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Abstract

Measuring Nuclear Lifetimes with Two Gamma-Ray Imaging Techniques

by

Robert David Crabbs

Doctor of Philosophy in Engineering – Nuclear Engineering

University of California, Berkeley

Professor Kai Vetter, Chair

The GRETA collaboration has developed a large position-sensitive HPGe detector
array for both stable and radioactive beam experiments, called the Gamma-Ray Energy
Tracking IN-Beam Array (GRETINA). The array’s primary purpose is for high-efficiency,
high-precision gamma-ray spectroscopy. Its position sensitivity allows experimenters to se-
quence photon tracks via Compton kinematics. This tracking is used, among other things,
to estimate the emission angle of a gamma ray relative to its parent nucleus’s velocity. This
is key for spectroscopy because it gives a way to correct for Doppler shifts in photon energy.

Because GRETINA can measure both energy and position of individual photon in-
teractions, it also opens the door for gamma-ray imaging. I sought to use these capabilities
to measure the lifetimes of short-lived nuclear states produced by in-beam experiments. The
current approach to this problem – called the “Recoil Distance Method” (RDM) – requires
large amounts of beamtime, a resource which is in short supply. With gamma-ray imaging,
on the other hand, we can theoretically extract these lifetimes “for free”, using the same data
taken during spectroscopy runs. Where RDM generally requires multiple measurements to
find a lifetime, imaging delivers full de-excitation curves from a single run. Lifetimes can be
extracted directly by fitting to these curves.

The research presented here provides a feasibility study of two gamma-ray imaging
techniques: traditional Compton imaging, and a new method based on Doppler shifts. Where
Compton imaging depends on the first two hits in a photon track, “Doppler-Shift imaging”
requires only the first. This is extremely promising, as I found that GRETINA’s position
resolution greatly limits the fidelity of Compton imaging. Doppler-shift imaging is more
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sensitive to detector energy-resolution, but largely insensitive to position resolution. In both
cases, finite imaging resolution causes an imaged de-excitation curve to deviate from the
ideal, purely exponential shape. To improve accuracy, curve fitting must account for the
detector imaging response.

Many parameters affect the overall imaging response of GRETINA. I evaluated several
of them here through a series of detailed Geant4 simulations, and explored several data cuts
to improve imaging quality. In general, Doppler-shift imaging offers 5-6x better imaging
resolution and 2-3x better imaging efficiency. With data filters, Compton imaging resolution
can deliver comparable resolution at the expense of 85-90% of counts.

The end goal of this imaging work is to understand how imaging response translates
to precision in lifetime measurements. Imaging resolution, counting statistics, and the life-
time of the nuclear state in question all have significant effects on this precision. I studied
each parameter using detailed simulations built in Geant4, calculating sensitivity ranges for
lifetime measurements using gamma-ray imaging. I found that even very poor imaging reso-
lution can be corrected for if the detector response is accurately characterized. For example,
with 25.0 mm imaging resolution and 50K samples per lifetime curve, we can achieve < 5%
relative uncertainty on measured lifetimes between 29 ps and 5.2 ns at 0.3c parent velocity.

However, while the simulations are extremely encouraging, an experimental validation
with 92Mo was ultimately unsuccessful. At 35 ps, the lifetime of the isotope’s 740 keV
transition is on the lower edge of our sensitivity range – especially when combined with the
very low 0.085c recoil velocity of the parent nucleus. I also ran into complications from
Compton background counts in the experimental spectrum, which made it very difficult to
characterize the imaging response reliably. Knowing this, however, we now have a better
idea of the requirements for using gamma-ray imaging in lifetime experiments.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

This project seeks to not only measure nuclear lifetimes, but also expand scientific work in
general by reducing the need for beamtime in lifetime measurements. Lifetime is an important
test of our models of the strong force, but obtaining data is currently quite laborious and
expensive. I propose using gamma-ray imaging for these measurements. Doing so may
extend the range of lifetimes that can be studied with in-beam experiments. In addition, if we
can cut down on the required beamtime, it will allow us to measure lifetimes for more states,
as well as free up time at accelerator facilities for other experiments.

The lifetime of an excited nucleus is critical to our understanding of subatomic forces.
Quantum mechanics dictates that all systems have a non-zero probability to transition into
another allowed state. (See pages 40-41 in Reference [21].) This law is quantified in Fermi’s
Golden Rule, which gives the probability per unit time λfi of observing a transition from an
initial nuclear state to some other final state:

λfi =
2π

h̄
|Mfi|2ρ(Ef ) (1.1)

Mfi =

∫
Ψf ∗ VΨidv (1.2)

where ρ(Ef ) is the density of final states at energy Ef , and Mfi is the transition ”matrix
element” of the transition operator V . The initial state of the system is represented by
the wave-function Ψi, while the final state is represented by Ψf . These wavefunctions are
predicted by nuclear models – in other words, the theoretical forms and relative strengths
of the forces in the nucleus. For any given theory of the strong, weak, and electromagnetic
forces, one can use quantum mechanics to predict everything from excitation energies to
nuclear spins to decay pathways.

References [21] and [16] go into more detail about nuclear structure calculations. For
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our purposes here, the important thing is that Equation 1.2 can be re-arranged to solve for
Mfi in terms of the nuclear lifetime:

|Mfi| =

√
h̄

2πρ(Ef )τfi
(1.3)

where τfi = 1/λfi is the lifetime of transition from the initial to final state. By measuring
this lifetime, one obtains a data point to compare against the theoretical predictions of a
given nuclear model.

Reference [35] provides an excellent example. The article focuses on low-lying ex-
cited states and their transitions in the “halo” nucleus 19C. By measuring the lifetime of the
first 3/2+ state, they found that the M1 transition is greatly suppressed. This confirmed
expectations they had from the shell model for light halo nuclei, and has suggested further
lifetime measurements in other mass regions. (Halo nuclei form near the neutron or pro-
ton drip-lines, where an overabundance of one type of nucleon produces lower-than-average
binding energy. The nucleons form a “halo” orbit around the tightly-grouped nuclear core,
which expands the effective radius of the nucleus significantly beyond that predicted by the
liquid-drop model. [36])

Reference [18] details another nuclear structure experiment, this time focused on
collectivity and deformation in the 72Kr nucleus. As discussed in pp. 134-149 from Reference
[21], nucleons can act in groups to produce patterned energy levels, called bands. The specific
type of collective behavior yields different transition strengths between the states. Here, the
experimenters concluded that “The rapid increase of collectivity in the 4+ � 2+ transition
relative to that for the 2+ � 0+ transition suggests that the onset of the oblate-prolate shape
transition occurs at low spin in 72Kr, presenting an extreme example of the shape transition
in atomic nuclei.”

We could also use a measured lifetime to deduce the spin-parities of a nucleus’s en-
ergy levels. The transition strengths between levels depend on the transitions’ energies and
angular-momentum transfers. In general, it is very unlikely for a photon to carry more than
one unit of angular momentum. This means, for example, that a transition from Jπ = 9/2+

to Jπ = 3/2+ is highly-suppressed (with M3 as the lowest permitted multipole mode). On
the other hand, a transition from Jπ = 9/2+ to Jπ = 7/2- would be far stronger. Measuring
the partial lifetime of a specific transition tells how relatively strong that transition is, and
hence sheds light on the final state’s spin-parity. [21]

Our models are most reliable near the so-called “Valley of Stability”, where nuclei
have lifetimes of at least a few seconds. It’s near the proton and neutron drip-lines that the
models fail. We have a lot less data for these exotic, short-lived nuclei. Studying them is
the mission of multiple facilities, such as MSU’s Facility for Rare Isotope Beams (FRIB).
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In these facilities, rare nuclei are produced by accelerating a high-energy projectile
(like 48Ca or 84Kr) into a thin target (like 12C or 9Be). In some experiments, the reaction
products are themselves projectiles in a secondary beam that produces even more exotic
isotopes. The products are typically created in an excited state, and will therefore de-excite
some time later as they travel downstream. The recoil velocity of the products is dictated
by reaction kinematics, and is typically between 0.05-0.45c. (This velocity is limited by the
energy per nucleon that can be delivered by the facility’s accelerator.)

To measure a lifetime in a beam experiment, we need some way to reconstruct the
de-excitation curve. (Figure 1.1) When the nuclei de-excite, they emit gamma-rays at var-
ious distances downstream of the target. Because the recoil velocity is measured, distance
travelled translates directly to time of flight, and hence emission time. The distribution of
emission times will follow an exponential decay:

A(z) = A0e
−µz (1.4)

= A0e
−z/γβcτ0 (1.5)

where β is the parent nucleus’s speed in the lab frame, γ is the corresponding Lorentz factor,
τ0 is the proper lifetime of the nuclear state, and µ = 1/γβcτ0 gives the probability of
de-excitation per unit length.

Figure 1.1: Illustration of the lifetime measurement problem

The current state-of-the-art for measuring lifetimes is the Recoil Distance Method,
or RDM. The technique is discussed in detail in Section 2.3. The important point is how
intensive the process is – building a de-excitation curve through RDM requires multiple
runs, each of which can take hours or even days of beamtime. Beamtime is a very scarce
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and costly resource, and so there is marked interest in alternative methods for measuring
lifetimes. My work here investigates using gamma-ray imaging for the purpose. One of
the primary attractions to this approach is that the de-excitation curve is built in a single
measurement. In addition, where RDM requires several dedicated runs, imaging can use data
from a standard spectroscopy experiment. This means using significantly less beamtime.

Lawrence-Berkeley National Labs has developed a state-of-the-art photon detector
array called GRETINA, which is used (among other things) for RDM measurements. This
array consists of many large-volume segmented HPGe crystals. Because of its extraordinary
efficiency and resolution, the array presents a very promising opportunity for gamma-ray
imaging, specifically for lifetime measurements. More details on the GRETINA array are
included in Section 2.4.

This work was made possible by a generous grant from the National Nuclear Security
Consortium, or NSSC. One of the missions of this organization is to prepare young scientists
for careers in nuclear security. While lifetime measurements are not directly related to
securing our nuclear stockpile or defending against radiological threats, gamma-ray imaging
is a technique with broad applications in the field. Through my work with Compton imaging,
I have gained skills that would be readily transferrable to security applications, and have
added to the body of knowledge surrounding this valuable technique.

1.2 Chapter Overviews

In this section, I provide the reader with a general guide to the rest of the dissertation. The
theory and background is all contained in Chapter 2, while Chapters 3 thru 6 represent the
new contributions my work brings to the field.

This body of work seeks to use gamma-ray imaging to measure lifetimes of rare excited
nuclei. There are several pieces to this puzzle – Compton Sequencing (Chapter 3), Comp-
ton Imaging (Chapter 4), Doppler-Shift Imaging (Chapter 5), and Lifetime Measurements
(Chapter 6).

Chapter 2 provides the background and theory upon which the remaining chapters
rest. In it the reader will find discussions of Compton Scattering and relativistic Doppler-
Shifts, including derivations of some of the most important formulae involved. There is also
a section on gamma-ray detector physics, with an in-depth look at the GRETINA detector
array. Much of this discussion focuses on the signal decomposition which enables GRETINA
to determine the locations of photon interactions within its crystals. The chapter concludes
with a brief description of the simulation tools used in this study.

GRETINA’s position sensitivity is a powerful asset. Combined with the array’s excel-
lent energy resolution, this sensitivity provides the basis for Doppler-shift correction, Comp-
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ton sequencing, and two different gamma-ray imaging modes. On top of that, it enables us
to perform lifetime measurements in a variety of ways. Chapters 3 thru 6 explore in detail
how I implemented these techniques, and represent the new contributions this work brings
to the field.

Chapter 3 is dedicated to interaction grouping and Compton tracking – the methods
used to identify and sequence individual photon tracks. The detector’s time resolution is
not nearly good enough to sequence directly, so instead we take advantage of the physics of
Compton scattering. Each potential sequence of measured energy depositions and scattering
angles is tested against the kinematics described by the Compton formula. The one that
best matches the kinematics is deemed the “correct” sequence.

Chapter 4 discusses the mechanics of Compton Imaging. Much of my research focused
on optimizing the resolution achievable with this technique. There are multiple parameters
that we can tune during post-processing. Some of the choices can be made independently
of the imaging problem; but some, like the “Compton lever arm”, are simply empirical
optimizations of the end results. Imaging resolution and efficiency are also highly-dependent
on the details of a given beam experiment, including beam velocity, CM-frame photon energy,
and detector resolution (for both position and energy). I investigated the effects of these
parameters on the final “detector imaging response”, a distribution reflecting how well a
given imaging modality locates the true photon emission points along the beamline.

Chapter 5 introduces a new gamma-ray imaging method, called Doppler-Shift imag-
ing, which seems very promising for lifetime measurements. If we know the correct CM-frame
emission energy, we can use the detected lab-frame energy to determine the emission angle.
Combined with the location of the photon’s first interaction in the detector, this uniquely
determines the emission location. Requiring a single interaction point is an enormous advan-
tage over Compton imaging, which requires both the 1st and 2nd hits. Compton imaging is
therefore much more sensitive to detector position resolution. I evaluated this new imaging
method using a similar approach to the one in Chapter 4.

In Chapter 6, I tackle the problem of measuring nuclear lifetimes through imaging.
There are three main considerations: the imaging resolution, the number of counts available
to build the de-excitation curve, and the “de-excitation parameter” (determined by the beam
velocity and nuclear lifetime). Imperfect imaging resolution smears the true shape of an ideal
de-excitation curve, and should be corrected for. Doing so requires calibration measurements
to determine the detector imaging response for a particular setup. The chapter ends with
an experimental validation of the two imaging techniques using two known states of 92Mo.

Finally, in Chapter 7, I discuss my conclusions, with a comparison of the two imaging-
based lifetime measurement techniques. The chapter concludes with refinements to imaging
we could implement if given more time.
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Chapter 2

Theoretical Basis

This chapter provides background and the theoretical basis of our work here. In it, we
cover the prerequisite physics for Compton tracking and Doppler-shift corrections. The next
sections describe the GRETINA detector array in some detail, including an overview of the
signal-decomposition algorithm that enables its position sensitivity.

All of the information presented here is the result of others’ work – it is included for
reference and to provide a complete background for the work introduced in the next chapter.
Much of it can of course be found in textbooks. However, it took a good while for me to
reach my current understanding of everything that goes into the larger lifetime measurement
problem. My hope is that by including all this material in one place the people who read
this work won’t have to go through such great lengths.

2.1 Physics of Compton Scattering

Compton scattering occurs when a photon scatters off an electron. The kinematics of this
process allow us to properly sequence a photon track, a fact we will use extensively later on
in gamma-ray imaging. Because these sequencing techniques rely on a track having three or
more interactions, photonic cross-sections in HPGe can be used to estimate the energy range
for which these techniques are most useful.

The derivation of the famous Compton Scattering formula is fairly straightforward
and is presented here for reference. However, it makes an important simplification, assuming
the electron is initially at rest when struck by the incoming photon. Because electrons in real
materials are bound to atoms and thereby have non-zero energy and momentum, there is
some inherent uncertainty in the energy transferred during the scatter.

There are three primary reactions for a photon traveling through a material. One
such interaction is photoabsorption, wherein the photon transfers its full energy to an atomic
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electron. The reaction will leave the electron in an excited atomic state or potentially liberate
it from the nucleus entirely (photoionization). A photon can also scatter off an electron while
imparting only some of its energy in the process. This is called Compton scattering, which
forms the very basis of my work here. The last of the common interactions is pair-production,
wherein a gamma-ray of sufficient energy scatters off the nucleus and produces a matching
electron-positron pair.

The famous Compton energy formula gives the final energy of a photon of initial
energy after it has scattered off an electron at a given angle. The derivation is straightforward
(see Appendix A.1), and the familiar result is:

Eγ,f =
Eγ,i

1 + (Eγ,i/mec2)(1− cos θ)
(2.1)

Here, Eγ,i is the photon’s initial energy, Eγ,f is its post-scatter energy, and θ is the scattering
angle. The above equation makes an important assumption, though – that the scattering
electron is initially at rest. In reality, this is certainly not the case. Electrons are bound to
parent atoms with energies from several eV to several 10’s of keV (and for high-Z elements,
even more). In HPGe, the inner K-shell electrons have 14.1keV binding energy, and because
e- are massive particles, even relatively small kinetic energy can correspond to significant
initial momentum relative to the photon. Reference [40] gives an expression for Compton
scattering that accounts for this momentum:

Eγ,f =
Eγ,i(1− β cosα1)

1− β cosα2 + (Eγ,i/γmec2)(1− cos θ)
(2.2)

cosα1 =
pe,i · pγ,f
|pe,i||pγ,f |

cosα2 =
pe,i · pγ,i
|pe,i||pγ,i|

cos θ =
pγ,i · pγ,f
|pγ,i||pγ,f |

(2.3)

where βc is the electron’s speed and γ is its Lorentz factor. pγ,i is the inital photon momen-
tum, pγ,f is the final photon momentum, pe,i is the inital electron momentum, and pe,f is
the final electron momentum. (See Figure 2.1)

Figure 2.2 shows the relative cross-sections for the three primary photon interactions
in Germanium. As we can see, photoabsorption dominates in the low-energy region (Eγ <
150 keV). Compton scattering becomes the most probable interaction between 150 keV
< Eγ < 8 MeV, with pair production dominating the total cross-section at higher energies.
The differential cross-section for Compton scattering is given by the Klein-Nishina formula:

∂σ

∂Ω
= α2r2

CP (Eγ, θ)
2
[
P (Eγ, θ) + P (Eγ, θ)

−1 − 1 + cos2 θ
]

(2.4)

P (Eγ, θ) =
1

1 + (Eγ/mec2)(1− cos θ)
(2.5)
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Figure 2.1: Illustration of Compton scattering

Figure 2.2: Photon cross-sections in HPGe

where α is the fine structure constant, rC = h̄/mec is the classical electron radius, me is the
electron mass, Eγ is the initial photon energy, and θ is the photon scattering angle. The
derivation is beyond the scope of this work, but details are available in Reference [30].

Equation 2.4 above can be used to find the relative probability that a photon will
scatter at a given angle. From there, we can use Equation 2.1 to find the probability that a
photon scatters with final energy Eγ,f (see Figure 2.3). R. Ribberfors took this a step farther,
combining the corrected Compton formula (Eq. 2.2) with the Klein-Nishina formula:

(
∂2σ

∂Ω∂Eγ,f

)
n

= Jn(pz)

(
mer

2
C

2Eγ,i

)(
EC
Eγ,i

+
Eγ,i
EC
− sin2 θ

) Eγ,f√
E2
γ,i + E2

γ,f − 2Eγ,iEγ,f cos θ


(2.6)
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Here, EC is the ideal post-scatter photon energy given by Equation 2.1. Jn(pz) represents
the distribution of electron momenta for the nth electron shell, also known as the Compton
profile. For a given scattering angle, we can use a weighted average of Equation 2.6 for each
shell to arrive at an energy distribution like the one shown in Figure 2.4. [27] The width
of this distribution sets a physical minimum on the effective energy resolution of a detector.
For example, K. Vetter et al. found this physical limit to be 1.7keV for 662keV photons in
HPGe. [33]

Figure 2.3: Some ideal ∆E distributions in Compton scattering

Figure 2.4: ∆E distribution for 140keV photons scattered at 45°
[27]
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Equation 2.1 forms the basis of my imaging work. Photons typically interact several
times in a detector before being fully-absorbed, but the detector electronics are not fast
enough to resolve timing of individual interactions. Consider – from Figure 2.2, the total
interaction cross-section for HPGe is between 10 and 20 barns for photons of energy 150 keV
< Eγ < 8 MeV. Germanium has a molar mass of 72.63 g/mol and mass density of 5.323
g/cm3, or a number density of 4.413E22 atoms/cm3. The macroscopic cross-section yields
the mean-free-path: MFP = 1/Σ = 1/σn. Taking σ = 10 b gives an MFP of 2.27 cm,
a distance the photon can cover in 75.5 ps. Considering semiconductor detectors produce
signals on 100 ns timescales, the entire track appears simultaneous to the detector. However
– the kinematics relating photon energy and scattering angle provide a way to sequence
tracks, which in turn allows us to image photon sources in GRETINA’s central cavity. We
will discuss this in much more detail in Chapter 3.

2.2 Physics of Doppler Shifts

Gamma rays emitted from moving sources are shifted both in energy and angular distribution.
These changes are due to the relativistic Doppler effect. I derive the governing formulas for
the shifts here.

GRETINA’s primary purpose is as a high-efficiency, high-precision gamma-ray spec-
trometer. It serves to measure the emissions from excited exotic nuclei created in accelerator
fusion experiments. In traditional spectroscopy applications, the parent nuclei are typically
at rest in the lab-frame. But with in-beam experiments, the sources are moving relativisti-
cally – which means the emissions can be significantly up- or down-shifted in energy due to
the relativistic Doppler effect. For a nucleus moving with speed βc in the lab frame:

Eγ,Lab =
Eγ,CM

γ(1− β cosφ)
(2.7)

where γ is the nucleus’s Lorentz factor and φ is the measured emission angle relative to the
parent velocity in the lab frame. (See Appendix A.2 for a derivation of this equation.)

The Doppler shift can be quite pronounced. For a parent nucleus moving down the
beam axis with a speed of 0.30c, a 1.00 MeV emission in the CM-frame can range anywhere
from 1.36 MeV (φ = 0°) down to 0.73 MeV (φ = 180°). Obviously, we would want a much
better level of certainty than that for spectroscopy, where 0.25% energy resolution is typical
of an HPGe detector for stationary 1.0 MeV sources.

We can correct for the Doppler-shift if we can determine the source velocity and
emission angle. The source velocity is readily measured using multichannel plate detectors
downstream of the detector array (see Appendix A.6). The emission angle is more difficult
– we need the emission location on the beamline (X0), plus the coordinates of the first
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interaction in the detector (X1). This defines the emission vector, V0 = X1−X0, which in
turn provides the emission angle:

cosφ =
V0 ·B
|V0||B|

(2.8)

where B is the vector representing the source velocity. (We generally assume that the source
is a pencil beam, and use B = ẑ by convention.)

Because GRETINA’s detectors are position-sensitive, we can directly measure the
coordinates of each interaction. Determining which is X1 is discussed more in Section 3.2.
Finding X0 is the subject of much of Chapters 4 and 5 (see Sections 4.1 and 5.1). A
common assumption is to simply set X0 = (0.0 mm, 0.0 mm, 0.0 mm) or the target location
in GRETINA’s inner cavity.

However, this is a good assumption only when the lifetime is very short. Consider a
photon that registers its first hit at X1 = (0.0 mm, 190.0 mm, 190.0 mm) and deposits a
total of 1.00 MeV in the detector. Suppose the parent nucleus moves with β = 0.3. Using
X0 = (0.0 mm, 0.0 mm, 0.0 mm), we obtain a Doppler-corrected, CM-frame photon energy
of 0.827 MeV. Using X0 = (0.0 mm, 0.0 mm, 10.0 mm) – a position just 1 cm downstream
– yields a Doppler-corrected energy of 0.833 MeV. The nucleus travels this distance in 111
ps in the lab-frame, or 117 ps in proper time. So, lifetimes longer than this will introduce
even larger uncertainties in the CM-frame photon energy.

A final note on Doppler shifts – the lab-frame emission angles tend to be far from
isotropic. Let the photon’s lab-frame momentum be pγ = (px, py, pz) and its CM-frame
momentum be p′γ = (p′x, p

′
y, p

′
z). We can define the emission angle in the lab frame by

tanφ = py/pz, and in the CM-frame by tanφ′ = p′y/p
′
z. From Equation A.21, we have:

p′z = γpz − γβEγ (2.9)

= γ|pγ | cosφ− γβ|pγ | (2.10)

= γ|pγ |(cosφ− β) (2.11)

Similarly, p′y = py = |pγ | sinφ. Therefore:

tanφ′ = p′y/p
′
z (2.12)

=
|pγ | sinφ

γ|pγ |(cosφ− β)
(2.13)

=
sinφ

γ(cosφ− β)
(2.14)
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With some algebra, we can solve for the lab-frame angle, φ:

sinφ =
−b±

√
b2 − 4ac

2a
(2.15)

a = γ2 tan2 φ′ − 1 (2.16)

b = −2γβ tanφ′ (2.17)

c = γ2 tan2 φ′(1− β2) (2.18)

With β = 0.3, a 45.0° emission in the lab frame corresponds to a 58.8° emission in the CM-
frame. In general, the lab frame angle will be less than CM-frame angle, an effect called
“Doppler focusing”. This has important repercussions for detection efficiency in GRETINA,
where we have less than 4π coverage and must choose where to place detector modules to
maximize counts. The geometric efficiency is a complex function of both Doppler focusing
and the lifetime of the parent nucleus.

2.3 Lifetime Measurements with RDM

This section describes a process by which lifetimes of nuclear states are currently measured.
The technique is called the “Recoil Distance Method”, or RDM.

Recall that a photon emitted with a given energy in the CM-frame of its parent will
exhibit a Doppler-shifted energy in the lab frame. (See Section 2.2.) The magnitude of the
shift depends on the emission angle and the parent velocity. By placing a degrader foil at
a set distance downstream of the target, we can separate the emissions into two categories
– those that occur upstream of the degrader, and those that occur downstream. With a
thick enough foil, the parent nuclei can be slowed significantly, and thus exhibit noticeably
different Doppler-shifts for the two categories.

The next step is to apply an estimated Doppler-shift correction to each emission,
using:

ECM = γ(1− β cos θ)ELab (2.19)

= αELab (2.20)

where ECM is the CM-frame photon emission energy, ELab is its corresponding lab-frame
energy, θ is the emission angle, and the overall Doppler-shift correction factor is α = γ(1−
β cos θ). The emission angle is not known exactly, but it can be estimated by measuring
the location of the first interaction of the photon in a nearby gamma-ray detector. (The
emission point itself is generally assumed to be at the target.) Note that the velocity at
emission is also not generally known, but can be calculated from the reaction kinematics in
the target. This means that the recoil velocity β will be overestimated and emission angle θ
will be underestimated for the nuclei that de-excite downstream of the degrader.



CHAPTER 2. THEORETICAL BASIS 13

We can see from Equation 2.19 that these two effects will tend to underestimate the
Doppler-shift correction factor. So, for any given measured lab-frame energy, the photon’s
CM-frame energy will be under-reported. Consider, for example, an emission downstream
of the degrader with true parent velocity 0.1c and 90° emission angle. Suppose the parent
velocity calculated from kinematics is 0.3c, and the estimate for emission angle is 60°. Then
the true correction factor would be alphatrue = 1.005, but the guess would be alphaguess =
0.891.

Figure 2.5 illustrates this. [17] RDM will populate two peaks in the corrected energy
spectrum. The emissions downstream of the degrader (in green) will fall into the lower-
energy peak, while the emissions from between the target and degrader (in blue) will fall
into the higher-energy peak. By comparing the ratio of counts in the two peaks, then, we
have a measure of how many of the parent nuclei de-excited prior to reaching the degrader.
Each choice of degrader position gives a data point on the overall de-excitation curve.

Figure 2.5: Illustration of the RDM lifetime technique
[17]

2.4 The GRET(IN)A Array

This section briefly describes the technical specifications of the GRET(IN)A detector array,
including crystal size, segmentation, and arrangement.

GRETA, the Gamma-Ray Energy Tracking Array, is a yet-unbuilt set of detec-
tor modules that provide (nearly) full 4π coverage around a gamma-ray source or target.
(Figure 2.6) The array is comprised of 30 separate detector modules, each containing 4
highly-segmented hexagonal HPGe crystals sharing a single cryostat. These modules are
closely packed to form a spherical shell with 36 cm inner-diameter and 9 cm thickness. (An
aluminum frame holds the modules in several concentric rings centered about and perpen-
dicular to the beam axis.) Each crystal is segmented along 6 axial and 6 radial lines, giving
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36 segments per crystal and 4,320 total segments across the array as a whole – each with
separate readouts. The axial segments have varying thickness, with boundaries chosen to
give approximately equal counts for 1.0 MeV gamma rays in the front 4 layers. Due to
attenuation in the HPGe, the segments near the outer edge see far fewer photons per unit
volume than those near the front face.

