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Abstract

High School Choice and Academic Performance in Mexico City

by

Andrew Duane Dustan

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Alain de Janvry, Co-chair

Professor Elisabeth Sadoulet, Co-chair

Mexico City’s public high schools use a competitive, choice-based assignment system
to allocate students to seats. Similar mechanisms are used in many countries and cities
throughout the world. This dissertation explores two aspects of Mexico City’s schools: the
importance of peer effects on school choice behavior and the consequences of being admitted
to a “better” school.

Students have incomplete information about the schools in their choice set, which may
make choice difficult. Chapter 1 argues that while new information about a school allows
students to update their beliefs about student-school match quality, which may make stu-
dents more or less likely to choose the school, it also acts through channels that strictly
increase demand for the school. Two such channels are a reduction in uncertainty facing
risk-averse students and a direct effect of information on returns to attending that school.
Peer networks, then, influence choice by providing students with information about some
schools but not others. The expected effect of peer-provided information on demand for the
peer’s school is thus positive. This hypothesis is tested using exogenous variation in older
peers’ school assignment generated by the allocation mechanism. The average effect of a peer
signal on the probability of choosing both the peer’s school and observably similar schools is
positive, consistent with information increasing expected utility on average. An alternative
explanation, that students simply want to go to school with their peers, does not explain
the empirical findings. The results suggest that incomplete information has a large impact
on school choice even in a relatively information-rich environment, and that social networks
partially overcome this problem while encouraging selection into schools attended by peers.

Chapter 2, which is joint work with Alain de Janvry and Elisabeth Sadoulet, explores
an important and high-profile question in Mexico City: is there an academic benefit to
elite high school admission? Winning a seat in an elite high school both promises modest
rewards and imposes substantial risks on many students. We find that admission raises
end-of-high school test scores by an average of 0.11 standard deviations for the marginal
admittee. On the other hand, elite school admission in Mexico City increases the probability
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of high school dropout by 8.5 percentage points. Students with weaker middle school grades
experience a much larger rise in dropout probability as a result of admission, suggesting
that the additional dropout risk is a result of increased academic rigor. We introduce a
new “penalized imputation” method to show that the effect on exam scores is robust to
accounting for differential dropout.

Chapter 3 explores the effect of marginal admission to a school with higher-ability peers
on dropout probability and exam scores, extending some of the results of Chapter 2 to the
full set of high schools that fill up during the assignment process. The average impact of
admission on dropout and exam scores is negligible for students who barely score high enough
to be admitted. One possible explanation for this finding is that relative ability matters for
academic performance, which is consistent with the empirical finding larger jumps in peer
ability due to admission predict greater increases in probability of dropout. Motivated by
this empirical fact, a simple model of school choice accounting for incomplete information
about one’s own ability and the dependence of academic performance on relative ability is
presented. The model shows that under these two conditions, the optimal choice strategy is
much more complicated than under standard models of school choice.
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Chapter 1

Peer Networks and School Choice
under Incomplete Information

1.1 Introduction

Many education systems allow students and their families some degree of choice in which
school they will attend.1 A key rationale for choice policies is that they allow students
to leverage their private information about student-school match quality—the interaction
between school attributes and student preferences—by choosing the school that best caters to
their own preferences and constraints. Students have incomplete information about schools,
however, which may have profound effects on choice behavior. For example, Hoxby and
Avery (2012) observe that low-income high-achievers in the United States rarely apply to
selective colleges, a phenomenon that they attribute partially to uncertainty about how well
selective colleges would suit them. But these students tend to pay little and perform well at
selective colleges, highlighting the possibility that incomplete information results in privately
suboptimal educational decisions.

How does incomplete information about schools affect students’ choices? If we think of
the student as a Bayesian learner, then he uses information about a particular school in
two ways. First, new information allows him to update his expectation of match quality
with that school. This channel has been studied extensively in the school choice literature,
reviewed below. Second, and so far unstudied, is that information makes the student’s belief
about match quality more precise. If students are risk-averse, the uncertainty-reducing
value of information makes students more likely to choose schools about which they are
well-informed. Given the choice between two schools with identical expected match quality,
the risk-averse student will choose the school where his belief is more precise. In addition to

1School choice has been analyzed by Abdulkadiroglu et al. (2012) and Dobbie and Fryer (2011) for
the United States, Clark (2010) for the United Kingdom, Ajayi (2012) for Ghana, Lucas and Mbiti (2012)
for Kenya, de Hoop (2012) for Malawi, Jackson (2010) for Trinidad and Tobago, Pop-Eleches and Urquiola
(2013) for Romania, Lai et al. (2011) and Zhang (2012) for China, and de Janvry et al. (this dissertation)
for Mexico.
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its value for updating expectations, some information may be beneficial once the student is
actually attending that school because it tells the student how to behave optimally there. I
will refer to such information as “productive knowledge.” Uncertainty reduction and building
of productive knowledge are both channels through which new information strictly increases
the expected utility from attending a school.

If the quantity of information that a student has about each school is an important
determinant of choice, then the student’s social network may be a crucial determinant of
choice behavior because it provides information about some schools but not others. Students
may learn about a particular school through interactions with older peers already attending
that school. Consequently, beliefs about match quality will be systematically more precise
and productive knowledge about a school will be higher where the peer network is denser.
This implies (on average) stronger preferences for schools attended by older peers, even
if peers do not have a direct positive effect on match quality. Hoxby and Avery’s (2012)
observation regarding the application behavior of low-income high-achievers may be partially
explained by a dependence of choice on information from peer networks, as they find that
such students often “have only a negligible probability of meeting a... schoolmate from an
older cohort who herself attended a selective college.”2

This paper shows empirically how school-specific information originating from the peer
network affects school choice. To show how information should affect choice in the presence
of risk aversion and returns to productive knowledge, I extend a standard school choice
model by incorporating features from the literature on experience goods and word-of-mouth
information. The model generates clear hypotheses about the effect of schools attended
by older peers on the student’s own choice of school. These hypotheses are then taken
to student-level data from Mexico City’s public high school choice system. The system’s
assignment mechanism, described in detail below, allows for causal identification of the peer
effect because it generates exogenous variation in the schools attended by older peers. Both
OLS evidence and estimates from a discrete choice model of school choice are consistent
with the model’s hypotheses. I am able to rule out competing explanations for the empirical
findings, in particular pure preference for going to the same school as older peers. Thus
the empirical evidence points to students relying on information obtained from peers to
overcome incomplete information about match quality and/or build productive knowledge
about particular schools.

Existing empirical literature on school choice under incomplete information does not in-
corporate risk aversion or returns to productive knowledge into student preferences. Hastings
et al. (2009) provide a model of school choice where students trade off academic quality with
attributes such as proximity. In their model, risk-neutral students optimize with respect to
expected quality without regard for the precision of this belief. Empirical studies on the
effect of information provision on school choice do not model risk aversion, either. Hastings
and Weinstein (2008), for example, demonstrate that providing information on test score
aggregates to low-income families in the United States increased the likelihood of choosing

2Hoxby and Avery (2012) p. 2.
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high-performing schools. Related studies by Koning and van de Wiel (2010) in the Nether-
lands and Friesen et al. (2012) in Canada come to similar conclusions, while Mizala and
Urquiola (2013) find no effect of publishing a quality measure in Chile. In each of these
cases, the information was enriched for all schools simultaneously, which did not induce
between-school variation in the amount of information available to students.

In contrast to previous studies, the students in my empirical setting learn about some
schools but not others. Because of this within-student variation in the relative quantity
of information known about each school, it is useful to extend the standard school choice
model by allowing risk aversion with respect to match quality and returns to productive
knowledge. To model risk aversion, I incorporate elements from models of learning about
experience goods. In particular, Roberts and Urban (1988) and Erdem and Keane (1996)
model potentially risk-averse consumers as having incomplete information about a consump-
tion good’s quality (or bundle of attributes).3 Consumers have unbiased priors about quality
and Bayesian update these priors when they are exposed to an advertisement or word-of-
mouth information. For a given level of expected quality, consumers prefer goods where this
belief is more precise, such that advertising and word-of-mouth information increase demand
on average. My model is similar to these, but word-of-mouth information comes from older
peers. Students have an unbiased but noisy prior about match quality between themselves
and each school. They receive signals about match quality with schools attended by older
peers, and use these signals to update their beliefs. While some students update their ex-
pectation of match quality upward and others update downward, these changes cancel out
when averaging over all students and schools.4 The reduction in uncertainty, however, in-
creases expected utility for all students, so that on average a peer signal increases demand
for the school. Obtaining more productive knowledge about a school from peers also has an
unambiguously positive impact on expected utility from that school. The positive average
effect of peer signals on demand is the model’s key testable hypothesis.

Hypotheses about the effect of peer learning on school choice are difficult to test with-
out exogenous variation in the schools attended by peers, due to the well-known reflection
problem put forth in Manski (1993 and 1995). Students have similar preferences to their
peers and share some of the same constraints, so observing a student choosing the same
school as older members of his peer group is not necessarily indicative of learning from peer
networks. The sociology and education literatures have instead studied the effect of social
learning on school choice in a qualitative framework. Most notably, Ball and Vincent (1998)
find that, for primary schools in the United Kingdom, parents use their social networks (the
“grapevine” as they call it) to obtain specific, detailed information about schools and their
likely fit for their own children.5 The economics literature has so far been limited to carefully
documenting correlations, as in Hoxby and Avery (2012).

3Many other studies relating to experience goods have used similar models, for example Johnson and
Myatt (2006) and Crawford and Shum (2005).

4This relies on CARA utility and normally distributed prior beliefs and signals, discussed in Section 1.3.
5Ceja (2006) finds qualitative evidence that older siblings are an important source of information for

Chicana students as they apply to college in the United States.
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Mexico City’s school assignment mechanism generates exogenous variation in the school
assignment of a student’s older peers, which can be used to test the model’s hypotheses
about the effect of peer signals on choice. Public high schools in Mexico City use a unified
choice-based allocation system where assignment priority is determined on the basis of an
exam score. This generates a regression discontinuity design where, given a group of older
peers who want to attend a certain school, some students score barely high enough to be
admitted and others score barely too low and must attend another school. The variation in
peer assignment resulting from the discontinuity is used to identify both the OLS and discrete
choice models. While the OLS methods give clean, easily-interpreted evidence for the social
learning model of school choice, the discrete choice model is important because it directly
tests the model’s hypotheses about the effect of information on expected utilities while also
giving an interpretation of the effects in terms of a marginal willingness to travel (or pay).
The data span twelve years of admissions cycles and contain rich information about the
choices, demographics, and assignment of each participant. Combining the students’ names,
locations, and demographic information, I match students with a certain kind of peer that is
both identifiable in the data and is expected to be an important peer in a student’s network:
the older sibling. Thus the relationship of interest in this paper is the effect of an older
sibling’s admission outcome on the younger student’s choice of schools.

The empirical results show that students prefer schools attended by their older siblings.
Using the estimates from the discrete choice model, I find that students are willing to increase
their round-trip commute by an average of 4.8 km per day in order to attend a school to
which the older sibling was admitted, which is valued at $561 over the course of high school.
This effect is not driven by the obvious explanation that it is convenient or beneficial for the
family to have two children attending the same school. Having an older sibling admitted to a
particular high school increases the revealed preference for that school, even when the siblings
are far enough apart in age that the older sibling no longer attends high school. Furthermore,
having an older sibling admitted to a school increases revealed preference for other campuses
belonging to the same school subsystem, within which individual schools throughout the city
share many attributes such as curriculum and vocational orientation. This suggests that
students generalize the knowledge obtained about about a peer’s school when evaluating
all other schools within the same subsystem. There is also evidence, although not strictly
causal, that revealed preference for a school increases much more when the older sibling
experiences a positive academic outcome there. Taken together, these results support the
view that students prefer schools where they have more information, and use the information
from their peer network to update beliefs about match quality.

The policy prescriptions for addressing incomplete information in school choice depend
critically on the source of uncertainty. I will show that in the empirical context of Mexico
City, uncertainty about match quality is unlikely to come primarily from an inability to
observe basic school attributes such as peer quality and academic rigor. Students already
have access to information about peer quality, and each school subsystem has a well-known
reputation regarding its curriculum and academic level. Furthermore, differences in costs
across schools are not a first-order concern in this setting, in contrast to the context of
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United States higher education studied in Hoxby and Avery (2012) and Hoxby and Turner
(2013).6 Rather, uncertainty appears to originate from incomplete information about more
specific or idiosyncratic elements of match quality. When students do not know basic school
attributes, an easy solution may be to distribute official information about school attributes.
But resolving uncertainty about idiosyncratic match quality and transferring productive
knowledge about a school requires more personalized information, meaning that the peer
network may be more useful than official efforts and that policymakers must find innovative
ways to address this individual-specific source of uncertainty.

The remainder of the paper proceeds as follows. Section 1.2 explains the public high
school choice system in Mexico City, showing that it provides a good context in which
to empirically examine school choice under incomplete information. Section 1.3 sets forth
a simple model of school choice under incomplete information, concluding with testable
hypotheses about the expected effect of new information. Section 1.4 explains the data and
how they will be used to test the model. Section 1.5 gives the OLS method and results,
while Section 1.6 lays out the discrete choice model and corresponding results. Section
1.7 provides validity checks for the empirical design and Section 1.8 concludes with policy
recommendations.

1.2 High school choice in Mexico City

This section explains Mexico City’s public high school choice system. In addition to providing
context for the empirical exercise, it explains the assignment mechanism that is the basis for
exogneous school assignment of peers and highlights some features of the system that induce
students to reveal their true school preferences.

1.2.1 The COMIPEMS assignment mechanism

Prior to 1996, the ten major public high school subsystems in Mexico City controlled their
own independent admissions processes. Students applied to schools in one or more of these
subsystems, waited to learn where they had been admitted, and then withdrew from all
schools except their most-preferred one. In an effort to increase both the efficiency and trans-
parency of this process, the subsystems formed the Comisión Metropolitana de Instituciones
Públicas de Educación Media Superior (COMIPEMS) in 1996. Each year, COMIPEMS runs
a unified, competitive admissions process that assigns students across Mexico City’s public
high schools on the basis of students’ preferences and the results of a standardized exam.

6Hoxby and Turner (2013) show that providing semi-personalized information about college costs to low-
income, high-achieving high school students in the United States has a large, positive impact on revealed
preference for selective colleges. They interpret this as proof of upward-biased beliefs about selective college
costs, but uncertainty and risk aversion could be a complementary channel.
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The COMIPEMS admissions process is as follows.7 In late January, students in ninth
grade—the final year of middle school—receive informational materials about the admissions
process. These materials include a list of all of their “educational options,” which in most
cases are schools but can also be specific tracks within schools, such as specific vocational
education tracks in a technical school. Students then fill out a registration form, demographic
survey, and list of up to 20 educational options, ranked in order of their preference. These
forms must be submitted in late February or early March, depending on the student’s family
name. In June of that year, students take a standardized exam consisting of 128 multiple-
choice questions, covering both subject-specific material from the public school curriculum
and more general mathematical reasoning and language areas.

In July, the assignment process is carried out by the Centro Nacional de Evaluación
para la Educación Superior (CENEVAL).8 First, the school subsystems report the maximum
number of seats available to incoming students. Second, all students who did not successfully
complete middle school or scored below 31 of 128 points are discarded. Third, all remaining
students are ordered by their exam score, from highest to lowest. Fourth, a computer
program proceeds sequentially down the ranked list of students, assigning each student to
his highest-ranked option that still has a seat remaining.9 The process continues until all
students are assigned, with the exception of students who scored too low to enter any of their
listed options. Later in July, the assignment results are disseminated to students. Through
2011 this primarily happened in the form of a printed gazette sold at newsstands, although
a system that sends personalized results via text message has become more popular over
time.10 At that time, students who were eligible for assignment but were left unassigned
during the computerized process because they scored too low for any of their choices may
choose a schooling option from those with seats remaining.

1.2.2 Student decision making under the COMIPEMS
mechanism

Students have considerable information about basic school attributes when they choose
schools, but this information is generic rather than individually tailored. The subsystem
membership of each school is known with certainty, and each subsystem has a well-formed
public perception. There are two “elite,” university-affiliated subsystems: the Universi-

7The timing of each step is given for the 2011 competition, although this may change slightly from year
to year. The assignment rules were different in 1996 and 1997, but those years are not considered in this
paper so they are not discussed.

8CENEVAL is independent of COMIPEMS and its constituent school subsystems. This process is carried
out by computer in the presence of representatives from all subsystems and external auditors from a large
international accountancy firm.

9In the instance that two or more students have the same score and highest-ranked available option,
but there are fewer remaining seats than the number of tied students, the assignment process pauses and
representatives from the corresponding subsystem must decide to either admit all tied students or none of
them.

10The gazette was replaced in 2012 with an electronic version.
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dad Nacional Autónoma de México (UNAM) and the more technically-focused Instituto
Politécnico Nacional (IPN). These are universally understood to be highly competitive, rel-
atively rigorous, prestigious high schools that fill their student capacities before almost all
non-elite options. Non-elite subsystems include those with traditional academic curricula
and technical subsystems providing academic coursework combined with vocational training
for careers such as auto repair and bookkeeping. Even within a subsystem, official infor-
mation about school-level academic quality is available. Past cutoff scores—the score of
the student admitted to the school’s final seat—for each school have been available on the
COMIPEMS web site since 2005, and this site is actually browsed by many students because
it allows them to easily complete most of the registration process online.11 Cutoff score and
the mean score of admitted students are almost perfectly correlated, so students have ac-
cess to an excellent proxy for mean peer ability. The combination of subsystem reputations
and information about peer quality ensures that students are at least somewhat informed
about general school attributes, though they may lack more specific details that affect the
idiosyncratic match between the student and school.

Students in Mexico City often construct their rankings in the following way, similar to
how United States students choose colleges (see Hoxby and Avery (2012), for example).12

First, they decide whether they would like to attend a high school in either or both of the
two elite subsystems. If a student decides to apply within either or both subsystems, he
lists some number of elite schools as his top choices. There are 30 elite schools (16 IPN and
14 UNAM), meaning that even within an elite subsystem, students face a wide variety of
options. Following the elite schools, if any, he lists various non-elite schools (from about 600
options in most years), which offer a better chance of admission.

Two aspects of the COMIPEMS assignment mechanism make the student’s ranking quite
informative about true preferences. First, the mechanism is equivalent to the deferred ac-
ceptance algorithm proposed by Gale and Shapley (1962), so it induces truth-telling by
students.13 In particular, under such mechanisms it is never optimal to list a less-preferred
school before a more-preferred school, regardless of the limit on how many options can be
listed. Second, the ability to rank up to twenty options means that few students actually
fill up their entire preference sheet; students generate a satisfactory choice portfolio without
confronting the space constraint.14 There is no strategic disadvantage to choosing a school
at which the student has a small ex ante probability of admission, both because the number
of options allowed is high and because the assignment algorithm does not punish students

11Approximately 80% of the students analyzed in this sample went through the selection process in 2005
or later.

12I thank Roberto Peña Resend́ız and advisers at the Subsecretariat of High School Education for insight
into this process.

13See Dubins and Freedman (1981) and Roth (1982). This particular mechanism is referred to as a
student-proposing deferred acceptance mechanism, which is discussed in Abdulkadiroglu and Sonmez (2010).

14Choosing the optimal portfolio of schools is a complex problem if listing choices is costly (e.g. time cost
or opportunity cost due to a limited number of allowed choices), as mentioned by Ajayi (2012) and explored
in depth by Chade and Smith (2005).
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for ranking unattainable schools.

1.3 Model of school choice

This section extends a model of school choice from Hastings et al. (2009) by incorporating
incomplete information, risk aversion, productive knowledge, and learning from peers. In my
model, the utility from attending each school is uncertain because of incomplete information
about student-school match quality. Risk-averse students revise their beliefs about utilities
by receiving informative signals about match quality from peers. The setup is similar to
models of consumer demand for experience goods, in particular Roberts and Urban (1988)
and Erdem and Keane (1996), where consumers are uncertain about product quality and
revise their beliefs due to word-of-mouth or informative advertising. Students also gain
productive knowledge about schools from their peers, which allows them to obtain higher
utility from attending the peer’s school. This latter advantage can be thought of in a similar
way to the effect of learning on technology adoption, as in Foster and Rosenzweig (1995). In
this case, students are unsure of how to use the school “technology” to build human capital
but learn from peers about how to do so optimally.

This model produces testable hypotheses about how students react to new information
about specific schools. First, the model predicts that the average impact of new information
on same-school expected utility is positive. This is a prediction about the average effect of
new information over all students and schools in the population, not a prediction that the
average effect will be positive for each school. Second, the model predicts that the impact of
new information depends on how positive or negative the signal was. Finally, these effects
are predicted to apply, to a lesser degree, to other schools that are observably similar to the
school about which the information was received.

1.3.1 General setup

The student’s problem is to maximize expected utility by choosing one school to attend from
his choice set. Here I abstract from the problem of portfolio construction and focus on the
first choice. This is reasonable if one thinks that the first listed option is the student’s most-
preferred school, a modest assumption given the large number of options that a student is
allowed to list in order to diversify and choose safety schools.

Student i’s utility from school j ∈ J is a function of student-school match quality:

Uij = U (Xijβi) = U
((
X̄j + X̃ij

)
βi

)
where match quality is expressed as the sum of student-school attributes in the vector Xij

weighted by the student-specific vector of preference parameters βi. The attribute vector is
decomposed into two terms: X̄j is the average level in the population and X̃ij is the student-
specific deviation from this level. An example of a student-school attribute is academic fit,
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which is on average higher at some schools than others, but also has a student-specific
component that depends on how well the school caters to the student’s particular learning
style and ability level.

The student knows the relative weights βi he puts on each attribute. If he also knows
Xij , and if he is risk-neutral with respect to match quality, so that U (Xijβi) = Xijβi,
this model is nearly identical to the one in Hastings et al. (2009). In that case, the student
chooses school j if it provides the highest match quality out of all schools in the choice set:
Xijβi >Xikβi ∀k 6= j ∈ J .15

1.3.2 Incomplete information about match quality

Incomplete information about match quality is modeled by making it so that the student
imperfectly observes student-school attributes. He does not observe X̄j or X̃ij , but he knows
the distributions from which each is drawn:

X̄j ∼ N
(
X̄0
j ,ΣX̄j

)
, X̃ij ∼ N

(
X̃0
ij ,ΣX̃ij

)
.

For simplicity of exposition, the covariance matrices ΣX̄j
and ΣX̃ij

are assumed to be di-

agonal, and X̄j and X̃ij are assumed to be mean independent. Thus Xij is distributed

normally with mean X0
ij = X̄0

j + X̃0
ij and diagonal covariance matrix with (`, `)th entry

1/τ 0
`ij.

