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Abstract 

 

Using a method originally proposed for describing a continuum-space polymer fluid, a new 

expression for the Helmholtz energy of mixing is proposed for a binary lattice mixture. Molecular 

size asymmetry and nonrandomness due to segment-segment interactions are taken into account. 

An expression proposed by Yan, Liu and Hu for a binary lattice mixture of monomers, based on 

the Ising model, is used as a reference system. Calculated critical constants and liquid-liquid 

coexistence curves are in good agreement with Monte Carlo simulations for lattice mixtures with 

modest size asymmetry. Because lattice spacing rises with increasing temperature, comparison of 

calculated binary liquid-liquid equilibria with experiment requires that calculations take into 

account that the interchange energy falls as temperature rises. While the new expression for the 

Helmholtz energy of mixing provides much improvement over the Flory-Huggins equation, 

calculated liquid-liquid equilibria for three binary systems are similar to those from 

Guggenheim’s quasi-chemical theory.  

 

Keywords: lattice theory, Ising model, asymmetric mixtures, critical constants, liquid-liquid 
coexistence curve. 
 
 
 
 
 
*Dedicated to the memory of Prof. Dr. E. U. Franck, a dear friend and an inspiring colleague.
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1. Introduction 

 In the early years of physical chemistry, about 120 years ago, there was much interest in the 

thermodynamic properties of binary liquid mixtures. Because over the years, this interest has 

continued, the technical literature is rich in experimental and theoretical studies of the equilibrium 

properties of binary liquid mixtures. Most attention has been given to the Helmholtz energy of 

mixing mix A∆ . 

 While many other theoretical ideas have been proposed, lattice theory provides a particularly 

simple method to calculate mix A∆ [1-3]. In this theory, each molecule occupies one or several 

connected sites on a three-dimensional lattice; only interactions between nearest-neighbor sites 

are considered. mix A∆  consists of two parts, an athermal part that describes the combinatorial 

entropy contribution, and a residual part that is due to interactions between molecular segments. 

The athermal contribution to mix A∆  is determined only by the shapes and sizes of the molecules 

and by the mixture composition. The best-known result for athermal mix A∆  is given by the 

Flory-Huggins theory of polymer solutions [4, 5].  

The central problem for describing residual mix A∆  is to establish a relation for describing 

the effect of nonrandomness, that is, the tendency of molecules to show some preference in 

choosing their immediate neighbors. In the simplest case, for mixtures of equi-sized molecules, if 

we assume that there is no preference, mixing is entirely statistical; in that event, we have what is 

called a “regular” solution [6] with a very simple result for residual mix A∆ . To take 

nonrandomness into account, about 70 years ago, Guggenheim [2, 3, 7] proposed a well-known 

approximation known as the quasi-chemical approximation. 
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 At normal conditions, for relatively simple mixtures where the components are (nearly) 

nonpolar and do not exhibit hydrogen bonding, nonrandomness has little effect on mix A∆ . 

However, if the two components are sufficiently different to show limited liquid solubility, the 

effect of nonrandomness becomes important, especially in the region near the upper critical 

temperature, that is, the temperature where the two equilibrated liquid phases become identical. 

To represent the liquid-liquid coexistence curve, the regular-solution theory predicts a critical 

temperature that is too large. The quasi-chemical theory gives better results but nevertheless, 

shows some deviation from experiment.  

 Recently, based on the Ising model, Yan, Liu and Hu [8] developed a new analytical theory 

for mixtures of equi-sized spherical molecules; this theory is better than quasi-chemical theory 

when compared with Monte Carlo simulations. In the present work, we generalize this theory for 

binary lattice mixtures containing chain molecules of different size. Toward that end, we use the 

thermodynamic perturbation method, originally proposed by Wertheim [9, 10], and by Stell and 

Zhou [11-13] to represent the thermodynamic properties of continuum-space polymer fluids. 

Compared to Freed’s series-expansion theory [14] and Monte Carlo simulations [15] for lattice 

polymer mixtures, our generalized theory gives good agreement.  

In most cases, the lattice model assumes that the volume of the mixture and the interchange 

energy ε  are independent of temperature. However, for real mixtures, calculated results must 

take into account that interchange energy ε  decreases with temperature due to expansion of the 

lattice. When a suitable temperature dependence for interchange energy ε  is assigned to each 

theory, our proposed theory provides much improvement over the well-known Flory-Huggins 
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equation and slight improvement over Guggenheim’s quasi-chemical theory. 