Figure 2.6: GRETA schematic
[5]

The design makes use of two distinct, tapered crystal shapes, necessary to achieve
the close hexagonal packing of the HPGe shell. The shape and segmentation of the Type A
and Type B can be seen in Figure 2.7. Both crystal types are 9 cm deep with 4 cm radii at
their bases, but have different tapering. More technical details can be found in References
[12] and [5].

GRETINA, or the Gamma-Ray Energy Tracking IN-beam Array, is a proof of con-
cept of the larger GRETA array. The current iteration includes 8 of the 30 detector modules,
covering approximately 1π of solid angle. Additional modules are currently under construc-
tion, but the work presented here uses a version of GRETINA with 7 modules. The in-
complete nature of GRETINA therefore adds a geometric dependence to our results. As
discussed in Section 2.2, the observed photon count rate is heavily influenced by Doppler
focusing. While GRETINA was hosted at MSU in April 2013, the geometry clustered detec-
tors near the exit beam pipe to maximize the detected countrate due to this focusing effect.
(Figure 2.8) But there are other detector geometries available, such as populating the ring at
90°. This geometry yields the best imaging performance, for reasons that will be discussed
in Sections 4.1 and 5.1.

In GRETA’s lab-frame coordinate system, the ẑ-axis points downstream along the
beam axis. The ŷ-axis points towards the floor – that is, in the same direction as gravity.
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Figure 2.7: GRETINA crystal types

Figure 2.8: GRETINA with 7 modules populated (at MSU, Apr 2013)
[26]
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(This assumes of course that the beam runs parallel to the floor.) x̂ is a horizontal vector
chosen such that x̂× ŷ = ẑ. The origin is placed at the center of the inner cavity.

Note, however, that interaction coordinates are actually recorded in the “crystal
frame”. Each crystal places its origin in the center of its front face. The ẑ-axis runs along
the crystal’s axial dimension, with x̂ and ŷ defining the radial plane. There exist separate
transformation matrices for each crystal frame back into the larger GRETA lab frame.

2.5 Detectors and Signal Decomposition

GRETINA aims for 2.0 mm spatial resolution for the first hit in a photon track. This
section describes how the array performs this localization, and goes into the many challenges
facing the signal decomposition algorithm. A more complete discussion of GRETINA’s signal
decomposition can be found at Reference [28].

Traditionally, semiconductor detectors are used to gather information about the emis-
sion energy of radiation sources. GRETINA’s HPGe detectors are finely segmented, so we
can also measure the locations of interactions using pulse-shape analysis. This capability
enables multiple applications that would not be possible from an energy measurement alone.

First, consider how signals are produced in a semi-conductor detector. When a pho-
ton interacts in HPGe, it deposits some amount of its energy at the site of the interaction.
This elevates electrons to the conduction band and creates electron-hole pairs. Applying
a bias voltage to the crystal’s electrodes sets up an electric field which sweeps the charge
carriers towards their respective electrodes. The charges induce a current (and correspond-
ing voltage) in a coupled pre-amplifier as they move through the crystal. Solving for the
exact time-dependent shape of this pulse is beyond the scope of this introduction, but is
discussed in much greater detail in [13] and [20]. We must solve the Laplace Equation to
calculate weighting potentials for a specific electrode geometry. From there, the Shockley-
Ramo Theorem gives the instantaneous current (or charge) induced on an electrode by a
charge q:

i(t) = qv(t) ·E0 (2.21)

Q(t) = q∆φ0 (2.22)

where v is the charge’s velocity, E0 = −∇φ0 is the “weighting field”, and φ0 is the weighting
potential found by the Laplace Equation.

Figure 2.9 shows sample induced signals for two different interaction locations within a
detector segment. [7] Note that signals are actually induced in both the primary segment that
was struck, but also (to varying degrees) the other segments in the crystal. The integrated
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area of the current pulse in the struck segment is linearly-proportional to the total charge
collected. Of course, this total charge is also proportional to the energy deposited by the
photon in that segment, ∆E:

Qtot = −qn = −q∆E/W (2.23)

where n is the number of free carriers produced, W is the average energy required to create an
electron-hole pair, and q is the charge on the respective carrier (-1.6 x 10-19 C for electrons).
Charge-sensitive pre-amplifiers integrate each pulse, giving a signal whose height corresponds
to the energy deposition. There is usually some loss of charge while the carriers move towards
the electrodes, though, due to recombination with impurities in the crystal. Ideally, the loss
is small enough such that the measured energy deposition does not change based on where
an interaction took place.

Figure 2.9: Illustration of signals produced in neighboring segments
[7]

Obtaining position information requires a more complex signal-processing algorithm.
As mentioned above, the Shockley-Ramo Theorem allows us to calculate the current (or
charge) induced by electron-hole pairs drifting in a weighting potential. The shape of these
pulses depends on where the charges are created, as well as their drift velocities. (Figure
2.9). Theoretically, we can then construct idealized “basis signals” for an energy deposition
at any point in a crystal. A single basis “supersignal” is formed from the signals produced
in each segment, not just the one that the photon struck. Note that the shape of a pulse
is independent of the magnitude of energy deposited, assuming all charges from Equation
2.21 are created at a single point. This means we can normalize each basis set to the energy
deposited in any given interaction. Then, by breaking each crystal into a grid of points and
computing characteristic basis signals for each, finding the position of an interaction becomes
a non-linear best-fit problem. We take the measured signal set and search for the closest
match among the calculated basis signal sets.

In GRETINA, signal decomposition begins with a coarse 600-point grid search, fol-
lowed by a fine 6000-point grid search around the point found by the first iteration. Theoret-



CHAPTER 2. THEORETICAL BASIS 18

ically, we could achieve further precision by interpolating between points, but that approach
has not been implemented. There are many significant challenges to the decomposition
algorithm which limit the effective position resolution more than the grid spacing does. [6]

It is relatively straightforward to match signals for single interactions. But when a
photon interacts twice or more in the same detector, the output is a sum of overlapping
signals. This is a complex problem – the overlapping signals are produced nearly simultane-
ously in the detector, and can only be distinguished by pulse shapes such as the rise time.
(Again, the shape of the signal depends on where an energy deposition is made relative to
an electrode.) To compare against the computed basis set, we must first separate the signals
and determine where each begins in time. However, we do not know à priori the number of
hits in any given segment (called the hit “multiplicity”). GRETINA’s algorithm starts by
assuming each trigger corresponds to two separate hits. The measured signals are fit against
three independent parameters – the location of the first hit (X1), the location of the second
hit (X2), and the ratio of the two hit energies, E1/E2. If the two best-fit interactions are
located within a certain distance of each other (typically 6.0 mm), they are coalesced into
a single combined interaction. However, by assuming a hit multiplicity of 2 like this, sin-
gle physical hits will sometimes be erroneously decomposed into two unphysical hits. This
is called “position bifurcation”. The additional hits are typically low-energy (< 50 keV),
serving as small adjustments to improve the quality of the fit between measured and basis
signals. Conversely, two physical hits can also sometimes be regrouped into a single unphys-
ical interaction. Both types of errors are highly detrimental to tracking and imaging. The
addition or loss of hits from a track prevent it from being reliably sequenced with Compton
kinematics (Section 3.2).

The accuracy of signal decomposition furthers depends upon the position sensitivity
of the detector weighting field. As we can see from Figure 2.10 [24], φ0 changes sharply near
the segment boundaries, but much more gradually in the middle of the active volume. This
makes it more difficult to resolve differences in signals away from the edges. Two hits of
equal energy might be spaced a few mm apart but produce very similar signals. On top of
this, differences in crystal impurities cause slight variations in charge velocity and trapping,
and hence in the measured signals.

The detector electronics present other difficulties. “Differential cross-talk” is a prob-
lem that arises from tightly-packed wiring on the pre-amplifier outputs. Each crystal has
36 segments, each with their own pre-amplifier. Capacitance between wires and other elec-
tronics components induces noise that closely mimics the true induced signals in the crystal,
both in shape and amplitude. The pre-amplifiers for each crystal also have slightly different
capacitances, resulting in slightly different signal amplitudes for events of the same energy.
This requires independent energy calibration for each crystal. Differences in trigger thresh-
olds also cause some crystals to report significantly less counts than their neighbors. Trigger
thresholds pose an especially difficult problem to tracking – many low-energy hits go unde-
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Figure 2.10: Illustration of weighting potentials in GRETINA crystal segments

tected. The loss of hits from this, and the hit multiplicity issues discussed above, is quite
apparent. (Geant4 simulations of a stationary 60Co source produce full-energy tracks with
an average of 3.21 ± 0.12 hits each, while in real-world 60Co calibration runs, the average
track length is only 2.13 ± 0.02 hits.)

To correct for these effects, each crystal and its attendant electronics are characterized
separately in a laborious process. There are two approaches – illustrated in Figure 2.11.
Scanning and characterizing an entire crystal, millimeter by millimeter, can takes weeks to
months.

To benchmark the end-to-end signal decomposition process, we can point a highly-
collimated pencil beam of gamma rays through the detector, perpendicular to one of its
crystal-frame planes (i.e. XY, XZ, or YZ). This creates a linear distribution of detected
interaction points, each of which most likely corresponds to the first hit in a photon track.
(The photons will scatter away from the central beam for all subsequent interactions.) By
comparing the projected interaction locations from signal decomposition with the known
location of the beam spot, we obtain the effective 2D detector position resolution in a given
crystal plane. Fully characterizing the crystal requires scanning the beam across fine grids
on multiple crystal planes.

It is possible to assay the position resolution in all three dimensions simultaneously
with a different test. A pencil beam is again used, pointed axially down the detector. A
finely-pixelated planar detector sits next to the GRETINA crystal, and both run on a synced
clock. This second detector looks for photons that scatter in the GRETINA crystal at 90°
and subsequently escape. Such photons will leave two coincident hits (one in either detector)
with the same vertical position. The 90° scattering angle can be verified using Compton
kinematics and the measured energy deposition in the GRETINA crystal. Between the beam
spot location and the now-known vertical position, all three coordinates of the primary hit
are known. This location can then be compared with the results from signal decomposition.
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Figure 2.11: Detector characterization tests
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Note that this method requires very long counting times – it is very rare for a gamma-
ray to scatter 90° and then escape the GRETINA crystal, subsequently hitting the planar
detector. As before, fully characterizing the detector requires scanning the beam across a
grid of points, though only one plane need be scanned. Currently, GRETINA delivers close
to 2.5 mm resolution for the first interaction in a photon track. [6]

The detector electronics are characterized indirectly through simulation. A 60Co
source is placed in front of the crystal, creating a flood-field of gamma-rays. The system saves
the 3D position, energy deposition, and signal traces for each hit. These same hits are then
entered into a simulation that calculates corresponding idealized signals from the Shockley-
Ramo theorem. The idealized signals are compared with the measured traces, and used
to fit 650+ independent electronics parameters (such as differential cross-talk coefficients).
Once complete, the fit defines a transform from idealized signal traces to more realistic ones.
This allows us to compute more realistic basis signals for any given hit position and energy
deposition.

Yet for all these efforts, the search for the ideal signal match sometimes does not
converge on a solution. In such cases, the hit is placed at the edge of a segment bound-
ary. These edge effects are plainly visible when plotting interactions across a given crystal.
Figure 2.12 shows reconstructed interaction positions in a few different crystals for a 60Co
flood-field measurement. We expect to see fairly uniform distributions, with a loosely ex-
ponential reduction in counts with increasing crystal depth. Some crystals are much worse
than others; this highlights the individual differences in crystal properties and electronics,
and the challenges that decomposition poses to Compton tracking and imaging. Note, how-
ever, that GRETINA is optimized for detection efficiency and spectroscopy, not imaging.
More stringent fitting criteria would necessarily reduce the number of counts available for
this.

GRETINA stores data in three main formats or “modes”. Mode 3 contains raw signal
traces, and requires by far the most storage space. Consider that a 100 MHz, 12-bit ADC can
generate 150 MB of data every second, and each crystal segment has its own ADC. Storing
5.0 µs per trace requires 500 samples, multiplied by 36 to store traces for each segment in
the crystal. One million events would thus require 27 GB.

These storage considerations make it advantageous to run the traces through signal
processing in real time. The output is Mode 2 data, which contains coordinates and energy
depositions for each interaction, as well as other miscellaneous information (like the χ2 metric
from the basis fit). In total, each record is 288 bytes and can store up to 16 interactions.
(Each struck detector will produce its own 288-byte data block.) Note that photon tracks
that cross crystal boundaries will produce multiple separate triggers. One million Mode 2
events require approximately 288 MB, a ˜94x reduction. Even still, longer runs will still
produce datasets in the 10’s of GB’s.
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Figure 2.12: Reconstructed interaction positions in multiple crystals
Axial & XZ projections
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Mode 1 requires the least space but the most processing power. A tracking algorithm
combines events from a Mode 2 dataset to produce full, sequenced photon tracks. Because
a 1.0 MeV photon track typically has fewer than 5-6 hits, a Mode 1 dataset can be 1/3 the
size of its Mode 2 counterpart (which always reserves space for 16 hits per event).

Complete descriptions of GRETINA’s data formats can be found at Reference [11].

2.6 Geant4 Simulations of GRETINA

This section describes the simulation tools I used for the majority of this study. The GRETINA
team has developed a detailed model of the array for Geant4, called UCGretina. It allows us
to simulate detected photon tracks from both stationary and moving sources. (Many thanks
to C. Campbell, L. Riley, and H. Crawford for helping me with the simulation software.)

Much of my work rests on simulation results generated by a Geant4 model of the
GRETINA detector. This detailed model was developed jointly by at LBL and MSU. [29]
The Geant4 simulations allow us to generate “detected” photon tracks for a wide range of
experimental scenarios. For example, we can specify the CM energies for photon emissions,
their parent velocities and lifetimes, and the particular geometric loadout of the GRETINA
detector modules.

I make use of a combination of stationary and moving sources throughout this study.
In Section 3.2, I place a stationary 1.0 MeV photon point source at the origin to evaluate the
effectiveness of Compton tracking. For Sections 4.1, 5.1, and 6.1, I use the same 1.0 MeV
CM-frame photons, but emitted from nuclei traveling at various speeds in the lab-frame. For
example, in one such test, the source nuclei have 859 ps proper lifetime. The source velocity
is set at 0.3 ± 0.001 c, with a beam spread of σθ = 0.25° and spot size of σbeam,x = σbeam,y =
0.25 mm. The target is placed at z = 0.0 mm. In all tests the geometry is kept constant;
Figure 2.13 shows a stereographic projection of the detector modules as seen from the target
position in the center of GRETINA’s inner cavity.

The Geant4 model accounts for Compton profiles but otherwise follows basic Compton
scattering kinematics. (Refer to Section 2.1.) The output photon tracks are pre-sequenced,
and the detector is assumed to have perfect energy and position resolution. To simulate a
more realistic detector scenario, I randomly reshuffle the tracks and apply uniform Gaussian
noise to the position and energy at each hit. A typical run might have σxyz = 3.0 mm spatial
resolution and σE = 2.0 keV energy resolution (standard deviation, not FWHM). The 2.0
keV energy resolution here is slightly worse than what was measured for 60Co engineering
runs performed on 12Jul2011. And as noted earlier, GRETINA yields roughly 2.5 mm
resolution on the first hit in a track, but degrades for subsequent hits. I chose a uniform 3.0
mm resolution to better represent the track as a whole, which is obviously a simplification.
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Because the simulations return the true emission locations for each photon, we are able
to directly compare the true source distributions with the results from gamma-ray imaging.
From this information we can deduce the “detector response”, P (z, z0), or the probability
that a photon emitted at z0 will be traced back to z from imaging. We also get picosecond
timestamps for each interaction, which allows us to evaluate the results of Compton tracking
directly. From the timestamps, we know the true sequence of events, and can compare this
to the sequences given by the tracking algorithm.

Figure 2.13: Stereographic projection of detector loadout in simulations
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Chapter 3

Sequencing and Tracking

3.1 Interaction Grouping

Hits from a single photon track are often split across multiple crystals and segments, and
therefore need to be regrouped to assemble the full track. This section discusses the motiva-
tions for doing so, as well as an algorithm that accomplishes the task. Events are first grouped
by their timestamps, forming tracks from their combined photon hits. These composite tracks
can be broken down again if groups of hits are more than several cm’s apart.

As discussed in Section 2.2, GRETINA is primarily used for gamma-ray spectrscopy
in beam experiments. The array combines excellent energy resolution and high efficiency.
More importantly, its position sensitivity allows researchers to correct for Doppler shifts in
emitted photon energy. Once we know the locations of both the emission point and the
first hit in the detector, we can calculate the emission angle and translate the emission’s
lab-frame energy back into a true CM-frame photopeak energy:

ECM = γ(1− β cos θ)ELab (3.1)

where βc is the relativistic speed of the parent nucleus in the lab frame, γ is the corresponding
Lorentz factor, and θ is the emission angle relative to the parent’s velocity (as measured in
the lab frame).

One difficulty is determining which hit in a photon track is actually first. A 1.0
MeV photon traveling through HPGe has a mean-free-path of several centimeters, and this
decreases exponentially for lower energies. Moving at the speed of light, the photon covers
the distance between interactions in mere picoseconds (1.0 cm = 33 ps). Yet the electronics
for the detector operate on timescale of 10’s to 100’s of nanoseconds. Because of this,
the detector cannot distinguish the time sequence of interactions directly – all the photon
hits, from the initial scatter to the final photoabsorption – appear to happen more or less
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simultaneously. Figure 3.1 illustrates the general sequencing problem, which will be discussed
in much greater detail in Section 3.2.

Figure 3.1: Illustration of the sequencing problem

The simplest approach is to assume that the first hit is the one with the highest
energy deposition. Based on Compton kinematics and scattering cross-sections, this is valid
much of the time, but is far from certain. For example, a 1.0 MeV photon that scatters at
30° deposits 208 keV in the detector. The scattered 792 keV photon has a 36% chance to
make a greater deposit with the next hit.

Knowing the interaction sequence is useful for another reason – reduction of Compton
background. Previous-generation gamma detector arrays use Compton suppression layers to
reject partial-energy counts. In such setups, detector regions are surrounded by a thick
shell of secondary detector material. If a photon scatters out of the sensitive HPGe region
and subsequently interacts in the secondary layer, the array rejects the event as Compton
background. This is crucial for accurate and precise measurement of photopeak energies,
especially in complex spectra with multiple peaks. (Note that the peaks may overlap by tens
of hundreds of keV due to the Doppler-shifting discussed above. This of course makes it
difficult to distinguish Compton background from Doppler-shifted photopeak counts, hence
the need for Compton suppression.) The downside to this approach is a drastic reduction in
counts.

Thanks to GRETINA’s position sensitivity, another option is available – one which
can reject background without throwing out nearly so much data. Recall that each crystal
in the GRETINA array is heavily segmented into 36 individual regions. These segments
are relatively small (approx. 1.5 cm in depth), which means it’s unlikely for a high-energy
gamma-ray to deposit its full energy into any single segment. However, because the array
is position-sensitive, it is possible to group interactions from nearby segments to re-form a
photon track as a whole. We refer to this process as interaction “grouping” or “clustering”.

The clustering process consists of several steps, illustrated in Figure 3.2. First, in-
teractions are grouped by trigger time. GRETINA’s electronics sample at 100 MHz, with
all segments are synced to the same clock. When a photon scatters from one segment into
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another, GRETINA records separate events for each triggered segment. Note that an event
can contain multiple hits when the photon interacts multiple times within a single crystal
segment. Because the clocks are synced, we can then apply a timing gate to group ”simul-
taneous” events and hits. (As discussed in Section 2.5, determining multiple hits within a
segment is very challenging work. This is currently one of the primary focuses of the signal
decomposition team.)

Figure 3.2: Illustration of interaction grouping

A secondary effect arises from this, though. Any coincident gamma rays will be
falsely clumped together, producing a single track with a completely unphysical energy. To
mitigate problems from such event pileup, a secondary layer of clustering can be applied to
re-separate interactions by spatial proximity. Basically, if two interactions are more than
several MFP’s apart, then they most likely do not belong to the same track. The software
algorithm to accomplish the separation is somewhat complicated, but the end result is that
temporally-clustered events are regrouped into a larger number of spatially-distinct tracks.

Implementations differ based on how “proximity” is defined. We can define it in a
solid-angle sense, or by using the 3D lab coordinates of each photon hit. My analysis uses
this second approach. I set a hard gate on the physical distance between points in a given
group. As long as a point is close enough to any other point in the group, it remains in
the group. However, my approach is somewhat simplified – it is based on absolute distance
between points. This can incorrectly ungroup tracks for which the photon scattered from
one detector into another by crossing GRETINA’s inner cavity. A more correct algorithm
would use only the travel distance in the HPGe.

Optimal timing gates and spatial clustering thresholds can be obtained through energy
spectra. We would expect interaction grouping to improve P/T ratios, because it assembles
photopeak tracks from events that would otherwise have fallen into the Compton background.
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Spatial re-separation recovers some of the photopeak counts that are erroneously grouped
with other tracks.

Because the distance between hits depends on cross-section, spatial clustering should
vary by photon energy. We used several different calibration sources to study this depen-
dence:

Source Photon Energies GRETINA Dataset
152Eu 121.8, 344.3, 1408.0 keV MSU May2013 90deg R29
60Co 1173.3 keV MSU May2013 90deg R16
88Y 898.0, 1836.1 keV MSU May2013 90deg R44

22Na 511 keV MSU May2013 90deg R48

Table 3.1: Sources used to optimize clustering thresholds

Tables 3.2 and 3.3 list the P/T ratios we obtained for a range of temporal and spa-
tial clustering thresholds. For the spatial threshold study, we kept the temporal threshold
constant at 250 ns, while for the temporal threshold study, we kept the spatial threshold
constant at 70.0 mm. (Peak counts were taken from 10-12 keV regions centered about the
known photopeak energies. Background was defined by averaging counts over the regions
immediately to the left and right of the peaks, and was then subtracted from the peak counts
using a trapezoidal approximation.)

Figure 3.3 illustrates how the peak-to-total (P/T) ratio improves with both types of
clustering. The improvements are modest but welcome – in this case, a 26% total improve-
ment in P/T and 22% reduction in the Compton background for a 60Co source. The effect
of spatial clustering threshold on the P/T ratio is not as pronounced as we had expected,
and generally, 300ns / 80mm thresholds will work well for all photons between 120keV and
1.8MeV. The bolded elements in the tables show where a P/T ratio reaches 99% of its max-
imum value for a given peak energy. One can see there are strong diminishing returns here.
We also looked at signal-to-noise (SNR) ratios, defined as:

SNR =
[Gross Peak Counts] - [Background Counts]

[Background Counts]
(3.2)

Background under each peak was estimated with a trapezoidal approximation, using average
counts to either side of the peak. As we saw, the effects were fairly small for thresholds above
80mm. For example, the SNR for the 1836.1keV 88Y peak showed a maximum of 68.8 at
40mm, but fell to 57.1 at 120mm. Therefore, we conclude that the data quality is not harmed
by excessively large clustering thresholds.

A final note – interaction clustering only applies for measured Mode 2 data. (See
Section 2.5.) However, the majority of our imaging work uses data simulated by a Geant4
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Figure 3.3: Energy spectra for no grouping, temporal grouping
and temporal+spatial grouping

model of GRETINA. The simulations produce pre-sequenced photon tracks akin to Mode 1
data, and therefore do not require subsequent clustering.

3.2 Compton Sequencing

HPGe detectors are simply not fast enough to measure the sequence of hits in a photon track.
Hits are generally a few centimeters apart, which translates to 100 picoseconds or less of
travel time. Drift times in HPGe are on the order of 100’s of nanoseconds, and GRETINA’s
100MHz digitizer takes samples every 10 ns. However, by clever use of Compton kinematics
and GRETINA’s position sensitivity, it becomes possible to resequence the detected tracks.
There are multiple ways to do this, using different algorithms and figures of merit to select
the best order of interactions.

While we cannot measure the sequence directly, we can deduce it using the energy and
position sensitivity of the detector. The technique, called Compton Tracking, is now widely
used in astrophysics, nuclear security, and other scientific work. As discussed in Section 2.1,
photons undergo three main types of interactions: pair production, photoabsorption, and
Compton scattering. It’s this last one that we take advantage of in Compton Tracking.

Consider a photon track with Nhits total interactions. For each of these interactions,
we measure its 3D coordinates Xj = (xj, yj, zj) and energy deposition ∆Ej. X1 and ∆E1

correspond to the first hit in the detector, X2 and ∆E2 with the second, and so on. The
total track energy is defined as Etot =

∑
∆Ej. Note that below a photon energy of about 4.0

MeV, pair production is rare (refer to Figure 2.2 for a comparison of relative cross-sections
in HPGe). For energies between 200 keV and 4.0 MeV, then, we can assume the track is
composed of one or more Compton scatters, possibly ending with a photoabsorption.



