question. Perhaps looking at level crossings in the low energy spectrum could shed light on this, as
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was done for the 𝐽1 − 𝐽2 Heisenberg model on the square lattice [381], and the Shastry-Sutherland
model [410, 382].

We could also possibly gain insight to this question from cold atom experiments. Recently, a
quantum spin liquid was realized in a quantum simulator of Rydberg atoms on the kagome lattice
[320]. Triangular optical lattices have been proposed [404], and constructed [411, 403] to study
frustrated quantum magnets. This may be a future direction to study the ground state properties of
the 𝐽1 − 𝐽2 Heisenberg model.

Quantum criticality can also be further explored by the Kibble-Zurek mechanism [194, 195,
49]. This procedure time-evolves a ground state with a time-dependent Hamiltonian in proximity
to a quantum critical point. Adiabaticity is lost as the gap closes, and the excitations generated
are specified by the rate at which the Hamiltonian changes, and the critical exponents of the
quantum critical point. Recent neutron scattering experiments in KYbSe2 have found critical
scaling with an unexplained critical exponent [313]. Such a Kibble-Zurek process may be able to
shed light on this observed criticality. Moreover, such Kibble-Zurek processes are ideal for use on
quantum computers, on which unitary dynamics is easily programmed. If a quantum critical point
is continuously connected to a product state, then a quantum computer may be useful in probing
the critical point, as was done recently in the one-dimensional quantum Ising model [91]. Such
small scale quantum computing devices are, in principle, not prone to the challenges of long-range
interactions like MPS calculations are, for studying two-dimensional dynamics. Future work in this
direction could provide insight into the nature of the QSL in the 𝐽1 − 𝐽2 Heisenberg model, and
simultaneously provide a problem where quantum computers extend beyond what is possible with
classical simulations.
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4.2 Proximate Spin Liquid and Fractionalization in KYbSe2

4.2.1 Introduction
In the last decade, Yb3+ based materials have become popular as QSL candidates because of the
Yb3+ effective 𝑆 = 1/2 state. Most recently, a class of delafossite materials have been proposed
as relatively disorder-free QSL candidates, including NaYbO2 [85, 33, 289], NaYbS2 [18, 303],
NaYbSe2 [287, 74] and CsYbSe2 [393]. Each of these materials shows diffuse excitations and no
long-range magnetic order down to 0.4 K or lower, but because neither are unique to QSL states
(both are also caused by spin glass [421], random singlet phases [435], or 2D magnetic order only
in the zero temperature limit), they remain QSL candidates only.

Here we investigate a new member of the Yb3+ delafossite family: KYbSe2 1 which forms a
layered triangular lattice of magnetic Yb3+ ions, see Fig. 4.8(a). This material shows no long-
range order above 400 mK [398], and finite-field ordered phases similar to NaYbO2 [33] and
NaYbS2 [303]. Thus it appears promising as a quantum spin liquid candidate. Using a combination
of Onsager reaction field theory, Schwinger bosons, and matrix product state (MPS) approaches to
model KYbSe2, we find that its physics is well-captured by a microscopic spin-1/2 Hamiltonian
with nearest and next-nearest neighbor Heisenberg interactions on the triangular lattice in proximity
to the QSL phase [see Fig. 4.8(b)]. Finally, the neutron spectrum displays signatures of quantum
criticality and fractionalized spinon quasiparticles. Together, these results show KYbSe2 to be
proximate to a spin liquid phase.

4.2.2 Microscopic Modeling
To better understand the features observed in KYbSe2, and find a microscopic model for the
compound, we use a combination of theoretical techniques, the Onsager reaction field, Schwinger
bosons, and MPS simulations.

Onsager reaction field: estimating the exchange ratios

First, we employ the Onsager reaction field (ORF) [263] to fit the energy-integrated paramagnetic
scattering shown in Fig. 4.9. This approach neglects quantum fluctuations, but in the paramagnetic
regime it is accurate up to a temperature-dependent energy scale normalization [166] which in our
case is unknown. Despite this limitation, ORF does give relative anisotropy and ratios between
exchanges. Using the 𝑔-tensor derived from crystal electric field fits and allowing for first and
second neighbor exchange, we find the off-diagonal anisotropic exchange is small and the nearest
neighbor exchange is isotropic to within uncertainty [see Sec. 4.4.1] making KYbSe2 a very good
approximation to a triangular lattice Heisenberg antiferromagnet described by the microscopic

1The experiments of KYbSe2 were conducted by my collaborators at Oak Ridge National Lab. See Ref. [309] for
more information about the researchers and their contributions.
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Figure 4.8: Crystal structure and phase diagram of KYbSe2. Panel a shows the crystal structure
with a side view of the stacked triangular layers and a top view showing the Yb3+ triangular
lattice mediated by Se2− ions. Panel b shows a schematic phase diagram of the triangular lattice
Heisenberg antiferromagnet as a function of second neighbor exchange strength 𝐽2. This includes
a zero temperature 120◦ ordered phase for 𝐽2/𝐽1 ≲ 0.06, a zero temperature stripe ordered phase
for 𝐽2/𝐽1 ≳ 0.16, and an intermediate QSL phase [434, 163, 175, 299, 389, 124, 161]. Near the
quantum critical points we expect quantum critical regime extending at finite temperature.

𝐽1 − 𝐽2 Hamiltonian,
Ĥ = 𝐽1

∑︁
⟨𝑖, 𝑗⟩

�̂�𝑖 · �̂� 𝑗 + 𝐽2
∑︁
⟨⟨𝑖, 𝑗⟩⟩

�̂�𝑖 · �̂� 𝑗 . (4.20)

What is more, the fitted 𝐽2/𝐽1 = 0.047(7). This is extremely close to the predicted phase boundary
between 120◦ magnetic order and a QSL phase on the triangular lattice Heisenberg antiferromagnet:
𝐽2/𝐽1 ≈ 0.06 [434, 163, 175, 299, 389, 124, 161]. Thus, ORF fits show KYbSe2 has nearly isotropic
Heisenberg exchange and is very close to a quantum spin liquid phase.

Schwinger bosons: comparing the neutron spectrum

To understand the inelastic neutron spectrum, we turn to a Schwinger Boson (SB) theory beyond
the mean field level [15, 16, 116]. This is a parton formulation where the Heisenberg model is
expressed in terms of interacting spin-1/2 bosons or spinons, whose condensation leads to long-
range magnetic ordering [15, 16]. For details, see the Methods section.

The dynamical spin structure factor 𝑆(𝒒, 𝜔) at 𝑇 = 0 using SB [116] for 𝐽2/𝐽1 = 0.05 is
shown in Fig. 4.9(d). On a qualitative level, this result captures the features seen in the experimental
data: the strong dispersive cone emanating from 𝐾 , the continuum scattering at higher energies,
the diffuse high-energy feature at 𝑀 , and the pronounced low-energy “roton-like” mode at 𝑀 . We
note that the downturn of the roton-like mode is much less pronounced in the SB result because
of the lack of 1/𝑁 corrections to the internal vertices and the single-spinon propagator [116].
However, the most remarkable aspect of this comparison is that the SB approach captures the
intensity modulation of the continuum scattering at higher energies, which is determined by the
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Figure 4.9: Comparison between experimental KYbSe2 scattering and theoretical simula-
tions. Panels a and b show Onsager reaction field (ORF) fits to energy-integrated paramagnetic
KYbSe2 scattering at 1 K and 2 K. In each panel, the data is on the left and the fit is on the right.
Panels c-e show neutron scattering along high-symmetry directions. c shows the experimental
data for KYbSe2 and d shows the zero-temperature simulated spectrum from Schwinger boson
calculations with 𝐽1 = 0.56(3) meV and 𝐽2/𝐽1 = 0.05. Panel e shows tensor network simulations
of a triangular lattice with the same 𝐽1 and 𝐽2 on a cylinder with a circumference of 6 sites and
length 36 sites. On a qualitative level, the theory captures the continuum excitations observed in
experiment.
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two-spinon continuum of the SB theory. This correspondence points to the continuum scattering in
KYbSe2 originating from its proximity to a deconfined spin liquid state with fractionalized spinon
excitations.

The measured continuum scattering extends up to higher energies than SB predicts: ≈ 1.6 meV,
approximately three times the fitted 𝐽1 = 0.56(3) meV (see Sec. 4.4.1). We attribute this discrepancy
to the lack of 4-spinon contributions arising from Feynman diagrams which have not been included
in the SB calculation [116]. Note that the KYbSe2 continuum extent does match the predicted
continuum extent near the 𝐽2/𝐽1 ≈ 0.06 transition point as calculated by Gutzwiller projected
variational Monte Carlo [105].

Simulations and comparison

The third technique we use to model the diffuse inelastic neutron scattering is using the MPS
technique discussed in Sec. 4.1.2. A related approach was recently used to interpret and describe
the scattering of CsYbSe2 [393], and provides a full quantum picture of the neutron spectrum. The
downside to this technique is finite size effects, which cause broadened modes and gaps in the low
energy spectrum. Nevertheless, qualitative comparisons can be made.

The simulated data along high symmetry directions of the Brillouin zone for 𝐽2/𝐽1 = 0.05 is
shown in Fig. 4.9(e). The overall features of the experimental data are reproduced in the simulations:
the asymmetric dispersive modes emanating from 𝐾 , the diffuse continuum extending to high
energies, and even the broad 1 meV feature at 𝑀 . This shows that the triangular lattice Heisenberg
𝐽1-𝐽2 model is indeed an appropriate model for KYbSe2. Further microscopic simulations show
that most of the high energy scattering remains unchanged as 𝐽2 is increased and the system enters
the QSL phase, showing that the high-energy scattering can be interpreted as bound spinons of a
proximate spin liquid.

4.2.3 Critical Scaling
So far, the theoretical comparisons indicate that KYbSe2 is close to the 𝐽2/𝐽1 QSL quantum critical
point. If this is true, we should see quantum critical scaling in the finite temperature neutron
spectrum [205, 318, 57, 302]. Plotting scattered intensity times (𝑘𝐵𝑇)𝛼 versus ℏ𝜔/𝑘B𝑇 , shown in
Fig. 4.10, we see a critical exponent 𝛼 = 1.73(12) over more than a decade in 𝜔/𝑇 . Theoretically,
the semiclassical spin wave scattering from an ordered Heisenberg triangular lattice predicts an
exponent𝛼 = 1. The observed scattering is unquestionably inconsistent with this [Fig. 4.10(a)]. Thus
this scaling shows that the KYbSe2 inelastic spectrum goes beyond a simple magnon description,
suggesting fractionalized spinon excitations, a hallmark of a QSL state.

Elastic Bragg scattering and heat capacity show a transition to long range magnetic order below
𝑇𝑁 = 290 mK (see Sec. 4.4.1), showing that KYbSe2 is on the 120◦ side of the phase boundary.
Nevertheless, the critical scaling is strong evidence that KYbSe2 is within the quantum critical
regime at finite 𝑇 .
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Figure 4.10: Critical scaling in KYbSe2, showing data at the 𝐾 point at three different tem-
peratures scaled by ℏ𝜔/𝑘B𝑇 and 𝑆(𝒒 = 𝐾, 𝜔) (𝑘B𝑇)𝛼. Measured KYbSe2 spectra are on the
left column, and calculated spin wave theory (SWT) are on the right column. When 𝛼 = 1.73(12),
the KYbSe2 data from the three temperatures follow the same curve, suggesting quantum critical
scaling. SWT spectra, meanwhile, overlap when 𝛼 = 1.0. This suggests fundamentally different
behavior in KYbSe2 that cannot be captured by non-interacting magnons. (Fitted energy range was
ℏ𝜔 ≤ 1.3 meV; data above this are plotted in lighter colors.)

The critical scaling suggests that KYbSe2 is in close proximity to a second order phase transition.
This is consistent with theoretical studies of the 𝐽1−𝐽2 Heisenberg model [174], which find a second
order phase transition between the 120◦ and QSL phases. This further implies that KYbSe2 is well
modelled by the 𝐽1 − 𝐽2 Heisenberg model.

4.2.4 Conclusion
These results show that KYbSe2 is within the quantum critical fan of a quantum spin liquid state.
CEF fits show an isotropic 𝐽 = 1/2 doublet with strong quantum effects, and ORF simulations
show a 𝐽2/𝐽1 ratio within the 120◦ ordered phase but very close to the QSL quantum critical point
𝐽2/𝐽1 ≈ 0.06. Finally, there are strong signs of quantum criticality in the neutron spectrum: (i) the
majority spectral weight in the continuum, (ii) the sharp lower continuum bound reminiscent of the
1D spinon spectrum, (iii) strong correspondence to SB and MPS simulations near the transition to
a spin liquid, and (iv) critical scaling incompatible with semiclassical excitations all indicate that
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the KYbSe2 excitations are fractionalized spinons of a QSL phase. Thus, despite the existence of
magnetic order at the lowest temperature, we propose KYbSe2 as a model for triangular lattice QSL
physics at finite energies and temperatures (exactly like many 1D spin chains—c.f. KCuF3 [205]).

These results have implications beyond just this material. As noted earlier, triangular lattice
CsYbSe2 and NaYbSe2 also show features of a QSL phase: with CsYbSe2 possibly more toward
the 𝐽2 = 0 limit [393], and NaYbSe2 𝐽2/𝐽1 possibly within the QSL phase (Yb site disorder
notwithstanding) [74]. This suggests that the periodic table can be used to “tune” 𝐽2/𝐽1 such
that the delafossite lattice can be brought into and out of a QSL phase depending on the A-site
element. This gives a remarkably controlled way to study QSL materials. Another possible way to
“tune” 𝐽2/𝐽1 could be through hydrostatic pressure—there are even reports of superconductivity in
NaYbSe2 under pressure [185, 427], which suggests pressure does more than just shift magnetic
exchange constants.

The family of Yb3+ delafossites are a remarkable platform for 2D triangular lattice Heisenberg
systems. By controlling 𝐽2/𝐽1, we are able to systematically approach a QSL from the 120◦ ordered
phase, which gives a clear pathway towards an experimentally verifiable QSL state. Scaling behavior
in ℏ𝜔/𝑘𝐵𝑇 with a nontrivial exponent, i.e., a value inconsistent with gapless spin wave excitations,
is observed in the spin correlations down to the lowest temperature measured (0.3 K), with a
correlation length of at least ten unit cells.

