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Preserving Location Privacy
in Geosocial Applications

Krishna P.N. Puttaswamy, Shiyuan Wang, Troy Steinbauer, Divyakant Agrawal, Fellow, IEEE,

Amr El Abbadi, Christopher Kruegel, and Ben Y. Zhao

Abstract—Using geosocial applications, such as FourSquare, millions of people interact with their surroundings through their friends

and their recommendations. Without adequate privacy protection, however, these systems can be easily misused, for example, to

track users or target them for home invasion. In this paper, we introduce LocX, a novel alternative that provides significantly improved

location privacy without adding uncertainty into query results or relying on strong assumptions about server security. Our key insight is

to apply secure user-specific, distance-preserving coordinate transformations to all location data shared with the server. The friends of

a user share this user’s secrets so they can apply the same transformation. This allows all location queries to be evaluated correctly by

the server, but our privacy mechanisms guarantee that servers are unable to see or infer the actual location data from the transformed

data or from the data access. We show that LocX provides privacy even against a powerful adversary model, and we use prototype

measurements to show that it provides privacy with very little performance overhead, making it suitable for today’s mobile devices.

Index Terms—Location privacy, security, location-based social applications, location transformation, efficiency

Ç

1 INTRODUCTION

WITH billions in downloads and annual revenue,
smartphone applications offered by Apple iTunes

and Android are quickly becoming the dominant comput-
ing platform for today’s user applications. Within these
markets, a new wave of geosocial applications is fully
exploiting GPS location services to provide a “social”
interface to the physical world. Examples of popular social
applications include social rendezvous [1], local friend
recommendations for dining and shopping [2], [3], as well
as collaborative network services and games [4], [5]. The
explosive popularity of mobile social networks such as
SCVNGR [6] and FourSquare (3 million new users in
1 year) likely indicate that in the future, social recom-
mendations will be our primary source of information
about our surroundings.

Unfortunately, this new functionality comes with sig-
nificantly increased risks to personal privacy. Geosocial
applications operate on fine-grain, time-stamped location
information. For current services with minimal privacy
mechanisms, these data can be used to infer a user’s
detailed activities, or to track and predict the user’s daily
movements. In fact, there are numerous real-world exam-
ples where the unauthorized use of location information has
been misused for economic gain [7], physical stalking [8],
and to gather legal evidence [9]. Even more disturbing, it
seems that less than a week after Facebook turned on their
popular “Places” feature for tracking users’ locations, such
location data were already used by thieves to plan home
invasions [10]. Clearly, mobile social networks of tomorrow

require stronger privacy properties than the open-to-all
policies available today.

Existing systems have mainly taken three approaches to
improving user privacy in geosocial systems: 1) introducing
uncertainty or error into location data [11], [12], [13],
2) relying on trusted servers or intermediaries to apply
anonymization to user identities and private data [14], [12],
[15], and 3) relying on heavy-weight cryptographic or
private information retrieval (PIR) techniques [16], [17],
[18], [19]. None of them, however, have proven successful
on current application platforms. Techniques using the first
approach fall short because they require both users and
application providers to introduce uncertainty into their
data, which degrades the quality of application results
returned to the user. In this approach, there is a funda-
mental tradeoff between the amount of error introduced
into the time or location domain, and the amount of privacy
granted to the user. Users dislike the loss of accuracy in
results, and application providers have a natural disin-
centive to hide user data from themselves, which reduces
their ability to monetize the data. The second approach
relies on the trusted proxies or servers in the system to
protect user privacy. This is a risky assumption, since
private data can be exposed by either software bugs and
configuration errors at the trusted servers or by malicious
administrators. Finally, relying on heavy-weight crypto-
graphic mechanisms to obtain provable privacy guarantees
are too expensive to deploy on mobile devices [20], [21], and
even on the servers in answering queries such as nearest-
neighbor and range queries.

The challenge, then, is to design mechanisms that
efficiently protect user privacy without sacrificing the
accuracy of the system, or making strong assumptions
about the security or trustworthiness of the application
servers. More specifically, we target geosocial applications,
and assume that servers (and any intermediaries) can be
compromised and, therefore, are untrusted. To limit misuse,
our goal is to limit accessibility of location information from
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global visibility to a user’s social circle. We identify two
main types of queries necessary to support the functionality
of these geosocial applications: point queries and nearest-
neighbor (kNN) queries. Point queries query for location
data at a particular point, whereas kNN queries query for k
nearest data around a given location coordinate (or up to a
certain radius). Our goal is to support both query types in
an efficient fashion, suitable for today’s mobile devices.

To address this challenge, in this paper, we propose LocX
(short for location to index mapping), a novel approach to
achieving user privacy while maintaining full accuracy in
location-based social applications (LBSAs from here on-
ward). Our insight is that many services do not need to
resolve distance-based queries between arbitrary pairs of
users, but only between friends interested in each other’s
locations and data. Thus, we can partition location data
based on users’ social groups, and then perform transforma-
tions on the location coordinates before storing them on
untrusted servers. A user knows the transformation keys of
all her friends, allowing her to transform her query into the
virtual coordinate system that her friends use. Our
coordinate transformations preserve distance metrics, al-
lowing an application server to perform both point and
nearest-neighbor queries correctly on transformed data.
However, the transformation is secure, in that transformed
values cannot be easily associated with real-world locations
without a secret, which is only available to the members of
the social group. Finally, transformations are efficient, in
that they incur minimal overhead on the LBSAs. This makes
the applications built on LocX lightweight and suitable for
running on today’s mobile devices.

2 SCENARIOS AND REQUIREMENTS

Here we describe several scenarios we target in the context
of emerging geosocial applications that involve heavy
interaction of users with their friends. We use these
scenarios to identify the key requirements of a geosocial
location privacy preserving system.

2.1 Geosocial Application Scenarios

Scenario 1. Alice and her friends are excited about exploring
new activities in their city and leveraging the “friend
referral” programs offered by many local businesses to
obtain discounts. Alice is currently in downtown and is
looking to try a new activity in her vicinity. But she also
wants to try an activity that gives her the most discount.
The discounts are higher for a user that refers more friends
or gets referred by a friend with high referral count. As a
result Alice is interested in finding out the businesses
recommended by her friends and the discounts obtained
through them, within her vicinity. In addition, she is also
interested in checking if there are discounts available for her
favorite restaurant at a given location.

Scenario 2. Alice and her friends are also interested in
playing location-based games and having fun by exploring
the city further. So they setup various tasks for friends to
perform, such as running a few miles at the Gym,
swimming certain laps, taking pictures at a place, or dining
at a restaurant. They setup various points for each task, and
give away prizes for the friends with most points. For Alice

to learn about the tasks available near her, she needs to
query an application to find out all tasks from friends near
her and the points associated with them.

The scenarios above, while fictitious, are not far from
reality. Groupon and LivingSocial are some example
companies that are leading the thriving business of local
activities. SCVNGR [6] offers similar services as location-
based games. But none of these services provide any
location privacy to users: all the locations visited by the
users are known to these services and to its administrators.

Our goal is to build a system that caters to these
scenarios and enables users to query for friends’ data based
on locations, while preserving their location privacy. We
want to support: 1) point query to query for data associated
with a particular location, 2) circular range query to query for
data associated with all locations in a certain range (around
the user), and 3) nearest-neighbor query to query for data
associated with locations nearest to a given location. Finally,
while it is also useful to query for data that belongs to
nonfriends in certain scenarios, we leave such extensions
for future.

2.2 System Requirements

The target scenarios above bring out the following key
requirements from an ideal location-privacy service:

. Strong location privacy. The servers processing the
data (and the administrators of these servers) should
not be able to learn the history of locations that a
user has visited.