 

2. Theory 

2.1. Theoretical framework 

For continuum-space associating fluids, Wertheim [9, 10] developed a thermodynamic 

perturbation theory. When the degree of association is unity, this theory becomes applicable to 

mixtures containing molecular or polymer fluids. Using a different approach, Stell and Zhou 

[11-13] obtained results identical to the first-order thermodynamic perturbation theory of 

Wertheim. Instead of deriving our theory in the customary language of a lattice model, we obtain 

an expression for mix A∆  for a lattice mixture by comparison to that for a continuum-space 

polymer mixture. 

We consider a binary associating-fluid mixture which contains 1 1r N  associating spheres 1 

and 2 2r N  associating spheres 2. Each kind of associating sphere can react to form homogeneous 

polymer molecules with 1r  segments and 2r  segments, respectively. The numbers of chemical 

bonds of the two polymer molecules are 1b  and 2b , respectively. The shapes of the polymer 

molecules can be linear or branched. For molecules without rings, 1i ib r= − . When the degree 

of association is zero, all spheres are non-bonded; we use this simple-fluid mixture as our 

reference fluid. When the degree of association is unity, the associating fluid becomes a binary 

polymer mixture which includes N1 polymer molecules 1 and N2 polymer molecules 2. According 

to the first-order thermodynamic perturbation theory [9-13], the Helmholtz energy of the binary 

polymer mixture consists of three terms 
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id ref assocA A A A= + +        (1) 

where idA  is the ideal contribution; refA  is the Helmholtz energy of the reference system in 

excess over the ideal part; and assocA  is the association contribution given by 

1 2

1 2

1 1
assoc

1 1 B 11 1 2 2 22 2
0 0

ln lnBA N b k T y d N b k T y d
α α

α α

α α
= =

= =

= − −∫ ∫    (2) 

where Bk  is Boltzmann’s constant, T  is absolute temperature, iα  is the degree of association 

for component i, iiy  is the cavity-correlation function for the associating spheres at the bonding 

distance. The cavity correlation function for the simple fluid is defined by [16] 

[ ]( ) ( ) exp ( ) /ii ii ii By r g r r k T= Γ        (3) 

where ( )iig r  is the radial distribution function and ( )ii rΓ  is the two-body potential of the 

non-bonded molecules.  

Now we consider a binary lattice mixture. The total number of lattice sites is sN and the 

coordination number is z. Each site of the lattice is occupied by a molecule or a molecular 

segment of type 1 or 2. Because all lattice sites are occupied 

1 1 2 2sN r N r N= + .         (4) 

The volume fractions of the two components are defined by 

1 1
1

s

r N
N

φ =          (5) 

2 2
2

s

r N
N

φ = .         (6) 

For a binary mixture, there are three kinds of nearest-neighbors: 1-1, 2-2 and 1-2. The interaction 

energies of the three kinds of pairs are 11ε− , 22ε−  and 12ε− , respectively. The interchange 
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energy ε  is defined by 

11 22 122ε ε ε ε= + − .        (7) 

Although there are three energy parameters, for calculating mix A∆ , we require only interchange 

energy ε . 

 We use Eq. (1) for the binary lattice mixture but, unlike previous work, the reference system 

is now described by the Ising model, i.e., the binary lattice mixture of two kinds of monomers. To 

apply continuum-space theory to a lattice model, Eq. (2) needs some modification. Toward that 

end, we introduce local composition '
ijx  of component j around component i; local composition 

means that, on the average, we find '
ijzx  nearest-neighbor segments j around an arbitrarily 

chosen segment i. The local compositions satisfy the conservation equations 

' '
11 12 1x x+ =           (8) 

' '
21 22 1x x+ = .          (9) 

In continuum space, 2( )4j ijg r r drρ π  is the average number of segments j at distance r given 

that one segment of component i is at the origin, where jρ  is the number density of segments j. 

Because '
ijzx  and 2( )4j ijg r r drρ π  have similar physical meaning, the “radial distribution 

function” for a lattice mixture is ' '/ij jx x , where '
jx  is the bulk composition of component j. 

Thus the “cavity-correlation function” for a lattice mixture is ' 'exp( / ) /ij ij B ij jy k T x xε= − . 