While a weakly first-order transition with a long correlation length is possible, the natural
interpretation of the results in this work is that the phase transition from 120◦ to a QSL is second
order, which combines with previous theoretical work to constrain strongly the nature of the QSL.
One of the frontiers in quantum condensed matter physics is to understand the possible phase
transitions between topological and broken-symmetry phases, and the combined experimental and
theoretical analysis of KYbSe2 helps clarify one piece of this frontier.
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4.3 Realization of U(1) Dirac Quantum Spin Liquid in
YbZn2GaO5

4.3.1 Introduction
In recent years, two-dimensional triangular lattice systems with rare-earth ions carrying effective
spin-1/2 moments have presented promising opportunities in realizing QSL states, given the pres-
ence of spin-orbit coupling, crystal electric fields, and strong quantum fluctuations. Among these
systems, the Yb-based YbMgGaO4 has been intensively studied due to the absence of magnetic
ordering and the observed continuum-like inelastic neutron scattering (INS) spectra, making it a
promising candidate for QSL[218, 223, 220, 327, 264, 436, 197]. However, the presence of chemical
disorder in YbMgGaO4, caused by the inherently mixed occupancies of magnesium and gallium
atoms on the same crystallographic site, has made the interpretation of the results challenging
[436, 216, 197]. Specifically, a theoretical study suggests that the chemical disorder may imitate the
continuous INS spectra [436]. Further studies on a sister compound, YbZnGaO4, have proposed the
presence of a spin-glass ground state attributed to the coexistence of chemical disorder and quantum
fluctuation [236]. Therefore, eliminating chemical disorder and accessing the intrinsic physics of an
ideal triangular lattice of effective spin-1/2 moments is highly desired. As such, a potential candi-
date for hosting a QSL state is another class of Yb-based triangular lattice rocksalt-type compounds
that do not have significant intrinsic chemical disorder: AYbX2 (A = Li, Na, K, Rb, Cs and X =
O, S, Se) [34, 86, 35, 134, 290, 75, 288, 424, 426, 395, 310]. Nevertheless, the task of obtaining
high-quality single-crystal samples for this particular family has posed significant challenges. As a
result, most of the reported results have been derived from powder samples or small single crystals,
rendering the interpretation of data quite challenging. Furthermore, it is worth noting that in this
compound family, the inter-layer Yb-Yb distance is relatively shorter, which introduces a more
three-dimensional magnetic structure. Thus, the crucial step toward unraveling the enigma of the
QSL state in these systems lies in the design and synthesis of single crystal samples for a novel
class of Yb-based triangular lattice compounds that lack intrinsic chemical disorder and exhibit
quasi-two-dimensional magnetic structures.

To that end, we present a new Yb-based compound, YbZn2GaO5 shown in Fig. 4.11, that
features an ideal triangular lattice of effective spin-1/2 moments without any intrinsic chemical
disorder. Experiments aimed at elucidating the nature of the possible triangular lattice QSL in
YbZn2GaO5 are of great importance. Thus, we grew a large and high-quality single crystal of
YbZn2GaO5 (see Sec. 4.4.2) using the optical floating-zone technique to facilitate such experiments
2. Our heat capacity measurements indicate that at ultra-low temperatures, the heat capacity displays
a ∼ T2 dependence, indicating a U(1) Dirac QSL behavior [286, 162]. In addition to the heat
capacity measurements, we conducted an INS investigation, comparing matrix product state (MPS)
simulations, on YbZn2GaO5 which reveals gapless, continuum-like spectra at the high-symmetry
M and K points, but not throughout the Brillouin zone, and in particular not at the Γ point. This

2The experiments of YbZn2GaO5 were conducted by my collaborators at Duke University. See Ref. [399] for more
information about the researchers and their contributions.
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Figure 4.11: Crystal structure and magnetic susceptibility a. Crystal structure of YbZn2GaO5 ;
Yb-O planes are well separated by non-magnetic Zn-O, Ga-O, and Zn-O layers along crystallo-
graphic c-direction. b. The Yb3+ (blue sphere) forms a triangular lattice. The nearest neighbor
couplings 𝐽1 and next-nearest neighbor couplings 𝐽2 are shown by green solid lines. c. The in-
verse magnetic susceptibility, 1/𝜒 ( H∥𝑐 and H⊥𝑐) data collected on single crystal sample of
YbZn2GaO5 from 2 to 300 K. The red solid lines are the Curie-Weiss (CW) Fit at the low-
temperature range from 5 - 15 K and at high-temperature range from 200 - 300 K. The inset shows
no splitting between zero-field-cooling (ZFC) and field cooling (FC) magnetic susceptibility data of
YbZn2GaO5 crystal down to 0.3 K. The measurements were conducted under an applied magnetic
field of 0.01 T parallel and perpendicular to crystallographic 𝑐 - direction.

particular pattern of low-energy spinon excitations is expected for the U(1) Dirac QSL phase [331,
89] and not for a spinon Fermi surface state, as discussed in Sec. 4.1.3. Hence the heat capacity
scaling and INS spectra independently are best explained by low-energy spinon excitations with
Dirac-like spectrum.

4.3.2 Microscopic Model
For comparison with the INS spectra, we performed MPS based simulations, analogous to the
methods discussed in Sec. 4.1.2. To identify the model, we seek the simplest model that recovers
the essential features of the experimental data. We find that the experimental spectrum (shown in
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Fig. 4.14) has a similar structure to the spectrum shown in the QSL phase of the 𝐽1 − 𝐽2 model,
displayed in Fig. 4.6. One difference however is the relative intensity of the spectral peaks present
at 𝐾 and 𝑀 points in the low energy spectral weight. To treat this theoretically, we introdce an
anisotropy into the model, defining the 𝐽1 − 𝐽2 XXZ model with Hamiltonian

𝐻 =𝐽1
∑︁
⟨𝑖, 𝑗⟩

(
Δ𝑆𝑧𝑖 𝑆

𝑧
𝑗 + 𝑆𝑥𝑖 𝑆𝑥𝑗 + 𝑆

𝑦
𝑖 𝑆

𝑦
𝑗

)
(4.21)

+𝐽2
∑︁
⟨⟨𝑖, 𝑗⟩⟩

(
Δ𝑆𝑧𝑖 𝑆

𝑧
𝑗 + 𝑆𝑥𝑖 𝑆𝑥𝑗 + 𝑆

𝑦
𝑖 𝑆

𝑦
𝑗

)
, (4.22)

where 𝑆𝛼𝑖 are spin-1/2 operators, and ⟨𝑖, 𝑗⟩ and ⟨⟨𝑖, 𝑗⟩⟩ denote nearest- and next-nearest neighbor
pairs, respectively.

We take 𝐽2/𝐽1 = 0.12, the same value used in Fig. 4.6, which lies in the middle of the QSL phase
[174]. To determine the value of Δ, we look at the relative intensity of the low-energy spectrum at
𝐾 and 𝑀 , and choose Δ so that it best reproduces the experimental data. This is displayed in Fig.
4.12, and we find that the best choice is Δ = 1.35.

4.3.3 Results & Discussion
Before discussing the results further, we would like to review briefly the key signatures that
differentiate a spinon Fermi surface state from a U(1) Dirac spin liquid. First, let us start with
the spinon Fermi surface state. In such a state, the low temperature heat capacity is predicted to
scale as ∼ 𝑇 [432] at the mean-field level, possibly becoming 𝑇2/3 if emergent gauge fluctuations
dominate. As for the spectrum, mean-field theory predicts a V-shape spectrum near the Γ point
and gapless excitations throughout the entire Brillouin zone [327, 213, 306]. These signatures have
been observed in YbMgGaO4 [327, 329], and NaYbSe2 [75]. For the U(1) Dirac spin liquid, the
heat capacity is expected to scale as ∼ 𝑇2 because of the Dirac nodes [286, 384]. The low-energy
theory on the triangular lattice is quantum electrodynamics (QED3) with 4 Dirac fermions (𝑁 𝑓 = 4),
which predicts gapless excitations at both the 𝑀 and 𝐾 wavevectors [346]. The main signature to
distinguish this from a spinon Fermi surface state is the presence of a gap away from these points,
such as near the Γ point, as observed in recent simulations of the 𝐽1 − 𝐽2 Heisenberg model on the
triangular lattice [104, 331, 89] (as discussed in Sec. 4.1).

Returning to the discussion of YbZn2GaO5, we demonstrate in Fig. 4.11a the hexagonal crystal
structure of YbZn2GaO5, with the space group P63mmc. This is in contrast to YbMgGaO4 and
YbZnGaO4 which crystallize in the R3̄m space group. In YbZn2GaO5, the P63mmc space group
provides unique Wyckoff positions for gallium and zinc, therefore, YbZn2GaO5 does not display
any intrinsic chemical site mixing. The phase purity of our sample is confirmed through a Rietveld
refinement analysis performed on the powder X-ray diffraction pattern obtained from a crushed
YbZn2GaO5 single crystal (see Fig. 4.26). We further performed the single-crystal X-ray diffraction
measurement on YbZn2GaO5 crystal and observed no discernible chemical disorder within the
limit of our experimental accuracy (see Table 4.4). It is noteworthy to add that in YbZn2GaO5,
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Figure 4.12: Line cut along high-symmetry points and theoretical calculation with different
Δ values. We present an investigation of the anisotropy effect in the low-energy INS spectrum.
a. A line cut traveling through high symmetry points (as depicted in c.): 𝑌1, 𝐾 , 𝑀1/𝑀2, 𝐾 , 𝑌2.
The background-subtracted intensity was integrated between energy intervals [0.1, 0.3] meV and
a small q window perpendicular to the high-symmetry path. The ratio of spectral weights between
𝑀 and 𝐾 points is around 1.385. b. Theoretical calculations of the spectral weights along the same
path using different Δ values (Δ = 1.2, 1.25, 1.3, 1.35, 1.4). The ratios between spectral weights at
the 𝑀 and 𝐾 points for different Delta were calculated, and we find that the ratio of the Δ = 1.35
case provides the best agreement with our experimental data. c. A schematic for the high symmetry
path of the line cut is shown in a and b.

an additional non-magnetic Zn-O layer is introduced along the crystallographic c-direction, which
increases the distance between magnetic Yb-O planes from 8.38 (YbZnGaO4) to 10.98, enhancing
the two-dimensionality and quantum fluctuations in this compound compared to previously reported
Yb-based triangular lattice QSL candidates [264, 236, 34, 86]. The nearest neighbor Yb3+ ions are
arranged in a perfect triangular pattern with a distance of 3.37 between them, as illustrated in Fig.
4.11b. This distance is comparable to that in the previously reported Yb-based triangular lattice
compounds proposed to host QSL state [223, 218].

We illustrate in Fig. 4.11c the temperature-dependent magnetic susceptibility data collected on
the single crystal of YbZn2GaO5 along both directions parallel and perpendicular to the crystal-
lographic c-axis, in the presence of an applied magnetic field of 0.01 T. The inset of Fig. 4.11c
highlights the low-temperature susceptibility region down to 0.3 K, confirming the absence of
magnetic ordering down to this temperature. The inverse magnetic susceptibility data are fitted to
Curie-Weiss law: 1/𝜒 = (𝑇 − \𝐶𝑊 )/𝐶, (where \𝐶𝑊 is the Curie-Weiss temperature, and 𝐶 is the
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Figure 4.13: Heat capacity and crystal electric field levels. a. Heat capacity data of
YbZn2GaO5 single crystal and LuZn2GaO5 powder sample collected under zero field and down
to 0.06 K are shown. The calculated magnetic entropy (right Y-axis) of YbZn2GaO5 saturates to
Rln2, indicating the effective spin-1/2 ground state. b. Heat capacity vs 𝑇2 plot: Low-temperature
total heat capacity (𝐶𝑡𝑜𝑡 = 𝐶𝑙𝑎𝑡 +𝐶𝑛𝑢𝑐 +𝐶𝑚𝑎𝑔) shows an upturn below 0.1 K. Using an isostructural
nonmagnetic LuZn2GaO5 and a fitted Schottky model (C𝑛𝑢𝑐 ≃ 𝐴𝑇−2), the lattice and nuclear contri-
butions were removed. The magnetic heat capacity data (C𝑚𝑎𝑔) after subtraction is presented as open
circles and fitted with a solid red straight line that exhibits a quadratic T-dependence (𝐶𝑚𝑎𝑔 ≃ 𝛾𝑇2).
The quadratic T-dependence fit yields an adjusted R-square value of 0.9583, indicating excellent
agreement between the model and experimental data. The T2 dependency of magnetic heat capacity
data for T → 0 implies YbZn2GaO5 is a U(1) Dirac QSL candidate. c Inelastic neutron scattering
(INS) spectra of YbZn2GaO5 reveal three crystal electric field (CEF) bands. The phononic contri-
bution is subtracted using an isostructural nonmagnetic sample LuZn2GaO5.d The single-ion CEF
fitting shows energy levels at 38 meV, 61 meV, and 94 meV.

Curie constant) at two different temperature regimes. The obtained effective moment (`𝑒 𝑓 𝑓 ≃ 4.36
`𝐵) at a high-temperature range agrees with the expected theoretical value of free Yb3+ ion (≃ 4.54
`𝐵). The Curie-Weiss temperatures obtained for YbZn2GaO5 in the low-temperature range (5 - 15
K) are slightly higher (\𝐶𝑊,∥ = - 3.77 K and \𝐶𝑊,⊥ = - 5.22 K) than those of Yb(Mg, Zn)GaO4 [218,
223, 327, 401, 236]. This observation suggests a stronger antiferromagnetic coupling between Yb3+

ions in YbZn2GaO5. The collected isothermal magnetization data along both directions up to 14 T
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Figure 4.14: Inelastic Neutron scattering data under zero applied magnetic field a. Energy
dependence of the magnetic excitation spectrum along high symmetry points measured at 0.1
K. The background is subtracted using the high temperature (45 K) spectrum (See Sec. 4.4.2 for
details). The contour path travels along the high symmetry points𝐾1-𝑀1-𝐾-Γ1/Γ2-𝐾-𝑀2-𝐾2, which
is illustrated by the black solid curve in c. b. Calculated spectrum using matrix product states for
the 𝐽1 − 𝐽2 XXZ model on the triangular lattice, with 𝐽2/𝐽1 = 0.12 and Δ = 1.35 (see Methods
section for details). We use J1 = 0.5 meV to adjust the scale of the y-axis for better comparison of
the experimental data. c. A schematic of the high symmetry path used in a,b. The dashed lines show
the boundary of the Brillouin zones. d. Background-subtracted low energy slice of the magnetic
excitation spectrum collected at 0.1 K. The energy integration range is [0.1, 0.3] meV. e. The
calculated spectrum of the 𝐽1 − 𝐽2 XXZ model with the same parameters as in b. We integrate the
spectrum in the energy range [0.1, 0.3] meV for comparison with d.

of applied magnetic field provides anisotropic Landé-g factors (g∥ ≃ 3.44 and g⊥ ≃ 3.04), which
are found to be in agreement with those reported earlier for YbZnGaO4 [236] (see Fig. S1).