. Location and user unlinkability. The servers hosting the
services should not be able to link if two records
belong to the same user, or if a given record belongs
to a given user, or if a given record corresponds to a
certain real-world location.

. Location data privacy. The servers should not be able
to view the content of data stored at a location.

. Flexibility to support point, circular range, and
nearest-neighbor queries on location data.

. Efficiency in terms of computation, bandwidth, and
latency, to operate on mobile devices.

The need for each of these requirements becomes more
clear when we describe the related work and their limita-
tions in more detail in the next section. In our proposed
system, LocX, we aim to achieve all these requirements.

3 RELATED WORK

3.1 Prior Work on Privacy in General
Location-Based Services (LBS)

There are mainly three categories of proposals on providing
location privacy in general LBSs that do not specifically
target social applications. First is spatial and temporal
cloaking [11], [12], [13], [22], [15], wherein approximate
location and time is sent to the server instead of the exact
values. The intuition here is that this prevents accurate
identification of the locations of the users, or hides the user
among k other users (called k-anonymity [12], [13], [22]),
and thus improves privacy. This approach, however, hurts
the accuracy and timeliness of the responses from the
server, and most importantly, there are several simple
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attacks on these mechanisms [23], [24], [25], [26] that can
still break user privacy. Pseudonyms and silent times [27],
[14] are other mechanisms to achieve cloaking, where in
device identifiers are changed frequently, and data are not
transmitted for long periods at regular intervals. This,
however, severely hurts functionality and disconnects
users. The key difference between these approaches and
our work is that they rely on trusted intermediaries, or
trusted servers, and reveal approximate real-world location
to the servers in plain text. In LocX, we do not trust any
intermediaries or servers. On the positive side, these
approaches are more general and, hence, can apply to
many location-based services, while LocX focuses mainly
on the emerging geosocial applications.

The second category is location transformation, which
uses transformed location coordinates to preserve user
location privacy. One subtle issue in processing nearest-
neighbor queries with this approach is to accurately find all
the real neighbors. Blind evaluation using Hilbert Curves
[21], unfortunately, can only find approximate neighbors.
To find real neighbors, previous work either keeps the
proximity of transformed locations to actual locations and
incrementally processes nearest-neighbor queries [28], or
requires trusted third parties to perform location transfor-
mation between clients and LBSA servers [29]. In contrast,
LocX does not trust any third party and the transformed
locations are not related to actual locations. However, our
system is still able to determine the actual neighbors, and is
resistant against attacks based on monitoring continuous
queries [30], [31].

The third category of work relies on PIR [16] to provide
strong location privacy. Its performance, although im-
proved by using special hardwares [17], is still much worse
than all the other approaches, thus it is unclear at present if
this approach can be applied in real LBSs.

3.2 Prior Work on Privacy in Geosocial Services

For certain types of geosocial services, such as buddy
tracking services to test if a friend is nearby, some recent
proposals achieve provable location privacy [18], [19] using
expensive cryptographic techniques such as secure two
party computation. In contrast, LocX only uses inexpensive
symmetric encryption and pseudorandom number genera-
tors. The closest work to LocX is Longitude [32], [33], which
also transforms locations coordinates to prevent disclosure
to the servers. However, in longitude, the secrets for
transformation are maintained between every pair of
friends to allow users to selectively disclose locations to
friends. As in, longitude can let a user reveal her location to
only a subset of her friends. In contrast, LocX has a simpler
threat model where all friends can access a user’s informa-
tion and hence the number of secrets that users have to
maintain is only one per user. LocX can still achieve location
and user unlinkability. In addition, LocX can provide more
versatile geosocial services, such as location-based social
recommendations, reminders, and others, than just buddy
tracking as in the above prior work.

3.3 Anonymous Communication Systems

These systems, including Tor [34], provide anonymity to
users during network activity. One might ask, then, why

using Tor to anonymously route data to LBSA servers is not
sufficient? This approach seems to provide privacy as the
server only sees location data but not the identity of the user
behind that data. However, recent research has revealed
that hiding the identity of the users alone is not sufficient to
protect location privacy. Even if Tor is used, it is possible for
an attacker with access to the location data to violate our
privacy and unlinkability requirements. For example, using
anonymized GPS traces collected by the servers, it has been
shown that users’ home and office locations, and even user
identity can be derived [23], [24], [25], [26]. LocX defends
against such attacks and meets all our requirements.

3.4 Systems on Untrusted Servers

In the context of databases, recent systems proposed
running database queries on encrypted data (stored on
untrusted servers), using heavy-weight homomorphic [35]
or asymmetric encryption [36] schemes. These approaches
are suitable for spatial data outsourcing or data mining
scenarios where the data are static and are owned by
limited number of users. But they are less suitable for
LBSAs, where the data are dynamic and personal, and thus
cannot be encrypted under a single secret key.

In the context of location and social applications,
Persona [37] and Adeona [38] also relied on encrypting
all data stored on untrusted servers to protect user privacy.
Persona focused on privacy in online social networks, and
Adeona focused on privacy in device tracking systems
where there is no data sharing among users. Applying
Persona’s mechanisms to LBSAs directly would encrypt all
location coordinates, making LBSAs unable to process
nearest-neighbor queries. But if location is not encrypted,
attacks using anonymized GPS traces, mentioned above,
can succeed, making Persona insufficient to protect location
privacy. Similarly, Adeona is useful for a user to retrieve
her own data, but not the data from her friends. Our
contributions complement these systems. Some techniques
in these papers can help LocX as well, for example,
Persona’s approach to partition data shared with friends
into fine-grained groups, and Adeona’s hardware-assisted
approaches to speed up crypto processing.

4 SYSTEM DESIGN

In this section, we describe the design of LocX in detail.

4.1 Terminology and Attacker Model

Terminology. Location coordinates refer to the longitude,
latitude pairs associated with real-world locations. A pair
of coordinates is returned from a GPS, and is used to
associate data with a location. Location data or location
information refers to such data associated with a location.
For example, when reviews (and referral point details) are
written for a given restaurant, the reviews are the location
data associated with the restaurant’s location coordinates.

System and attacker model. In this paper, we assume that
the companies that provide LBSA services manage the
servers. Users store their data on the servers to obtain the
service. The companies are responsible for reliably storing
this data, and providing access to all the data a user should
have access to. The companies can get incentives via
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displaying ads, or charging users some usage fees. In our
attacker model, we assume that the attacker has access to
the LBSA servers. This attacker could be an employee of the
company running the service or an outsider that compro-
mises the servers. The attacker might even be an oppressive
regime or a government that obtains data from the
providers via subpoenas. As a result, in our model, the
attacker can access all the data stored on the servers, and
can also monitor which user device is accessing which
pieces of information on the servers. Our goal is to design a
system that preserves the location privacy of users in this
setting. We assume that the attacker does not perform any
attacks on the consistency or integrity of data on the servers,
but aims only to learn users’ location information. Finally,
like all prior social systems [39], [40], [41], [37], we assume
that the friends of a user are trusted and do not collude with
the servers in breaking the user’s privacy.

4.2 A Basic Design

To clarify the need for each component in LocX, we start the
design description with a basic, simple design.

As listed in our requirements, the server should support
different types of queries (point, circular range and nearest-
neighbor queries) on location data. For the server to be able
to do this, we need to reveal the location coordinates in
plain text. But doing so would allow the malicious server to
break a user’s location privacy.

To resolve this problem, we propose the idea of
coordinate transformation. Each user u in the system chooses
a set of secrets that they reveal only to their friends. These
secrets include a rotation angle �u, a shift bu, and a
symmetric key symmu. The users exchange their secrets
via interactions when friends meet in person, or via a
separate trusted channel, such as e-mail, phone, and so on.
The secret angle and shift are used by the users to transform
all the location coordinates they share with the servers.
Similarly, the secret symmetric key is used to encrypt all the
location data they store on the servers. These secrets are
known only to the friends, and hence only the friends can
retrieve and decrypt the data.