16

Because Xij is unknown, a risk-neutral student chooses j if it maximizes expected match
quality: E0 [Xijβi] > E0 [Xikβi] ∀k 6= j ∈ J , where the 0 subscript indicates that the
expectation is formed solely on the basis of the match quality distributions. Incomplete
information about match quality (in particular, about mean quality X̄j) is sufficient to
predict the results from Hastings and Weinstein (2008), where giving information about
school-level average test scores to students increased the weight that students placed on test
scores when choosing schools.17

1.3.3 Risk aversion and returns to productive knowledge

I now introduce two channels through which information will positively affect expected util-
ity: returns to productive knowledge and risk aversion with respect to match quality.

I parameterize the returns to productive knowledge in a simple way, adding a term rj (nij)
to the utility function, where nij is the level of i’s knowledge about school j. The marginal
return to knowledge is strictly positive so that r′j > 0. Examples of productive knowledge

15Hastings et al. (2009) do not explicitly model uncertainty, but they do say that uncertainty about an
attribute would lead to a lower effective weight being placed on it.

16I assume that for any two schools j and k, Xij and Xik are mean independent.
17Intuitively, students were choosing on the basis of both signal and noise about test scores, and the

information intervention allowed students to choose on the basis of a stronger signal.
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are knowing which teachers are the best to take or being aware of an after-school tutoring
program.

Allowing the student to be risk-averse will address a troubling result from the risk-neutral
model. Risk neutrality implies that the relative precision with which match quality is known
does not affect choice. That is, presented with a choice between two schools of equal expected
match quality but where one’s match is known with complete certainty and the other with
uncertainty, the student will be indifferent between them. A risk-averse student will prefer
the school where match quality is known with certainty.

To model risk aversion, I allow utility to be concave in match quality. Following Roberts
and Urban (1988), I use exponential utility:

Uij = −exp {−ρXijβi + rj (nij)}

where ρ, the coefficient of risk aversion, is assumed to be positive. Due to exponential utility
and the joint normal distribution of Xij , expected utility from school j in the absence of
additional information can be written in terms of the mean and variance (or precision) of
the prior distribution of match quality, as well as the return to productive knowledge:18

U∗0ij = E0 [Xijβi]−
ρ

2
V ar (Xijβi) + rj

(
n0
ij

)
= X0

ijβi −
ρ

2

∑
`

β2
`i

τ 0
`ij

+ rj
(
n0
ij

)
.

(1.1)

where β2
`i/τ

0
`ij is the variance of the distribution of match quality from attribute `. The

student optimizes with respect to both the mean and variance of match quality, so schools are
now “penalized” when beliefs about them are noisier. He also values productive knowledge.
He chooses the school j that provides the highest expected utility of all available schools:
U∗0ij > U∗0ik ∀k 6= j ∈ J .

1.3.4 Effect of peer information

When student i’s peer attends school j, she gives two pieces of information. First, she
provides productive knowledge about school j, so that the new level of knowledge is higher:
n1
ij > n0

ij. Second, the student improves on his prior belief about match quality by receiving
informative signals about student-school attributes Xij . This information comes in the form
of an unbiased, noisy signal about each attribute:

Pij = Xij + εij , εij ∼ N
(
0,ΣPij

)
,

18The full expression for expected utility is E0 [Uij ] = −exp
{
−ρ
(
X0

ijβi − ρ
2

∑
`
β2
`i

τ0
`ij

+ rj
(
n0ij
))}

, but

since this is strictly monotonically increasing in the terms in braces, this is equivalent to optimizing with
respect to equation 1.1.
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where ΣPij
is diagonal with entries 1/τP`ij. The signals received are about student-school

attributes for student i, not the peer.19 The idea is that social interactions with the peer
allow i to learn more about the school and infer something about how much he will benefit
from different aspects of it.

The student uses this new information to update his expected utility from attending
school j. Because the prior and signal are both distributed normally and because the covari-
ance matrix for each is diagonal, the form of the posterior distribution of each student-school
attribute is simple:

X1
`ij ∼ N

(
τ 0
`ijX

0
`ij + τP`ijP`ij

τ 0
`ij + τP`ij

,
1

τ 0
`ij + τP`ij

)
The posterior distribution of each attribute is a precision-weighted average of the prior and
signal. The expected utility from j is now

U∗1ij = X̂1
ijβi −

ρ

2

∑
`

β2
`i(

τ 0
`ij + τP`ij

) + rj
(
n1
ij

)
(1.2)

where X̂1
ij is the mean of the posterior distribution of X1

ij . To see how the peer signals
affected expected utility, compare equations 1.1 and 1.2:

U∗1ij − U∗0ij =
(
X̂1
ij −X0

ij

)
βi +

ρ

2

∑
`

β2
`iτ

P
`ij

τ 0
`ij

(
τ 0
`ij + τP`ij

) +
(
rj
(
n1
ij

)
− rj

(
n0
ij

))
(1.3)

The change in expected utility comes from three sources. The first term is the change in
expected match quality. This quantity may be positive or negative depending on the content
of the peer signal. Students may learn that the school is a better or worse match for them
than they had guessed. The second term is the change in expected utility resulting from the
lower variance in the posterior distribution of match quality. This quantity is unambiguously
positive. The increased knowledge about match quality works in the school’s favor because
the risk-averse student is now more certain about how good the match is. The third term is
the change in the utility from productive knowledge, which is also positive.

This result gives rise to two testable hypotheses, derived in the appendix:

Hypothesis 1: The expected effect of peer information on U∗ij, taken over all students i and

schools j, is positive: Eij

[
U∗1ij − U∗0ij

]
> 0.

This is the key testable hypothesis of the model that distinguishes it from models with-
out channels through which information strictly increases expected utility. It says that, on
average, receiving peer information about a school increases the expected utility from at-
tending there. Intuitively, the signal is sometimes better than the student’s prior belief and
sometimes it is worse, but the average effect on expected match quality is zero. On the

19This is in contrast with Roberts and Urban (1988), in which only quality for the peer is observed.



12

other hand, the reduction in uncertainty about match quality and the increase in productive
knowledge always work in the school’s favor. Note that the expected effect may be positive
for certain schools and negative for others, because mean quality X̄j is drawn from a random
distribution. This hypothesis is about the expected effect over all schools.

Hypothesis 2: All else equal, the change in expected utility from j depends positively on how

favorable the peer signal about match quality from j was:
∂(U∗

1ij−U∗
0ij)

∂Pijβi
> 0.

This hypothesis simply says that when the student receives a relatively good (i.e. high)
signal about the match quality from a school, he is more likely to choose that school than if
he had received a relatively bad (low) signal.

1.3.5 Shared attributes across schools

Students may know that the level of an attribute is shared across schools. In the empirical
setting studied here, schools are divided into subsystems that share important attributes
such as curriculum and vocational orientation. In this case, learning about one school in
the subsystem also yields useful information about all other schools in the same subsystem.
(Likewise, productive knowledge about one school might be applicable to other schools in
the subsystem. I will not model this because it is now obvious that this channel will operate
identically to the learning about shared attributes channel.) In order to model the shared
attributes in a simple way, we can maintain all prior assumptions of the model and addi-
tionally assume that for school j in subsystem s, match quality is expressed as Xijsβi+µis,
where µis ≡ µ̄s + µ̃is. The average component of subsystem match quality is distributed
µ̄s ∼ N (µ̄0

s, σ
2
s) and the student-specific component is distributed µ̃is ∼ N (µ̃0

is, η
2
is), and

1/τµis ≡ σ2
s + η2

is. In addition to the signal Pij about unshared attributes, the student
receives a signal about the shared attribute:

qis = µis + ξis, ξis ∼ N (0, 1/τ qis) .

When the student receives a signal about school j in subsystem s, she can update her
expected utility from a different school k in the same subsystem:

U∗1iks − U∗0iks =
(
µ̂1
is − µ0

is

)
+
ρ

2

τ qis
τµis (τµis + τ qis)

(1.4)

where µ̂1
is is the mean of the posterior distribution of the shared attribute and µ0

is is the mean
of the prior. This assumption of a shared attribute produces two additional hypotheses,
derived in the appendix:

Hypothesis 3: The expected effect of peer information on the expected utility from any other
school in the same subsystem is positive: indexing the peer’s school by j and fixing another

school kj in j’s subsystem sj, Eij

[
U∗1ikjsj − U

∗
0ikjsj

]
> 0.
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On average, receiving a signal about a school increases the expected utility from attending
other schools in the same subsystem. The intuition is the same as for Hypothesis 1. Surprises
about the match quality from j’s subsystem are also surprises about the match quality for
all other schools in the subsystem. The surprises cancel out when we average across all
schools and students. There is always a reduction in uncertainty about match quality from
j’s subsystem, which increases expected utility from attending schools in the subsystem.

Hypothesis 4: Suppose the student receives a peer signal about school j in subsystem s. All
else equal, the change in expected utility from school k in subsystem s depends positively on

how favorable the peer signal about subsystem match quality was:
∂(U∗

1iks−U
∗
0iks)

∂qis
> 0.

The more positive a surprise to the match quality for j’s subsystem, the larger is the increase
in expected utility from other schools in the same subsystem.

1.4 Data and sample construction

Testing the school choice model requires student-level choice data that include a measure of
signals received from older peers. This section proposes one such measure that exists in the
Mexico City data before describing the data set and sample construction in more detail. The
sample construction is key because it forms the basis of the regression discontinuity design.

1.4.1 Siblings as peers

The administrative data used in this paper do not contain any explicit information on peer
network structure. Moreover, since middle schools in Mexico City are quite large and neigh-
borhoods are not geographically isolated, neither can be used to construct a useful proxy for
the student’s network. The data do, however, allow for the identification of siblings within a
family, which is useful for a number of reasons. First, older siblings are almost surely mem-
bers of the student’s peer network. Second, the strength of the peer relationship is likely to
be very strong on average, compared to most classmates and neighbors. Third, the constant
interactions between siblings within the home make it probable that the student learns a
significant amount about the details of the school attended by his older sibling and how that
school might fit his own tastes, which is the mechanism by which the social learning model
proposes that peers affect school choice. Thus, the older sibling presents an attractive solu-
tion to the lack of social network information in administrative data and is a good candidate
for identifying the informational role of peers with sufficient statistical power to make sharp
inference.

Siblings are different from other peers in a way that may cause some concern when
generalizing sibling-derived effects to those of the broader network. Perhaps students find it
useful to attend the same school as an older sibling because they want to commute together
or derive some social benefit. These issues are addressed in two ways. First, the analysis
is sometimes limited only to sibling pairs where the age gap is large enough that the older
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sibling no longer attends high school by the time the younger one enrolls, so that there is
zero or limited direct logistical or social benefit to attending the same school. This will be
explained in more detail below. Second, this direct benefit does not exist when the student
does not attend the sibling’s school, but rather a different school in the same subsystem; any
effect on subsystem preference cannot come through this channel.

1.4.2 Data description

This paper uses administrative data compiled by COMIPEMS for twelve admissions cycles,
from 2000 to 2011. For each student who registered for the exam, the database contains basic
demographic information including the student’s full name, date of birth, phone number,
address, and a unique middle school identifier along with the grade point average attained
there; the full list of up to 20 ranked school preferences; a context survey, completed by
the student, including information about parental education, family composition, and other
topics; and assignment results, including the student’s exam score and the school assigned
during the computerized allocation process. The analysis is limited to students who were in
middle school at the time they took the exam rather than re-taking in subsequent years and
where the older sibling attended a public middle school.

To measure whether the older sibling graduated or dropped out of high school (a proxy for
whether the peer signal transmitted to the younger sibling was good or bad), the COMIPEMS
database is merged via national ID number (CURP) with a database from the national 12th

grade exam, called the ENLACE Media Superior. This exam is only given to students
who are on track to graduate at the end of the academic year, so it is a good proxy for
graduation. Unfortunately, this exam was only administered starting in the spring of 2008,
and the database used in this paper contains results from 2008 to 2010, corresponding to
students taking the COMIPEMS exam in 2005-2007. Thus the part of the analysis using
this graduation data is limited to younger siblings of these cohorts, which limits sample size.
The larger and more demanded of the two elite subsystems, the UNAM, does not administer
the ENLACE exam so graduation data is missing for students assigned there. This further
limits the sample size when the graduation measure is used.

The demographic information is used to match siblings with each other in the following
way. First, potential siblings are identified if they have the same paternal and maternal
family names and either 1) have the same phone number or 2) live in the same postal code
and attend the same middle school. From this pool of potential matches, sibling pairs are
discarded if 1) the students state that they have different numbers of siblings; 2) the students
do not report a birth order that makes them the closest siblings in the family (e.g. first-
and second-born);20 3) the students were born fewer than nine months apart or more than
five years apart, the latter because it is unlikely that consecutive births five or more years
apart represent a true match; or 4) the older student took the exam after the younger one. If

20This is done so that the estimated effect of older sibling of admission does not include an indirect effect
through the influence on a middle sibling’s behavior
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one student matches with two potential older siblings, the match based on the shared phone
number is used.

This matching process locates 267,748 sibling pairs in a population of 2,127,375 stu-
dents.21 Columns 1 and 2 of Table 1.1 give a description of demographic, academic, and
school choice variables for the full sample of students and for the matched older siblings
(since they are the basis for sample selection), respectively. The matched older siblings, on
average, have more educated parents and are modestly higher achievers in terms of both
grade point average and COMIPEMS exam score (about 1/5 standard deviations higher in
each case). The average student ranks 9 or 10 school choices, which is similar across sam-
ples. About 2/3 of students select a school in one of the two elite subsystems as their first
option, but fewer than 1/4 are admitted to one. Elite admission is higher for older siblings,
consistent with their higher exam scores. On average, students choose a school over 7km
away as their first option, measured as a straight line from the center of the student’s home
postal code to the school.22 Siblings are, on average, 2.5 years apart and have fairly similar
school preferences: 34 percent of sibling pairs select the same school as their first choice.
Only 45% took the ENLACE exam, similar to the official graduation rate in Mexico City.
This proportion is 10 percentage points higher for older siblings, a gap that drops below 6
percentage points when controlling for older sibling observables (not shown).

Why are the matched older siblings generally higher achievers in middle and high school?
One explanation is that the matching process, which relies on siblings having the same phone
number or attending the same middle school, finds families in more stable living situations.
Such families probably have higher-achieving children. Another is that ability and preference
for schooling are correlated within a family, so that families with a high-achieving older sibling
are more likely to have the younger sibling decide to undertake high school studies and thus
take the COMIPEMS.

1.4.3 Overview of empirical strategy and sample definition

Testing the social learning model with this sibling data requires an exogenous source of
variation in the school assignment of the older sibling. The COMIPEMS school assignment
mechanism provides such variation because, conditional on the older sibling’s ranking of
schools, his assignment depends solely on his exam score. This permits the use of a regression
discontinuity (RD) design, similar to those used in prior work investigating the academic
effects of school assignment in exam-based allocation regimes.23 The basic idea behind this
design is to define, for each school, the sample of older siblings who were either marginally

21This is a reasonably high success rate when considering that younger siblings in the early years of the
sample and older siblings in the late years of the sample do not have their corresponding siblings take the
exam during the sample period.

22Postal codes are very geographically specific in Mexico City. Students in the sample belong to more
than 2,800 postal codes.

23See Pop-Eleches and Urquiola (2013), Abdulkadiroglu et al. (2012), Dobbie and Fryer (2011), Clark
(2010), Jackson (2010), de Hoop (2012), and de Janvry et al. (this dissertation).
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(barely) admitted or marginally rejected from that school, and then compare the school
choices of the younger siblings in the marginally admitted and marginally rejected groups.
The rest of this subsection gives the procedure for defining the “marginal” sample of older
siblings for use in the RD analysis, followed by a comparison of this sample with the full set
of older siblings.

The assignment process results in hard cutoff scores for each school that filled all of its
seats and thus had to reject some students; this cutoff is equal to the lowest score among all
admitted students. Define this cutoff as cj for school j. (The cutoff score for a given school
varies across years, but for notational simplicity in the present discussion I assume there is
only one year of data.) If school k is ranked before j on student i’s preference list, including
if j is unlisted, we write k � j. Denote the student’s exam score as si. Then marginal
students for school j are those who:

1. listed school j as a choice;

2. had a score sufficiently close to j’s cutoff score to be in a small window around the
cutoff, where the window size is determined by a preselected bandwidth w: −w ≤
si − cj < w;24

3. scored too low to be admitted to any more-preferred school: si < ck,∀k � j;

This marginal group includes students who were rejected from j (si < cj) and those who
were admitted (si ≥ cj). Note that a student may belong to more than one school’s sample.

Unless further restrictions are imposed, the sample has one undesirable yet subtle charac-
teristic. Some students rank a school k ahead of j, where k has a cutoff score slightly above
j. When this difference is smaller than the bandwidth, so that cj < ck < cj + w, students
with si ≥ ck are missing from j’s sample (because they were admitted to k) but those with
si < ck are not (because they were rejected from k). Thus there is a sudden drop in the
density of students at ck, and the missing students probably have different unobservable
characteristics than those who have the same score but remain in the sample because they
did not choose k. This non-smooth change in unobservables violates the assumption of the
RD design that unobservable characteristics are a smooth function of si.

25 A solution to this
is to add one more restriction that excludes students listing a “just above the cutoff” school:
marginal students for school j are those who:

4. have no more-preferred school in the [cj, cj +w) half-window: ck /∈ [cj, cj +w),∀k � j.

This condition ensures, for a student satisfying assumptions 1 through 3, that the only way
his score affects inclusion in the sample is whether the score falls within the selected window.
There is a disadvantage to this solution, particularly for large bandwidths. It omits students

24The second inequality is strict because the score variable is discrete, so this definition includes w score
values too low to be admitted and w values high enough to be admitted.

25Abdulkadiroglu et al. (2011) recognize this problem as well, although they do not confront as closely-
spaced cutoffs in their data.
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listing more-preferred schools with cutoffs slightly above j’s, which both reduces sample size
and results in estimates of treatment effects that exclude this subsample of students. It also
means that a student who is in the sample for a small bandwidth may leave the sample for
a larger bandwidth, which is not the typical behavior as bandwidth increases. These are
necessary sacrifices in order to satisfy the assumptions of the RD design, but the results are
robust to ignoring condition 4 so these trade-offs are perhaps not very important.

One more restriction is placed on the sample, not to fulfill the assumptions of RD but
to ease interpretation of the treatment effect. Any student who would be unassigned to any
school for one or more scores within the window is omitted. Such students did not list any
school with a cutoff score equal to or less than the lowest score in the window. We do not
know if the unassigned students later chose a school from those that did not fill up or if they
did not enroll at all. Our focus is on the effect of a sibling being assigned to one school or
another, rather than getting into any school or going unassigned. This restriction is another
reason that large bandwidth samples are less representative of the actual sample of students
near a cutoff.

Comparing columns 2 and 3 of Table 1.1, we see that this restricted RD sample is quite
similar to the full sample of older siblings. While the difference in means is statistically
significant for all but one variable, the magnitudes of the differences are negligible for the
demographic variables. There are larger differences in the school choice variables: older
siblings in the RD sample are more likely to request and be assigned to schools in the elite
subsystems. This is because all elite schools are oversubscribed, so students requesting them
are more likely to end up near a cutoff. Older siblings are about as likely to have the same
first choice as their younger siblings in the RD sample (37% probability) as in the full sibling
sample (34%).

1.5 Ordinary least squares analysis

While the hypotheses derived from the social learning model are related to expected utility
and are most naturally tested in a random utility discrete choice model, the OLS analysis
provides well-identified, easily-interpreted evidence about the effect of sibling assignment on
school choice. Much of the logic from the OLS analysis will be applied when estimating
the discrete choice model as well. It is important to note that while I have put forth
two possible channels through which sibling admission can affect younger siblings’ choices
(increased precision of beliefs and increased productive knowledge), I cannot disentangle
these channels empirically. Both channels increase expected utility from a school, which is
the criterion on which the student is choosing.

1.5.1 Method

For all regressions in this paper, exam score is centered to be 0 at the school’s cutoff score,
which (now acknowledging that there are many years of data) is different in each year t:
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s̃ijt ≡ si − cjt. The basic parametric RD specification for a single school j in year t is as
follows:

yijt = δjtadmitijt + f1jt (s̃ijt) + admitijtf2jt (s̃ijt) + εijt

where yijt is the outcome of interest, admitijt is a dummy variable for whether s̃ijt ≥ 0,
f1jt (s̃ijt) and f2jt (s̃ijt) are polynomials in exam score approximating the unobservables that
vary with score, and εijt is an error term. In our case, yijt is an outcome for the younger
sibling, such as choosing school j as his first option, while the explanatory variables are from
the older sibling, since it is the admission outcome of the latter that is hypothesized to affect
the choices of the former. The parameter δjt is the local average treatment effect of the older
sibling’s admission to j in year t on the younger sibling’s outcome for older siblings close to
the cutoff, compared to the counterfactual in which the older sibling is rejected from j and
admitted to the most-preferred school that would actually accept him.

There are many schools and many exam years, so it is necessary to combine the informa-
tion from all oversubscribed schools in order to make statements about the average effect of
admission. To do this, I stack the samples of all oversubscribed school-years and estimate
the RD regression jointly. It would be preferable to include different functions f1jt and f2jt

for each school or school-year, similar to Abdulkadiroglu et al. (2012) who include different
functions for each school. But the very large number of schools makes this infeasible in
most specifications, so I include only one set of polynomials, as in Pop-Eleches and Urquiola
(2013).26 Now including fixed effects for cutoff school j and older sibling’s exam year t, the
stacked specification is:

yijt = δadmitijt + f1 (s̃ijt) + admitijtf2 (s̃ijt) + µj + ηt + εijt (1.5)

The parameter δ is now the local average treatment effect of admission across all school-
years.27

Lee and Card (2008) explain that when the running variable (here, exam score) is dis-
crete, non-parametric RD methods are unsuitable. This is because there is no concept of
moving infinitely close to the cutoff—to compare outcomes above and below the cutoff, it
is necessary to impose a parametric form that allows extrapolation from the discrete point
of support closest to the cutoff. Thus the OLS portion of this paper uses only parametric
linear regressions with varying bandwidths and polynomial degrees to show the robustness
of the results. Bandwidths of 3, 5, and 10 points (about 1/6, 1/4, and 1/2 of a standard

26An exception is when only schools from the elite systems are being considered. In that case there are
only 30 schools, all with large sample sizes, so separate polynomials can be fit for each school and robustness
can be assessed. Indeed, including separate polynomials has almost zero effect on the treatment effect or its
standard error.

27Abdulkadiroglu et al. (2012) note that if the f functions were allowed to vary by school-year, then δ̂

would be a variance-weighted average of the δ̂jt’s. Since the f functions do not vary here, δ is not numerically
identical to the variance-weighted average, but the quantity estimated can be thought of similarly.
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deviation in the population exam score distribution, respectively) are used.28 Because there
are few points of support, it is important to choose a polynomial order that fits the data
adequately without overfitting. Following Lee and Lemieux (2010), I select the polynomial
order that minimizes the Akaike Information Criterion (AIC).29 Lee and Card (2008) show
that when the running variable is discrete, standard errors should be clustered at the level
of the running variable. Since this results in few clusters in the present application, the wild
cluster bootstrap from Cameron et al. (2008) is used to obtain p-values for the coefficients
of interest under the null hypothesis of zero effect.