We show in Fig. 4.13a zero-field heat capacity measurement performed on YbZn2GaO5 single
crystal sample down to 0.06 K, confirming the absence of any long-range magnetic ordering. The
contribution of phonons is subtracted using the isostructural non-magnetic sample of LuZn2GaO5.
In Fig. 4.13b, we highlight the low-temperature behavior of the heat capacity data below 0.2
K, which is particularly intriguing. The heat capacity of YbZn2GaO5 at low temperature has
multiple contributions denoted by 𝐶𝑡𝑜𝑡 = 𝐶𝑙𝑎𝑡 + 𝐶𝑛𝑢𝑐 + 𝐶𝑚𝑎𝑔. 𝐶𝑙𝑎𝑡 represents the lattice (phononic)
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contribution that is negligible below 0.1 K.𝐶𝑛𝑢𝑐 accounts for the nuclear Schottky contribution due
to the hyperfine splitting of the nuclear energy levels resulting from the interaction between nuclear
spins and electrons [126]. The nuclear contribution (𝐶𝑛𝑢𝑐 ≃ 𝐴𝑇−2) is subtracted by fitting the heat
capacity data below 0.1 K and the fitting coefficient value (𝐴 = 6.72(4)× 10−4 JKmol−1) is consistent
with that reported for other Yb-based compounds [288]. The subtracted magnetic heat capacity
data (𝐶𝑚𝑎𝑔) displays a ∼ 𝑇2 dependence (red solid straight line in Fig. 4.13b) with a coefficient
of 𝛾 = 𝐶𝑚𝑎𝑔/𝑇2 = 18.6(1) JK−3mol−1 below 0.1 K. We also attempted to fit the magnetic heat
capacity data with a linear dependence (𝐶𝑚𝑎𝑔 ∼ 𝑇), but this fitting approach did not provide a
satisfactory result (see Fig. S3). The magnetic heat capacity data exhibiting a ∼ 𝑇2 dependence for
T → 0 and the lack of any long-range magnetic ordering down to the lowest temperature of 0.06 K
imply that the ground state of YbZn2GaO5 is a U(1) Dirac QSL candidate [286, 384].

To obtain a better understanding of the ground state of YbZn2GaO5, an INS experiment was
conducted on a high-purity powder sample at 5 K, as shown in Fig. 4.13c,d. The single-ion crystal
electric field (CEF) fitting results revealed three distinct crystal field excitations at 38 meV, 61 meV,
and 94 meV, which agree with those observed in other previously reported Yb-based triangular
lattice systems [216, 86, 304, 75, 425, 352]. Based on our analysis of the CEF levels, we have
determined that the first excited state of YbZn2GaO5 is separated from the ground state by a gap
of over 441 K (38 meV). This suggests a Kramer’s doublet ground state for the Yb3+ ions with an
effective spin-1/2. Our CEF fitting scheme, which is consistent with the heat capacity data, supports
this conclusion. In particular, the calculated magnetic entropy of YbZn2GaO5 saturates at Rln2,
indicating an effective spin-1/2 ground state, as shown in Fig. 4.13a (see Tables S2 and S3 for
further details on the CEF fitting scheme).

Furthermore, we conducted INS experiments on a high-quality single crystal of YbZn2GaO5.
These experiments were designed to probe the low-energy excitations of the material. An incident
neutron energy of 3.32 meV was used and the excitation spectrum under zero-field was collected
at a base temperature of 0.1 K. Scans performed at a high temperature of 45 K were used for
background subtraction (see Fig. S2). We show in Fig.4.14a the scattering intensity as a function of
energy transfer, with a path taken through the high-symmetry points of 𝐾1-𝑀1-𝐾-Γ1/Γ2-𝐾-𝑀2-𝐾2,
as illustrated in Fig.4.14c. A broad continuum extending over an energy scale of approximately 1.4
meV was observed, with the spectrum weight gradually decreasing at higher energy. We observed
a clear gap in the spectra of YbZn2GaO5 near the Γ point, while the excitation remained gapless
between M and K points within the instrumental energy resolution of approximately 0.06 meV, as
shown in Fig. 4.14a. Our theoretical calculation shows promising agreement with our experimental
data, with J2/J1 = 0.12 and an anisotropy value of Δ = 1.35 (see Fig. 4.14b). In contrast to
YbZn2GaO5, other reported Yb-based triangular systems, such as the delafossite material NaYbSe2,
display a continuum spectrum without a gap at all Q. This observation is consistent with a spinon
Fermi surface state [75, 213]. However, in YbZn2GaO5, the observed energy gap near Γ along with
the gapless continuum spectra observed at Q = K and M are indicative of a U(1) Dirac QSL state
[331]. The thermodynamics measurements are consistent with this spectrum, as the magnetic heat
capacity data (𝐶𝑚𝑎𝑔) exhibits a ∼ 𝑇2 dependence for T → 0, which is also indicative of a U(1) Dirac
QSL.
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In Fig. 4.14d, we demonstrate the experimental dispersion of the neutron scattering intensities
through constant energy slice integrated from 0.1 to 0.3 meV. We observe that at low energy, spectral
weights are localized at the edge of the Brillouin zone, with higher intensities at the 𝑀 points than at
the 𝐾 points. As the energy increases, the difference in intensities between 𝑀 and 𝐾 points becomes
less prominent, and the intensities disperse throughout the Brillouin zone, as shown in Fig. 4.28.
Moreover, the theoretical calculations in Fig. 4.14e agree with our experimental observations in
similar energy ranges. The agreement between theory and experiment suggests that INS spectra of
YbZn2GaO5 are sufficiently well described by the 𝐽1− 𝐽2 XXZ model without additional couplings.
The presence of gapless modes at 𝐾 and 𝑀 while having a gap near Γ strongly favors a U(1) Dirac
QSL ground state over either a spinon Fermi surface or the effects of disorder.

4.3.4 Conclusions
In conclusion, high-quality single crystals of YbZn2GaO5,a Yb-based triangular lattice system
without any intrinsic chemical disorder, have been successfully synthesized and characterized.
These results reveal that the magnetic heat capacity data at ultra-low temperatures follow a T2

dependence, providing experimental evidence for the realization of U(1) Dirac QSL on a triangular
lattice in YbZn2GaO5. Additionally, our INS investigation of YbZn2GaO5 demonstrates gapless,
continuum-like spectra at the high-symmetry 𝑀 and 𝐾 points but not at the Γ point, confirming
the possibility of a U(1) Dirac QSL ground state in this compound. Therefore, we suggest that
YbZn2GaO5 is a highly promising candidate for the long-sought U(1) Dirac QSL and warrants
further investigations with other techniques.
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Figure 4.15: KYbSe2 sample used to measure the low-energy spin excitations on CNCS. 20 crystals
were coaligned and glued to two aluminum plates (top) which were then screwed to a copper rod
(bottom). The different crystals are different shades of red because of their different thicknesses.

4.4 Appendix

4.4.1 Experimental details for KYbSe2

In this section of the appendix, I discuss additional information regarding the experiment conducted
in KYbSe2 by my collaborators at Oak Ridge National Lab. I was not involved directly with
conducting the experiments, but this is an important part of my thesis, and so I include details about
the setup here.

CNCS experiment

We measured the low-energy spin excitations with the CNCS spectrometer at Oak Ridge National
Laboratory’s Spallation Neutron Source. The sample for this experiment consisted of 20 coaligned
plate-like crystals glued to aluminum discs (see Fig. 4.15), for a total mass of 200 mg KYbSe2
in the (ℎ𝑘0) scattering plane. The sample was mounted in a 3He refrigerator and measured with
double-disc chopper frequency 300.0 Hz (high-flux mode, 9 degree opening on the double disk).
All CNCS data were corrected for the isotropic Yb3+ form factor [41].

The spectrum was measured over 180◦ rotation at 𝐸𝑖 = 3.32 meV and 𝐸𝑖 = 1.55 meV at base
temperature and at 12 K. At 1 K and 2 K, we measured only over 60◦ and used −3𝑚 crystal
symmetry to fold the scattering over and cover the full range of reciprocal space. In comparing
intensity of nuclear Bragg peaks, we did find some degree of obverse-reverse twinning of the
crystal array, such that some crystal planes were rotated 60◦ from those below. This did not affect
the in-plane scattering due to the lack of scattering dependence upon ℓ. The sample thermometer
at base temperature read 270 mK, but because this thermometer was not exactly on the sample we
round up the effective base temperature to 300 mK. To probe a possible gap at 𝐾 , we also measured
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Figure 4.16: High resolution KYbSe2 scattering at (1/3, 1/3, 0). Panel (a) shows a slice through
the data showing the gapless dispersion. Panel (b) shows a 1D cut indicated by the faint vertical red
bar in panel (a). Both plots show the dispersion to be gapless at 0.3 K to within 0.04 meV.

a rotation scan over 15◦ at 𝐸𝑖 = 1.0 meV, for a resolution FWHM of 20 `eV at ℏ𝜔 = 0. These data
are shown in Fig. 4.16, and reveal a gapless excitation spectrum at 0.3 K to within 40 `eV.

Background subtraction — For the CNCS experiment, a phenomenological background was
created and subtracted using the 12 K scattering data. At 12 K, the spin excitations become totally
diffuse paramagnetic excitations. To model and eliminate these, we took the median intensity at
each constant energy slice to be the approximate value of paramagnetic intensity, and subtracted
this value from each pixel at that energy transfer. Then, we set any negative intensities to zero, and
subtracted this background from the data. This median-value subtraction was not done for elastic
scattering because paramagnetic intensity has negligible elastic contributions. Thus, for elastic data
the 12 K was directly subtracted from lower temperatures. We find that this procedure effectively
eliminates artifacts in the data while leaving magnetic intensity unchanged, as shown in Fig. 4.17.
Finally, because entanglement witnesses require a total sum rule satisfying 𝑆(𝑆 + 1) = 0.75 for an
effective 𝐽 = 1/2 system, we normalized the background-subtracted 300 mK KYbSe2 scattering
such that the total scattering is ⟨𝑆2⟩ = 0.75.

Critical scaling fits — To fit the critical exponent in Fig. 4.10, we used data at ℏ𝜔/𝑘𝐵𝑇 above
the “knee” where the power law behavior starts. Using this data range, we minimized the 𝜒2 of the
scaled data fitted to a power law in (ℏ𝜔/𝑘𝐵𝑇)𝛼, varying 𝛼 and rescaling the data in each iteration.
This resulted in a fitted 𝛼 = 1.73(12).

ARCS experiment

The sample for the ARCS measurement was 3 g of plate-like crystals ground into a powder. We
measured the inelastic neutron scattering at incident energies 𝐸𝑖 = 35 meV, 50 meV, and 130 meV
and at temperatures 7 K, 100 K, 200 K, and 300 K (for 𝐸𝑖 = 50 meV only).
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Figure 4.17: KYbSe2 background subtraction for CNCS data. The top row shows the raw data at
0.3 K. The middle row shows the phenomenological background generated from the 12 K scattering
data. The bottom row shows the data with the background subtracted, eliminating artifacts near
𝑄 = 0 and ℏ𝜔 = 0.

Low temperature magnetic order

Diffuse scattering Hamiltonian fits predicted that KYbSe2 is within the 120◦ ordered phase, so that
it should order magnetically at the lowest temperatures. To test this, we measured the specific heat
of KYbSe2 using quasi-adiabatic method in a dilution refrigerator. Heater was mounted on one
side of the sapphire stage, with one large single sample (1.19 mg) mounted on the other side with
GE varnish. Ruthenium oxide resistance thermometer was glued on the top of the samples. A heat
pulse is delivered to heat capacity stage, and the temperature of the thermometer is measured as a
function of time. The results are shown in Fig. 4.18(a). A clear kink is visible at 290 mK consistent
with an ordering transition.

To evaluate any possible sample-dependent properties, we remeasured heat capacity of a col-
lection of 11 small pieces (2.33 mg) [see the grey data in Fig. 4.18(a)], which shows a somewhat
broadened transition. Neither sample had a measurable amount of crystalline disorder, suggesting
that an appreciable amount of crystalline disorder may suppress the transition entirely.

More clear evidence of static magnetism comes from the upturn at the lowest temperatures. We
fit this with a nuclear Schottky anomaly using the hyperfine parameters for Yb3+ in Ref. [31]. As
shown by the colored lines in Fig. 4.18(a), the Yb moment size is well-constrained by the data,
giving a fitted ` = (0.579 ± 0.010) `B. This method of determining the magnetic moment has the
advantage of (a) being a local probe and insensitive to the particular type of magnetic order, and
(b) is a fit extrapolated to zero temperature, and thus is an estimate of the 𝑇 = 0 ordered moment.

We also measured the neutron diffraction of KYbSe2 using the CTAX spectrometer at the Oak
Ridge National Laboratory HFIR reactor, using the same sample and sample mount as used in the
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Figure 4.18: Evidence of magnetic order in KYbSe2. (a) Zero field heat capacity of a large (black)
and small (grey) sample, showing a kink at 290 mK. An upturn at low temperatures is fitted with a
nuclear Schottky anomaly, which uniquely constrains the local ordered Yb3+ moment as shown by
the colored curves.

CNCS experiment, but mounted in a dilution refrigerator. We measured with 𝐸𝑖 = 𝐸 𝑓 = 4.8 meV
neutrons focusing on the 𝑄 = (1/3, 1/3, 0) point, the wavevector associated with 120◦ order. This
data is shown in Fig. 4.18(b), and shows a clear onset of elastic scattering at around 300 mK. Panel
(c) shows cuts along the (ℎℎ0) direction at several different temperatures, showing the emergence
of the Bragg intensity. The steepest part of the order parameter curve is at 290 mK, confirming that
the bump observed in heat capacity is indeed the transition to 120◦ magnetic order. Additionally,
the agreement between the heat capacity and neutron order parameter curves shows that the sample
mount used for the neutron experiments provides adequate thermal equilibration down to at least
290 mK. In summary, both heat capacity and neutron diffraction confirm that the KYbSe2 𝐽2/𝐽1
ratio is indeed within the 120◦ ordered phase.

Crystal characterization

To investigate the quality of the KYbSe2 crystals used in this experiment, we measured the single
crystal X-ray diffraction using a Bruker Quest D8 single-crystal X-ray diffractometer. The data were
collected at room temperature utilizing a Mo K𝛼 radiation, _ = 0.71073. The crystal diffraction
images were collected using 𝜙 and 𝜔-scans. The diffractometer was equipped with an Incoatec
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Figure 4.19: Single crystal KYbSe2 X-ray diffraction, showing the observed peak intensities versus
the peak intensities of a calculated model with no site mixing or disorder (red circles), 1% Yb-K
site mixing (blue squares), and 3% Yb-K site mixing (green triangles). The 0% site mixing visibly
fits the data the best, indicating very high crystal quality.

I`S source using the APEXIII software suite for data setup, collection, and processing [42]. The
structure was resolved using intrinsic phasing and full-matrix least square methods with refinement
on F2. Structure refinements were performed using the SHELXTL software suite [325]. All atoms
were first refined with isotropic displacement parameters and then they were refined anisotropically.
The final refinement was confirmed with CheckCif [347]. A refinement with no site mixing fits the
data extremely well.

If we allow site mixing between K and Yb, similar to what was observed in NaYbSe2 [74], the
K-Yb site mixing in KYbSe2 refines to (0.2 ± 0.3)%, where the error bar indicates one standard
deviation uncertainty as calculated by reduced 𝜒2 contour. This is a full order of magnitude less
site mixing than the 3% site disorder found in NaYbSe2 [74]. If we force the refined model to have
a site-mixing greater than 1%, as shown in Fig. 4.19, we find a worse 𝑅-value and a visibly worse
fit. Thus, to within uncertainty, KYbSe2 has no K-Yb site mixing and can be considered as an ideal
2D triangular lattice.