For example, when a user u wants to store a review r for
a restaurant at ðx; yÞ, she would use her secrets to transform
ðx; yÞ to ðx0; y0Þ and store encrypted review EðrÞ on the
server. When a friend v wants to retrieve u’s review for the
restaurant at ðx; yÞ, she would again transform ðx; yÞ using
u’s secret (previously shared with v), retrieve EðrÞ, and then
decrypt it using u’s symmetric key to obtain r. Similarly, v
would transform ðx; yÞ according to each of her friends’
secrets, obtain their reviews, and read them. We only focus
on point queries for now. Fig. 1 depicts this basic design.

A limitation. This basic design has one important
limitation: the server can uniquely identify the client
devices (e.g., using the IP address). Using this, the server
can associate different transformed coordinates to the same
user (using the IP). Sufficient number of such associations
can break the transformations (as we show in Section 5).
So maintaining unlinkability between different queries
is critical.

One approach to resolve this limitation is to route all
queries through an anonymous routing system like Tor [34].
But simply routing the data through Tor all the time will be

inefficient. Especially in the context of recent LBSAs, that
adds larger multimedia files (pictures and videos) at each
location. So we need to improve this basic design to be both
secure and efficient.

4.3 Overview of LocX

LocX builds on top of the basic design, and introduces two
new mechanisms to overcome its limitations. First, in LocX,
we split the mapping between the location and its data into
two pairs: A mapping from the transformed location to an
encrypted index (called L2I), and a mapping from the index to
the encrypted location data (called I2D). This splitting helps in
making our system efficient. Second, users store and
retrieve the L2Is via untrusted proxies. This redirection of
data via proxies, together with splitting, significantly
improves privacy in LocX. For efficiency, I2Ds are not
proxied, yet privacy is preserved (as explained later).

Decoupling a location from its data. In today’s systems,
location data dataðx;yÞ corresponding to the real-world
location ðx; yÞ are stored under ðx; yÞ on the server. But in
LocX, the location ðx; yÞ is first transformed to ðx0; y0Þ, and
the location data are encrypted into Eðdataðx;yÞÞ. Then, the
transformed location is decoupled from the encrypted data
using a random index i via two servers as follows: 1) an
L2I ¼ ½ðx0; y0Þ; EðiÞ�, which stores EðiÞ under the location
coordinate ðx0; y0Þ, and 2) an I2D ¼ ½i; Eðdataðx;yÞÞ�, which
stores the encrypted location data Eðdataðx;yÞÞ under the
random index i. The index is generated using the user’s
secret random number generator. We refer to the server
storing L2Is as the index server and the server storing I2D as
the data server. We describe these two as separate servers for
simplicity, but in reality they can be on the same server, and
our privacy properties still hold. This separation of location
information into two components (L2I and I2D) helps us
continue to efficiently run different types of location queries
on L2Is and retrieve only relevant I2Ds.

The key interfaces used by the applications to store and
retrieve data on the LocX servers are listed in Table 1. Fig. 2
depicts the design of LocX.

Proxying L2Is for location privacy. Users store their L2Is on
the index server via untrusted proxies. These proxies can be
any of the following: PlanetLab nodes, corporate NATs, and
e-mail servers in a user’s work places, a user’s home, and
office desktops or laptops, or Tor [34] nodes. We only need
a one-hop indirection between the user and the index
server. These diverse types of proxies provide tremendous
flexibility in proxying L2Is, thus a user can store her L2Is
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secrets, (2) Alice stores her review of the restaurant (at ðx; yÞ) on the
server under transformed coordinates, (3) Bob later visits the restaurant
and queries for the reviews on transformed coordinates, and (4) decrypts
the reviews obtained.



via different proxies without restricting herself to a single
proxy. Furthermore, compromising these proxies by an
attacker does not break users’ location privacy, as 1) the
proxies also only see transformed location coordinates and
hence do not learn the users’ real locations, and 2) due to
the noise added to L2Is (described later). To simplify the
description, for now, we assume that the proxies are
nonmalicious and do not collude with the index server.
But we will later describe our solution in detail to even
defend against colluding, malicious proxies.

With this high-level overview, we now describe our
solution to store and query data on the servers in detail. We
also explain the challenges we faced, and the tradeoffs we
made in making our solution secure and efficient.

4.4 Privacy Preserving Data Storage

When a user generates the location data corresponding to a
location ðx; yÞ, she uses her secrets to decouple it into a L2I
and an I2D. Now we describe how they are stored on the
index and the data servers, respectively.

Storing L2I on the index server. First consider storing L2I on
the index server. To perform this, the user transforms her
real-world coordinate ðx; yÞ to a virtual coordinate ðx0; y0Þ
using her secret rotation angle �u and secret shift bu:
ðx0; y0Þ  ðcos�ux� sin�uyþ bu; sin�uxþ cos�uyþ buÞ. This
transformation preserves the distances between points,1 so
circular range and nearest-neighbor queries for a friend’s
location data can be processed in the same way on
transformed coordinates as on real-world coordinates. Then,
the user generates a random index (i) using her random
number generator and encrypts it with her symmetric key to
obtain (Esymmu

ðiÞ). The user then stores this L2I, [ðx0; y0Þ,
Esymmu

ðiÞ], at the transformed coordinate on the index server
via a proxy. The L2I is small in size and its application is
independent, as it always contains the coordinates and an
encrypted random index. Thus, the overhead due to
proxying is very small (quantified in Section 6).

Storing I2Ds on the data server. The user can directly store
I2Ds (location data) on the data server. This is both secure
and efficient. 1) This is secure because the data server only
sees the index stored by the user and the corresponding
encrypted blob of data. In the worst case, the data server can
link all the different indices to the same user device, and
then link these indices to the retrieving user’s device. But
this only reveals that one user is interested in another user’s
data, but not any information about the location of the users,

or the content of the I2Ds, or the real-world sites to which the
data in the encrypted blob corresponds to. 2) The content of
I2D is application dependent. For example, a location-based
video or photo sharing service might share multiple MBs of
data at each location. Since these data are not proxied, LocX
still maintains the efficiency of today’s systems.

Intuition behind privacy. Due to the coordinate transfor-
mation, the index server does not see the real-world
coordinate of the user. Because of the proxy, the index
server cannot link the different L2Is stored on the index
server to the same user. The index server has a single
coordinate space in which it stores all the data from all the
users. These are the reasons behind the privacy in LocX. To
break a user’s privacy, a malicious index server will have to
break two steps: 1) learn the transformation secrets of the
user, and 2) link a request to the corresponding user
(otherwise, the attacker does not know which transforma-
tion secret to apply to a request). These two steps
significantly raise the bar for attacks.

4.5 Privacy Preserving Data Retrieval

Retrieving location data from the server in LocX is a more
challenging problem. In particular, we need to 1) maintain
location privacy, and 2) ensure that the retrieval is efficient.

Consider the following simple design for data retrieval.
A user takes the location coordinate she is interested in,
transforms it according to all her friends’ secrets, and sends
a query to the server containing all the transformed
locations via a proxy. If a user has f friends, and is at a
location ðx; yÞ, she sends a query with points ððx01; y01Þ;
ðx02; y02Þ; :::; ðx0f ; y0fÞÞ to the server, where ðx0i; y0iÞ is the
transformation of ðx; yÞ with friend i’s secret. The index
server then fetches all the L2Is at the locations in the query
and returns them. The user then decrypts all the returned
L2Is, and queries the data server for the I2Ds she cares
about. There might be collisions on the indices generated by
different users. However, as the data in I2D are encrypted
using shared symmetric keys, collisions do not lead to
unauthorized data access.