CHAPTER 3. SEQUENCING AND TRACKING 30

Threshold 121.8.1 keV 344.3 keV 511.0 keV

10.0mm 0.03568 ± 0.00013 0.01408 ± 0.00008 0.01822 ± 0.00005
20.0mm 0.06614 ± 0.00017 0.03919 ± 0.00012 0.06001 ± 0.00009
30.0mm 0.09503 ± 0.00021 0.06328 ± 0.00017 0.10762 ± 0.00014
40.0mm 0.10613 ± 0.00023 0.07390 ± 0.00018 0.13327 ± 0.00016
50.0mm 0.10999 ± 0.00024 0.07865 ± 0.00019 0.14599 ± 0.00017
60.0mm 0.11215 ± 0.00024 0.08124 ± 0.00020 0.15319 ± 0.00018
70.0mm 0.11332 ± 0.00024 0.08255 ± 0.00020 0.15694 ± 0.00018
80.0mm 0.11388 ± 0.00024 0.08312 ± 0.00020 0.15866 ± 0.00018
90.0mm 0.11411 ± 0.00025 0.08337 ± 0.00020 0.15940 ± 0.00019
100.0mm 0.11414 ± 0.00025 0.08347 ± 0.00020 0.15967 ± 0.00019
110.0mm 0.11410 ± 0.00025 0.08349 ± 0.00020 0.15972 ± 0.00019
120.0mm 0.11403 ± 0.00025 0.08344 ± 0.00020 0.15963 ± 0.00019

Threshold 898.0 keV 1173.3 keV 1332.5 keV

10.0mm 0.00888 ± 0.00003 0.00858 ± 0.00004 0.00768 ± 0.00004
20.0mm 0.03443 ± 0.00007 0.03518 ± 0.00010 0.03179 ± 0.00009
30.0mm 0.06885 ± 0.00011 0.07328 ± 0.00017 0.06758 ± 0.00015
40.0mm 0.09160 ± 0.00013 0.09966 ± 0.00021 0.09265 ± 0.00019
50.0mm 0.10461 ± 0.00014 0.11545 ± 0.00023 0.10777 ± 0.00022
60.0mm 0.11236 ± 0.00015 0.12493 ± 0.00024 0.11691 ± 0.00023
70.0mm 0.11665 ± 0.00016 0.13029 ± 0.00025 0.12201 ± 0.00024
80.0mm 0.11883 ± 0.00016 0.13303 ± 0.00026 0.12465 ± 0.00024
90.0mm 0.11988 ± 0.00016 0.13433 ± 0.00026 0.12589 ± 0.00024
100.0mm 0.12033 ± 0.00016 0.13489 ± 0.00026 0.12644 ± 0.00025
110.0mm 0.12051 ± 0.00016 0.13517 ± 0.00026 0.12669 ± 0.00025
120.0mm 0.12055 ± 0.00016 0.13526 ± 0.00026 0.12677 ± 0.00025

Threshold 1408.0 keV 1836.1 keV

10.0mm 0.00253 ± 0.00002 0.00487 ± 0.00002
20.0mm 0.01018 ± 0.00005 0.02051 ± 0.00005
30.0mm 0.02118 ± 0.00009 0.04588 ± 0.00008
40.0mm 0.02848 ± 0.00010 0.06454 ± 0.00011
50.0mm 0.03273 ± 0.00011 0.07554 ± 0.00012
60.0mm 0.03525 ± 0.00012 0.08220 ± 0.00013
70.0mm 0.03668 ± 0.00012 0.08595 ± 0.00013
80.0mm 0.03746 ± 0.00013 0.08789 ± 0.00013
90.0mm 0.03788 ± 0.00013 0.08885 ± 0.00013
100.0mm 0.03810 ± 0.00013 0.08928 ± 0.00013
110.0mm 0.03823 ± 0.00013 0.08948 ± 0.00013
120.0mm 0.03833 ± 0.00013 0.08955 ± 0.00014

Table 3.2: P/T ratios vs. spatial grouping threshold
Temporal threshold set at 250ns



CHAPTER 3. SEQUENCING AND TRACKING 31

Threshold 121.8.1 keV 344.3 keV 511.0 keV

50ns 0.10762 ± 0.00024 0.07470 ± 0.00019 0.13428 ± 0.00016
100ns 0.11031 ± 0.00024 0.07820 ± 0.00019 0.14269 ± 0.00017
150ns 0.11160 ± 0.00025 0.07994 ± 0.00020 0.14770 ± 0.00017
200ns 0.11290 ± 0.00025 0.08178 ± 0.00020 0.15423 ± 0.00018
250ns 0.11332 ± 0.00025 0.08255 ± 0.00020 0.15694 ± 0.00018
300ns 0.11344 ± 0.00025 0.08324 ± 0.00020 0.15897 ± 0.00018
350ns 0.11341 ± 0.00025 0.08350 ± 0.00020 0.15958 ± 0.00018
300ns 0.11341 ± 0.00025 0.08373 ± 0.00020 0.16004 ± 0.00019
450ns 0.11343 ± 0.00025 0.08383 ± 0.00020 0.16023 ± 0.00019
500ns 0.11347 ± 0.00025 0.08393 ± 0.00020 0.16042 ± 0.00019

Threshold 898.0 keV 1173.3 keV 1332.5 keV

50ns 0.09379 ± 0.00013 0.10276 ± 0.00021 0.09577 ± 0.00020
100ns 0.10356 ± 0.00014 0.11471 ± 0.00023 0.10715 ± 0.00022
150ns 0.10881 ± 0.00015 0.12089 ± 0.00024 0.11298 ± 0.00022
200ns 0.11443 ± 0.00015 0.12752 ± 0.00025 0.11932 ± 0.00023
250ns 0.11665 ± 0.00016 0.13029 ± 0.00025 0.12201 ± 0.00024
300ns 0.11825 ± 0.00016 0.13230 ± 0.00025 0.12401 ± 0.00024
350ns 0.11869 ± 0.00016 0.13282 ± 0.00026 0.12452 ± 0.00024
400ns 0.11901 ± 0.00016 0.13321 ± 0.00026 0.12488 ± 0.00024
450ns 0.11914 ± 0.00016 0.13336 ± 0.00026 0.12503 ± 0.00024
500ns 0.11925 ± 0.00016 0.13349 ± 0.00026 0.12514 ± 0.00024

Threshold 1408.0 keV 1836.1 keV

50ns 0.02944 ± 0.00011 0.06653 ± 0.00011
100ns 0.03269 ± 0.00012 0.07500 ± 0.00012
150ns 0.03427 ± 0.00012 0.07915 ± 0.00012
200ns 0.03598 ± 0.00012 0.08386 ± 0.00013
250ns 0.03668 ± 0.00012 0.08595 ± 0.00013
300ns 0.03714 ± 0.00013 0.08757 ± 0.00013
350ns 0.03724 ± 0.00013 0.08800 ± 0.00013
400ns 0.03732 ± 0.00013 0.08830 ± 0.00013
450ns 0.03736 ± 0.00013 0.08841 ± 0.00013
500ns 0.03739 ± 0.00013 0.08850 ± 0.00013

Table 3.3: P/T ratios vs. temporal grouping threshold
Spatial threshold set at 70mm
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The kinematics of Compton scattering are well-defined. That is, if we know the
incident photon energy and the scattering angle, we can deduce the outgoing photon energy
and the energy imparted to the scattering electron. This energy deposition is measured by
the detector and is equal to:

∆E = Ei − Ef = Ei −
Ei

1 + Ei
mec2

(1− cos θ)
(3.3)

Alternately, if we know the incident photon energy and the energy deposition for the scatter,
we also know the cosine of the corresponding scattering angle:

µ = cos θ = 1−mec
2

(
1

Ef
− 1

Ei

)
= 1− mec

2∆E

Ei(Ei −∆E)
(3.4)

Note that there is a one-to-one mapping of energy deposition to scattering angle – no two
angles will yield the same energy deposition for the same initial photon energy. This fact is
the crux of Compton sequencing.

So, suppose the first Nscatters = Nhits− 1 interactions are all Compton scattering. We
don’t necessarily know where the photon originated from, so we can’t (yet) say anything
about the original photon heading vector V0, from the emission point to the first hit in the
detector. However, the locations of subsequent hits are known. We can define the photon’s
incidence vector on Xj as Vj = Xj −Xj−1. If Xj is not the last hit in the track, we can
further define the outgoing photon vector at Xj as Vj+1 = Xj+1−Xj . Point Xj represents
a Compton scatter, and the measured scattering angle is simply equal to:

µmeas,j =
Vj · Vj+1

‖Vj+1‖‖Vj‖
. (3.5)

In other words, µmeas,j is the angle between the incident and outgoing photon directions as
given by the coordinates of points Xj−1 to Xj+1. This gives us a direct comparison to the
theoretical value given by the incident photon energy and energy deposition at Vj . Note
that because a scattering interaction is anchored by three points, this approach necessarily
only applies to tracks with three or more interactions. For a track of length Nhits, we only
have Nhits − 2 anchored scatterings for which the comparison to theory can be made.

Of course, we don’t know the track sequence á priori. But using the combination of
theoretical Compton kinematics and the measured coordinates and energy depositions, we
can decide which sequences would not make physical sense. Essentially, we can simply try
all possible sequences and find the one that best matches the Compton formula. This means
evaluating a Figure of Merit (FoM) for each permutation of the track sequence.

This approach can become very computationally-intensive, because the number of
possible sequences scales factorially with the length of the track. An 8-hit track (5,040
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permutations) takes 210 times longer to sequence than a 4-hit track (24 permutations).
However, 8-hit tracks are also fairly rare at the energies where Compton tracking applies
(below 4.0 MeV). For example, they account for less than 1.4% of all full-energy tracks at 1.0
MeV. The real worry is if interaction grouping registers a track with 12 or more hits, which
will effectively halt a sequencing algorithm. For this reason, it is wise to limit the length of
tracks. In this study I have limited the scope to tracks with 6 or fewer interactions.

There are multiple figures of merit we can use to deduce the sequence of interactions.
One common FoM compares the cosines of the measured and theoretical scattering angles
(Eq. 3.5 and Eq. 3.4, respectively) for each scattering in the track:

FoM =
1

(Nscatters − 1)

Nhits−1∑
j=2

(µmeas,j − µcalc,j)2 (3.6)

This figure of merit is unitless and normalized to the number of compared scattering points.
µcalc,j is the angle predicted by the incident photon energy and measured energy deposition
(Eq. 3.5), and depends on Ei,j−1, the incident photon energy at Xj . Ei,j−1 is calculated
from the total energy of the track, minus all previous energy depositions:

Ei,j−1 = Etot −
k=j−1∑
k=1

∆Ek =

k=Nhits∑
k=j

∆Ek (3.7)

This is where incorrect sequences get thrown out. Suppose we are testing a 4-hit track
sequence with hits #2 and #3 swapped. (Figure 3.4) In this case, the incident headings
on X2 and X3 are both incorrect. This means E2 = ∆E2 + ∆E4 instead of the correct
E2 = ∆E3 + ∆E4, and the calculated scattering angles at X2 and X3 will reflect the
inaccuracy.

We can define a second FoM using the energy depositions instead of scattering angle:

FoM =
1

(Nscatters − 1)

Nhits−1∑
j=2

(∆Emeas,j −∆Ecalc,j)
2

∆E2
meas,j

(3.8)

Here, ∆Emeas,j is the measured energy deposition at Xj . ∆Ecalc,j is the measured energy
deposition at Xj . To obtain a unitless figure of merit, the observed difference in measured
vs. calculated energy depositions is divided by Emeas,j. Normalizing in this fashion weights
each scatter equally, regardless of the magnitude of the energy deposition. However, in most
cases we want to prioritize accuracy on the first (and sometimes second) interactions. As
noted earlier, these early interactions tend to have much higher energy depositions than
subsequent hits in the track. Normalizing by total track energy weights these high-energy
scatters over the small-energy ones near the end of a track:

FoM =
1

E2
total(Nscatters − 1)

Nhits−1∑
j=2

(∆Emeas,j −∆Ecalc,j)
2 (3.9)
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Figure 3.4: Evaluating two different sequences

This is the normalization and figure of merit used for sequencing in this study. However, there
certainly may be better choices. An ideal figure-of-merit would provide better discrimination
between Compton background and photopeaks counts. We might also choose a different FoM
based on the reliability of sequencing it provides.

Note that other sequencing methods are sometimes used. Appendix A.3 gives a brief
discussion of some of them.

3.3 Sequencing Efficiency and Effectiveness

The ability to use Compton kinematics for sequencing depends heavily on photon energy.
Higher energies give longer tracks and hence more data to work with, but also more potential
sequences from which to choose. Below a certain energy, Compton sequencing cannot be used
because too many tracks will have one or two hits. We can map the fraction of sequenceable
tracks as a function of energy, and determine the probability of a critical sequencing error
based on detector resolution and track length.

While these sequencing methods may sound straightforward in theory, in practice
they are not full-proof. Real detectors have finite position and energy resolution. This
means that the measured interaction coordinates Xj are only approximations of the true
locations. Therefore, the measured scattering angles we compute from these positions are
themselves uncertain, and the FoMs calculated in Equation 3.9 will be nonzero – even for
the correct sequence of hits.

On top of that, even with perfect detector resolution, basic Compton kinematics
are also only an approximation. As discussed in Section 2.1, electrons in real materials
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are not at rest in a vacuum. They have characteristic binding energies that give them
nonzero momentum prior to an interaction with a photon. This extra momentum can cause
a scattered photon to have significantly different energy from that predicted by the Compton
formula. Because the electron momentum is inherently stochastic in nature, a deterministic
calculation is impossible – we can never be completely certain of any sequence deduced from
kinematics. This is especially true of the two Maximum-Likelihood methods discussed, which
are based on probabilities in the first place. In other words, there is always some probability
that a track has been mis-sequenced.

The severity of the problem depends on the goal of sequencing. Mis-sequencing errors
cause serious problems in gamma-ray imaging. (A more detailed discussion of this will follow
in Sections 4.1 and 5.1.) Doppler-shift corrections are also affected – a mis-sequenced track
changes the calculated emission angle. Consider – hits in a 1.0 MeV track will typically be a
few cm apart. Therefore, a mis-sequenced interaction will result in an angular deviation of
10° or less with GRETINA’s 18 cm inner radius. The Doppler correction (from Equation 3.1)
for a 90° emission from a nucleus moving at 0.3c is ECM/ELab = 0.962. The same correction
for a 80° emission is ECM/ELab = 1.01, i.e. a difference of 4.8%. In this particular case, the
corrected photon energy is nearly 50 keV off.

As discussed, if the source location is unknown, then Compton sequencing requires
three or more photon hits to work. The more hits in a photon track, the more scattering
points we’ll have to compare to kinematics. Intuitively, this should allow us to sequence
longer tracks with more certainty. However, longer tracks also have more potential ways
to be mis-sequenced. (All things being equal, the probability of guessing a 6-hit sequence
correctly is only 0.14%, versus 17% for a 3-hit track.) Longer tracks also have more low-
energy hits, which are disproportionately affected by the detector’s finite position and energy
resolution. While we might be able to sequence the first few interactions reliably, the tail
end of a photon track is more difficult.

It’s important to note that the percentage of sequenceable tracks depends heavily
on photon energy. Low-energy photons tend to leave shorter tracks with fewer scatters.
On the other hand, high-energy photons have a lower probability of full-energy deposition
in the detector. Because we assume full-energy deposition in sequencing, these Compton
background counts may not sequence properly.

To study the effects of finite detector resolution on sequencing, I used the GRETINA
Geant4 model (Section 2.6) to generate pre-sequenced photon tracks from a stationary
1.0MeV point source. Only the full-energy tracks were accepted for processing (±6keV),
or approximately 39% of the 100K simulated tracks. Figure 3.5 shows the breakdown of the
simulated tracks by length and energy. Note that a 1.0 MeV photon typically must scatter
3-4 times before being of low enough energy for photoabsorption. A large majority of the 1-
and 2-hit tracks correspond to partial-energy detections (shown in green). The full-energy
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detections become more common above three hits. However, the tracks we can sequence
with our Compton tracking algorithm account for only 29.9% of the total. (Recall that we
disregard tracks with 7 or more hits for computational efficiency.) Including 2-hit tracks
increases this number to 34.4%, though such tracks cannot be sequenced through tracking
(unless the source location is known).

Figure 3.5: Track breakdown by length
(Relative errors are all within 0.15%)

To better reflect the response of a real detector, I randomly re-ordered the interactions
in each track, then added uniform Gaussian noise to the position and energy of each hit.
The intentionally randomized tracks were then run through the sequencing algorithm. I
compared the known tracks with the Compton-sequenced versions to see how frequently
errors arose. Tables 3.4 and 3.5 show the mis-sequencing probability as functions of simulated
detector resolution for tracks with 2 to 6 hits. Table 3.6 gives similar numbers for a typical
detector as a function of the photon track length. (For these runs, detector resolution was
kept constant with standard deviations of σxyz = 3.0 mm and σE = 2.0keV for position
and energy resolution, respectively.) Note that we’re generally most interested in the first
interaction, because this is what is used for Doppler-shift corrections. Additionally, the
second interaction comes into play when using the sequence for Compton imaging. All 3
tables give separate probabilities for mis-sequencing the first hit alone, the first and second
hits together, and for the track as a whole.

The results of Table 3.6 suggest some important points. First, given 3.0 mm position-
and 2.0 keV energy-resolution in the detector, nearly half of all full-energy tracks – 46% –
show an error in the first two hits. This has serious repercussions for Compton imaging –
without some kind of filter, every other track will contribute noise to the final image. The
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situation is somewhat improved for Doppler-shift correction and imaging (Section 5.1), both
of which only require the first hit in a track. Still, a full 1/3rd of tracks yield incorrect results
here. Note that the situation is greatly improved for 2-hit tracks, which are sequenced by
assuming the higher-energy hit came first. (The ratio of correctly-sequenced to mis-sequenced
2-hit tracks is 5.5, whereas for 4-hit tracks it is 0.78.) Because of this, Compton sequencing is
ignored entirely in some implementations. If all we care about is getting the first interaction
right, it can be advantageous to assume it’s simply the highest-energy hit.

While a photon’s emission point is an unknown in lifetime experiments, using sta-
tionary point sources allows us to benchmark the sequencing algorithm further. Here, the
emission point is known, which establishes the initial photon heading. This lets us to now
use the first scatter in each track for sequencing. In the Geant4 simulations discussed above,
I placed the 1.0 MeV source at the origin. For a detector with perfect position and energy
resolution, I found that a mere 1.17 ± 0.06% of 3- to 6-hit tracks had an incorrect vertex after
Compton sequencing. Additionally, only 3.81 ± 0.12% had errors affecting Compton imag-
ing while a full 93.88 ± 0.78% were correctly sequenced in their entirety. This is certainly
encouraging.

Position Error in Error in Error in Correctly
Resolution Hit 1 Hits 1-2 Any Hit Sequenced

0.0 mm 10.15 ± 0.18 % 13.07 ± 0.21 % 14.68 ± 0.22 % 85.32 ± 0.68 %
0.25 mm 13.64 ± 0.21 % 18.00 ± 0.25 % 20.78 ± 0.27 % 79.22 ± 0.64 %
0.50 mm 17.28 ± 0.24 % 23.06 ± 0.29 % 26.86 ± 0.31 % 73.14 ± 0.61 %
0.75 mm 20.32 ± 0.27 % 27.31 ± 0.32 % 31.83 ± 0.35 % 68.17 ± 0.58 %
1.0 mm 22.89 ± 0.29 % 30.87 ± 0.34 % 35.96 ± 0.38 % 64.04 ± 0.55 %
1.5 mm 26.89 ± 0.31 % 36.70 ± 0.38 % 42.37 ± 0.42 % 57.63 ± 0.51 %
2.0 mm 29.75 ± 0.33 % 40.66 ± 0.41 % 46.83 ± 0.45 % 53.17 ± 0.49 %
2.5 mm 31.78 ± 0.35 % 43.60 ± 0.43 % 50.07 ± 0.47 % 49.93 ± 0.47 %
3.0 mm 33.54 ± 0.36 % 45.98 ± 0.44 % 52.76 ± 0.48 % 47.24 ± 0.45 %
4.0 mm 36.35 ± 0.38 % 49.85 ± 0.47 % 56.70 ± 0.51 % 43.30 ± 0.42 %
5.0 mm 38.18 ± 0.39 % 52.53 ± 0.48 % 59.32 ± 0.52 % 40.68 ± 0.41 %
7.5 mm 41.05 ± 0.41 % 56.51 ± 0.51 % 63.21 ± 0.55 % 36.79 ± 0.38 %
10.0 mm 42.63 ± 0.42 % 58.98 ± 0.52 % 65.55 ± 0.56 % 34.45 ± 0.37 %

Table 3.4: Probability of sequencing errors vs. position resolution
1000.0 ± 6.0 keV track energy, 2.0 keV energy resolution

Not having that first scattering point available for FoM calculations may be the largest
issue with our approach. As discussed earlier, the first hit usually corresponds to the highest
energy deposition. This also means that the first hit is also likely to contribute the largest
amount to the sequencing FoM. At high photon energies, small deviations in scattering angle
can yield 10’s of keV difference in energy deposition. Not so with lower-energy photons. Since
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Position Error in Error in Error in Correctly
Resolution Hit 1 Hits 1-2 Any Hit Sequenced

0.0 keV 33.73 ± 0.36 % 45.93 ± 0.44 % 52.59 ± 0.48 % 47.41 ± 0.45 %
1.0 keV 33.60 ± 0.36 % 45.95 ± 0.44 % 52.72 ± 0.48 % 47.28 ± 0.45 %
2.5 keV 33.59 ± 0.36 % 46.04 ± 0.44 % 52.81 ± 0.48 % 47.18 ± 0.45 %
5.0 keV 33.67 ± 0.36 % 46.28 ± 0.44 % 53.11 ± 0.49 % 46.90 ± 0.45 %
7.5 keV 34.07 ± 0.36 % 46.72 ± 0.45 % 53.67 ± 0.49 % 46.33 ± 0.44 %
10.0 keV 34.60 ± 0.37 % 47.44 ± 0.45 % 54.47 ± 0.49 % 45.53 ± 0.44 %

Table 3.5: Probability of sequencing errors vs. energy resolution
1000.0 ± 6.0 keV track energy, 3.0 mm position resolution

Track Error in Error in Error in Correctly
Length Hit 1 Hits 1-2 Any Hit Sequenced

2 hits 15.31 ± 0.62 % 15.31 ± 0.62 % 15.31 ± 0.62 % 84.69 ± 1.85 %
3 hits 28.18 ± 0.66 % 38.88 ± 0.80 % 38.88 ± 0.80 % 61.12 ± 1.08 %
4 hits 38.03 ± 0.74 % 52.56 ± 0.91 % 56.20 ± 0.96 % 43.80 ± 0.81 %
5 hits 40.67 ± 0.87 % 56.89 ± 1.09 % 70.20 ± 1.26 % 29.80 ± 0.72 %
6 hits 40.68 ± 1.14 % 58.34 ± 1.45 % 80.79 ± 1.82 % 19.21 ± 0.72 %
(All) 33.54 ± 0.36 % 45.98 ± 0.44 % 52.76 ± 0.48 % 47.24 ± 0.45 %

Table 3.6: Probability of sequencing errors vs. track length
1000.0 ± 6.0 keV track energy, (3.0 mm, 2.0 keV) detector resolution
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our FoM is normalized to the total track energy, this means sequencing mistakes for low-
energy hits are less noticeable in the final FoM. This is by design, since we want to priotize
getting the first (i.e. higher-energy) hits right.

Table 3.7 shows a sample mis-sequenced track. Note that sequencing on this 6-hit
track gave an incorrect location for the first interaction, despite perfect detector position and
energy resolution. This rare occurrence would have clearly been avoided if we had been able
to use our á priori knowledge of the source location. The FoM contribution from the first
hit in the computed sequence is enormous relative to the rest of the FoM contributions. The
remaining hits happened to be arranged in such a way to allow the subsequent hits to still
match Compton kinematics. This may not be as unbelievable as it appears at first glance
– it can take fairly large deviations in angle to skew the energy deposition more than a few
keV. Consider that the measured scattering angle is calculated thus:

θmeas,i = cos−1 (V̂i−1 · V̂i) (3.10)

V̂i = (Xi+1 −Xi)/|Xi+1 −Xi| (3.11)

Again, X̂0 is the photon emission point and X̂1 is the first hit in the detector. We find
θmeas,1 = 2.285 radians at X̂1 in the true sequence, while the angle calculated by Compton
kinematics is θcalc,1 = 2.204 radians. This is a difference of 3.51%, yet the corresponding
difference in measured vs. calculated energy deposition is only -0.93% (757.012 keV vs
764.042 keV). Even a 10.00% difference in the initial scattering angle would only produce a
3.00% in energy deposition (779.726 keV vs. 764.042 keV).

I explored a few modifications to the FoM definition. Table 3.8 summarizes the results
for four different FoMs:

FoM1 =
∑

(µmeas,i − µcalc,i)2/Nscatters (3.12)

FoM2 =
∑

(∆Emeas,i −∆Ecalc,i)
2/(NscattersE

2
total) (3.13)

FoM3 =
∑

(∆Emeas,i −∆Ecalc,i)
2/(Nscatters∆E

2
i ) (3.14)

FoM4 =
∑

(∆Emeas,i −∆Ecalc,i)
2/(NscattersE

2
total), with a guess for X0 (3.15)

FoMs 1, 2, and 3 used hits 2 to Nhits−1, while FoM 4 took all hits 1 to Nhits−1. I found that
comparing energy depositions and normalizing to the total track energy (FoM 2) provides
better results than comparing cosines of scattering angles (FoM 1). Normalizing to total
track energy is also better than normalizing to the measured energy deposition at each hit
(FoM 3). FoM 4 did offer some improvement for (3.0 mm, 2.0 keV) detector resolution. For
this test, I placed the guess for X0 at (0.0 mm, 0.0 mm, 60.0 mm), or 60.0 mm away from the
true source location. I did not study this approach in great detail, although the performance
numbers in Table 3.8 are promising. The results improved markedly as the guess for X0

came closer to the true source location at (0.0 mm, 0.0 mm, 0.0 mm), approaching near-
100% accuracy when the guess was spot-on. However, in lifetime measurements the emission
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Hit X Y Z Ei µmeas ∆Emeas ∆Ecalc FoM
True Sequence

(Src) 0.000 0.000 0.000 – – – – –
1 -77.921 170.052 103.876 1000.000 -0.654642 757.012 764.042 (9.885E-06)
2 -77.193 168.620 96.225 242.988 0.855815 34.633 15.591 7.252E-05
3 -81.571 165.890 87.314 208.355 0.727474 21.966 20.837 2.549E-07
4 -81.686 166.218 86.609 186.389 -0.637781 82.652 69.705 3.352E-05
5 -81.948 166.648 87.717 103.737 0.651133 8.124 6.861 3.189E-07
6 -81.976 166.710 87.737 95.613 – 95.615 – –

Computed Sequence
(Src) 0.000 0.000 0.000 – – – – –

1 -77.193 168.620 96.225 1000.000 0.632993 34.633 418.000 (2.939E-02)
2 -77.921 170.052 103.876 965.367 -0.944982 757.012 758.845 6.722E-07
3 -81.948 166.648 87.717 208.355 0.885275 8.124 9.311 2.818E-07
4 -81.686 166.218 86.609 200.231 -0.637860 82.652 78.272 3.835E-06
5 -81.571 165.890 87.314 117.579 -0.021635 21.966 22.380 3.422E-08
6 -81.976 166.710 87.737 95.613 – 95.615 – –

Table 3.7: Sample Compton-Sequenced Photon Track (1000.0keV, 6 hits)
All positions in mm and energies in keV.

FoM Error in Error in Error in Correctly
Type Hit 1 Hits 1-2 Any Hit Sequenced

Type 1 40.22 ± 0.43 % 47.91 ± 0.49 % 52.25 ± 0.52 % 47.75 ± 0.49 %
Type 2 33.28 ± 0.38 % 45.11 ± 0.47 % 51.27 ± 0.51 % 48.73 ± 0.49 %
Type 3 56.16 ± 0.54 % 62.47 ± 0.58 % 67.91 ± 0.62 % 32.09 ± 0.38 %
Type 4 13.79 ± 0.23 % 34.10 ± 0.39 % 43.44 ± 0.46 % 56.56 ± 0.54 %

Table 3.8: Performance of multiple FoM definitions

Error in Error in Error in Correctly
Hit 1 Hits 1-2 Any Hit Sequenced

Full-Energy 33.54 ± 0.36 % 45.98 ± 0.44 % 52.76 ± 0.48 % 47.24 ± 0.45 %
Partial-Energy 47.31 ± 0.44 % 58.81 ± 0.50 % 61.13 ± 0.52 % 38.87 ± 0.38 %

Table 3.9: Probability of sequencing errors for full-energy vs. partial-energy tracks
1000.0 ± 6.0 keV track energy, (3.0 mm, 2.0 keV) detector resolution
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points can be spread over a wide range (100 mm or more). This FoM type can actually
degrade sequencing performance if the guess is too far off, so I chose to use FoM 3 as the
working definition for all subsequent work.

A final observation about sequencing – the figure-of-merit ought to be correlated with
whether or not a track deposits its full energy in the detector. We’d expect partial energy
tracks to match Compton kinematics relatively poorly and thus have a worse FoM than a
full-energy track. Because of this, the figure-of-merit is a potential way to further reduce
background counts, thereby improving P/T ratios for imaging or spectroscopy purposes.
Receiver-operating characteristic (ROC) curves are a standard method for evaluating the
effectiveness of a given filter. [37] We are interested in the system sensitivity (true positive
rate) and specificity (true negative rate) as functions of a maximum FoM limit. In this case,
tracks were accepted if their sequencing FoM is under a given threshold. A true positive is
a full-energy event for which the first two hits are sequenced correctly; a true negative is
any partial-energy or incorrectly-sequenced track. Unfortunately, as Figure 3.6 shows, the
method’s sensitivity is not very high for realistic values of detector position resolution. The
ROC curve for (3.0 mm, 2.0 keV) resolution is barely above the “random guess” line. This
is consistent with Table 3.9, which shows that roughly 45% of full-energy tracks contain
sequencing errors in the first two hits. Tightening the sequencing FoM limit greatly reduces
the number of accepted counts, but has little affect on the sensitivity. A different choice of
FoM might yield more promising results.

