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The paucity of specific pharmacological agents has been a major impediment for delin-
eating the roles of gap junction (GJ) channels formed by connexin proteins in physiology
and pathophysiology. Here, we used the selective optimization of side activities (SOSA)
approach, which has led to the design of high affinity inhibitors of other ion channels,
to identify a specific inhibitor for channels formed by Cx50, a connexin subtype that
is primarily expressed in the lens. We initially screened a library of common ion chan-
nel modulating pharmacophores for their inhibitory effects on Cx50 GJ channels, and
identified four new classes of compounds. The triarlymethane (TRAM) clotrimazole was
the most potent Cx50 inhibitor and we therefore used it as a template to explore the
structure activity relationship (SAR) of the TRAMs for Cx50 inhibition. We describe the
design ofT122 (N -[(2-methoxyphenyl)diphenylmethyl]-1,3-thiazol-2-amine) andT136 (N -[(2-
iodophenyl)diphenylmethyl]-1,3-thiazol-2-amine), which inhibit Cx50 with IC50s of 1.2 and
2.4 μM. Both compounds exhibit at least 10-fold selectivity over other connexins as well
as major neuronal and cardiac voltage-gated K+ and Na+ channels. The SAR studies also
indicated that theTRAM pharmacophore required for connexin inhibition is significantly dif-
ferent from the pharmacophore required for blocking the calcium-activated KCa3.1 channel.
BothT122 andT136 selectively inhibited Cx50 GJ channels in lens epithelial cells, suggest-
ing that they could be used to further explore the role of Cx50 in the lens. In addition,
our results indicate that a similar approach may be used to find specific inhibitors of other
connexin subtypes.

Keywords: connexin 50, gap junctions, triarylmethane, inhibitors, pharmacophore, channel, SAR, lens

INTRODUCTION
Connexins (Cx) are a family of proteins with four transmembrane
regions, which are encoded by 21 genes in humans and which
form hexameric connexons (= hemichannels). These connexons
can either function as transmembrane ion channels or assemble
into gap junctions (GJ) by the docking of two hemichannels from
adjacent cells and directly mediate signaling between cells by pass-
ing ions, metabolites and signaling molecules up to 1 kDa in mass.
Both hemichannels and GJ channels formed by different connexins
play important roles in tissue homeostasis and have therefore been
proposed as potential new targets for the treatment of epilepsy,
cardiac arrhythmia, cancer, stroke, essential tremor, and corneal
wound healing (Nemani and Binder, 2005; Salameh and Dhein,
2005; Bodendiek and Raman, 2010; Kandouz and Batist, 2010).

Since the 1980s several endogenous as well as exogenous mol-
ecules that modulate GJ channels have been discovered. The
peptidic GJ channel activator rotigaptide, which mainly activates
Cx43, advanced into clinical trials for the treatment of atrial fibril-
lation (phase II, terminated in 2007) and endothelial dysfunction
(Lang et al., 2008), while GAP-134, an orally available di-peptidic
analog of rotigaptide, recently completed phase I clinical trials for
the treatment of atrial fibrillation (ClinicalTrials.Gov). However,
apart from these exceptions, the development of GJ channel mod-
ulators as pharmacological tools and potential therapeutics is still

in its infancy. Most existing modulators are either of low potency
and exhibit little selectivity either for connexin channels or among
individual connexin subtypes. For example, one of the most com-
monly used GJ channel blockers, carbenoxolone, a more water
soluble derivative of the pentacyclic triterpenoid glycyrrhetinic
acid, reversibly inhibits GJ currents in human fibroblasts with an
IC50 of 3 μM and reduces Cx26 and Cx38 hemichannel currents in
Xenopus oocytes with IC50s of 21 and 34 μM, respectively. How-
ever, at similar concentrations carbenoxolone also inhibits several
other targets such as the enzyme 11β-hydroxysteroid dehydro-
genase (IC50 ∼5 μM; Monder et al., 1989), voltage-gated Ca2+
currents (IC50 48 μM; Vessey et al., 2004), and the structurally
similar pannexin channels (IC50 2–5 μM; Locovei et al., 2007). At
even lower concentrations carbenoxolone inhibits P2x7 receptors
(IC50 175 nM; Suadicani et al., 2006). Other commonly used con-
nexin blockers like the long-chain alcohols heptanol and octanol,
the diphenylborate 2-APB or flufenamic acid are similarly either of
low potency or lack selectivity for connexin channels (for a recent
review see: Bodendiek and Raman, 2010).

Potent connexin subtype selective modulators are urgently
needed to further elucidate the physiological and pathophysio-
logical roles of the different connexins and to perform proof-
of-concept studies validating connexins as potential drug targets
for various diseases for which they have been proposed as novel
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targets. We therefore screened a small library of compounds con-
taining ion channel modulating pharmacophores for their effects
on Cx50 GJ channels. Cx50 was used as an exemplary connexin
because it is expressed robustly in expression systems. Cx50 is
mainly expressed in the crystalline lens. In lens epithelial cells, it
is co-expressed with Cx43 and plays an important role in post-
natal lens growth (White et al., 1998; Rong et al., 2002). In fiber
cells, where it is co-expressed with Cx46, it has been shown to be
an important component of the lens microcirculation, essential
for maintenance of lens transparency (Mathias et al., 1997, 2010).
Genetic deletion of Cx50 causes mild cataracts and significantly
decreases lens growth (White et al., 1998; Rong et al., 2002), while
missense and frame shift mutations have been found in families
with inherited cataracts (Berthoud and Beyer, 2009; Mathias et al.,
2010). To further study the role of Cx50 channels in the lens, a
potent and selective blocker would be of great interest. Such an
inhibitor is likely to be useful to dissect the contribution of the
coupling provided by Cx50 to lens development and transparency.
In this study, we describe the design of two Cx50 inhibitors with
IC50s of 1.2 and 2.4 μM. Both compounds exhibit excellent selec-
tivity for Cx50 over Cx43, and Cx46, which are also expressed in the
lens (<18% inhibition at 10 μM), and strongly reduced junctional
currents in primary lens epithelial cells isolated on postnatal day 6,
a developmental time-point where Cx50 provides the majority of
the coupling in the epithelium. These new pharmacological tool
compounds will be useful to further explore the role of Cx50 in
lens physiology and pathophysiology and for structure function
studies of connexins.

MATERIALS AND METHODS
CHEMICALS AND REAGENTS
Clotrimazole (CAS No. 23593-75-1), triphenylmethane (CAS
No. 519-73-3), triphenylmethyl chloride (CAS No. 76-83-5),
triphenylmethanol (CAS No. 76-84-6), 3,3,3-triphenylpropionic
acid (T51, CAS No. 900-91-4), (R)-(+)-α,α-diphenyl-2-
pyrrolidinemethanol (T52, CAS No. 22348-32-9), (S)-(−)-α,α-
diphenyl-2-pyrrolidinemethanol (T53, CAS No. 112068-01-6),
diphenyl-4-pyridylmethane (T160, CAS No. 3678-72-6), and
triphenylmethylamine (T162, CAS No. 5824-40-8) were pur-
chased from Sigma-Aldrich (St. Louis, MO). Tetraphenylmethane
(T161, CAS No. 630-76-2) was purchased from Alfa Aesar (Ward
Hill, MA). 2-Chlorotrityl chloride (T3-Cl, CAS No. 42074-68-
0) and diphenyl-4-pyridylmethanol (T50, CAS No. 1620-30-0)
were purchased from TCI America (Portland, OR). T1-T4, T9,
T11, T13, T20, T34, T35, T39, T41, T43, T44, T54, T57, T61,
T64, T66-T75, T78-T80, T85, and T97 were available in the
Wulff laboratory compound library and had been previously syn-
thesized and characterized (Wulff et al., 2000). The remaining
compounds were synthesized using Grignard, chlorination and
alkylation reactions described as general methods A, B, and C (see
also Figure 3). New chemical entities (NCEs) were characterized
by melting point (Melting Point B-540, Büchi), 1H-NMR (Avance
500, Bruker), mass spectrometry (MS: LCQ, Thermo Scientific;
HRMS: LTQ-Orbitrap XL Thermo Scientific), and/or combustion
analysis (2400 Series II combustion analyzer, Perkin Elmer). All MS
and HRMS spectra were recorded with ESI as ionization mode if
not stated otherwise. In cases where no sufficient analytical data for

previously reported compounds (T109, T117, T129, T141, T143,
T144, T154-OH, and T165) were available 1H-NMR, MS and/or
combustion data in addition to melting points are also provided.

CHEMICAL SYNTHESIS
General method A
Triaryl methanols were synthesized through a Grignard reaction
by stirring 25 mmol of magnesium turnings and 10–15 mmol of
the required arylbromide in 50 mL of anhydrous diethyl ether.
To initiate the reaction, catalytic amounts of iodine were added.
The remaining 15–20 mmol of the required arylbromide were
diluted with or dissolved in anhydrous diethyl ether (50 mL) and
added slowly allowing gentle reflux. The reaction mixture was
refluxed until all magnesium was consumed. Then, a solution
of the required benzophenone (25 mmol) in anhydrous diethyl
ether (50 mL) was added drop wise and the resulting mixture was
heated under reflux for 12–24 h. After completion of the reaction
the mixture was cooled to 0˚C, poured into 100 mL of cold water
and acidified with concentrated HCl. The organic phase was sepa-
rated, and the aqueous phase was extracted three times with diethyl
ether. The organic phases were combined, washed with NaHCO3

(10%) and dried over sodium sulfate. After evaporation of the sol-
vent the crude triaryl methanols were obtained either as solid or
as oily residues, which were recrystallized from petroleum ether
(40–60˚C) several times, if necessary.

General method B
The triaryl methyl chlorides were obtained according to
McNaughton-Smith et al. (2008) by adding a five-fold excess
of acetyl chloride to a stirred solution of the respective triaryl
methanol in dichloromethane. After stirring the reaction mixture
at room temperature for 12–24 h the solvent was evaporated and
toluene (2 × 50 mL) was added and again removed under vacuum
to afford the crude triaryl chlorides.

General method C
To a solution of the respective triaryl chloride (5 mmol) in anhy-
drous acetonitrile (100 mL) an excess of the respective amine
(10–20 mmol) as hydrogen acceptor was added and the resulting
mixture was refluxed for several hours. The progress of the reac-
tion was monitored by TLC. Work up I: The mixture was poured
into cold water (400 mL) and kept at 4˚C for a few hours. The pre-
cipitate was filtered off, thoroughly washed with water to remove
any remaining amine, and recrystallized from ethanol. Work up
II: the solvent was evaporated and the crude residue was purified
by column chromatography and/or recrystallization.