This design has two major problems. First, this approach
to query the server easily breaks a user’s privacy. Just by
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Fig. 2. Design of LocX. (1) Alice and Bob exchange their secrets,
(2) Alice generates L2I and I2D from her review of the restaurant (at
ðx; yÞ), and stores the L2I on the index server via a proxy. (3) She then
stores the I2D on the data server directly, (4) Bob later visits the
restaurant and fetches for L2Is from his friends by sending the
transformed coordinates via a proxy. (5) He decrypts the L2I obtained
and then queries for the corresponding I2D. 6) Finally, Bob decrypts
Alice’s review.

TABLE 1
The Index Server (IS) and Data Server (DS)

APIs and Their Functions in LocX

1. Given any two real-world points ðx1; y1Þ, ðx2; y2Þ, it is easy to see

that the distance between their corresponding virtual coordinatesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx02 � x01Þ

2 þ ðy02 � y01Þ
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðy2 � y1Þ2

q
.



knowing that all the transformed points sent by a user
correspond to the same real-world coordinate, the server
can construct and solve a set of equations to derive the real-
world location of the user (proven in Section 5). To prevent
this derivation, if the user were to query for each friend’s
transformed coordinate separately, then it would increase
the total time (and the # of RPCs) to retrieve the results,
hurting the performance. Thus, we need a secure and
efficient approach to retrieve L2Is from the index server.
Second, since the server sends all the points stored at a
transformed coordinate ðx0i; y0iÞ in the query (irrespective of
who stored data there), the user may get many L2Is from
nonfriends who happen to store data at location ðx0i; y0iÞ.
Since the user does not know the source, she will have to
attempt to decrypt all L2Is returned in response to location
ðx0i; y0iÞ with friend i’s symmetric key. This wastes sig-
nificant amount of computation cycles on the user’s device.
Thus, we need an efficient and secure mechanism to identify
the L2Is that are from friends, and to quickly reject L2Is
from nonfriends. We next describe our solutions to these
two problems.

Privacy while querying the index server. To prevent attacks
while querying the index server, we propose that users
add noise to the query. Noise in our solution is a few (N)
additional, randomly selected points, ððx101; y1

0
1Þ; ðx102;

y102Þ; :::; ðx10N; y1
0
NÞÞ, added to each query sent to the index

server. Of course, the noise added has to be minimal for
efficiency. We show through analysis (in Section 5) that
adding only a few additional random points prevents
privacy attacks, and the server will not be able to derive
the real location of the user. In addition, the user can easily
filter out the L2Is corresponding to the noise. Note that the
noise in LocX does not affect the accuracy of the locations
unlike prior systems [11].

Adding noise, coupled with routing the index server
queries via proxies (just like the way they were stored),
provides strong location privacy during querying. The
queries only contain a list of points in the transformed
coordinate space, without any user identifier or actual
location information. Due to proxying, the server cannot
identify the client. And finally the noise prevents derivation
of user’s location based on transformed coordinate. Putting
noise and proxying schemes together, the server cannot link
multiple different queries to the same user. We will later
prove that this unlinkability preserves the users’ secrets,
and also show that this approach is resilient against
collusion between the proxies and the index server.

Securely and efficiently identifying L2Is of friends. In the
simple design for data retrieval described above, we query
for a set of points in the transformed coordinates and
decrypt all the returned results. This provides strong
privacy as the server does not learn which of the returned
L2Is are relevant to the user, but decrypting all the results
increases the overhead on the client’s device.

If, on the other hand, we provide some information to the
server to filter out the L2Is that are irrelevant for a user
before sending them, it provides efficiency, but breaks
privacy. For example, suppose each user attaches an
anonymized ID to each L2I. Then, a user can submit a list
of IDs she cares about and some additional IDs for noise.

This allows the server to send only the L2Is at a point that
fall into the set of IDs specified by the user. Even decryption
would be efficient, as the user would know the right key to
use for each L2I. Unfortunately, these IDs would enable the
server to link different L2Is, and this can lead to privacy
leaks. For instance, the index server could perform
“fingerprinting attacks,” by leveraging the distance preser-
ving property of our transformations. In these attacks,
the server takes “fingerprints” of popular destinations
(e.g., airports in major cities), and uses the distance between
these destinations as fingerprints. It then matches these
fingerprints with the locations corresponding to a particular
user identified by the ID, and then derives the transforma-
tion secret of the user. This would then reveal all the real-
world locations of that user, which could help identify the
user behind the ID.

Fundamentally, there is a tradeoff between efficiency
and privacy. Revealing more information to the server leads
to efficiency, but hurts privacy, and vice versa. Exploring
the design spectrum to balance these two properties leads to
the following possible set of choices:

1. No tags. The basic design where no user-specific
tag is attached to L2Is, and the user simply queries
and decrypts all L2Is in the results for a location.
This approach provides high privacy, but low
performance.

2. User ID tags. The prior design where the server filters
the L2Is in the response using the anonymized ID tags
that the users attach with each L2I. This approach
provides high performance, but low privacy.

3. Keyed hash tags. In this approach, each user u has a
secret text Tu that she shares with her friends. The
user u generates a new random string Sj for each new
L2I she stores, and tags it with <Sj;HðTu:SjÞ>,
where HðÞ is a hash function such as SHA1. So the
L2I now contains<ðx0; y0Þ; EðiÞ; Sj;HðTu; SjÞ>. When
a friend of u wants to query for a location ðx; yÞ, she
transforms her location with u’s secret to obtain
ðx0; y0Þ, and sends this point in a query. Then, the
index server sends all L2Is at ðx0; y0Þ without any
filtering. Upon receipt of the L2Is, the client user
appends Sj in an L2I to Tu, and then compares the
hash to check if it is indeed from user u. It would
decrypt the L2I only if this hash check is passed. A
similar check is performed on each L2I. Because of
the fact that hashing is nearly two orders of
magnitude (from our tests) faster than symmetric
key decryption, this approach is significantly more
efficient than no tags in terms of processing time on
the user’s device, while providing the same, strong
privacy. We use HMACs [42] with proven security
guarantees for implementing this.

4. Random tags. In this approach, each user u has
another secret random number generator (rgenu)
that she shares with her friends. The user generates a
new random number rj from rgenu and attaches this
tag to every new L2I she stores. The L2I now
contains <ðx0; y0Þ; EðiÞ; rj>. When a friend of u
transforms her location ðx; yÞ with u’s secret to
obtain ðx0; y0Þ and sends this point in a query, the
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index server sends all L2Is at ðx0; y0Þ without any
filtering. Upon receipt of the L2Is, the friend checks
if the random tag, rj, in an L2I is within the set of
random numbers generated by rgenu. The friend
only decrypts the L2Is whose tags are in this set.
Since the membership check is faster than hashing
(by about two orders of magnitude in our tests), this
approach is more efficient than key-based hash tags,
but requires some additional state. Specifically, the
users need to exchange, with their friends, the
maximum number of random tags (from their
rgen) they have used so far in tagging L2Is. This
helps them build the set of tags for checking L2Is.
Thus, this approach provides both high privacy and
high efficiency. The idea of using random tags for
fast decryption is also used in prior work on
preserving privacy in accessing WiFi networks [43].

Both keyed hash tags and random tags nicely balance
privacy and performance. We did construct several other
mechanisms along similar lines to efficiently identify L2Is
from friends while maintaining privacy, but we only
discuss and evaluate these two due to space limitations.
Fundamentally, all these mechanisms attach some addi-
tional tags to the L2Is, which can only be usefully
interpreted by the friends. Since the server cannot link
different L2Is from the same user, these mechanisms
provide strong location privacy.