There are a number of metrics we could use to select an optimal filtering parameter.
The Youden index is one such metric, and is given by the sum of sensitivity and specificity.
[38] [39] The maximum value of this index provides a reasonable choice for the parameter
value. As we can see in Figure 3.6, this gives an “ideal” FoM limit of 2.66 × 10-4 for 1.0 MeV
tracks with (3.0 mm, 2.0 keV) detector resolution. We will discuss this choice in more detail
in Sections 4.3 and 5.3. Optimizing image quality provides another empirical approach to
setting the FoM threshold.
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Figure 3.6: ROC curves and choosing a sequencing FoM limit
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Chapter 4

Compton Imaging

4.1 Introduction to Compton Imaging

This section describes the fundamentals of Compton imaging, and how it can be used to
locate the emission points of photons produced during in-beam experiments. What makes
Compton imaging so powerful is that we get the data for “free” from other experiments. But
while it’s potentially useful for lifetime experiments, this approach also has its limitations
– including the Compton profile in HPGe, non-idealities in the ion beam, and imperfect
detector resolution.

The ability to sequence a photon track not only makes it possible to correct energy
spectra, it also enables the use of gamma-ray imaging. Knowing the complete path a photon
takes through a detector allows us to backtrack to where the photon originated from before
entering the detector. Consider a track with interaction locations X1, ...,XN and energy
depositions E1, ..., EN . Applying Compton tracking to hits 2 through N-1 gives a best-
fit interaction sequence. Below a photon energy of several MeV, Hit 1 is generally also a
Compton scatter. We can use kinematics here, too, to deduce the initial scattering angle.

The total energy of the track, assuming the photon deposited its full energy in the
detector, is equal to:

Etotal =
N∑
n=1

∆En (4.1)

This is the initial energy of the photon before it enters the detector. Because we also know
the energy deposition at the first scattering point, we can calculate the cosine of the initial
scattering angle from Equation 3.4:

µ1 = 1− mec
2∆E1

Etotal(Etotal −∆E1)
(4.2)
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This is the cosine of the angle between the photon’s final and initial headings at X1. Note
that the final heading is simply defined as a unit vector from X1 towards X2, i.e.:

V̂1 =
X2 −X1

‖X2 −X1‖
(4.3)

We can thus say that:
V̂0 · V̂1 = µ1 (4.4)

where V̂0 is the unit vector that defines the photon’s incident heading on X1.

Equation 4.4 defines a cone of possible directions for the incident photon vector. This
is referred to as the “Compton Cone”, with opening angle θC = cos−1 µC = cos−1 µ1, central
axis V̂C = −V̂1, and vertex XC = X1. Note that the photon must have originated from
a point somewhere on the forward sheet of this cone. This observation is the essence of
Compton imaging.

In imaging, the goal is to determine the source locations for emitted photons – the
“source distribution”. In many experiments, this is limited to an angular distribution, be-
cause the distance to any emission point is unknown. By projecting the cones from many
events onto a containing sphere, we obtain a set of overlapping ellipses (a stereographic pro-
jection). Point sources can be picked out by noting where the ellipses intersect; the more
ellipses that intersect a given pixel in the projection, the stronger the source in that direc-
tion. Note that in near-field imaging applications, we can voxelize space in a similar manner
in order to localize sources in 3D. (See References [14], [15], and [3] for many more details
on stereographic projections and Compton imaging.)

GRETINA’s source geometry is uniquely constrained compared to other applications
of Compton imaging. In lifetime experiments, an accelerator delivers high-energy projectiles
to a thin target, creating exotic excited nuclei through fusion or other nuclear reactions.
These products recoil out of the target in a highly-collimated beam travelling at relativistic
speeds (typically 0.05-0.4c, depending on kinematics). They de-excite a short time later,
emitting one or more characteristic gamma-rays. This means, for our imaging problem, we
can assume our photons originate somewhere along the beamline, downstream of the target.

Instead of trying to locate arbitrary source points in 3D, we just need to find the
intersections of our Compton cones with the beamline. Assuming a pencil beam, there can
only be up to two such locations per cone. Ideally, one of these intersections is upstream of the
target, ruling it out as unphysical. In such case, reconstruction yields a single unambiguous
origin for the photon. See Figure 4.1 for an illustration. Note that it is quite possible for both
intersections to be downstream of the target. In these ambiguous cases, the reconstruction
is simply thrown out.

Appendix A.4 gives a detailed derivation of the cone-beam intersection points. In the
end, we arrive at a quadratic equation that depends on the beam axis and the Compton
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Figure 4.1: Ideal Compton imaging and detector effects
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cone axis, vertex, and opening angle. The intersections are X0,1 = t1B̂ and X0,2 = t2B̂,

where t1 and t2 are the solutions to that equation and B̂ is the beam axis.

While on paper this is very promising, Compton imaging with real detectors is not
nearly so clean. Finite detector position and energy resolution limits how well we know the
hit coordinates X1, ..., XN and energy depositions E1, ..., EN . Both the Compton cone axis
(VC = X1−X2) and the cone angle (Equation 4.2) are directly affected by these quantities.
Figure 4.1 illustrates the effects that detector performance has for the imaging problem.

Energy resolution changes the cone angle, but the difference is generally very small.
Consider a 1.0 MeV photon that initially scatters at 45° in the detector, leaving a 364 keV
energy deposition at X1. Suppose with 0.2% energy resolution, this deposition registers as
363keV while the full photon energy registers 1002 keV. The scattering angle computed in
this scenario would then be 44.7° (shifting the cone-beam intersection by approximately 0.3°
or 0.7 mm).

Position resolution creates much more serious problems for Compton imaging. Figure
4.2 shows a simple estimate for angular resolution based on how position resolution skews
the Compton cone axis. Consider a track where the first two hits are X1 and X2. Suppose
the detector registers hits at X ′1 and X ′2, which are a distance L′ apart. (Here, L′ is referred
to as the “Compton lever arm”.) In the worst case, the shifts are perpendicular to the new
beam axis V ′C = X ′1 −X ′2. The maximum angular error can be simply expressed as:

∆θC = arctan
√

2σxyz/L
′ (4.5)

where σxyz is the position resolution and L′ = ‖X1−X2‖. (Note that the position resolution
at both points sums in quadrature.) With typical σxyz = 3.0 mm position resolution and a
measured lever arm of L′ = 30.0 mm, the shift is 8.0°. At a 90° nominal emission angle and
a cone vertex 180 mm from the beamline, this corresponds to a 25.2 mm shift from the true
emission point.

Mis-sequencing errors can also shift the cone axis. (Any sequence that mis-identifies
Hit #1 or Hit #2 will do so.) However, the errors may be even more severe, as the distance
between points is generally several times greater than the position resolution.

Beam properties present another complication to imaging. In my analysis I’ve as-
sumed an ideal pencil beam, but real beams have a finite angular divergence and spot size
on target. Typically, the divergence is < 1° and the spot size can be modeled as a 2D Gaus-
sian with σ = 4 mm in both dimensions. Because I assume all nuclei travel along the ẑ-axis
in my calculations of the cone-beam intersections, this can lead to significant errors in the
imaged source distribution. With the proper instrumentation downstream of GRETINA, it
is possible to measure the true beam heading and correct for these effects. [4] However, this
instrumentation is not always available, and so I’ve ignored this complication for this study.
Please refer to Appendix A.6 for more details.
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Figure 4.2: Estimate of angular resolution from position resolution and Compton lever arm

Figure 4.3: Analytical error estimates for Compton imaging
σxyz = 3.0mm, σE = 2.0keV detector resolution

Geant4 simulation with Eγ,CM = 1000keV, β = 0.3c, and τ0 = 3.0ns
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In all these cases, it is possible for a Compton reconstruction to yield ambiguous,
incorrect, or unphysical solutions, or no solutions at all. (A Compton cone may not intersect
the beamline when it is too far off-axis.) It is easy to see that the errors become more
pronounced at shallower emission angles. As the distance between the cone vertex and the
calculated emission point increases, the angular resolution translates to larger shifts along
the beamline.

Still, before dismissing Compton imaging for these potential issues, it is important
to have a quantitative handle on what they mean for final imaging resolution. I explored
this analytically using error propagation on the solutions to Equation A.44. Appendix A.7
provides the derivation of the error formulas, which involves a very large set of complicated
partial derivatives. (I studied only the effects of detector energy and position resolution for
simplicity.) To get a realistic picture of the imaging errors, I simulated a set of 1.0 MeV
photon tracks using the Geant4 model introduced in Section 2.6. Running the tracks through
sequencing gave me a set of Compton cones to plug into the error formulas from Appendix
A.7. This let me compute uncertainty estimates for a range of detector resolutions.

Figure 4.3 shows the distribution of errors calculated for a detector with σxyz = 3.0
mm position- and σE = 2.0 keV energy-resolution. The colormap shows the normalized
contributions from detector position and energy resolution, which I denote σimg,xyz and
σimg,E, respectively. (These contributions sum in quadrature to get the total analytic error,
σ2
img,total = σ2

img,xyzσ
2
xyz + σ2

img,Eσ
2
E ) As noted before, σxyz and σE are applied uniformly to

each photon hit, regardless of hit energy. Appendix A.7 discusses these calculations in detail.
We can immediately see that position resolution dominates as the major factor in the final
imaging resolution – by a factor of about 20x. The distribution peaks around σimg,xyz = 10
mm/mm and σimg,E = 0.4 mm/keV. As discussed in Section 2.5, detector resolution depends
on the magnitude of the energy deposition, but I ignored this for simplicity.

4.2 Detector Performance

Compton imaging is affected by several experimental factors, including detector resolution
and beam properties. As expected, detector position resolution is much more limiting than
energy resolution. The results can be used to get a sense of performance requirements for
effective Compton imaging.

It is clear that Compton Imaging is not without its challenges. Much of this study
was therefore dedicated to optimizing the image quality achievable with GRETINA. There
are many experimental parameters that can affect this image quality, as shown in Table 4.1
below. Some are intrinsic characteristics of the experiment, such as the resolution of the
detector. Others, however, are tunable parameters that are used in data post-processing.
We can try to improve imaging quality by selecting appropriate values for these analytical
parameters.



CHAPTER 4. COMPTON IMAGING 49

To test the effects of these parameters, I used the GRETINA Geant4 model to generate
idealized track data for a beam source. The source nuclei had an 2.7525 ns lifetime and
emitted 1.0 MeV CM-frame gamma rays. The source speed was set at 0.3 ± 0.001c, with
a beam spread of σθ = 0.25° and spot size of σbeam,x = σbeam,y = 0.25 mm. The target
was placed at z = 0.0 mm. Each track was then sent through the Compton sequencing and
image reconstruction algorithm to obtain a computed emission point, X0,calc. As Geant4
provided the true emission point X0,true for each track, I readily obtained the imaging error
∆X0 = X0,calc −X0,true of each reconstruction. For simplicity, I ignored beam deviations
and used only the z-component of the errors to evaluate imaging. (The properties of the
beam certainly affect the quality of the output image, however – see Appendix A.6 for details.
For all of my simulations, though, I assumed a near-pencil beam with very little angular,
spatial, or velocity spread.)

Experimental Parameters Analytical Parameters

Photon energy Compton “lever arm”
Position resolution Sequencing FoM
Energy resolution Corrected CM-frame energy

Beam velocity Proximity to segment bounds

Table 4.1: Parameters that affect Compton imaging quality

Image quality is characterized by two factors – imaging resolution and efficiency. I
estimated resolution by fitting Gaussians to the distributions of imaging errors, ∆X0. While
Compton imaging responses are not completely Gaussian, the simplification yielded fairly
accurate FWHMs. The fitting process and a few sample Compton images are shown in Figure
4.4. From there, I defined the imaging resolution as σimg = FWHM/2

√
2ln2. Appendix

A.9 provides details about the uncertainty calculations for the fits.

Photon tracks can be rejected for use in an image for many reasons. For example, a
track may be too short or too long, or result in ambiguous or unphysical emission points.
Before sending a track through sequencing and subsequent imaging, however, we first check
its measured lab-frame energy. This helps remove Compton background counts. Because
sources move relativistically in lifetime measurements, the emission energy can be broadened
by up to several hundred keV (see Section 2.2). However, we can still reject tracks whose
energy lies outside the range of possibilities set by the imaging window. Consider a track with
first hit at X1 = (200.0 mm, 0.0 mm, 100.0 mm). For these experiments, I restrict emissions
to GRETINA’s central cavity, where the upstream limit is the beam target, generally at
X0,L = (0.0 mm, 0.0 mm, 0.0 mm), and the downstream limit is X0,R = (0.0 mm, 0.0 mm,
180.0 mm). The emission vectors V0,L = X1 −X0,L and V0,R = X1 −X0,R define the
minimum and maximum possible emission angles, respectively, relative to the beam axis.
This angular range corresponds to a range of permissible lab-frame energies for the photon,
so that any tracks outside that window can be rejected.
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Figure 4.4: Sample Compton images
For a range of detector position and energy resolutions
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This first data filter sets the baseline number of tracks that we have to work with for
imaging. In my simulations, I began with Ntotal = 2.365M total tracks, of which NCompton =
1.529M tracks were rejected by the above energy filter. This left Nimaging = 0.836M tracks
for imaging. From there, subsequent data filters further reduce the number of counts used
to create the output Compton image (Ngood). We define the absolute imaging efficiency as
the ratio ε = Ngood/Nimaging. Tables 4.2 and 4.3 below also provide “relative” efficiencies.
These numbers represent quantities normalized to the ideal cases in their respective tables.
As detector resolution degrades, it becomes more likely for Compton imaging to produce
ambiguous or unphysical emission points, resulting in fewer counts in the final image. For
example, at 3.0 mm position resolution, the output image contains only 70.0% as many
counts as a detector with perfect position resolution.

Detector resolution is perhaps the most critical of the experimental properties for
imaging resolution. As shown in Figure 4.1, detector resolution can cause multiple errors in
Compton reconstruction. The deviations between true and calculated emission points can
range from several millimeters to several centimeters or more. Table 4.2 and Figure 4.5 show
the effects of detector position resolution (σxyz) on the imaging resolution and efficiency,
while Table 4.3 and Figure 4.6 show similar data for varying detector energy resolution
(σE). We can see that position resolution dominates for realistic values of energy resolution
in HPGe. In fact, energy resolution hardly affects imaging resolution or efficiency. It is
important to note that detector resolution was applied uniformly to each hit, regardless of
energy deposition. This approach could be improved – detector position resolution depends
on the energy of a photon hit. While the effect was demonstrated in the AGATA array (the
European cousin to GRETA) [32], similar effects are expected for GRETINA. I ignored this
energy-dependence for simplicity.

There were a couple effects I did not have time to investigate in great detail, but
which may further affect imaging quality. The first of these is the lab-frame energy of the
photon. 200 keV photons yield fewer hits per track than 1.0 MeV ones, and the hits from
the lower-energy tracks leave smaller energy depositions. This reduces not only the detector
resolution, but also the accuracy and efficiency of sequencing. (As pointed out in Section
3.3, only 29.9% of 1.0 MeV photon detections are full-energy events with between 3 and 6
hits.) By simulating datasets for many photon CM-frame energies, we could identify a range
for which Compton imaging would be most effective.

Detector geometry plays a role, too, further complicating the imaging problem. Con-
sider a photon that is emitted nearby a detector (as opposed to one emitted near the center
of the GRETINA inner cavity). The total distance traveled from emission to the first hit is
then relatively small, which means angular resolution translates to a smaller spatial devia-
tion on the beam-line. Because of this, emissions from either end of the inner cavity will be
located more precisely than those in the center.
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Position Imaging Efficiency Efficiency
Resolution Resolution (mm) (Absolute, %) (Relative, %)

0.0 mm 6.57 ± 0.27 42.818 ± 0.086 100.000 ± 0.283
0.25 mm 8.28 ± 0.33 40.972 ± 0.083 95.690 ± 0.272
0.50 mm 9.62 ± 0.35 39.017 ± 0.081 91.124 ± 0.262
0.75 mm 10.88 ± 0.36 37.391 ± 0.078 87.331 ± 0.253
1.0 mm 13.01 ± 0.42 36.006 ± 0.077 84.092 ± 0.245
1.5 mm 15.51 ± 0.49 33.848 ± 0.074 79.052 ± 0.234
2.0 mm 18.78 ± 0.57 32.259 ± 0.071 75.341 ± 0.225
2.5 mm 22.00 ± 0.64 30.985 ± 0.070 72.366 ± 0.218
3.0 mm 25.17 ± 0.65 29.957 ± 0.068 69.964 ± 0.212
4.0 mm 31.75 ± 0.81 28.325 ± 0.066 66.152 ± 0.203
5.0 mm 36.53 ± 0.87 27.126 ± 0.064 63.353 ± 0.196
7.5 mm 48.26 ± 1.11 25.263 ± 0.062 59.002 ± 0.186
10.0 mm 63.89 ± 1.21 24.084 ± 0.060 56.248 ± 0.179

Table 4.2: Compton image quality & efficiency vs. position resolution
ECM = 1000 keV, β = 0.3, τ0 = 2.7525 ns, σE = 2.0 keV

Total Tracks: 2.365M, Plausible Energy: 0.832M-0.836M, Imaged Tracks: 0.200M-0.359M

Figure 4.5: Compton image quality & efficiency vs. detector position resolution
See Table 4.2
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Energy Imaging Efficiency Efficiency
Resolution Resolution (mm) (Absolute, %) (Relative, %)

0.0 keV 24.76 ± 0.71 30.057 ± 0.068 100.000 ± 0.322
0.25 keV 25.19 ± 0.74 30.019 ± 0.068 99.874 ± 0.322
0.50 keV 23.50 ± 0.66 30.018 ± 0.068 99.870 ± 0.322
0.75 keV 25.06 ± 0.75 29.983 ± 0.068 99.751 ± 0.321
1.0 keV 24.17 ± 0.72 30.070 ± 0.068 100.042 ± 0.322
1.5 keV 25.09 ± 0.68 29.961 ± 0.068 99.680 ± 0.321
2.0 keV 25.17 ± 0.65 29.957 ± 0.068 99.666 ± 0.321
2.5 keV 26.32 ± 0.67 29.947 ± 0.068 99.631 ± 0.321
3.0 keV 25.42 ± 0.65 29.893 ± 0.068 99.453 ± 0.320
4.0 keV 25.83 ± 0.67 29.809 ± 0.068 99.172 ± 0.320
5.0 keV 27.16 ± 0.65 29.705 ± 0.068 98.829 ± 0.319
7.5 keV 28.21 ± 0.61 29.339 ± 0.067 97.609 ± 0.316
10.0 keV 31.85 ± 0.71 28.959 ± 0.067 96.344 ± 0.312

Table 4.3: Compton image quality & efficiency vs. energy resolution
ECM = 100 0keV, β = 0.3, τ0 = 2.7525 ns, σxyz = 3.0 mm

Total Tracks: 2.365M, Plausible Energy: 0.834M-0.835M, Imaged Tracks: 0.242M-0.251M

Figure 4.6: Compton image quality & efficiency vs. detector energy resolution
See Table 4.3
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4.3 Image Quality Cuts

There are several data quality cuts we can make to improve imaging resolution in post-
processing. I studied imaging filters using the Compton lever arm, sequencing FoM, and
corrected CM-frame energy. As with all such filters, there is a trade-off between data quality
and imaging efficiency (i.e. the fraction of tracks used in the final image reconstruction). In
this section I show the effects of the various cuts and optimize for a 1.0 MeV beam source.

The factors discussed in Section 4.2 are intrinsic to the experiment and the detector
used. There are also multiple data cuts that can be made in post-processing to improve
image quality. Using the same simulation data as before, I studied the effects of a few of
these factors, keeping detector position and energy resolution constant at σxyz = 3.0 mm
and σE = 2.0 keV. For each run, I modified a single data filter at a time, keeping the others
constant at their most permissive values (discussed below).

As illustrated already in Figure 4.2, the angular resolution not only depends on the
detector position resolution (σxyz), but also the distance between the first and second hits in
a photon track, L′ (the Compton “lever arm”). From Equation 4.5, the larger L′ is compared
to σxyz, the smaller the average angular error is expected to be. Therefore, the Compton
lever arm is a convenient filter to remove tracks with high imaging uncertainty (see also
Appendix A.7). Of course, there is a trade-off between data quality and imaging efficiency.
Requiring lever arms to exceed a certain threshold sets a maximum angular deviation for a
given Compton reconstruction. The larger this threshold, the better-constrained the cone
axis is. However, the distance a photon travels in the detector is a function of photon cross-
section. The probability that a photon travels at least a distance x in the detector before
interacting is:

P (x,E) = 1− e−x/d(E) (4.6)

where d(E) is the attenuation length (or mean-free-path) for a photon of energy E in HPGe.
Note that the decrease in counts will not be a simple exponential, though, since the photons in
question will not be mono-energetic after the first scatter at X1. Still, it is plain to see that as
we increase the lever arm threshold, fewer photon tracks will qualify for use in the final image.
(Setting the minimum Compton lever arm to Lmin = 0.0 mm accepts all tracks.) Table 4.4
and Figure 4.7 provide results gathered for our typical setup. The improvements in imaging
quality are noticeable but modest. For example, imposing a minimum lever arm limit of 20.0
mm improves resolution by a factor of 1.31x. Imaging efficiency is simultaneously reduced
by 56.9%, which makes for a somewhat unfavorable trade-off. (Statistical uncertainty is
increased by a factor of 1.52x in this case.)

The sequencing FoM provides another such filter. We found in Section 3.3 that
tracks with larger FoMs are less likely to have been sequenced properly, thereby introducing
potential error in the Compton reconstruction. So, by rejecting tracks with sequencing FoMs
over a set limit, we should see an improvement in image quality. (Setting the maximum
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sequencing FoM to FoMmax = 1.0 accepts all tracks.) Table 4.5 and Figure 4.8 show results
for the same setup as before. Unfortunately, the gains in imaging resolution are insignifcant
compared to the loss in imaging efficiency. Rejecting tracks with sequencing FoM above 3E-5
improves resolution by a scant 1.06x, while reducing the number of available counts by 84%.

Doppler-shift corrections provide a third way to improve things. Here, the goal is to
compare the Doppler-corrected CM-frame energy with the known photopeak energy of the
source. Anything outside a few keV from a photopeak is likely to be an incomplete energy
deposition, and therefore not a Compton-sequenceable track. We want to remove such tracks
from the final image. To identify them, we use the emission angle calculated via imaging
and the known parent velocity to find the photon’s Doppler-corrected CM-frame energy. The
track can then be rejected by checking against the known photopeak energy; in other words,
only tracks within a given CM-frame energy range are accepted for the final image. (Setting
the maximum deviation to ∆Ecorrected,max = 1000 keV accepts all tracks.) Table 4.6 and
Figure 4.9 present the results. It is immediately clear how effective this data filter is. For
example, constraining counts to be within 10.0 keV of the 1000 keV CM-frame photopeak
improves resolution by a factor of 4.44x. The corresponding reduction in imaging efficiency
(85.3%) increases statistical uncertainty by a factor of 2.61x, making for a very favorable
trade-off. The overall imaging response also begins to follow a much more Gaussian shape
as the energy window is narrowed.

Figure 4.10 shows a few sample images using the above filters. However, choosing
appropriate filtering thresholds is difficult. One approach is to balance the improvement in
imaging resolution against the loss in Poisson statistics. Let σimg,0 be the imaging resolution
prior to filtering, and let Ncounts,0 be the corresponding number of tracks accepted for image
reconstruction. Then let σimg,filt and Ncounts,filt denote these same quantities after the data
filter is applied. Because statistical uncertainty scales with the square root of the number of
counts, we want to choose our filter parameter such that:

σimg,filt
σimg,0

<

√
Ncounts,filt√
Ncounts,0

(4.7)

For example, if imaging efficiency is dropped by a factor of 4x, the cut should improve
imaging resolution by at least 2x. Narrowing the corrected energy window from 1000.0 ±
20.0 keV to 1000.0 ± 10.0 keV drops imaging efficiency by 1.85x (from 7.97% to 4.32%)
while improving imaging resolution by 1.86x (from 10.5 mm to 5.63 mm). However, further
narrowing the window to 1000.0 ± 5.0 keV reduces efficiency another 1.96x while improving
image resolution by only 1.39x. So, this suggests that a cut at 10.0 keV is advantageous,
while 5.0 keV is too restrictive. However, the decision of where to cut ultimately depends on
the total number of tracks available for a given lifetime measurement. (Section 6.3 discusses
this exact problem in much greater detail.)



CHAPTER 4. COMPTON IMAGING 56

This is a bunch of nonsense text to try and make LaTeX put figures where I want
them. God, I hate LaTeX. It’s just the worst. I just want to be able to place figures manually.

Minimum Imaging Efficiency Efficiency
“Lever Arm” Resolution (mm) (Absolute, %) (Relative, %)

0.0 mm 25.13 ± 0.68 29.359 ± 0.067 100.000 ± 0.325
5.0 mm 23.33 ± 0.64 25.991 ± 0.063 88.526 ± 0.295
10.0 mm 21.15 ± 0.57 20.416 ± 0.054 69.537 ± 0.244
15.0 mm 20.55 ± 0.57 16.015 ± 0.047 54.548 ± 0.204
20.0 mm 19.14 ± 0.56 12.657 ± 0.041 43.111 ± 0.172
25.0 mm 16.66 ± 0.54 10.050 ± 0.036 34.232 ± 0.147
30.0 mm 16.48 ± 0.51 8.061 ± 0.032 27.455 ± 0.127
35.0 mm 15.17 ± 0.51 6.474 ± 0.029 22.050 ± 0.110
40.0 mm 15.74 ± 0.74 5.214 ± 0.026 17.759 ± 0.096
45.0 mm 14.42 ± 0.68 4.194 ± 0.023 14.283 ± 0.084
50.0 mm 14.68 ± 0.69 3.374 ± 0.020 11.494 ± 0.074

Table 4.4: Compton image quality & efficiency vs. minimum lever arm
ECM = 1000 keV, β = 0.3, τ0 = 2.7525 ns, σxyz = 3.0 mm, σE = 2.0 keV

FoMmax = 1E0, ∆Ecorrected,max = 1000 keV
Total Tracks: 2.365M, Plausible Energy: 0.836M, Imaged Tracks: 0.028M-0.245M

WYSIWYG 4 life. Seriously, how do you pad things properly in this damn editor?
This shouldn’t be so hard. I can’t believe this is the industry standard for type-setting
scientific papers.