1-[(2-Chlorophenyl)(diphenyl)methyl]-4-methyl-2-phenyl-
1H -imidazole (T89) was synthesized from T3-Cl (2.5 g,
7.98 mmol) and 4-methyl-2-phenylimidazole (1.26 g, 7.98 mmol),
and triethylamine (1.11 ml, 7.98 mmol) as hydrogen acceptor in
anhydrous acetonitrile (100 mL). After 24 h of refluxing the solvent
was evaporated to afford a creamy residue, which was dissolved
in dichloromethane (200 mL), washed with water (2 × 50 mL),
and dried over Na2SO4. Evaporation of the solvent gave the
crude product which was recrystallized from petroleum ether
(40–60˚C)/dichloromethane. T89 was obtained as a white powder
(650 mg, 18.7%): Mp 226˚C; 1H NMR (DMSO-d6) δ: 1.41 (s, 3H,
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−CH3), 6.92 (d, 1H, 3J = 6.9 Hz), 7.17–7.27 (m, 13H), 7.32 (dt,
1H, 3J = 7.3 Hz, 4J = 1.3 Hz), 7.39 (t, 2H, 3J = 7.7 Hz), 7.42 (d, 1H,
3J = 7.8 Hz), 7.83 (d, 2H, 3J = 7.5 Hz); MS (ESI) m/z calcd 435.2
[M + H]+; found 435.5 [M + H]+; Anal. calcd for C29H23ClN2:
C, 80.08; H, 5.33; N, 6.44; found: C, 79.70; H, 5.09; N, 6.59.

1-[(2-Chlorophenyl)diphenylmethyl]-2,5-dihydro-1H -pyrrole-
2,5-dione (T91) was synthesized from T3-Cl (1.6 g, 5 mmol)
and maleimide (1.94 g, 20 mmol) according to general method
C as a slightly yellowish powder (320 mg, 17.12%): Mp 93˚C;
1H NMR (DMSO-d6) δ: 6.43 (d, 1H, 3J = 1 Hz), 7.09 (dd, 1H,
3J = 7.8 Hz, 4J = 1.6 Hz), 7.22–7.27 (m, 8H), 7.29–7.32 (m, 5H),
7.39 (dd, 1H, 3J = 7.8 Hz, 4J = 1.3 Hz), MS (ESI) m/z calcd 338.1
[C23H16NO2]+; found 338.2 [C23H16NO2]+.

N -[(2-Chlorophenyl)diphenylmethyl]-N -(3-aminopropyl)
imidazoleamine (T94) was synthesized from T3-Cl (1.6 g, 5 mmol)
and N -(3-aminopropyl)imidazole (1.88 g, 15 mmol) according to
general method C as white powder (510 mg, 25.4%): Mp 89˚C;
1H NMR (DMSO-d6) δ: 1.93–1.96 (m, 4H, 2x -CH2), 2.84 (t,
1H, 3J = 7.6 Hz, N -H), 4.03 (t, 2H, 3J = 6.8 Hz, CH2), 6.83 (s,
1H), 7.10 (sbroad, 1H), 7.14 (t, 2H, 3J = 7.3 Hz), 7.25 (t, 4H,
3J = 7.7 Hz), 7.31–7.35 (m, 2H), 7.37–7.39 (m, 5H), 7.53 (dd,
1H, 3J = 7.5 Hz, 4J = 2.0 Hz), 7.56 (sbroad, 1H); MS (ESI) m/z
calcd 402.2 [M + H]+; found 402.3 [M + H]+; Anal. calcd for
C25H24ClN3: C, 74.71; H, 6.02; N, 10.45; found: C, 74.06; H, 6.44;
N, 10.32.

N -[(2-Chlorophenyl)diphenylmethyl]-N -(3-aminopropioni
trile)amine (T95) was synthesized from T3-Cl (1.6 g, 5 mmol)
and 3-aminopropionitrile (1.12 mL, 1.05 g, 15 mmol) according to
general method C as a white yellowish powder (610 mg, 35.2%):
Mp 140˚C; 1H NMR (DMSO-d6) δ: 2.13 (q, 2H, 3J = 7.1 Hz, N H-
CH2), 2.70 (t, 2H, 3J = 6.4 Hz, CH2-CN), 3.19 (t, 1H, 3J = 8.4 Hz,
N -H), 7.18 (t, 2H, 3J = 7.3 Hz), 7.29 (t, 4H, 3J = 7.7 Hz), 7.33-7.40
(m, 3H), 7.42–7.45 (m, 4H), 7.69 (dbroad, 1H, 3J = 7.7 Hz); HRMS
(ESI) m/z calcd 347.1315 [M + H]+; found 347.1290 [M + H]+;
Anal. calcd for C22H19ClN2: C, 76.18; H, 5.52; N, 8.08; found: C,
75.53; H, 5.34; N, 8.06.

N -[(2-Chlorophenyl)diphenylmethyl]-3-(trifluoromethoxy)
aniline (T102) was synthesized from T3-Cl (1.6 g, 5 mmol) and 3-
(trifluoromethoxy)aniline (2.0 mL, 2.66 g, 15 mmol) according to
general method C and recrystallized from methanol as white pow-
der (1.34 g, 59%): Mp 144.2˚C; 1H NMR (CDCl3) δ: 6.46 (d, 1H,
3J = 8 Hz), 6.49 (s, 1H, N -H), 6.67 (d, 1H, 3J = 8 Hz), 7.02 (t, 1H,
3J = 8.3 Hz), 7.11 (s, 1H), 7.32 (t, 2H, 3J = 7 Hz, phenyl-Cl-H4 and
-H5), 7.36-7.46 (m, 11 H), 7.66 (d, 1H, 3J = 7 Hz); HRMS (ESI)
m/z calcd 277.0784 [C19H14Cl]+, 178.0480 [C7H7NOF3]+; found
277.0764 [C19H14Cl]+, 178.0461 [C7H7NOF3]+; Anal. calcd for
C26H19ClF3NO: C, 68.80; H, 4.22; N, 3.09; found: C, 68.86; H,
4.02; N, 3.13.

N -[(2-Chlorophenyl)diphenylmethyl]-1,3-benzothiazol-2-
amine (T103) was synthesized from T3-Cl (1.6 g, 5 mmol) and
2-aminobenzothiazole (2.25 g, 15 mmol) according to general
method C and recrystallized from methanol as an off-white pow-
der (1.12 g,52%): Mp 156.3˚C; 1H NMR (DMSO-d6) δ: 6.95 (t,1H,
3J = 7.5 Hz), 7.00 (d, 1H, 3J = 8.5 Hz), 7.06 (t, 1H, 3J = 7.3 Hz),
7.20–7.23 (m, 2H), 7.28–7.31 (m, 11H), 7.49 (m, 1H), 7.60 (d,
1H, 3J = 7.5 Hz), 8.96 (s, 1H, N -H); HRMS (ESI) m/z calcd
427.1036 [M + H]+; found 427.1060 [M + H]+; Anal. calcd for

C26H19ClN2S: C, 73.14; H, 4.49; N, 6.56; S, 7.51; found: C, 73.05;
H, 4.39; N, 6.63; S, 8.07.

N -[(2-Chlorophenyl)diphenylmethyl]-2-(trifluoromethoxy)
aniline (T104) was synthesized from T3-Cl (1.6 g, 5 mmol) and
2-trifluoromethoxyaniline (2.04 mL, 2.7 g, 15 mmol) according to
general method C as a slightly yellowish powder (1.4 g, 62%):
Mp 123.5˚C; 1H NMR (DMSO-d6) δ: 5.91 (s, 1H, N -H), 6.12
(d, 1H, 3J = 7.8 Hz), 6.60 (dt, 1H, 3J = 8.2, Hz, 4J = 1.3 Hz), 6.57
(dt, 1H, 3J = 7.9 Hz, 4J = 1.3 Hz), 7.18–7.38 (m, 14H), 7.58 (d,
1H, 3J = 7.4 Hz); HRMS (ESI) m/z calcd 277.0784 [C19H14Cl]+,
178.0480 [C7H7NOF3]+; found 277.0773 [C19H14Cl]+, 178.0465
[C7H7NOF3]+; Anal. calcd for C26H19ClF3NO: C, 68.8; H, 4.22;
N, 3.09; found: C, 69.19; H, 4.26; N, 3.10.

1-(4-{[(2-Chlorophenyl)diphenylmethyl]amino}phenyl)ethan-
1-one (T105) was synthesized from T3-Cl (1.6 g, 5 mmol) and
4-aminoacetophenone (2.0 g, 15 mmol) according to general
method C as a white powder (400 mg, 19.4%): Mp 166.7˚C; 1H
NMR (DMSO-d6) δ: 2.30 (s, 3H, -OCH3), 6.55 (swide, 2H), 7.20–
7.25 (m, 6H), 7.29–7.35 (m, 8H), 7.46 (d, 2H, 3J = 8.6 Hz), 7.56
(d, 1H, 3J = 7.4 Hz); HRMS (ESI) m/z calcd 412.1468 [M + H]+;
found 412.1454 [M + H]+; Anal. calcd for C27H22ClNO: C, 78.73;
H, 5.38; N, 3.40; found: C, 78.42; H, 5.48; N, 3.38.

N -[(2-Chlorophenyl)diphenylmethyl]-4-methoxyaniline
(T106) was synthesized from T3-Cl (1.6 g, 5 mmol) and p-
anisidine (1.85 g, 15 mmol) according to general method C and
recrystallized from methanol as a slightly redish-beige powder
(1.24 g, 62%): Mp 142.5˚C; 1H NMR (DMSO-d6) δ: 3.52 (s,
3H, -OCH3), 6.10 (s, 1H), 6.43 (s, 4H), 7.18 (t, 2H, 3J = 6 Hz),
7.26–7.30 (m, 11H), 7.59 (d, 1H, 3J = 7.5 Hz); HRMS (ESI) m/z
calcd: 399.13899 [M]+; found: 399.1381 [M]+; Anal. calcd for
C26H22ClNO: C, 78.09; H, 5.54; N, 3.50; found: C, 77.85; H, 5.62;
N, 3.53.