Querying the data server and decrypting location data. After
obtaining the L2Is from the index server corresponding to a
point ðx0; y0Þ, say transformed with friend u’s secrets, the
client user identifies the L2Is from u (using the tags), and
then decrypts the returned L2Is with u’s symmetric key.
Then, the user directly queries the data server for the I2Ds
corresponding to all the decrypted indices she cares about
in a batch: ði1; i2; :::Þ. She then obtains the I2Ds from the
data server, decrypts them using the symmetric key of the
friend whose key was used to decrypt the corresponding
index. And then the user consumes the data as per the
application. There is no need for a proxy in this step as the
index and the encrypted data on the data server cannot link
a user to her location. Since the decrypted index is sent to
the data server, it cannot even be linked to an encrypted
index on the index server.

Supporting circular range and nearest-neighbor queries. The
description so far was for point queries, where a user
fetches data at a given location coordinate. These steps
naturally extend to support more complex queries like
circular range and nearest-neighbor queries. The key
change necessary is for the index server to return data
around a query point instead of returning data at a query
point (as was done so far). Since our location transforma-
tion is distance preserving, building an R-tree [44], [45] on
the L2Is input by the users can support both circular range
and nearest-neighbor queries. Finally, the user should
mention the type of the query she wants to run, while
querying the index server. The rest of the steps in querying
remain the same.

One issue in processing a nearest-neighbor query by
querying at different transformed coordinates separately is
that the index server will return each friend’s nearest

location data instead of nearest location data taken based on
all friends’ location data. As a result, additional answers
that are not necessarily needed by users might be included.
While our focus is not to explicitly remove those extra
answers, one way to remove them is to specify a query
range along with the query; another way is to let the users
filter out such data after decryption.

5 PRIVACY ANALYSIS

5.1 Intuition behind Privacy in LocX

Here we describe the intuition behind LocX’s privacy, and
how it meets all of our requirements.

Defending against an attacker with access to data on the
servers. The data stored on both servers do not reveal any
information about their locations to the attacker. The L2Is on
the index server contain transformed coordinates and the
data on the data server are all encrypted. As a result, an
attacker with access to just the data on these servers cannot
deanonymize the data to associate users with their locations.

Location privacy during server access. Even the attacker
with access to monitor both servers cannot link accesses to
the index and the data server because the indices stored on
the index server are encrypted, but the indices are not
encrypted on the data server. Only the users know how to
decrypt the encrypted indices. Without the decryption keys,
the attacker cannot link these records to figure out even the
transformed location of the users accessing the servers.

Location data unlinkability. The I2Ds are encrypted, and
the users access them only via indices. Hence, users cannot
be linked to any locations. The indices stored or accessed
by a user are random numbers. The data server can link
together the indices accessed by the same user, but this
does not help the servers link the user to any locations.
Finally, the users store and retrieve L2Is on the index
server via proxies, so servers cannot link different
transformed locations to the same user. Together, these
provide location unlinkability.

5.2 Privacy during Location Data Access

Here we present a theoretical analysis of the privacy
properties during data access in LocX. When a user accesses
her friends’ data by transforming her own location to
different points in the transformed space and sending them
in a query, a malicious index server learns the different,
transformed coordinates that map to the same, real-world
location (which is the user’s current location). The question
is whether an attacker could use this information to derive
the user’s real-world location. Here, we discuss the
fundamental constraints we need to preserve in LocX to
prevent the server from succeeding in such attacks.

Constraints in querying the index server. Assume first that
the users directly access the index server, without any
proxies. Each user has a secret angle, �, and a secret shift, b,
to transform her location coordinates. Suppose a user has n
friends and she issues m location queries. In each of the m
locations, ðxj; yjÞ, the user searches for nj ðnj � n; 1 � j �
mÞ friends’ information. Let us assume that all friends’
information is queried at all m locations, and let us also
assume the worst case scenario where the friends’ trans-
formed points are queried in the same order. Consider that
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the index server is malicious and sees the transformed

coordinates of the user’s friends, ðxij; yijÞ, in all m queries.

The attacker (index server) then builds ð2n1 þ 2n2 þ � � � þ
2nmÞ equations as follows (two equations for each requested

friend at one location) to solve 2m unknown real coordi-

nates ðxj; yjÞ and 2n unknown friends’ secrets ð�i; biÞ, where

1 � j � m; 1 � i � n

cos �i � x1 � sin �i � y1 þ bi ¼ xi1
sin �i � x1 þ cos �i � y1 þ bi ¼ yi1

. . . ¼ . . .
cos �i � xm � sin �i � ym þ bi ¼ xim
sin �i � xm þ cos �i � ym þ bi ¼ yim:

8>>>><
>>>>:

ð1Þ

The total # of unknown variables is 2mþ 2n. For the

attacker to solve all the unknowns, the following must hold:

2n1 þ 2n2 þ � � � þ 2nm � 2mþ 2n ð2Þ

) n1 þ n2 þ � � � þ nm � mþ n: ð3Þ

So to protect the users’ locations and friends’ secrets from

being inferred by the attacker, the reverse of (3) must hold:

n1 þ n2 þ � � � þ nm < mþ n: ð4Þ

If the users query all n friends’ data at each location,

nj ¼ n, a stronger version of (4) must hold:

mn < mþ n: ð5Þ

We consider two special cases that satisfy (5):

1. m ¼ 1, meaning that the transformed coordinates of
friends should be only observed in one location. In
other words, the index server should not link
multiple queries to the same user. This can be
achieved by using proxies to anonymize user
identities and ensure that the index server cannot
link different user requests to the same user.

2. n ¼ 1, meaning that the user is limited to access only
one, different friend’s data at each of the m
locations. In other words, the functionality the user
obtains from the applications is limited only to the
data from an unreasonably low number of friends,
in all the locations.

For the general cases of m > 1; n > 1, we decide to exploit
the first case for our design, since we do not want to limit
users (and hence to hurt functionality) as in the second case.
By routing queries through proxies, we can easily satisfy
(5) since the index server cannot link different requests to
the same user, as long as the proxies do not collude with the
index server. Thus, we have proved that the unlinkability of
queries due to proxies preserves users’ privacy in LocX.

Impact of malicious proxies. We assumed in the previous

analysis that all proxies are benign. However, a proxy may

be malicious and collude with the index server, which

would then violate the unlinkability of queries and hence

violate users’ location privacy. Therefore, multiple proxies

are needed, and we need to control the number of queries

any given proxy can see. Based on (4), the upper bound on

the average number of friends’ data a user can request at a

given location through a single proxy is

n1 þ n2 þ � � � þ nm
m

<
mþ n
m

¼ 1þ n

m
: ð6Þ

In a worse case, more than one proxy may be malicious,
and they may collude with the index server. Given the
number of colluding proxies, k, we have to further limit the
average number of friends’ requests that a user can send
per location via one proxy to: ð1þ n

mÞ=k ¼ 1
kþ n

mk . This
number, however, becomes impractically small. We resolve
this limitation by adding noise to queries that users send
via proxies.

Improving privacy using noisy queries. Now we derive the
amount of noise to add per query. Following (6), if k proxies
are colluding, together they can see minfk � ð1þ n

mÞ; ng
friend requests from the same user at one location (n is the
maximum number of friend requests of their interest for
one location query), which violates (4) and hence the user’s
location privacy. To make sure the colluding proxies cannot
break (1), we need to increase the number of unknowns on
the right side of (4). This is achieved by generating
“dummy” friend requests based on false secrets ð�0; b0Þ.
The user uses these false secrets to generate false location
points, inserts the random points along with the user’s
legitimate transformed points and routes them via the
proxies. The colluding proxies may then attempt to solve
the equation without knowing which requests are real and
which ones are fake. But since the solution to the equation is
then based on dummy random points, the attacker will not
have the right secrets for the user’s friends.