Figure 4.7: Compton image quality & efficiency vs. min. Compton lever arm
See Table 4.4
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Maximum Imaging Efficiency Efficiency
Sequencing FoM Resolution (mm) (Absolute, %) (Relative, %)

1.0E-1 25.17 ± 0.65 29.359 ± 0.067 100.000 ± 0.325
1.0E-2 25.13 ± 0.65 29.216 ± 0.067 99.511 ± 0.323
3.0E-3 24.23 ± 0.71 28.112 ± 0.066 95.751 ± 0.314
1.0E-3 24.40 ± 0.70 24.561 ± 0.060 83.655 ± 0.282
3.0E-4 23.97 ± 0.68 16.938 ± 0.049 57.691 ± 0.212
1.0E-4 24.33 ± 0.74 9.670 ± 0.036 32.938 ± 0.143
3.0E-5 23.65 ± 1.00 4.555 ± 0.024 15.513 ± 0.089
1.0E-5 25.86 ± 1.05 2.319 ± 0.017 7.896 ± 0.060

Table 4.5: Compton image quality & efficiency vs. maximum sequencing FoM
ECM = 1000 keV, β = 0.3, τ0 = 2.7525 ns, σxyz = 3.0 mm, σE = 2.0 keV

Lmin = 0.0 mm, ∆Ecorrected,max = 1000 keV
Total Tracks: 2.365M, Plausible Energy: 0.836M, Imaged Tracks: 0.019M-0.245M

Figure 4.8: Compton image quality & efficiency vs. max. sequencing FoM
See Table 4.5
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Maximum Imaging Efficiency Efficiency
Energy Error Resolution (mm) (Absolute, %) (Relative, %)

1000.0 keV 25.17 ± 0.65 29.359 ± 0.067 100.000 ± 0.325
200.0 keV 24.68 ± 0.60 27.398 ± 0.065 93.321 ± 0.307
150.0 keV 23.56 ± 0.56 25.247 ± 0.062 85.994 ± 0.288
100.0 keV 24.04 ± 0.48 21.723 ± 0.056 73.989 ± 0.256
75.0 keV 23.20 ± 0.45 19.038 ± 0.052 64.844 ± 0.232
50.0 keV 21.29 ± 0.34 15.320 ± 0.046 52.181 ± 0.197
40.0 keV 18.67 ± 0.23 13.353 ± 0.043 45.480 ± 0.179
30.0 keV 14.96 ± 0.14 10.940 ± 0.038 37.263 ± 0.155
25.0 keV 12.65 ± 0.18 9.522 ± 0.035 32.431 ± 0.141
20.0 keV 10.53 ± 0.19 7.974 ± 0.032 27.158 ± 0.126
15.0 keV 8.12 ± 0.14 6.235 ± 0.028 21.238 ± 0.108
10.0 keV 5.67 ± 0.06 4.321 ± 0.023 14.717 ± 0.086
7.5 keV 4.74 ± 0.07 3.275 ± 0.020 11.156 ± 0.073
5.0 keV 4.09 ± 0.05 2.202 ± 0.016 7.501 ± 0.058
2.5 keV 3.78 ± 0.04 1.103 ± 0.012 3.756 ± 0.040
1.0 keV 3.82 ± 0.05 0.440 ± 0.007 1.499 ± 0.025

Table 4.6: Compton image quality & efficiency vs. max. error in corrected energy
ECM = 1000 keV, β = 0.3, τ0 = 2.7525 ns, σxyz = 3.0 mm, σE = 2.0 keV

Lmin = 0.0 mm, FoMmax = 1E0
Total Tracks: 2.365M, Plausible Energy: 0.836M, Imaged Tracks: 0.004M-0.245M

More nonsense padding text because LaTeX is terrible.

Figure 4.9: Compton image quality & efficiency vs. max. error in corrected energy
See Table 4.6
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There are other data quality cuts we could make for measured track data. Recall from
Section 2.5 that interaction coordinates in GRETINA tend to register near crystal segment
boundaries (Figure 2.12). This clustering is of course completely unphysical, calling into
question the reliability of tracks with hits near segment boundaries. We might therefore
define “exclusion zones” about each segment boundary, rejecting any track with one or more
hits in these zones. I explored this briefly with real-world datasets, but unfortunately did
not see any marked improvement in image quality as a result of the data filter. (Note that
these effects do not show up in simulations, which skip the complex signal decomposition
problem.) The analytic error estimates calculated in Appendix A.7 might also prove useful
here – we could reject tracks for which the estimated uncertainty is too large. This would
make an interesting future study.

We can conclude that the Compton lever arm cut has a much greater effect on image
quality than does the sequencing figure-of-merit. The Doppler-corrected energy cut outper-
forms both of these handily. However, since these three cuts are not entirely independent, I
chose to only apply the Doppler-correction energy cut in subsequent Compton imaging runs.
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Figure 4.10: Sample Compton images (with data filters)
With various data filters applied
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Chapter 5

Doppler-Shift Imaging

5.1 Introduction to Doppler-Shift Imaging

While contemplating the limitations of Compton imaging, I came up with a completely
separate solution to the imaging problem. We can obtain a photon’s emission point using
three pieces of data: 1.) The location of the first interaction, 2.) The CM-frame energy of
the emission (i.e. the photopeak energy), and 3.) The lab-frame energy of the photon. This
avoids many of the problems associated with the Compton imaging method. Detector position
resolution has a much smaller effect on the imaging resolution, and total imaging efficiency
is a factor of 4-5x better. Because this novel technique relies on the physics of Doppler shifts,
I dubbed it “Doppler-Shift imaging”.

The studies in Sections 4.3 and 4.2 make the limitations of Compton imaging abun-
dantly clear. Its effective imaging resolution and efficiency are not particularly exciting, for
reasons that will be discussed in Section 6.1. However, while ruminating on the problem I
found sudden inspiration in the Doppler-shift corrections that GRETINA was purpose-built
for. Would it be possible to reverse the process to trace an emission back to its source?

Consider – the Doppler-shift is determined by the emission angle and lab-frame veloc-
ity of the parent nucleus. The properties of the beam are known quantities, and the cosine
of the emission angle is simply:

µ = cosφ =
V0 ·B
‖V0‖‖B‖

(5.1)

where V0 = X1 −X0 is the vector from the emission point to the first hit in the detector,
and B is the beam axis. Now, the physics of Doppler-shifts gives an independent measure
of the emission angle cosine:

µ =
1

β

(
1− ECM

γELab

)
(5.2)
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If we assume that we know the true photopeak energy ECM , then we can solve for the
emission angle with the photon energy measured in the lab, ELab. (This of course assumes
that the photon deposits its full energy in the detector, an assumption we already made for
sequencing. We must also be able to attribute the detected photons to the specific isotope
of interest. This requires the parent nuclei to pass through an isotope separator synced with
GRETINA.) X1 is itself a known quantity – it’s just the location of the first hit in the
detector. That means the only unknown in Equation 5.1 is X0, the emission location!

Appendix A.5 derives the expressions used to calculate X0. By comparison to Comp-
ton Imaging, the math is quite simple. And where Compton imaging requires knowledge of
both X1 and X2, this new “Doppler-shift” imaging technique only requires X1. This is truly
excellent news from the perspective of detector position resolution. In Compton imaging,
the angular resolution is largely determined by position resolution and Compton lever arm.
Small shifts in the cone-axis can be blown up to large errors on the beam-axis (see Figure
4.1). Doppler-shift imaging, in comparison, does not suffer from this problem. A shift in X1

results in a comparable translation of the Doppler-shift cone along the beam axis. For any
given emission angle, the error in X0 depends only linearly on σxyz. Figure 5.1 illustrates
this new technique.

For example, suppose a photon is emitted from X0 = (0.00 mm, 0.00 mm, 45.0 mm)
with an emission angle of θ = 30°. The photon travels 150 mm before scattering at X1 =
(0.00 mm, 75.0 mm, 175.0 mm) in the detector. Suppose the detector reports this hit at
X ′1 = (0.00 mm, 80.0 mm, 170.0 mm), a full 7.1 mm away from its true location. Carrying
out the computation, the calculated emission point would then be X ′0 = (0.00 mm, 0.00
mm, 31.4 mm) – just 13.6 mm from the true emission point. Correct sequencing is much
less important for a similar reason – an incorrect sequence would ultimately have the same
effect as shifting X1 by some distance.

One of the main strengths of the Doppler-Shift technique is its high efficiency, par-
ticularly at low energies. Because the reconstruction only requires a single interaction to
determine an emission point, we could use this method even where photoabsorption dom-
inates (< 150 keV). Compared to Compton imaging, there are also fewer situations where
reconstruction can fail. As long as the measured lab-frame energy is within a range of
physically-possible Doppler-shifts, this method will always return a single, unambiguous
emission point on the beamline. Compton cones can skew off-axis and fail to intersect the
beamline entirely, or they can intersect in two positions downstream of the target.

The flip side to this, however, is that Doppler-shift imaging offers poor discrimination
of Compton background. Consider a 1.0 MeV CM-frame emission from a nucleus moving
at 0.3c in the lab frame. As noted earlier, the emitted energy can vary anywhere from 733
keV to 1.36 MeV. So, any track that registers in the range of physically-possible energies
(determined by the detector geometry) will be accepted for imaging. Background becomes
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Figure 5.1: Doppler-shift imaging and detector effects



CHAPTER 5. DOPPLER-SHIFT IMAGING 64

especially challenging where multiple gamma lines are present simultaneously. This would
be the case, for example, when trying to measure gammas populated through de-excitation
chains. There can be significant overlap of peaks in the spectrum, which becomes more
pronounced as beam velocity increases. (Consider – the same 1.0 MeV CM-frame emission
with β = 0.45 yields an energy range of 616 keV to 1.62 MeV in the lab frame.) So we must
do extra work to ensure a given photon actually belongs to the photopeak we think it does.
For example, we might reject tracks for having large sequencing FoM’s or for having too few
interactions (refer to Sections 3.3 and 5.3). This turns out to be the biggest challenge to
using Doppler-shift imaging to measure lifetimes.

As with Compton Imaging, I used error propagation to estimate the imaging resolution
of this imaging method. The results were extremely promising, suggesting that Doppler-
Shift imaging delivers 5-10x better resolution than its Compton counterpart, at least for the
detector resolution we expect from GRETINA. Figure 5.2 gives the results for a 1.0 MeV
CM-frame emission and 0.3c beam velocity. (See Appendix A.8 for a detailed derivation
of the analytic error estimates.) For typical detector performance, position resolution is
still the most important factor. Note that it holds roughly constant – for every 1.0 mm
that detector position resolution increases, so too does its analytic error contribution. The
energy resolution adds approximately 0.6 - 0.7 mm error per keV. As discussed in Appendix
A.8, Doppler-shift imaging depends on both the CM-frame emission energy, as well as the
velocity of the beam. I ignored both effects for simplicity.

Figure 5.2: Analytical error estimates for Doppler-Shift imaging
σxyz = 3.0 mm, σE = 2.0 keV detector resolution

Geant4 simulation with Eγ,CM = 1000 keV, β = 0.3c, and τ0 = 3.0 ns
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5.2 Detector Performance

This is very similar to the analysis I did in Section 4.2 for Compton imaging. Detector
position and energy resolution both affect the overall imaging resolution, as do the beam
velocity and CM-frame energy of the emissions. In general, Doppler-shift imaging is not
as sensitive as Compton imaging to position resolution, but it is more sensitive to energy
resolution and beam velocity.

In Section 4.2, I quantified effects that certain experimental parameters had on Comp-
ton imaging quality and efficiency. Unlike with Compton imaging, though, I expect Doppler-
shift imaging to be much more affected by detector energy resolution than position resolution.
(See Appendix A.8 for a detailed derivation.) I employed the same simulation data from
Section 5.3 to generate track data and perform the analysis.

Tables 5.1 and 5.2 show that imaging resolution is indeed dominated by the detector
energy resolution. Note that, again, resolution was simulated as a Gaussian smearing applied
uniformly to each hit in a photon track. The detector energy resolution does not reflect
the full width of the Doppler-shifted peak in an uncorrected spectrum – it is simply the
uncertainty in measuring the energy deposition for a specific interaction.

The results are very promising – Gaussian estimates of imaging resolution (σimg)
range from a mere 3.03 mm at perfect detector position resolution to 6.77 mm at 10.0 mm
position resolution (with constant σE = 2.0 keV detector energy resolution). For comparison,
the Compton imaging resolution increased from 6.57 mm to 63.89 mm over the same range.
As expected, detector energy resolution plays a greater role in Doppler-shift imaging. With
constant σxyz = 3.0 mm detector position resolution, σimg ranges from 2.18mm to 14.43 mm
for σE between 0.0 keV and 10.0 keV. For a typical detector with 3.0 mm position- and 2.0
keV energy-resolution, Doppler-shift imaging yields 6.3x better imaging resolution and 2.4x
better efficiency than Compton imaging.

Doppler-shift imaging also highly-sensitive to the CM-frame photopeak energy of the
photon – though this is something I did not study in great detail. For example, if we
knew the photopeak energy only to within 10’s of keV, Doppler-shift images would likely
be significantly worse than the corresponding Compton images (assuming the same detector
position resolution). On the other hand, since we only need the first hit in a track, we can
use much lower-energy photons than we can in Compton imaging. The imaging efficiency of
this method is much higher than for Compton imaging across all energies from 150 keV to
4 MeV. Incorrect sequencing also has much less of an effect. However, we still use Compton
tracking to determine the quality of fit to kinematics – this is one of the few ways to reject
background counts in Doppler-shift imaging.

The imaging response also depends on the true location of emissions along the beam-
line, as noted already for Compton imaging. I was able to extract this z-dependence by
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Position Imaging Efficiency Efficiency
Resolution Resolution (mm) (Absolute, %) (Relative, %)

0.0 mm 3.03 ± 0.02 72.151 ± 0.122 100.000 ± 0.239
0.25 mm 3.06 ± 0.02 72.111 ± 0.122 99.944 ± 0.239
0.50 mm 3.11 ± 0.02 72.079 ± 0.122 99.901 ± 0.239
0.75 mm 3.17 ± 0.03 72.053 ± 0.122 99.864 ± 0.239
1.0 mm 3.33 ± 0.04 72.0276 ± 0.122 99.829 ± 0.239
1.5 mm 3.47 ± 0.04 71.996 ± 0.122 99.785 ± 0.239
2.0 mm 3.63 ± 0.03 71.971 ± 0.122 99.751 ± 0.238
2.5 mm 3.80 ± 0.03 71.952 ± 0.122 99.724 ± 0.238
3.0 mm 3.97 ± 0.03 71.934 ± 0.122 99.699 ± 0.238
4.0 mm 4.35 ± 0.04 71.909 ± 0.122 99.664 ± 0.238
5.0 mm 4.70 ± 0.05 71.873 ± 0.122 99.614 ± 0.238
7.5 mm 5.83 ± 0.08 71.818 ± 0.122 99.538 ± 0.238
10.0 mm 6.77 ± 0.12 71.756 ± 0.122 99.452 ± 0.238

Table 5.1: Doppler-shift image quality & efficiency vs. position resolution
ECM = 1000 keV, β = 0.3, τ0 = 2.7525 ns, σE = 2.0 keV

Total Tracks: 2.365M, Plausible Energy: 0.832M-0.836M, Imaged Tracks: 0.597M-0.605M

Figure 5.3: Doppler-shift image quality & efficiency vs. detector position resolution
See Table 5.1
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Energy Imaging Efficiency Efficiency
Resolution Resolution (mm) (Absolute, %) (Relative, %)

0.0 keV 2.18 ± 0.06 72.099 ± 0.122 100.000 ± 0.239
0.25 keV 2.22 ± 0.06 72.093 ± 0.122 99.992 ± 0.239
0.50 keV 2.32 ± 0.05 72.084 ± 0.122 99.978 ± 0.239
0.75 keV 2.64 ± 0.05 72.076 ± 0.122 99.968 ± 0.239
1.0 keV 2.82 ± 0.04 72.037 ± 0.122 99.914 ± 0.239
1.5 keV 3.39 ± 0.04 72.010 ± 0.122 99.877 ± 0.239
2.0 keV 3.97 ± 0.03 71.934 ± 0.122 99.771 ± 0.239
2.5 keV 4.59 ± 0.04 71.861 ± 0.122 99.669 ± 0.238
3.0 keV 5.23 ± 0.04 71.814 ± 0.122 99.604 ± 0.238
4.0 keV 6.59 ± 0.05 71.677 ± 0.121 99.414 ± 0.238
5.0 keV 7.92 ± 0.05 71.549 ± 0.121 99.236 ± 0.238
7.5 keV 11.21 ± 0.06 71.236 ± 0.121 98.802 ± 0.237
10.0 keV 14.43 ± 0.07 70.860 ± 0.120 98.282 ± 0.236

Table 5.2: Doppler-shift image quality & efficiency vs. energy resolution
ECM = 1000 keV, β = 0.3, τ0 = 2.7525 ns, σxyz = 3.0 mm

Total Tracks: 2.365M, Plausible Energy: 0.834M-0.835M, Imaged Tracks: 0.591M-0.605M

Figure 5.4: Doppler-shift image quality & efficiency vs. detector energy resolution
See Table 5.2
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binning the z-axis and drawing comparisons of |ztrue − zcalc| for several 10.0 mm-wide bins.
Figure 5.5 shows this effect – the imaging resolution improves from 4.67 ± 0.16 mm at z0

= 0.0 mm to 3.90 ± 0.05 mm at z0 = 90.0 mm. (Imaging efficiency also rose from 6.221 ±
0.028% to 8.165 ± 0.033% over this same range.) However, I did not study it in great detail
or account for it in subsequent work in lifetime measurements.

Figure 5.5: Doppler-shift image quality at various points along the beam axis

In addition, the properties of the parent beam affect Doppler-shift reconstructions
more directly than they do Compton reconstructions. The parent lab-frame velocity, βc, is
explicitly required to solve for the emission point. By contrast, Compton imaging in principle
should yield a similar imaging resolution and efficiency regardless of beam velocity (even
down to stationary sources). Because Doppler-shift imaging is sensitive to beam velocity,
it works best when the beam itself is tightly constrained about a single velocity. β should
vary only slightly; in our simulations, we use β = 0.3 ± 0.001. The uncertainty here is a
combination of kinematics and straggling in the target. Nuclear reactions with two or more
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products always have some angular distribution for the outgoing particles. On top of that,
the charged products interact with the target itself on their way out, causing small changes
in their headings. Thicker targets will produce more straggling in the recoil nuclei, yielding
less-constrained beams (both in terms of velocity and angle) for a given incident particle
energy. As with Compton imaging, the same issues apply here when emissions do not occur
directly on the ẑ-axis. (See Section A.6.)

Despite the apparently excellent imaging performance of this method, images of de-
excitation curves are visibly inaccurate. In Figure 5.6, the blue curves are the known emission
distributions for detected photons, while the red curves are their corresponding images.
The imaged curves tend to underestimate counts near the target while overestimating them
farther downstream. This problem is caused by the Compton background counts used in the
reconstruction. (Recall that we must initially accept all counts where the measured lab-frame
energy lies in the Doppler-shifted energy range of the photopeak.) Now, the emission angle
θ is calculated from the detected lab-frame energy (ELab) and known CM-frame photopeak
energy (ECM) of the photon:

µ = cos θ =
1

β

(
1− ECM

γELab

)
(5.3)

where βc is the parent nucleus’s speed in the lab frame. Consider that photons from the
Compton background deposit only part of their energy in the detector. From this formula, we
can see that µ decreases as ELab decreases. Therefore, θ increases with decreasing measured
ELab (at least over the range 0° to 180°). In other words, we tend to overestimate the emission
angles for Compton background counts.

Referring back to Figure 5.1, X0 is the photon’s emission point and X1 is the location
of track’s first hit in the detector. If we keep X1 fixed while increasing θ, we can see that
X0 gets shifted downstream. So, photons that deposit less than their full energy in the
detector will produce computed emission points downstream of their true locations. It is
somewhat difficult to see in Figure 5.6, but the imaging responses each have long “tails”
in which zmeas − zknown is fairly large. For the ideal case with perfect detector resolution,
the tail contains about 10% of the total counts. The deviation between the measured and
known emission distribution is – not coincidentally – also about 10% of the total counts. (We
can verify that this is the case with simulations, where we know the true emitted lab-frame
energies for each track. By filtering out partial-energy tracks, the long tail of the imaging
response disappears, and the known and imaged source distributions line up precisely.)

Note that these imaging deviations are not the end of the world for lifetime measure-
ments. As long as the imaging response is well-characterized, we can correct for systematic
errors in output images. It is important to retain the full shape of the response – including
both the Gaussian-shaped peak and the long tail from the Compton background. We will
discuss this in greater detail in Section 6.2.
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Figure 5.6: Sample Doppler-shift images
For a range of detector position and energy resolutions
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5.3 Image Quality Cuts

In Compton imaging, there are multiple parameters that can be tuned in post-processing to
optimize imaging quality and efficiency. Doppler-shift imaging offers less flexibility in this
regard – we cannot use corrected CM-frame energy to reject background counts, for exam-
ple. Even still, Doppler-shift imaging generally offers much better imaging performance than
its Compton counterpart. There are also multiple data filters available to reduce Compton
background.

Doppler-shift imaging faces a different set of challenges than does Compton imaging.
However, we face a similar problem in trying to optimize imaging quality. As before, there
are some parameters that can be tuned in data analysis, and some that are characteristics of
the experimental setup. Table 5.3 categories the parameters that affect imaging into these
two camps. This section is dedicated to the parameters we can optimize in post-processing.

Experimental Parameters Analytical Parameters

Photon energy Sequencing FoM
Position resolution Track length
Energy resolution Emission angle

Beam velocity Proximity to segment bounds

Table 5.3: Parameters that affect Doppler-Shift imaging quality

I used the same simulated data as in Section 4.3. The parent nuclei have a 2.7525 ns
lifetime, 0.3 ± 0.001c lab-frame velocity, and 1.0 MeV CM-frame gamma-ray emission energy.
The detector was assumed to have σxyz = 3.0 mm and σE = 2.0 keV position and energy
resolution. As before, each track was sent through Compton sequencing. I then applied the
Doppler-shift image reconstruction algorithm to obtain a computed emission point, X0,calc,
and compared this to the true emission point X0,true that Geant4 provided for each track.
(The imaging error is thus given by ∆X0 = X0,calc−X0,true.) Lastly, I estimated the imaging
resolution σimg by fitting a Gaussian to these computed imaging errors.

Note that since we only use the first hit in a photon track, there are no Compton
lever arms to account for. In addition, I did not have experimental data to test quality of
reconstruction vs. proximity of hits to crystal segment boundaries. Compton imaging works
with stationary calibration sources. Doppler-shift imaging does not. As with Compton
imaging, analytic error estimates might be useful here too (refer to Appendix A.8), but I did
not have time to study it further as a data filter.

The main challenge is removing Compton background events. Recall from Section
5.1 that Doppler-shift imaging assumes that each track is a full-energy event. We can still
restrict tracks to a range of possible energies, as discussed in Section 4.3. However, unlike in
Compton Imaging, we can’t use the calculated emission point to perform a sanity check on
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the Doppler-shifted energy. We’re using that Doppler-shift itself to calculate the emission
point. Therefore, we must rely on other filters to throw out these partial-energy photons.

The FoM used in Compton sequencing provides one such filter. Tracks with higher
sequencing FoMs do not match Compton kinematics very well, suggesting that they may
not actually be full-energy events. As in Section 4.3, I set a maximum FoM limit for photon
tracks. The results are shown in Table 5.4 and Figure 5.7. Overall, there is only a small
improvement in the estimated imaging resolution. However, this metric is only one way
to gauge imaging quality. A visual inspection of the output images shows they match the
known emission distributions more closely. While I did not explore other metrics in detail,
an R2 calculation would prove useful to quantify the similarity between the measured and
known emission distributions.

Another possibility for removing Compton background lies in track length. Recall
from Section 3.2 that high-energy photons generally must scatter one or more times before
photo-absorption becomes likely. This means that tracks with few hits often correspond to
partial-energy depositions. Figure 3.5 shows the distribution for 1.0 MeV photons. Near
this energy, any tracks with three or fewer hits are more likely to be partial- rather than
full-energy events. To explore this further, I set a gate on the minimum track length used
for imaging. Table 5.5 and Figure 5.8 provide the results. It is somewhat surprising here
that imaging resolution actually worsens slightly as we increase the required track length.
However, the reason is straightforward – longer tracks are also more likely to introduce
sequencing errors (refer to Table 3.6). As with the sequencing FoM filter, however, there are
notable visual improvements in the imaged source distributions.

The final data cut I explored works through the calculated emission angle. As noted
towards the end of Section 5.2, Compton background counts tend to overestimate the emis-
sion angle relative to the beamline. Therefore, we can preferentially reject partial-energy
tracks by requiring emission angles to be below a given limit. Fundamentally, this is an
energy gate – emission angles are calculated directly using the measured lab-frame energy
and Equation 5.2. In Table 5.6 and Figure 5.9, I varied the minimum value of µ = cos θ to
see the effects on imaging quality. As with the other two filters, the imaging resolution is
largely unaffected despite huge numbers of counts being thrown out. However, the imaged
source distributions do start to match the true distributions much more closely as we lower
the maximum emission angle (i.e. increase minimum µ).
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Maximum Imaging Efficiency Efficiency
Sequencing FoM Resolution (mm) (Absolute, %) (Relative, %)

1E-1 3.98 ± 0.04 71.858 ± 0.122 100.000 ± 0.239
1E-2 3.98 ± 0.04 71.440 ± 0.121 99.418 ± 0.238
3E-3 3.90 ± 0.04 68.123 ± 0.117 94.802 ± 0.229
1E-3 3.88 ± 0.04 58.040 ± 0.105 80.770 ± 0.200
3E-4 3.87 ± 0.04 38.432 ± 0.080 53.483 ± 0.143
1E-4 3.80 ± 0.05 20.998 ± 0.055 29.221 ± 0.091
3E-5 3.71 ± 0.04 9.589 ± 0.035 13.344 ± 0.054
1E-5 3.88 ± 0.07 4.818 ± 0.025 6.705 ± 0.036
3E-6 4.30 ± 0.17 2.383 ± 0.017 3.316 ± 0.024
1E-6 4.31 ± 0.21 1.300 ± 0.013 1.810 ± 0.018

Table 5.4: Doppler-shift image quality & efficiency vs. maximum sequencing FoM
ECM = 1000 keV, β = 0.3, τ0 = 2.7525 ns, σxyz = 3.0 mm, σE = 2.0 keV

Nhits = 3 - 6, cos θmax = -1
Total Tracks: 2.365M, Plausible Energy: 0.836M, Imaged Tracks: 0.011M-0.601M

Figure 5.7: Doppler-shift image quality & efficiency vs. max. sequencing FoM
See Table 5.4
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Minimum Imaging Efficiency Efficiency
Track Length Resolution (mm) (Absolute, %) (Relative, %)

1 hit 3.76 ± 0.04 94.816 ± 0.149 100.000 ± 0.222
2 hits 3.89 ± 0.04 91.607 ± 0.145 96.615 ± 0.216
3 hits 4.02 ± 0.04 79.349 ± 0.131 83.688 ± 0.191
4 hits 4.22 ± 0.04 58.056 ± 0.105 61.230 ± 0.147
5 hits 4.36 ± 0.04 35.209 ± 0.076 37.134 ± 0.099
6 hits 4.69 ± 0.05 17.614 ± 0.050 18.577 ± 0.060
7 hits 4.74 ± 0.08 7.184 ± 0.030 7.577 ± 0.034
8 hits 5.34 ± 0.11 2.102 ± 0.016 2.217 ± 0.017

Table 5.5: Doppler-shift image quality & efficiency vs. maximum sequencing FoM
ECM = 1000 keV, β = 0.3, τ0 = 2.7525 ns, σxyz = 3.0 mm, σE = 2.0 keV

FoMmax = 1E0, cos θmax = -1
Total Tracks: 2.365M, Plausible Energy: 0.831M, Imaged Tracks: 0.017M-0.788M

Figure 5.8: Doppler-shift image quality & efficiency vs. min. track length
See Table 5.5
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This is a bunch of nonsense text to try and make LaTeX put figures where I want
them. God, I hate LaTeX. It’s just the worst. I just want to be able to place figures manually.