1-Chloro-2-(phenoxydiphenylmethyl)benzene (T107): To a
solution of T3-Cl (0.95 g, 3 mmol) in anhydrous acetone (50 mL)
phenol (282 mg, 3 mmol), K2CO3 (1.93 g, 14 mmol) and catalytic
amounts of KI were added. Afterward the resulting mixture was
refluxed for several hours. The progress of the reaction was moni-
tored by TLC. After completion of the reaction K2CO3 was filtered
off and the solvent was evaporated. The solid residue was dis-
solved in CH2Cl2 and the solution was extracted three times with
NaOH (0.5 M). The pooled organic phases were dried over Na2SO4

and concentrated in vacuo. The residue was recrystallized from
ethanol to give an off-white, slightly yellowish powder (80 mg,
7%): Mp 125˚C; 1H NMR (DMSO-d) δ: 7.07 (dd, 2H, 3J = 8.1 Hz,
4J = 1.6 Hz), 7.12 (dt, 2H, 3J = 7.7 Hz, 4J = 1.4 Hz), 7.15–7.17 (m,
5H), 7.26 (dt, 2H, 3J = 7.6 Hz, 4J = 1.7 Hz), 7.29–7.31 (m, 8H);
MS (FAB-NBA) m/z calcd 293 [C19H14ClO]+, 277 [C19H14Cl]+;
found 293 [C19H14ClO]+, 277 [C19H14Cl]+.

N -[(2-Chlorophenyl)diphenylmethyl]aniline (T109) was syn-
thesized from T3-Cl (0.95 g, 3 mmol) and aniline (279 mg,
3 mmol) as described for T107 and recrystallized from ethanol as
a yellowish-beige powder (750 mg, 2 mmol, 67.6%): Mp 131.4˚C
(ethanol), Lit. 121˚C (benzene; Gomberg and Van Slyke, 1911);
1H NMR (DMSO-d6) δ: 6.41–6.44 (m, 2H, N -H), 6.49 (d, 2H,
3J = 8.1 Hz), 6.80 (t, 2H, 3J = 7.8 Hz), 7.17–7.20 (m, 2H), 7.25–
7.33 (m, 11H), 7.59 (d, 1H, 3J = 7.8 Hz); HRMS (ESI) m/z calcd
369.1284 [M]+; found 369.1277 [M]+.
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2-{[(2-Chlorophenyl)diphenylmethyl]sulfanyl}pyrimidine
(T112) was synthesized from T3-Cl (1.6 g, 5 mmol) and 2-
mercaptopyrimidine (1.68 g, 15 mmol) according to general
method C and recrystallized from methanol as an off-white pow-
der (1.16 g, 60%): Mp 151.6˚C; 1H NMR (DMSO-d6) δ: 7.00 (t, 1H,
3J = 4.8 Hz), 7.20 (t, 2H, 3J = 7.2 Hz), 7.26 (t, 4H, 3J = 7.6 Hz),
7.33–7.37 (m, 7H), 7.81–7.82 (m, 1H), 8.28 (d, 2H, 3J = 4.9 Hz);
HRMS (ESI) m/z calcd 389.0879 [M + H]+; found 389.0869
[M + H]+; Anal. calcd for C23H17ClN2S: C, 71.03; H, 4.41; N,
7.2; S, 8.24; found: C, 71.04; H, 4.26; N, 7.13; S, 8.56.

(2-Methoxyphenyl)diphenylmethanol (T117) was synthesized
from 2-bromoanisole (3.09 mL, 4.68 g, 25 mmol) according to
general method A as an off-white powder (4.9 g, 17 mmol, 67.6%):
Mp 128.7˚C; Lit. 128–129˚C (Baeyer, 1907); 1H NMR (DMSO-d6)
δ: 3.67 (s, 3H, -OCH3), 5.28 (s, 1H, -OH), 6.54 (d, 1H, 3J = 7.7 Hz),
6.84 (t, 1H, 3J = 7.6 Hz), 6.97 (d, 1H, 3J = 8.2 Hz), 7.25–7.32
(m, 11H); HRMS (ESI) m/z calcd 273.12795 [M-OH]+; found
273.1270 [M-OH]+; Anal. calcd for C20H18O2: C, 82.73; H, 6.25;
found: C, 82.45; H, 6.20.

N -[(2-Methoxyphenyl)diphenylmethyl]-1,3-thiazol-2-amine
(T122): In a first-step compound T117 was chlorinated
with acetyl chloride according to method B to afford
1-(chlorodiphenylmethyl)-2-methoxybenzene (T117-Cl). With-
out further purification and characterization T117-Cl (3.7 g,
12 mmol) was reacted with 2-aminothiazole (2.9 g, 30 mmol)
according to general method C to afford T122 as an off-white
powder (1.67 g, 37%): Mp 162.3˚C; 1H NMR (DMSO-d6) δ: 3.40
(s, 3H, -OCH3), 6.49 (d, 1H, 3J = 3.5 Hz, thiazole-H4), 6.87 (d,
1H, 3J = 3.3, thiazole-H3), 6.89 (d, 1H, 3J = 7.5 Hz), 6.97 (d, 1H,
3J = 8.1 Hz), 7.12 (d, 1H, 3J = 7.7 Hz), 7.19–7.29 (m, 11H), 8.00
(s, 1H, N -H); HRMS (ESI) m/z calcd 373.1375 [M + H]+; found
373.1371 [M + H]+; Anal. calcd for C23H20N2OS: C, 74.16; H,
5.41; N, 7.52; S, 8.61; found: C, 74.26; H, 5.31; N, 7.29; S, 8.87.

N -[(2-Methoxyphenyl)diphenylmethyl]pyrimidin-2-amine
(T123): T117 was chlorinated to afford T117-Cl as described
for T122. In a next step T117-Cl (6.48 g, 21 mmol) and 2-
aminopyrimidine (5.02 g, 52.75 mmol) were reacted according to
general method C to give T123 as an off-white powder (2.15 g,
27.9%): Mp 166.5˚C; 1H NMR (CD3COCD3) δ: 3.44 (s, 3H, -
OCH3), 6.48 (t, 1H, 3J = 4.8 Hz), 6.83–6.86 (m, 2H, N -H), 6.92 (d,
1H, 3J = 7.8 Hz), 7.14–7.16 (m, 2H), 7.20–7.26 (m, 6H), 7.29–7.31
(m, 4H) 8.02 (s, 2H); HRMS (ESI) m/z calcd 368.1763 [M + H]+;
found 368.1757 [M + H]+; Anal. calcd for C24H21N3O: C, 78.45;
H, 5.76; N, 11.44; found: C, 78.37; H, 5.71; N, 11.18.

N -[(2-Methylphenyl)diphenylmethyl]-1,3-thiazol-2-amine
(T124): (2-Methylphenyl)diphenylmethanol (T118) was synthe-
sized from 1-bromo-2-methylbenzene (3.01 mL, 4.28 g, 25 mmol)
according to general method A and then chlorinated according to
method B to afford 1-(chlorodiphenylmethyl)-2-methylbenzene
(T118-Cl). Without further purification and characterization
T118-Cl (2.9 g, 9.9 mmol) was immediately reacted with 2-
aminothiazole (2.48 g, 24.8 mmol) according to general method
C. T124 was obtained as a beige powder after recrystallization
from ethanol (2.69 g, 76%): Mp 158.3˚C; 1H NMR (CDCl3) δ: 1.97
(s, 3H, phenyl-CH3), 6.26 (d, 1H, 3J = 4 Hz, thiazole-H4), 6.86
(s, 1H, N -H), 7.04 (d, 1H, 3J = 4 Hz, thiazole-H3), 7.12 (d, 2H,
3J = 8 Hz), 7.20-7.27 (m, 12H); HRMS (ESI) m/z calcd 357.1426

[M + H]+, 373.1375 [M + H2O]+; found 357.1420 [M + 1]+,
373.1357 [M + H2O]+; Anal. calcd for C23H20N2S: C, 77.49; H,
5.65; N, 7.86; S, 8.99; found: C, 76.87; H, 5.67; N, 7.7; S, 9.48.

N -[(2-Methylphenyl)diphenylmethyl]-pyrimidin-2-amine
(T125): (2-Methylphenyl)diphenylmethanol (T118) was synthe-
sized and afterward chlorinated (T118-Cl) as described for T124.
Without further purification and characterization T118-Cl (2.9 g,
9.9 mmol) was immediately reacted with 2-aminopyrimidine
(2.36 g, 24.8 mmol) according to general method C. T125 was
obtained as a white powder after recrystallization from ethanol
(1.46 g, 42%): Mp 183.1˚C; 1H NMR (CDCl3) δ: 1.99 (s, 3H,
phenyl-CH3), 6.43 (t, 1H, 3J = 4.8 Hz, pyrimidine-H5), 7.05 (d,
1H, 3J = 7.1 Hz), 7.08 (d, 1H, 3J = 7.7 Hz), 7.14-7.29 (m, 14H),
8.05 (sbroad, 2H); HRMS (ESI) m/z calcd 352.1814 [M + H]+;
found 352.1808 [M + H]+; Anal. calcd for C24H21N3: C, 82.02; H,
6.02; N, 11.96; found: C, 81.79; H, 5.93; N, 11.86.

N -{Diphenyl[2-(trifluoromethoxy)phenyl]methyl}-1,3-thia
zol-2-amine (T126): Diphenyl[2-(trifluoromethoxy)phenyl]meth
anol (T119) was synthesized from 1-bromo-2-(trifluoromethoxy)
benzene (3.69 mL, 6.03 g, 25 mmol) according to general
method A. Without further purification and characteriza-
tion T119 was chlorinated according to method B to afford
1-(chlorodiphenylmethyl)-2-(trifluoromethoxy)benzene (T119-
Cl). Without further purification and characterization T119-Cl
(g, 14.38 mmol) was immediately reacted with 2-aminothiazole
(3.6 g, 35.94 mmol) according to general method C. T126 was
obtained as an off-white powder after recrystallization from
ethanol (2.25 g, 36.7%): Mp 178.8˚C; 1H NMR (CDCl3) δ:
6.24 (d, 1H, 3J = 3.6 Hz, thiazole-H4), 6.82 (s, 1H, N -H),
6.98 (d, 1H, 3J = 3.6 Hz, thiazole-H3), 7.10–7.29 (m, 13H),
7.41 (dd, 1H, 3J = 8.1 Hz, 4J = 1.4 Hz); HRMS (ESI) m/z calcd
427.1092 [M + H]+; found 427.1087 [M + H]+; Anal. calcd for
C23H17F3N2OS: C, 64.78; H, 4.02; N, 6.57; S, 7.52; found: C, 64.64;
H, 3.89; N, 6.56; S, 8.1.