Let the minimum number of such noisy points be n0, and
the user asks for ðnþ n0Þ friends’ data in m location queries.
Then we should have minfk � ð1þ n

mÞ; ng ¼ 1þ nþn0
m , from

which we get n0 ¼ minfðk� 1Þ � ðmþ nÞ;mn�m� ng. For
each of the m locations, the minimum amount of noise that
the user needs to generate on an average is

n0

m
¼ min ðk� 1Þ � 1þ n

m

� �
; n� 1� n

m

n o
: ð7Þ

Note that 1) the overhead due to noise is proportional to
the amount of collusion in the system when the number of
colluding proxies k is � mn

mþn . The amount of noise does not
increase beyond n� 1� n

m when k > mn
mþn , as all the requests

sent out by a user are learned by the attackers by now.
2) The noise added above is an average value. We just need
to ensure that the noise added over m points averages to
this value—the noise does not have to be the same in each
query. We show in our evaluation the exact amount of noise
added in our setup for real values of parameters; and our
results show that the overhead due to the noise is very low.

Finally, we stress that even if noise is not added, the
worst that the attacker can do is to break a single user’s
location privacy—but not the location privacy of all her
friends. Moreover, even if users do not generate enough
noisy friend requests as the number specified in (7), and the
attackers or malicious proxies are able to solve (1), it is still
not easy for them to build the correct association between a
real friend and a pair of secrets obtained from the solution,
since there are ðnþn0n Þ � n! possible associations. Hence even
in this worst case, the user’s friends’ secrets are still kept
secure. In this case, only the user’s current location is
revealed to the attacker (from the solution to the (1)), hence
only this user’s location privacy is violated. This privacy is
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also not violated arbitrarily long, but only so long as the
proxies continue to collude and associate the requests
coming to the index server to the same victim user.

5.3 Other Attacks and Defenses

We now discuss other possible attacks the servers can
perform, in addition to the attacks described before, and our
proposed solutions to ward off these attacks.

Query linking attacks by the index server. The index server
might attempt to link the queries from the same user using
some query “fingerprints.” For instance, the server might
guess that all queries with 199 points in them (one per
friend) belong to the same user—assuming that it is
uncommon to have many users that use the same proxy
having 199 friends. Fortunately, our extension of adding
noise to the requests helps here. Since the number of noisy
points added varies per query, the server cannot perform
such attacks.

Fingerprinting using cookies in incoming connections. We
assume that the proxies or the clients scrub the outgoing
connections, using tools such as Privoxy [46], to remove all
user-identification information from the connection. This
assumption is common to all anonymity-preserving sys-
tems, including Tor [34]. Thus, such attacks do not work
on LocX.

Localization-based attacks. As the users connect to the data
server directly, it can attempt to learn users’ location using
their IPs. Fortunately, the location from localization
technologies is at the granularity of tens of miles [47]. To
prevent these attacks, accessing the server via proxies
helps, but this reduces the efficiency of the system.
Recently proposed [48] mechanisms can also help us in
reducing the localization accuracy of the server and even
defeating these attacks.

Timing attacks by the index server. The index server may
attempt to link different requests that arrive at the server to
the same user or query using timing information. For
example, the server can say that all requests for I2Ds within
a second belong to the same user, and hence all such I2Ds
are related. Fortunately, we can leverage prior work on
location privacy here [49], [11], [12], [23], [22]. By using
techniques such as batching requests and randomly delay-
ing requests to the server at the proxies or at the clients, and
by combining them with noisy queries described before, we
can deter these attacks.

Periodically refreshing a user’s secrets. So far we described
LocX as if only one pair of secrets ð�; bÞ is used by a user to
protect her data. But we can easily extend this to allow
users to use time-varying secrets. For example, Alice may
use ð�; bÞ to protect her data from the year 2010, and ð�0; b0Þ
(generated using a pseudorandom number generator) to
protect 2011 data. The time period for secret refresh can
also be configured by the user. The user could then share
new secrets with selected friends for better security (as
described next).

Attacks due to stolen or compromised user devices and
colluding friends. An attacker with access to a user’s secrets,
obtained by compromising or stealing her device or by
colluding with one of her friends, obviously, has access to
all her data and her friends’ data. Unfortunately, this is a
natural problem shared by other prior social systems that

have relied on friends for performing certain tasks [41], [39],
[40], [37]. That said, we believe that the damage from this
problem can be limited. First, a colluding user can only leak
her friends’ data to the server and not more. So obtaining
network-wide visibility for an attacker will require a large
number of colluding users, which is hard. Second, using
attributed-based encryption (ABE) [50], similar to the
approach in Persona [37], can help limit the damage of this
attack. With ABE the attacker will have to get many
colluding friends (and access all attributes) to even obtain
the data of even a single user. Finally, the users can easily
revoke the keys of a friend suspected to be colluding or
compromised, and periodically refreshing the keys (like
discussed above) of all friends forces friends to rerequest
keys, thus providing an opportunity for users to “prune”
their network to only the trusted friends (and also limiting
future damage from already leaked keys).

Attacks using external information. Attackers can mount
several attacks on targeted users using information learned
about them from outside our system. For example, Bob, an
employee of a restaurant, might know Alice’s home address
and know that it takes 10 minutes for her to come from her
home to the restaurant. Knowing two locations of Alice
(home and restaurant) and the time window when
transformations of these locations are stored on the server,
Bob might collude with the server to try to figure out
Alice’s secrets.

While defending against all such attacks based on
external information is extremely challenging, and is out-
side the scope of this paper, we offer our intuitions as to
why such attacks are especially difficult against LocX. First,
this attack can work only on those users whose information
is precisely known by the attacker. The number of such
users is usually very limited. Second, our defenses against
timing attacks can significantly increase the time window
the attacker has to process. And the attacker will have to
process all the points uploaded to the system in that time
window, which can be extremely large in a system with
many users. Third, even if successful, the attacker will have
to keep running this attack due to time-varying secrets of
the users. Finally, just learning a user’s secret does not
compromise her privacy. The attacker still has to break the
unlinkability of every (future) request sent by this user (by
colluding with proxies). That is, even when the secrets of a
user ð�; bÞ are broken, the attacker still needs to link future
requests to that user.

Map matching attacks. The attacker might attempt to
connect the points in the virtual coordinate space, to
construct paths taken by a user, and then to map them
back to the paths in the real-world map. Doing so would
enable the attacker to identify real-world paths traversed
by a user. However, such attacks are impractical for the
attacker to mount due to the following reasons. First,
isolating the points that belong to a given user is very
hard. The virtual coordinate space is shared, and all users’
points overlap in this space. As a result, a set of points in a
region of the space can lead to an extremely large number
of total paths. Due to unlinkability of points, the attacker
would not know which path among these is the path taken
by the user. Second, due to our defenses against timing
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attacks, the points in a path may not appear in the right
order at the server. So even if the user’s points are isolated
by the attacker, they will lead to a wrong path fingerprint.
Finally, mapping a path fingerprint to the right path in the
world’s map is not trivial. (Fig. 9 in evaluation validates
this argument.)

Denial-of-service attacks by malicious users. To prevent DoS
attacks on the server behind the cloak of anonymity, we can
leverage existing research [51], where tokens are used to
verify that the puts (store operations) are from legitimate
users and hence rate-limit malicious puts.

Summary. To break a user’s location privacy in LocX, the
attackers need to surpass two steps: 1) learn the secrets of
the user, every time she changes it, and 2) correctly identify
every request sent by the user. From our analysis above,
doing so is very expensive for the attacker, and hence, LocX
significantly improves location privacy over prior work.

6 EVALUATION

Our evaluation focuses on answering the following key
questions:

1. What is the overhead of a put in LocX?
2. What is the overhead of retrieving point and nearest-

neighbor queries in LocX compared to today’s
systems? And how does it vary when more data
are retrieved per query?