According to this analogy, for a binary lattice mixture, the association Helmholtz energy in Eq. (2) 

becomes 

1 2

1 2

1 1' '
assoc 11 11 22 22

1 1 1 2 2 2' '
1 20 0

exp( / ) exp( / )ln lnB B
B B

k T x k T xA N b k T d N b k T d
x x

α α

α α

ε εα α
= =

= =

− −
= − −∫ ∫ . (10) 
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2.2.  Athermal mixture 

 The number of possible states for an ideal lattice mixture is  

1 2
1 2

1 2
1 2! !

N N
N NsN f f

N N

+

Ω =         (11) 

where 1f  and 2f  are the possible configuration numbers of the two kinds of molecules. The 

number of possible states for the pure lattice fluid is  

 
( )

!

i
i

N
Ni i

i i
i

N r f
N

Ω = .       (12) 

Then, the ideal contribution to the Helmholtz energy of mixing is  

( )

id id idid
mix 1 2

1 2

1 2
1 2

1 2

1 ln ln ln

ln ln .

s B s B s B s B

s

A A AA
N k T N k T N k T N k T

N

r r
φ φφ φ

∆
= − −

= − Ω + Ω + Ω

= +

      (13) 

Eq. (13) is identical to the equation obtained by Flory [4] more than 60 years ago, using an 

entirely different derivation. 

For an athermal lattice mixture, the reference system is an athermal mixture of monomers. 

From the combinatorial argument, the total Helmholtz energy of mixing for the athermal 

reference system is  

mix
1 1 2 2ln ln

s B

A
N k T

φ φ φ φ∆
= + .        (14) 

However, according to Eq. (13), when 1 2 1r r= = , the ideal part of mix / s BA N k T∆ for the 
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reference system is also 1 1 2 2ln lnφ φ φ φ+ . Because in Eq. (2) the reference system contribution 

to the Helmholtz energy of mixing is the difference between the two terms, 

ref,athermal
mix

B

0
s

A
N k T

∆
= .        (15) 

For calculating the association Helmholtz energy for the athermal system, we introduce 

another molecular parameter: the surface of molecule i, viz izq  

2i i izq zr b= − .         (16) 

The surface fractions are defined by 

1 1
1

1 1 2 2

q N
q N q N

θ =
+

        (17) 

2 2
2

1 1 2 2

q N
q N q N

θ =
+

.       (18) 

We assume that, for the athermal mixture, the contacting pairs distribute randomly. We consider 

that first, component 1 associates to form polymers while component 2 consists of monomers. 

When the degree of association is 1α , the molecular surface of the monomers of component 1 is 

1 1(1 )sN zφ α− . The total molecular surface of the mixture is [ ]1 1 1 1 1 2(1 )sN q z z zφ α φ α φ+ − + . If 

the contacting pairs distribute randomly, then 

'
11 1 1

'
1 1 1 1 1 1 2 1 1

1 1 1 1 1 2

(1 ) 1
(1 ) (1 )

1 .
(1 )

x z
x q z z z

q

φ α
φ α φ α φ φ α

φ α φ α φ

−
= ⋅

+ − + −

=
+ − +

     (19) 

Next, we consider the case where component 1 is completely associated and the degree of 

association of component 2 is 2α . Then 
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'
22 2 2

'
2 1 1 2 2 2 2 2 2 2

1 1 2 2 2 2 2

(1 ) 1
(1 ) (1 )

1 .
(1 )

x z
x q z q z z

q q

φ α
φ φ α φ α φ α

φ φ α φ α

−
= ⋅

+ + − −

=
+ + −

    (20) 

According to Eq (11), the association athermal Helmholtz energy for a binary mixture and that for 

a pure fluid i are, respectively  

assoc,athermal
mixture 1 1 2 2

1 1 2 2
B 1 2

ln ln
2

A r rz N q N q
k T

θ θ
φ φ

 
= + 

 
      (21) 

assoc,athermal

B

ln
2

i
i i i

A z N q r
k T

= .        (22) 

The Helmholtz energy of mixing for an athermal mixture is 

athermalathermal athermal athermal
mixturemix 1 2

1 2 1 1 1 2 2 2
1 2

1 2 1 1 2 2

ln ln ln ln .
2

s s s s

AA A A
N kT N kT N kT N kT

q qz
r r r r
φ φ φ θ φ θφ φ

φ φ

∆
= − −

 
= + + + 

 

   (23) 

Many years ago, Staverman [17] obtained the same result using an entirely different derivation.  