1.5.2 Average effect of older sibling admission on school choice

The OLS RD estimates give consistent causal evidence that students are more likely to apply
to a school as their first choice if an older sibling was admitted there. This evidence is robust
to the choice of bandwidth and the parameterization of the running variable. The estimated
impact of older sibling admission on first choice demand for the cutoff school is presented in
Table 1.2 for several choices of polynomial order and bandwidth. For example, the estimated
effect of older sibling admission is 6.8 percentage points in the 3-point linear specification.
This estimate is large compared to the corresponding sample average of 19% choosing the
cutoff school. The sibling admission-first choice relationship is illustrated graphically in
Figure 1.1.

Bandwidth selection has implications beyond the usual bias-efficiency trade-off, as ex-
plained in Section 1.4.3. Recall that, for a given bandwidth, the sample only includes stu-
dents who 1) would be admitted to the cutoff school for every point value above the cutoff
and within the bandwidth, and 2) would not be left unassigned to any school for any point
value below the cutoff and within the bandwidth. As a result, larger bandwidths exclude a
significant proportion of students. A bandwidth of 3 only excludes 29% of students, almost
entirely due to the “not unassigned below the cutoff” restriction. A bandwidth of 10 ex-
cludes 58% of students, with most of the additional exclusion driven by the “no other schools
above the cutoff” restriction. Because estimates based on smaller bandwidths use a more
representative sample of students near cutoffs, they are preferred when sample size allows for
reasonably precise inference. The remaining tables report estimates based on bandwidths of
3, 5, and 10 points, while figures use a bandwidth of 5. When discussing point estimates, I

28Note that because of the sample selection resulting from condition 4 above, it is not possible to use
a bandwidth selection algorithm (e.g. cross-validation) that gives the optimal bandwidth. This is because
increasing the bandwidth causes some observations to drop out of the sample, as explained in section 1.4.3,
so that the “optimal” bandwidth given by a cross-validation procedure might be undesirable if it selects
many students out of the sample, reducing the representativeness of the sample. The empirical estimates
will illustrate this issue.

29Lee and Card (2008) and Lee and Lemieux (2010) suggest another goodness-of-fit test that compares
each polynomial specification to specifications that also include dummy variables for each point of support.
Joint significance of the dummies implies that a higher-order polynomial may provide a better fit. Lee and
Lemieux (2010) caution, however, that for small bandwidths this test is ineffective at ruling out high-order
polynomials, which is a concern in this application. Hence the AIC is used here.
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will focus on the 5 point bandwidth results unless otherwise noted. The point estimates of
interest are of the same sign and almost always similar in magnitude, regardless of bandwidth
choice.

The sibling admission effect is persistent across schools in both elite and non-elite sub-
systems. Table 1.3 and corresponding Figure 1.2 divide the cutoff schools into elite and
non-elite groups. Column 1 reproduces the average effect on first choice demand for all
cutoff schools. Column 2 shows that the admission effect for elite schools is 9.5 percentage
points compared to the sample mean of 32%. Column 3 reports the effect for non-elite cutoff
schools, where the dependent variable is a dummy for whether the cutoff school was the
younger sibling’s first non-elite choice. This is because most students choose an elite school
as their first choice, so that most adjustment in non-elite preferences takes place lower in
the choice list. The effect is 10.1 percentage points, compared to an average of 25%.

The admission effect for most schools is positive. Figure 1.3 shows the distribution of
estimated admission coefficients, obtained by estimating the RD specification separately for
each school while using a bandwidth of 5 points. Panel a gives the distribution of admission
effects on first choice demand for elite schools only, which have large corresponding sam-
ple sizes (between 1,555 and 12,112 students) and thus fairly precise estimated effects. All
but two of the 30 schools have positive estimated effects of admission, suggesting that the
risk-reducing and productive knowledge-increasing effects of admission dominate for most
schools. Panel b gives the distribution of the effect on first non-elite choice for non-elite cutoff
schools with 50 or more observations in their respective RD samples. Here, estimation error
overstates the variance of the distribution substantially, such that the estimated effect of ad-
mission is negative for 21% of schools. To account for this, I estimate the true variance of the
coefficients, following Aaronson et al. (2007).30 Performing this correction and assuming a
normal distribution of admission coefficients, it is estimated that 8% of non-elite schools have
a negative admission effect. Hence it appears that the expected utility-increasing channels
dominate for most schools.31

The effect of older siblings’ school assignment on demand does not appear to be driven
by a direct effect of sibling presence on match quality. The most obvious channel through
which sibling assignment could affect match is if attending school together was convenient
for the student or parent, for example in traveling to and from school or attending the same
school functions. But the estimated effect of admission is similar between siblings who are
close enough in age to attend high school at the same time (two or fewer years apart) and
siblings who are too far apart in age to attend contemporaneously. Table 1.4 shows this result.

30This is done by subtracting the average estimation error from the variance of the estimated coefficients:

E
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δ̂′δ̂
]
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)]
.

31One explanation for this result, even in the absence of productive learning, is that most of the uncertainty
about a school comes from imprecise beliefs about idiosyncratic match quality rather than about the school’s
average level of attributes. In the former case, a similar proportion of students receiving a signal from a
particular school would find out that it is better for them than expected and others would find out it is worse,
while in the latter case, the surprise to beliefs for students within one school would be highly correlated and
would thus result in negative demand effects for some schools.



21

Column 1 reproduces the results for all siblings. Columns 2 and 3 report the admission effect
separately for siblings who are 1-2 and 3-5 years apart, respectively. These results are shown
graphically in Figure 1.4. Also reported in Table 1.4 is the estimated difference in admission
effects between these two groups. This difference is small and statistically insignificant for all
choices of bandwidth: the largest estimated difference in admission effects is -1.2 percentage
points compared to the average effect of 7.7 percentage points. Thus it does not appear that
students choose their siblings’ schools simply because they want to attend the same school
contemporaneously.

Furthermore, the effect of admission is not confined to demand for the older sibling’s
school. Consistent with Hypothesis 3, admission leads to the student ranking additional
schools from the same subsystem, other than the older sibling’s exact school. Table 1.5,
accompanied by Figure 1.5, shows that this is the case. The sample definition here is
different than in the previous analysis because it only considers students who would leave
their subsystem if rejected from the cutoff school, and relaxes the “no other schools above
the cutoff” restriction to “no schools from other subsystems above the cutoff” instead. The
counterfactual to admission to the threshold school in this case is admission to a school in a
different subsystem.

Column 1 shows that when the older sibling is admitted to a school, the younger sibling
ranks on average .22 more schools in the same subsystem, excluding the older sibling’s school.
Columns 2 and 3 show, again, that the estimated effects are almost identical for the closely-
spaced and far-apart sibling samples. The admission effect on subsystem demand and the
persistence of admission effects for students far apart in age cannot be explained by a direct
effect of sibling presence on match quality.

1.5.3 Effect of good versus bad surprises on school choice

The model predicts that a signal’s impact on expected utility (and thus demand) depends
on the sign and magnitude of the surprise to match quality. Surprises to match quality are
unobserved by the econometrician, but one available proxy is an indicator for whether the
older sibling graduates from high school or not. The logic for using this proxy is as follows.
One contributor to dropout is a bad match between student and school. That is, there are
students who will drop out from some schools but not others. Siblings are often similar in
their preferences and abilities, so if the older sibling experiences a negative surprise to match
quality (proxied by dropout), this suggests to the younger sibling that the school may not
be a good match for him either. If younger siblings of dropouts and graduates have the
same prior beliefs about match quality of the cutoff school, so that dropout represents only
a surprise to match quality and not a reflection of the prior, then comparing the admission
effect for graduates versus dropouts gives an indication of whether younger siblings change
their demand in response to new information about match quality. The assumption that
dropout proxies only for a surprise to match quality, rather than proxying for prior beliefs,
will be examined at the end of this section.
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Any estimates of differential admission effects with respect to dropout must be treated as
suggestive rather than rigorously causal, because dropout is not randomly assigned (indeed,
if it were, it would have no informational content for the student). Consider the following
equation that will be estimated:

yijt = δadmitijt + f1 (s̃ijt) + admitijtf2 (s̃ijt) + µj + ηt+

graduateijt {αadmitijt + g1 (s̃ijt) + admitijtg2 (s̃ijt) + νj + ϕt}+ εijt,
(1.6)

where α̂ is equivalent to the result from estimating the simple RD equation separately for
graduates and dropouts and then taking the difference of the estimated admit coefficients.
The dependent variable could be either of those used above: selecting the cutoff school as
the first choice, or number of other schools chosen in the same subsystem. If dropout were
randomly assigned, then α̂ would give the additional effect of admission when the older
sibling graduates. The problem arises when cor

(
graduateijt × admitijt, εijt

)
6= 0, so that

students who are differentially more or less likely to drop out when admitted to the cutoff
school are systematically more or less likely to be emulated, or have family characteristics
that affect the likelihood of choosing the cutoff school.

The empirical analysis addresses the potential issue of endogenous heterogeneous effects
in three ways. First, it considers multiple samples and argues that the pattern in the results
is consistent with the social learning model in which positive surprises increase demand for a
school more than negative ones. Second, it controls for the older sibling’s middle school grade
point average, which is a significant predictor of high school dropout, and its interactions
with admission and exam score. Finally, it may be that the sibling admission effect is
heterogeneous with respect to the school’s graduation rate or other school characteristics,
not the sibling’s individual graduation outcome. To control for this, separate admission
coefficients are estimated for each cutoff school so that the admission-graduation interaction
term gives the estimated heterogeneity due to sibling dropout conditional on cutoff school
characteristics.

Keeping in mind the caveats associated with using graduation status to proxy for a
surprise to match quality, as well as the data limitations in using the graduation data, Table
1.6 shows that the admission effect is heterogeneous with respect to older sibling dropout.
Sample size is a problem, due to the fact that graduation data only exist for older siblings
from the 2005-2007 cohorts and that graduation outcomes are missing for students at UNAM
schools. This necessitates inclusion of all sibling pairs 1 to 5 years apart in age. A sibling
one year below his older sibling still has most of an academic year to learn about his sibling’s
school, since school begins in the early fall and preference listings are not due until February
or March. Although graduation has not occurred yet for the siblings who are 1 or 2 years
apart, in Mexico City most dropout occurs in the first or second year and it should be
apparent early on whether match quality was good or bad.

The effect of admission on same-school demand is higher when the older sibling gradu-
ates, consistent with Hypothesis 2. Column 1 gives the differential effect of admission on
application to the cutoff school with respect to graduation status. The coefficient of interest
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is on “admission × older sib graduation” which is the additional impact of admission when
the sibling graduates instead of dropping out. On average, admission has a 6.1 percentage
point higher impact on first choice preference for the cutoff score when the older sibling grad-
uates.32 The differential effect is illustrated in Figure 1.6, Panel a. Column 2 controls for
an interaction between admission and older sibling GPA while estimating each uninteracted
admission coefficient separately. The estimates remain very similar (with the exception that
the differential effect declines for the 10-point bandwidth and is no longer significant).

In order to explore the issue of endogenous differential dropout, column 3 estimates the
impact on the first non-elite choice of students whose siblings were at the threshold of a
non-elite school. This, in part, addresses the possibility that students whose older siblings
are more able to graduate in the cutoff school are more likely to choose better schools. In
particular, we might worry that older siblings able to graduate from elite schools are from
families with high academic expectations who push the younger sibling to apply as well.
Focusing on the non-elite preferences of students with siblings at non-elite cutoffs, we are
likely to mitigate this confounding factor to some degree. The differential effect here is large,
11 percentage points compared to a sample mean of 24%. Graphical results are in Figure 1.6,
Panel b. Adding controls in column 4, the estimates remain almost identical in magnitude
and statistical significance.

The evidence for Hypothesis 4, which predicts heterogeneity in the effect on demand
for other schools in the same subsystem, is weaker. Columns 5 and 6 show the differential
impact on the number of other schools selected in the cutoff school’s subsystem, restricting
the sample to cases where the older sibling is at the margin of a subsystem. Both with
and without controls, the differential effect is only statistically significant for the 10-point
bandwidth. The (insignificant) estimated differential effect when including controls is .25
additional schools selected in the cutoff subsystem. Figure 1.6, Panel c illustrates this re-
lationship. Thus, between the same-school and weaker subsystem effects, it appears that
younger siblings react to signals from siblings with “good” and “bad” outcomes differently,
learning about match quality and updating their choice behavior accordingly.

Is the dropout measure proxying for the prior belief about match quality rather than a
surprise due to admission? That is, did admitted dropouts simply have lower match quality
and know it even before admission? To examine this possibility, Table 1.7 reproduces Table
1.6 except that it estimates the effect of admission of the younger sibling on the older sibling’s
choices, allowing the effect to vary with the younger sibling’s graduation outcome. If the
differential effect is large and positive, as in the case of the older sibling effect, then graduation
is capturing the prior belief about match quality, which is correlated within the family. The
estimated differential effects in Table 1.7 are all smaller than their counterparts in Table 1.6,
and all are statistically insignificant. Only for the 5-point bandwidth estimates of subsystem
demand are the point estimates at least half as large as their Table 1.6 counterparts. These

32The estimates imply a smaller average effect of admission than did previous tables. This is because the
UNAM cutoff schools are missing from the sample, and much of the admission effect on first choice demand
comes from the elite UNAM and IPN subsystems.
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results are not consistent with the graduation of one sibling serving primarily as a proxy for
the prior belief of the other sibling.

1.6 Discrete choice model of school choice

In this section, the basic RD design is extended to a discrete choice model of school choice.
This approach has two advantages over the OLS methods above. First, it directly tests the
social learning model’s hypotheses regarding the effect of peer signals on students’ expected
utilities. Testing these hypotheses gives more insight into the substitution patterns exhibited
by students in response to new information than the OLS analysis does. In particular, the
OLS evidence regarding the effect of peer signals on subsystem preferences is not tied directly
to the model’s hypotheses, while the discrete choice results are. Second, it allows for a natural
parameterization of the impact of a peer signal: the change in willingness to travel to that
school or another school in the same subsystem, which with further assumptions can then
be translated into a willingess to pay measure.

1.6.1 Method

The expected utility formulation from the theoretical model in Section 1.3 can be used as
the basis for a reduced form discrete choice model of school choice. Writing expected utility
for younger siblings with no signal (equation 1.1) or with a signal (equation 1.2), we have:
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Using one equation to write a younger sibling’s expected utility in either state, either with
a signal from an admitted older sibling or without, we have:

U∗ij = αij + δijadmitij

so that αij = U∗0ij and δij = U∗1ij − U∗0ij. To estimate this model with a discrete choice
framework, we can write:

U∗ij = δadmitij + εij

where the error term εij captures heterogeneity in the mean of the prior, its variance, initial
productive knowledge, and in the peer admission effect δij about its mean. The estimated

effect of admission δ̂ is biased for the same reason as in the OLS specification: a student
with a sibling admitted to j probably had a more favorable prior about j than a student
without an admitted sibling, due to correlated preferences and constraints within the family.
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To address this bias, I apply the principles from the OLS RD design to the utility speci-
fication. The sample is restricted to students whose older siblings were close to a cutoff and
specifies as the choice set all schools from which the student could choose in his exam year.
To model the fact that students will have a higher preference for the older sibling’s cutoff
school, I add an indicator variable cutij = 1 when i’s sibling is in school j’s cutoff sample
and 0 otherwise. Utility from the cutoff school is allowed to vary with respect to the older
sibling’s COMIPEMS exam score:

U∗ij = θcutij + δ (cutij × admiti) + f1 (s̃i) cutij + f2 (s̃i) (cutij × admiti) + γdistij + εij

where admiti = 1 when the older sibling scores high enough for admission to her cutoff
school, 0 otherwise, f1 and f2 are functions of centered exam score, and distij is the distance
between student and school. Allowing expected utility to be higher or lower for cutoff
schools (through θ) and for this expected utility to vary around the cutoff, δ captures only
the discontinuous jump in expected utility caused by the peer crossing the cutoff and being
admitted. Translating this into an easily interpreted effect, −δ/γ gives the average marginal
willingness to travel to the cutoff school due to sibling admission.

A weakness of this specification is that it implicitly assumes that the counterfactual to
admission was that the older sibling did not go to school anywhere, meaning no information
was received at all. In reality, rejection from the school above the cutoff implies admission
to another school below the cutoff. To model this, I define the variable belowij = 1 when j
is the school that the older sibling would or did attend upon scoring too low for admission
to the cutoff school.33 Then the specification can be expanded to include the effect of having
a sibling admitted to the school below the cutoff:

U∗ij = θcutij + δ (cutij × admiti) + f1 (s̃i) cutij + f2 (s̃i) (cutij × admiti)

+θbelowij + δ (belowij × (1− admiti)) + f
1

(s̃i) belowij + f
2

(s̃i) (belowij × (1− admiti))

+γdistij + εij

The interpretation of δ is analogous to δ: the average effect of admission to the “below”
school on the marginal expected utility from attending there.

Incorporating subsystems into the model is straightforward. The social learning model
predicts that on average, older sibling admission increases the marginal expected utility
from that school’s subsystem. The goal, then, is to allow marginal expected utilities to
vary with older sibling admission while addressing the bias from family members having
correlated preferences for subsystems. The RD approach works here as well. If there are
M subsystems, let X1

j , ...X
M
j be dummy variables equal to 1 if school j belongs to the

corresponding subsystem and 0 otherwise. Define cutsubij equal to 1 if j belongs to the

33Under this specification, the sample is limited to students whose older siblings had only one school below
the cutoff and within the bandwidth, i.e. rejection from the cutoff school could only result in admission to
a single school, no matter how many points were lost within the bandwidth. Otherwise the “below” school
is not uniquely defined.
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cutoff school’s subsystem and belowsubij equal to 1 if j belongs to the “below” school’s
subsystem, 0 otherwise. Incorporating these variables into the RD specification, we have:

U∗ij = θcutij + δ (cutij × admiti) + f1 (s̃i) cutij + f2 (s̃i) (cutij × admiti)

+θbelowij + δ (belowij × (1− admiti)) + f
1

(s̃i) belowij + f
2

(s̃i) (belowij × (1− admiti))

M∑
`=2

X`
j

(
π` + η`cutsubij + η`belowsubij

)
+ cutsubij [φadmiti + h1 (s̃i) + h2 (s̃i) admiti] +

belowsubij
[
φ (1− admiti) + h1 (s̃i) + h2 (s̃i) (1− admiti)

]
+ γdistij + εij.

(1.7)

This specification includes subsystem dummy variables (π`) and allows for marginal ex-
pected utilities to vary depending on whether the cutoff school belongs to j’s subsystem
(through subsystem-specific effects η`), the older sibling’s centered exam score (h1 and h2),
and whether the peer was admitted to the cutoff school (φ, the coefficient of interest, with
−φ/γ the average marginal willingness to travel to a school in the cutoff school’s subsystem
due to sibling admission). The corresponding underlined coefficients are all analogous except
that they apply to the subsystem of the school attended by the older sibling if she scores
below the cutoff (with φ/γ being the average marginal willingness to travel to a school in
the “below” subsystem due to sibling admission).

If εij is well-approximated by an i.i.d. extreme value type I distribution, then the param-
eters of this model can be estimated with a conditional logit. But the model implies that
preferences for subsystems are heterogeneous in the population, inducing a correlated error
structure. It is more appropriate to estimate a nested logit where subsystems are the nests, so
that idiosyncratic preferences may be correlated within a subsystem and thus the restrictive
independence of irrelevant alternatives assumption need not apply across nests.34 Defining
Vij as containing all terms in equation 1.7 except εij, the contribution to the log-likelihood
function from each student i choosing school k in subsystem m is:

Li = log

eVik/λ
(∑

j:Xm
j =1 e

Vij/λ
)λ−1

∑M
`=1

(∑
p:X`

j=1 e
Vip/λ

)λ
 ,

where 1− λ is a measure of how correlated the error terms are for alternatives in the same
subsystem. The model is estimated by maximizing this log-likelihood with standard MLE
methods.

The test of Hypothesis 1 is whether δ̂ > 0 and δ̂ > 0 (sibling admission to a school
increases, on average, expected utility from attendance) and the test of Hypothesis 3 is

whether φ̂ > 0 and φ̂ > 0 (sibling admission to a school increases, on average, marginal

34Train (2009) points out that the nested logit is analogous (but not identical) to a mixed logit with
random coefficients for each nest. This allows us to obtain some of the flexibility and enhanced realism of a
mixed logit model without the computational burden of estimating a mixed logit on such a large data set.
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expected utility from attending schools in the same subsystem). The tests of Hypotheses

2 and 4 are whether δ̂ and δ̂, and φ̂ and φ̂, are greater when the sibling graduated than
when she did not. These can be tested by estimating the nested logit based on equation 1.7,
including interactions of every covariate with a dummy variable equal to 1 when the older
sibling graduated and 0 otherwise. Denoting each interaction term with a g superscript, the
test of Hypothesis 2 is that δ̂g > 0 and δ̂g > 0, while the test for Hypothesis 4 is that φ̂g > 0
and φ̂g > 0.

1.6.2 Results

Estimating the discrete choice model yields direct evidence for each of the hypotheses of
the social learning model. Table 1.8 provides selected estimated parameters from the nested
logit specification in equation 1.7, estimated for a bandwidth of 5 with a piecewise-linear
control function. An additional covariate, the mean COMIPEMS exam score of students
admitted in the previous year, is also included. This is to explain some of the variance
in within-subsystem preference. The sample in column 1 consists of all students from the
RD sample who are 1) within the 5-point bandwidth, 2) have only one counterfactual school
above the cutoff and within the bandwidth, and 3) have only one counterfactual school below
the cutoff and within the bandwidth.35

Admission to the cutoff school increases expected utility from that school, consistent
with Hypothesis 1. Similarly, rejection from the cutoff school (and thus admission to the
school below the cutoff) increases the expected utility from the school below the cutoff.
We can interpret these as the average marginal effect of sibling admission on willingness to
travel (WTT) to that school by taking the ratio of the admission coefficient to the distance
coefficient. This calculation gives an increase in WTT of 1.8 km (.247/.138) for the school
above the cutoff and 3.0 km (.410/.138) for the school below the cutoff. The model does not
demand this asymmetry, but it does permit it. If the younger sibling has a less precise prior
on match quality for the school below the cutoff, then the peer signal will be weighted more
highly and thus the average change in expected utility will be higher. This is plausible; the
older sibling, whose information set is correlated with that of her younger sibling, has already
ranked this school as less preferred than the school above the cutoff. One of the possible
reasons for this is greater uncertainty about match quality, in addition to differences in
expected match quality.