Maximum Imaging Efficiency Efficiency
cos θ Resolution (mm) (Absolute, %) (Relative, %)

-1.00 3.98 ± 0.04 71.858 ± 0.122 100.000 ± 0.239
-0.85 3.98 ± 0.04 71.858 ± 0.122 100.000 ± 0.239
-0.70 3.98 ± 0.04 71.641 ± 0.121 99.698 ± 0.239
-0.55 3.87 ± 0.03 69.733 ± 0.119 97.043 ± 0.233
-0.40 3.88 ± 0.03 65.371 ± 0.114 90.972 ± 0.221
-0.25 3.73 ± 0.04 57.932 ± 0.105 80.620 ± 0.199
-0.10 3.72 ± 0.03 48.045 ± 0.092 66.860 ± 0.171
0.00 3.70 ± 0.03 40.760 ± 0.083 56.723 ± 0.150
0.10 3.69 ± 0.03 33.316 ± 0.073 46.363 ± 0.128
0.25 3.74 ± 0.03 22.231 ± 0.057 30.938 ± 0.095
0.40 3.98 ± 0.04 11.867 ± 0.040 16.515 ± 0.062
0.55 4.33 ± 0.06 3.959 ± 0.022 5.509 ± 0.032
0.70 5.68 ± 0.23 0.270 ± 0.006 0.375 ± 0.008

Table 5.6: Doppler-shift image quality & efficiency vs. maximum emission angle
ECM = 1000 keV, β = 0.3, τ0 = 2.7525 ns, σxyz = 3.0 mm, σE = 2.0 keV

FoMmax = 1E0, Nhits = 3 - 6
Total Tracks: 2.365M, Plausible Energy: 0.831M, Imaged Tracks: 0.017M-0.788M

WYSIWYG 4 life. Seriously, how do you pad things properly in this damn editor?
This shouldn’t be so hard.

Figure 5.9: Doppler-shift image quality & efficiency vs. max. emission angle
See Table 5.6
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Unlike the other two data cuts, though, this last filter brings about some interest-
ing geometric effects. Generally, the farther downstream an emission occurs, the larger its
emission angle must be in order to hit a detector. Filtering tracks above a set emission
angle limit therefore has a greater affect on emissions farther downstream on the beamline.
Above any given limit, it is no longer possible to observe emissions past a certain point. To
illustrate, suppose GRETINA’s detectors are placed in a ring perpendicular to the beamline
and centered about the target at z = 0.0 mm. A photon detected at z = 135.0 mm would
register an emission angle around θ = 235° (µ = -0.57). So, setting µ > -0.55 would throw
out all emissions that are 135.0 mm (or more) downstream of the target.

Figure 5.10 shows sample images for the three data filters. The image where emission
angle has been restricted to µ > 0.4 appears to have a much shorter lifetime than the
other two, because the downstream counts have all been removed. However, the remaining
curve matches very closely with the known emission points, with very little noise from
Compton background. As long as we characterize the detector response precisely, we should
theoretically be able to use such images in lifetime measurements. However, for lack of time
I did not study this angular filter further than this simple test.

Lastly, note that the usual statistics trade-off is especially difficult to apply here.
Ideally, we want any reduction in counts to improve imaging resolution more than the cor-
responding degradation from loss of statistics:

σimg,filt
σimg,0

<

√
Ncounts,filt√
Ncounts,0

(5.4)

where σimg,0 and Ncounts,0 are the unfiltered results and σimg,filt and Ncounts,filt are the cor-
responding filtered results. However, we can see from Tables 5.4 to 5.6 that none of the
data cuts offer significant improvements to imaging resolution. As we discussed at the end
of Section 5.2, the peaks in the imaging responses correspond almost entirely to the full-
energy tracks. It’s the Compton background that creates the long tails we observe (where
zmeas − zknown is large). So the main advantage of our data filters here lie in the reduction
of this Compton background. It is therefore more difficult to quantify ideal choices for each
data cut.
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Figure 5.10: Sample Doppler-shift images (with data filters)
With various data filters applied
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Chapter 6

Lifetime Measurements

6.1 Introduction to Lifetime Measurements

The simplest lifetime measurement involves a parent nucleus with proper lifetime τ0 and lab-
frame velocity β, which emits a single characteristic photon of energy E0 in the CM-frame.
The random de-excitation of these parent nuclei produces an exponential source distribution
along the beamline. (Note that a nucleus’s travel distance directly corresponds to its emission
time.) Our job is to gather enough statistics to produce an image of this exponential decay,
and then extract the lifetime from it. Doing so is largely independent of our choice of imaging
mode – what matters is the imaging response and effective imaging resolution. Images from
known calibration measurements or simulations can be used to characterize this resolution.

All methods of measuring nuclear lifetimes involve sampling a decay curve in some
fashion. In the recoil-distance method (RDM), one places a degrader foil downstream of
the target, which slows the parent nuclei to a lower speed. Photons emitted upstream of
this degrader will have a measurable Doppler-shift in the lab frame (see Equation 2.19).
Photons emitted downstream of the degrader will have little to no shift. So, by comparing
the number of Doppler-shifted counts to the number of counts with lesser or no shift, one
obtains the fraction of nuclei that de-excite upstream of the degrader. Note that because
the beam recoil velocity is known, the distance between the target and degrader directly
translates to flight time. Accounting for relativistic time dilation, the proper de-excitation
time in the CM-frame (t0) is:

z = vt = (βc)(γt0) = γβct0 (6.1)

where βc is the lab-frame velocity of the parent nucleus, γ is the corresponding Lorentz
factor, and τ0 is the parent’s lifetime in the CM-frame. Each position along the beamline
corresponds to a different time. So, by moving the degrader to several positions and repeating
the measurement, one obtains the fraction of nuclei that de-excite as a function of distance
(i.e. flight time). Fitting an exponential decay function to these samples then yields the
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proper lifetime, τ0. As the reader can surmise, this technique is rather laborious and requires
beamtime for each additional sample of the de-excitation curve.

Alternately, we could conceivably measure lifetimes electronically – if the nuclear
lifetime and travel times are long enough. The method is well-known, and uses a combination
of synced HPGe and multichannel plate detectors. First, the ions produced in the target go
through a magnetic separator to select only the parent nuclei of interest. The selected nuclei
then pass through a pair of plate detectors, which record a timestamp t1,n and velocity βnc for
the nth nucleus that passes through. After that the particles are caught in a beam stop, where
they sit until they de-excite. Finally, the de-excitations are measured by an HPGe detector,
which records a timestamp t2,n for each detected photon. If the distance from the target to
the multichannel detectors is xmcd, then the time-of-flight is simply tflight,n = xmcd/βnc. The
total de-excitation time (as measured in the lab frame) for the nth parent nucleus is thus:

tlab,n = tflight,n + (t2,n − t1,n) (6.2)

= xmcd/βnc+ (t2,n − t1,n) (6.3)

Finally, accounting for time dilation, the proper time of the nth de-excitation is:

tlab,n =
xmcd
γβnc

+
1

γ
(t2,n − t1,n) (6.4)

From here we can build a distribution of de-excitation times and extract the lifetime. Note,
however, that we are limited by the travel distances involved. (Consider that an ion moving
at 0.1c takes 100 ns to travel 3.0 m, which is about the minimum length needed to install
all the necessary components.) Therefore, this method is not well-suited for the gamma de-
excitations we aim to study through imaging, which occur on timescales of 10’s of picoseconds
to a few nanseconds.

Measuring lifetimes is much simpler with gamma-ray imaging. Here, we trace each
photon back to its emission point along the beamline, converting each distance to a time-
of-flight. With enough counts, we can build a de-excitation curve and extract the lifetime.
The appeal of this technique is that it can reconstruct an entire de-excitation curve with a
single measurement, without any additional equipment.

In the simplest case, we measure a single nuclear transition that neither feeds – nor
is fed by – any other transitions. In such situations, there is a single lifetime τ0 to consider,
and the density of emissions downstream of the target will follow a simple exponential decay:

S(z) = Ae−µz (6.5)

= Ae−z/γβcτ0 (6.6)

where z is the distance from the target, µ = 1/γβcτ0, and A is a scaling factor. This factor
is found by normalizing the curve to the number of emissions Ncounts observed between the
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target and end of imaging window (zend):

Ncounts =

∫ zend

0

Ae−µzdz (6.7)

= −(A/µ)e−µz
∣∣∣zend
0

= (A/µ)(1− e−µzend) (6.8)

A = Ncounts
µ

1− e−µzend
(6.9)

Note that A has the correct units for a density function (counts per length).

When the state of interest is part of a de-excitation chain, however, the shape of
the curve no longer follows a simple exponential. For example, consider a simple two-state
system where the parent state has lifetime τ0,p = 1/γβcµp and the daughter state has lifetime
τ0,d = 1/γβcµd. This is a textbook problem (see pages 170-172 in Ref. [21]). The source
distribution Sd(z) is found:

Sp(z) = Ape
−µpz (6.10)

Sd(z) = Ad(e
−µpz − e−µdz) (6.11)

Ad = Ap

(
µp

µd − µp

)
(6.12)

= Ncounts

(
µp

1− e−µzend

)(
µp

µd − µp

)
(6.13)

The shape is ultimately determined by the the relative lifetimes of the parent and daughter.
For example, in a system where the parent is very long-lived compared to the daughter, such
that µd >> µp:

Sd(z) = Ncounts

(
µp

1− e−µzend

)(
µp
µd

)
(1− e−µdz) (6.14)

This leads to secular equilibrium, where the countrate from the daughter is fundamentally
limited by the de-excitations of the parent. If the parent lifetime is too long, then we will
not be able to use imaging to study the lifetime of either state. The source distributions will
simply appear flat across the entire imaging range, and we will likely have low statistics to
work from.

The source distributions of more complex de-excitation chains can be solved using the
Bateman equations. (Pg. 173 in Reference [21]) In such cases, we must have prior knowledge
of the lifetimes for all parent states feeding the state of interest. Complex chains may also
produce significant background. Recall that relativistic Doppler-shifts can cause peaks to
overlap even if they are several hundred keV apart in the CM-frame. For this study, I avoid
such complications and focus on simple single-transition systems.
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6.2 Curve Fitting and the Inverse Imaging Problem

Our goal in lifetime measurements is to reproduce the exponential source distribution for
photons along the beamline. Once we have that curve, we can fit an exponential to it to
determine the nuclear lifetime. As with all imaging problems, however, we must deal with the
effects of finite resolution. For any true emission point z0, there is some probability that the
emission will instead register at z. We call this probability function the “detector response”.
Because we can measure or simulate the detector response beforehand, it is possible to correct
for it in lifetime measurements. I chose the χ2 Minimization method over Singular-Value-
Decomposition (SVD) due to the better stability of the former algorithm.

We seek to use gamma-ray imaging to reproduce the source distribution for nuclei
that de-excite downstream of the target. As mentioned earlier, the ideal distribution is a
simple exponential decay function given by Equation 6.5. However, imaging does not recreate
source distributions with perfect accuracy. This is clearly seen in Figure 6.1, which shows
the differences in true versus imaged emission points for a Compton imaging test. (However,
the concept applies equally to Doppler-shift images as well.) For any true emission point
z0, there is a distribution P (z, z0) that reflects the probability that the emission will instead
register at z. We call this probability density function the “detector response”. For the rest
of this discussion, we will divorce ourselves from the specific type of imaging method used,
and focus instead on the imaging resolution as the primary parameter of interest.

Figure 6.1: Sample comparison of true and imaged source distributions
τ0 = 0859 ns, β = 0.3, σxyz = 3.0 mm, σE = 2.0 keV

The “transformation kernel” is the detector response matrix, P (z, z0)

The detector response serves to smear the true source distribution into an imaged
one. By discretizing z and z0 into bins, this convolution can be represented by the matrix
equation:

R(z) = P (z, z0)S(z0) (6.15)
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where R(z) gives the imaged source distribution. Note that R(z) is an M ×1 column vector,
where M is the number of distinct bins forming the imaging space on the beam axis. S(z0) is
an N × 1 column vector, where N is the number of distinct z’s for which a detector response
distribution is measured. This makes P (z, z0) an M × N matrix, where the nth column
represents the detector response function for the nth z0 bin.

Depending on how bad the imaging resolution is, the imaged de-excitation curve may
deviate significantly from an exponential shape. (Again, see Figure 6.1.) This of course
complicates the curve-fitting process we would use to extract the lifetime. Generally speak-
ing, the convolution in Equation 6.15 will move counts from the peak of the exponential to
somewhere upstream of the beam target, rounding the top of the imaged source distribution
and making the slope of the decay more shallow. Therefore, fitting a simple exponential to
this shape will return a measured lifetime longer than the true lifetime.

Geometric efficiency also plays a role here. GRETINA is not a full 4π array, and so
emissions can escape the central cavity without passing through a detector. GRETINA’s
geometric efficiency is 25% for an isotropic point source at the center of the array, but things
are more complicated for moving sources. Recall that emissions become more and more
forward-directed in the lab frame as the source velocity increases. In addition, the detector
solid angle “seen” by a parent nucleus changes as the nucleus moves down the beamline.
Geometric efficiency is therefore a function of both source velocity and emission location.
Because of this, the measured source distribution will not be perfectly exponential – even
with perfect imaging resolution. The effect can be seen clearly in Figure 6.2. The thin
lines represent the measured emission points in three categories – total emissions, detected
emissions, and emissions which missed the detectors entirely. The thicker lines are idealized
de-excitation curves for each category, given the number of emissions and the known parent
lifetime and velocity. One can see that the detected emissions fall short of the exponential
shape due to losses in geometric efficiency. In general, each detector response function
S(z0) should be renormalized to the geometric efficiency at z0. For simplicity, I ignored this
correction in my simulations.

There are a couple common methods to correct for smearing in the source distribution.
P (z, z0) is a measurable property of the specific detector and imaging method employed. We
could obtain it through a calibration experiment using a nucleus of known lifetime. Here,
though, I obtained simulated detector response curves from the Geant4 GRETINA model.
Once we have the P (z, z0) matrix, we can then use either Singular-Value-Decomposition
(SVD) or a χ2 Minimization to account for the imaging response. [1] [34]

In SVD, the goal is to find the pseudo-inverse of the detector response, P−1(z0, z), in
order to calculate the “true” source distribution:

S(z0) = P−1(z0, z)R(z) (6.16)

Theoretically, this correction should let us fit an exponential directly to the curve S(z0).
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Figure 6.2: Geometric efficiency in GRETINA

However, noise amplification is a well-known problem in SVD. [31] We therefore found it
ill-suited for our simulated lifetime measurements. The algorithm is highly-sensitive to our
choice of z and z0 bins, which obviously have nothing to do with the underlying data. [19]
Yet SVD imposes an arbitrary requirement to optimize binning for the output images.

The χ2 Minimization method avoids these issues entirely, though conceptually it is
more complicated (and significantly more computationally-intensive). In SVD, we work
backwards from the image R(z) to calculate an approximate source distribution S(z0). The
χ2 approach is almost the opposite – we start with a hypothetical source S ′(z0), then convolve
it with the response matrix P (z, z0) to arrive at a hypothetical image, R′(z). (See Figure 6.3)
We then compare this hypothetical R′(z) image with the measured image, R(z), computing
a χ2 value:

χ2 =
N∑
n=1

(R(zn)−R′(zn))2

σ2
R′(zn)

(6.17)

=
N∑
n=1

(R(zn)−R′(zn))2

R′(zn)
(6.18)

Here, σ2
R′(zn) = R′(zn), and N is the number of z bins used to characterize image distributions.

To avoid edge effects from histogram binning in the images, I omitted the first and last bins
from the comparison.

Conceptually, this approach has similarities to the signal decomposition algorithm
discussed in Section 2.5. Where GRETINA uses a grid of computed basis signals to compare
against a measured signal, here we compare a set of hypothetical imaged de-excitation curves
to the measured image. We begin by hypothesizing values of τ0, then use an iterative method
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Figure 6.3: SVD vs. χ2 Minimization curve-fitting methods

to rapidly narrow down on the best-fit value of τ0. For the first iteration, we create 20 evenly-
spaced points within a range of possible lifetimes for the state (for example, 250 ps to 4 ns).
Once we find the point with the minimum χ2 value, we construct a new range of 20 points
evenly-spaced between the left- and right-hand neighbors of that point. This is repeated
until the answer converges to within 0.1 ps, which generally occurs after 5-6 iterations. The
best-fit curve is the one with the smallest χ2 value computed using Eq. 6.17 (hence “χ2

Minimization”).

At the end of this process, we have χ2 as a function of hypothetical values of τ0. This
curve enables a nifty trick – it allows us to estimate the uncertainty in the best-fit lifetime
from a single measurement. To do so, we find the values of τ0 for which χ2 = χ2

min + 1.
These represent the ±1σ error bars for the lifetime. One must use unnormalized χ2 for this
to work, instead of the standard χ2/(Npts − 1).

Figure 6.4 shows a sample χ2 fit. On the left side, the hypothesized images (red and
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Figure 6.4: A sample χ2 Minimization Fit

green) are compared to the raw data (blue). The green lines have the smallest χ2 values,
while the red ones are generally poor fits to the measured de-excitation curve. In other
words, the green lines converge to our best guess for the true value of τ0. The right half
of the figure shows the χ2 vs. τ0,guess curve. The pink lines show the limits of the χ2 + 1
estimate on the uncertainty.

6.3 Precision in Lifetime Measurements

Our primary goal in this project was to evaluate uncertainty in lifetime measurements using
gamma-ray imaging. There are three main factors that affect the quality of the curve-fitting
described in Section 6.2: the imaging resolution, σimg; the number of imaged emissions,
Nimg; and the decay parameter, µ = 1/γβcτ0, a combination of the beam velocity and proper
lifetime.

As discussed in Section 6.2, creating a de-excitation curve from gamma-ray imaging
is directly limited by the system’s imaging resolution. In addition, both the the lifetime of
the de-excitation and the number of successful image reconstructions limit the accuracy of
the measurement.

Gathering enough counts is a major challenge in our lifetime measurements. A nu-
clear state of interest may have a very small production cross-section. On top of that, not
every nucleus thus produced will necessarily emit a photon within the imaging range. (The
fraction depends on the beam velocity and the nuclear lifetime.) The detector also has less-
than-perfect geometric and intrinsic efficiencies, and therefore will not detect every photon
emission. (Note: GRETINA covers about 1π steradians as seen from the center of its in-
ner cavity, and has approximately 60% P/T for 137Cs. The placement of detector modules
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is an extremely important consideration here. Because the parent nuclei are moving rel-
ativistically, the lab-frame emissions will tend to be forward-directed. The exact angular
distribution depends on the beam velocity and the angular distribution in the CM-frame.
See Section 2.2.)

Moreover, both gamma-ray imaging methods have imperfect imaging efficiency. Not
every track with full energy deposition yields an emission point. In Compton imaging, tracks
are rejected for giving ambiguous emission points or emission points outside the imaging
range (-180 mm < z < 180 mm). They can also be rejected for having small Compton lever
arms, for example. In Doppler-shift imaging, tracks are rejected if they yield emission points
outside the imaging range. When no data filters are applied, typical imaging efficiency for
1.0 MeV CM-frame emissions at 0.3c is 30% for Compton imaging and 72% for Doppler-shift
imaging. These numbers drop to 5-10% for Compton imaging and 10-20% for Doppler-shift
imaging depending on the choice of data cut(s).

To illustrate this problem, consider an experiment with beam intensity I, production
cross-section σ, atom density n, target thickness x, geometric efficiency εg, intrinsic efficiency
of εi, and imaging efficiency εm. Suppose the parent nuclei have velocity βc and proper
lifetime τ0, with a branching ratio B for the transition of interest. If the beam runs for time
t, then the total number of nuclei produced is:

Ntot = tIB(1− e−Σx) ' tIBΣx (6.19)

where Σ = nσ. The total number of emissions created within the imaging window depends
on the target position. Suppose the target is placed at z = (0.0 mm, 0.0 mm, 0.0 mm) and
the right edge of the imaging window is at zr. Then the number of emissions that could be
detected is:

Nemit = Ntot(1− e−µzr) = Ntotal(1− e−zr/γβcτ0) (6.20)

Of these, the number that finally are accepted for imaging is:

Nimg = Nemit(εgεiεm) (6.21)

= (tIBΣx)(1− e−µzr)(εgεiεm) (6.22)

In other words, the amount of beamtime needed to collect Nimg counts for building a de-
excitation curve is:

tN =
Nimg

(IBΣx)(1− e−µzr)(εgεiεm)
(6.23)

For example, consider a typical secondary beam (1.5 × 104 particles/s) with a reaction of
cross-section of σ = 10.0 mb. Suppose the target is x = 1.0 mm thick with density n = 1.50
× 1022 atoms/cm3, and let B = 0.1, β = 0.30, τ0 = 1.0 ns, zr = 180 mm, εg = 0.25, εi = 0.60,
and εm = 0.20. All told, gathering 100 good reconstructions requires 48 hrs of beamtime.

In addition to statistics and imaging resolution, the decay parameter µ = 1/γβcτ0

also plays a part in how well we can extract lifetimes. Consider – as de-excitation lifetime
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and/or the beam velocity decreases, the source distribution will appear more and more like a
point source located at the target (like in Figure 6.1). This will naturally make it difficult or
impossible to identify a de-excitation curve in the image. On the other hand, if the lifetime
is too long or the beam velocity too great, then the source distribution will appear as a flat
line across the entire imaging range. Of course, this also prevents us from reliably fitting a
de-excitation curve to the image.

Essentially, in order to image a de-excitation curve we need a sufficient fraction of
emissions to occur relatively far from the target, while also still being in the imaging range.
As a first-order estimate, for example, we might want a minimum fraction F of emissions to
occur beyond zmin = 1σimg of the target, where σimg is our imaging resolution. This lets us
put a lower limit on the lifetime we can measure (τ0,min). The number of emissions between
the target (z = 0) and zmin is given by:∫ ∞

zmin

A0e
−µzdz = F

∫ ∞
0

A0e
−µzdz (6.24)(

A0

µ

)(
e−µzmin

)
= F

(
A0

µ

)
(6.25)

zmin =
ln (1/F )

µ
(6.26)

We want to solve this for the minimum viable lifetime, τ0,min. Given that µ = 1/(γβcτ):

zmin = γβcτ0,min ln (1/F ) (6.27)

τ0,min =
zmin

γβc ln (1/F )
(6.28)

Suppose the beam velocity is 0.30c and the imaging resolution is σimg = 30.0 mm. Setting
z = σimg and F = 0.25 yields a minimum lifetime of 230 ps. We can perform a very similar
calculation for the opposite extreme – here we might want some fraction F of emissions to
occur within the imaging window, 0 < z < 180mm. In this case we’d get:

τ0,max =
zmax

γβc ln [1/(1− F )]
(6.29)

If we want half of all counts to fall between the target and z = 180 mm, we’d set F = 0.5
and find a maximum viable lifetime of 2.7 ns. So, if we have 30 mm imaging resolution (and
unlimited statistics), we would expect to be able to reliably measure lifetimes between 0.23
ns and 2.7 ns.

My primary goal with this study was to evaluate the precision achievable in τ0 as a
function of the various imaging parameters (i.e. σimg, Nimg, and µ). I explored this parameter
space through a large series of Monte Carlo simulations, generating 1000 hypothetical source
images for each combination of σimg, Nimg, and µ.
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Generating hypothetical source images is fairly straightforward. First, we define val-
ues for τ0 and β to formulate an ideal de-excitation curve. This allows us to sample the
de-excitation curve for a true emission point, z0. Once we have that, we sample the detector
response distribution at z0 to find the imaged emission point, z. This process is repeated
until the desired number of counts Nsamples is reached to construct a simulated de-excitation
curve. From there, we use the curve-fitting described in Section 6.2 to extract a lifetime from
the simulated curve. Finally, to get an accurate handle on the precision of the calculated
lifetime, we must run this process for a large number of simulated de-excitation curves (such
as Nruns = 1000).

For my purposes, I assumed simple Gaussian detector response curves with the desired
imaging resolution, σimg. As we can see from Figure 6.1, however, the imaging responses do
deviate from this idealized shape. Compton imaging responses have long tails to either end
of the imaging window (and the peaks sit atop wide backgrounds). Doppler-shift imaging
responses have much more Gaussian peaks, but also have a long, low tail downstream of the
true emission point.

The repeat simulations produce a large distribution of calculated lifetimes for a given
imaging resolution, number of counts, and decay parameter (µ). The standard deviation
of this distribution is by definition the precision we seek. However, this approach requires
multiple simulations of the same lifetime experiment. Fortunately, we can also estimate
uncertainty from a single run using the χ2

min + 1 method from curve fitting. The single-run
estimates for στ are largely in agreement with the actual standard deviations we find from
the multi-simulation tests. Figure 6.5 illustrates this – the single- and multi-measurement στ
values are within a 10% margin (less than the standard deviation of the single-measurement
estimates). This therefore gives us confidence that we can trust the χ2

min + 1 method in
real-world experiments, where we do not have the luxury of running 1000 test cases.

Tables 6.1 to 6.7 show how overall precision in lifetime depends on statistics and
detector resolution. For these simulations, I kept the parent CM-frame lifetime and lab-frame
velocity constant at 0.859 ns and 0.3c, respectively. I varied the number of reconstructions
(Nsamples) in each de-excitation curve from 100 to 50K samples. For each value of Nsamples,
I then varied the detector’s Gaussian imaging resolution (σimg) from 1.0 mm to 75.0 mm.
In sum, I studied 19 values of σimg and 21 values of Nsamples, for a total of 399 data points.
Figure ?? shows the dependence on Nsamples for two imaging resolutions – 10.0 mm and 25.0
mm. These values reflect the observed imaging resolution of Doppler-Shift and Compton
imaging, respectively. For each imaging resolution, I’ve highlighted the number of counts
required to achieve < 10% relative uncertainty in the measured τ0.

As we can see, there is some fluctuation in the measured value of τ0 in the low-count
regime (Nsamples < 1000). In addition, there is significant systematic error in many of the fits.
In Figure ??, I attribute the error to normal statistical fluctuations. The apparent monotonic
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Figure 6.5: Estimating precision for lifetime measurements

convergence is the result of the random number generator I used. At the beginning of each
set of lifetime simulations, I reset the random number seed to an initial value. This was
done to preserve reproducibility in the simulations. Using a different seed between runs
removes the monotonic trend, although the measured lifetime still converges as expected to
the nominal value (0.859 ns).

Figures 6.7, 6.9, and 6.10 also show a monotonically-decreasing systematic error for
the same reason. However, here the fits do not converge to the correct lifetime. This is
caused by edge effects in the fitting process – the response functions in the P (z, z0) matrix
are cut off towards the edges of the imaging window. (See Figure 6.6) Rather than having
full, symmetric Gaussian shapes at z0 = 180 mm, for example, the responses are only half-
Gaussians. Because I did not renormalize the response functions to account for potential
cut-off, emissions near the edges carry artifically less weight than emissions closer to the
target. This causes sharp dips in counts in the idealized lifetime curves near the downstream
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imaging limit. The effect becomes more pronounced with long lifetimes and very poor
imaging resolution. (In the first case, because more emissions occur near the imaging limit;
and in the second case, because more of each detector response function is cut off, especially
for those nearer to the downstream edge of the imaging window.) To improve on the results
presented here, we would need to confine curve fitting to a range smaller than the imaging
window, where the detector response curves are not cut off. For example, rather than using
comparing measured and ideal counts between 0 mm < z < 180 mm, as I have, we might
instead fit only to 0 mm < z < 150 mm. We could also extend the imaging window itself
and calculate detector responses beyond the z = 180 mm limit that I used here.

Figure 6.6: Sample cut-off detector responses

Figure 6.7 similarly illustrates the dependence on σimg for two distinct values of
Nsamples. The systematic error in the average measured value of τ0 is very pronounced for
Nsamples = 1000, but decreases to generally less than 2% with Nsamples = 5000. Meanwhile,
the precision στ steadily worsens with increasing width of detector imaging resolution, as
expected. The dependence is surprisingly weak, however – even with an abysmal 75.0mm
imaging resolution, the precision is still within 10% for Nsamples = 5000. So, if we can ac-
curately characterize the detector imaging resolution, we can use the χ2 fitting method to
largely correct for poor imaging performance.