3. How does the overhead vary when more noise is
added to each query?

4. How does the overhead from L2Is and I2Ds change
when larger size of data is stored per put?

5. Finally, how does LocX perform on mobile devices?

6.1 Implementation and Setup

We implemented LocX in Java. We used AES with 128 bits
keys for encryption and decryption. The implementation of
nearest-neighbor queries was based on the R�-tree package
from HKUST [45]. We configured each user to cache
1,000 random number tags from each of her friends.

We measured LocX’s performance on both desktops and
on Motorola Droid mobile phones. The index and data
servers were run on the same Dell PowerEdge server
equipped with Quad Core Xeon L5410 2.33 Ghz CPU, 24 GB
RAM, and 64 bit Federal Core 8 kernels. Clients were run on
another machine with the same configuration. We used the
same code base for both desktop and mobile tests. But we
had to modify the code slightly for Android OS to deal with
some missing libraries. In addition, we had to make certain
optimizations to limit the memory usage to under 16 MBs
for LocX process in Android.

Workload. We used both synthetic and real-world LBSA
workload data sets for our tests. The synthetic data set with
default parameters was created following empirical ob-
servation on popular geosocial sites such as FourSquare:
first, we partitioned a two-dimensional space into 100
cells, each of which is a city. In each city, we randomly
generated 100 pairs of location coordinates. Then, we
assigned 1,000 resident clients to each city. Each client
had 100-1,000 friends following a power law distribution
with � ¼ 1:5 [52], among whom 70 percent friends were

from the same city as the client and 30 percent were from
other cities. Each client did 20 location puts, among which
70 percent puts were at locations in the client’s resident city
and 30 percent were at locations in other cities. Each
location put message was randomly generated consisting of
maximum 140 bytes, following the tweets in Twitter. As a
result, each city had 20K location puts on average, and the
total number of location puts was 2M. After all the puts,
each client submits a point query and a nearest-neighbor
query with 70 percent probability of being within the
client’s resident city and 30 percent probability of being in
other cities. Each nearest-neighbor query requests for ten
nearest locations (we only evaluate nearest-neighbor
queries, as we found in our preliminary tests that the
performance of circular range queries to be similar to that of
nearest-neighbor queries). We set noise to a fixed ten points
per query for now, and study the impact of noise later.

We crawled www.brightkite.com for real LBSA traces.
We crawled using BrightKite’s public APIs, at a rate slower
than the rate specified in the API Terms of Use. Due to the
slow rate, we distributed the crawling tasks to 20 machines,
and crawled for about a month starting from August 20th,
2010. Starting with an initial seed of users, we crawled
each user’s profile, friends list, and check-in data. The
crawled data in total had 25,314 users, 123,438 unique GPS
coordinates with 259,775 check-ins by users. While using
these data for experiments, we treated each check-in as a
location put, and let each user query from one of her
check-in locations. Since check-in messages were not
available for us to crawl, we generated random messages
of varying sizes.

Experiment setup. To evaluate the overhead that our
approach is adding to today’s LBSAs with no privacy, we
compared LocX with random tags, referred to as LocX, with
an implementation of a today’s service that has social
network on the server and directly maps a location to its
data, referred to as L2D. In L2D, data are in plain-text, thus
no encryption or decryption is needed. We measured the
communication costs between clients and servers, the client
processing time, the query completion time (including
network latency), and the server processing time. To
evaluate the performance tradeoffs of the design choices
we have discussed, we also compared LocX with random
tags against LocX with no tags, which we call LocX-no-tag.
Since these two different designs result in differences in
processing L2Is, we specifically measured the communica-
tion cost between clients and the index server for L2I and
the communication cost between clients and the data server
for I2D.

Comparison. We also compare LocX to a recent k-
anonymity-based system [12], where a trusted third-
party anonymizer stands between the clients and servers
to anonymize queries and to filter query responses. The
anonymizer knows the userId and the user’s friends’
information to filter responses. Since the anonymizer hides
a user’s query in a larger area of k other users, we can
expect its data communication size and server time
(including the anonymizer time) to be significant, in
comparison to LocX, as shown in detailed next. We set k ¼
10 in all our experiments.
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6.2 Experimental Results

We report results from our tests on desktop computers first,
and present experimental results on mobiles later.

Performance of a location put. We present the cost of a
single location put in synthetic data set in Table 2. A put in
today’s system (L2D) costs no processing time on clients as
there is no crypto operation. But we can see that a put in
LocX with encryption and additional index data only
slightly increases the overhead, which is not even obser-
vable by users. The average message size was 84.5 in L2D,
but it was increased to 140 in LocX. k-Anonymity, however,
has even higher size due to the information regarding the
cloaked spacial region in the message.

Query performance with increase in the # of puts. Next we
compared the performance of LocX (with random tags),
LocX with no tags, k-Anonymity, and L2D for point queries
and kNN queries. On synthetic data set, we varied the
number of location puts per client from 20 to 100, while
fixing the amount of noise in a query to default 10 and
message size to default maximum 140. Total number of
clients was fixed at 100K. As location puts per client
increases, the total data size increases, thus more data needs
to be processed and the sizes of query answers increase.
Fig. 3 shows the increase in query answer sizes. Obviously,
the response to a kNN query contains more data than a
point query (by more than six times).

From Figs. 4a and 5a, we see that processing a query in
LocX takes is comparable to that of L2D, in a LAN setting.
However, the other two approaches—k-Anonymity and
“Locx-no-tag”—perform poorly. k-Anonymity has higher

overhead as the entire cloaked spacial region is included in
the responses, which leads to increase in the query
completion time, and server processing time or load (shown
in Figs. 4b and 5b). In “LocX-no-tag,” a client cannot
differentiate between friends’ and nonfriends’ messages, so
the client tries to decrypt every single message received,
which leads to costly computation and time to completion.
This problem becomes particularly worse while processing
nearest-neighbor queries, as shown in Fig. 5a. The server
time of LocX is actually better than L2D due to the fact that
the application logic is moved to the clients and server
simply needs to do lookups. The communication cost of
LocX is no more than three times the communication cost of
L2D for point queries and no more than seven times the
communication cost of L2D for nearest-neighbor queries, as
shown in Fig. 4c and Fig. 5c, respectively.

We also measured the client processing times. LocX, as
expected, pays a slight processing cost on the client side in
decrypting indices and location messages. But we find that
this increase in overhead is actually negligible. Due to space
limitation, we leave out the graphs for synthetic data but
later present the results on real data set in Fig. 10. The
results are similar in both cases.

Individual overhead from L2I and I2D. Now we look into
the overhead from L2I and I2D separately. Overhead from
L2I in the setting where no tags are attached is referred to
as “L2I-no-tag.” We see in Fig. 6a that as the number of
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TABLE 2
Measures of Location Puts

Fig. 3. Effect of varying the number of puts on query response sizes in
synthetic data.

Fig. 4. The various costs of running point queries, while varying the number of location puts in synthetic data.

Fig. 5. The various costs of running nearest-neighbor queries, while varying the number of location puts in synthetic data.



puts increases, more data are returned as answers, and the
communication cost of I2D increases more than that of L2I
for point queries. But in the case of nearest-neighbor
queries, since a lot of data needs to be filtered in L2I phase,
more data are transmitted for L2Is. In contrast, only
qualified answers are transmitted in I2D phase. As a
result, the communication cost of L2I is more than that of
I2D (see Fig. 6b).