 

2.2. Non-athermal mixture 

 The Flory-Huggins theory uses Eq. (13) for the athermal part and a mean-field term for the 

residual part. The total Helmholtz energy of mixing is  

mix 1 2
1 2 1 2

1 2

ln ln
2s

A z
N kT r r

φ φφ φ φ φ ε∆
= + +

.           (24) 

Eq. (24) is the well-known Flory-Huggins equation [4].  

For the quasi-chemical theory of Guggenheim[2, 3, 7], the Helmholtz energy of mixing is 
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mix 1 2 1 1 1 2 2 2
1 2

1 2 1 1 2 2

1 2
1 2

1 2

ln ln ln ln
2

1 2 1 2ln ln
2 ( 1) ( 1)

s

A q qz
N kT r r r r

z

φ φ φ θ φ θφ φ
φ φ

β φ β φφ φ
φ β φ β

 ∆
= + + + 

 
 − + − +

+ + + + 

     (25) 

with 

( )1/ 2
1 21 4 Cβ φ φ= +         (26) 

exp( / ) 1C kTε= − .        (27) 

For a binary non-athermal mixture, we use the Ising model for our reference system. Recently, 

Yan, Liu and Hu [8] proposed a new approximation for the Ising model for a mixture of 

equi-sized molecules with 1 2 1r r= = . They find that the local compositions of the Ising model 

satisfy  

'
11 1

2'
12 2

(1 )x C
x

φ φ
φ

= +         (28) 

'
22 2

1'
21 1

(1 )x C
x

φ φ
φ

= + .        (29) 

From Eqs. (24) and (25), Yan, Liu and Hu [8] obtain the residual Helmholtz energy of mixing 

( )
ref,residual

mix 1 2
1 2

1 2

ln 1
2(1 )s

A z C
N kT kT

φ φ  ε φ φ
φ φ

∆  = − + −  
.     (30) 

Because Yan et al. considered only mixtures of equi-sized spherical molecules, their expressions 

use mole fractions rather than volume fractions. We use volume fractions here because we are 

interested in asymmetric mixtures. From Eqs. (8), (9), (28) and (29), we also obtain 

'
11 2

'
1 1 2

1
1

x C
x C

φ
φ φ

+
=

+
         (31) 
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'
22 1

'
2 1 2

1
1

x C
x C

φ
φ φ

+
=

+
.         (32) 

Substituting Eqs. (31), (32) into Eq. (11), we obtain the contribution of association to the residual 

Helmholtz energy of mixing 

assoc,residual assoc,residual assoc,residual assoc,residual
mix 1 2

1 1 2 2 2 1

1 1 2 2 1 2

1 1ln ln .
1 1

s s s s

A A A A
N kT N kT N kT N kT

b C b C
r C r C
φ φ φ φ

φ φ φ φ

∆
= − −

+ +
= − −

+ +

    (33) 

Combining Eqs. (30) and (33), we obtain the total residual Helmholtz energy of mixing 

( )mix 1 2 1 1 2 2 2 1
1 2

1 2 1 1 2 2 1 2

1 1ln 1 ln ln
2(1 ) 1 1

residual

s

A z b C b CC
N kT kT r C r C

φ φ φ φ φ φ ε φ φ
φ φ φ φ φ φ

∆ + + = − + − − − + + 
. (34) 

Upon adding Eq. (34) to Eq. (23), we finally obtain the total Helmholtz energy of mixing for a 

binary non-athermal mixture 

   

 

 

 

 

3. Comparison with series -expansion theory and computer simulations 

We now compare Eq. (35) with Freed’s results from a series expansion [14] and with results 

from Monte Carlo simulations [15] for a lattice mixture. 