N -{Diphenyl[2-(trifluoromethoxy)phenyl]methyl}pyrimidin-
2-amine (T127): Diphenyl[2-(trifluoromethoxy)phenyl]methanol
(T119) was synthesized and afterward chlorinated (T119-Cl) as
described for T126. Without further purification and charac-
terization T119-Cl (5.2 g, 14.38 mmol) and 2-aminopyrimidine
(3.42 g, 35.94 mmol) were reacted according to general method
C. T127 was obtained as a white powder after recrystallization
from ethanol (1.2 g, 19.8%): Mp 135˚C; 1H NMR (DMSO-d6)
δ: 6.54 (t, 1H, 3J = 4.8 Hz, pyrimidine-H4), 7.00 (s, 1H, N -H),
7.15-7.20 (m, 3H), 7.24–7.29 (m, 9H), 7.39 (ddd, 1H, 3J = 8.2 Hz,
3J = 7.4 Hz, 4J = 1.7 Hz), 7.51 (dd, 1H, 3J = 8 Hz, 4J = 1.7 Hz),
8.07 (sbroad, 2H, pyrimidine-H3 and -H5); HRMS (ESI) m/z calcd
422.1480 [M + H]+; found 422.1471 [M + H]+; Anal. calcd for
C24H18F3N3O: C, 68.4; H, 4.31; N, 9.97; found: C, 68.3; H, 4.58;
N, 9.99.

N -[(2-Fluorophenyl)diphenylmethyl]pyrimidine-2-amine
(T128): (2-Fluorophenyl)diphenylmethanol (T36) was synthe-
sized from bromobenzene (2.63 mL, 3.93 g, 25 mmol) and 2-
fluorobenzophenone (4.22 mL, 5.0 g, 25 mmol) according to gen-
eral method A (yellowish solid, 6.5 g, 93.41%). Spectroscopic
data were in accordance with literature (Wulff et al., 2000).
In a next step T36 was chlorinated according to method B
to afford 1-(chlorodiphenylmethyl)-2-fluorobenzene (T36-Cl).
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Without further purification and characterization T36-Cl (3 g,
10.28 mmol) was immediately reacted with 2-aminopyrimidine
(2.44 g, 25.7 mmol) according to general method C. T128 was
obtained as slightly yellowish powder after recrystallization from
ethanol (1.73 g, 47.3%): Mp 161.1˚C; 1H NMR (DMSO-d6) δ:
6.53 (t, 1H, 3J = 5 Hz, pyrimidine-H4), 7.01 (dd, 1H, 3J = 12 Hz,
3J = 8 Hz), 7.11 (t, 1H, 3J = 7.9 Hz), 7.18 (t, 2H, 3J = 6.4 Hz),
7.23–7.30 (m, 9H), 7.34 (s, 1H, N -H), 7.40 (dt, 1H, 3J = 8 Hz,
4J = 1.3 Hz), 8.07 (sbroad, 2H, pyrimidine-H3 and -H5); HRMS
(ESI) m/z calcd: 356.1563 [M + H]+; found: 356.1563 [M + H]+;
Anal. calcd for C23H18FN3: C, 77.73; H, 5.10; N, 11.82; found: C,
77.55; H, 4.95; N, 11.42.

N -[(3-Chlorophenyl)diphenylmethyl]-1,3-thiazol-2-amine
(T129): (3-Chlorophenyl)diphenylmethanol (T2) was synthe-
sized from 1-bromo-3-chlorobenzene (2.94 mL, 4.79 g, 25 mmol)
according to general method A (5.0 g, 67.8%). Spectroscopic data
were in accordance with literature (Wulff et al., 2000). T2 was
then chlorinated according to general method B to afford 1-
chloro-3-(chlorodiphenylmethyl)benzene (T2-Cl). Without fur-
ther purification and characterization T2-Cl (2.75 g, 8.78 mmol)
was reacted with 2-aminothiazole (2.2 g, 21.95 mmol) accord-
ing to general method C. T129 was obtained as a beige powder
after recrystallization from ethanol (3.0 g, 91%): Mp 164.5˚C;
1H NMR (DMSO-d6) δ: 6.56 (d, 1H, 3J = 3.6 Hz, thiazole-H4),
6.81 (d, 1H, 3J = 3.7 Hz, thiazole-H3), 7.18–7.31 (m, 13H), 7.35
(t, 1H, 3J = 1.8 Hz), 8.57 (s, 1H, N -H); HRMS (ESI) m/z calcd
377.0879 [M + H]+; found 377.0861 [M + H]+; Anal. calcd for
C22H17ClN2S: C, 70.11; H, 4.55; N, 7.43; S, 8.51; found: C, 69.94;
H, 4.46; N, 7.48; S, 9.09.

N -[(3-Chlorophenyl)diphenylmethyl]pyrimidin-2-amine
(T130): (3-Chlorophenyl)diphenylmethanol (T2) was synthe-
sized and afterward chlorinated (T2-Cl) as described for T129.
Without further purification and characterization T2-Cl (2.75 g,
8.78 mmol) and 2-aminopyrimidine (2.1 g, 21.95 mmol) were
reacted according to general method C. T130 was obtained as a
white powder after recrystallization from ethanol (1.65 g, 51%):
Mp 124.4˚C; 1H NMR (DMSO-d6) δ: 6.53 (t, 1H, 3J = 4.8 Hz,
pyrimidine-H4), 7.16 (t, 2H, 3J = 7.2 Hz), 7.22–7.28 (m, 7H),
7.30-7.32 (m, 4H), 7.35 (sbroad, 1H), 7.87 (s, 1H, N -H), 8.10 (d,
2H, 3J = 4.3 Hz, pyrimidine-H3 and -H5); HRMS (ESI) m/z calcd
372.1262 [M + H]+; found 372.1253 [M + H]+; Anal. calcd for
C23H18ClN3: C, 74.29; H, 4.88; N, 11.3; found: C, 74.14; H, 4.76;
N, 11.21.

N -[(2-Bromophenyl)diphenylmethyl]-1,3-thiazol-2-amine
(T131): (2-Bromophenyl)diphenylmethanol (T116) was synthe-
sized according to method A (bromobenzene (2.84 mL, 4.24 g,
27 mmol) and 2-bromobenzophenone (6.52 g, 25 mmol). The
crude oily T116 was chlorinated in a next step according to method
B to afford 1-bromo-2-(chlorodiphenylmethyl)benzene (T116-
Cl). Without further purification and characterization T116-Cl
was immediately reacted with 2-aminothiazole (6.3 g, 62.5 mmol)
according to general method C. T131 was obtained as white pow-
der [silica column: cyclohexane/ethylacetate (8/2); 1.05 g, 10%]:
Mp 142˚C; 1H NMR (DMSO-d6) δ: 6.52 (d, 1H, 3J = 3.7 Hz,
thiazole-H4), 6.74 (d, 1H, 3J = 3.6 Hz, thiazole-H3), 7.17–7.20 (m,
3H), 7.28 (m, 7H), 7.32–7.29 (m, 2H), 7.41 (dd, 1H, 3J = 8 Hz,
4J = 1.4 Hz), 7.52 (d, 1H, 3J = 7.8 Hz) 8.36 (s, 1H, N -H); HRMS

(ESI) m/z calcd 421.0374 [M + H]+, 423.0353, found 421.0366
[M + H]+, 423.0335.

N -[(2-Bromophenyl)diphenylmethyl]-pyrimidin-2-amine
(T132): (2-Bromophenyl)diphenylmethanol (T116) was synthe-
sized and afterward chlorinated (T116-Cl) as described for T131.
T116-Cl (4.5 g, 12.5 mmol) was immediately without further
purification and characterization reacted with 2-aminopyrimidine
(1.2 g, 12.6 mmol) according to general method C. T132 was
obtained as an off-white to yellowish powder after recrystallization
from ethanol (850 mg, 16%): Mp 158.7˚C; 1H NMR (DMSO-
d6) δ: 6.57 (t, 1H, 3J = 4.5 Hz, pyrimidine-H4), 7.10 (s, 1H),
7.14–7.32 (m, 13H), 7.49 (d, 2H, 3J = 8.5 Hz, pyrimidine-H3
and -H5), 8.10 (s, 1H, N -H); HRMS (ESI) m/z calcd 416.0762
[M + H]+, 418.0742, 419.0776; found 416.0758 [M + H]+,
418.0728, 419.0752; Anal. calcd for C23H18BrN3: C, 66.36; H, 4.36;
N, 10.09; found: C, 66.16; H, 4.23; N, 9.74.

N -{diphenyl[3-(trifluoromethyl)phenyl]methyl}-1,3-thiazol-
2-amine (T133): Diphenyl[3-(trifluoromethoxy)phenyl]methanol
(T121) was synthesized from 1-bromo-3-(trifluoromethoxy)
benzene (3.49 mL, 5.63 g, 25 mmol) and benzophenone (4.56 g,
25 mmol) according to general method A. T121 was then chlori-
nated according to method B to afford 1-(chlorodiphenylmethyl)-
3-(trifluoromethoxy)benzene (T121-Cl). Without further purifi-
cation and characterization T121-Cl (4.5 g, 12.98 mmol) was
immediately reacted with 2-aminothiazole (3.25 g, 32 mmol)
according to general method C. T133 was obtained as a white
powder after recrystallization from ethanol (3.64 g, 68%): Mp
120.5˚C; 1H NMR (DMSO-d6) δ: 6.56 (d, 1H, 3J = 3.7 Hz,
thiazole-H4), 6.79 (d, 1H, 3J = 3.7 Hz, thiazole-H3), 7.19–7.22
(m, 2H), 7.27–7.32 (m, 8H), 7.50 (t, 1H, 3J = 8.1 Hz), 7.57 (t,
2H, 3J = 9.1 Hz), 7.67 (s, 1H), 8.64 (s, 1H, N -H); HRMS (ESI)
m/z calcd 411.1137 [M + H]+; found 411.1137 [M + H]+; Anal.
calcd for C23H17F3N2S: C, 67.3; H, 4.17; N, 6.82; S, 7.81; found: C,
67.39; H, 3.98; N, 6.85; S, 7.82.