Varying put message sizes. We next increased the put
message size from 140 to 700, while fixing the other
parameters (20 puts per client). We expected only the
communication cost of I2D to increase but the cost of L2I to
remain the same in this test. Fig. 7 confirms this for point
queries, and we observed similar behavior for nearest-
neighbor queries (no graph shown due to space con-
straints). Clearly, as the message size increases, larger sizes
of data are transmitted as answers, thus the cost of I2D
gradually dominates that of L2I.

Varying the amount of noise in queries. We next varied the
amount of noise added per query from 10 to 50, while
setting the other parameters to default. Fig. 8 shows that
increasing the noise only increases the communication
overhead from L2I, and this increase in overhead is quite
small. There is no increase in I2D overhead due to noise.
Also note that noise does not increase the computation time
on client devices, as clients can reject responses to noisy

points and not even attempt to decrypt them. The trend for
kNN queries is similar, but the graph is left out due to lack
of space.

Distribution of transformed coordinates. Fig. 9 compares the
distribution of 2 million real-world locations after user-
specific transformations to understand how the points are
distributed. Clearly, after transformation, points are evenly
distributed in the virtual space, as can be seen from the CDF
plot, which is practically a vertical line near 0. Thus, the
virtual coordinate density is negligible compared to real-
world coordinates. This is the main reason, we believe, why
reverse engineering the transformations and performing
map-matching attacks is hard.

Experiments with real-world BrightKite data sets. Since we
were not able to crawl the messages in check-ins, we
generated messages of size varying from 140 to 700 bytes,
and then used the check-in locations to put this data on the
server. We set the noise in the queries to default value 10.
This real-world data had a lot fewer check-ins compared to
our synthetic data, and hence the number of results
returned in query responses was also smaller. The average
answer size for a point query and a nearest-neighbor query
were around 0.92 and 36.5, respectively. We learned from
this test that the performance trend of LocX with real data is
similar to that on synthetic data. Fig. 10 shows that LocX
does not incur too much processing overhead on real data
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Fig. 6. Breaking down the communication overhead from L2Is and I2Ds, when the number of puts is increased.

Fig. 7. Increase in the data (I2D) transfer size when the message size
per location data put is increased in synthetic data.

Fig. 8. Increase in the L2I communication overhead due to increase in
the noise, for point queries in synthetic data.

Fig. 9. Density distribution of location coordinates in the real world and
the transformed world with user-specific keys.

Fig. 10. The increase in the processing overhead for point queries in
BriteKite data set, for increase in put message size.



either. Increasing the message size increases the processing
time only slightly due to decryption of larger sized data.
Due to similar trends, we leave out the other graphs on
point and kNN queries.

We also notice that LocX with no tags consumes more
processing than LocX with tags; the majority of time here is
spent in trying different friend keys for decrypting each L2I.
This clearly shows that tags are necessary to boost the
performance of LocX, with only a slight more communica-
tion overhead.

Next we used this real-world data to get a realistic
estimate of the amount of noise added by LocX according
to (7). We set n to 7.17, the average # of friends in the
BrightKite data set, and m to 10.95, the average # of check-
ins per user. The number of noisy points a user with this n
and m has to add while using LocX with the increase in the
number of colluding proxies k is shown in Fig. 11. The
noise increases up to a certain value of k and then remains
constant, as expected (explained in Section 5.2). In addition,
we see that even the maximum noise added (5.53) is less
than the value of n. Noise of 5.53 location coordinates
translates to about 22 bytes per query. If the average
message size is 500 bytes, then this overhead is about
4 percent, which we think is reasonable.

Overhead of running locX on Motorola Droid. We ported
LocX to Android, and ran the experiments under synthetic
data on Motorola Droids. We observed similar trends in our
tests as the results reported before (in Figs. 4 and 5). As a
result, we do not present new graphs. The key difference,
however, was that the client processing time is much slower
on Droids due to low resources. In the default setting with
20 location puts per client and one point query per client
(described in Section 6.1), the average client processing time
on Droids was about ten times slower than on the Dell
server. But even after this slow down, the query completion
time on Droids were below 0.2 seconds for point queries,
and all kNN queries were answered in below a second. We
measured the power consumption on Droids and noticed
that the phone can process about 40K point queries before
the battery was completely consumed.

Summary. We find in our evaluation that LocX can run on
today’s mobile devices with low computation and commu-
nication cost and still provide strong location privacy.

7 BUILDING APPLICATIONS USING LOCX

Here we sketch how to build LBSAs using LocX. We
demonstrate the usage of our APIs by building three
applications. In today’s systems that provide these services,

the data are entrusted to the server in plain text, which
performs the computations in the application logic. But
since we do not trust the server in LocX, the application
logic that computes on the plain-text location data is moved
to the client.

Location-based reminders. This application users place
reminders for friends at specific locations (e.g., reminder
to buy milk near a grocery store), and when the friends are
at that location, an alert is generated on their device. To
build this application in our model, a user bundles all the
details about the reminder, such as the reminder text and
time, encrypts the whole bundle and generates a corre-
sponding I2D. Then, the user transforms the reminder
location based on the friend’s secret and generates a
corresponding L2I. These pieces are stored on the servers
with a putL2I and a putI2D calls. Each user periodically runs
a neighborhood query for data from her friends. First the
user takes her current location, transforms it according to
her secret, runs a neighborhood query, and fetches the L2Is
and I2Ds, if any, using the getL2I and getI2D calls. Then, the
device decrypts and reminds the user as appropriate.

Location-based recommendations. This application aims to
recommend nearby sites (restaurants, shopping malls, etc.)
to users based on the reviews given to these sites by their
friends. In our model, this application is built as follows. A
user stores her reviews by generating a bundle containing
all the information related to the review, such as the review
text, rating, and so on encrypts the bundle using her
symmetric key, and generates a L2I and I2D using the data.
The locations of the sites are transformed, of course, while
generating the L2Is. This information is then stored on the
servers using the putL2I and putI2D calls. The application
on each user’s mobile downloads the data from her friends
at the user’s current location by running a neighborhood
query. Then, it decrypts the returned data, and plots the
recommended sites on a map in the device. Thus, the
application operates without even revealing users’ location
to the servers.

Friend locator. This application alerts a user whenever a
friend is in the vicinity. When this application is built on
LocX, users check-in at their current location periodically;
then users check for friends in the vicinity by running a
neighborhood query around their current location and
decrypting check-ins from friends in recent times (e.g., last
10 minutes). Despite using neighbor query, this approach to
building friend locator is still efficient. Even a hotspot (e.g., a
concert) in the real coordinate space is usually not a hotspot
in the transformed coordinate space due to user-specific
location transformations, and thus limits the amount of
(irrelevant) data received and processed by a user.

8 CONCLUSIONS

This paper describes the design, prototype implementation,
and evaluation of LocX, a system for building location-
based social applications (LBSAs) while preserving user
location privacy. LocX provides location privacy for users
without injecting uncertainty or errors into the system, and
does not rely on any trusted servers or components.

LocX takes a novel approach to provide location privacy
while maintaining overall system efficiency, by leveraging

PUTTASWAMY ET AL.: PRESERVING LOCATION PRIVACY IN GEOSOCIAL APPLICATIONS 171

Fig. 11. Ideal amount of noise necessary to protect users in BrightKite,
with increase in the number of malicious proxies.



the social data-sharing property of the target applications.

In LocX, users efficiently transform all their locations

shared with the server and encrypt all location data stored

on the server using inexpensive symmetric keys. Only

friends with the right keys can query and decrypt a user’s

data. We introduce several mechanisms to achieve both

privacy and efficiency in this process, and analyze their

privacy properties.
Using evaluation based on both synthetic and real-world

LBSA traces, we find that LocX adds little computational

and communication overhead to existing systems. Our

LocX prototype runs efficiently even on resource con-

strained mobile phones. Overall, we believe that LocX takes

a big step toward making location privacy practical for a

large class of emerging geosocial applications.
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