Fitting the Roton Mode

To quantify the extent and the gap of the roton-like mode, we fitted the intensity vs energy of many
constant-𝑄 cuts as shown in Fig. 4.20. We used an asymmetric Gaussian to model the mode, and
with the exception of two data points near 𝑀 , it picks out the peak maximum very well. We then
fitted these data points to a sinusoidal function 𝐴 sin(𝑄) + 𝐵 sin(3𝑄) + 𝐶 to estimate the mode
maximum and minimum. These fits show a mode maximum of 0.288(12) meV, a roton minimum
0.200(13) meV, and a fitted gap of 0.059(7) meV. The fitted gap may be an artifact of the mode’s
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Figure 4.20: Fits to the KYbSe2 roton mode. (a) shows constant 𝑄 cuts between 𝐾 and 𝑀 , and
the fitted mode maximum. Each constant 𝑄 slice is offset on the 𝑦 axis, and the colors show the
variation from 𝐾 and 𝑀 . (b) shows the mode maximum overplotted on the colormap data, along
with a fitted sinusoidal dispersion function.

deviation from the idealized sin function rather than an actual gap—the higher resolution scan in
Fig. 8 of the main text do not reveal a clear gap above 40 `eV.

We also fitted the low-energy intense mode emanating from𝐾 toward Γ in order to match energy
scales between theory and experiment, shown in Fig. 4.21. We fit constant𝑄 cuts to Gaussian curves
to define the center of the mode in both KYbSe2 scattering data and Schwinger boson simulations.
We then fit these fitted points to a sinusoidal curve between Γ and 𝐾 , and scaled the slope of the sin
curves at 𝐾 so that theory matched experiment. This led to a fitted energy scale 𝐽1 = 0.56(3) meV.
The Schwinger boson simulations show the fitted maxima extrapolating toward ℏ𝜔 = 0 at 𝐾 , but
the KYbSe2 mode maxima appear to have a nonzero intercept. Allowing for a gap in the fitted sin
function, we estimate a KYbSe2 fitted gap of 0.030(5) meV—too small to be directly resolved using
these data.

We can cross-check this fitted 𝐽1 value by comparing to the saturation magnetization. Although
saturation magnetization has not been measured for KYbSe2, it has been measured for the sister
compound NaYbSe2, which has an 𝑎𝑏-plane saturation magnetization of ∼ 12 T [287]. Assuming
the KYbSe2 value to be close to 12 T, this gives an exchange energy scale of 𝐽1 = 5.36 K
= 0.462 meV.

Crystal electric field fits

Here we describe the procedure used, and the results from the crystal electric field (CEF) fits to the
KYbSe2 ARCS data.
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Figure 4.21: Fits to the mode maximum between Γ and 𝐾 for both (a) KYbSe2 and (b) Schwinger
boson simulations. The red dots show the center of a fitted Gaussian, the slope of which was used
to determine the energy scale for Schwinger boson simulations. The experimental slope appears to
have a nonzero ℏ𝜔 intercept, but is too small to be directly resolved with this experiment.

Because of the three-fold Yb3+ rotational symmetry in KYbSe2, there are six nonzero crystal
field parameters in the Stevens operator formalism for the Yb3+ ion: 𝐵0

2, 𝐵0
4, 𝐵3

4, 𝐵0
6, 𝐵3

6, 𝐵6
6 [168].

The effective 𝐽 = 7/2 of Yb3+ allows for four energetically-distinct Kramers doublet states, which
means three crystal field excitation peaks should be visible in the neutron spectrum.

The crystal field excitations in Fig. 4.22 can be distinguished from the phonon background by
the dependence upon 𝑄: phonon intensity grows with 𝑄 while magnetic intensity decreases with
𝑄 according to the magnetic form factor. Three of the latter excitations are visible: one near 32
meV, one near 23 meV, and one near 17 meV. Unfortunately, as shown in Fig. 4.22, the 17 meV
mode sits atop an intense flat phonon band which extends to low 𝑄 (it is clearly a phonon because
its intensity grows with both temperature and |𝑄 |), which potentially indicates coupling between
phonons and the CEF excitation. (Alternatively, flat-band phonons can have 𝑄 = 0 intensity from
multiple scattering [5].) To verify that the low-energy mode is indeed the third CEF excited level,
we measured the CEF spectrum up to 130 meV [Fig. 4.23], and found no additional visible CEF
levels. Furthermore, the observed energies are close to (i) point charge calculations which predict
excited modes at 6.4 meV, 18.4 meV, and 33.0 meV, and (ii) measured crystal field excitations of
sister compound NaYbSe2 of 15.8 meV, 24.3 meV, and 30.5 meV [423]. Therefore, we are confident
that the 17 meV, 23 meV, and 32 meV peaks are the three excited Yb3+ CEF levels.

Fitting procedure

To fit the six crystal field parameters to the data, we started with a point-charge model calculation
of the crystal field levels, which predicts energies at 6.4 meV, 18.4 meV, and 33.0 meV. We then
used PyCrystalField [311] to fit the model to the neutron scattering data between 1 Å−1 and 2 Å−1

using the point charge model as starting values.
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Figure 4.22: KYbSe2 crystal field fit. The top row shows the raw data measured with 𝐸𝑖 = 50 meV
(left section) and 𝐸𝑖 = 35 meV neutrons (right section). The middle row shows the background
subtracted data, with the model-subtracted backgrounds shown in panels (h) and (s). The bottom
row shows the fitted data between 2 Å−1 and 3 Å−1. Red data shows the raw data, light blue data
shows the rescaled high-temperature background. The black line shows the CEF model plus the
fitted background. The backgrounds are shown in panels (l) and (w).
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Figure 4.23: Crystal field spectrum of KYbSe2 measured with 𝐸𝑖 = 130 meV neutrons. No crystal
field excitations are visible above 40 meV, confirming the model derived in this study.
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In order to isolate the crystal field excitations from the phonon background, we employed a
self-consistent background subtraction scheme. We used the highest temperature data (300 K for
𝐸𝑖 = 50 meV and 200 K for 𝐸𝑖 = 35 meV) as background, but subtracted off the simulated CEF
intensities and then rescaled the subtracted data to match the lower-temperature phonons. This way,
the background improves as the CEF model improves, such that the best fit CEF model subtracts off
the visible CEF excitations at high temperatures. Because the frequencies of the phonon spectrum
are not precisely known, we created a phenomenological energy-dependent scale function to apply
the background to lower temperatures. It was a step function of the form

𝑎

exp[(ℏ𝜔 − `)/𝑘𝐵𝑇] + 1
+ 𝑏

where 𝑎, 𝑏, and ` were fitted to the ratio of high-𝑇 to low-𝑇 scattering data at energy transfers
where no crystal electric excitations are present. As shown in Fig. 4.22, it produces a reasonable
background for the fits.

As in NaYbSe2 [423], the crystal field levels broaden in energy and shift to higher energies as
temperature increases, as shown in Fig. 4.24. The broadening indicates a shorter excitation lifetime,
and is typical for crystal field levels at high temperatures. The shift in energy indicates CEF-phonon
coupling, which is not surprising given that the lowest energy CEF mode is at nearly the same
energy as an intense phonon band. To account for this in our fits, we applied an ad-hoc shift to
the higher temperature energy eigenvalues so that they match the data. In theory, these shifts occur
because of slight shifts in the CEF Hamiltonian and require a separate CEF fit—but in order to
constrain the low-temperature Hamiltonian it was necessary to include the higher temperature data.
Thus we assume that the slight shift in energy indicates a negligible change in the mode intensities,
and the resulting fit matches the data very well.

We simulated the crystal field excitations with a Voigt profile, with a temperature-dependent
Lorentzian width to account for finite lifetime and a Gaussian width to account for instrumental
resolution. The Lorentzian widths were fitted to the two highest peaks for each temperature prior
to the Hamiltonian fit and were kept fixed throughout the fit. The resolution function was treated
as a fitted parameter, and was allowed to vary linearly as a function of energy transfer but not
temperature. The fitted resolution was allowed to vary between 𝐸𝑖 = 50 meV and 𝐸𝑖 = 35 meV.
Also, an overall scale factor was fitted to the data, one for each incident energy. We simultaneously
fit the 7 K, 100 K, and 200 K 𝐸𝑖 = 50 meV data and the 7 K and 100 K 𝐸𝑖 = 35 meV data. 𝜒2

minimization was performed with Powell’s method [279] as implemented by Scipy [378]. The best
fit crystal field parameter values are given in Table 4.2, and the resulting crystal field Hamiltonian
eigenstates are listed in Table 4.3. The best fit calculated 𝑔-tensor is given in the main text.

We calculated the uncertainty for these parameters by using a Monte Carlo stochastic search
method to map out the 𝜒2 contour around the best fit model [312]. Using a series of Markov chains,
we generated several thousand solutions within Δ𝜒2 = 1 of the best fit minimum 𝜒2

𝑟𝑒𝑑 = 65.86. This
search was aided by principal component analysis of the valid solutions using Scikit [269], such
that the random guesses were more along principal component axes. The CEF parameter, 𝑔-tensor,
and eigenvector uncertainties were calculated from the range of valid values in this set.
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Figure 4.24: KYbSe2 crystal field excitations as a function of temperature. The top two peaks
noticeably shift to higher energies as temperature increases, while the bottom level stays constant.
This effect was accounted for in the model fit.

Table 4.2: Best fit crystal field parameters for KYbSe2. The middle column gives the nearest
neighbor point charge model for KYbSe2 and the right column shows the best fit values.

Crystal field parameter Point charge model Best fit
𝐵0

0 -0.556 -0.16(2)
𝐵0

0 0.0088 0.004(2)
𝐵3

3 -0.281 -0.15(2)
𝐵0

0 0.00005 0.00038(5)
𝐵3

3 0.0002 0.0143(5)
𝐵6

6 0.00043 0.0103(5)

Table 4.3: Eigenvectors and eigenvalues for the best fit KYbSe2 CEF Hamiltonian. Numbers in
parenthesis are one standard deviation uncertainty.

E (meV) | − 7
2⟩ | − 5

2⟩ | − 3
2⟩ | − 1

2⟩ | 12⟩ | 32⟩ | 52⟩ | 72⟩
0.0 0.0 0.78(3) 0.0 0.0 -0.44(4) 0.0 0.0 -0.44(3)
0.0 -0.44(3) 0.0 0.0 0.44(4) 0.0 0.0 0.78(3) 0.0

17.1(3) 0.0 -0.09(3) 0.0 0.0 0.61(3) 0.0 0.0 -0.79(2)
17.1(3) -0.79(2) 0.0 0.0 -0.61(3) 0.0 0.0 -0.09(3) 0.0
23.24(5) 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
23.24(5) 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
31.93(5) 0.43(3) 0.0 0.0 -0.66(4) 0.0 0.0 0.62(4) 0.0
31.93(5) 0.0 0.62(4) 0.0 0.0 0.66(4) 0.0 0.0 0.43(3)
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Figure 4.25: KYbSe2 susceptibility compared to best fit CEF calculated single crystal susceptibility.
Qualitatively, the simulation matches experiment, though the experiments show a higher suscepti-
bility in the 𝑐 direction.

It is often the case that crystal field fits to neutron data are underconstrained, and wildly different
Hamiltonians can fit the data equally well [312, 307]. The same is true here: two different models
emerged from the fits, one with easy-axis magnetism and one with easy-plane. To select the correct
Hamiltonian, we compared the calculated single-ion susceptibility to the measured susceptibility
in Fig. 4.25. Measured susceptibility clearly shows an easy-plane magnetism at low temperature
shifting to easy-axis magnetism at high temperature. The easy-plane model matches this behavior
very well, and thus we select it as the correct model. However, this highlights the need to cross-check
any fitted Hamiltonian with a different measure of magnetic anisotropy.

Although the calculated susceptibility qualitatively matches the measured susceptibility, the
correspondence is not perfect (especially in the 𝑐 direction). Although this discrepancy is within
error bars of the fitted Hamiltonian, two additional complications may also prevent perfect agree-
ment: (i) magnetic exchange which shifts measured susceptibility values, and (ii) a shifting CEF
Hamiltonian as a function of temperature. Because of these effects, we did not use susceptibility
data to constrain the fit itself.

One final cross-check of the crystal field model can be made by comparing the calculated satu-
ration magnetization to the measured KYbSe2 1/3 magnetization plateau. According to ref. [398],
the 0.42 K 1/3 magnetization plateau occurs at `0𝐻 = 4.2 T, 𝑀 = 0.569 `𝐵. However, this value
is offset by Van Vleck susceptibility which at low fields adds a linear offset to the ground state
CEF magnetization. According to the fitted KYbSe2 CEF model, the Van Vleck susceptibility is
0.0176 `𝐵/T at 0.42 K—which means we must subtract (0.0176 `𝐵/T)(4.2 T) = 0.074 `𝐵 from the
measured plateau magnetization for a true 1/3 magnetization of 0.495 `𝐵. This is one third of the
CEF predicted 𝑎𝑏-plane saturation magnetization 1.48(9) `𝐵. Thus we have high confidence that
our fitted CEF model and associated 𝑔-tensor is correct.
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Onsager reaction field fits

The magnetic diffuse scattering from the CNCS experiment was analyzed using the Onsager reaction
field approach of Ref. [263]. Fits to the single-crystal diffuse-scattering data sets were performed
using the Migrad algorithm in the Minuit program [180]. The fitted data sets comprised the (ℎ𝑘0),
(ℎ0𝑙) and (ℎℎ𝑙) scattering planes measured at 1 K and 2 K. All data were energy-integrated over
𝐸 > 0.05 meV. We minimize the sum of squared residuals, defined as

𝜒2 =
∑︁

d

∑︁
𝑖∈d

(
𝐼data
𝑖 − 𝑠𝐼calc

𝑖 − 𝐵
𝜎𝑖

)2

, (4.23)

where 𝑑 denotes a data set, 𝐼data
𝑖 is the intensity of data point 𝑖, 𝐼calc

𝑖 is the corresponding calculated
intensity [see the next section], 𝜎𝑖 is the corresponding uncertainty, and 𝑠 and 𝐵 denote, respec-
tively, fitted intensity scale and offset factors determined at each iteration using linear-least-squares
relations.

The 𝐽𝛼𝛽 (Q) are elements of an interaction matrix given by

J(Q) = − ©
«
𝑎𝐽𝑋 + 𝑏𝐽𝐴 𝑐𝐽𝐴 0

𝑐𝐽𝐴 𝑎𝐽𝑋 − 𝑏𝐽𝐴 0
0 0 𝑎𝐽𝑍

ª®
¬
, (4.24)

in which
𝑎 = 2[cos 2𝜋(ℎ + 𝑘) + cos 2𝜋ℎ + cos 2𝜋𝑘], (4.25)
𝑏 = 2 cos 2𝜋(ℎ + 𝑘) − cos 2𝜋ℎ − cos 2𝜋𝑘, (4.26)

𝑐 =
√

3(cos 2𝜋𝑘 − cos 2𝜋ℎ), (4.27)
where ℎ and 𝑘 are noninteger Miller indices. We find a best fit Hamiltonian

𝐽𝑋 = 2.33(10) K 𝐽𝑍 = 2.28(10) K
𝐽𝐴 = −0.018(8) K 𝐽2 = 0.11(2) K (4.28)

where 𝐽𝑋 and 𝐽𝑍 are the 𝑎𝑏-plane and 𝑐-axis nearest neighbor exchange respectively, 𝐽𝐴 is
off-diagonal exchange [263], 𝐽2 is second neighbor Heisenberg exchange, and spins have been
treated as classical vectors of unit length. These values show off-diagonal exchange 𝐽𝐴 being much
smaller than the Heisenberg terms 𝐽𝑋 and 𝐽𝑌 , showing that KYbSe2 can be effectively modeled by
the 𝐽1 − 𝐽2 Heisenberg model of Eq. (4.29) in the main text.