N -{Diphenyl[3-trifluoromethyl)phenyl]methyl}pyrimidin-
2-amine (T134): Diphenyl[3-(trifluoromethoxy)phenyl]methanol
(T121) was synthesized and afterward chlorinated (T121-Cl) as
described for T133. In a next step T121-Cl (4.5 g, 12.98 mmol) was
immediately reacted with 2-aminopyrimidine (3.1 g, 32.4 mmol)
according to general method C. T134 was obtained as an off-
white powder after recrystallization from ethanol (1.95 g, 37%):
Mp 161.4˚C; 1H NMR (DMSO-d6) δ: 6.53 (t, 1H, 3J = 4.8 Hz,
pyrimidine-H4), 7.17 (t, 2H, 3J = 7.18 Hz, 2× phenyl-H4), 7.25 (t,
4H, 3J = 7.7 Hz, 2× phenyl-H3 and -H5), 7.31 (d, 4H, 3J = 7.7 Hz,
2x phenyl-H2 and -H6), 7.48 (t, 1H, 3J = 7.8 Hz, phenyl-CF3-H5),
7.53 (d, 1H, 3J = 7.8 Hz, phenyl-CF3-H6), 7.62 (d, 1H, 3J = 7.9 Hz,
phenyl-CF3-H4), 7.67 (swide, 1H, phenyl-CF3-H2), 8.00 (s, 1H, N -
H), 8.09 (d, 2H, 3J = 4 Hz, pyrimidine-H3 and -H5); HRMS (ESI)
m/z calcd 406.1526 [M + H]+, found 406.1521 [M + H]+, Anal.
calcd for C24H18F3N3: C, 71.1; H, 4.48; N, 10.36; found: C, 71.03;
H, 4.29; N, 10.26.

N -[(2-Iodophenyl)diphenylmethyl]-1,3-thiazol-2-amine
(T136): (2-Iodophenyl)diphenylmethanol (T135) was synthesized
according to general method A from bromobenzene (2.1 mL,
3.13 g, 20 mmol) and 2-iodobenzophenone (6 g, 19.5 mmol). The
crude oily T135 was then chlorinated according to method
B to afford 1-(chlorodiphenylmethyl)-2-iodobenzene (T135-Cl).
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Without further purification and characterization T135-Cl was
immediately reacted with 2-aminothiazole (1.5 g, 15 mmol)
according to general method C. T136 was obtained as a slightly
yellowish powder (silica column cyclohexane/ethylacetate (8/2);
80 mg, 2.8%): Mp 81˚C; 1H NMR (DMSO-d6) δ: 6.52 (d, 1H,
3J = 2.6 Hz, thiazole-H4), 6.78 (d, 1H, 3J = 2.6 Hz, thiazole-H3),
6.96–6.98 (m, 1H), 7.20–7.32 (m, 12H), 7.88 (d, 1H, 3J = 7.6 Hz,
phenyl-I-H3), 8.25 (s, 1H, N -H); HRMS (ESI) m/z calcd: 469.0236
[M + H]+; found: 469.0213 [M + H]+.

N -[(2-Iodophenyl)diphenylmethyl]-pyrimidin-2-amine
(T137): (2-Iodophenyl)diphenyl methanol (T135) was synthe-
sized and afterward chlorinated (T135-Cl) as described for T136.
In a next step T135-Cl (2.4 g, 6 mmol) was immediately with-
out further purification and characterization reacted with 2-
aminopyrimidine (1.43 g, 15 mmol) according to general method
C. T137 was obtained as an off-white to yellowish powder [sil-
ica column cyclohexane/ethylacetate (8/2); 570 mg, 20.5%]: Mp
160.7˚C; 1H NMR (DMSO-d6) δ: 6.58 (dt, 1H, 3J = 4.7 Hz,
4J = 1.2 Hz), 6.93 (t, 1H, 3J = 7.5 Hz), 7.05 (sbroad, 1H), 7.19–7.32
(m, 11H), 7.44 (d, 1H, 3J = 8 Hz), 7.82 (d, 1H, 3J = 7.8 Hz), 8.1
(sbroad, 2H, pyrimidine-H3 and -H5); MS (ESI) m/z calcd 469.4
[M + H]+; found 496.3 [M + H]+; Anal. calcd for C23H18IN3: C,
59.62; H, 3.92; N, 9.07; found: C, 60.38; H, 3.74; N, 8.84.

N -(Triphenylmethyl)pyrimidin-2-amine (T141) was synthe-
sized from (chlorophenylmethyl)benzene (1.34 g, 4.82 mmol) and
2-aminopyrimidine (1.48 g, 15.56 mmol) according to general
method C as a white powder (1.18 g, 72.4%): Mp 174.2˚C; Lit.
174–175˚C (Dahlbom and Ekstrand, 1944). Spectroscopic data
were in accordance with literature (Zunszain et al., 2002).

1-[(3-Chlorophenyl)diphenylmethyl]-1H -pyrazole (T142): (3-
Chlorophenyl)diphenylmethanol (T2) was synthesized and after-
ward chlorinated (T2-Cl) as described for T129. Without further
purification and characterization T2-Cl (3.3 g, 10.54 mmol) and
pyrazole (1.77 g, 26 mmol) were reacted according to general
method C. T142 was obtained as a white powder after recrystalliza-
tion from ethanol (3.1 g, 85.3%): Mp 127.3˚C; 1H NMR (DMSO-
d6) δ: 6.33 (t, 1H, 3J = 2.1 Hz), 6.99–7.04 (m, 5H), 7.10 (t, 1H,
3J = 1.9 Hz), 7.34–7.43 (m, 9H), 7.66 (d, 1H, 3J = 1.6 Hz); HRMS
(ESI) m/z calcd 69.04528 [C3H5N2]+, 277.0784 [C19H14Cl]+,
found 69.0432 [C3H5N2]+, 277.0757 [C19H14Cl]+; Anal. calcd
for C22H17ClN2: C, 76.63; H, 4.97; N, 8.12; found: C, 76.13; H,
4.92; N, 8.13.

1-[(3-Chlorophenyl)diphenylmethyl]-1H -imidazole (T143):
(3-Chlorophenyl)diphenylmethanol (T2) was synthesized and
afterward chlorinated (T2-Cl) as described for T129. Without fur-
ther purification and characterization T2-Cl (3.3 g, 10.54 mmol)
and imidazole (1.77 g, 26 mmol) were reacted according to general
method C. T143 was obtained as a white powder after recrystal-
lization from ethanol (1.3 g, 35.77%): Mp 121.3˚C, Lit. 122–124˚C
(Bartroli et al., 1992); 1H NMR (DMSO-d6) δ: 6.94 (sbroad, 1H,
imidazole-H5), 7.01 (sbroad, 1H, imidazole-H4), 7.03–7.04 (m,
2H), 7.06 (td, 1H, 3J = 6.8 Hz, 4J = 2.1 Hz), 7.09–7.1 (m, 3H),
7.36–7.47 (m, 9H), 8.46 (s, 1H, imidazole-H2); HRMS (ESI)
m/z calcd for C22H17ClN2 345.1159 [M + H]+, found 345.1148
[M + H]+.

1-[(4-Chlorophenyl)diphenylmethyl]-1H -imidazole (T144):
(4-Chlorophenyl)diphenylmethanol (T1) was synthesized from

magnesium turnings (1.2 g, 50 mmol), 1-bromo-4-chlorobenzene
(11.5 g, 60 mmol) and benzophenone (9.12 g, 50 mmol) accord-
ing to general method A. Spectroscopic data were in accor-
dance with literature (Wulff et al., 2000). The crude T1
was chlorinated according to method B to afford 1-chloro-4-
(chlorodiphenylmethyl)benzene (T1-Cl). Without further purifi-
cation and characterization T1-Cl (∼8 g, 25.5 mmol) was imme-
diately reacted with imidazole (4.34 g, 63.75 mmol) according to
general method C. T144 was obtained as a white powder (0.6 g,
3.5%): Mp 141.2˚C, Lit. 140–142˚C (Bartroli et al., 1992); 1H
NMR (DMSO-d6) δ: 6.90 (sbroad, 1H), 6.99 (sbroad, 1H), 7.07–7.09
(m, 6H), 7.36 (m, 7H), 7.47 (d, 2H, 3J = 8.7 Hz); HRMS (ESI)
m/z calcd for C22H17ClN2 345.1159 [M + H]+, found 345.1126
[M + H]+.

N -[(4-Chlorophenyl)diphenylmethyl]pyrimidin-2-amine
(T145): (4-Chlorophenyl)diphenylmethanol (T1) was synthesized
and afterward chlorinated (T1-Cl) as described for T144. Without
further purification and characterization T1-Cl (15.7 g, 50 mmol)
was reacted with 2-aminopyrimidine (11.88 g, 128 mmol) accord-
ing to general method C. T145 was obtained as a white powder
after recrystallization from ethanol (2.3 g, 12%): Mp 117.8˚C; 1H
NMR (DMSO-d6) δ: 6.51-6.54 (m, 3H, pyrimidne-H4), 7.15 (t,
2H, 3J = 7.2 Hz), 7.24 (t, 3H, 3J = 7.7 Hz), 7.28–7.34 (m, 6H),
7.80 (s, 1H, N -H), 8.09 (d, 2H, 3J = 3.5 Hz, pyrimidne-H3 and
-H5), 8.19 (d, 2H, 3J = 4.8 Hz); HRMS (ESI) m/z calcd 372.1268
[M + H]+, found 372.1261 [M + H]+.

N -[(2-Chlorophenyl)diphenylmethyl]-4-(trifluoromethoxy)
aniline (T150) was synthesized from T3-Cl (1.6 g, 5 mmol)
and 4-(trifluoromethoxy)aniline (2.01 mL, 2.66 g, 15 mmol)
according to general method C and recrystallized from
ethanol as an off-white powder (1.5 g, 66%): Mp 99˚C;
1H NMR (DMSO-d6) δ: 6.54 (d, 2H, 3J = 8.9 Hz), 6.82–
6.80 (m, 3H, N -H), 7.18-7.22 (m, 2H), 7.26–7.36 (m, 11H),
7.58 (d, 1H, 3J = 7.9 Hz, phenyl-Cl-H3); HRMS (ESI) m/z
calcd 454.1180 [M + H]+, 178.0474 [C7H6F3NO + H]+, found
454.1156 [M + H]+, 178.0461 [C7H6F3NO + H]+; Anal. calcd for
C26H19ClF3NO: C, 68.8; H, 4.22; N, 3.09; found: C, 68.52; H, 4.09;
N, 3.05.

(2-Aminophenyl)diphenylmethanol (T154-OH) was synthe-
sized from phenylmagnesium bromide (1.89 g, 15.3 mmol) and
2-aminobenzophenone (2 g, 10.2 mmol) according to general
method A (125 mg, 4.5%) as a red crystalline solid: Mp 117.4–
118.9˚C; Lit. 116–117˚C (Misra et al., 1983); 1H NMR (DMSO-d6)
δ: 5.07 (s, 2H, -N H2) 6.23 (d, 1H, 3J = 7.8 Hz), 6.34 (t, 1H,
3J = 7.4 Hz), 6.60 (d, 1H, 3J = 8.0 Hz), 6.73 (s, 1H, -OH), 7.31–
7.17 (m, 10H); MS (ESI) m/z calcd 258.13 [C19H16N]+, 180.1
[C13H10N]+, found 258.3 [C19H16N]+, 180.1 [C13H10N]+; Anal.
calcd for C19H17NO: C, 82.88; H, 6.22; N, 5.09; found: C, 82.42;
H, 6.09; N, 5.17.