The evidence also supports Hypothesis 3: when the older sibling is on the margin between
one subsystem and another, admission to the subsystem above the cutoff increases WTT to
all other schools in that subsystem by 1.5 km (.213/.138). Admission to the system below
the cutoff increases WTT to all other schools in the below subsystem by 1.7 km (.241/.138).
These results support the OLS findings, which could only provide suggestive evidence on the

35While the correlated error structure induced by the discrete running variable (Lee and Card (2008)) is
still a concern in this case, unclustered analytic standard errors are reported. Thus the reported standard
errors are too large. The proper procedure for bootstrapping standard errors for MLEs with few clusters is
still an open question.
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subsystem effect. The total change in WTT for the cutoff school when the student is at the
boundary of a subsystem is obtained by summing the effect of admission to the school with
the effect for admission to the subsystem: 1.8 + 1.5 = 3.3 km for the school above the cutoff
and 3.0 + 1.7 = 4.7 km for the school below. The intra-nest correlation parameter λ is .44,
where 1 would indicate no heterogeneity in preference for subsystems (i.e. the conditional
logit).

Column 2 restricts the sample to students 3 to 5 years apart, so that students do not
attend high school at the same time. The estimated effects of admission decline slightly, but
the coefficients of interest remain strongly significant.

Evidence for heterogeneous effects of admission with respect to graduation is provided
in column 3. There is strong, albeit still suggestive, evidence for heterogeneous same-school
effects (Hypothesis 2) and somewhat weaker evidence for heterogeneous subsystem effects
(Hypothesis 4). The coefficients of interest are those giving the differential effect of admission
by graduation status, labeled “Graduated × admission.” The effect of admission on WTT
to the school above the cutoff is 3.1 km (.472/.152) higher when the older sibling graduates,
proxying for a positive surprise to match quality. Similarly, the WTT effect for the school
below the cutoff is 3.7 km (.558/.152) higher when the sibling graduates, although these
two effects are not statistically distinguishable from each other. The point estimates also
suggest heterogeneous subsystem effects, although the estimates are less precise: admission
to the school above the cutoff increases WTT to all schools in that subsystem by 2.2 km
(.328/.152) more when the sibling graduates (p-value=.12), while the differential effect for
the subsystem below the threshold is 2.9 km (.446/.152, p-value=.05).

Taken together, the results provide consistent evidence for the social learning model
of school choice and agree with the OLS findings. Peer signals increase, on average, the
expected utility from the peer’s school and schools in the same subsystem. Better surprises
to expected match quality (proxied here by sibling graduation) result in a larger increase in
demand for the school and its subsystem.

1.6.3 Magnitude of estimated effects

While the OLS estimates gave the effects of sibling admission on choice probabilities and the
discrete choice estimates gave effects on willingness to travel, additional assumptions will
allow for further interpretation of the effect sizes. Taking the average WTT effect between
the schools above and below the cutoff (1.8 km and 3.0 km, respectively), we have a 2.4
km average increase in WTT due to sibling admission. But students must travel both to
and from school, so this measure should be doubled to 4.8 km/day. Students in Mexico
have 195 instructional days per year, so the annualized effect on WTT is 4.8 ∗ 195 = 936
km/year. Translating this measure to travel time is difficult because students travel using a
combination of subway, private bus, driving, and walking. Assuming that the average speed
of travel over these modes during rush hour in Mexico City is 10 km/hour, then students
are willing to spend 936/10 = 93.6 additional hours per year traveling as a result of sibling
admission.
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The time cost estimate can be translated into a willingness to pay (WTP) estimate as
well. According to the National Survey of Occupation and Employment (ENOE), the average
urban teen wage is $2/hour. Taking this as the average valuation of time for students in
the estimation sample, the change in WTP is $187/year. High school is three years long in
Mexico City, so the total effect on WTP is $187∗3 = $561. This is likely to be a conservative
estimate because the WTT measures are in terms of straight line distance rather than true
commuting distance, and because traveling farther may require paying an additional bus
fare of about $.50/day. As a point of comparison, median self-reported family income in the
2011 COMIPEMS student demographic survey is $360/month. Hence it appears that the
effect of sibling admission on demand is quite significant.

1.6.4 Alternative explanations

The discrete choice and OLS results are consistent with the social learning model of school
choice. Are there alternative models that could explain these findings? The simplest can-
didate, already mentioned, is that students want to go to school with their peers (in this
case, siblings). But the effect of older sibling admission on same-school preference persists
when the siblings are different enough in age that they do not attend school at the same
time. Nor can it be only that older peers introduce the younger students to their school’s
social network, because this does not explain why admission to one school in a subsystem
increases demand for other schools in the same subsystem. And correlated preferences within
the family cannot explain the results, because the RD design has explicitly accounted for
preferences by limiting the analysis to narrow windows around the cutoffs and controlling
for unobserved characteristics with polynomials in COMIPEMS score.

One might wonder whether having a sibling at a school or subsystem increases the salience
of that option for students, so that they are more likely to think of that school or subsystem
when writing down their preferences. But the process of school selection is one in which stu-
dents have ample time to consider their options, and the stakes of their decisions are high. It
is thus difficult to believe that salience is the driving factor behind the large observed effects.
Also, the cutoff schools being analyzed had already been chosen by the older sibling, so it
is likely that the younger sibling is aware of the school’s existence whether the older sibling
was admitted or rejected. Furthermore, students react differently depending on whether the
sibling drops out, even though both outcomes make that school salient to the student.

Finally, could it be that younger students set expectations for their school assignment
by observing their older siblings, and then choose accordingly? That is, do students who see
a sibling rejected from elite schools decide that they should not even apply to them? It is
unlikely. Cutoff scores for schools are public information, and students almost certainly learn
their siblings’ COMIPEMS exam scores. Students who just missed a cutoff are well aware of
it. It is doubtful that a student would see his sibling miss admission by one point and then
decide he has no chance at admission himself. Moreover, there is no penalty to applying to
a high-cutoff school, so even a discouraged student has no reason not to try. Combined with
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the result that the effects persist even in non-elite, lower-cutoff schools, these arguments cast
doubt on such an explanation.

1.7 Validity checks

This section presents two standard checks for the validity of the RD design. Both provide
evidence that the design produces valid inference.

The first check is a visual inspection of whether the density of the running variable
(centered COMIPEMS score) suddenly increases or decreases as it crosses the cutoff, as
suggested by McCrary (2008). This might occur if the younger siblings of rejected students
were less likely to apply to high school, for example if rejected students were more likely to
drop out of school and younger siblings followed that example. Another, less likely possibility
is that admission induces behavior that makes it impossible to match siblings to each other,
such as changing their phone number or middle school. Figure 1.7 shows the density for a
bandwidth of 5 for the RD sample of older siblings (corresponding to column 1 of Table 1.3).
There is no clear change in density across the threshold, and indeed the density is nearly
uniform over this domain. It does not seem that admission to the cutoff school has any effect
on high school application behavior or matching success.36

The second check is to repeat the RD OLS regression, this time using exogenous student
characteristics as the dependent variables. Imbens and Lemieux (2008) propose this as a
way of verifying that exogenous characteristics do not suddenly change at the cutoff (which
would call into question whether the endogenous variable would be balanced in the absence
of a treatment effect). In order to jointly test that the admission coefficient is zero for all
tested exogenous characteristics of the older sibling, seemingly unrelated regression (Zellner
(1962)) is used.37 Table 1.9 shows the results of these regressions for each of the chosen
bandwidths. Only one of the admission coefficients is statistically significant at the 10%
level and in no specification are the admission coefficients jointly significantly different from
zero. The point estimates are quite precise as well, ruling out even fairly small covariate
imbalances. Thus both checks yield support for the validity of the RD design.

1.8 Conclusion

This paper finds strong evidence for a model of school choice in which peer networks play
an important role in overcoming incomplete information about match quality and building
productive knowledge. Having an older sibling at a particular school increases revealed
preference not only for that school, but also for other schools in the same subsystem. This

36While McCrary (2008) presents a formal test for a jump in density at the threshold, his non-parametric
approach does not apply well to the present case of a discrete running variable with relatively few points of
support. Nevertheless, the visual evidence is compelling in this case.

37Unclustered standard errors are reported, meaning that (in expectation) the null hypothesis of no effect
is rejected too often.
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relationship persists even when the sibling is no longer in attendance, showing that it does
not result from a direct benefit from contemporaneously attending the same school. More
positive surprises result in more positive effects on demand, consistent with learning about
match quality.

What policy lessons can be taken from this result? For example, while selective school
application has not been a particular focus of this paper (and indeed, elite school application
rates are quite high in Mexico City), we may wonder what these results suggest for policy-
makers hoping to encourage such behavior in other contexts. One lesson is that aggregate
school-level information is not a perfect substitute for the more subjective, individually-
tailored information that students currently obtain from their networks. Match quality for
the average student may already be known in the population, but idiosyncratic match qual-
ity is uncertain and cannot be ascertained from high-level data. Providing individualized
information on match quality, some of which might also be ex post productive, is not a trivial
task for individual schools (as in the case of colleges) or public school systems. One approach
already being undertaken at the tertiary level is to deploy the school’s alumni network to
connect with prospective students, providing them with personalized information through
informal meetings and repeated electronic communication. But, as pointed out in Hoxby
and Turner (2013), such labor-intensive interventions are expensive. Recruitment offices also
have a role to play, if they can provide the kinds of individual-specific information desired by
students. Public school systems face the challenge of providing individualized information
about all member schools. Furnishing printed material containing data beyond school-level
aggregates is one way to begin.

The findings offer a mixed appraisal of school choice mechanisms. On the negative side,
it appears that the correlation observed by Hoxby and Avery (2012) is indeed causal, at least
in this context. Students with a low concentration of peers attending a particular school or
set of schools are less likely to apply there, when under full information they might do so.
But this is also an endorsement of school choice, because it acknowledges a key rationale for
its existence: students have access to a wealth of relevant information, some from their peer
networks, that administrators cannot hope to internalize themselves. School choice allows
students to put all of this information to work in the matching process. Creative policies
that augment the information set of students in disadvantaged peer networks may help to
retain the positive features of choice mechanisms while lowering the informational barriers
that reduce their effectiveness.

1.9 Appendix: Derivation of model hypotheses

The following are derivations of the hypotheses presented in sections 1.3.4 and 1.3.5.

Hypothesis 1: Eij

[
U∗1ij − U∗0ij

]
> 0.
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Proof: Equation 1.3 gives the expected change, over all students and schools, in expected
utilities when a signal is received. The increase in productive knowledge rj clearly increases
expected utility, so I suppress the rj terms here. This expectation is:

Eij

[
U∗1ij − U∗0ij

]
= Eij

[(
X̂1
ij −X0

ij

)
βi +
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2

∑
`
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τ 0
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(
τ 0
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Substituting this result back into the original equation, we have:
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where the inequality holds because the τ and ρ terms are all positive by definition. �
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Hypothesis 2: All else equal,
∂(U∗

1ij−U∗
0ij)

∂Pijβi
> 0.

Proof: Treating βi and X0
ij as fixed:
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where the inequality holds because the τ terms are positive. �

Hypothesis 3: indexing the peer’s school by j and fixing another school kj in j’s subsystem

sj, Eij

[
U∗1ikjsj − U

∗
0ikjsj

]
> 0.

Proof: This is almost identical to the proof for Hypothesis 1, except that the student is only
receiving information about the shared attribute µis. From equation 1.4, again excluding
the effect of productive knowledge, the expectation of the change in expected utility from
any other school in the same subsystem is:
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Using the steps from the proof of Hypothesis 1, we have that Eij [µ̂1
is] = Eij [µ0

is]. So:

Eij

[(
µ̂1
is − µ0

is

)]
+ Eij

[
ρ

2

τ qis
τµis (τµis + τ qis)

]
= Eij

[(
µ0
is − µ0

is

)]
+ Eij

[
ρ

2

τ qis
τµis (τµis + τ qis)

]
= Eij

[
ρ

2

τ qis
τµis (τµis + τ qis)

]
> 0

where the inequality holds because the τ and ρ terms are all positive. �

Hypothesis 4: Suppose that schools j and k are in the same subsystem s. Then all else

equal,
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where the inequality holds because the τ terms are positive. �
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1.10 Figures

Figure 1.1: Effect of older sibling admission on younger sibling’s first choice preference for
same school

Variable on vertical axis is proportion of students listing their older siblings’ cutoff school
as their first choice. Variable on horizontal axis is older sibling’s COMIPEMS exam score,
centered to be 0 at the corresponding cutoff score. Fitted lines are from a linear fit.
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Figure 1.2a: Effect of older sibling admission, elite cutoffs: effect on first choice

Variable on vertical axis is proportion of students listing their older siblings’ cutoff school
as their first choice or first non-elite choice. Variable on horizontal axis is older sibling’s
COMIPEMS exam score, centered to be 0 at the corresponding cutoff score. Fitted lines are
from a linear fit.
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Figure 1.2b: Effect of older sibling admission, non-elite cutoffs: effect on first non-elite choice

Variable on vertical axis is proportion of students listing their older siblings’ cutoff school
as their first choice or first non-elite choice. Variable on horizontal axis is older sibling’s
COMIPEMS exam score, centered to be 0 at the corresponding cutoff score. Fitted lines are
from a linear fit.
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Figure 1.3a: Distribution of estimated admission coefficients, elite cutoffs: effect on first
choice

Histogram is of estimated coefficients on older sibling admission, estimated from separate
regressions for each cutoff school with bandwidth of 5. Coefficients are for elite cutoff schools.
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Figure 1.3b: Distribution of estimated admission coefficients, non-elite cutoffs: effect on first
non-elite choice

Histogram is of estimated coefficients on older sibling admission, estimated from separate
regressions for each cutoff school with bandwidth of 5. Coefficients are for non-elite cutoff
schools with at least 50 observations.
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Figure 1.4a: Effect of older sibling admission, siblings 1 or 2 years apart

Variable on vertical axis is proportion of students listing their older siblings’ cutoff school
as their first choice. Variable on horizontal axis is older sibling’s COMIPEMS exam score,
centered to be 0 at the corresponding cutoff score. Fitted lines are from a linear fit.
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Figure 1.4b: Effect of older sibling admission, siblings 3 to 5 years apart

Variable on vertical axis is proportion of students listing their older siblings’ cutoff school
as their first choice. Variable on horizontal axis is older sibling’s COMIPEMS exam score,
centered to be 0 at the corresponding cutoff score. Fitted lines are from a linear fit.
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Figure 1.5: Effect of older sibling admission on number of other schools selected in the cutoff
school’s subsystem

Variable on vertical axis is number of schools selected in the subsystem to which the older
sibling’s cutoff school belongs, excluding the cutoff school. Variable on horizontal axis is
older sibling’s COMIPEMS exam score, centered to be 0 at the corresponding cutoff score.
Fitted lines are from a linear fit.
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Figure 1.6a: Effect of older sibling admission, by graduation outcome: effect on first choice

Variable on vertical axis is proportion of students listing their older siblings’ cutoff school
as their first choice. Cutoff schools from the UNAM subsystem are excluded because there
is no proxy for graduation available from them. Variable on horizontal axis is older sibling’s
COMIPEMS exam score, centered to be 0 at the corresponding cutoff score. Fitted lines are
from a linear fit.

Figure 1.6b: Effect of older sibling admission, by graduation outcome: effect on first non-elite
choice

Variable on vertical axis is proportion of students listing their older siblings’ cutoff school as
their top non-elite choice. Only non-elite cutoff schools are included. Variable on horizontal
axis is older sibling’s COMIPEMS exam score, centered to be 0 at the corresponding cutoff
score. Fitted lines are from a linear fit.
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Figure 1.6c: Effect of older sibling admission, by graduation outcome: effect on number of
other schools selected in the cutoff school’s subsystem

Variable on vertical axis is number of schools selected in the subsystem to which the older
sibling’s cutoff school belongs, excluding the cutoff school. Variable on horizontal axis is
older sibling’s COMIPEMS exam score, centered to be 0 at the corresponding cutoff score.
Fitted lines are from a linear fit.
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Figure 1.7: Density of centered COMIPEMS score about discontinuity

Histogram is of COMIPEMS score for students near a cutoff. Scores are centered so that
they are 0 at the cutoff score.
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1.11 Tables

Table 1.1: Summary statistics for full, sibling, and regression discontinuity samples
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Table 1.2: Effect of older sibling admisson on younger sibling’s first choice preference for
same school
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Table 1.3: Effect of older sibling admission on younger sibling’s preference for same school,
disaggregated by type of cutoff school
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Table 1.4: Effect of older sibling admission on younger sibling’s preference for same school,
disaggregated by age difference of siblings
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Table 1.5: Effect of older sibling admission on other of schools chosen in cutoff subsystem
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Table 1.6: Differential effect of older sibling admission on school choice by graduation out-
come



51

Table 1.7: Placebo: differential effect of younger sibling admission on older sibling’s school
choice by graduation outcome
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Table 1.8: Nested logit estimates of school choice model
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Table 1.9: Balance of exogenous characteristics at cutoff
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Chapter 2

Flourish or Fail? The Risky Reward
of Elite High School Admission in
Mexico City

Joint work with Alain de Janvry and Elisabeth Sadoulet

2.1 Benefits and Risks of Attending an Elite School

Families often have some choice in where their children attend school, and all else equal, most
families prefer a school of higher academic quality (see, e.g., Hastings, Kane, and Staiger
2009). Attending a “better” school, as defined by peer ability or school resources, is usually
thought to benefit students academically. For example, a better-funded school is able to
afford more and better educational inputs, and a student may benefit from working with
high-achieving and highly motivated peers. But there is also a risk to attending a better
school, particularly if doing so means that the student is closer to the bottom of the school-
specific ability distribution. The difficulty level of the coursework may prove too much for
the student to handle. Teachers may teach mostly to the top of the class, leaving behind
those who enter the school with a weaker academic background.1 Students experiencing
such challenges may fail to complete their education at all, which is probably a much less
desirable outcome than graduating from a lower-quality school.

This chapter quantifies the trade-off between academic benefit and dropout risk facing
students admitted to a subset of Mexico City’s elite public high schools. Mexico City is
ideal for this exercise for three reasons. First, there are large perceived disparities in public
high school quality, with a well-identified group of “elite” schools standing above all others.
This gives a natural definition of what an “elite” (or “better”) school is. Second, nearly
all public high schools in the city participate in a unified merit-based admissions system,
using a standardized exam and students’ stated preferences to allocate all students across

1Duflo et al. (2011) elaborate on the potential benefits and drawbacks of ability tracking.



55

schools. This mechanism allows us to credibly identify the impact of elite school admission
on dropout probability and end-of-high school exam scores. Third, Mexico is characterized
both by a high secondary school dropout rate and a significant estimated return to high
school education, so the risk of dropping out is a first-order issue facing students. In our
sample, about half of students who are assigned to a high school do not take the exit exam
three years later. At the same time, young men with a high school diploma have 24% higher
wages than those who only completed middle school (Campos-Vazquez 2013). Though this
is not a causal statement, it is suggestive that dropping out has a real cost for students.

A simple regression discontinuity design, made possible by the assignment mechanism, is
used to discover whether students experience a change in dropout probability and in exam
scores as a result of admission to an elite school, using their most-preferred non-elite school
that would admit them as the counterfactual. We find that there is a clear trade-off for most
marginally admitted students. Admission to an elite school raises the probability of high
school dropout by 8.5 percentage points, compared to an average probability of 46%. Along
with this substantial increase in dropout probability, elite school admission also results in
an average gain of 0.11 standard deviations on the 12th grade standardized exam, which
apparently comes entirely from gains in math. Students with lower middle school grade
point averages experience larger increases in dropout probability, but there is no evidence
that they experience a smaller boost in their exam scores from elite admission. We introduce
and carry out a procedure that evaluates the potential bias in the exam score effect due to
differential dropout with respect to observable and unobservable characteristics, and find
that the effect is quite robust.

While a structural treatment of student preferences is not the subject of this chapter,
we present reduced-form evidence showing that students with lower performance in middle
school choose elite schools less often, compared to neighboring high-performing students with
the same entrance exam score. The chapter’s main findings offer one explanation for this
result. Weak students may understand that elite school admission is a double-edged sword:
while the expected academic benefit for graduates is positive, the increased chance of leaving
high school without a diploma makes applying to an elite school a risky choice.

Most previous studies on the effects of elite high school admission have focused on the
impact on exam scores. Such studies typically analyze cases of merit-based admission sys-
tems, and use a sharp or fuzzy regression discontinuity design to estimate the effect of elite
school admission on outcomes. Most have found zero or modest effects: Clark (2010) in
the United Kingdom, Abdulkadiroglu et al. (2011) in Boston and New York, and Lucas
and Mbiti (2013) in Kenya all find zero or negligible impacts from elite high schools while
Jackson (2010) and Pop-Eleches and Urquiola (2013) find a modest benefit of admission to
high schools with higher-scoring peers in Trinidad and Tobago and Romania, respectively.
Zhang (2012) exploits a randomized lottery for elite Chinese middle schools to show that
elite admission has no significant impact on academic outcomes. Beyond the zero effect on
exam scores, Dobbie and Freyer (2011) find that the New York elite high schools do not have
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an appreciable effect on long-run outcomes such as SAT score or college graduation.2

In a much different study, Duflo et al. (2011) randomly assigned Kenyan schools into
a tracking regime where they divided their first grade classes by student ability. They find
that while tracking is beneficial, there is no evidence that being in a class with better peers
is the mechanism through which these benefits are manifested. We note that in the case of
admission to competitive elite schools, admission results both in a more able peer group as
well as a different schooling environment with resources, management, and culture that may
be quite different from other public schools. Thus the effect of elite school admission is a
reflection of both the peer and institutional channels, which regression discontinuity designs
such as the present one cannot effectively disentangle.3

The literature on the relationship between school quality and student dropout is sparser.
Recent studies have mostly focused on the impacts of specific aspects of quality, randomly
varying one aspect to see if it increased school participation, which differs from the concept of
dropout in that reduced participation may not result in permanently abandoning schooling
while dropout usually does. For example, Glewwe, Ilias, and Kremer (2010) find no effect of
a teacher incentive pay scheme on student participation in Kenyan public primary schools.
More related to our study, de Hoop (2011) estimates the impact of admission to competitive,
elite public secondary schools on dropout in Malawi. He finds that admission decreases
dropout. This could be due to increased returns from an elite education inducing students
to attend, or because the elite schools provide a more supportive environment. Our findings
provide a stark contrast to these results, although in a much different economic and social
context.

The rest of the chapter is organized as follows. Section 2.2 gives a detailed overview
of the Mexico City high school admissions system. Section 2.3 sets forth the method for
identifying the effects of admission on outcomes. Section 2.4 describes the data and Section
2.5 gives the empirical results and several validity checks. Section 2.6 uses the results to
rationalize revealed preference for elite schools. Section 2.7 concludes.

2.2 Mexico City public high school system and

student enrollment mechanism

Beginning in 1996, the ten public high school subsystems in Mexico’s Federal District and
various municipalities in the State of Mexico adopted a competitive admissions process. This

2Estrada and Gignoux (2014) use a similar empirical strategy to ours with one year of COMIPEMS data
and a separate survey (administered in a subsample of high schools) to estimate the effect of elite school
admission on subjective expectations of the returns to higher education, finding that admission leads to
higher expected returns.