To check the robustness of the results, we performed three checks. First, to check for the
possibility of local 𝜒2 minima, we performed 20 separate fits initialized with different parameter
values in the range [−1 : 1] K. No local minima were found to give acceptable agreement with
the experimental data, and the parameters reported in the text correspond to the minimum 𝜒2

we obtained. Second, we considered the effect of including an additional symmetry-allowed off-
diagonal exchange interaction, 𝐽𝐵 [263]. This parameter refined to a zero value within uncertainty,
and has negligible effect on the results. Third, we considered the effect of the obverse-reverse
twinning of the crystal array, and found that including this effect in the calculation had negligible
effect on the fit quality or parameter values.
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Onsager reaction field: calculated intensity

Here we outline the Onsager reaction field (ORF) approach for completeness. We consider the spin
Hamiltonian

H =
∑︁
⟨𝑖, 𝑗⟩

{
𝐽𝑋

(
𝑆𝑥𝑖 𝑆

𝑥
𝑗 + 𝑆𝑦𝑖 𝑆

𝑦
𝑗

)
+ 𝐽𝑍𝑆𝑧𝑖 𝑆𝑧𝑗

+ 𝐽𝐴
[
(𝑆𝑥𝑖 𝑆𝑥𝑗 − 𝑆𝑦𝑖 𝑆

𝑦
𝑗 ) cos 𝜙𝑖 𝑗 − (𝑆𝑥𝑖 𝑆𝑦𝑗 + 𝑆

𝑦
𝑖 𝑆

𝑥
𝑗 ) sin 𝜙𝑖 𝑗

]
,

(4.29)

in which 𝛼 ∈ {𝑥, 𝑦, 𝑧} denote spin components with respect to Cartesian axes x, y, z, and 𝜙𝑖 𝑗 ∈{ 2𝜋
3 ,−2𝜋

3 , 0
}

as specified in Ref. [263]. We use the Onsager reaction-field (ORF) approach [40, 156,
392] to calculate magnetic diffuse scattering patterns. The Fourier transform of the interactions is
given by

𝐽𝛼𝛽 (Q) ≡ −
∑︁
R
𝐽𝛼𝛽 (R)𝑒−iQ·R, (4.30)

where 𝐽𝛼𝛽 (R) is the coefficient of 𝑆𝛼𝑖 𝑆
𝛽
𝑗 in Eq. (4.29) for sites 𝑖 and 𝑗 separated by a lattice vector

R.
The magnetic diffuse scattering intensity is given, in the reaction-field approximation, by

𝐼ORF(Q) ∝ [ 𝑓 (𝑄)]2
3∑︁
`=1

|s` (Q) |2
1 − 𝜒0(_` (Q) − _) , (4.31)

where 𝜒0 = 1/3𝑇 is the Curie susceptibility and _` denotes the eigenvalues of the interaction
matrix, where ` labels its 3 eigenmodes. The structure factor

s` (Q) =
∑︁
𝛼

(n̂𝛼 − Q n̂𝛼 · Q/𝑄2)𝑔𝛼𝑈𝛼
` , (4.32)

where n̂𝛼 ∈ {x, y, z}, 𝑔𝛼 denotes components of the diagonal 𝑔-tensor, and 𝑈𝛼
` denotes the eigen-

vector components of the interaction matrix. At each temperature, we obtain the reaction field
_ self-consistently by enforcing that

∑
`,q [1 − 𝜒0(_` (q) − _)]−1 = 3𝑁q for a grid of 𝑁q = 403

wavevectors in the Brillouin zone. The best fit values are given in the methods section of the main
text.

We also performed the fit including the off-diagonal 𝐽𝐵 component. [263]. This quantity is
difficult to determine because it depends upon distinguishing 𝐾 from 𝐾′, and there is some degree
of twinning in KYbSe2 which means we can only fit the magnitude of 𝐽𝐵. Nevertheless, for
completeness we performed the ORF fit assuming a twinning model and found

𝐽𝑋 = 2.33(10) K 𝐽𝑍 = 2.28(10) K
𝐽𝐴 = −0.018(8) K 𝐽2 = 0.11(2) K (4.33)
|𝐽𝐵 | = 0.00(5) K. (4.34)

The error bar indicates |𝐽𝐵 | could be larger than |𝐽𝐴 |, but this is still much smaller than 𝐽𝑋 and 𝐽𝑌 ,
indicating that the Heisenberg model is still appropriate for KYbSe2.
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4.4.2 Experimental details for YbZn2GaO5

In this section of the appendix, I discuss additional information regarding the experiment conducted
in YbZn2GaO5 by my collaborators at Duke University. I was not involved directly with conducting
the experiments, but this is an important part of my thesis, and so I include details about the setup
here.

Sample preparation and single crystal growth

The poly-crystalline sample of YbZn2GaO5 was synthesized using a solid-state reaction route.
The high-purity precursors of Yb2O3 (99.9%), Ga2O3 (99.9%), and ZnO (99.9%) with 5% excess
ZnO were used and mixed thoroughly and then pressed into a pellet. The pellets were sintered at
1275◦𝐶 for 36 hours with intermediate grinding to obtain a pure phase of YbZn2GaO5. The phase
purity is confirmed using Powder X-ray diffraction (PXRD) (see Fig. S1). The pure powder sample
and around 10% excess of ZnO were mixed and pressed into a cylindrical rod using a hydrostatic
pressure of 700 bar. Single crystals of YbZn2GaO5 were grown using the optical floating-zone
technique in the presence of a 10-bar oxygen atmosphere. A transparent single-grain crystal was
successfully obtained, with a cleaved facet plane along [001] which was confirmed from Laue X-ray
diffraction (see Fig. 4.26).

Single crystal X-ray diffraction

The single crystal X-ray diffraction (SCXRD) is performed on YbZn2GaO5 single crystal sample
at the Department of Chemistry, University of North Carolina. A colorless transparent crystal piece
(approximate dimensions 0.020 × 0.010 × 0.010 𝑚𝑚3) was harvested by an X-ray transparent loop
made by MiTeGen and mounted on a Bruker D8 VENTURE diffractometer and measured at 150
K. The data collection was carried out using Mo-K𝛼 radiation (graphite monochromator) with a
frame time of 0.4 seconds and a detector distance of 4 cm. Data is displayed in Table 4.4

Heat capacity measurements

Zero field heat capacity measurements were carried out on a single crystal of YbZn2GaO5 and a
powder sample of LuZn2GaO5 using Helium-4 (1.8 K ≤ T ≤ 300 K) and dilution refrigeration
(0.06 K ≤ T ≤ 2 K) set up attached to Quantum Design (QD) Physical Property Measurement
System (PPMS). A representative single-crystal sample of YbZn2GaO5 mounted on a heat capacity
measurement platform is shown in Fig. 4.27.

Magnetic measurements

Temperature-dependent magnetic susceptibility was measured using a 7 Tesla Cryogenic Ltd
SQUID (superconducting quantum interference device) magnetometer with a Helium-3 probe
from 0.3 K to 2 K and with a Helium-4 probe from 2 K to 300 K. For the Helium-3 measurements,
a small crystalline YbZn2GaO5 sample of 1.04 mg was mounted on a silver sample holder and
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Figure 4.26: Pictures, Laue pattern, powder X-ray diffraction pattern, and isothermal mag-
netization. a. A picture of co-aligned single crystals of YbZn2GaO5 on a neutron sample mount.
10 selected high-quality single crystals with a total mass of ∼ 1.8 grams were aligned and bound
on an oxygen-free Cu sample mount with Cu wire. b. A representative image of the grown single
crystals sample of YbZn2GaO5 , the transparency of the crystal indicates its high quality. c. Sharp
Laue Back-scattered X-ray pattern with an incident beam along the c-axis. d. Rietveld refinement
performed on powder X-ray diffraction (PXRD) pattern of the ground single crystal of YbZn2GaO5 .
e. Field-dependent isothermal magnetization of YbZn2GaO5 single crystal collected at 2.5 K. The
magnetic field was applied parallel and perpendicular to the crystallographic c-axis. The obtained
gyromagnetic ratios 𝑔 and Van-Vleck contribution 𝜒𝑉𝑉 from the fit (red and blue dashed lines) are
shown.

the Helium-4 measurement, 11.90 mg of YbZn2GaO5 single crystal was used. The crystals were
oriented using the Laue diffraction method and the regular shape of the single crystals was ob-
tained using a wire saw. The magnetic measurements were performed under an applied magnetic
field parallel (𝐻∥c) and perpendicular (𝐻⊥c) to the crystallographic c-directions of YbZn2GaO5.
The isothermal magnetization measurements along both directions of YbZn2GaO5 single crystal
sample were performed using a VSM (vibration sample magnetometer) in PPMS up to 14 Tesla of
the applied magnetic field (see Fig. 4.26).
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Table 4.4: The refinement parameters of the single crystal X-ray diffraction (SCXRD) data collected
at 150 K. The atomic coordinates and equivalent isotropic displacement parameters suggest no
chemical site mixing in YbZn2GaO5 . U(eq) is defined as one-third of the trace of the orthogonalized
U𝑖 𝑗 tensor.

YbZn2GaO5 SCXRD (𝑇 = 150 K, Mo𝐾𝛼, _ = 0.71073 Å)
Space group 𝑃63𝑚𝑚𝑐 (No.194)

Cell parameters 𝑎 = 𝑏 = 3.3678(2) Å, 𝑐 = 21.951(2) Å
𝛼 = 𝛽 = 90◦, 𝛾 = 120◦

Fit quality 𝑅1 = 0.0779, 𝑤𝑅2 = 0.1895, 𝐺𝑜𝑜𝐹 = 1.0612
Atom Site x(Å) y(Å) z(Å) U(eq)(Å2)Occ
Yb1 2𝑎 0.0000 0.0000 0.5000 0.0024 1.000
Ga1 2𝑏 0.0000 0.0000 0.7500 0.0018 1.000
Zn1 4 𝑓 0.6667 0.3333 0.6372(1) 0.0018 1.000
O1 4 𝑓 0.6667 0.3333 0.5494(10)0.00018 1.000
O2 2𝑐 -

0.3333
-
0.6667

0.7500 0.0032 1.000

O3 4𝑒 0.0000 0.0000 0.6546(11)0.0020 1.000

Inelastic neutron scattering

The inelastic neutron scattering (INS) experiments were performed on the Fine-Resolution Fermi
Chopper Spectrometer (SEQUOIA) [131] and the Cold Neutron Chopper Spectrometer (CNCS)
[101] at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory. For the SEQUOIA
experiment, 6.5 g of pure powder samples of YbZn2GaO5 and LuZn2GaO5 were used with incident
neutron energies of 𝐸𝑖 = 80 and 120 meV at temperatures of𝑇 = 5 and 100 K. The phonon contribu-
tions in the YbZn2GaO5 spectrum were subtracted using isostructural non-magnetic LuZn2GaO5.
For the CNCS experiment, 10 pieces of high-quality single crystal samples of YbZn2GaO5 with a
total mass of ∼ 1.8 g were co-aligned within 1.5◦ using a Laue X-ray back-scattering diffractometer
and mounted along (ℎ𝑘0) scattering plane on an oxygen-free copper sample holder (see Fig. 4.26).
The measurements were carried out in a dilution refrigerator with a base temperature of 0.1 K. A
neutron-absorbing Cd foil was placed at the bottom of the holder to reduce the background from the
sample holder. The measurements were conducted at the base temperature and 45 K under zero-field
with an incident neutron energy of 𝐸𝑖 =3.32 meV. The sample was rotated with an increment of 1◦,
with a range of -180◦ to 180◦. The data were analyzed using the HORACE software and were folded
3 times along the high symmetry axis [0𝐻0], [�̄�𝐻0], and [𝐻00] into a 60◦ sector in the reciprocal
space to improve statistics. For the constant energy slice, the folded data were cut, duplicated, and
recombined to restore 360◦ coverage for the purpose of presentation. To better extract the magnetic
signal of interest, a comparative analysis was conducted between the 0.1 K and 45 K spectra. The
45 K spectrum was normalized to 0.1 K data and used as background which then was subtracted
from the 0.1 K spectrum.
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Figure 4.27: Heat capacity data fitted with linear and quadratic T models. a. Microscopic
image of YbZn2GaO5 single crystal sample used for heat capacity measurement. b. The mounted
single crystal sample on a heat capacity platform of the Dilution Refrigerator set up of PPMS. The
transparency of the single crystal sample of YbZn2GaO5 indicates the crystal quality. c. The filled
black circles display the total heat capacity which can be written as 𝐶𝑡𝑜𝑡 = 𝐶𝑛𝑢𝑐 + 𝐶𝑙𝑎𝑡 + 𝐶𝑚𝑎𝑔.
𝐶𝑛𝑢𝑐 is expressed as 𝐴𝑇−2; and 𝐶𝑙𝑎𝑡 is subtracted using the heat capacity of the non-magnetic
LuZn2GaO5 sample. The light-magenta dash line indicates the nuclear contribution obtained from
the fit. The blue circles show the data after subtracting the nuclear and lattice contribution. The
green and red solid lines show the results of subtracted magnetic heat capacity data fitted using a
linear (𝐶𝑚𝑎𝑔 ∼T) and a quadratic (𝐶𝑚𝑎𝑔 ∼T2) models. The linear T dependence is expected for the
spinon Fermi surface quantum spin liquid, while the quadratic behavior for T → 0 corresponds to
U(1) Dirac quantum spin liquid model.

Crystal electric field fits
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Figure 4.28: Momentum dependence of the magnetic excitation. a-d. Background-subtracted
constant energy slices of the magnetic excitation spectra collected at 0.1 K. The energy integration
ranges are [0.1, 0.3], [0.3, 0.5], [0.5, 0.8], and [0.8, 1.1] meV. The spectra were folded along high
symmetry directions to increase statistics and the folded data was duplicated and recombined to
restore full coverage for presentation, as explained in the Methods section. The spectral weights
are expressed by the same color map scale for better comparison. e. S(q,𝜔) plot along high
symmetry path 𝑀-𝐾-Γ. The dash lines indicate the energy integration intervals of cuts 1-4 for
direct visualization.

Table 4.5: Fitted CEF parameters for YbZn2GaO5 .

𝐵𝑚𝑛 Fit values (meV)
𝐵2

0 −1.008 × 100

𝐵4
0 1.459 × 10−2

𝐵4
3 −6.427 × 10−1

𝐵6
0 5.446 × 10−4

𝐵6
3 −3.284 × 10−2

𝐵6
6 2.232 × 10−2
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Table 4.6: Eigenvalues and eigenvectors of the CEF Hamiltonian for YbZn2GaO5 .