Bis-(2-methoxyphenyl)(phenyl)methanol (T165) was syn-
thesized from magnesium turnings (0.6 g, 25 mmol), 1-
bromo-2-methoxybenzene (4.0 mL, 5.99 g, 32 mmol) and 2-
methoxybenzophenone (5.0 g, 23.5 mmol) according to general
method A and recrystallized from ethanol as a white powder
(1.2 g, 15.8%): Mp 115.8˚C; Lit. 115˚C (Baeyer, 1907); 1H NMR
(DMSO-d6) δ: 3.39 (s, 6H, -OCH3), 5.37 (s, 1H, -OH), 6.87 (dt,
2H, 3J = 7.3 Hz, 4J = 0.7 Hz), 6.98 (d, 2H, 3J = 7.9 Hz), 7.03 (dd,
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2H, 3J = 7.8 Hz, 3J = 1.5 Hz), 7.15-7.17 (m, 3H), 7.20–7.21 (m,
2H) 7.23–7.27 (m, 2H); MS (ESI) m/z calcd 343.38 [M + Na+],
303.14 [M-OH]+, found 343.1 [M + Na+], 303.1 [M-OH]+; Anal.
calcd for C21H20O3: C, 78.73; H, 6.29; found: C, 78.14; H, 6.97.

N -[bis(2-methoxyphenyl)(phenyl)methyl]-1,3-thiazol-2-ami
ne (T166): In a first-step T165 was chlorinated according to general
method B (T165-Cl). The crude T165-Cl (530 mg, 1.56 mmol) was
immediately reacted with 2-aminothiazole (392 mg, 3.9 mmol)
according to general method C. After recrystallization from
ethanol T166 was obtained as a white powder (250 mg, 39.8%): Mp
150˚C; 1H NMR (DMSO-d6) δ: 3.39 (s, 6H, -OCH3), 6.44 (d, 1H,
3J = 3.6 Hz), 6.88 (dt, 2H, 3J = 7.8 Hz, 4J = 1.0 Hz), 6.90 (d, 1H,
3J = 3.6 Hz), 6.95 (d, 2H, 3J = 8.2 Hz), 7.08 (d, 2H, 3J = 7.6 Hz),
7.16 (d, 2H, 3J = 7.1 Hz), 7.21–7.29 (m, 5H), 7.81 (s, 1H); HRMS
(ESI) m/z calcd for C24H22N2O2S 403.1480 [M + H]+, found
403.1465 [M + H]+.

CELLS AND CLONES
All electrophysiological experiments described here were per-
formed on N2A neuroblastoma cells that were transiently co-
transfected with connexin and enhanced green fluorescent protein
cDNAs as described previously (Srinivas et al., 2001). The con-
nexins used in the study were rCx26, rCx32, rCx43, rCx46, and
mCx50 (where r and m refer to rat, and mouse cDNAs, respec-
tively). Transiently transfected cells were dissociated at 8–12 h after
transfection, plated at low density on 1 cm round glass coverslips,
and used within 48 h thereafter.

HEK-293 cells stably expressing hKCa3.1 were obtained from
Khaled Houamed, University of Chicago, IL. The cloning of
hKCa2.3 (19 CAG repeats) and hKCa3.1 has been previously
described (Wulff et al., 2001). The hKCa2.3 clone was later sta-
bly expressed in COS-7 cells at Aurora Biosciences Corp., San
Diego, CA. Cell lines stably expressing other mammalian ion
channels were gifts from several sources: hKCa1.1 in HEK-293
cells (Andrew Tinker, University College London); rKv4.2 in LTK
cells (Michael Tamkun, University of Colorado, Boulder); Kv11.1
(HERG) in HEK-293 cells (Craig January, University of Wiscon-
sin, Madison); hNav1.4 in HEK-293 cells (Frank Lehmann-Horn,
University of Ulm, Germany) and Cav1.2 in HEK-293 cells (Franz
Hofmann, Munich, Germany). Cells stably expressing mKv1.1,
mKv1.3, hKv1.5, and mKv3.1 have been previously described
(Grissmer et al., 1994); N1E-115 neuroblastoma cells (express-
ing Nav1.2) were obtained from ATCC. Rat Nav1.5 in pSP64T
was provided by Roland G. Kallen (University of Pennsylva-
nia), inserted into pcDNA-3.1(+) as described (Sankaranarayanan
et al., 2009), and transiently transfected into COS-7 cells together
with eGFP-C1 with Fugene-6 (Roche) according to the manufac-
turer’s protocol. Human Kv7.2 and Kv7.3 in PTLN or pcDNA-3
was provided by Bernhard Attali (Weizmann Institute of Science,
Rehovot, Israel).

ELECTROPHYSIOLOGY
Junctional current measurements were performed on N2A neu-
roblastoma cells transiently transfected with cDNAs correspond-
ing to individual connexins or on mouse primary lens epithelial
cells isolated from postnatal day 6. Dissociation of lens epithe-
lial was performed as described previously (White et al., 2007).

Junctional conductance was measured between cell pairs using
the dual whole-cell voltage-clamp technique with Axopatch 1D
patch-clamp amplifiers (Molecular Devices, CA) at room temper-
ature. Each cell of a pair was initially held at a common holding
potential of 0 mV. To evaluate junctional coupling, 200 msec
hyperpolarizing pulses from the holding potential of 0 mV to
−20 mV were applied to one cell to establish a transjunctional
voltage gradient (V j), and junctional current was measured in
the second cell (held at 0 mV). The solution bathing the cells
contained 140 mM NaCl, 5 mM KCl, 2 mM CsCl, 2 mM CaCl2,
1 mM MgCl2, 5 mM HEPES, 5 mM dextrose, 2 mM pyruvate,
and 1 mM BaCl2, pH 7.4. Patch electrodes had resistances of 3–
5 MΩ when filled with internal solution containing 130 mM CsCl,
10 mM EGTA, 0.5 mM CaCl2, 3 mM MgATP, 2 mM Na2ATP, and
10 mM HEPES, pH 7.2. Macroscopic recordings were filtered at
0.2–0.5 kHz and sampled at 1–2 kHz. Data were acquired using
pClamp software (Axon Instruments) and plotted using Origin
6.0 software (OriginLab Corp, Northampton, MA). Drugs were
applied with a gravity-fed perfusion system. Solution exchanges
were complete within 10–20 s. All compounds were applied to
Cx50 expressing N2A cells at an initial concentration of 10 μM.
Compounds that reduced Cx50 junctional currents by >80% at
10 μM were then applied at lower concentrations ranging from
0.5 to 5 μM. Concentration-response curves for drug-induced
uncoupling were typically determined by exposure of each cell
pair to 0.5 or 1 μM, 5 and 10 μM of each drug. Concentrations
of drugs ([D]) that caused a half-maximal inhibition (IC50) and
the Hill coefficients (nh) of concentration-response relationships
were estimated by fitting the data to the equation: gj,% con-
trol = 1/[1 + ([D]/EC50)nh ] where gj (% control) is fraction of the
conductance (g j) in the absence and presence of the drug. Data
are presented as means ± S.E.M.

Experiments on K+ and Na+ channels were performed with
an EPC-10 amplifier (HEKA, Lambrecht/Pfalz, Germany) in the
whole-cell configuration of the patch-clamp technique with a
holding potential of –80 mV. Pipette resistances averaged 2.0 MΩ.
Solutions of triarylmethanes in Ringer were freshly prepared
directly before the experiments from 10 mM stock solutions in
DMSO. The final DMSO concentration never exceeded 1%. For
measurements of KCa2 and KCa3.1 currents we used an internal
pipette solution containing (in mM): 145 K+ aspartate, 2 MgCl2,

10 HEPES, 10 K2EGTA, and 5.96 (250 nM free Ca2+) or 8.55 CaCl2
(1 μM free Ca2+), pH 7.2, 290–310 mOsm. Free Ca2+ concentra-
tions were calculated with MaxChelator assuming a temperature
of 25˚C, a pH of 7.2 and an ionic strength of 160 mM. To reduce
currents from native chloride channels in COS-7 and HEK-293
cells, Na+ aspartate Ringer was used as an external solution (in
mM): 160 Na+ aspartate, 4.5 KCl, 2 CaCl2, 1 MgCl2, 5 HEPES, pH
7.4, 290–310 mOsm. KCa2 and KCa3.1 currents were elicited by
200-ms voltage ramps from −120 to 40 mV applied every 10 s and
the fold-increase of slope conductance at −80 mV by drug taken
as a measure of channel activation.

KCa1.1 currents were elicited by 200-ms voltage steps from
−80 to 60 mV applied every 10 s (1 μM free Ca2+), and channel
modulation measured as a change in mean current amplitude.
Kv1.1, Kv1.3, Kv1.4, Kv1.5, Kv3.1, Kv3.2, and Kv4.2 currents were
recorded in normal Ringer solution with a Ca2+-free pipette
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solution containing (in mM): 145 KF, 10 HEPES, 10 EGTA, 2
MgCl2, pH 7.2, 300 mOsm. Currents were elicited by 200-ms
depolarizing pulses to 40 mV applied every 10 s. HERG (Kv11.1)
currents were recorded with a KCl-based pipette solution (4 mM
ATP) and with a two-step pulse from –80 mV first to 20 mV for 2 s
and then to –50 mV for 2 s. The reduction of both peak and tail
current by the drug was determined. Current from co-expressed
Kv7.2/7.3 channels was elicited by depolarizing pulses from the
holding potential (−80 mV) to +40 mV for 500 ms followed by
hyperpolarization to −120 mV for 200 ms. Nav1.2 currents from
N1E-115 cells and Nav1.4 currents from stably transfected HEK
cells were recorded with 20 ms pulses from −80 to −10 mV every
10 s with a KCl-based pipette solution and normal Ringer as an
external solution. Blockade of Na+ current was determined by
measuring the reduction of peak maximum conductance.