3Further studies on the impact of specific aspects of school quality on test scores include Dearden, Ferri,
and Meghir (2002), Newhouse and Beegle (2006), Gould, Lavy, and Paserman (2004), Hastings, Kane, and
Staiger (2006), Hastings and Weinstein (2008), Cullen, Jacob, and Levitt (2005 and 2006), and Lai et al.
(2010).
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consortium of schools is known as the Comisión Metropolitana de Instituciones Públicas
de Educación Media Superior (COMIPEMS). COMIPEMS was formed in response to the
inefficient high school enrollment process at the time, in which students attempted to enroll in
several schools simultaneously and then withdrew from all but the most-preferred school that
had accepted them. The goal of COMIPEMS was to create a unified high school admissions
system for all public high schools in the Mexico City metropolitan area that addressed such
inefficiencies and increased transparency in student admissions.

Any student wishing to enroll in a public high school must participate in the COMIPEMS
admissions process. In February of the student’s final year of middle school (grade nine),
informational materials are distributed to students explaining the rules of the admissions
system and registration begins. As part of this process, students turn in a ranked list of
up to twenty high schools that they want to attend.4 In June of that year, after all lists of
preferred schools have been submitted, registered students take a comprehensive achievement
examination. The exam has 128 multiple-choice questions worth one point each, covering
a wide range of subject matters corresponding to the public school curriculum (Spanish,
mathematics, and social and natural sciences) as well as mathematical and verbal aptitude
sections that do not correspond directly to the curriculum.

After the scoring process, assignment of students to schools is carried out in July by
the National Center of Evaluation for Higher Education (Ceneval), under the observation
of representatives from each school subsystem and independent auditors. The assignment
process is as follows. First, each school subsystem sets the maximum number of students
that it will accept at each high school. Then, students are ordered by their exam scores from
highest to lowest. Any student who scored below 31 points or failed to complete middle
school is disqualified from participating. Next, a computer program proceeds in descending
order through the students list, assigning each student to her highest-ranked school with seats
remaining when her turn arrives. If by the time a student’s turn arrives, all of her selected
schools are full, she must wait until after the selection process is complete and choose from
the schools with open spots remaining. This stage of the allocation takes place over several
days, as unassigned students with the highest scores choose from available schools on the
first day and the lowest scorers choose on the final days.

In some cases, multiple students with the same score have requested the final seats
available in a particular school, such that the number of students outnumbers the number
of seats. When this happens, the representatives in attendance from the respective school
subsystem must choose to either admit all of the tied applicants, exceeding the initial quota,
or reject all of them, taking fewer students than the quota. The number of offered seats and
the decisions regarding tied applicants are the only means by which administrators determine
student assignment to schools; otherwise, assignment is entirely a function of the students’

4Students actually rank programs, not schools. For example, one technical high school may offer multiple
career track programs. A student may choose multiple programs at the same school. For simplicity we will
use the term “school” to refer to a program throughout. No elite school has multiple programs at the same
school, so this distinction is unimportant for the empirical analysis.
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reported preferences and their scores. Neither seat quotas nor tie decisions offer a powerful
avenue for strategically shaping a school’s student body.5

At the end of the final year of high school (grade twelve), students who are currently
enrolled take a national examination called the Evaluación Nacional de Logro Académico
en Centros Escolares (ENLACE), which tests students in Spanish and mathematics. This
examination has no bearing on graduation or university admissions and the results have
no fiscal or other consequence for high schools. It is a benchmark of student and school
achievement and progress. There are two elite school subsystems, each affiliated with a pres-
tigious national university. One of these subsystems, the Universidad Nacional Autónoma
de México, refuses to administer the ENLACE exam and is legally able to do so because of
its autonomous status. The other elite subsystem, the Instituto Politécnico Nacional (IPN),
administers the ENLACE, as do all of the other public school subsystems. Because the EN-
LACE data provide the dependent variable for our analysis, only IPN schools are examined
in this chapter.

2.3 Regression discontinuity design and sample

definition

The goal of this chapter is to determine how much (marginal) admission to an IPN school
changes students’ probability of dropout and their end-of-high school exam scores. Put
another way, the econometric challenge is to estimate the effect on academic outcomes from
admission to a school in an IPN subsystem instead of admission to the student’s most-
preferred non-elite choice, holding constant COMIPEMS score and all student characteristics,
observed and unobserved.

The COMIPEMS assignment mechanism permits a straightforward strategy for identi-
fying the causal effect of IPN school admission on outcomes, through a sharp regression
discontinuity (RD) design. Each school that is oversubscribed (i.e., with more demand than
available seats) accepts all applicants at or above some cutoff COMIPEMS exam score, and
rejects all applicants scoring below that cutoff.6 Whether or not a student wanting to attend
a particular school is actually admitted is determined entirely by whether or not she is above
or below the cutoff score, giving a sharp discontinuity in the probability of admission (from
0 to 1) when the student reaches the cutoff.

We are interested in the comparison between attending an IPN school and a non-elite
school, so we restrict attention to the set of students who would attend an IPN school for
COMIPEMS scores above some cutoff and would attend a non-elite school for COMIPEMS

5The only obvious case would be to drastically under-report available seats at a school to reduce enroll-
ment. But setting an artificially low seat quota and planning to accept students up to a level close to “true”
capacity in the event of a tie either results in the school being under-enrolled (if there are too many tied
students to accept) or enrolled near the level that would prevail with the true quota reported and all ties
rejected.

6The cutoff is set implicitly by the student who gets the final seat in that school.
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scores below that cutoff. For each such student i in year t, there is a “cutoff school” indexed
by j with cutoff score Cjt. Denoting student i’s score by ci, the cutoff school is the one
whose cutoff score serves as the lower boundary of IPN schools: for all ci ≥ Cjt (and within
a selected bandwidth, discussed below), an IPN school is attended, and for all ci < Cjt, a
non-elite school is attended. This cutoff school is unique for each student; among the set of
IPN schools listed before any non-elite option, it is the school with the lowest cutoff score.

Following Abdulkadiroglu et al. (2012), we use a stacked parametric RD design that
estimates a single average admission effect over all cutoff schools while allowing for separate
polynomials in the COMIPEMS score for each cutoff school. The estimating equation is:

Yijt = δadmiti + g1j (ci − Cjt) + admitig2j (ci − Cjt) + µj + ηt + εijt (2.1)

where Yijt is the outcome of interest (dropout or ENLACE exam score) g1j and g2j are
school-specific polynomial terms, ci−Cjt (the “centered” COMIPEMS score) is the difference
between i’s COMIPEMS score and the cutoff school’s cutoff score, and admiti = 1 if ci−Cjt ≥
0. Note that if a student scores high enough above j’s cutoff, she may get into a more-
preferred IPN school with a higher cutoff score. This does not compromise the research design
because the admitting school is still elite. The parameter of interest is δ, the local average
treatment effect of being admitted to an IPN school instead of a non-elite school (Imbens and
Lemieux 2008). This is an intention-to-treat effect since students do not necessarily attend
the school to which they were admitted. But in practice, compliance is almost perfect. Of
those in the RD sample who take the 12th grade exam, 99.8% of the students rejected from
the IPN subsystem take the exam in a non-elite school, while 96.1% of students admitted to
an IPN school take the exam in an IPN school.

The running variable, centered COMIPEMS score, is discrete, which necessitates a para-
metric approach to the RD design (Lee and Card 2008). Per Lee and Card’s (2008) sugges-
tion, we cluster our standard errors at the level of the centered score in order to account
for specification error in the polynomials. Because there are few clusters, wild-cluster boot-
strapped p-values are computed rather than analytical clustered standard errors (Cameron
et al. 2008). We use the Akaike Information Criterion to select the appropriate polynomial
order, which in practice is always 1.

Choosing the optimal bandwidth is not straightforward for two reasons, both related
to sample selection. First, we exclude any student who would go completely unassigned
for one or more point values within the bandwidth. This is because we want to compare
outcomes due to IPN vs. non-elite admissions, without considering the effects of being left
unassigned. Second, we mentioned that of the two elite subsystems, only the IPN administers
the ENLACE exam (while the UNAM does not). For this reason, we restrict the sample
to students for whom no score within the selected bandwidth would result in admission to
an UNAM school. Because of the criteria, some observations drop out of the sample as the
bandwidth grows, while other observations are added. Thus a standard bandwidth selection
procedure is inappropriate here, and we instead present results for a variety of bandwidths.

An advantage of the RD design is that it does not require any assumptions about the
decision-making process by which students choose schools and whether their rankings of
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schools truly represent revealed preferences. Conditional on COMIPEMS score, the admitted
and rejected students near a school’s cutoff have the same expected characteristics, including
school preferences. Even if students are trying to choose strategically or making mistakes
in their selections, this behavior should not differ by admissions outcome near the cutoff.
We can thus remain agnostic on the issue of the distribution of student preferences and the
factors that influence them.

2.4 Data description

The data used in this chapter come from two sources, both obtained from the Subsecretariat
of Secondary Education of Mexico: the registration, scoring, and assignment data for the
2005 and 2006 COMIPEMS entrance examination processes, and the scores from the 2008,
2009, and 2010 12th grade ENLACE exams.7 The COMIPEMS dataset includes all students
who registered for the exam, with their complete ranked listing of up to twenty high school
preferences, basic background information such as middle school grade point average and
gender, exam score out of 128 points, and the school to which the student was assigned as
a result of the assignment process. It also includes student responses to a multiple choice
demographic survey turned in at the time of registration for the exam.

The ENLACE dataset consists of exam scores for all students who took the test in Spring
2008 (the first year that the 12th grade ENLACE was given), 2009, or 2010. The scores for
both the math and Spanish sections are reported as a continuous variable, reflecting the
weighting of raw scores by question difficulty and other factors. We normalize the scores by
subtracting off the year-specific mean score for all examinees in public high schools within the
COMIPEMS geographic area and dividing by the year-specific standard deviation from this
same sample. The ENLACE scores are matched with the 2005 and 2006 COMIPEMS-takers
by using the Clave Única de Registro de Población (CURP), a unique identifier assigned to
all Mexican citizens. Matching is performed by name and date of birth if no CURP match
is found. The matching rate of ENLACE takers to their COMIPEMS scores is nearly 100%
and will be discussed further in Section 2.5.4.

The IPN schools are highly-demanded.8 For every seat available in an IPN school, 1.9
students list an IPN school as their first choice. Every IPN school is oversubscribed. Com-
pared to the non-elite schools, the IPN’s student body has higher COMIPEMS exam scores
(74.9 points vs. 58.7), grade point (8.24/10 vs. 7.98/10), parental education (10.7 years vs.
9.7), family income (4,634 pesos/month vs. 3,788), and ENLACE exam score (0.52 normal-
ized score vs. -0.12). While we do not have data on this point, it is widely accepted that
IPN schools receive more funding on a per-student basis than non-elite schools.

7The 2010 data is used in order to match students from the 2006 COMIPEMS cohort who took four
years to complete high school instead of three.

8Students selecting an UNAM school (the other elite subsystem) as their first choice must take a version
of the entrance exam written by UNAM, which is advertised to be equivalent to the standard version in
content and difficulty. We include a dummy variable for exam version in all regressions.
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We limit the sample to applicants who graduated from a public middle school in Mexico
City in the year that they took the COMIPEMS exam. Summary statistics for this sample
and the subsample consisting only of students located near the cutoff of IPN admission are
in Table 2.1.9 Students near the IPN cutoff (column 2) are substantially different from the
full sample (column 1), as we would expect since students near the IPN cutoff both selected
at least one IPN school and scored high enough to be close to an IPN cutoff. They are
more likely to be male, have more educated parents and higher incomes, better grades, and
COMIPEMS scores that are more than half a standard deviation above the sample mean.
These students score 0.36 standard deviations above the full sample average on the ENLACE
exams.10

It is clear from Table 2.1 that many COMIPEMS exam takers do not take the ENLACE.
We will present evidence in Section 2.5.4 that this is almost entirely due to student dropout
rather than some other feature of the data. For the moment, we treat non-taking as dropout
and show in Table 2.2 that dropout is predicted both by academic ability and IPN admission.
Column 1 shows that, in the cross-section, COMIPEMS exam score and middle school grade
point average (GPA) are negatively correlated with dropout. Particularly striking is the
GPA coefficient, showing that a one standard deviation (.82) increase in GPA predicts a
15 percentage point decrease in dropout probability. Parental education and family income
are both negatively correlated with dropout as well, but the magnitude of the coefficients is
very small compared to those of COMIPEMS and GPA. Column 2 adds high school fixed
effects and shows that these relationships are very similar within a high school. Column 3
shows that, conditional on listing an IPN school as one’s first choice, dropout is much higher
for students admitted to IPN schools than for those admitted to non-elite schools. This
correlation does not have a causal interpretation, however, because unobservable student
attributes could affect both selection into an IPN school and dropout probability. The next
section uses the RD design to establish the causal IPN admission-dropout relationship.

2.5 Effects of elite school admission

This section uses the RD strategy outlined in Section 2.3 to estimate the effect of marginal
admission to an IPN school on the probability of dropping out of high school and, conditional
on taking the ENLACE exam, on the exam score obtained. Because we lack individual-level
data on graduation, taking the ENLACE exam is used as a proxy for graduation. Only
students on track to graduate at the end of the school year are registered to take the exam.
We present evidence in Section 2.5.4 that this is a good proxy, in particular that schools do

9The size of the window for being considered “near the cutoff” is 10 points above or below the respective
IPN school’s cutoff score.

10There is no binding test score ceiling for either exam. Score ceilings present a problem for academic
gains because there is no way for students with the highest score to demonstrate progress. The COMIPEMS
exam intentionally avoids a ceiling in order to sort students during assignment.
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not strategically administer this exam. Thus the only sample used from this point forward
is that of students near an IPN school’s cutoff, as defined in Section 2.3.

2.5.1 Probability of dropout

Marginal admission to an IPN school has a large, significant positive impact on the proba-
bility of dropout. Figure 2.1, Panel a illustrates this graphically, centering students’ scores
about their school-specific cutoff score and plotting the dropout rate in a 10 point window
around the threshold.11 Table 2.3 confirms this finding, reporting the average effect of ad-
mission on dropout estimated using the regression discontinuity design for bandwidths of 4,
7, and 10 points. Results are quite similar across bandwidths, so for brevity we only discuss
those using a bandwidth of 7. Column 5, which excludes any additional covariates, esti-
mates that the probability of dropping out increases by 8.53 percentage points, compared to
the mean probability of 46.1%. Adding covariates—middle school GPA, parental education,
family income, gender, hours studied per week in middle school, a normalized index of re-
sponses to questions about parental effort and involvement in schooling, and employment—in
column 6 decreases this estimate slightly to 8.18 percentage points. Column 7 adds interac-
tions between the covariates and admission in order to explore whether the admission effect
is heterogeneous with respect to student characteristics. The empirical specification is:

dropoutijt = δadmiti + g1j (ci − Cjt) + admitig2j (ci − Cjt)
+Σkxik [γjk + α1k (ci − Cjt) + admitiα2k (ci − Cjt) + θkadmiti]

+µj + ηt + εijt

(2.2)

where i indexes the student, j indexes the cutoff school, k indexes the covariates, and xik
is the value of the covariate for student i. In words, this specification has cutoff school
and COMIPEMS exam year fixed effects, an admission effect, separate polynomials in
COMIPEMS score for each cutoff school, and for each covariate, a separate level effect for
each cutoff school, an interaction between the covariate and COMIPEMS score that varies
on either side of the threshold, and an interaction between the covariate and admission.
The coefficients of interest are the θk’s, which show whether the average effect of marginal
admission is different for students with different levels of the covariate.

The effect of IPN admission on dropout is strongly heterogeneous with respect to mid-
dle school GPA. All else equal, students with lower GPAs experience a larger increase in
probability of dropout, as shown graphically in Figure 2.1, Panels b and c. To interpret
this differential effect, consider that the standard deviation of GPA in this sample is 0.74,
the effect for a student with the mean GPA is 8.24 percentage points, and that θ̂GPA is
-9.06. Then a student with a GPA one standard deviation below the mean experiences a

11While we cannot make causal interpretations regarding the slope parameters, the positive score-dropout
relationship among rejected students is consistent with students who miss the cutoff by a large margin
attending schools that are easier to graduate from than those who barely miss the cutoff. The negative slope
among admitted students is expected, as students with better scores are more likely to graduate.
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8.24+(0.74×9.06) = 14.94 percentage point effect of admission on dropout probability. Only
students with very high GPAs, at the 86th percentile of the sample or above, are predicted
to have a negative effect of admission on this probability.12 The results for other student
characteristics are not statistically different from zero when using the unadjusted standard
errors, although the wild-cluster bootstrapped p-values indicate statistical significance in
some cases. This is unusual behavior and indicates that the bootstrap is not performing as
expected for the coefficients on variables that have little intra-cluster correlation. The two
coefficients on which we focus, the effect of admission and the differential effect with respect
to middle school GPA, are highly significant in both the unclustered and bootstrapped ap-
proaches. We take a conservative approach with all other coefficients and do not attempt to
make inference where one approach gives significant results and the other does not.

It is possible to predict for each student, on the basis of observables, the differential
probability of dropout induced by admission simply by summing the θ̂k × xik’s. Doing this,
we find that 90% of students are predicted to have a higher chance of dropout due to IPN
admission. This is not inconsistent with the IPN’s academic demands increasing the odds
of school dropout for all admitted students. Rather, all students may want more strongly
to stay in school if they are admitted to an elite school (causing a decrease in dropout
probability), with the rigor of the IPN schools more than offsetting this impact for all but
the best-prepared students.

Finally, column 8 allows the admission effect to vary by cutoff school and reports the
coefficients for the heterogeneous admission effects. The purpose of this is to see if the
heterogeneous effects persist even for students at the same cutoff, rather than the result
being driven by cutoff schools with large effects on dropout and many students with a low
GPA. The estimated differential effect with respect to GPA increases slightly.

These results make clear that dropout is systematically related to IPN admission and its
interaction with students’ academic preparation. Students admitted to an IPN school are
on average more likely to drop out and thus less likely to take the ENLACE, such that even
after conditioning on COMIPEMS score, IPN admittees taking the ENLACE have higher
middle school GPAs. To show this, we estimate the following equation for each of the student
characteristics:

xijtk = φkadmiti + h1jk (ci − Cjt) + admitih2jk (ci − Cjt) + µjk + ηtk + εijtk (2.3)

If xk is balanced across the threshold, then φ̂k should be close to zero. Table 2.4, Panel
a gives estimates at the time of assignment (prior to dropout), where we expect balance. Of
the seven covariates tested, only hours studied per week is found to change discontinuously
at the threshold. When estimating the equations jointly and performing a joint test for
discontinuities, we fail to reject the null hypothesis of no discontinuity. Panel b, however,

12One might wonder if middle school GPA is a good proxy for student academic performance or if it could
reflect characteristics of the middle school itself. To explore this possibility, we re-estimated the model while
also including the mean GPA of the student’s middle school and its interactions as covariates. The results are
nearly identical. It seems that GPA is a good proxy for academic performance, even across middle schools.
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shows that within the sample of ENLACE takers middle school GPA is unbalanced (about
1/7 standard deviations higher for admitted students) as well as parental education, family
income, and hours studied. This differential dropout, due entirely to the effect of IPN
admission, may bias upward estimates of the IPN admission effect on ENLACE exam scores
if the additional dropout is among the students who would have the lowest ENLACE scores.
We will assess how severe this bias would have to be in order to push the estimate of the
admission effect, presented in the next section, to zero.

2.5.2 ENLACE exam performance

We now turn to the effect of IPN admission on the ENLACE exam score. We first ignore the
differential dropout issue raised in the previous section, and then propose a way to account
for it in the next subsection. Using all observed scores, Figure 2.2, Panel a suggests that there
is a significant, positive effect of IPN admission on ENLACE score. Panels b and c show
that this effect comes entirely from improved math scores. This result is unsurprising, as
IPN schools focus heavily on mathematics, engineering, and the sciences in their curriculum
(implied by the “Politécnico” in its name). Table 2.5 reports the regression discontinuity
results for these relationships. Again, the results are robust to the choice of bandwidth,
although the results for a bandwidth of 4 are noisy. We will again focus on the results
for a bandwidth of 7. Column 5 of Panel a, without covariates, gives a highly statistically
significant admission effect of 0.11 standard deviations on the exam. Adding covariates
in Column 6, the coefficient remains stable. Columns 7 and 8 add interactions between
admission and the covariates, but we fail to reject that there are no differential impacts.
Panel b suggests that this effect comes entirely from gains in math scores, between .18 and
.21 standard deviations depending on the specification for the 7 point bandwidth. The
effect on Spanish scores, shown in Panel c, is indistinguishable from zero. This is perhaps
unsurprising, given the IPN’s focus on math, science, and engineering.

2.5.3 Imputation from conditional quantiles

In order to assess the potential bias from dropout on the estimated exam score effect, we
propose a method to impute “penalized” scores to students who were induced to drop out
either by admission to or rejection from an elite school. The idea behind this method is to
assume that the rejected dropouts would have had better ENLACE scores than their rejected,
non-dropout peers with identical observable characteristics, and the admitted dropouts would
have had worse scores than their observationally identical admitted non-dropout peers. The
full procedure is explained in the Appendix. The intuition behind the procedure is given
here.13

13There are other methods for assessing or bounding the bias due to sample attrition, but they are not
well-suited to this application. Lee (2009) shows how to derive sharp bounds of a treatment effect under
random assignment and attrition, but the differential attrition in our case is large enough that the resulting
bounds are uninformative. Under the assumption of a normally distributed dependent variable, Angrist et
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We saw above that the probability of dropping out of school was higher among the
students marginally admitted to IPN schools than their marginally rejected counterparts.
The effect of admission on dropout, for a bandwidth of 10, was estimated to be ∆̂ = 9.1%
of the marginally admitted student population. Suppose for the moment that this effect is
homogeneous and thus identical for all students. We can then classify the students in three
groups: those who would never drop out regardless of admission, those who will always drop
out, and those who are induced to drop out by admission. The concern is related to this
third group because it is observed among the rejected but not among the admitted. By
virtue of the discontinuity design, the shares of the three categories of students are identical
on both sides of the threshold (after controlling for the function of COMIPEMS score), and
hence the share of induced dropouts is equal to ∆, the difference in dropout rates among
the admitted and rejected. As we do not know which of the admitted dropouts are in this
group, the idea is to impute a low grade to all of the admitted dropouts, but to weigh these
observations with imputed scores by ∆/ (π + ∆), where (π + ∆) is the dropout rate among
the admitted. This is equivalent to assigning an imputed score only to a share ∆ of the
admitted students. There is no need to impute scores to the rejected dropouts since, under
the assumption that admission only increases the probability of dropout, they would have
dropped out if they had been admitted. This method thus avoids imputing scores to the
very large number of dropouts among the admitted and rejected whose behavior is unrelated
to admission.

Next, we allow for some heterogeneity among students. The probability πi of dropping
out if rejected is specific to a student (we will use an estimated function of covariates and
COMIPEMS score π (COMIPEMSi, Xi)), as is the impact of admission on dropout ∆i =
∆ (COMIPEMSi, Xi). We can then apply the rule described above for all individuals with
∆i > 0. In addition, there may be some students that will drop out of school if they are
rejected while staying in school if admitted. This is the group with ∆i < 0. For these
students, the concern is the excess dropout among the rejected. We thus apply a high score
to all of these rejected dropout students, and weigh the imputed score by −∆i/πi, where πi
is their probability of dropout if rejected.