Eigenvalues (meV) Eigenvectors
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Chapter 5

Critical Dynamics with Matrix Product
States

In this chapter I discuss the effect that representing a state with a matrix product state (MPS) has on
quantum dynamics near criticality, by looking at a Kibble-Zurek process [194, 195, 439, 49]. In this
process, a ground state is slowly time-evolved under a time dependent Hamiltonian to a quantum
critical point. At the critical point, the gap closes, and so adiabaticity is lost for any finite rate of the
changing Hamiltonian. This causes excitations in the system, which have a simple description in
terms of properties of the underlying conformal field theory describing the quantum critical point.
The density _ of these excitations gives rise to a length scale in the problem bKZ ∼ 𝜌−1.

A dominant technique in modern condensed matter physics, as well as in this thesis, relies on
simulating many-body systems using a matrix product state (MPS) (see Chapter 2). The MPS ansatz
places a restriction on the entanglement of the state it is representing, leading to an approximation
for critical systems with diverging entanglement. The result is that the use of an MPS introduces a
length into the problem b𝜒 (see Sec. 2.4.2 for more details). This provides a useful testing ground
for exploring how representing a state by an MPS modifies the results of a dynamical process. If
b𝜒 ≫ bKZ, then the expectation is that representing the state as an MPS through the entire process
will have a negligible effect, where when b𝜒 ≪ bKZ, the entanglement restriction will be noticeable.

In Sec. 5.1, I look at a Kibble-Zurek process for the transverse field Ising model, and the 3-state
Potts model, using an MPS to represent the state for all times. I show that the deviations from the
exact evolution is fully specified by a dimensionless scaling function of the ratio b𝜒/bKZ. I then
demonstrate this result numerically, by looking at the excitation energy density, and the fidelity
density.
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5.1 Universality of Critical Dynamics With Finite
Entanglement

5.1.1 Introduction
The long-time dynamics of a many-body quantum system is challenging to study on classical
computers even if the system is initialized in a weakly entangled state, as the entanglement en-
tropy will generically grow linearly in time [48, 65, 196, 153]. At the same time, this regime of
dynamically produced entanglement is of great interest in modern research, as it contains insights
into such fundamental questions as how apparently non-reversible thermalization emerges from
unitary dynamics in isolated quantum systems [293, 73]. The dynamical aspect is particularly
important in quantum simulation on current quantum computers, on which preparing a nontrivial
ground state is often harder than performing coherent evolution. Yet, compared to static properties,
non-equilibrium time evolution is less understood in terms of either conceptual guiding principles
or effective methods of calculation.

An exception is the dynamics of a system swept slowly through a quantum critical point,
when universal properties are known to emerge in the limit of long times and distances via the
quantum Kibble-Zurek (KZ) mechanism. We focus on this mechanism as an example of universal
out-of-equilibrium dynamics that is theoretically fundamental and also used in experiments to
probe quantum criticality in emerging platforms that maintain quantum coherence well but have
difficulty in reaching thermal equilibrium [97]. The modification of quantum criticality by limits
on observation time or system size is of renewed interest in light of these new efforts to study such
criticality on quantum computers and emulators. Another, more challenging, kind of modification
arises from noise or other effects in the system that act to limit quantum entanglement. The goal of
the present work is to capture how the quantum Kibble-Zurek mechanism is universally modified
in systems with finite entanglement.

Quantum critical points are of particular interest because of their emergent universal properties:
their large-scale behavior is insensitive to some “irrelevant” microscopic details and is the same
across vast groups of models known as universality classes. However, certain other microscopic
perturbations are “relevant” and change the universality class, and indeed finite entanglement will
turn out to be such a perturbation. Despite having a degree of robustness to irrelevant perturbations,
quantum critical points are also well known to be challenging for computational methods on
classical computers, for reasons such as requiring large system sizes that also apply to new efforts
on quantum computers. Indeed, finite size can be viewed as a relevant perturbation to criticality,
and this insight underlies the successful theory of finite-size scaling [53].

Dynamically, the most straightforward manifestation of universality is the (classical or quantum)
Kibble-Zurek scaling. It describes the number and energy of excitations produced in a system that
is driven through a second-order phase transition. The scaling of the corresponding density with
the drive rate is determined by combinations of standard critical exponents. This behavior is often
one of the first phenomena probed on new quantum simulation platforms [26, 420, 91], which has
also motivated numerical studies of this process [285, 154]. We derive forms for the fidelity and
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excitation energy produced by the sweep based on the existence of two relevant scales: the KZ
length b𝐾𝑍 arising from falling out of adiabaticity with a nonzero sweep rate, and one b𝜒 arising
from the restricted entanglement.

We test the resulting theory using an example of entanglement restriction that is familiar on
classical computers: restriction of the bond dimension of a tensor network. The emergence of this
length scale b𝜒 is a widely used tool in understanding calculations based on Matrix Product States
(MPS), and as these calculations are among the most used to model the experimental platforms
above, we review their use briefly.

MPSs originally emerged as the output of the density matrix renormalization group (DMRG)
algorithm [386, 315], which provides an approximation to the ground states of 1D local Hamiltoni-
ans. The efficiency of this algorithm in many cases is underpinned by the area law of entanglement
entropy in gapped one-dimensional systems [147] which implies that the exact ground state can be
represented efficiently by an MPS [369, 260]. Later, MPSs inspired the development of other tensor
networks, including the multiscale entanglement renormalization ansatz (MERA) for critical states
[373, 372] and projected entanglement pair states (PEPS) [370, 259, 68, 67]. MPS applications
extend beyond ground state properties to include excited states [261, 294, 139, 136, 417, 135] and
quantum dynamics [137, 135, 138, 367, 267, 414, 76].

MPSs have also found applications beyond classical simulations of quantum systems. There is a
direct mapping between an MPS and certain quantum circuits [317, 109, 140]. In such mappings the
physical qubits are coupled to some 𝜒-dimensional ancillary system, such as an optical cavity [317],
or other qubits [109, 140].Recent work has also demonstrated a mapping between tensor networks
and neural networks, the main architecture for machine learning (ML) and artificial intelligence [58,
210], allowing for deep learning architectures to be understood from an entanglement perspective
[209]. Tensor networks have been successfully used for ML applications, such as image classification
[60, 228, 99, 379, 145, 59, 95].

For a periodic (or infinite) MPS (iMPS), the expressive power of the ansatz is fully specified by
the dimension of the matrices 𝜒, called the bond dimension, which is related to the entanglement
entropy of the state [315]. However, if the entanglement is unbounded, the existence of an efficient
representation of the state with finite 𝜒 is no longer guaranteed. This applies whether the MPS
is approximating a critical ground state or the entanglement was dynamically generated. Here we
consider dynamics where, as in many practical computations, the state is represented by an MPS at
finite 𝜒 during the full time evolution. We focus on dynamics near a quantum critical point and the
goal is to gain insight about properties of the time-evolved state; using the universality of critical
behavior, we are able to predict how observables scale with 𝜒 and controllably approach the 𝜒 = ∞
state from finite-𝜒 data.

We begin with a time evolution protocol known as a Kibble-Zurek sweep [194, 195, 439, 49].
We then show that finite 𝜒 dynamics is well-defined, in that different procedures for time evolution
produce the same result in the appropriate limits. A subtlety is that different definitions that all
give the exact ground state are no longer equivalent at finite 𝜒, and how algorithms resolve this
ambiguity. We then demonstrate our results by examining the transverse-field Ising model (TFIM)
and the 3-state Potts model, verifying our finite 𝜒 scaling hypothesis in detail.
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5.1.2 Kibble-Zurek Scaling
We consider an extended quantum system described by a Hamiltonian𝐻 (_) with some parameter _.
We further assume that _ = _0 corresponds to an isolated quantum critical point. For the correlation
length b and time 𝜏 in the vicinity of the critical point we expect [301]

b ∼ |_ − _0 |−a, 𝜏 ∼ |_ − _0 |−𝑧a, (5.1)

where a and 𝑧 are the corresponding critical exponents.
Let us now consider the evolution of the system initiated in the ground state (that we assume

to be non-degenerate) far away from the critical point with the parameter changing in time as
_(𝑡) = _0 + 𝑣𝑡. We assume that 𝑣 is slow compared to the bandwidth and 𝑡 runs from −∞ to 0. Far
from the critical point the gap is large compared to 𝑣 and the adiabatic theorem applies. Because
the breakdown of adiabaticity only occurs close to the critical point, properties of the resulting state
will obey universal scaling laws, the KZ scaling [194, 195, 439, 49].

The scaling exponents can be deduced from a simple reasoning. The adiabaticity is lost when
𝑡 ≈ −𝜏, where 𝜏 is determined by Eq. (5.1); this corresponds to

𝜏𝐾𝑍 ∼ 𝑣−
a𝑧

1+a𝑧 , b𝐾𝑍 ∼ 𝑣−
a

1+a𝑧 , (5.2)

thus defining the Kibble-Zurek time and length, correspondingly. Since the adiabaticity is restored
after 𝑡 = 𝜏 and we expect the generated exitations to freeze out and the average density of excitations
and energy will be (in one spatial dimension)

𝑛𝑒𝑥 ∼ 1/b𝐾𝑍 ∼ 𝑣
a

1+𝑧a , (5.3)
𝜖𝑒𝑥 ∼ 1/b2

𝐾𝑍 ∼ 𝑣
2a

1+𝑧a . (5.4)

This scaling has been verified by extensive numerics [77, 296] as well as experiments [69, 26, 420].
There exists also an exact solution for the transverse-field Ising model [96, 61].

In Eq. (5.3), 𝜖𝑒𝑥 is the energy above the ground state divided by the volume and 𝑛𝑒𝑥 needs to
be defined with care when particle number is not well-defined. We propose to use fidelity density,
which is given by

𝑓 (𝑡) = − 1
𝑁

log
(
|⟨𝜓(𝑡) |𝜓0⟩|2

)
, (5.5)

where |𝜓0⟩ is the ground state, |𝜓(𝑡)⟩ the time evolved state, and 𝑁 is the total number of sites in
the system. 𝑓 (𝑡) has the same scaling as we expect for 𝑛𝑒𝑥 [78, 77], and is proportional to it at low
densities when the system has a free fermion description, as we explain in Sec. 5.2.2.

5.1.3 MPS Dynamics and Finite Bond Dimension
The time evolution of a state under a Hamiltonian 𝐻 (𝑡) is given by

|𝜓(𝑡)⟩ = 𝑈 (𝑡) |𝜓(0)⟩ (5.6)

𝑈 (𝑇) = T exp
(
−𝑖

∫ 𝑇

0
𝑑𝑡 𝐻 (𝑡)

)
(5.7)
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where T (·) is the time ordering operator. If we write 𝑡𝑛 = 𝑛Δ𝑡, and 𝑇 = 𝑡𝑁 , then this is equivalent
to writing

𝑈 (𝑡) = lim
𝑁→∞

[
𝑒−𝑖𝐻 (𝑡𝑁 )Δ𝑡 · · · 𝑒−𝑖𝐻 (𝑡0)Δ𝑡

]
. (5.8)

Conceptually, this amounts to treating the Hamiltonian as piecewise constant over an interval of
size Δ𝑡, and the exact time evolution is found in the limit that Δ𝑡 → 0. For finite Δ𝑡, treating the
Hamiltonian as piecewise constant produces an error of order O(Δ𝑡). To implement time evolution
using an MPS, if Δ𝑡 is sufficiently small, it is sufficient to define time evolution for a constant
Hamiltonian over a time Δ𝑡. We demonstrate in Sec. 5.2.1 that finite 𝜒 dynamics is independent of
the algorithm used as Δ𝑡 → 0.

Now we turn to how KZ scaling is modified when the state is represented at all times by an MPS
with a fixed finite bond dimension 𝜒. The effect of finite bond dimension is to limit the amount of
entanglement in the system. And since close to conformal critical points entanglement is related to
the correlation length by the celebrated expression [46]

𝑆 =
𝑐

6
log b, (5.9)

for fast sweeps, when b𝐾𝑍 is small, the effect of 𝜒 will be small, whereas for slower sweeps, when
b𝐾𝑍 is large, the number of excitations will be suppressed compared to Eq. (5.3).

This situation is similar to the one studied in [285], where the KZ scaling in the TFIM was
studied in the presence of a symmetry breaking bias 𝑔| | that kept the gap finite at all times during the
sweep. It was numerically verified that the effect of 𝑔| | could be described by a single length scale
b | | = 𝑔

−a | |
| | where a | | is the corresponding critical exponent, and all KZ scaling laws were modified

by scaling function that depended on the ratio b | |/b𝐾𝑍 . We also expect the scaling behavior to occur
for finite system size, in which case the argument of the scaling function would be 𝐿/b𝐾𝑍 with 𝐿,
the system size.

Returning to the case of finite bond dimension, we conjecture its effect to be describable by
a single length scale b𝜒. Thus, we expect that the 𝜒 = ∞ result is modulated by a dimensionless
scaling function, similar to the scaling theory of entanglement entropy [50]. In particular, we expect

O(𝑣, 𝜒) = O(𝑣, 𝜒 = ∞) 𝑓O (b𝐾𝑍/b𝜒) (5.10)
where 𝑓O is some scaling function for the observable O. Here, we look at the fidelity density 𝑓 from
Eq. (5.5) and the excitation energy 𝜖𝑒𝑥 . the fidelity density 𝑓 is computed via the largest eigenvalue
of the transfer matrix formed by the full contraction of both states (see Sec. 5.2.2). Both of these
quantities require the ground state at finite 𝜒, where equivalent definitions of the 𝜒 = ∞ ground
state are no longer equivalent. See Sec. 5.2.3 for more details on choosing the relevant finite 𝜒
ground state.

The length scale b𝜒 has been previously studied for ground state properties and the scaling
given by b𝜒 ∼ 𝜒^ was observed in [357]. The conformal field theory (CFT) entanglement spectrum
was used to obtain a form for the exponent [277]

^ =
6

𝑐

(√︃
12
𝑐 + 1

) (5.11)
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in surprisingly good agreement with numerical data [357, 277, 274]. Looking ahead, we will find
that the same critical exponent governs the dynamical problem of Kibble-Zurek scaling.

5.1.4 Numerical Verification
We look at two models in this study. First, the transverse-field Ising model (TFIM), defined by the
Hamiltonian

𝐻 = −𝐽
∑︁
𝑛

𝜎𝑧𝑛𝜎
𝑧
𝑛+1 − 𝑔

∑︁
𝑛

𝜎𝑥𝑛 , (5.12)

where 𝜎𝑖𝑛 is the 𝑖-th Pauli matrix at site 𝑛. Eq. (5.12) has a 𝑍2 symmetry
⊗
𝑖
𝜎𝑥𝑖 . This system has

a quantum phase transition at 𝑔 = 𝐽 that separates a disordered phase with a unique GS for 𝑔 > 𝐽
and an ordered phase with a two-fold degenerate GS for 0 < 𝑔 < 𝐽. The CFT describing the critical
point is the minimal model with 𝑐 = 1/2 and the critical correlation length critical exponent is
given by a = 1 [110]. Thus, for the KZ scaling we expect

𝑛𝑒𝑥 ∼ 𝑣1/2, 𝜖𝑒𝑥 ∼ 𝑣. (5.13)

The coupling constants have a 𝑣 dependence given by

𝐽 (𝑡) = 1 + 𝑣𝑡
𝑔(𝑡) = 1 − 𝑣𝑡

𝑡 : −1
𝑣
→ 0 (5.14)

The initial coupling is given by 𝐽 = 0, and 𝑔 = 2. The ground state at this point is a simple product
state given by |𝜓0⟩ = |→⟩⊗𝑁 . We then time evolve this state with the time dependent Hamiltonian
using the time-evolution block-decimation (TEBD) algorithm [76, 315]. We use a fourth order
Trotter decomposition [22], with a timestep of 𝑑𝑡 = 0.005.