3.1. Comparison with Freed’s series -expansion theory 

 Bawendi and Freed [14] developed an exact series-expansion theory for lattice mixtures. For 

( )

mix 1 2 1 1 1 2 2 2
1 2

1 2 1 1 2 2

1 2 1 1 2 2 2 1
1 2

1 2 1 1 2 2 1 2

ln ln ln ln
2

1 1ln 1 ln ln .
2(1 ) 1 1

s

A q qz
N kT r r r r

z b C b CC
kT r C r C

φ φ φ θ φ θφ φ
φ φ

φ φ φ φ φ φ ε φ φ
φ φ φ φ φ φ

 ∆
= + + + 

 
+ + + − + − − − + + 

 (35)
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the athermal contribution to mix A∆ , this theory gives 

( )

( ) ( )

]}

2athermal
mix 1 2

1 2 1 2 1 2
1 2 1 2 1 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 1 2 2 1 2 1 2 1 1 1 2 1 2 2 1 2 1 2 22 2

1 2

1 2 1 2
1 2

1 1 1 1 2ln ln 8 6 11 22
3

2 2 4 3 8 6 2 4 3 8 6

1 13(2 )

s

A r r
N kT r r r r z r r

r r r r r r r r r r r r r r r r r r r r
r r

r r r r
r r

φ φφ φ φ φ

φ φ

  ∆  = + + − − + − −      

− + − + − + + + − + − +


+ − − −



2

1 2 2

3

1

1 .

z

O
z

φ φ




 +  
 

(36) 

To compare with Freed’s result, we expand Eq. (23) in a power series of 1/ z  to order 21/ z  

giving 

2athermal
mix 1 2 1 2 1 2 1 2 1 2 1 1 2 2

1 2 1 2 3 3 2
1 2 1 2 1 2

3

2 ( )( 3 )1 1 1 1ln ln
3

1 .

s

A r r r r r r r r
N kT r r r r z r r z

O
z

φ φ φ φ φ φφ φ φ φ
 ∆ − + − + +

= + + − − 
 

 +  
 

(37) 

For the residual Helmholtz energy of mixing, Freed’s theory (and our theory) consist of two 

parts: a reference part, independent of the segment numbers 1r  and 2r , and an association part, 

that is a function of these segment numbers. For the reference system, the series-expansion of our 

theory is 

2 3 4ref,residual
2 2 2 2 2 2mix

1 2 1 2 1 2 1 2( )
2 4 12s

A z z z O
N kT kT kT kT kT

ε ε ε εφ φ φ φ φ φ φ φ
 ∆      = − − + +              

 

  (38) 

while that of Freed is  
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2 3ref,residual
2 2mix

1 2 1 22 4s

A z z O
N kT kT kT kT

ε ε εφ φ φ φ
 ∆    = − +          

 .    (39) 

For the association part, the series expansion of our theory is 

( )
assoc,residual

2 1mix 1 2
2 1

1 2

1 1 ,
s

A r r O z
N kT r r

φ φ ε ε ε − ∆ − −
= − − + 

 
.   (40) 

Freed’s theory gives the same result. 

Compared with Freed’s series expansion, our theory is correct up to the 1/ z  term for the 

athermal part; up to the 2( / )kTε  term for the residual reference part; and up to the / kTε  term 

for the residual association part. 

 

3.2. Comparison with molecular simulations 

Using Eq. (35), we calculate critical parameters for binary lattice mixtures; we compare our 

results with those from Monte Carlo simulations by Yan, Liu and Hu [15], from Flory-Huggins 

theory, from quasi-chemical theory and from truncated Freed theory, as shown in Fig. 1. We find 

that, compared to simulation results, our theory predicts somewhat larger critical temperatures 

and somewhat smaller critical compositions. Our theory shows much improvement over 

Flory-Huggins theory, and some improvement over quasi-chemical theory and over truncated 

Freed theory. 

Using an expanded scale, Fig. 2 shows calculated liquid-liquid coexistence curves for two 

binary mixtures. As expected, the Flory-Huggins equation gives poor results. For the simple 

mixture ( 1 2 1r r= = ), agreement is very good. For the other mixture ( 1 4r = , 2 1r = ) calculated 

critical temperatures are too large. However, results from our theory are somewhat better than 
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those from quasi-chemical theory. 

 

4. Comparison with experiment 

We now compare results from Eq. (35) for vapor-liquid equilibria (VLE) and liquid-liquid 

equilibria (LLE) with those from experimental data. We assume that the coordination number z  

is 10, the number of bonds 1i ib r= − , and the surface of the molecules i iz q  can be calculated 

from Eq. (16). The number of molecular segments is proportional to the molar volume of the pure 

liquid ,m iv . We designate the large molecules as component 1, and the small ones as component 2. 