RESULTS
SCREENING OF A “FOCUSED” LIBRARY FOR CX50 INHIBITORS
To identify Cx50 inhibitors we first screened a small library of com-
pounds containing known ion channel pharmacophores including
the antihistamine astemizole, several psoralens and related hete-
rocycles, benzothiazoles, triterpenes, and flavanoid glycosides as
well as the antifungal agent clotrimazole. From this library we
identified four novel low micromolar inhibitors of Cx50: Astem-
izole, rutin (a flavonoid glycoside), PAA-10 (an alkyl substituted
dibenzazocinone), and clotrimazole (see Figure 1 for structures).
All compounds produced significant inhibition of the Cx50 junc-
tional current at a concentration of 10 μM (Figure 1). The inhi-
bition of junctional currents caused by clotrimazole, astemizole
and PAA-10 was completely reversible upon washout. In con-
trast, the effects of rutin were only partially reversible. Of these
four hits, the triarylmethane clotrimazole seemed the most drug-
like and attractive compound to us. Astemizole is known to
affect many other ion channels including the cardiac K+ chan-
nel HERG (Kv11.1; Suessbrich et al., 1996), a liability not gen-
erally encountered with triarylmethanes (Toyama et al., 2008).
We also discarded rutin as a template since preliminary experi-
ments showed that the rutin aglycon, quercetin, had no effect on
Cx50 at 10 μM (data not shown) demonstrating that the sugar
moiety is essential for connexin inhibition. The dibenzazocinone
PAA-10 would of course also have been a possible lead but we
preferred to perform structure activity relationship (SAR) stud-
ies around clotrimazole since our laboratory had a library of
80 triarylmethanes that were immediately available for an SAR
analysis on Cx50. These compounds had been previously synthe-
sized for an SAR study to determine the structural requirements
for inhibition of the intermediate-conductance calcium-activated
potassium channel KCa3.1 (a.k.a. IKCa1, SK4). By using the so-
called selective optimization of side activities (SOSA) approach,
which allows for the selective optimization of the side activity of
an old drug (Wermuth, 2004), our group successfully designed a
triarylmethane, TRAM-34 (T34), that selectively blocked KCa3.1
channels without affecting cytochrome P450-dependent enzymes,
the main target of clotrimazole (Wulff et al., 2000). This previous
work had demonstrated that it is possible to achieve selectiv-
ity for different targets by appropriately modifying the triaryl-
methane (TRAM) pharmacophore, which was another reason for

us to choose clotrimazole as a template for our current study on
Cx50.

Clotrimazole reversibly inhibited Cx50 expressed in N2A cells
with an IC50 of 5 μM and a Hill slope of ∼ 2.1 (Figure 2). At con-
centrations of 10 μM clotrimazole had no effect on channels built
out of Cx32, Cx36, and Cx46 (Figure 2). GJ channel conductance
in all cases was measured by using the dual whole-cell patch-clamp
technique as described in the Section “Materials and Methods”
(Srinivas et al., 2001; Srinivas and Spray, 2003; Cruikshank et al.,
2004).

PROBING OF THE TRIARYLMETHANE PHARMACOPHORE FOR CX50
INHIBITION
Using clotrimazole as a template we explored the SAR of the triph-
enylmethane scaffold according to the synthetic strategy shown
in Figure 3. In a Grignard reaction mono-substituted benzophe-
nones and bromobenzenes were reacted in anhydrous diethyl ether
to yield the corresponding triphenylmethanols. These alcohols
were then either ammonolyzed, cyanated with copper cyanide
or chlorinated using acetyl chloride. The triphenylmethane chlo-
rides were further reacted in a nucleophilic substitution to give
the respective triphenylmethane derivatives (further details on
exact conditions and quantities are given in the see Materi-
als and Methods). We first substituted the imidazole ring of
clotrimazole with several other heterocycles, differently substi-
tuted carbocycles or aliphatic functional groups while keeping
the 2-chlorophenyldiphenyl methane basic structure (Figure 3).
Except for T44 (pyrrol), T69 (2-aminopyridine), T89 (4-methyl-2-
phenylimidazole) and the bicyclic T71 (phthalimide) and T103 (2-
aminobenzothiazole), most of the heterocyclic derivatives blocked
Cx50 in the low micromolar range. Spacer linked carbocycles
(T102, T104, T106, T107, T109, T150) in contrast showed no
effect on Cx50 at concentrations of 10 μM with the exception
of T106, which was found to be a weak blocker with an IC50

10 μM (Figure 4). We next tested the heterocyclic substituted tri-
arylmethanes for selectivity over KCa3.1 (Figure 4). As previously
reported (Wulff et al., 2000), clotrimazole and T34 (= TRAM-
34) are nanomolar KCa3.1 blockers, that exhibit IC50 values of
70 and 20 nM, respectively, and are therefore not useful as Cx50
inhibitors. In contrast, the aminothiazole and aminopyrimidine
substituted T66 and T68 were found to be 15- to 200-fold less
potent on KCa3.1 and T66 even exhibited a moderate three-fold
selectivity for Cx50 over KCa3.1.

Since the alcohol T3, which is the first-step intermediate for the
heterocyclic substituted triarylmethanes, was also found to reduce
Cx50 currents with an IC50 of 2 μM we further synthesized and
tested several triarylmethane alcohols, amines, nitriles, and ureas
on Cx50 (Table A1 in Appendix). While several of the alcohols
including the p-chloro substituted T1, the m-chlorosubstituted
T2 as well as the non-substituted triphenylmethanol and tripheny-
lamine (T162) exhibited IC50 values for Cx50 in the 1–2 μM range
(Table A1 in Appendix), all these compounds lacked selectivity
over KCa3.1 and were further found to inhibit other connex-
ins like Cx43, Cx46 at similar concentrations as Cx50 (data not
shown). In addition, the inhibition produced by these compounds
was often enhanced by a prior application of the compounds.
We therefore did not study these compounds further and instead
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FIGURE 1 |Time course of the effect of PAA-10, astemizole, clotrimazole, and rutin on the junctional currents of Cx50 channels expressed in N2A cell

pairs measured by dual whole-cell patch-clamp.

concentrated our synthetic efforts on the heterocyclic substituted
triarylmethanes and explored the substitution position of the chlo-
rine atom on one of the phenyl rings by moving it from the ortho-
to the meta- or para-position or completely removing it (Figure 5).

All four imidazole ring containing compounds (T97, clotrima-
zole, T143, T144) but only the o-chloro and m-chloro substituted
pyrazole derivatives (T34 and T142) inhibited Cx50 channels with
IC50s of 5–8 μM. In the 2-aminothiazole and 2-aminopyrimidine
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series only the o-chloro substituted T66 and T68 were active, while
the other regio-isomers or the unsubstituted analogs showed no
effect at 10 μM. Because the imidazole and pyrazole-substituted
triarylmethanes were poorly selective for Cx50 over KCa3.1, we
studied the effect of modifications of the o-chloro substituent in
the 2-aminothiazole and 2-aminopyrimdine series. Specifically, we
replaced the o-chloro substituent with other halogens (F, Br, I), the
more lipophilic CF3 or OCF3 groups or electron-donating methyl
or methoxy groups. All 14 compounds exhibited IC50 values in the
low micromolar range (Figure 6) with the methoxy-substituted
T122 (IC50 1.2 μM) and the iodo-substituted T136 (IC50 2.4 μM)
being the most potent (Figure 6).

T122 AND T136 ARE SELECTIVE FOR CX50
The effects of T122 and T136 on Cx50 junctional channels
were further characterized using a five-point dose response curve
(Figure 7A). Non-linear least-squares fit of the individual data

FIGURE 2 | (A) Dose-concentration curve for Cx50 inhibition by
clotrimazole. (B) Connexin-selectivity profile of clotrimazole (10 μM). Shown
is percentage of current inhibition (mean ± SEM).

points to the Hill equation (see Materials and Methods) yielded
IC50 values of 1.2 and 2.4 μM for the inhibition of Cx50 GJ
channels by T122 and T136, respectively. In both cases, the Hill
coefficients were ≈ 2 (1.6 for T122, 1.7 for T136), indicating
that binding of two TRAM molecules was required to inhibit
Cx50 GJ channels. Both compounds exhibited high selectivity
for Cx50 channels over other connexin subtypes. The effects of
T122 and T136 on GJ channels formed by several other connex-
ins, including Cx26, Cx32, Cx40, Cx43, and Cx46 are illustrated
in Figure 7B. At a concentration of 10 μM, sufficient to cause
near-maximal decreases in Cx50 junctional current, T122 and
T136 did not significantly inhibit Cx26, Cx32, Cx46, or Cx43
GJ channel currents. The reduction of junction conductance was
less than 20% in each of these cases. These results demonstrate
that inhibition of Cx50 GJ channels by T122 and T136 is highly
connexin-selective.

SELECTIVITY OVER Kv, KCa, AND Nav CHANNELS
In order to more broadly evaluate the selectivity of T122 and T136
we further determined their effect on a panel of 12 potassium and
sodium channels from various gene families (Table 1). While both
compounds exerted practically no effect on the neuronal Nav1.2
and the skeletal muscle Nav1.4 channel or Kv channels from the
Kv4, Kv7, Kv11, or KCa2 (SK) family, they exhibited only moder-
ate selectivity over Kv1, Kv2, Kv3-family channels, Kv11.1 (hERG),
and the calcium-activated K+ channels KCa1.1 and KCa3.1. T122
in particular reduced Kv1.1 currents by 65% at 10 μM, while T136
was found to have an IC50 of 1.3 μM for KCa3.1.

T122 AND T136 INHIBIT COUPLING IN THE LENS
Cx50 is strongly expressed in the lens in both the epithelium
and in fibers. In the epithelium, the functional contribution
of Cx50 to epithelial cell coupling is highest during the first
postnatal week (∼70–75% of total coupling on average) with
the remainder being contributed by Cx43. Therefore, we deter-
mined whether T122 and T136 (10 μM) also inhibited coupling

FIGURE 3 | Chemical synthesis scheme. a, Grignard reaction; b, CH3COCl; c, Excess of amine; d, CuCN; e, NH3.
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FIGURE 4 |Table showing the structures and IC50 values for Cx50 and

KCa3.1 inhibition of heterocyclic substituted triarylmethanes.

Concentrations of triarylmethanes that caused a half-maximal inhibition (IC50)
values were obtained by fitting the data to the Hill equation, as described in

the methods. Means of current inhibition and SD were determined by
application of two or three concentrations of each triarylmethane to multiple
cells (n ranging from 3 to 8 per concentration). The SD values are not shown
for clarity; SD values typically ranged between 5 and 15%.

provided by Cx50 in epithelial cells (Figure 8). The effect of
T122 and T136 on junctional currents between epithelial cells
isolated from mouse lenses on postnatal day 6 is shown in
Figure 8A. Both compounds strongly reduced junctional cur-
rents, an effect that was reversible on washout of the drug.
The reduction of junctional currents caused by T122 and T136
ranged from 65 to 87% of the initial conductance (means ±
SEM are 67 ± 9%, n = 7 for T122; and 64 ± 8%, n = 6 for T136).