We enforce the Z2 symmetry during the ground state search, and time evolution, producing a
Z2 symmetric state in both cases. For different values of the bond dimension 𝜒, we calculate 𝑓 and
𝜖ex, and show the results in Fig. 5.1. The black line illustrates the 𝜒 = ∞ result. We see that for
large 𝑣, the effect of finite bond dimension is minimal, but as we decrease the speed, the deviations
become dramatic. The systematic nature of the deviations is a focus of the present work.

In Fig. 5.2, we show the scaling function collapse assuming the scaling hypothesis in Eq. (5.10).
We expect the scaling hypothesis to be valid for large 𝜒 but it already begins to work for 𝜒 ≥ 4,
with the exponent ^ specified by Eq. 5.11.

The second model we explore is the 3-state Potts model defined by the Hamiltonian [342]

𝐻 = −𝐽
∑︁
𝑛

(
[†𝑛[𝑛+1 + [𝑛[†𝑛+1

)
− 𝑔

∑︁
𝑛

(
𝜏𝑛 + 𝜏†𝑛

)
(5.15)

[ =


1

𝑒𝑖
2𝜋
3

𝑒−𝑖
2𝜋
3


, 𝜏 =


0 1 0
0 0 1
1 0 0


(5.16)
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Figure 5.1: The fidelity and excitation energy densities after a Kibble Zurek sweep performed at
speed 𝑣 for the TFIM. We show the results for different maximum bond dimensions 𝜒. We show a
black line illustrating the scaling prediction for 𝜒 = ∞.

Eq. (5.15) enjoys 𝑆3 symmetry comprised of all permutation of the basis states on all sites.
However, we explicitly enforce the only Z3 ⊂ 𝑆3 symmetry containing cyclic permutations.

Analogously to the TFIM, at 𝑔 = 𝐽 there is a critical point that separates a 𝑍3 symmetric phase
for 𝑔 > 𝐽 and a 𝑍3 ordered phase for 0 < 𝑔 < 𝐽. The CFT is similarly a minimal model (𝑍3
parafermion) with 𝑐 = 4/5 and a = 5/6 [110]. Accordingly, the KZ scaling is

𝑛𝑒𝑥 ∼ 𝑣5/11, 𝜖𝑒𝑥 ∼ 𝑣10/11. (5.17)

For the dynamics, we use the same time dependent coupling used for the TFIM, given in Eq.
(5.14). We again use TEBD with a fourth order Trotter decomposition, except with a timestep of
𝑑𝑡 = 0.01. The excitation energy, and fidelity density, are qualitatively identical to the TFIM, except
with different scaling exponents with 𝑣 (see Sec. 5.2.4). We do show the scaling function collapse
in Fig. 5.3. Again we see a clear collapse of the data, further confirming the scaling hypothesis of
Eq. (5.10).
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Figure 5.2: The scaling function collapse for the fidelity density and excitation energy in the TFIM.
The length scale introduced by the bond dimension, b𝜒, follows a power law with exponent given
by Eq. (5.11), with a central charge of 𝑐 = 1/2.

5.1.5 Conclusions
We found that a Kibble-Zurek sweep through a one-dimensional quantum critical point is modified
by finite entanglement, i.e., fixed finite bond dimension 𝜒 for an iMPS, in a way similar to relevant
perturbations of the Hamiltonian, even though finite 𝜒 is not equivalent to any local Hamiltonian
perturbation. Properly defined, the sweep-induced differences from an adiabatically defined ground
state are captured by a universal scaling function that unusually involves both scaling dimensions
and central charge. The scaling function involves the ratio of two length scales b𝐾𝑍 and b𝜒 and
the essential features are independent of the specific implementation of the dynamics, suggesting
that the finite-entanglement scaling form for dynamics will have similar utility in practice as the
form for ground states, by enabling systematic extrapolation from finite-𝜒 results (see Sec. 5.2.5
for further details).

Whether bond dimension can be treated as a relevant perturbation in an even more general
setting, and whether other non-Hamiltonian perturbations to quantum dynamics can similarly be
captured by scaling functions, remains an open question. The way matrix product states implement
finite entanglement is via the restriction on bond dimension and therefore Schmidt rank: the relevant
ground state here was the lowest-energy state within a specified symmetry sector and Schmidt rank.
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Figure 5.3: The scaling function collapse for the fidelity density and excitation energy in the 3-state
Potts model. The length scale introduced by the bond dimension, b𝜒 is a power law with exponent
given by Eq. (5.11), with a central charge of 𝑐 = 4/5.

It would be worthwhile to generalize the scaling theory to (pure or mixed) states approximating
criticality that arise via other mechanisms that also put a limit on entanglement, such as some non-
unitary processes arising from environmental interactions in quantum hardware, and to understand
how these approximate states compare to MPS. It would also be interesting to see if our analysis
applies beyond Kibble-Zurek scaling to the more general finite-time scaling [125, 165]. Lastly,
the finite 𝜒 scaling of dynamical observables opens up an interesting application of quantum
computers in the NISQ era. Since quantum circuits can represent MPSs with a physically relevant
bond dimension [317, 109, 140], running such simulations at different bond dimensions could
enable a novel way to extract the central charge of critical theories. This procedure is well suited
for quantum computers, on which unitary dynamics are easily programmed.
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5.2 Appendix

5.2.1 Equivalence of different time evolution procedures at finite 𝜒.
In practice, the time evolution of a state is implemented in one of three ways. Most commonly used
when studying a nearest-neighbor Hamiltonian is the Time Evolution Block Decimation (TEBD)
algorithm [76, 315], which is based on a Suzuki-Trotter decomposition of the time evolution
operator. One can also calculate a matrix product operator (MPO) representation of the matrix
exponential itself [414], known as the WII method. For both of these methods, a time evolution step
will generically increase the entanglement of the system, increasing the bond dimension 𝜒. Thus a
procedure is required to project the resulting state down to a state with a bond dimension 𝜒max. The
last notable time evolution procedure, the time-dependent variational principle (TDVP) [137, 135,
138, 367], projects the dynamics on the states in the manifold of 𝜒 ≤ 𝜒max. Often we are interested
in the limit of both 𝜒 → ∞ and Δ𝑡 → 0, corresponding to the exact solution of the time-dependent
Schrodinger equation. In this work, we hold 𝜒 finite and discuss just the limit Δ𝑡 → 0. Here, we
will show that these three methods of time evolution produce the same state when 𝜒 is fixed and
Δ𝑡 → 0.

Let us consider the following. Starting with an MPS |Ψ(𝐴)⟩ with bond dimension 𝜒, we perform
one step of time evolution, corresponding to a time step 𝑑𝑡, that increases the bond dimension to
𝜒′. Finite 𝜒′ can be achieved by considering an arbitrary but finite number of Trotter-Suzuki steps.
We denote the new MPS as |Ψ(𝐴 + 𝐵)⟩, where 𝐵 has bond dimension 𝜒′, and we can enlarge A
with zeros to make the sum 𝐴 + 𝐵 well defined. We wish to understand whether the different ways
of compressing this state back to bond dimension 𝜒 become equivalent when we take 𝑑𝑡 → 0. In
this limit 𝐵 can be thought of as a tangent vector [367].

Let us denote the compressed state |Ψ(𝐴 + 𝐵′)⟩ where 𝐵′ is an MPS of bond dimension 𝜒. The
difference between TEBD and WII MPO/TDVP can be thought of as the difference in how truncation
is performed. The TEBD projection of 𝐴 + 𝐵 to the subspace of bond dimension 𝜒 corresponds to
the truncation of the SVD spectrum [377, 371]. This would be an optimal compression in terms
of vector distance | |Ψ(𝐴 + 𝐵′)⟩ − |Ψ(𝐴 + 𝐵)⟩|2 if we were only changing the tensor from 𝐴 + 𝐵
to 𝐴 + 𝐵′ at one site [315], but is not optimal for a global change. Meanwhile for the WII MPO
method the globally optimal | |Ψ(𝐴 + 𝐵′)⟩ − |Ψ(𝐴 + 𝐵)⟩|2 [414] is achieved and the TDVP is the
infinitesimal version of that [367].

Let us now show that both compression are equivalent to the linear order in 𝐵, 𝐵′. We expand
the states to the linear order in 𝐵, 𝐵′, obtaining

|Ψ(𝐴 + 𝐵)⟩ ≈ |Ψ(𝐴)⟩ +
∑︁
𝑖

. . . 𝐴 𝐴 𝐵 𝐴

𝑖 − 2 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2
𝐴 . . . . (5.18)

Thus to the first order, the difference of the states to be minimized is

|Ψ(𝐴 + 𝐵)⟩ − |Ψ(𝐴 + 𝐵′)⟩ ≈
∑︁
𝑖

. . . 𝐴 𝐴 𝐵 − 𝐵′
𝑖 − 2 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2

𝐴 𝐴 . . . . (5.19)
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The last step is to contract it with itself. For definiteness work with the left gauge for the tangent
vector 𝐵, in which case

𝑙

𝐵

�̄�

= 𝑙

𝐴

�̄�

= 0. (5.20)

With that gauge, the contraction of the difference with itself will only have diagonal components,
where 𝐴’s are contracted with 𝐴’s and 𝐵 − 𝐵′ is contracted with itself at site 𝑖:

| |Ψ(𝐴 + 𝐵)⟩ − |Ψ(𝐴 + 𝐵′)⟩|2 ≈
∑︁
𝑖

. . .

𝐴

�̄�

𝐴

�̄�

𝐵 − 𝐵′
𝑖 − 2 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2

�̄� − �̄�′

𝐴

�̄�

𝐴

�̄�

. . .

This is the same as what we would obtain if we just wanted to truncate a nonuniform MPS
|Ψ(𝐴, 𝐵, 𝑖)⟩ = . . . 𝐴 𝐴 𝐴 + 𝐵

𝑖 − 2 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2
𝐴 𝐴 . . . . (5.21)

(no sum over 𝑖!) at a single site, where we know the truncation of the SVD spectrum is optimal.
This proves that both ways of truncation are equivalent when 𝑑𝑡 → 0 and, thus, TEBD, TDVP and
WII MPO are also equivalent in this limit.

We also demonstrate the equivalence between these methods numerically, see Fig. 5.4. We
work at 𝜒 = 16, starting with the ground state of the critical TFIM, Eq. 12 in the main text, with
(𝐽, 𝑔) = (1, 1). We then time evolve this state using the coupling (𝐽, 𝑔) = (0.1, 1), for 𝑡 = 𝐽. As 𝑑𝑡
decreases, we see that all three methods converge.

5.2.2 Fidelity and Excitation Density
In this section, we will use the exact solution of the Kibble-Zurek (KZ) sweep for the transverse-
field Ising model (TFIM) [96] to show that the fidelity density reduces to the excitation density in
the low-density limit. Let |𝜓(𝑡)⟩ be the time evolved state after a Kibble-Zurek sweep, and |𝜓0⟩ the
ground state. Then, using the free fermion representation from [96], the time-evolved state can be
written as

|𝜓(𝑡)⟩ =
∏
𝑘>0

(𝛼𝑘 (𝑡) |no pair⟩𝑘 + 𝛽𝑘 (𝑡) | pair⟩𝑘 ), (5.22)

where |pair⟩𝑘 denotes the state with quasipartice of momenta 𝑘 and −𝑘 present above the ground
state. The probability of finding the 𝑘,−𝑘 pair in this state is 𝑃𝑘 = |𝛽𝑘 (𝑡) |2. The expected number
of particles in |𝜓(𝑡)⟩ is 𝑁𝑒𝑥 = 2

∑
𝑘>0

𝑃𝑘 and for the fidelity we find

|⟨𝜓0 |𝜓(𝑡)⟩|2 =
∏
𝑘

|⟨𝜓 (0)
𝑘 |𝜓𝑘 (𝑡)⟩|2 = exp

(∑︁
𝑘>0

log(1 − 𝑃𝑘 )
)
≈ exp

(
−

∑︁
𝑘>0

𝑃𝑘

)
= 𝑒−𝑁𝑒𝑥/2, (5.23)
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Figure 5.4: The energy of the time evolved state obtained from TEBD and TDVP, for different values
of the timestep 𝑑𝑡 used in TEBD. To prepare the state, we started with the 𝜒 = 16 ground state of
the critical TFIM (𝐽, 𝑔) = (1, 1), and then time evolved with the the TFIM with (𝐽, 𝑔) = (0.1, 1)
for 𝑡 = 𝐽. The TDVP data was obtained using a timestep of 10−3, and a 2-site iTDVP algorithm.
Maybe cat state issues with other quantities, could try a different time evolution process.

where we have used that the excitation density is low 𝑃𝑘 ≪ 1 (but not
∑
𝑘>0 𝑃𝑘 ≪ 1). Now, defining

the excitation density as 𝑛𝑒𝑥 = 𝑁𝑒𝑥/𝐿, and we find that the fidelity density is given by

𝑓 (𝑡) := − 1
𝑁

log
(
|⟨𝜓0 |𝜓(𝑡)⟩|2

)
≈ 𝑛𝑒𝑥/2 (5.24)

This approximation becomes exact in the limit of low-density of excitations. In the context of a
Kibble-Zurek sweep, this limit corresponds to 𝑣 → 0.

To compute this quantity using uniform MPSs, we note

⟨𝜓0 |𝜓(𝑡)⟩ = tr

©«
𝑇

𝐿 ª®®®®®®®®¬
, (5.25)

where

𝑇 =

𝐴(𝑡)

�̄�0

. (5.26)

If _ is the magnitude of the largest eigenvalue of 𝑇 , then in the thermodynamic limit we have

|⟨𝜓0 |𝜓(𝑡)⟩|2 = _2𝐿 , (5.27)
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and thus
𝑓 = −2 log |_ |. (5.28)

5.2.3 Relevant finite 𝜒 ground state
We want to discuss what is meant by a finite 𝜒 ground state. In particular, different definitions for
the ground state no longer are equivalent when working at finite 𝜒. A simple example is an Ising
ferromagnet, where the ground state is given by all spin point up, or pointing down. Then, any state
of the form

|𝜓⟩ = 𝛼 |↑ · · ·⟩ + 𝛽 |↓ · · ·⟩ (5.29)

would also be a ground state with the same energy. This is not the case at fixed finite 𝜒. In particular,
the cat state, with 𝛼 = 𝛽, requires a bond-dimension of 𝜒 = 2, but the states where 𝛼 = 0 or 𝛽 = 0
require only 𝜒 = 1. This means that the lowest energy state at fixed 𝜒 would be a symmetry broken
state, not a symmetric, cat like, state. However, in the thermodynamic limit, both the symmetric
and symmetry broken state would have the same energy.