As discussed above, the decay parameter µ = 1/γβcτ0 also affects the measurement
precision. To study this, I ran two series of simulations for lifetimes varying from 0.029 ns
to 6.872 ns (21 values total), with β kept constant at 0.3c. (The τ0 range corresponds to
a µ range of 0.365 / mm to 0.00154 / mm.) For the first set, I kept Nsamples constant at
5000 counts and picked 5 different imaging resolutions – σimg = {5.0 mm, 10.0 mm, 25.0
mm, 35.0 mm, and 50.0 mm}, for a total of 105 test runs. Tables 6.8 and 6.9 provide the
detailed results, which are illustrated in Figure 6.10. In the second set of simulations, I did
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the reverse – keeping σimg constant at 25.0 mm while varying Nsamples. I chose 5 values to
study the effects of statistics on στ : {500 counts, 1K counts, 5K counts, 10K counts, 50K
counts}, for another 105 data points. Tables 6.10 and 6.11 provide the results. Figure 6.9
illustrates the dependence of lifetime precision on τ0 for two different values of Nsamples.

As expected, the uncertainty in the measured τ0 value is most pronounced for very
short and very long lifetimes. This suggests an effective range of lifetimes that we could
measure through imaging, although of course the actual sensitivity range will depend on the
specific counting statistics and uncertainty tolerated in the measured lifetime. In the tables,
I’ve marked the first and last values of τ0 for which the relative uncertainty is ≤ 10% of
the lifetime. I then used linear interpolation to estimate where lifetime uncertainty would
be exactly 10%. Figures 6.12 and 6.11 plot the resulting sensitive ranges as a function of
beam velocity from 0.05c to 0.50c. (Again, the decay parameter µ is a combined function
of β and τ0. As beam velocity increases, the effective range of lifetimes we can measure
shifts downward.) The shaded regions indicate the lifetimes for which we would theoretically
measure less than 10% uncertainty, given a specific imaging resolution and number of counts.
Note that some of the ranges are cut off. For example, with 5K counts and 10.0mm imaging
resolution, the observed uncertainty in measured lifetime is less than 10% even at 29 ps –
the shortest lifetime for which I ran simulations. (Refer to Table 6.8.) This is certainly
promising, although I did not have time to pursue the investigation further.
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This is a bunch of nonsense text to try and make LaTeX put figures where I want
them. God, I hate LaTeX. It’s just the worst. I just want to be able to place figures manually.

Figure 6.7: Lifetime precision vs. imaging resolution
σimg = 1.0 mm to 75.0 mm, 1000 & 5000 samples

τ0 = 0.859 ns, β = 0.3c, 1000 trials
See Tables 6.1 to 6.7

WYSIWYG 4 life. Seriously, how do you pad things properly in this damn editor?
This shouldn’t be so hard. I can’t believe this is the industry standard for type-setting
scientific papers.

Figure 6.8: Lifetime precision vs. number of samples
σimg = 10.0 mm & 25.0 mm, 100 to 50K samples

τ0 = 0.859 ns, β = 0.3c, 1000 trials
See Tables 6.2 and 6.3
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Figure 6.9: Lifetime precision vs. decay parameter, µ = 1/γβcτ0

σimg = 25.0 mm, 1K & 50K samples
τ0 = 0.029 ns to 6.872 ns, β = 0.3c, 1000 trials

See Tables 6.10 and 6.11

Figure 6.10: Lifetime precision vs. decay parameter, µ = 1/γβcτ0

σimg = 10.0 mm & 25.0 mm, 5K samples
τ0 = 0.029 ns to 6.872 ns, β = 0.3c, 1000 trials

See Table 6.8
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Figure 6.11: Lifetime sensitivity vs. number of samples
σimg = 25.0 mm, 500 to 50K samples

Lifetime precision στ ≤ 10%

Figure 6.12: Lifetime sensitivity vs. imaging resolution
σimg = 5.0 mm to 50.0 mm, 5K samples

Lifetime precision στ ≤ 10%
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# of Samples σimg = 1.0 mm σimg = 2.5 mm σimg = 5.0 mm

100 0.6307 ± 0.1592 0.6317 ± 0.1669 0.6391 ± 0.1952
250 0.8034 ± 0.0975 0.8012 ± 0.0960 0.7985 ± 0.1009
500 0.9788 ± 0.1053 0.9733 ± 0.1026 0.9647 ± 0.0976
750 0.9637 ± 0.0644 0.9596 ± 0.0650 0.9549 ± 0.0667
1000 0.9352 ± 0.0535 0.9332 ± 0.0542 0.9312 ± 0.0551
1250 0.9225 ± 0.0468 0.9204 ± 0.0463 0.9178 ± 0.0471
1500 0.9112 ± 0.0432 0.9099 ± 0.0435 0.9081 ± 0.0437
2000 0.8992 ± 0.0373 0.8982 ± 0.0377 0.8959 ± 0.0377
2500 0.8887 ± 0.0319 0.8873 ± 0.0318 0.8859 ± 0.0320
3000 0.8849 ± 0.0290 0.8837 ± 0.0289 0.8824 ± 0.0290
4000 0.8777 ± 0.0242 0.8766 ± 0.0242 0.8753 ± 0.0242
5000 0.8741 ± 0.0229 0.8730 ± 0.0230 0.8723 ± 0.0232
7500 0.8674 ± 0.0181 0.8662 ± 0.0182 0.8655 ± 0.0184
10000 0.8651 ± 0.0157 0.8643 ± 0.0158 0.8637 ± 0.0161
12500 0.8637 ± 0.0135 0.8628 ± 0.0136 0.8623 ± 0.0135
15000 0.8617 ± 0.0128 0.8611 ± 0.0128 0.8606 ± 0.0130
20000 0.8606 ± 0.0106 0.8599 ± 0.0105 0.8596 ± 0.0106
25000 0.8593 ± 0.0098 0.8587 ± 0.0099 0.8583 ± 0.0099
30000 0.8593 ± 0.0088 0.8587 ± 0.0088 0.8583 ± 0.0089
40000 0.8587 ± 0.0077 0.8582 ± 0.0077 0.8578 ± 0.0078
50000 0.8584 ± 0.0070 0.8578 ± 0.0070 0.8575 ± 0.0070

Table 6.1: Simulated Lifetime Measurement Results, σimg = 1.0 mm to 5.0 mm
τ0 = 0.859 ns, β = 0.3c, Ntrials = 1000, Nsamples = 100 to 50K

Values are given in ns
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# of Samples σimg = 7.5 mm σimg = 10.0 mm σimg = 12.5 mm

100 0.6577 ± 0.2344 0.6902 ± 0.2711 0.7232 ± 0.2942
250 0.7937 ± 0.1014 0.7889 ± 0.1034 0.7842 ± 0.1053
500 0.9604 ± 0.0984 0.9522 ± 0.0959 0.9471 ± 0.0960
750 0.9503 ± 0.0677 0.9486 ± 0.0696 0.9438 ± 0.0708
1000 0.9291 ± 0.0556 0.9262 ± 0.0563 0.9254 ± 0.0570
1250 0.9163 ± 0.0478 0.9150 ± 0.0489 0.9128 ± 0.0493
1500 0.9064 ± 0.0436 0.9046 ± 0.0441 0.9032 ± 0.0453
2000 0.8956 ± 0.0381 0.8932 ± 0.0383 0.8929 ± 0.0386
2500 0.8848 ± 0.0320 0.8833 ± 0.0324 0.8826 ± 0.0329
3000 0.8806 ± 0.0293 0.8800 ± 0.0302 0.8796 ± 0.0304
4000 0.8746 ± 0.0247 0.8738 ± 0.0254 0.8729 ± 0.0255
5000 0.8717 ± 0.0236 0.8707 ± 0.0237 0.8704 ± 0.0243
7500 0.8650 ± 0.0186 0.8645 ± 0.0188 0.8638 ± 0.0190
10000 0.8632 ± 0.0164 0.8628 ± 0.0165 0.8625 ± 0.0171
12500 0.8619 ± 0.0137 0.8616 ± 0.0138 0.8612 ± 0.0138
15000 0.8602 ± 0.0132 0.8599 ± 0.0135 0.8596 ± 0.0137
20000 0.8592 ± 0.0108 0.8590 ± 0.0109 0.8588 ± 0.0111
25000 0.8581 ± 0.0100 0.8578 ± 0.0102 0.8577 ± 0.0104
30000 0.8581 ± 0.0090 0.8579 ± 0.0092 0.8578 ± 0.0093
40000 0.8576 ± 0.0079 0.8574 ± 0.0080 0.8573 ± 0.0081
50000 0.8573 ± 0.0071 0.8571 ± 0.0072 0.8569 ± 0.0073

Table 6.2: Simulated Lifetime Measurement Results, σimg = 7.5 mm to 12.5 mm
τ0 = 0.859 ns, β = 0.3c, Ntrials = 1000, Nsamples = 100 to 50K
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# of Samples σimg = 15.0 mm σimg = 20.0 mm σimg = 25.0 mm

100 0.7789 ± 0.3088 0.8762 ± 0.2816 0.9166 ± 0.2600
250 0.7789 ± 0.1056 0.7703 ± 0.1144 0.7648 ± 0.1262
500 0.9405 ± 0.0972 0.9326 ± 0.1027 0.9243 ± 0.1043
750 0.9447 ± 0.0756 0.9387 ± 0.0771 0.9370 ± 0.0833
1000 0.9237 ± 0.0586 0.9222 ± 0.0616 0.9196 ± 0.0636
1250 0.9120 ± 0.0508 0.9096 ± 0.0532 0.9065 ± 0.0564
1500 0.9017 ± 0.0453 0.8996 ± 0.0480 0.8962 ± 0.0491
2000 0.8912 ± 0.0395 0.8885 ± 0.0403 0.8868 ± 0.0427
2500 0.8819 ± 0.0336 0.8803 ± 0.0351 0.8776 ± 0.0360
3000 0.8781 ± 0.0311 0.8761 ± 0.0327 0.8744 ± 0.0343
4000 0.8721 ± 0.0258 0.8708 ± 0.0271 0.8689 ± 0.0283
5000 0.8697 ± 0.0250 0.8679 ± 0.0259 0.8666 ± 0.0274
7500 0.8632 ± 0.0192 0.8620 ± 0.0203 0.8608 ± 0.0214
10000 0.8619 ± 0.0173 0.8611 ± 0.0178 0.8599 ± 0.0189
12500 0.8607 ± 0.0142 0.8600 ± 0.0146 0.8592 ± 0.0154
15000 0.8592 ± 0.0138 0.8588 ± 0.0143 0.8578 ± 0.0152
20000 0.8585 ± 0.0113 0.8580 ± 0.0118 0.8574 ± 0.0124
25000 0.8575 ± 0.0105 0.8570 ± 0.0108 0.8566 ± 0.0115
30000 0.8576 ± 0.0095 0.8571 ± 0.0100 0.8567 ± 0.0106
40000 0.8571 ± 0.0082 0.8567 ± 0.0085 0.8564 ± 0.0089
50000 0.8568 ± 0.0074 0.8565 ± 0.0077 0.8562 ± 0.0081

Table 6.3: Simulated Lifetime Measurement Results, σimg = 15.0 mm to 25.0 mm
τ0 = 0.859 ns, β = 0.3c, Ntrials = 1000, Nsamples = 100 to 50K
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# of Samples σimg = 30.0 mm σimg = 35.0 mm σimg = 40.0 mm

100 0.9292 ± 0.2802 0.9403 ± 0.3105 0.9518 ± 0.3406
250 0.7596 ± 0.1359 0.7543 ± 0.1462 0.7508 ± 0.1600
500 0.9201 ± 0.1121 0.9192 ± 0.1203 0.9173 ± 0.1336
750 0.9367 ± 0.0886 0.9361 ± 0.0939 0.9373 ± 0.0994
1000 0.9171 ± 0.0677 0.9138 ± 0.0714 0.9094 ± 0.0765
1250 0.9031 ± 0.0591 0.9012 ± 0.0631 0.8965 ± 0.0679
1500 0.8937 ± 0.0527 0.8900 ± 0.0558 0.8860 ± 0.0601
2000 0.8840 ± 0.0451 0.8815 ± 0.0474 0.8778 ± 0.0508
2500 0.8757 ± 0.0388 0.8734 ± 0.0411 0.8695 ± 0.0451
3000 0.8715 ± 0.0363 0.8684 ± 0.0384 0.8649 ± 0.0417
4000 0.8666 ± 0.0304 0.8640 ± 0.0325 0.8608 ± 0.0345
5000 0.8644 ± 0.0291 0.8621 ± 0.0309 0.8598 ± 0.0326
7500 0.8593 ± 0.0225 0.8575 ± 0.0238 0.8552 ± 0.0253
10000 0.8589 ± 0.0202 0.8576 ± 0.0216 0.8557 ± 0.0228
12500 0.8582 ± 0.0163 0.8570 ± 0.0175 0.8558 ± 0.0188
15000 0.8568 ± 0.0160 0.8559 ± 0.0172 0.8548 ± 0.0186
20000 0.8568 ± 0.0131 0.8561 ± 0.0140 0.8551 ± 0.0152
25000 0.8560 ± 0.0123 0.8553 ± 0.0132 0.8547 ± 0.0143
30000 0.8561 ± 0.0113 0.8554 ± 0.0121 0.8545 ± 0.0129
40000 0.8560 ± 0.0095 0.8556 ± 0.0100 0.8550 ± 0.0107
50000 0.8558 ± 0.0085 0.8554 ± 0.0090 0.8549 ± 0.0096

Table 6.4: Simulated Lifetime Measurement Results, σimg = 30.0 mm to 40.0 mm
τ0 = 0.859 ns, β = 0.3c, Ntrials = 1000, Nsamples = 100 to 50K
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# of Samples σimg = 45.0 mm σimg = 50.0 mm σimg = 55.0 mm

100 0.9661 ± 0.3797 0.9812 ± 0.4264 0.9973 ± 0.4812
250 0.7578 ± 0.1861 0.7674 ± 0.2250 0.7853 ± 0.2658
500 0.9235 ± 0.1526 0.9364 ± 0.1752 0.9505 ± 0.2019
750 0.9354 ± 0.1030 0.9352 ± 0.1109 0.9303 ± 0.1224
1000 0.9076 ± 0.0820 0.9005 ± 0.0884 0.8942 ± 0.0970
1250 0.8926 ± 0.0743 0.8862 ± 0.0786 0.8794 ± 0.0843
1500 0.8802 ± 0.0637 0.8744 ± 0.0683 0.8667 ± 0.0726
2000 0.8729 ± 0.0538 0.8672 ± 0.0586 0.8596 ± 0.0618
2500 0.8653 ± 0.0476 0.8601 ± 0.0514 0.8548 ± 0.0559
3000 0.8613 ± 0.0443 0.8561 ± 0.0486 0.8510 ± 0.0525
4000 0.8572 ± 0.0372 0.8535 ± 0.0400 0.8483 ± 0.0422
5000 0.8568 ± 0.0348 0.8530 ± 0.0379 0.8482 ± 0.0406
7500 0.8525 ± 0.0271 0.8497 ± 0.0290 0.8462 ± 0.0313
10000 0.8539 ± 0.0245 0.8512 ± 0.0268 0.8483 ± 0.0292
12500 0.8542 ± 0.0201 0.8522 ± 0.0217 0.8496 ± 0.0235
15000 0.8535 ± 0.0201 0.8513 ± 0.0211 0.8494 ± 0.0225
20000 0.8543 ± 0.0164 0.8527 ± 0.0175 0.8509 ± 0.0190
25000 0.8536 ± 0.0154 0.8526 ± 0.0167 0.8510 ± 0.0181
30000 0.8537 ± 0.0139 0.8528 ± 0.0150 0.8516 ± 0.0163
40000 0.8545 ± 0.0116 0.8537 ± 0.0126 0.8530 ± 0.0137
50000 0.8544 ± 0.0104 0.8537 ± 0.0112 0.8528 ± 0.0121

Table 6.5: Simulated Lifetime Measurement Results, σimg = 45.0 mm to 55.0 mm
τ0 = 0.859 ns, β = 0.3c, Ntrials = 1000, Nsamples = 100 to 50K
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# of Samples σimg = 60.0 mm σimg = 65.0 mm

100 1.0140 ± 0.5334 1.0317 ± 0.5894
250 0.8275 ± 0.3685 0.8726 ± 0.4793
500 0.9635 ± 0.2193 0.9884 ± 0.2453
750 0.9266 ± 0.1324 0.9209 ± 0.1427
1000 0.8869 ± 0.1014 0.8762 ± 0.1071
1250 0.8706 ± 0.0903 0.8648 ± 0.0980
1500 0.8597 ± 0.0770 0.8491 ± 0.0818
2000 0.8513 ± 0.0658 0.8429 ± 0.0705
2500 0.8475 ± 0.0602 0.8409 ± 0.0654
3000 0.8444 ± 0.0554 0.8371 ± 0.0595
4000 0.8428 ± 0.0454 0.8365 ± 0.0493
5000 0.8432 ± 0.0440 0.8372 ± 0.0468
7500 0.8420 ± 0.0337 0.8380 ± 0.0364
10000 0.8449 ± 0.0309 0.8414 ± 0.0326
12500 0.8473 ± 0.0256 0.8442 ± 0.0278
15000 0.8469 ± 0.0245 0.8443 ± 0.0262
20000 0.8487 ± 0.0206 0.8465 ± 0.0223
25000 0.8494 ± 0.0196 0.8479 ± 0.0210
30000 0.8501 ± 0.0177 0.8486 ± 0.0192
40000 0.8521 ± 0.0149 0.8514 ± 0.0160
50000 0.8520 ± 0.0133 0.8518 ± 0.0144

Table 6.6: Simulated Lifetime Measurement Results, σimg = 60.0 mm to 65.0 mm
τ0 = 0.859 ns, β = 0.3c, Ntrials = 1000, Nsamples = 100 to 50K
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# of Samples σimg = 70.0 mm σimg = 75.0 mm

100 1.0468 ± 0.6484 1.0468 ± 0.6785
250 0.9376 ± 0.6018 1.0284 ± 0.7160
500 1.0060 ± 0.2580 1.0345 ± 0.2980
750 0.9183 ± 0.1556 0.9181 ± 0.1727
1000 0.8691 ± 0.1210 0.8605 ± 0.1245
1250 0.8560 ± 0.1045 0.8493 ± 0.1129
1500 0.8377 ± 0.0891 0.8258 ± 0.0960
2000 0.8354 ± 0.0763 0.8268 ± 0.0801
2500 0.8313 ± 0.0700 0.8239 ± 0.0729
3000 0.8301 ± 0.0634 0.8221 ± 0.0674
4000 0.8296 ± 0.0523 0.8214 ± 0.0565
5000 0.8311 ± 0.0500 0.8237 ± 0.0537
7500 0.8323 ± 0.0389 0.8263 ± 0.0415
10000 0.8373 ± 0.0356 0.8331 ± 0.0386
12500 0.8410 ± 0.0300 0.8380 ± 0.0321
15000 0.8415 ± 0.0284 0.8397 ± 0.0304
20000 0.8447 ± 0.0241 0.8444 ± 0.0260
25000 0.8471 ± 0.0223 0.8464 ± 0.0242
30000 0.8484 ± 0.0209 0.8482 ± 0.0225
40000 0.8514 ± 0.0176 0.8512 ± 0.0191
50000 0.8518 ± 0.0157 0.8519 ± 0.0171

Table 6.7: Simulated Lifetime Measurement Results, σimg = 70.0 mm to 75.0 mm
τ0 = 0.859 ns, β = 0.3c, Ntrials = 1000, Nsamples = 100 to 50K
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τ0,known (ns) σimg = 5.0 mm σimg = 10.0 mm σimg = 25.0 mm

0.029 0.0291 ± 0.0008 0.0292 ± 0.0016 0.0295 ± 0.0041
0.072 0.0728 ± 0.0013 0.0730 ± 0.0018 0.0738 ± 0.0039
0.143 0.1452 ± 0.0023 0.1454 ± 0.0026 0.1463 ± 0.0041
0.215 0.2191 ± 0.0035 0.2193 ± 0.0038 0.2201 ± 0.0049
0.286 0.2926 ± 0.0048 0.2927 ± 0.0050 0.2935 ± 0.0061
0.358 0.3675 ± 0.0061 0.3673 ± 0.0063 0.3677 ± 0.0073
0.430 0.4408 ± 0.0073 0.4408 ± 0.0076 0.4399 ± 0.0086
0.687 0.6996 ± 0.0144 0.6985 ± 0.0145 0.6960 ± 0.0167
0.859 0.8723 ± 0.0232 0.8707 ± 0.0237 0.8666 ± 0.0274
1.074 1.0867 ± 0.0336 1.0848 ± 0.0341 1.0776 ± 0.0389
1.289 1.3011 ± 0.0463 1.2977 ± 0.0479 1.2880 ± 0.0538
1.503 1.5151 ± 0.0633 1.5117 ± 0.0655 1.4989 ± 0.0736
1.718 1.7266 ± 0.0812 1.7208 ± 0.0820 1.7022 ± 0.0907
2.148 2.1557 ± 0.1280 2.1463 ± 0.1297 2.1176 ± 0.1439
2.577 2.5807 ± 0.1784 2.5657 ± 0.1807 2.5252 ± 0.2052
3.007 3.0250 ± 0.2458 3.0067 ± 0.2516 2.9472 ± 0.2762
3.436 3.4123 ± 0.3241 3.3952 ± 0.3306 3.3242 ± 0.3619
4.295 4.2436 ± 0.4836 4.2008 ± 0.4904 4.0825 ± 0.5280
5.154 5.1074 ± 0.6934 5.0545 ± 0.7140 4.9037 ± 0.7743
6.013 5.8767 ± 0.9449 5.8025 ± 0.9697 5.6116 ± 1.0619
6.872 6.7413 ± 1.2257 6.6490 ± 1.2419 6.4272 ± 1.3127

Table 6.8: Simulated Lifetime Measurement Results, σimg = 5.0 mm to 25.0 mm
τ0 = 0.029 ns to 6.872 ns, β = 0.3c, Nsamples = 5K, Ntrials = 1000
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τ0,known (ns) σimg = 35.0 mm σimg = 50.0 mm

0.029 0.0296 ± 0.0059 0.0299 ± 0.0086
0.072 0.0742 ± 0.0056 0.0748 ± 0.0083
0.143 0.1470 ± 0.0055 0.1480 ± 0.0079
0.215 0.2209 ± 0.0062 0.2226 ± 0.0089
0.286 0.2942 ± 0.0073 0.2946 ± 0.0095
0.358 0.3679 ± 0.0083 0.3649 ± 0.0111
0.430 0.4390 ± 0.0101 0.4357 ± 0.0131
0.687 0.6932 ± 0.0188 0.6873 ± 0.0246
0.859 0.8621 ± 0.0309 0.8530 ± 0.0379
1.074 1.0721 ± 0.0432 1.0581 ± 0.0531
1.289 1.2790 ± 0.0603 1.2571 ± 0.0748
1.503 1.4884 ± 0.0834 1.4639 ± 0.1003
1.718 1.6871 ± 0.1014 1.6529 ± 0.1215
2.148 2.0953 ± 0.1569 2.0381 ± 0.1819
2.577 2.4877 ± 0.2262 2.4094 ± 0.2577
3.007 2.8964 ± 0.2981 2.7962 ± 0.3409
3.436 3.2594 ± 0.3892 3.1447 ± 0.4555
4.295 4.0033 ± 0.5953 3.8272 ± 0.6821
5.154 4.7842 ± 0.8281 4.5347 ± 0.9387
6.013 5.4361 ± 1.1540 5.1376 ± 1.4534
6.872 6.1945 ± 1.3860 5.7834 ± 1.5259

Table 6.9: Simulated Lifetime Measurement Results, σimg = 35.0 mm to 50.0 mm
τ0 = 0.029 ns to 6.872 ns, β = 0.3c, Nsamples = 5K, Ntrials = 1000
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τ0,known (ns) Nsamples = 500 Nsamples = 1000 Nsamples = 5000

0.029 0.0300 ± 0.0142 0.0296 ± 0.0098 0.0295 ± 0.0041
0.072 0.0736 ± 0.0144 0.0746 ± 0.0099 0.0738 ± 0.0039
0.143 0.1444 ± 0.0155 0.1475 ± 0.0100 0.1463 ± 0.0041
0.215 0.2164 ± 0.0177 0.2220 ± 0.0119 0.2201 ± 0.0049
0.286 0.2880 ± 0.0219 0.2959 ± 0.0150 0.2935 ± 0.0061
0.358 0.3611 ± 0.0272 0.3725 ± 0.0185 0.3677 ± 0.0073
0.430 0.4357 ± 0.0332 0.4500 ± 0.0233 0.4399 ± 0.0086
0.687 0.7231 ± 0.0714 0.7352 ± 0.0451 0.6960 ± 0.0167
0.859 0.9243 ± 0.1043 0.9196 ± 0.0636 0.8666 ± 0.0274
1.074 1.1838 ± 0.1614 1.1456 ± 0.0962 1.0776 ± 0.0389
1.289 1.4371 ± 0.2280 1.3469 ± 0.1284 1.2880 ± 0.0538
1.503 1.7081 ± 0.3111 1.5868 ± 0.1791 1.4989 ± 0.0736
1.718 1.9790 ± 0.4143 1.8015 ± 0.2258 1.7022 ± 0.0907
2.148 2.5362 ± 0.7025 2.2457 ± 0.3547 2.1176 ± 0.1439
2.577 3.0681 ± 1.0121 2.6874 ± 0.5352 2.5252 ± 0.2052
3.007 3.7695 ± 1.7073 3.1308 ± 0.8451 2.9472 ± 0.2762
3.436 4.3022 ± 2.1353 3.6650 ± 1.0767 3.3242 ± 0.3619
4.295 6.0336 ± 3.8683 4.4276 ± 1.6359 4.0825 ± 0.5280
5.154 7.6861 ± 5.4939 5.4942 ± 2.6923 4.9037 ± 0.7743
6.013 9.2424 ± 6.9364 6.6701 ± 3.8876 5.6116 ± 1.0619
6.872 11.4505 ± 8.7428 7.5749 ± 4.6503 6.4272 ± 1.3127

Table 6.10: Simulated Lifetime Measurement Results, Nsamples = 500 to 5K
σimg = 25.0 mm, τ0 = 0.029 ns to 6.872 ns, β = 0.3c, Ntrials = 1000
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τ0,known (ns) Nsamples = 10000 Nsamples = 50000

0.029 0.0293 ± 0.0027 0.0289 ± 0.0012
0.072 0.0730 ± 0.0029 0.0724 ± 0.0012
0.143 0.1454 ± 0.0028 0.1439 ± 0.0012
0.215 0.2185 ± 0.0035 0.2163 ± 0.0014
0.286 0.2912 ± 0.0040 0.2871 ± 0.0017
0.358 0.3634 ± 0.0049 0.3588 ± 0.0022
0.430 0.4349 ± 0.0062 0.4303 ± 0.0027
0.687 0.6904 ± 0.0122 0.6859 ± 0.0058
0.859 0.8599 ± 0.0189 0.8562 ± 0.0081
1.074 1.0730 ± 0.0274 1.0690 ± 0.0124
1.289 1.2825 ± 0.0376 1.2791 ± 0.0170
1.503 1.4925 ± 0.0501 1.4895 ± 0.0223
1.718 1.6976 ± 0.0663 1.6970 ± 0.0298
2.148 2.1113 ± 0.0975 2.1177 ± 0.0460
2.577 2.5185 ± 0.1343 2.5293 ± 0.0640
3.007 2.9292 ± 0.1933 2.9337 ± 0.0830
3.436 3.3267 ± 0.2488 3.3376 ± 0.1123
4.295 4.0994 ± 0.3752 4.1457 ± 0.1680
5.154 4.8874 ± 0.5469 4.9453 ± 0.2431
6.013 5.6760 ± 0.7411 5.7109 ± 0.3168
6.872 6.4187 ± 0.9624 6.4951 ± 0.3992

Table 6.11: Simulated Lifetime Measurement Results, Nsamples = 10K to 50K
σimg = 25.0 mm, τ0 = 0.029 ns to 6.872 ns, β = 0.3c, Ntrials = 1000
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6.4 Experimental Validation

Simulations only get us so far. I also performed an experimental validation of the techniques
I developed, using known excited states of 92Mo. This work suggests that it is indeed possible
to use gamma-ray imaging for lifetime measurements, though difficulties arise for nuclei with
complex energy spectra. As expected, Doppler-shift imaging yields superior performance over
Compton imaging.