Which low score should be applied to each admitted dropout, and which high score
should be applied to each rejected dropout? Recognizing student heterogeneity here as well,
we use conditional quantile regressions to define high or low scores as observed among the
non-dropouts with similar covariates and admission status.

We now summarize the method:

1. There are four groups of students: those who would never drop out regardless of
admission, those who would always drop out, those who are induced to drop out by
admission, and those who are induced to drop out by rejection.

al. (2006) recover unbiased estimates of a treatment effect using a tobit procedure that censors all outcomes
below a low threshold and counts missing values as censored observations. It is unclear how to apply this
method to the RD case because the censoring point would have to vary with respect to the covariates, in
particular the running variable.
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2. Predict conditional dropout probability if rejected πi = π (COMIPEMSi, Xi) and im-
pact of admission on dropout ∆i = ∆ (COMIPEMSi, Xi).

3. Use conditional quantile regression to impute “low” ENLACE scores (mth conditional
quantile) for admitted dropouts with positive predicted differential dropout due to
elite admission (∆i > 0), and “high” scores (1−mth conditional quantile) for rejected
dropouts with negative predicted differential dropout due to elite admission (∆i < 0):

̂ENLACEijt ={
Qm (ENLACE|COMIPEMSi, Xi, admiti = 1) , if ∆i > 0, admiti = 1, dropi = 1.

Q1−m (ENLACE|COMIPEMSi, Xi, admiti = 0) , if ∆i < 0, admiti = 0, dropi = 1.

4. Assign non-zero weights ωi to dropouts with imputed ENLACE scores according to the
magnitude of their differential dropout, such that the weighted observations represent
the sizes of the two groups that were induced to drop out as a result of admission
or rejection. This is ωi = ∆i/ (∆i + πi) for admitted dropouts with ∆i > 0 and
ωi = −∆i/πi for rejected dropouts with ∆i < 0. Assign a weight of ωi = 1 to non-
missing ENLACE scores and ωi = 0 to those who dropped out but did not have higher
predicted dropout probability due to their admission outcome. The result of this is a
smooth density across the admissions threshold and balance of covariates across the
threshold, as would be the case in a no-differential dropout scenario.

5. Perform the weighted ENLACE score regression, including both the non-dropouts with
their true scores and the dropouts with their imputed scores.

6. If the point estimate of the admission effect on ENLACE score is still positive (or,
alternatively, if the confidence interval of this estimate does not contain zero), repeat
the process while imputing a lower quantile for admitted students and a higher quantile
for the rejected students. Stop when the point estimate is zero (or the confidence
interval contains zero).

This procedure is performed for the composite ENLACE score and the math score, but
not for the Spanish score since the point estimate of the admission effect is negative. Figure
2.3, Panels a and b illustrate how the treatment effect and its 95% confidence interval (based
on unadjusted standard errors) change as we impute increasingly extreme scores for dropouts.
For the point estimate of the effect of admission on the composite score to be zero, students
induced to drop out by admission would have to be on average in the 14th percentile of the
conditional distribution of observed scores for admitted students with the same covariates,
while at the same time the students induced to drop out by rejection would have to be in
the 86th percentile of the conditional distribution of observed scores for rejected students.
For math, these numbers would have to be more extreme, in the 7th and 93th percentiles,
respectively. The effect on composite ENLACE score becomes insignificant at the 5% level
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when the 30th and 70th percentiles are imputed, respectively; there, the point estimate is
0.07. The effect on math scores becomes insignificant when the 13th and 87th percentiles are
imputed, where the point estimate is 0.07. That is, differential dropout would have to be
among students who are quite low-performing in comparison to non-dropout peers with the
same observable characteristics and admissions outcomes. In particular, the effect on math
scores appears very robust to the influence of dropout.

2.5.4 Validity checks

Here we present three validity checks to address potential concerns with the results. First,
support for the validity of the regression discontinuity design is given. Second, the dropout
results are shown to hold for a subsample of students with relatively low travel time to IPN
schools, in order to show that the result is not due to increased commuting distance. Third,
support is given for the assertion that the dropout-related results in this chapter are indeed
due to IPN students leaving school at a higher rate, rather than a data issue.

There is no a priori reason to think that the regression discontinuity design might be
invalid. Because the school-specific cutoff scores are determined in the process of the com-
puterized assignment process, monitored by school subsystem representatives and indepen-
dent auditors, there is no opportunity for student scores to be manipulated in order to push
particular students from marginal rejection to marginal admission. Nevertheless, Figure 2.4
provides graphical evidence of the design’s validity, showing the distribution of COMIPEMS
scores of students near each IPN school cutoff normalized by subtracting off the threshold-
specific cutoff score. While the histogram is fairly coarse due to the discreteness of the score,
there is no visual evidence for a jump in the density of COMIPEMS score to one side of the
cutoff or the other.14

There may be some concern that the differential dropout result comes from students
having to travel farther to reach an IPN school. In particular, all but one of the IPN schools
is located in the Federal District, while about half of COMIPEMS takers reside in the
surrounding State of Mexico. To address this potential issue, we repeat the dropout exercise
from Table 2.3 while restricting the sample to students living in the Federal District. The
estimated admission effects, shown in Table 2.8, are noisier and somewhat smaller than those
of the full sample, but remain large and in most cases statistically significant. For example,
the estimated effect for the 7 point bandwidth without covariates falls from to 8.5 to 7.6
percentage points, while the effect with covariates falls from 8.2 to 5.8 percentage points.
This result, combined with the differential effect with respect to GPA, suggests that dropout
is induced by an academic issue rather than a prohibitively long commute.

Finally, there is substantial evidence that the difference in ENLACE taking rate between
students admitted to and rejected from the IPN is due to students dropping out of school,
rather than a data problem or rate at which 12th graders in IPN schools take the ENLACE

14The test for a discontinuity in the density of the running variable, proposed by McCrary (2008), does
not apply well to the case where the running variable has few points of support.
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exam. The difference cannot be due to a lower rate of success in matching ENLACE takers
from IPN schools to their COMIPEMS score. Of all ENLACE takers admitted to the IPN in
the full sample, 99% are matched successfully to their COMIPEMS score. Another possibility
that we can dismiss is that the IPN is selectively administering the exam to its best 12th
graders. Although the ENLACE is taken at the end of the school year, schools must report
the full roster of students in their final academic year to the Secretariat of Education so that
all of those students can be programmed to take the exam. The ratio of actual exam takers
to those programmed in the fall is nearly identical between the IPN and non-IPN schools
(81%). Thus differential exam taking would have to be sufficiently premeditated to 1) fail
to register low-ability students in the Fall and 2) systematically prevent the unregistered
students from showing up at the exam. The exam is given by proctors from outside of
the school. Administrators who run the ENLACE express doubt that a school subsystem
would go through this trouble, especially when considering that ENLACE scores are not used
to allocate resources or to incentivize or punish educators. Finally, because the ENLACE
dataset used in this chapter includes years 2008 through 2010, it captures COMIPEMS
takers from 2005 who took four or five years to graduate, and COMIPEMS takers from 2006
who took four years to graduate, instead of the standard three years. The differential exam
taking rate, then, cannot be explained by students taking longer to graduate in the IPN
schools but not dropping out.

As with any study using a regression discontinuity approach, there may be some skepti-
cism in extrapolating the effects for marginal students to the rest of the sample. This would
be a particular concern if there were few students near the margin compared to the total
population of IPN students. The nature of the assignment mechanism, however, tends to
bunch students near the cutoff of the school to which they are admitted, since a modestly
higher score would often lead to admission to a preferred school. Similarly, many of the
students admitted to the IPN subsystem are only a few points away from rejection to a non-
IPN school. In fact, 34% of students admitted to an IPN school are within 7 COMIPEMS
points of falling out of the IPN subsystem, while more than half are within 12 points of the
boundary. The standard deviation of COMIPEMS score in the full sample is 17.95 and the
within-school standard deviation for IPN students is 7.19, implying that a significant portion
of IPN students are not far from the margin of the IPN subsystem.

2.6 Preference for elite schools

Students with lower GPAs are less likely to apply to elite schools. The findings in this chapter
offer one way of rationalizing this empirical regularity. Students with a weak academic
background face a less desirable dropout risk-academic reward trade-off and may respond
rationally by choosing to avoid it altogether. This should be particularly true for students
who are likely to gain admission to an elite school only at the margin.

To show that conditional on COMIPEMS score, high-achieving students are more likely
to list an elite school as their first choice, the following local linear regressions are estimated
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for all observations within a 2-point bandwidth of each COMIPEMS point value c:

eliteimtc = αmtc + βcCOMIPEMSi + θcGPAi + εimtc, (2.4)

where eliteimt is a dummy variable equal to 1 if student i in year t from municipality/delegation
m chose an elite school as her first choice, and GPAi is middle school GPA. The munici-
pality/delegation of residence of the student is added to control for the possible unequal
geographic access to elite schools. The parameters of interest are the θc’s, which measure
the marginal effect (though not a causal relationship) of GPA on elite school preference
only for students with COMIPEMSi near c. Figure 2.5 graphs these coefficients and shows
that for all values of COMIPEMS score above 70 points, i.e., that are high enough to gain
admission to the least-competitive elite school, a higher GPA is correlated with higher rates
of elite school preference. At a COMIPEMS score of 80, students with a 9.0 GPA are 15
percentage points more likely to select an elite school than those with a 7.0 GPA. This is a
large difference, indicating that among students living in the same municipality or delegation
and with the same possibility of admission to elite schools as a result of their COMIPEMS
score, those with a lower GPA are much less likely to list an elite school as a first choice.
The less favorable risk-reward tradeoff facing these students offers one way to explain this
result.

2.7 Discussion

This chapter used Mexico City’s high school allocation mechanism to identify the effects
of admission to a subset of its elite public schools, relative to their non-elite counterparts.
At least for marginally admitted students, elite schools present an important trade-off. Ad-
mission is found to significantly raise the probability of dropping out of school for the vast
majority of marginal admits, with an average increase of 8.5 percentage points. Students
with relatively low middle school GPAs are especially affected (e.g. a student with a GPA one
standard deviation below the RD sample mean experiences a 14.9 percentage point increase
in dropout probability), suggesting that elite schools are too challenging for some students
and they either fail out or elect to leave school. On the other hand, elite admission appears
to positively affect student test scores, increasing end-of-high school exam scores by 0.12
standard deviations under the assumption that dropout does not bias the estimated effect.
Allowing for bias due to differential dropout lowers this estimate, but the results are fairly
robust to assumptions about the severity of the bias. In particular, students’ math scores
seem to improve significantly with attending an elite school. The fact that this trade-off
is, in expectation, worse for those from weaker academic backgrounds offers one possible
explanation for the lower rate at which qualified students with low GPAs apply to elite high
schools.

The existence of this trade-off between dropout probability and academic benefit high-
lights an important educational policy issue in Mexico. The current configuration of the high
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school education system does not facilitate lateral transfers of students between school sub-
systems, which are run by numerous entities at the local, state, and national level. Students
who find that their current school is a bad fit cannot easily switch to a school that balances
academic rigor, curriculum, and other characteristics to their taste, unless they drop out
of school entirely and attempt to begin elsewhere with zero credits. The recently begun
Comprehensive High School Education Reform (RIEMS) represents an attempt to rectify
this by imposing a (partial) common curriculum. Such rigidity in the current system may
explain why the academic benefit-dropout tradeoff is so strong in this chapter in comparison
to studies in other countries. Our result highlights the value of flexibility in choice-based
admissions systems so that the consequences of a “bad” choice can be mitigated, provided
that lateral transfers to more competitive schools are not allowed as a means of gaming the
current system.

2.8 Appendix: Method for assessing bias induced by

differential dropout

In this appendix, we set forth a method for assessing the bias due to differential dropout
induced by admission to an elite school, accounting for the heterogeneity of this dropout effect
in the population of students. This procedure is in the spirit of previous bias-assessment
and bias-bounding procedures and has some methodological similarities, but there are key
differences. Lee (2005) trims the upper or lower part of the outcome distribution for treated
(or untreated) observations, leading to sharp upper and lower bounds on the estimated
treatment effect. When dropout from the sample is substantial, as it is here, these bounds
can be wide. Still, Lee’s approach leads to tighter bounds than worst-case bounds such as
in Horowitz and Manski (1995). We take a less conservative approach that allows us to
see how bad the bias must be in order to find a point estimate of zero effect, rather than
assuming extreme outcomes for dropouts and then seeing if the resulting bounds contain
zero or not. This is more in the spirit of Altonji et al. (2005), although our focus is on
addressing dropout through imputation of outcomes rather than making assumptions about
the correlation between error terms in the treatment and outcome equations for students
with observed outcomes.

2.8.1 Basic setup

To understand why dropout (not taking the ENLACE exam) may induce bias in the es-
timated effect of admission on ENLACE score, first consider the case of one elite school
with randomly assigned admission, where there are no covariates. There are two stages, one
where it is determined whether the student drops out (dropi = 1) and then the stage where
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ENLACE score is observed for those who do not drop out:

dropi =

{
1, if drop∗i = π + ∆admiti + νi > 0.

0, otherwise.

ENLACEi =

{
α + δadmiti + ε, if dropi = 0.

− , otherwise.

where π is the dropout rate among rejected students, ∆ is the effect of elite admission on
dropout probability, δ is the effect of elite admission on ENLACE score, and νi and εi are error
terms. The problem is that if E [ν|admit] 6= 0 and cor (ε, ν) 6= 0, then the estimated effect

of admission on score (δ̂) will be biased. The following procedure will make no assumptions
about E [ν|admit] or cor (ε, ν), but rather see how severe the effects of differential dropout
must be, in particular how poorly (or how well) the rejection- or admission-induced dropouts
must do compared to the ENLACE takers, in order to attribute the entire treatment effect
to this bias.

We begin by imposing a monotonicity assumption: admission may not increase the prob-
ability of taking for some students and decrease it for others. This is satisfied by assuming
a homogeneous treatment effect of admiti on drop∗i , as in the setup above.

2.8.2 Decomposition of mean score

First, suppose that admission increases the probability of dropout, so ∆ > 0. The hypothet-
ical average ENLACE score, regardless of whether the exam is actually taken, is decomposed
separately for rejected and admitted groups as follows:

(observed) (observed) (not observed)

ENLACE
R

= 1
nR
1

∑
i:νi<−π−∆

ENLACEi + 1
nR
2

∑
i:νi<−π,
νi>−π−∆

ENLACEi + 1
nR
3

∑
i:νi>−π

ENLACEi

(observed) (not observed) (not observed)

ENLACE
A

= 1
nA
1

∑
i:νi<−π−∆

ENLACEi + 1
nA
2

∑
i:νi<−π,
νi>−π−∆

ENLACEi + 1
nA
3

∑
i:νi>−π

ENLACEi

where nR1 is the number of students who were rejected from the elite school and would take
the exam regardless of admissions outcome, nR2 is the number of rejected students who take
the exam when rejected but would not when admitted, nR3 is the number of rejected students
who did not take the exam (and would not have if admitted), and nA1 , nA2 , and nA3 indicate
the number of students in the corresponding groups for those students who are admitted to
the elite school.
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The first sum in each group is the set of students who take the exam regardless of
admission status, so their scores are always observed. The final sum is over students who
never take the exam, so their scores are never observed. The middle sum is the set of
students who take the exam if rejected but not if they are admitted. This is analogous
to the “compliers” in an IV design, where compliance is dropping out and having no score
observed. The bias in δ̂ comes from including the scores of compliers in the rejected group
but not the admitted group.

Of course, the set of compliers in the admitted and rejected groups is unknown, but under
randomization its size is not. How big is the set of missing compliers in the admitted group?
To answer this, consider the following expressions for the count of observed exam scores as
a proportion of all students in the group:

NR
obs

NR
=

nR1
NR

+
nR2
NR

= 1− π

NA
obs

NA
=

nA1
NA

= 1− (π + ∆)

2.8.3 Defining weights for dropouts

Because of randomized admission, we know that
nR
1

NR =
nA
1

NA and
nR
2

NR =
nA
2

NA . It follows that
nA
2

NA = ∆, meaning that we are “missing” nA2 = ∆NA compliers in the admitted group. The
goal of this procedure is to add these “missing” admitted dropouts back into the sample with
increasingly low imputed scores until their addition causes the estimated admission effect to
be zero. We will do this by weighting the imputed scores of all NA− nA1 dropouts such that
the equivalent of nA2 of them are added. The proper weight is given by:

ωi =
nA2

(NA − nA1 )
=

∆

(π + ∆)

This weight can be estimated easily, as ∆ and π are estimated in the dropout prediction
equation. All admitted and rejected students who took the exam have ωi = 1 and all
admitted students without a test score have ωi = 0.

If ∆ < 0, then the result is derived in the same way, and ωi = −∆
π

is applied for dropouts
in the rejected group and ωi = 0 for dropouts in the admitted group.

2.8.4 Imputing scores for the missing observations

Imputation of scores for the admitted students can be done by quantile regression. In the
simple case of randomization with no covariates, the equation for this is:

̂ENLACEi = Qm (ENLACE|admiti = 1)
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where Qm is the quantile function giving the mth quantile of the observed score distribution
among the admitted students. If the imputation is for rejected students, the conditional
quantile is taken among the rejected students.

2.8.5 Estimating the admission effect on scores including
imputed observations

Estimation of the admission effect proceeds as it would without the imputed observations,
with two obvious differences: the imputed observations are included and the observations
are weighted. If the resulting δ̂ is still positive, then the conditional quantile is decreased
(or increased, if the imputation is for rejected students) and the exercise is carried out again
until the selected quantile is sufficiently low (high) that the admission effect is zero.

2.8.6 Adding covariates

We have seen that the predicted probability of dropout depends on covariates, and that
the effect of admission on dropout also depends on covariates. In fact, the predicted effect
of admission on dropout is negative for some students and positive for others. Here the
procedure is extended to allow for covariates, so the dropout equation is redefined as:

d̂ropi =

{
1, if drop∗i = π̃ + ∆̃admiti +Xiγ + (Xi × admiti) θ + νi > 0.

0, otherwise.

The randomization assumption is retained, while the monotonicity assumption is relaxed
slightly: conditional on covariates Xi, admission may not increase the probability of taking
for some students and decrease it for others. Again, this is satisfied if we assume a treatment
effect that is homogeneous conditional on observables, as presented in the equation above.

For notational convenience, define πi ≡ π̃ + Xiγ as the predicted probability of dropout
if the student is rejected, conditional on covariates. Also define ∆i ≡ ∆̃ +Xiθ as the change
in dropout probability due to admission for a student with covariate values Xi.

The decomposition of mean ENLACE scores is almost identical to the no-covariate case,
except that the admission effect ∆ is replaced by ∆i and the baseline dropout π is replaced
by πi. Now there are some observations with ∆i > 0 and some with ∆i < 0:
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ENLACE
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+1 (∆i < 0)× (observed) (observed) (not observed)

1
nR
1

∑
i:νi<−πi,
νi<−πi−∆i

ENLACEi + 1
nR
2

∑
i:νi<−π,
νi>−π−∆

ENLACEi + 1
nR
3

∑
i:νi>−π,
νi>−π−∆

ENLACEi
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1
nA
1
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The unobserved sets of students for which scores need to be imputed are indicated in

bold. By the same derivation as the no-covariate case but with the covariates and their
interactions included, we derive the following set of weights:

1. Admitted, dropped out, ∆i > 0 (increased dropout probability due to admission):
ωi = ∆i

πi+∆i

2. Rejected, dropped out, ∆i < 0 (increased dropout chance due to rejection): ωi = −∆i

πi

3. Did not drop out: ωi = 1

4. Otherwise: ωi = 0.

This is the same as the no-covariate case except that it allows students in both the rejected
and admitted groups to be weighted up, depending on the sign of the conditional differential
dropout probability ∆i.

The rest of the process is the same as the no-covariate case but with one change: impu-
tation is done via quantile regression, now conditional on the full set of covariates Xi, but
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imputing a low quantile for the admitted students and a high quantile for the rejected stu-
dents. Here, we impute the mth conditional quantile for the admitted students and 1−mth

conditional quantile for the rejected students:

̂ENLACEi =

{
Qm (ENLACE|Xi, admiti = 1) , if ∆i > 0, admiti = 1, dropi = 1.

Q1−m (ENLACE|Xi, admiti = 0) , if ∆i < 0, admiti = 0, dropi = 1.

2.8.7 For which set of students is the admission effect estimated?

If differential dropout were only predicted to be positive for admitted students, then the
imputation exercise would allow us to estimate the (penalized) admission effect for the group
of students who do not drop out if rejected (regardless of whether they drop out if admitted).
But here we have both students who are more likely to drop out when admitted and students
who are more likely to drop out when they are rejected. So this exercise is performed for
the group of students who are not “always-quitters” – students for whom admission and/or
rejection would lead to taking the ENLACE. This is not a commonly-used group in the
treatment effects literature, but it has some appeal. It can be thought of as the whole group
of students for whom we can conceive of comparing outcomes between groups of schools –
we should never compare on the basis of students who will always drop out, but we may
indeed want to include in the comparison students who drop out in one group of schools but
not the other, as well as those who always stay in school.

2.8.8 Extension to regression discontinuity

The previous sections assumed randomization into treatment. To apply the same procedure
to regression discontinuity, we use the assumption that in a sufficiently small window about
the threshold, treatment is as good as randomly assigned conditional on a properly-specified
function of the running variable (Imbens and Lemieux 2008). Thus we can simply include
a function of COMIPEMS score (normalized to zero at the cutoff score) in the dropout
equation and in the ENLACE score equation. We also include interactions between the
de-meaned covariates and COMIPEMS score, to allow the possibility that the covariates’
influence varies with COMIPEMS score:

drop∗i = π̃ + ∆̃admiti + β1COMIPEMSi + β2 (COMIPEMSi × admiti) +Xiγ

+ (Xi × admiti) θ + (Xi × COMIPEMSi)φi + (Xi × COMIPEMSi × admiti)φ2 + νi

The rest of the procedure is the same, since ∆i ≡ ∆̃ +Xiθ is still the difference in ENLACE
taking probability due to admission. The predicted probability of dropout given rejection, pi,
can be estimated in the same way as before, but including the COMIPEMS terms; likewise
for the imputation of the conditional quantiles.
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2.9 Figures

Figure 2.1a: Dropout rate for students near IPN system cutoff: all students

Scatterplot is of mean dropout rate vs. centered COMIPEMS score, where dropout has
been de-meaned by regressing dropout on a set of cutoff school fixed effects and middle
school GPA and using the residuals. Lines represent a separate linear fit on each side of the
admissions cutoff.
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Figure 2.1b: Dropout rate for students near IPN system cutoff: students with middle school
GPA below 8.5

Scatterplot is of mean dropout rate vs. centered COMIPEMS score, where dropout has
been de-meaned by regressing dropout on a set of cutoff school fixed effects and middle
school GPA and using the residuals. Lines represent a separate linear fit on each side of the
admissions cutoff.
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Figure 2.1c: Dropout rate for students near IPN system cutoff: students with middle school
GPA of at least 8.5

Scatterplot is of mean dropout rate vs. centered COMIPEMS score, where dropout has
been de-meaned by regressing dropout on a set of cutoff school fixed effects and middle
school GPA and using the residuals. Lines represent a separate linear fit on each side of the
admissions cutoff.
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Figure 2.2a: ENLACE performance for students near IPN system cutoff: composite score
(math and Spanish)

Scatterplot is of mean ENLACE score vs. centered COMIPEMS score, where ENLACE
score has been de-meaned by regressing ENLACE score on a set of cutoff school fixed effects
and middle school GPA and using the residuals. Lines represent a separate linear fit on each
side of the admissions cutoff.