In a Kibble-Zurek sweep, we calculate the state |𝜓(𝑣, 𝑡)⟩ (see the main text for more details).
Another definition for the ground state is given by

|𝜓0(_(𝑡 = 0))⟩ := lim
𝑣→0

|𝜓(𝑣, 𝑡 = 0)⟩ . (5.30)

One property that we seek when deciding which ground state we use is that the excitation energy
density 𝜖ex(𝑣) → 0 as 𝑣 → 0. At 𝜒 = ∞, this is the case whether or not we take the symmetric or
symmetry broken state for the ground state. However, at finite 𝜒, since the symmetric and symmetry
broken states no longer have the same energy, this is not the case. The preferred definition of the
ground state, when calculating the fidelity density and the excitation energy density, is the one given
by Eq. (5.30). Since we can not take the limit of 𝑣 → 0 numerically, we wish to perform a ground
state search that yields this state.

Since unitary time evolution does not spontaneously break any symmetries, the state in Eq.
(5.30) will have all symmetries that are shared by the initial state and Hamiltonian, Thus we enforce
the symmetries of the resulting time-evolved state when we perform the ground state optimization,
to ensure we obtain the correct state.

When looking at the TFIM, the result of a KZ sweep will be a cat state with a global Z2
symmetry. Such states can only be represented with bond-dimension that is divisible by two. We
believe for larger, discrete, symmetries, the bond-dimension must be a multiple of the number of
elements in the symmetry group, to represent a fully symmetric state exactly. However this remains
to be seen in full generality. In this work, we also look at the 3-state Potts model, which has a full
𝑆3 symmetry. Our numerical simulations do not implement non-abelian symmetries, and so we
can not enforce the fully symmetric state in our ground state calculation. However, we do enforce
a Z3 symmetry. We have found that this is sufficient in the Potts model when working with a
bond-dimension that is divisible by three, but not by six. This result is what makes us believe that
a symmetric state requires a bond-dimension that is a multiple of the number of elements in the
symmetry group, as 𝑆3 has six elements. This discrepancy is most noticeable at small 𝑣, where the
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deviations due to finite 𝜒 are most apparent, and because of this, we omit 𝜒 = 6, 12, 18 for the
3-state Potts model.

5.2.4 Best fit to extract ^
In the main text, the scaling function collapse depended on the length scale introduced by working
at finite bond dimension. In previous work, it was demonstrated that the length scale is takes the
form of b𝜒 ∼ 𝜒^ with ^ given by Eq. (5.11). Here, we find ^ by the best fit for the scaling function
collapse for both the fidelity and excitation energy densities. Generically, the scaling ansatz for a
Kibble-Zurek sweep at finite 𝜒 is given by Eq. 10 in the main text. If one fixes 𝜒 and 𝑣, then

𝑓O (b𝐾𝑍/b𝜒) = O(𝑣, 𝜒)/O(𝑣, 𝜒 = ∞) (5.31)

For simplicity, define the right hand side as 𝑦𝜒, and the argument 𝑥^ := b𝐾𝑍/b𝜒. Then, for each 𝜒,
our numerical data gives an interval 𝐼𝜒 for calculated values of 𝑥. We then interpolate the values
for 𝑦𝜒 (𝑥^) for 𝑥^ ∈ 𝐼𝜒. Call the interpolated function �̃�𝜒. To find ^, we define a cost function

𝐶 (^) =
∑︁
𝜒𝑖>𝜒 𝑗

∥ �̃�𝜒𝑖 (𝑥^) − �̃�𝜒 𝑗 (𝑥^)∥2, 𝑥^ ∈ 𝐼𝜒𝑖 ∩ 𝐼𝜒 𝑗 (5.32)

Conceptually, the cost function is given by the sum of the differences between all pairs of �̃�𝜒𝑖 , �̃�𝜒 𝑗 ,
along the interval where 𝑥^ is defined for both. We then find ^ by minimizing 𝐶 (^). We show in
Fig. 5.5 the results of the best fit scaling function, as well as the extracted ^ values, for the Ising
and 3-state Potts models. Note that for both models the difference between best-fit and theoretical
values is small, and comparable to the differences between best-fit ^ values taken from fidelity and
energy results, which (unless KZ scaling is incorrect) should ultimately be the same in the 𝜒 → ∞
limit. For the Ising case, the cost-function measure of error is essentially the same between the best
fit and the theoretical value.

5.2.5 Extrapolation to 𝜒 = ∞
One major benefit of the realization that observables satisfy the scaling relation in Eq. 10 of the
main text, is that it provides a means to extrapolate systematically to 𝜒 = ∞ from finite-𝜒 data. To
see this, we can write

O(𝑣, 𝜒 = ∞) = O(𝑣, 𝜒) / 𝑓O (b𝐾𝑍/b𝜒). (5.33)

The quantity O(𝑣, 𝜒) is what is computed in the simulations. As for 𝑓O , this is computed by finding
the function that the data collapses onto for different values of 𝜒. Where the collapse is not exact,
we opt for the average over the different 𝜒 values. Then, the ratio of these two values yields the
𝜒 = ∞ result, computed for each value of 𝜒. The resulting fidelity and excitation energy densities
are shown in Fig. 5.6, for both the TFIM, and the 3-state Potts model.
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Figure 5.5: The best fit scaling function collapse for the fidelity and excitation energy densities, for
the TFIM in (a) and (b), and the 3-state Potts model in (c) and (d). The value ˜̂ is shown on the
plots, and the scaling functions are drawn using that value of ^. The theoretical values are shown
between the subplots as a reference. The values for the cost function of Eq. (5.32) are shown for
the theoretical and best-fit values of ^.

5.2.6 Kibble-Zurek Sweep starting point dependence
Here we wish to show how the results in the main text depend on the starting location of the Kibble-
Zurek sweep. In the main text, we start at (𝑔0, 𝐽0) = (2, 0) and end at (1, 1). This is equivalent to
start infinitely far away from the critical point, and time evolving up to the critical point. However,
so long as 𝑣 is sufficiently small, then the results should not depend on where we start the time
evolution, since adiabatic evolution will ensure we stay in the ground state until the gap begins to
close.

In Fig. 5.7, we show the fidelity density and the excitation energy as a function of 𝑣 for different
starting points defined by 𝑔0. We only show 𝜒 = 14 and the TFIM, but similar results are available
for different values of 𝜒, and also in the Potts model. To perform the simulations, we fix 𝑔0, and set
𝐽0 = 2 − 𝑔0, so we evolve along the same path towards the critical point as was used in the main
text.
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Figure 5.6: The extrapolated 𝜒 = ∞ result for the fidelity and excitation energy densities, for the
TFIM in (a) and (b), and the 3-state Potts model in (c) and (d). The extrapolation is computed using
Eq. (5.33).
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Figure 5.7: Fidelity density, and excitation energy density as a function of the sweep rate 𝑣 in
the TFIM. The different colors correspond to different starting points in the Kibble-Zurek sweep.
All starting points are along the line connecting (𝑔, 𝐽) = (2, 0) → (1, 1). The simulations were
performed with a bond-dimension 𝜒 = 14.
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To calculate these results, there are two ways to think about what 𝑣 means here to compare
different starting points. In the main text, the time dependence of the coupling constants is given by

𝑔(𝑡) = 1 + 𝑣𝑡
𝐽 (𝑡) = 1 − 𝑣𝑡

, 𝑡 : −1
𝑣
→ 0. (5.34)

If 𝑣 is sufficiently small, then starting at 𝑡 closer to 0 should not change the result. One can think
about the results in Fig. 5.7 as starting the simulations at 𝑡0 such that the initial coupling constant
𝑔0 is given by the key in the legend. However, what we actually do is still enforce that 𝑡 : −1

𝑣 → 0,
but then modify 𝑣 → 𝑣(𝑔0 − 1). These two methods are equivalent.

When talking about 𝑣 being sufficiently small, there are two relevant scales in the problem to
define this. There is a length scale introduced by time evolving with a finite velocity. This scale for
the TFIM is given by

bKZ ∼ 𝑣1/2. (5.35)

As the critical point is approached, the gap in the system starts to close, corresponding to a diverging
correlation length bGS. In particular

bGS ∼ 1
|log(𝑔/𝐽) | (5.36)

Therefore, when 𝑣 is small enough, such that bKZ ≪ bGS, then the starting point does not matter. In
the other limit, for large 𝑣, the results are sensitive to the starting point, as adiabaticity is lost. This
is seen in Fig. 5.7 where all the starting points align for small 𝑣, but differ at large 𝑣.
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Chapter 6

Conclusion

In this work, I have utilized matrix product state (MPS) simulations to identify experimentally
relevant signatures of novel quantum materials. First, I examined an anomalous transport observed
in one-dimensional magnets known as Kardar-Parisi-Zhang hydrodynamics. Second, I looked at
the 𝐽1 − 𝐽2 Heisenberg model on the triangular lattice, which hosts a quantum spin liquid (QSL)
phase. I discussed key signatures of the QSL phase in the low-energy spectrum that are relevant for
neutron scattering experiments. These simulations require large-scale MPS simulations of quantum
dynamics, which are challenging, and require approximations to be performed. In particular the
MPS ansatz restricts the total entanglement in the state. Lastly, we looked at how this entanglement
restriction modifies the evolution of states near criticality. I will detail out the highlights of this
work, as well as discuss future directions.

In Chapter 3, we looked at the hydrodynamical behavior of the antiferromagnetic Heisenberg
spin chain. It had been previously discovered that at infinite temperature, this model exhibits KPZ
hydrodynamics [229]. We demonstrated that KPZ hydrodynamics persists down to experimentally
relevant temperatures, and can be detected in the low-energy neutron scattering cross-section. In col-
laboration with the neutron scattering group at Oak Ridge National Lab, this signature was detected,
finding KPZ hydrodynamics in the first quantum mechanical system. What is especially surprising
about this is that this is a high temperature phenomena, which historically had been thought to
be fairly trivial and predominately governed by classical physics. However, KPZ hydrodynamics
is only present in the spin−1/2 Heisenberg model, and is not present in the classical Heisenberg
spin chain, making this fundamentally a quantum effect present at high temperatures.The low tem-
perature physics of this model is described by the Tomonaga-Luttinger liquid (TLL) [119], which
does not possess KPZ hydrodynamics. We showed that there is a spatio-temporal crossover from
the TLL physics to KPZ hydrodynamics as temperature is increased. At intermediate temperatures,
KPZ hydrodynamics is present at the longest time scale, but the TLL physics is observed for inter-
mediate times. The time scale separating TLL physics from KPZ hydrodynamics is determined by
the thermal correlation length b𝑇 ∼ 1/𝑇 .

Several questions regarding KPZ hydrodynamics still remain open questions. One main question
is understanding why KPZ emerges in the Heisenberg chain. To this end, numerical simulations
seem to suggest that KPZ hydrodynamics requires integrability, as well as an enhanced symmetry
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such as rotational invariance [92], or possibly any non-abelian symmetry [413]. How robust is the
KPZ hydrodynamics to perturbations that break integrability, or the enhanced symmetry, is still an
open question. From the experiments in KCuF3 [308], we expect that KPZ hydrodynamics must
have some stability against integrability breaking, as a real material will not be integrable. Similar
to the crossover from TLL to KPZ as temperature is tuned, we might expect a crossover from KPZ
to diffusion as an integrability breaking term is introduced into the model. In such a case, at the
longest times, we would expect diffusive transport, but for intermediate times, KPZ transport is
likely present. Characterizing this crossover would be an interesting question to address.

In Chapter 4, we looked at the 𝐽1 − 𝐽2 Heisenberg model, and studied the dynamical structure
factor. This model is known to have a QSL phase at intermediate values of 𝐽2/𝐽1. However, despite
extensive work over decades, the exact nature of the ground state has remained elusive. The three
main QSL ground state candidates are a gapped Z2, a gapless U(1) Dirac, and spinon fermi surface
quantum spin liquid state. We discussed key signatures in the dynamical structure factor that
distinguish these three phases for triangular lattice systems. Using MPS simulations, we calculated
the dynamical structure factor across the full phase diagram of the 𝐽1 − 𝐽2 Heisenberg model, and
argued that our results are most consistent with a U(1) Dirac spin liquid. These simulations also
enabled comparisons in the triangular lattice compounds KYbSe2 and YbZn2GaO5. From these
comparisons, we demonstrated that KYbSe2 is well modelled by the 𝐽1 − 𝐽2 Heisenberg model, and
in close proximity to the QSL phase. In YbZn2GaO5, we saw that the spectrum looks very similar
to the QSL phase of the 𝐽1 − 𝐽2 model, suggesting it is a realization of a U(1) Dirac spin liquid.
Introducing an easy axis anisotropy reproduced the relative spectral weight between the K and M
points, suggesting that YbZn2GaO5is well modelled by a 𝐽1 − 𝐽2 XXZ model.

Only very recently has dynamical simulations of two-dimensional systems been possible within
the MPS framework. Using the technique described in Chapter 4, simulations of spectral functions
for other QSL systems would be interesting to pursue. For example, the Hubbard model on the
triangular lattice has shown evidence of a chiral spin liquid [356], which also emerges with the
introduction of four-spin terms into the 𝐽1 − 𝐽2 Heisenberg model [72]. Examining the dynamical
structure factor of such models could produce signatures for such an exotic phase that could be
realized experimentally.

Lastly, in Chapter 5, we looked at how the Kibble-Zurek mechanism is modified when con-
sidering the finite entanglement restrictions present during MPS simulations. We found that the
effect of finite bond-dimension 𝜒 was to introduce a length scale b𝜒 into the problem, similar to
the case of ground state properties of critical theories [357]. We conjectured that the Kibble-Zurek
predictions for quantities such as the energy and fidelity densities would be modulated by a scaling
function of the ratio of the Kibble-Zurek length scale bKZ and b𝜒. We demonstrated this hypothesis
for the quantum Ising model and the 3-state Potts. This enabled us to extract b𝜒, and found that it is
given by a power law with the same power as derived in Ref. [277]. This conjecture also provides a
means to extrapolate to 𝜒 = ∞, and we showed this reproduces the exact Kibble-Zurek prediction
well.

Understanding the effect that finite entanglement has on critical states is relatively unexplored.
One question is whether or not finite entanglement can be interpreted as a relevant perturbation,
similarly to the effect of finite size [53]. One way to address this question is to use MPS simulations
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to calculate the ground state of a critical theory. Using something such as the density matrix
renormalization group (DMRG), we find the state that satisfies

min
|𝜓𝜒⟩∈H𝜒

⟨𝜓𝜒 |𝐻𝑐 |𝜓𝜒⟩ (6.1)

where H𝜒 is the subset of Hilbert space that can be written as an MPS with bond-dimension at most
𝜒, and 𝐻𝑐 is a critical Hamiltonian. We could ask if this state is also the solution of an unconstrained
minimization problem of a different Hamiltonian �̃� (𝜒). If so, is �̃� (𝜒) related to 𝐻𝑐 by a relevant
perturbation? We would expect that as 𝜒 → ∞ we have that �̃� (𝜒) → 𝐻𝑐, suggesting that

�̃� (𝜒) = 𝐻𝑐 + 𝛿𝐻 (𝜒) (6.2)

It would be interesting to understand the term 𝛿𝐻 (𝜒) for a particular model, and to see if there are
universal features to this term that behave similarly to a relevant perturbation.
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