We set 2 1r = . Therefore, 1 ,1 ,2/m mr v v= . 

However, unlike previous work, we consider the effect of temperature on interchange energy 

ε . We call attention to the oft-neglected fact that, while ε  does not directly depend on 

temperature; it does so indirectly because, as temperature rises, lattice spacing increases. When 

the distance between closest neighbors increases, we expect the absolute values of 11ε , 22ε  and 

12ε  to decrease. If this decrease is similar for all these energies, the absolute value of ε  falls as 

temperature rises. We designate the lattice site-site separation by L . Then the total volume 

3
sV N L= . From the London theory for attractive forces, we assume that the interchange energy 

depends on L  according to 

11,0 22,0 12,0 6

0 6

1( 2 )

1
L

L

ε ε ε ε

ε

= − + −

= −
       (41) 

where 0ε  is a constant independent of L . Then, 
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0 7 2

1 16
3

12

2

P P P P

Ps

P

T

L V
T L V T

V
L L N T

V
V T

ε ε

ε

ε

εα

∂ ∂ ∂ ∂       =       ∂ ∂ ∂ ∂       

  ∂   =     ∂    
∂ = −  ∂ 

= −

      (42) 

or 

ln 2 T
PT

ε α∂  = − ∂ 
       (43) 

where ( )/ /T P
V T Vα = ∂ ∂  is the coefficient of thermal expansion of the mixture. If we assume 

that Tα  is a constant, then ln ε  is a linear function of temperature. 

Using our theory, we compare calculated isothermal VLE with experiment for two simple 

liquid systems: isooctane / carbon tetrachloride [18] and isooctane / benzene [19]. Tables 1 and 2 

show the pertinent molecular parameters obtained from experimental VLE data. For these simple 

systems, as expected, we obtain very good VLE representation as shown in Figs. 3 and 4. For two 

temperatures, we also show calculated and experimental excess Helmholtz energy E
mix A∆  in 

Figs. 5 and 6. Fig. 7 shows the effect of temperature on interchange energyε . 

A much more stringent test of our theory is provided by its ability to represent the 

coexistence curve for LLE. We consider the nearly symmetric 4CF / 4CH system [20-21]. For the 

temperature dependence of ε , we interpolate using experimental data well below and somewhat 

above the upper critical solution temperature as indicated in Table 3. Fig. 8 compares 

experimental results with those calculated with the Flory-Huggins theory, with the quasi-chemical 

theory and with Eq. (35). The upper critical temperature calculated with the Flory-Huggins theory 
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is excessively high, as expected. The quasi-chemical theory provides much improvement. Results 

from our theory are slightly better than those from quasi-chemical theory. 

Finally, we consider LLE for two binary systems with appreciable size asymmetry. For the 

two binary systems 3 7 2 4(C F COOCH ) C  / 3CHCl and 3 7 2 4(C F COOCH ) C / 4CCl , Fig. 9 

compares experimental results [22] with those calculated using Eq. (35) and those from 

quasi-chemical theory. Again, our theory provides only slight improvement over the 

quasi-chemical theory. It is likely that the very similar results from our theory and those from 

quasi-chemical theory are a direct consequence of allowing interchange energy ε  to vary with 

temperature, as indicated in the caption for Fig. 9. 

 

5. Conclusion 

Using lattice theory and a generalization of an expression by Yan, Liu and Hu based on the 

Ising model for mixtures of equi-sized molecules, we have established a new analytic equation 

for the Helmholtz energy of mixing two liquids composed of molecules that differ in size. Our 

equation provides an approximation to describe the effect of nonrandom mixing. For the 

relatively simple mixtures discussed here, this effect is negligible in vapor-liquid equilibria 

remote from critical conditions, but it is important for liquid-liquid equilibria, especially near the 

upper critical temperature. When compared with molecular simulations (where interchanger 

energyε  is independent of temperature), our theory gives good results; but when compared with 

experimented liquid-liquid data, our theory shows little improvement over those obtained from 

quasi-chemical theory. The similarity of results from these two theories follows because, for each 
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theory, we have taken into account that interchange energyε  depends on temperature due to 

expansion of the lattice as temperature rises. 
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Table 1. Molecular parameters from VLE data for the isooctane (1) / carbon tetrachloride (2) 

system; 1 1.71r = , 2 1.00r = . 