80

Figure 2.2b: ENLACE performance for students near IPN system cutoff: math score

Scatterplot is of mean ENLACE score vs. centered COMIPEMS score, where ENLACE
score has been de-meaned by regressing ENLACE score on a set of cutoff school fixed effects
and middle school GPA and using the residuals. Lines represent a separate linear fit on each
side of the admissions cutoff.
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Figure 2.2c: ENLACE performance for students near IPN system cutoff: Spanish score

Scatterplot is of mean ENLACE score vs. centered COMIPEMS score, where ENLACE
score has been de-meaned by regressing ENLACE score on a set of cutoff school fixed effects
and middle school GPA and using the residuals. Lines represent a separate linear fit on each
side of the admissions cutoff.
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Figure 2.3a: Estimated effect of admission on ENLACE score under different penalized
imputations for dropouts: composite score (math and Spanish))

Solid line is the estimated admission coefficient from the RD specification corresponding with
column 9 in Table 2.5a, where the missing ENLACE scores have been imputed using the
procedure in the appendix with the percentile given on the x-axis. The imputed percentile
corresponds to dropouts in the rejected group and 100 – imputed percentile corresponds to
dropouts in the admitted group. Dashed lines are 95% confidence intervals from unadjusted
standard errors.
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Figure 2.3b: Estimated effect of admission on ENLACE score under different penalized
imputations for dropouts: math score

Solid line is the estimated admission coefficient from the RD specification corresponding with
column 9 in Table 2.5b, where the missing ENLACE scores have been imputed using the
procedure in the appendix with the percentile given on the x-axis. The imputed percentile
corresponds to dropouts in the rejected group and 100 – imputed percentile corresponds to
dropouts in the admitted group. Dashed lines are 95% confidence intervals from unadjusted
standard errors.
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Figure 2.4: Density of student scores around IPN system cutoffs

Histogram shows the density of centered COMIPEMS score for the 10-point regression dis-
continuity sample.
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Figure 2.5: Partial correlation of middle school GPA with elite school first-choice preference

Solid line is a smoothed line through the θ̂c coefficients from estimating: eliteimt = αmtc +
βcCOMIPEMSi + θcXi + εimtc, where eliteimt is a dummy variable equal to 1 if student
i in year t from municipality/delegation m chose an elite school as her first choice, and
Xi is middle school GPA. The lines represent the partial correlation between Xi and elite
school preference for different COMIPEMS score values. Dashed lines are the 95% confidence
intervals for the estimated θ̂c’s.
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2.10 Tables

Table 2.1: Characteristics of students eligible for assignment
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Table 2.2: Correlates of high school dropout
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Table 2.3: Regression discontinuity estimates of effect of IPN admission on dropout
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Table 2.4: Balance of covariates before and after assignment
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Table 2.5a: Regression discontinuity estimates of effect of IPN admission on ENLACE scores: composite score (math
and Spanish)
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Table 2.5b: Regression discontinuity estimates of effect of IPN admission on ENLACE scores: math score
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Table 2.5c: Regression discontinuity estimates of effect of IPN admission on ENLACE scores: math score
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Table 2.6: Regression discontinuity estimates of effect of IPN admission on dropout, Federal District students only
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Chapter 3

Little Fish, Big Pond? Negative
Effects of Marginal School Admission
and Consequences for School Choice

3.1 Introduction

Is it always wise for students to attend a “better” or more selective school? Both recent
evidence from economics and older results in the education literature show that the effects on
academic outcomes are often very small or even negative. One obvious candidate explanation
for this finding is that objective measures of school quality, such as an elite reputation
or high peer quality, do not matter much for achievement. But there is another possible
explanation: for admittees who are academically marginal, the (potentially large) benefits
of admission to a better school are attenuated or negated by being at the bottom of the
ability distribution in the population at that school. This chapter shows that, for public
high school students in Mexico City, the average effect of admission to a school with higher-
performing peers has at most a negligible impact on dropout and exam scores. It then shows
that when admission is to a school with much higher peer quality than the student’s next
most-preferred school, the effect of admission on dropout probability is more positive than
when the the admitting school is similar to the next most-preferred school. The negative
relationship between peer quality and dropout probability is consistent with relative ability
being important for academic success. Finally, I show that if students account for their
position in the ability distribution when choosing schools, the optimal solution to the school
choice problem for students in Mexico City (and many other systems throughout the world)
is complicated and requires sophistication on the part of the student.

Several recent papers have used regression discontinuity designs to see how admission to
an elite school, or one where peers have higher test scores, affects academic outcomes. Such
designs are made possible by exam-based admissions systems where some students score
barely high enough to enter into a school and others score barely too low and must attend a
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less-preferred school. Among the studies finding zero or very small effects on test scores are
Lucas and Mbiti (2013) and Clark (2010) in elite Kenyan and United Kingdom high schools,
respectively, and Abdulkadiroglu et al. (2011) in Boston and New York exam high schools.
Jackson (2010) and Pop-Eleches (2013) find small test score effects in Trinidad and Tobago
and Romania, respectively, while de Hoop (2011) finds that admission to elite schools in
Malawi reduces dropout. At the primary level, Duflo et al. (2011) find no evidence that
students at the bottom of the ability distribution of a high-ability classroom perform differ-
ently from similar students in the top of the ability distribution in a low-ability classroom.
Chapter 2 of the present work shows that there is a trade-off in Mexico City’s elite high
schools, where test scores increase but the risk of dropout rises substantially.

Why does admission to a “better” school sometimes fail to yield academic benefits?
Each of the research designs above necessarily focuses on students who are either marginally
admitted or rejected from the better school, so the local average treatment effect encompasses
two phenomena: first, attending a school with different peers and educational inputs, and
second, being at the very bottom of the ability distribution instead of being potentially much
higher in the distribution a less selective school. It is possible that more selective schools have
large academic benefits but that marginally admitted students have these benefits offset by
their location in the ability distribution. This is not a new idea. As long ago as 1890, James
(1890; 1983) posited what is now called the “little-fish–big-pond” effect (Marsh and Parker
1984), where people judge their accomplishments not only on their own merits but also in
comparison to their peer group. While much of the focus in the education and psychology
literatures has been on how peer groups affect self-concept (e.g. Marsh and Hau 2003), others
have looked at another aspect of being a “little fish”: students at the bottom of the ability
distribution in a school may face teaching and grading practices that are too difficult. Duflo
et al. (2011) review this literature in some detail, although like the regression discontinuity
evidence given above, no consistent conclusions emerge with respect to relative ability and
achievement.

The present chapter uses a regression discontinuity design, similar to those in the above-
mentioned studies, to show that the average effect of admission to a more selective school
on dropout and achievement in Mexico City’s public high schools is, at most, very small.
Marginally admitted students whose next-best option had much lower-ability peers do not
seem to suffer a penalty on their exam scores, while their probability of dropout rises in
comparison to marginal admittees whose next-best option had median peer quality similar
to the admitted school. This result holds even when allowing the average effect of admission
to vary by cutoff school, so that the comparison in outcomes is between students with the
same more-preferred school but with different less-preferred schools. While not indisputable
evidence for the importance of relative ability for academic outcomes, the fact that the
“worse” the school, the better the graduation outcome, is suggestive that this channel is
important in determining the net effect of admission. In contrast to Chapter 2 of this
dissertation, the present chapter estimates the average admission effect over all schools that
fill to capacity instead of focusing exclusively on elite schools. This allows me to show the
effect of admission to even when the counterfactual admission outcome is to a school within
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the same academic subsystem.
The Mexico City public high school admissions competition, like many systems in the

world (e.g. Kenya, Ghana, Malawi, Trinidad and Tobago, and Romania), requires students
to choose schools before they know the outcome of the entrance exam used to determine
assignment priority. This arrangement exacerbates the problem faced by students who are
trying to balance school quality or selectivity and the desire to avoid being at the bottom
of the ability distribution. Students do not know their ability, so if the entrance exam offers
useful information about ability, they would prefer to know their results before choosing. I
show via a simple theoretical model that, under this prevalent allocation mechanism, the
optimal strategy is not simply to rank schools based on one’s prior about his own ability.
The student can improve on this strategy by accounting for the fact that his unknown exam
score is correlated with his ability and that this score is used for assignment. He ranks
schools based on expected utility conditional on scoring high enough for admission, which
differs from the unconditional expectation because exam score is correlated with ability. In
practice, the student may leave desirable schools off his list in order to avoid having several
schools with bunched up cutoff scores. This strategy is not obvious and arguably requires
more sophistication on the part of the student than choosing on the basis of unconditional
expectations.

The rest of this chapter proceeds as follows. Section 3.2 summarizes Mexico City’s public
high school assignment system. Section 3.3 explains the regression discontinuity design that
will be used to estimate the heterogeneous effects of admission. Section 3.4 describes the
data used and Section 3.5 gives the results from the empirical exercise. Section 3.6 shows
how, when relative ability matters for utility and exam scores are correlated with ability,
students can improve their expected outcome by deviating from a simple ranking of schools
by unconditional expected utility. Section 3.7 concludes.

3.2 Context

The mechanics of Mexico City’s public high school choice system, run by the Comisión
Metropolitana de Institituciones de Educación Media Superior (COMIPEMS), have been
explained at length in the previous two chapters. The following list summarizes the appli-
cation and assignment process:

1. January of 9th grade: students receive a catalog of schools (or, for technical schools,
school-track combination) from which to choose for high school.

2. February-March: students turn in a list of up to twenty ranked options, along with a
demographic survey.

3. June: students take a multiple-choice, standardized exam consisting of 128 questions.

4. July: a computer scores the exams (one point per correct response) and assigns students
to schools in the following way:
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a) Each of the ten school subsystems with campuses in Mexico City reports the
number of seats available for each school (or school-track);

b) The computer orders students from highest-scoring to lowest-scoring;

c) The computer descends through the ordered list, assigning each student to his
most-preferred option that still has a seat remaining. The one exception is that
for admission to schools in the two elite subsystems, students must have a 7/10
middle school grade point average (GPA) or higher. The GPA is known at the
time of assignment so no admission results have to be rescinded later.

Ties are not broken–the school subsystem must decide in each case whether to admit
all tied students or none of them. Unassigned students must wait until after the process
and choose a school from those that still have seats remaining.

3.3 Empirical method

This section explains the regression discontinuity (RD) design that will be used to estimate
the causal impact of admission to a student’s more-preferred school on academic outcomes,
in comparison to the student’s next-most-preferred school that would admit him. Repeating
the intuition for this design from the previous two chapters: given that a school filled all of
its seats during the assignment process, there is a student (or group of students) who won
the final available seat there. This student’s score is the school’s cutoff score–nobody with a
lower score was admitted, and nobody with at least that score was rejected if he “wanted”
to attend that school when his turn for assignment arrived. COMIPEMS exam score, then,
perfectly predicts admission to a school among the group of students who wanted to attend
at the time of assignment. This gives a sharp RD design where the running variable is
COMIPEMS exam score and admission to the “cutoff school” is the treatment.

To formalize this method, consider the following parametric estimating equation:

Yijt = δadmiti + g1 (ci − Cjt) + admitig2 (ci − Cjt) + µj + ηt + εijt (3.1)

where Yijt is the academic outcome (dropout or ENLACE score) of student i near the admis-
sion cutoff of school j who took the exam in year t, admiti is a dummy variable for whether
the student scored high enough to be admitted (and thus was admitted, according to the
assignment rule), g1 and g2 are polynomial functions in “centered” COMIPEMS score (ci
denotes the student’s score and Cjt gives school j’s cutoff score in year t), µj and ηt are
cutoff school and exam year fixed effects, respectively, and εijt is a mean-zero error term.
The coefficient of interest is δ, which, provided that the polynomial functions adequately fit
the relationship between centered COMIPEMS score and outcome on each side of the cutoff,
gives the local average treatment effect of admission to the cutoff school. This is an average
over all schools that filled their seats, weighted by the number of marginally admitted and
rejected students at each. The counterfactual to cutoff school admission is admission to the
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next-most-preferred school, which varies both across cutoff schools j and between students
i within the same cutoff school.

For each school j, the sample of marginal students to be used in the RD analysis is defined
in a way similar to that of Chapter 1, but with one important difference. For convenience,
I restate the first four criteria from Chapter 1 here with slightly different notation and a
modified version of criterion 4. If school k is ranked before j on student i’s preference list,
including if j is unlisted, we write k � j. Denote the student’s exam score as ci. Then
marginal students for school j are those who:

1. listed school j as a choice;

2. had a score sufficiently close to j’s cutoff score to be in a small window around the
cutoff, where the window size is determined by a preselected bandwidth w: −w ≤
ci − Cjt < w;1

3. scored too low to be admitted to any more-preferred school: ci < Ckt,∀k � j;

4. would be admitted only to the cutoff school for all scores within the [Cjt, Cjt + w)
half-window: Ckt /∈ [Cjt, Cjt + w), ∀k � j;

5. would be admitted to a single less-preferred school for all scores within the [Cjt−w,Cjt)
half-window, i.e. the cutoff score for the next-most-preferred school is not within the
half-window: defining ` as the school attended by the student if he scores Cjt−1, then
C`t < Cjt − w.

Condition 5 ensures two things. First, the student is actually admitted to a school (`) if he
scores too low for j, rather than being left unassigned. Second, within the selected window,
the only two outcomes possible for the student are admission to j and admission to a single
school `. This will be important when examining the heterogeneous effects of admission with
respect to school characteristics, which will now be discussed.

Beyond the average effect of being admitted to a more-preferred school, one can see how
this effect varies with respect to differences between the schools above and below the cutoff.
For example, it may be that admission to the cutoff school makes a small difference when the
school below the cutoff has students with similar COMIPEMS scores, while the effect may
be larger when the two schools are very different on this dimension. The following equation
is used to estimate such heterogeneous effects:

Yijt =δadmiti + g1 (ci − Cjt) + admitig2 (ci − Cjt) +

Σk

[
βk∆Xkijt + hk1 (∆Xkijt × (ci − Cjt)) + admitihk2 (∆Xkijt × (ci − Cjt)) +

γk (admiti ×∆Xkijt)
]

+ µj + ηt + εijt

(3.2)

1The second inequality is strict because the score variable is discrete, so this definition includes w score
values too low to be admitted and w values high enough to be admitted.
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where k indexes the covariates that may alter the admission effect and ∆Xkijt is the dif-
ference in covariate Xk that the student will experience if he is rejected from the cutoff
school. In practice, these covariates are median COMIPEMS score of all admitted students,
distance from home to the school, and (logarithm of) cohort size. The γk coefficients tell us,
conditional on the ∆Xk generated by the student’s preferences and exam score, how the ad-
mission effect differs with respect to the change in covariates experienced due to admission.
A further specification allows for one admission effect per cutoff school, so that δ is instead
δj. In this case, the heterogeneity is estimated over students with the same cutoff school but
(potentially) different schools below the cutoff.

The heterogeneous effects γk are identified under the standard assumptions of the RD
design and similar assumptions about the relationship between ∆Xk and Y being well-
approximated by polynomials h. But it is still possible that the heterogeneous effects of
admission with respect to a particular ∆Xk do not represent a causal relationship between
∆Xk and the admission effect. Perhaps students who place themselves at cutoffs with a large
∆Xk are simply the type of student who experiences a larger (or smaller) effect of rejection
from their preferred school, independent of how much they are actually affected by Xk. We
might reasonably assume that students who place themselves at cutoffs where ∆Xk is large
care about Xk less than those with small ∆Xk, because the latter group has chosen schools
in a way that minimizes the change in this characteristic.2 If true, then γk understates the
true average contribution of ∆Xk to the admission effect. Still, the estimated heterogeneous
effects should not be regarded as strictly causal relationships between changes in school
characteristics and the effect of admission.

The discrete running variable, COMIPEMS exam score, necessitates the use of a para-
metric RD design (Lee and Card 2008). I select the optimal polynomial order on the basis
of the Akaike Information Criterion (AIC), as Lee and Lemieux (2010) suggest. Bandwidth
selection in this case is complicated because of the criteria used for inclusion in the sample.
In particular, criteria 4 and 5 require that only one school be attended for all scores above
the cutoff and within the bandwidth, and only one school be attended for all scores below
the cutoff and within the bandwidth. This leads to some observations being dropped from
the sample when the bandwidth is increased, which negates some of the benefit of increasing
sample size and implies that bandwidth selection is no longer the bias-efficiency trade-off
seen in most designs. Further, we have reason to favor a small bandwidth in this application
because large bandwidths by definition include mostly students who have not chosen schools
with bunched cutoff scores. In order to keep a small bandwidth while ensuring a reasonable
number of points of support, I include students within 5 points of the cutoff and then show
that key results are robust to larger and smaller bandwidths.

2Other student characteristics, such as geographic location, could also affect the chosen ∆Xk.
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3.4 Data

The data used in this paper come from two sources. The first is student-level data covering
all participants in the 2005 through 2007 COMIPEMS competitions. These data include,
for each student, the full ranked list of school preferences, the entrance exam score and
resulting school assignment, middle school grade point average, and personal information
such as address and telephone number. Most students also turned in a demographic survey
as well. The second is student-level results from years 2008 through 2010 of the 12th grade
ENLACE exam, which is a national exam administered in the spring to students who are
expected to graduate at the end of the academic year (June). This exam does not have a
bearing on whether the student graduates or not and does not impact funding to schools
or allocation of any other resource. The ENLACE data is primarily used in this paper as
a proxy for whether the student dropped out of high school or not, but the scores are also
used as an outcome variable.

The sample selection rules in the previous section determine which students are included
in the RD sample, but the data impose two further constraints. First, the high schools
affiliated with the Universidad Nacional Autónoma de México (UNAM) do not administer
the ENLACE to its students. Therefore, UNAM schools are omitted as cutoff schools, as well
as any student who would attend an UNAM school upon rejection from his cutoff school.
Second, some of the Colegio be Bachilleres (Colbach) offered delayed-start programs during
the time period of analysis. Such options are omitted as cutoff schools, as well as any student
who would be admitted to such an option upon rejection from a cutoff school. Finally, in
order to focus on students making the transition to public high school, we limit the sample
to students in Mexico City who were currently enrolled at public middle schools when they
participated in the COMIPEMS competition. Private school students may be planning to
attend private high schools but participate anyway to see if they can be admitted to an elite
high school as an additional option.

Table 3.2 describes the full sample of public middle school students who were assigned to
a school during the automated COMIPEMS process, as well as the RD sample of students
(within five points of an admission cutoff). Students are, in general, quite comparable
between the full and RD samples. About half of students are male, the average education
level of students’ most-educated parent is between middle and high school, and self-reported
family income is approximately 4,000 pesos ($367) per month. Students rank about 10
schools on average. While the average COMIPEMS exam score is 66.6/128, among the RD
sample it is 59.9. This is due in part to the UNAM students being dropped from the sample,
since they have scores that are far above the mean, and due to the fact that very high scorers
are unlikely to be near the cutoff score of any school.

Students in the full sample are admitted to schools with a median COMIPEMS score of
66.2, which is similar to the mean student-level score in the population. The standard devi-
ation of 14.6 indicates that average peer ability varies substantially across schools. Students
are about 7 km (straight line distance) from their admitted school and are admitted in very
large cohorts–the average incoming class is over 1,000 in the full sample and 624.9 in the RD
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sample. The difference is mostly due to the exclusion of the UNAM schools, which are the
largest in the city.

About half of students drop out of school in this sample, as proxied by taking the EN-
LACE exam. Another three percent take the exam one or two years late. Because we
include students who took the COMIPEMS exam in 2007 and only have ENLACE data
through 2010, the existence of delayed graduates implies that the dropout proportion is an
overestimate (as we miss 2007 entrants who take the exam a year late). But we can also
see that this overestimate is very small, as few students graduate late. The normalized
ENLACE score, generated by subtracting off the mean score for all students in the area
served by COMIPEMS and dividing by the standard deviation of this population, is 0.15
standard deviations lower in the RD sample than in the full sample. This is because the
highest-scoring students are less likely to be near an admissions cutoff than other students.

The key heterogeneity explored in this paper is the differential effect of admission with
respect to the change in median COMIPEMS score due to admission. Estimating this
requires heterogeneity in the difference between the median COMIPEMS scores for the school
above the cutoff and below the cutoff. Figure 1 shows that such variation does exist in the
RD sample, both for median COMIPEMS score and for other characteristics. As expected
for a score-based assignment mechanism, admission to the school above the cutoff almost
always results in higher-achieving peers. The difference is often quite large, as shown in
Panel a. Admission above the cutoff results in a geographically closer school about half the
time (Panel b), and students tend to end up in larger cohorts above the cutoff (Panel c).

3.5 Results

This section presents the key results regarding the effect of admission to the cutoff school
on dropout: the estimated effect is close to zero and increases in the difference between the
median COMIPEMS score of the schools above and below the cutoff. I first present the
unconditional effects, followed by the heterogeneity results. I then show, as a supplemental
finding, that there are no discernible effects of admission on ENLACE exam performance.
The lack of a test score effect, combined with higher risk of dropout when admission results in
going to a school with much higher-achieving peers than rejection, suggests that any academic
benefits from going to a “better” and more-preferred school are on average negated by the
effect of being located at the bottom of the ability distribution within the school.

3.5.1 Dropout

The average effect of marginal admission to the student’s cutoff school is very small and
statistically indistinguishable from zero. Figure 3.2 shows graphically the relationship be-
tween admission to the school above the cutoff and probability of dropping out, controlling
for COMIPEMS exam score (normalized to zero at the cutoff score). If anything, the graph
suggests a small increase in dropout due to admission. Table 3.2 confirms this finding by
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presenting estimates of RD equation 3.1. Column 1 includes all cutoff schools and estimates
an increase of 0.7 percentage points in dropout probability due to admission, although this
is statistically insignificant. The lower bound of the 95% confidence interval is -0.6 percent-
age points, ruling out even modest beneficial effects of admission on dropout. Chapter 2
showed that admission to an IPN school, compared to a non-IPN school, increased dropout
probability substantially. Removing these students from the sample, we find an insignificant
point estimate of -0.2 percentage points, and again rule out even modest effects. Columns 3
and 4 repeat this exercise, replacing the dependent variable with a measure of whether the
student either delayed in graduation or dropped out. The results are very similar: admission
to the more-preferred school does not, on average importantly affect progress through high
school. In contrast, middle school grade point average is a strong predictor of dropout.