These values were similar to the reduction produced by quinine,
which also selectively inhibits Cx50, but not Cx43 GJ channels
(Figure 8B).

DISCUSSION
A major reason for the poorly developed pharmacology of GJ
channel modulators is the intercellular location of these chan-
nels, which makes it extremely difficult to design high-throughput
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FIGURE 5 |Table showing the structures and IC50 values for Cx50

inhibition for imidazole, pyrazole, aminothiazole, and aminopyrimidine

substituted triarylmethanes bearing a chlorine substituent in various

positions on one of the phenyl rings. Means of current inhibition and SD

were determined by application of two or three concentrations of each
triarylmethane to multiple cells (n ranging from 3 to 8 per concentration). The
SD values are not shown for clarity; SD values typically ranged between 5
and 15%.

FIGURE 6 |Table showing the structures and IC50 values for Cx50

inhibition for aminothiazole and aminopyrimdine substituted

triarylmethanes with various functional groups in ortho-position on

one of the phenyl rings. Means of current inhibition and SD were
determined by application of two or three concentrations of each
triarylmethane to multiple cells (n ranging from 3 to 8 per concentration).
The SD values are not shown for clarity; SD values typically ranged
between 5 and 15%.

screening assays. In our search for Cx50 inhibitors we therefore
decided to screen a small library containing known ion chan-
nel modulators using conventional dual whole-cell voltage-clamp.
Our library was enriched in so-called“privileged”structures which
are small molecule pharmacophores that are able to bind to multi-
ple targets and which are therefore highly likely to exert biological
effects (Evans et al., 1988; Horton et al., 2003). By appropriately
decorating such “privileged” scaffolds their potency and selectiv-
ity can often be directed toward a single target with relatively

Table 1 | Selectivity over other ion channels.

Channel T122 (10 μM) T136 (10 μM)

Kv1.1 65 ± 10% block (n = 5) 28 ± 9% block (n = 5)

Kv1.3 52 ± 2% block (n = 3) 18 ± 4% block (n = 3)

Kv2.1 28 ± 4% block (n = 3) 28 ± 4% block (n = 3)

Kv3.1 32 ± 12% block (n = 5) 37 ± 16% block (n = 4)

Kv4.2 16 ± 4% block (n = 3) 15 ± 3% block (n = 3)

Kv7.2/7.3 No effect (n = 3) No effect (n = 2)

Kv11.1 (hERG) 42 ± 3% block (n = 3) 27 ± 4% block (n = 3)

KCa2.3 No effect (n = 3) No effect (n = 3)

KCa3.1 IC50 = 10.2 ± 0.7 μM IC50 = 1.3 ± 0.2 μM

KCa1.1 (BK) 43 ± 4% (n = 3) 26 ± 2% (n = 3)

Nav1.2 11 ± 1% block (n = 3) 9 ± 0.5% block (n = 3)

Nav1.4 No effect (n = 3) No effect (n = 3)

Percentage of current inhibition (mean ± SD) by 10 μMT122 andT136 for a panel

of cloned Kv, KCa, or Nav channels. (For recording conditions and pulse protocols

see Materials and Methods).

high affinity. If the template for such an SAR study is an “old”
drug, the approach is also called SOSA approach (selective opti-
mization of the side activity of an old drug) as suggested by
Wermuth (2004). Using this approach we found four structurally
very different compounds able to inhibit Cx50 channels in the low
micromolar range including the triarylmethane (TRAM) clotri-
mazole (IC50 5 μM; Figure 1). Using clotrimazole as a template,
we have tested a series of previously known or newly synthesized
differently substituted TRAMs for their effects on Cx50 chan-
nels and identified several compounds inhibiting Cx50 in the
low micromolar range including T122, which exhibits an IC50

of 1.2 μM for Cx50 and excellent selectivity over other connexins.
Analyzing at the structural requirements for selective Cx50 inhi-
bition we find that the TRAM pharmacophore should contain a
heteroaromatic ring system in R1 position. Smaller, less bulky sub-
stitutions with functional groups such as OH, NH, or H also result
in potent Cx50 blockers (Table A1 in Appendix), however, these
types of compounds lack selectivity over other connexins and are
therefore not useful as pharmacological tools. In addition to a
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FIGURE 7 | Connexin-selectivity ofT122 andT136. (A) Concentration
dependence of T122 and T136 on Cx50 gap junction channels. Each point
represents the mean ± SEM of g j (% of the initial conductance) values
obtained from 4 to 10 cell pairs. The solid line is a fit of the data points to
the Hill equation (see Materials and Methods). The EC50 and Hill slope

values are indicated in the text. Each cell pair was exposed to only a
single concentration. (B) Bar graph illustrating that T122 (10 μM) and T136
(10 μM) has no significant effect on Cx26, Cx32, Cx43, Cx45, and Cx46
gap junction channels. Each bar represents the mean ± SEM of four to
six cell pairs.

FIGURE 8 |T122 andT136 reduce junctional conductance in lens

epithelial cells. (A) Effect of 10 μMT122 (top) and 10 μMT136 (bottom) on
junctional currents in epithelial cells isolated from P6 lenses. The
magnitude of inhibition is similar to that produced by quinine. The

recordings in T122 and T136 are from two different cell pairs. (B) Bar graph
summarizing the effect of T122 (10 μM) and T136 (10 μM), compared to
that of quinine on coupling in epithelial cells. Each bar represents the
mean ± SEM of four to six cell pairs.

heteroaromatic substituent in R1 position, the second require-
ment is that one of the phenyl rings of the triphenylmethane
should be substituted preferably in ortho-position (Figure 5),
whereby it seems to be of little consequence whether the sub-
stituent is electron withdrawing (CF3 in T72) or donating (OCH3
in T122), as long as it is lipophilic. Lastly, the heteroaromatic
ring system, which can be directly attached or linked by a one-
atom spacer (nitrogen or sulfur), should contain at least one
hydrogen-bond accepting heteroatom, which might be directly
interacting with a hydrogen-bond donor in the connexin pro-
tein (e.g., see clotrimazole with its imidazole ring versus the
inactive T44 and T109). It also seems that steric bulk is a lim-
iting factor for potency, because the bulkier bicyclic derivatives
T103 and T71 are ineffective while the smaller T66 and T91
inhibit Cx50.

Since our compounds were derived from clotrimazole, which
inhibits KCa3.1 channels with an IC50 of 70 nM, we also tested the
more active compounds for selectivity over KCa3.1. For nanomo-
lar KCa3.1 inhibition Wulff et al. (2000) previously proposed
a propeller-shaped pharmacophore consisting of the triphenyl
moiety with an o-halogen on one of the phenyl rings and an
unsubstituted, polar π-electron-rich heterocycle of limited size
such as pyrazole, tetrazole, or an even smaller nitrile group in
R1 position. A similar KCa3.1-inhibiting TRAM pharmacophore
was described by McNaughton-Smith et al. (2008) as exempli-
fied by ICA-17043 (Senicapoc®), which contains a carboxamide
moiety in R1 position and entered clinical trials for sickle cell
anemia. Considering this knowledge about the TRAM pharma-
cophore for KCa3.1 inhibition in our current Cx50-focused SAR
study, we could achieve a drop in potency on KCa3.1 of more
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than 1000-fold by inserting a one-atom linker between the triph-
enyl moiety and the heterocycle in R1 position. This insertion,
which results in a “kink” in the perfect propeller shape of clotri-
mazole or TRAM-34 shifted selectivity toward Cx50 [clotrimazole
(IC50 of 70 nM for KCa3.1 and 5 μM Cx50) versus T122 (IC50 of
10 μM for KCa3.1 and 1.2 μM for Cx50)]. At concentrations of
10 μM the two most potent compounds, T122 and T136, showed
excellent selectivity over other tested connexin channels including
channels built out of Cx43 and Cx46, which are also expressed in
the lens (inhibition < 18%). In addition, T122 and T136 showed
very good selectivity over sodium channels (<11%) and moderate
selectivity over most of the tested potassium channels (18–43%),
except for T122, which blocked Kv1.1 by 65%. Both compounds
also inhibited Cx50 mediated coupling in primary lens epithelial
cells. Thus, compared to the existing pharmacological agents such
as quinine and 2-APB, which exhibit poor selectivity for Cx50
channels, T122 and T136 are likely better agents for studying the
role of Cx50 in lens development and the maintenance of lens
transparency.

Taken together, we here identified the triphenylmethane scaf-
fold as a new pharmacophore for Cx50 inhibition and synthesized
two new compounds that inhibit cloned and native Cx50 channels
in the low micromolar range. Even more importantly, we were
able to develop a connexin subtype specific inhibitor starting with
a lead compound that exhibited several fold higher selectivity for
K+ channels over Cx50, indicating that application of a similar
approach, i.e., identification of new lead compound(s) from exist-
ing ion channel libraries followed by selective optimization of their
side activities, may lead to the development of specific blockers for
other connexin channels such as Cx43 or Cx26.
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APPENDIX

Table A1 | IC50 values for Cx50 inhibition for triarymethane alcohols,

amines, nitriles and ureas.

Compound IC50 Cx50

(μM)

IC50 KCa3.1

(μM)

T1 2.8 0.53

T2 3.6 0.55

T3 2 0.52

T54 3 0.7

T154-OH No effect N/A

T117 No effect N/A

T165 No effect N/A

T43 2 0.75

(Continued)

Compound IC50 Cx50

(μM)

IC50 KCa3.1

(μM)

Triphenylmethanol 1 0.5

T162 1.5 5.3

T41 4 1

T75 No effect 1.2

T95 6 5

T94 7.3 Not tested

T39 4 0.06

Triphenylmethane 0.9 3.7

(Continued)

Frontiers in Pharmacology | Pharmacology of Ion Channels and Channelopathies June 2012 | Volume 3 | Article 106 | 16

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive


Bodendiek et al. Novel Cx50 inhibitors

Table A1 | Continued

Compound IC50 Cx50

(μM)

IC50 KCa3.1

(μM)

T51 No effect 25

T24 No effect 8

T74 No effect 4

T52 10 >50

T53 10 >50

T50 10 >50

T160 4 8.6

T9 4 1.5

T35 10 9
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