 
/ KT  / Bk Tε  ln( / / K)Bkε  

308 18.1 2.90 
318 17.5 2.86 
328 17.0 2.83 
338 16.4 2.80 
348 15.9 2.77 

 
 
 
 
 
 
 

Table2. Molecular parameters from VLE data for the isooctane (1) / benzene (2) system; 

1 1.86r = , 2 1.00r = . 

 
/ KT  / Bk Tε  ln( / / K)Bkε  

308 37.9 3.63 
318 36.3 3.59 
328 34.9 3.55 
338 33.7 3.52 
348 32.7 3.49 
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Table 3. The interchange energy, / / KBkε , obtained from VLE and LLE data for the CF4 (1) / 

CH4 (2) system by different theories; 1 1.32r = , 2 1.00r = . 

 
 

T/K Flory-Huggins  Quasi-chemical Eq. (35) 
88.0 38.6 42.4 42.0 

105.5 33.8 36.0 36.2 
108.5 31.8 33.7 33.9 
110.5 31.3 33.1 33.3 
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Fig. 1. Critical temperature cT  and critical volume fraction 1cφ  for binary lattice mixtures as a 

function of polymer segment number 1r . Lattice coordination number is 6 and 2 1r = . Dot: 

Monte Carlo simulation [15]; Dotted line: Flory-Huggins equation; Dashed line: Quasi-chemical 
equation; Dashed and dotted line: Freed theory; Solid line: Eq. (35).  
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Fig. 2. Liquid-liquid equilibria for two lattice binary mixtures. Lattice coordination number is 6; 

interchange energy ε  is independent of temperature. (a): 1 1r = , 2 1r = ; (b): 1 4r = , 2 1r = . 

Dot: Monte Carlo simulation [15]; Dotted line: Flory-Huggins theory; Dashed line: 
Quasi-chemical theory; Solid line: Eq. (35). 
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Fig. 3. Vapor-liquid equilibria for the isooctane (1) / carbon tetrachloride (2) system at 308 K. 
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Fig. 4. Vapor-liquid equilibria for the isooctane (1) / benzene (2) system at 308 K. 
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Fig. 5. Excess Helmholtz energies for the isooctane (1) / carbon tetrachloride (2) system at 308K 
and 348K. Dot: experimental results from vapor-liquid equilibrium data [18]; Line: calculated 
results from Eq. (35). 
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Fig. 6. Excess Helmholtz energy for the isooctane (1) / benzene (2) system at 308K and 348K. 
Dot: experimental results from vapor-liquid equilibrium data [19]; Line: calculated results from 
Eq. (35). 
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Fig. 7. Interchange energy ε  obtained from vapor-liquid equilibrium data vs. temperature. 
(a): isooctane / carbon tetrachloride;  (b): isooctane / benzene. 
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Fig. 8. Liquid-liquid equilibria for the CF4 (1) / CH4 (2) system. The coordination number 

10z = ; 1 1.32r = , 2 1.00r = . Dot: Experimental data [21]; Dotted line: Flory-Huggins theory, 

ln( / / )Bk Kε 4.462 0.0091T= − ; Dashed line: Quasi-chemical theory, ln( / / )Bk Kε  = 4.707 

0.0109T− ; Solid line: Eq. (35), ln( / / ) 4.633 0.0101Bk K Tε = − . 
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Fig. 9. Liquid-liquid equilibria for two binary systems. The coordination number 10z = . 
 

(a): 3 7 2 4(C F COOCH ) C (1) / 3CHCl (2) system. 1 6.77r = , 2 1r = . Solid line: Eq. (35), 

ln( / / )Bk Kε 6.02 0.00539T= − ; Dotted line: quasi-chemical equation, ln( / / ) 5.88Bk Kε =  

0.00552T− . (b): 3 7 2 4(C F COOCH ) C  (1) / 4CCl (2) system. 1 5.61r = ; 2 1r = . Solid line: 

Eq. (35), ln( / / ) 5.97 0.00432Bk K Tε = − . Dotted line: quasi-chemical equation, 

ln( / / )Bk Kε 5.69 0.00475T= − . These equations for ln( / / )Bk Kε  were obtained from 

experimental LLE data well below the critical temperature. 
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