Behind this near-zero effect, however, there is heterogeneity with respect to the differ-
ence in attributes between the schools above and below the cutoff. Table 3.3 presents these
results. Column 1 presents estimates from equation 3.2 with a single admission coefficient
across all cutoff schools and allows it to vary based on the change in median COMIPEMS
score, distance from home, and log cohort size due to admission. We see that admission to
the school above the cutoff is worse for dropout the higher-achieving the peers and the farther
away the school is in comparison to the school below the cutoff. These differential effects
persist when allowing one admission coefficient per cutoff school, so that the heterogeneous
effects are estimated from students with the same cutoff school but different schools below
the cutoff (and in the case of distance, students who live different distances from the cutoff
school). The estimated effects decline but remain statistically significant. The coefficient
of 0.33 on Admit × (∆ median COMIPEMS) suggests that for every standard deviation
increase in the above-below median COMIPEMS difference (5.8 points), admission increases
the probability of dropout by 1.9 additional percentage points.3 Column 3 adds one dummy
variable per subsystem (10 in total), equal to 0 if the schools above and below the cutoff are
in the same subsystem, 1 if the above school belongs to that subsystem but the below school
does not, and −1 if the opposite is true; interactions between each of these dummy variables
and the admission dummy; and interactions between each such dummy variable and a poly-
nomial function of centered COMIPEMS exam score. Even after accounting for changes in
subsystem due to admission, the heterogeneity with respect to median COMIPEMS score
persists, albeit with a lower coefficient of 0.24.

3.5.2 ENLACE scores

Students experiencing larger gains in peer COMIPEMS exam score fare worse in terms of
dropout, but do their ENLACE exam scores increase? Figure 3.3 suggests that there is no
ENLACE score gain, on average, from admission.4 Table 3.4 confirms this result in column
1, ruling out all but the smallest impacts (the upper bound of the 95% confidence interval

3The standard deviation of 5.8 points is within-cutoff school, while the unconditional standard deviation
is 6.5 points.

4This sets aside the issues of attrition, which are addressed at length in Chapter 2.
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is 0.03). Columns 2 through 4 replicate the specifications in the previous table, and find no
discernible heterogeneous effect of admission with respect to median COMIPEMS exam score
when school-specific admission effects are included. The strong dropout-ENLACE trade-off
found for admission to IPN schools in Chapter 2 does not appear in the full sample.

3.5.3 Validity checks

Standard checks of the RD design suggest that the design is valid. Figure 3.4 shows the
density of students’ centered exam scores for the sample of students in the dropout analysis.
While McCrary’s (2008) test for jumps in the density of the running variable at the cutoff
is inappropriate here due to the discreteness of exam score, a visual check of the histogram
does not suggest a problem. Table 5 presents tests for balance of the baseline covariates.
In no case is the admission coefficient large or statistically significant, and a joint test of
significance using seemingly unrelated regression yields a p-value of 0.54. Thus it seems that
admitted and rejected students do not differ, after controlling for centered exam score.

Figure 3.5 plots out the estimated coefficient and 95% confidence interval for the main co-
efficient of interest, the interaction between admission and the difference in median COMIPEMS
exam score between the schools above and below the cutoff. The coefficient corresponds to
Column 3 in Table 3.3. While the coefficient is statistically insignificant for low bandwidths,
it is fairly stable across bandwidths and is always positive. The evidence appears to be ro-
bust to bandwidth choice, which is fortunate given the already-discussed inability to choose
an optimal bandwidth based on standard tools.

3.6 Implications for optimal school choice

The empirical exercise in this chapter illustrates a possible drawback of marginal admission
for a student: being the lowest-ability student in a school may overwhelm the benefit of going
to a “better” or more-preferred school. Such a possibility calls into question whether ranking
schools in order of ex ante expected utility is the optimal strategy in a student-proposing
deferred acceptance (SPDA) mechanism where exam score determines priority (e.g. the
COMIPEMS assignment mechanism). While Gale and Shapley (1962) show that this is the
dominant strategy under traditional SPDA mechanisms, the difference in COMIPEMS and
similar systems is that the exam score actually conveys useful information to the student
about expected utilities. The student would prefer to know his exam score before applying
so that he might avoid being the lowest-scoring student in a school, but most assignment
systems require that applications precede exam administration.

This section presents a highly simplified school choice problem and shows how a student
can improve his choice portfolio by deviating from a simple ordering of schools by expected
utility. Instead of using his ex ante expected ability to guess where he will fall in the ability
distribution within a school, he can use his exam score as a proxy for ability and utilize that
information to choose the ex ante optimal school that balances his preferences for school
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characteristics and his desire to avoid being at the bottom of the ability distribution at his
assigned school.5

3.6.1 Set-up

Student i’s problem is to choose an ordered, possibly incomplete, list of preferences over
schools S = {1, 2, ..., N}. Assignment will be determined by whether the student’s score
on an exam, ci, exceeds the cutoff (minimum) score mj for each school, which the stu-
dent takes as given.6 This is a simplification from the true matching problem of assign-
ing students to schools with seat quotas, using the exam score to determine priority. Let
Mi = {mi1,mi2, ...,miNi

} index the cutoff scores of the student’s ranked schools. The stu-
dent will be assigned to his most-preferred school where his exam score meets the cutoff:
min {k|mik ≤ ci}.

Utility from a school is determined by school characteristics and their interaction with
student characteristics, where some of the latter may only be known with uncertainty. To be
concrete, suppose that a student does not know his own academic ability with certainty, and
the utility derived from attending each school depends on own academic ability. Denoting
school characteristics by Xj, known student characteristics by Zi, and student ability by ai,
utility from attending school j is defined as:

Uij = U (Xj, Zi, ai) . (3.3)

While ability is unknown, the student knows the distribution from which it is drawn, so
ai ∼ f(θi) with known θi.

The student’s optimal strategy appears obvious: order the schools by expected utility,
where expectations are obtained by integrating utility over the ability distribution:

E [Uij] =

∫ ∞
−∞

U (Xj, Zi, v) f(v; θi)dv. (3.4)

This strategy is the optimal behavior in SPDA mechanisms as shown by Gale and Shapley
(1962).

3.6.2 Correlation between ability and exam score

It is likely that the student’s exam score is correlated with his ability, so that if the student
knew his exam score in advance he might change his ordering of schools. The following
shows that, even without having the exam score at the time of ranking schools, the fact that
assignment is on the basis of exam score will affect the optimal selection strategy.

5The existence of an expected utility-increasing deviation from the usual SPDA strategy suggests that
further work is required to determine if and under what conditions COMIPEMS and similar systems are
stable and Pareto efficient when ability is unknown and enters into expected utilities.

6This is a good approximation to the COMIPEMS system, where cutoff scores are remarkably stable
from year to year.
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As a simple case, suppose the exam score is a one-to-one function of ability: ci = g (ai).
What is the optimal decision rule? I propose that the optimal first choice school is not chosen
on the basis of the expected utilities in equation 3.4. Instead, the student can do better by
realizing that he will only attend a school if his score meets or exceeds the cutoff: ci ≥ mj.
Then he should only care about expected utility from a school conditional on having scored
high enough for admission:

E [Uij|mj ≤ ci] =
1

1− F (g−1 (mj))

∫ ∞
g−1(mj)

U (Xj, Zi, v) f(v; θi)dv. (3.5)

For his second choice, the student can incorporate yet more information: conditional on
rejection from his first choice, he knows that ci < mi1. Thus he considers the expected
utility from each remaining option with a lower cutoff score,7 conditional on having scored
too low for the first option but high enough to be admitted to the school under consideration:

E [Uij|m1i ≤ ci ≤ mj] =

1

F (g−1 (mi1))− F (g−1 (mj))

∫ g−1(mi1)

g−1(mj)

U (Xj, Zi, v) f(v; θi)dv.
(3.6)

For the third and later choices, the same comparison is made, except that for the nth choice,
mi(n−1) is used instead of mi1 to compute the expected utilities in equation 3.6.

3.6.3 Consequences for choice behavior when relative ability
affects utility

What are the implications of the above choice rules when relative ability affects utility? To
model this simply, suppose that Uij = U(Xj, Zi) + Hj(ai), where Hj(·) is the cumulative
density function of ability in school j. Students at the bottom of the ability distribution
obtain less utility from a school than students at the top, all else equal. There are two ways
in which, qualitatively, the improved choice rules dictate different rankings than the simple
ordering with respect to ex ante expected utility.

1. Students will be more “ambitious,” at least in their first choice, by being more likely to
choose a school where the unconditional expectation is to be at or near the bottom of
the ability distribution. This is because his expected position in the ability distribution
conditional on admission is higher than the unconditional expectation.

2. Students will be less likely to choose schools with cutoff scores that are very close
to each other. In the extreme case (and with continuous exam scores), suppose the

7Even a trivial utility cost (e.g. time cost) of listing a choice will prevent students from listing a school
with a cutoff score greater than those of more-preferred listed options, since it will be impossible to be
admitted to the less-preferred school.
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student consecutively ranks two schools j and k, where mk = mj − ε, ε → 0. Then
E[Hj(ai)|mj > ci ≥ mk] → 0 because the student knows that rejection from j and
admission to k means that he barely made it into k and must be at the bottom of
the ability distribution. The student thus spaces out cutoffs in order to reduce the
probability of being a “little fish in a big pond,” even when the unconditional probability
of this occurring is low.

Both of these behaviors appear suboptimal from the standpoint of an unconditional ex-
pected utility maximizer, because they cause students to choose schools that are ex ante too
“good” for them or to forego some schools that are excellent matches according to ex ante
unconditional expectations but have cutoffs that are too similar to other options.

3.6.4 Implications for revealed preference interpretation of
student choices

The dependence of utilities of on (unobserved) ability has implications for our interpretation
of students’ preference rankings as revealed preferences. Under traditional SPDA mech-
anisms, even those where the number of choices a student can list are limited, it is never
optimal to list a school above another school with higher expected utility. In the COMIPEMS
system, this is untrue because decisions are made on the basis of expected utility conditional
on admission. The result is that we may see low-scoring students choosing somewhat com-
petitive schools and wrongly interpret this as either naive decision-making or an indication
that students do not care if they are the lowest-ability student in a school, in which case we
may wonder if the “small fish, big pond” problem is acknowledged by students at all

Supposing that students could exhaustively rank all options, the fact that students may
condition their nth choice on the (n− 1)th previous choices implies that rankings do not give
a true ordering of schools by unconditional expected utilities. Students may optimally omit
schools from their list in order to avoid “bunching” cutoff scores. It is incorrect to interpret
omission from the preference list as an indication that the school was less-preferred than all
other schools with lower cutoff scores.

Giving students their exam scores before listing their choices would eliminate each of
these problems for the researcher, as well as giving the student more information with which
to form expected utilities. The extent to which this issue matters will depend on how much
information the exam score actually conveys about ability, as well as how much students
actually wish to avoid being at the bottom of the school’s ability distribution. If students
already know their own ability quite well or if the exam is weakly correlated with ability,
then reporting exam scores before listing choices will have little use. Likewise, if position
in the ability distribution within a school is unimportant to students, then so too might be
revealing exam scores.
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3.7 Discussion

We have seen in this chapter that marginal admission to a school has little or no average
effect on dropout probability or test scores, but that this impact is heterogeneous with
respect to the difference in median COMIPEMS scores between the admitted and rejected
schools. The results suggest that admission to a school where one is at the bottom of the
ability distribution can have a negative impact on probability of graduation. This finding is
in line with the “big-fish-little-pond” theory in the education literature, although the results
here cannot discern between a psychological effect of low relative ability causing dropout
and the more mundane possibility that the lowest-ability students in a school are simply less
likely to be capable of completing graduation requirements.

Students may take steps to avoid being a “little fish” by spacing out the cutoff scores of the
schools that they select, leading to choice behavior different from what would be predicted in
a setting where relative ability was unimportant. Revealing the entrance exam score before
requiring preferences to be turned in would provide useful information for students. But an
obvious fact bears mentioning: someone needs to be the lowest-ability student in each school.
Thus it is not clear that the aggregate welfare effects of exam score provision are positive,
even if each individual would prefer to have that information before choosing. Further work
will attempt to understand the equilibrium that results from the current system and how
it compares to the situation where ability is known (with more precision, at least) before
school selection.
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3.8 Figures

Figure 3.1a: Distribution of change in median COMIPEMS score due to admission for re-
gression discontinuity sample
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Plotted variable is the difference between the median COMIPEMS exam score in the school
attended if the student scores at or above the cutoff score, minus the median score in the
school attended if the student scores below the cutoff score.
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Figure 3.1b: Distribution of change in home-to-school distance due to admission for regres-
sion discontinuity sample

0
.0

2
.0

4
.0

6
.0

8
.1

D
en

si
ty

-50 0 50
D distance to school due to admission

Plotted variable is the difference between the home-to-school distance for the school attended
if the student scores at or above the cutoff score, minus the home-to-school distance for the
school attended if the student scores below the cutoff score.
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Figure 3.1c: Distribution of change in log cohort size due to admission for regression discon-
tinuity sample
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Plotted variable is the difference between the log cohort size in the school attended if the
student scores at or above the cutoff score, minus the cohort size in the school attended if
the student scores below the cutoff score.
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Figure 3.2: Effect of admission to cutoff school on dropout probability
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Dependent variable is dropout probability, after de-meaning dropout with respect to school
fixed effects and adding the sample mean. Independent variable is the difference between
the student’s score and the cutoff score of the corresponding school.
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Figure 3.3: Effect of admission to cutoff school on ENLACE score
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Dependent variable is normalized ENLACE score, after de-meaning dropout with respect
to school fixed effects and adding the sample mean. Independent variable is the difference
between the student’s score and the cutoff score of the corresponding school.
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Figure 3.4: Density of centered cutoff score for regression discontinuity sample
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Plotted variable is the difference between the student’s COMIPEMS exam score and the
cutoff score of the corresponding school in the regression discontinuity sample.
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Figure 3.5: Estimated differential effect of admission on dropout probability with respect to
difference in median COMIPEMS score, for various bandwidths
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Solid line is the regression coefficient on Admit × (∆ median COMIPEMS) for the corre-
sponding bandwidth, estimated from equation 3.2. Dashed lines give the 95% confidence
intervals for these estimates.
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3.9 Tables

Table 3.1: Summary statistics for students assigned to schools by COMIPEMS

(1) (2)

Full sample RD sample
p-value for equality

of (1) and (2)
Middle school GPA 8.16 8.03 0.00

(0.82) (0.78)
Male 0.46 0.45 0.00

(0.50) (0.50)
Maximum of mother’s and father’s education 10.37 9.88 0.00

(3.34) (3.21)
Family income (thousand pesos/month) 4.45 3.98 0.00

(3.46) (3.11)
Hours studied per week 5.30 4.88 0.00

(3.27) (3.14)
Student is employed 0.04 0.04 0.00

(0.19) (0.20)
Number of schools ranked 9.97 9.99 0.00

(3.70) (3.61)
COMIPEMS score 66.63 59.86 0.00

(16.83) (13.83)
Median COMIPEMS score of assigned school 66.22 62.72 0.00

(14.56) (12.91)
Distance from home to assigned school (km) 7.40 6.99 0.00

(6.25) (6.06)
Cohort size of assigned school 1095.94 624.86 0.00

(1092.63) (554.87)
Dropped out (did not take ENLACE) 0.49 0.51 0.00

(0.50) (0.50)
Delayed/dropped out 0.52 0.54 0.00
(did not take ENLACE within 3 years) (0.50) (0.50)
Normalized ENLACE score 0.02 -0.13 0.00

(0.94) (0.88)
Observations 676114 89435
Standard deviations in parentheses. Column 1 includes all students in their final year at a public middle
school in Mexico City who were assigned to a school during the automated portion of the assignment process
(i.e. did not choose from remaining seats after failing to place at any listed option). Dropout and delay
measures do not include students admitted to UNAM schools.
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Table 3.2: Regression discontinuity estimates of effect of admission on dropout probability

(1) (2) (3) (4)
Dropout,
all cutoffs

Dropout,
no IPN cutoffs

Dropout or delay,
all

Dropout or delay,
no IPN cutoffs

Admitted (scored above cutoff) 0.716 -0.243 0.836 -0.489
(0.641) (0.674) (0.636) (0.668)

Centered COMIPEMS score -0.0890 -0.183 0.0418 -0.0379
(0.158) (0.166) (0.157) (0.165)

Centered COMIPEMS × admitted -0.273 -0.166 -0.424∗ -0.324
(0.221) (0.232) (0.219) (0.230)

Middle school GPA -19.43∗∗∗ -19.23∗∗∗ -20.75∗∗∗ -20.53∗∗∗

(0.219) (0.231) (0.217) (0.229)
Observations 89435 80807 89435 80807
Adjusted R2 0.132 0.134 0.141 0.143
Cutoff FEs Yes Yes Yes Yes
AIC-optimal polynomial order 1 1 1 1

Standard errors in parentheses

Dependent variable in columns 1 and 2 is dropout × 100 so that coefficients are percentage point changes in predicted dropout
probability per 1-unit change in the independent variable. Dependent variable in columns 3 and 4 is delay or dropout × 100,
which is characterized by either taking the exam after 4+ years or not at all. Columns 2 and 4 exclude students who were at the
boundary between an IPN school (above the cutoff) and a non-IPN school (below the cutoff).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01
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Table 3.3: Regression discontinuity estimates of heterogeneous effects of admission on
dropout with respect to changes in student-school attributes

(1) (2) (3)
Admitted (scored above cutoff) -4.991∗∗∗

(1.203)

∆ median COMIPEMS score due to admission -0.270∗∗∗ -0.188∗∗ -0.165∗

(0.0771) (0.0793) (0.0885)

∆ distance to school due to admission -0.221∗∗∗ -0.194∗∗ -0.160∗

(0.0830) (0.0836) (0.0857)

∆ log cohort size due to admission -0.239 0.238 1.053
(0.614) (0.640) (0.902)

Admit × (∆ median COMIPEMS) 0.499∗∗∗ 0.330∗∗∗ 0.239∗∗

(0.0929) (0.0993) (0.111)

Admit × (∆ distance) 0.283∗∗∗ 0.238∗∗ 0.213∗∗

(0.102) (0.103) (0.106)

Admit × (∆ log cohort size) 0.418 -0.555 -0.616
(0.725) (0.810) (1.133)

Observations 84355 84355 84355
Adjusted R2 0.135 0.141 0.142
Cutoff FEs Yes Yes Yes
Cutoff × admit FEs No Yes Yes
∆ subsystem effects No No Yes
AIC-optimal polynomial order 1 1 1

Standard errors in parentheses

Dependent variable is (dropout × 100) so that coefficients are percentage point changes in dropout
probability. The ∆ variables are the difference in the respective attribute between the school above
the cutoff and the school below the cutoff. All specifications include the student’s middle school
GPA, the AIC-optimal order of piecewise polynomial in centered COMIPEMS exam score, the
uninteracted ∆ variables, and interactions between each ∆ variable and the AIC-optimal piecewise
polynomial in centered COMIPEMS exam score. Column 3 includes one control per subsystem
for whether the subsystem of the schools above and below the cutoff are different (=0 if both or
neither belong, =1 if school above belongs to that subsystem and the school below does not, =-1
if school below belongs but the school above does not), and interactions between these variables
and admission and the AIC-optimal piecewise polynomial in centered COMIPEMS exam score.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01



118

Table 3.4: Regression discontinuity estimates of heterogeneous effects of admission on EN-
LACE score with respect to changes in student-school attributes

(1) (2) (3) (4)
Admitted (scored above cutoff) 0.00392 -0.0515∗∗

(0.0133) (0.0258)

∆ median COMIPEMS score due to admission 0.00223 0.00407∗∗ 0.00445∗∗

(0.00155) (0.00159) (0.00176)

∆ distance to school due to admission 0.000734 0.000904 0.000252
(0.00178) (0.00180) (0.00186)

∆ log cohort size due to admission -0.0112 -0.0134 0.0188
(0.0129) (0.0135) (0.0192)

Admit × (∆ median COMIPEMS) 0.00495∗∗∗ 0.00117 0.00159
(0.00189) (0.00201) (0.00222)

Admit × (∆ distance) -0.000464 -0.000909 -0.000603
(0.00220) (0.00223) (0.00230)

Admit × (∆ log cohort size) 0.00279 0.0106 -0.0460∗

(0.0153) (0.0171) (0.0241)
Observations 43754 41384 41384 41384
Adjusted R2 0.418 0.419 0.427 0.430
Cutoff FEs Yes Yes Yes Yes
Cutoff × admit FEs No No Yes Yes
∆ subsystem effects No No No Yes
AIC-optimal polynomial order 1 1 1 1

Standard errors in parentheses

Dependent variable is normalized ENLACE exam score. The ∆ variables are the difference in the respective
attribute between the school above the cutoff and the school below the cutoff. All specifications include the
student’s middle school GPA and the AIC-optimal order of piecewise polynomial in centered COMIPEMS
exam score. Specifications 2-4 include the uninteracted ∆ variables and interactions between each ∆ variable
and the AIC-optimal piecewise polynomial in centered COMIPEMS exam score. Column 4 includes one
control per subsystem for whether the subsystem of the schools above and below the cutoff are different (=0
if both or neither belong, =1 if school above belongs to that subsystem and the school below does not, =-1 if
school below belongs but the school above does not), and interactions between these variables and admission
and the AIC-optimal piecewise polynomial in centered COMIPEMS exam score.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01



119

Table 3.5: Regression discontinuity tests for balance of baseline covariates

(1) (2) (3) (4) (5) (6)
GPA Parental ed. Income Male Hours studied Works

Admitted (scored above cutoff) -0.0117 -0.0217 -0.0436 0.000487 -0.0415 -0.00421
(0.00982) (0.0446) (0.0442) (0.00637) (0.0450) (0.00297)

Centered COMIPEMS score 0.0205∗∗∗ 0.0543∗∗∗ 0.0468∗∗∗ 0.000377 0.0468∗∗∗ -0.000296
(0.00241) (0.0110) (0.0109) (0.00157) (0.0111) (0.000730)

Centered COMIPEMS × admitted -0.00216 -0.0378∗∗ -0.0312∗∗ 0.00232 -0.0122 0.000865
(0.00338) (0.0154) (0.0152) (0.00220) (0.0155) (0.00102)

Observations 89435 79638 78475 89435 79393 77076
Adjusted R2 0.154 0.094 0.066 0.136 0.040 0.004
Cutoff FEs Yes Yes Yes Yes Yes Yes
Mean of dependent variable 8.030 9.884 3.981 0.452 4.875 0.0419
SD of dependent variable 0.775 3.210 3.112 0.498 3.144 0.200

Standard errors in parentheses

Dependent variable is dropout × 100 so that coefficients are percentage point changes in predicted dropout probability per 1-unit
change in the independent variable. Joint estimation of columns 1-6 using seemingly unrelated regression and testing for joint
significance of the admission coefficients yields a p-value of .54.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < .01
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