As a final test, I applied my imaging and lifetime measurement methods to a real,
non-simulated experiment. I chose to study two known transition in 92Mo, populated in the
12C[84Kr, 4n]92Mo reaction. The experiment was performed at ANL’s ATLAS facility, using
a 84Kr projectile on a 12C target. The experimental detector geometry is shown in Figure
6.13. [23] The 84Kr projectiles were accelerated to 394 MeV total kinetic energy, resulting
in a pre-collision speed of 0.100c. The 92Mo nuclei thus produced had a maximum recoil
speed of 0.085c. Because the source was moving, I was able to test both types of gamma-ray
imaging.

Figure 6.13: Detector placement in ANL 92Mo experiment

The first step was to compute the Doppler-corrected emission spectrum of the excited
92Mo nuclei. To do so, I assumed all gamma rays were emitted from the target and used
Compton sequencing to find the first hit in each detected photon track. From the correspond-
ing estimate for the emission angle, and the detected lab-frame energy, I then computed the
CM-frame energy spectrum (shown in Figure 6.14). A 2064.1 keV line is plainly visible along
with many lower-energy lines.

I searched this corrected energy spectrum for states suitable for lifetime measurements
with gamma-ray imaging. Brookhaven National Laboratory maintains an extensive database
of such information in its Chart of Nuclides. [22] The first requirement was a strong gamma
peak – something that stood out of the spectrum and did not overlap with nearby peaks. (The
signal-to-noise ratio quantifies this.) The second requirement was a lifetime that conceivably
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Figure 6.14: Doppler-Corrected 92Mo Spectrum

was long enough to discern with imaging. Table 6.12 lists several initial candidates I found.
It includes energy windows used to define each peak, as well as the peak-to-totals and signal-
to-noise ratios for those windows.

Energy Lifetime Energy Window Peak-to-Total* SNR**

111.2 ± 0.2 keV 22 ± 3 ps 107 keV to 115 keV 4.95E-3 ± 1.5E-4 0.579 ± 0.018
740.3 ± 0.2 keV 35 ± 3 ps 736 keV to 745 keV 1.57E-3 ± 1.0E-4 0.325 ± 0.021

800.7 keV 22 ± 3 ps 795 keV to 807 keV 1.41E-3 ± 1.0E-4 0.298 ± 0.023
1374.7 keV 35 ± 3 ps 1370 keV to 1384 keV 8.78E-4 ± 9.0E-5 0.262 ± 0.027

2064.1 ± 0.3 keV < 0.7 ps 2058 keV to 2074 keV 3.66E-3 ± 1.0E-4 1.102 ± 0.036

Table 6.12: Common gamma-ray lines in 92Mo
* Defined as the ratio of peak net counts to total counts between 0 - 3000keV

** Defined as the ratio of peak net counts to peak background counts

Of these, I decided to use the 740.3 keV and 2064.1 keV transitions. While the 111.2
keV peak is the strongest one in the spectrum, it is too low-energy for Compton imaging.
The state’s lifetime is also on the extreme low-end of what we expect to be able to see
with either imaging mode. (The decay parameter of µ = 1.8 mm-1 means that 99.9% of the
nuclei de-excite within 3.9 mm of the target.) I ruled out the 800.7 keV peak for the same
reason. Lastly, while the 740.3 keV and 1347.7 keV transitions share the same lifetime, the
peak-to-total for 740.3 keV is significantly higher.

The 2064 keV transition has a very short known lifetime of < 0.7 ps. Combined with
the low 0.085c parent velocity, this gives a decay parameter of µ > 56 mm-1. This is short
enough for the source to appear like a stationary point source at the target. Neither gamma-
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ray imaging method has sufficiently good resolution to distinguish such a short de-excitation
curve. (Consider that 99.9% of the nuclei de-excite within the first 0.12 mm downstream of
the target.) This is actually extremely advantageous – it means the true emission points can
all be approximated as coming from the target location (z0 = 0.0 mm). We can thus treat
the gamma-ray image as the imaging response, i.e. the difference between the measured and
true emission points. Characterizing this detector response is of course essential to accurate
lifetime measurements.

For this experiment, my goal was to use the measured imaging responses at 2064.1
keV to correct the images produced at 740.3 keV. This assumes that the responses are similar
at both energies. However, as we can see from Figures 6.15 and 6.16, this is not at all a
good assumption. At 2064 keV, both imaging methods produce single-peak images, but
they have somewhat different shapes than those we produced in our simulations of the 1.0
MeV beam source. There is also significantly higher background. The Doppler-shift image,
in particular, resembles a Gaussian sitting atop a nearly uniform background. Unlike in
simulations, the energy spectrum continues past the photopeak energy. Recall that lower-
energy background below a peak causes a low tail of counts on the right side of the image.
Similarly, higher-energy background gives rise to a low tail on the left half of the image.

The images at 740 keV are much less well-behaved. The Doppler-shift image still
exhibits a clear peak near the target; this reflects the sharp de-excitation curve for the 740
keV transition. However, the background is far from uniform across the imaging range. In
fact, there appears to be a second, broader peak to the left of the target. This is due to
another nearby photopeak at 762.9 keV, which is too close in energy to be rejected directly.
The Compton image is also much degraded compared to the corresponding image at 2064
keV. From Figure 6.14 and Table 6.12, we can see that the Compton background at 740
keV is significantly higher than at 2064 keV. While many of these background counts can
be rejected by data filters, the ones that remain will blur the output images.

I was thus left with a question – how to deal with the very different imaging back-
grounds for the two energies? To apply the detector response at 2064 keV to measure the
lifetime at 740 keV, I needed to reduce the two imaging responses to comparable forms.
Figures 6.15 and 6.16 illustrate my approach to the problem. The first step was to obtain a
raw gamma-ray image (top row). After that, I identified the imaging background by defin-
ing a peak window (middle row). I simply set these windows by eye. Lastly, I performed
a background subtraction to isolate the “true” image (bottom row). This subtracted all
counts outside the peak window. I required counts to go to zero at the window boundaries,
subtracting a trapezoidal approximation of the background within the peak area. I took the
remaining peak as the final image. In the case of the 2064 keV transition, this became the
imaging response I used in the lifetime measurement.

This is admittedly a very crude approach. However, I did not have time to develop a
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Figure 6.15: Gamma-ray imaging responses for the 2064 keV transition of 92Mo
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Figure 6.16: Gamma-ray imaging responses for the 740 keV transition of 92Mo
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more rigorous method. Imaging response depends on more than a photon’s CM-frame energy
or the properties of the parent nuclei. It also depends on the highly complex structure of the
background in the allowed energy range (in this case, roughly 680 - 795 keV). This makes it
very difficult to use imaging responses at other energies or from other nuclei as surrogates
in lifetime measurements. It is also unclear how we would use this method for de-excitation
curves that span more of the total imaging window (i.e. long lifetime and/or high parent
velocity). As the 740 keV images show, we might not be able to use a trapezoidal estimate
for background in such cases.

Table 6.13 shows the results of the experimental measurements. I restricted tracks to
3-6 hits in length and the CM-frame energies to those in Table 6.12, but otherwise did not
apply any data cuts. I only calculated imaging resolution for the 2064 keV transition, where
I could treat the source as stationary and fit a Gaussian to the images. I then obtained
imaging efficiencies using the ratio of successful reconstructions to the number of counts in
their respective peak energy windows. I found that Doppler-shift imaging yields close to 5x
better resolution and 10x better imaging efficiency than Compton imaging, and therefore
seems the clear choice to use for these kinds of measurements.

2064 keV Transition
Compton Imaging Doppler-Shift Imaging

Imaging Peak Window -40.0mm to 40.0mm -20.0mm to 20.0mm
Imaging Resolution 20.90 ± 2.23 mm 4.96 ± 0.07 mm
Imaging Efficiency 1.057E-2 ± 4.9E-8 1.279E-1 ± 6.6E-7

740 keV Transition
Compton Imaging Doppler-Shift Imaging

Imaging Peak Window -40.0mm to 60.0mm -30.0mm to 50.0mm
Imaging Efficiency 2.061E-2 ± 7.6E-8 4.480E-3 ± 1.6E-8
Measured Lifetime N/A N/A

Table 6.13: Lifetime and imaging performance for 92Mo

Unfortunately, the lifetime measurement was unsuccessful. In the Doppler-shift imag-
ing case, the 2064 keV imaging response was wider than the “peak” I defined for the 740
keV line. Because of this, the χ2 algorithm described in Section 6.2 converged to a zero life-
time. In the Compton imaging case, I observed the opposite problem. This perhaps reflects
the stark difference in shape of the imaging responses at 2064 keV and 740 keV, even after
background subtraction.

Clearly, more work needs to be done to refine these measurement techniques. The
main problem lies in accurately characterizing the detector response for the transition under
study. There are a few methods we might try to improve this characterization. For example,
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Compton imaging is able to image stationary sources. We can therefore place a calibration
point source (like 60Co) at a fixed location on the beam axis, and use the measured image
as the detector response. This method does assume, however, that the velocity of the beam
has little effect on the overall imaging response. This method therefore does not work for
Doppler-shift imaging.

We could also make use of the χ2 fitting technique used in lifetime measurements
(Section 6.2). Instead of starting with a known detector response and an unknown lifetime,
we could use a transition with known lifetime to deduce the detector response. (The 2064
keV transition of 92Mo is a good example.) The goal is to find a hypothesized response that
most closely transforms the known source distribution (determined by lifetime and parent
velocity) into the measured image. We would have to propose the shape of the response, and
decide whether to account for geometric complications such as detector placement. Once we
have a properly-parametrized detector response, we could then construct a χ2 curve to find
the best-fit value for each parameter. However, this method assumes the surrogate response
thus produced is applicable to the state under study.

Lastly, we could potentially compute the detector response with a sufficiently-realistic
simulation. Due to time constraints, I only explored a simple 1.0 MeV beam source in
Chapters 4 and 5. We could readily simulate any other specific experimental setup. We
would need to assume values for the detector energy and position resolution, as well as the
nuclear lifetime and velocity. But once these properties were known, we’d be able to simulate
photon tracks with known emission points, and construct images from there. The goal would
be to run such simulations for a range of lifetimes, producing a different response matrix
for each, and then find the one that produced the best experimental results. One could
potentially quantify this by looking for the response that yielded the smallest uncertainty
on the measured lifetime. This method seems the most promising of the three.

Despite the negative results of this experimental validation, I still have hope. The
740 keV transition of 92Mo has a very short lifetime. Combined with the low recoil velocity
of the parent nuclei, this de-excitation was on the extreme low-end of what I expected to be
able to resolve. It’s likely there are other states that would be more conducive to study with
gamma-ray imaging. We’ll discuss them in more detail in Section 7.2.
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Chapter 7

Conclusions

7.1 Comparing Compton and Doppler-Shift Imaging

Doppler-shift imaging avoids many of the issues with Compton imaging, and seems much
more promising for lifetime measurements with GRETINA. It delivers better resolution and
significantly higher imaging efficiency, especially at low photon energies. However, Doppler-
shift imaging also rests on multiple assumptions which make it much less versatile than
Compton imaging in other applications.

Both the Compton and Doppler-Shift imaging methods have their strengths and weak-
nesses, which we went over in detail in Sections 4.1 and 5.1. Table 7.1 summarizes the com-
parison between the two. Note that both imaging methods require full energy-deposition in
the detector.

Figures 7.1 and 7.2 provide an apples-to-apples comparison of the two imaging meth-
ods for a typical experiment, taken from Chapters 4 and 5. Again, these results are for
a simulated beam source with 1.0 MeV CM-frame photon energy and 0.3c parent velocity.
A uniform (3.0 mm, 2.0 keV) detector resolution was applied to every simulated photon
interaction. We found that Compton imaging achieved 25.17 ± 0.65 mm imaging resolution
and 29.96 ± 0.07% absolute imaging efficiency, while Doppler-shift imaging delivered 3.97 ±
0.03 mm imaging resolution and 71.93 ± 0.12% imaging efficiency.

Note that in Figure 7.2, no data filters were used to improve imaging quality. By
contrast, Figure 7.3 shows some of the better results achieved when filters were applied. By
far the most effective way to improve Compton imaging is the comparison of measured and
known CM-frame photon energies. (After a photon’s emission point is calculated, we can
use the corresponding measured emission angle to compute the corrected CM-frame energy.)
Using the same detector setup as above, I was able to narrow imaging resolution to 4.09 ±
0.05 mm. This massive improvement came at a fairly high cost, however – absolute imaging
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Compton Doppler-Shift
Imaging Imaging

Strengths
Largely insensitive to σE

Does spectroscopy & imaging

Largely insensitive to σxyz
Only requires a single hit
Usable for low-energy γ’s
High imaging efficiency

Weaknesses

Highly-sensitive to σxyz
Highly-sensitive to sequencing
Requires two sequenced hits

Low imaging efficiency

Highly-sensitive to σE
Highly-sensitive to beam velocity

Requires a relativistic source
Requires prior spectroscopy

Poor Compton bkgd rejection

Table 7.1: Strengths & Weaknesses of Compton and Doppler-Shift Imaging

efficiency dropped to 2.202 ± 0.016% (7.501 ± 0.058% relative to the unfiltered case).

Doppler-shift imaging did not see such large improvements in its imaging resolution.
Here, it’s not detector resolution but rejection of Compton background that most limits the
fidelity of the output images. Of the data cuts I studied in my simulations, the most effective
one accepted or rejected counts based on emission angle. (Refer to Section 5.3.) It does cause
the shape of the imaging response to change significantly due to geometric effects, although
this can be adjusted for in the detector response. A more important issue arises in realistic
experiments with complex energy spectra. Here, most photopeaks will lie above a Compton
background from higher-energy peaks. The angle-rejection technique does not help as much
in such situations. In fact, it may even be a hindrance, as it will reduce the number of true
photopeak reconstructions without removing higher-energy background.

In general, Doppler-shift imaging appears more promising for lifetime measurements
with the GRETINA detector, where Compton imaging is limited by the detector’s posi-
tion resolution and short Compton lever arms. But because the Doppler-shift method also
requires á priori knowledge of the source’s velocity vector and specifc CM energy, its appli-
cations outside of lifetime measurements appear limited. Compton imaging is much more
versatile, with applications in nuclear security, astrophysics, and nuclear medicine.



CHAPTER 7. CONCLUSIONS 115

Figure 7.1: Side-by-side illustration of the Compton and Doppler-Shift imaging techniques
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Figure 7.2: Comparison of Compton & Doppler-Shift imaging responses, no data filters
For a typical detector and lifetime
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Figure 7.3: Comparison of Compton & Doppler-Shift imaging responses, with data filters
Reducing Compton bkgd enhances image quality
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7.2 Conclusions About Lifetime Measurements

The simulated lifetime measurements from Chapter 6 are very encouraging. They suggest
that, even with relatively poor imaging resolution, we can still determine lifetime fairly pre-
cisely (< 10% relative uncertainty). An experimental validation turned out to be much more
challenging than I had expected, however. In this section we discuss the reasons for this and
what can be done to improve future real-world measurements.

In Chapter 6, I sought to understand the effects of imaging resolution and statistics
on lifetime measurements. I did a semi-exhaustive 2D parameter search, varying imaging
resolution from 1.0 mm to 75.0 mm and statistics from 100 counts to 50K counts. A surprising
result was that, even with abysmal imaging resolution, it is still possible to measure a
lifetime within 1% uncertainty if given enough statistics. Tables 6.1 to 6.7 provide a detailed
breakdown of the simulation results. In a second set of calculations, I also looked into lifetime
precision over a range of lifetimes. Here, I kept the parent velocity constant at 0.3c, and
varied imaging resolution and number of counts separately. Again, the results appear quite
good. Figure 7.4 shows some of the lifetime precision curves obtained through simulation.

I also used the data to describe sensitive ranges for lifetime measurements with imag-
ing. These ranges show the lifetimes we could measure to within 10% uncertainty, given a set
imaging resolution and number of counts per de-excitation curve. Figure 7.5 provides several
examples. In all cases, statistics seems to be the limiting factor in lifetime measurements –
not imaging resolution. In other words, improving GRETINA’s position resolution is not as
important as it might appear for this application. Suppose that, instead of 3.0 mm detector
position resolution, we had the 0.5 mm resolution typical of double-sided strip detectors (or
DSSDs). [25] With no data filters applied, Compton imaging would deliver 9.62 mm imaging
resolution instead of 25.17 mm (Table 4.2). However, this would only extend our sensitive
range from roughly 0.05 ns < τ0 < 3.27 ns to 0.03 < τ0 < 3.62 at β = 0.3c and Nsamples =
5000 counts. (Table 6.8) And from Table 5.1, it is clear that Doppler-shift imaging resolution
is even less affected, only improving from 3.97 mm to 3.11 mm. It’s unclear exactly how
much this would improve lifetime sensitivity, but the gains would likely be very modest.

In the follow-up experimental validation, I sought to measure the lifetime of the 740
keV transition in 92Mo. I was hopeful that I could use the imaging response from the 2064
keV transition as a surrogate for the unknown response at 740 keV. However, the imaging
responses varied much more than anticipated between the 740 keV and 2064 keV emissions. I
attribute these differences to the differences in the energy spectrum near the two photopeaks.
The 2064 keV line stands alone on a relatively small Compton background (SNR = 1.102),
with no other photopeaks on either side for several hundred keV. As a result, the gamma-ray
images for this transition show a single clear peak (though it’s much sharper with Doppler-
shift imaging). By contrast, the 740 keV line sits atop a much higher relative background
(SNR = 0.325), and has a nearby peak at 763 keV which shows up prominently as noise in
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Figure 7.4: Lifetime measurement precision from simulations
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Figure 7.5: Lifetime sensitivity ranges from simulations
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both the Compton and Doppler-shift images.

A large part of the difficulty is in correcting for this background imaging noise. The
complete dissimilarity in the images at 740 keV and 2064 keV frustrated my efforts to come
up with a standard approach to the problem. The background-reduction methods I developed
from simulations of a 1.0 MeV beam source were inadequate. Instead, I more or less had
to “eyeball” the background and subtract it to arrive at a “corrected” image. As I then
found out, the responses thus produced for the 2064 keV transition were not applicable to
the 740 keV case, and so I did not arrive at a valid measure of the lifetime. That said, this
particular experimental validation was an ambitious one. With a 35 ps lifetime and 0.085c
parent velocity, the 740 keV state lies well outside the estimated sensitivity ranges. (I’ve
marked the transition in red on Figure 7.5.)

To get better results in future experiments, a few things would need to hold true. We
might sum up these requirements with the following “rules of thumb”:

1. A de-excitation parameter between 0.003 / mm < µ < 0.365 / mm
There is no hard and fast rule here, but a combination of low parent velocity and short
lifetime will make it very difficult to resolve a de-excitation curve even under the best of
circumstances. The 740 keV transition of 92Mo had a value of µ = 1.1 / mm, meaning
that over 99% of emissions occurred less than 5.0 mm downstream of the beam target.

2. A gamma line in an uncrowded portion of its parent energy spectrum
The 2064 keV line from 92Mo has no other photopeaks around it for hundreds of keV.
By contrast, the 740 keV line sits atop a large Compton background from nearby peaks,
the closest of which is only 20 keV away (763 keV). As a result, photons from the 2064
keV transition are much easier to isolate and therefore produce a much cleaner imaging
response.

3. A comparable imaging response from a known surrogate state
Correcting for imaging effects requires the imaging response to be well-characterized.
However, to characterize the imaging response we need to find a surrogate state to
use. The surrogate should have a very short lifetime (behaving like a point-source)
and come from a comparable energy spectrum to the state under study. I simply did
not have this for the 740 keV 92Mo transition.

4. At least 25K net counts in the photopeak on the parent energy spectrum
To obtain 10% lifetime uncertainty with 25.0 mm Gaussian imaging resolution, I found
that we’d need approximately 1000 counts in the final image. Accounting for imaging
efficiency, which can be as low as a few percent for Compton imaging, we would there-
fore want close to 25K net counts in the photopeak. If the Compton background was
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particularly high below the peak in question (low “signal-to-noise”), we would want to
aggressively filter the data. This would further increase the statistics requirement.

5. A lab-frame gamma-ray energy between 500 keV and 8.0 MeV
It’s actually a bit unclear what photon energy is ideal for imaging. To use Compton
sequencing, we need tracks to have 3+ interactions, which becomes increasingly rare
as photon energy decreases. That said, as we saw in Section 3.3, mis-sequencing
errors become more prevalent as track length increases. We can also technically use
Doppler-shift imaging for single-hit tracks and Compton imaging for tracks with just
2 hits. However, it is easier to filter Compton background counts when using longer
tracks. High-energy photopeaks tend to have larger signal-to-noise ratios than low-
energy peaks.

With these requirements satisfied, GRETINA’s detector performance should be suf-
ficient to measure lifetimes via gamma-ray imaging. Finding states to measure is a complex
question, however. Not only should the emitted gamma ray satisfy the above requirements,
but the parent state must also be reasonably easy to populate in a beam experiment.

7.3 Future Work and Lessons Learned

This section concludes my presentation on lifetime measurements with gamma-ray imaging.
It brings up some of the most important findings, as well as the next steps I recommend
taking to further this research. This future work is left open to anyone who may be interested
in carrying on the torch.

The results presented here are extensive but far from complete. There is plenty of
opportunity for others to extend my work.

In Chapters 4 and 5, I used a series of simulations to study the effects of various
experimental parameters on Compton and Doppler-shift imaging quality. I quantified imag-
ing performance for a typical detector using both imaging methods, assuming a uniform 3.0
mm position resolution and 2.0 keV energy resolution for photon interactions. However,Ie
only did so for a very simple test case – photons of 1.0 MeV CM-frame energy, emitted by
parent nuclei with a 2.7525 ns lifetime and 0.3c lab-frame velocity. The results thus obtained
cannot be extrapolated or applied to all subsequent imaging problems, as I found in Section
6.4. Differences in energy spectra and detector responses make it very difficult to do so.
Rather, I have developed a framework for studying such problems further. We could use
these models to simulate a great many other specific lifetime experiments, and from there
attempt to identify those worthy of pursuit with gamma-ray imaging.

Another of my goals, discussed in Sections 4.3 and 5.3, was to identify a choice
of data cuts to optimize imaging quality. This also proved to be too large in scope to
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tackle here – there simply is no one-size-fit-all solution. The 1.0 MeV-photon toy problem
proved successful enough. I proposed a small set of potential filters for both Compton and
Doppler-Shift imaging, and found the ones which individually offered the most substantial
improvements to imaging quality. However, I did not study combinations of data cuts in any
detail. Nor did I come up with objectively-optimal choices for things like Compton lever arm
and sequencing FoM. These choices would depend on the specific experiment in question,
hinging on things like the photon energy, the number of counts that would be available, and
the desired precision in the measured lifetime. Fully exploring such a large parameter space
would keep a grad student busy for a very long time.

I also ran into limitations simply trying to define “optimum”. It was clear from my
imaging simulations that Doppler-shift imaging offers much better FWHM imaging resolution
than its Compton imaging counterpart, at least for the typical detector we have described.
But that single figure cannot account for subtleties in the imaging response, particularly
the long “tails” caused by Compton background in Doppler-shift images. The data cuts I
investigated for this imaging method did not actually affect the FWHM all that much, and
yet they often noticeably improved the output images of the de-excitation curves. However,
I did not use any other metrics to quantify these improvements, and so I did not draw
conclusions about the optimal filtering limits to be used with Doppler-shift or Compton
imaging. I can say, though, that Doppler-shift imaging is more promising, especially when
background is low.

In Chapter 6, I ran a series of simulations to investigate how lifetime measurements
are affected by imaging resolution and statistics. The findings were extremely encouraging.
This said, I made a few important assumptions. First, I set the parent nuclei’s proper lifetime
to 0.859 ns and lab-frame velocity to 0.3c. This combination is close to an ideal case, as it
means that 90% of the de-excitations occur within the imaging range (0.0 mm < z < 180.0
mm). Second, and perhaps more importantly, I assumed the imaging responses are purely
Gaussian in shape. This is true in some cases, especially if we ignore the high-error tails
on Doppler-shift imaging responses. However, subtleties like these can impact the measured
images quite significantly (see Figure 5.6). Third, I also ignored complications from specific
detector geometries, which affect imaging efficiency along the beam-line. To improve on the
methods here, it would be useful to study more complex and realistic detector responses.

One of the goals with the lifetime measurement simulations was to identify an effective
range for which Doppler-shift or Compton imaging might be advantageous compared to
RDM. I performed one set of simulations on this front, using a σ = 25.0 mm Gaussian imaging
response, a 0.3c parent velocity, and 50K samples per de-excitation curve. These more or
less confirmed my back-of-the-envelope estimates for the effective range (approximately 0.23
ns to 2.7 ns). I found that, with sufficient statistics like this, the range could be extended
significantly. I saw < 4% relative uncertainty between approximately 0.35 ns and 4.0 ns.
Obviously, this is another case where a one-size-fits-all solution does not exist. The effective
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range really depends on the required uncertainty, the parent lifetime, and the particular
imaging response. If I were to continue this study, I would use my framework to perform
sensitivity studies for a much broader range of experimental parameters.

The experimental validation (Section 6.4) illustrated some limitations in my current
approach to the problem. I expected to be able to see the 35 ps lifetime of the 740 keV tran-
sition in 92Mo – both Doppler-shift and Compton imaging gave significantly better than 25.0
mm imaging resolution with the 2064 keV transition, and the available datasets contained a
sizable number of counts for imaging. However, as discussed above in Section 7.2, it proved
difficult to make such an apples-to-apples translation. The two photopeaks in question sat
atop large Compton backgrounds from other higher-energy peaks. In the case of the 740 keV
line, there was also a nearby photopeak that added to the imaging noise. The non-uniformity
of this noise made it difficult to quantify the imaging response, hence frustrating my efforts
to measure the lifetime of the 740 keV transition. Neither the Compton nor Doppler-shift
imaging techniques proved reliable here.

The next step is to assemble a list of candidate states to measure the lifetimes of. The
740 keV transition in 92Mo made for a particularly difficult experimental validation, but it
is what I had data for at the time. There are no doubt many other states that would prove
more successful with gamma-ray imaging methods. Experimental data exists for dozens of
isotopes, from which we might be able to draw a better candidate than 92Mo. Beyond that,
the NNDC Chart of Nuclides [22] could be used to identify thousands of other states which
satisfy the guidelines given in Section 7.2. As discussed in Section 7.2, we’re looking for
states with > 1.0 MeV emissions and lifetimes > 200 ps. We need relatively strong emission
lines with low Compton backgrounds and no nearby photopeaks on the energy spectrum.

After obtaining a list of candidate states, we could then either use existing experi-
mental data to run through the imaging framework I’ve developed, or else propose a new
experiment. And then, once the validity of the gamma-ray imaging lifetime technique is con-
firmed, we could look for as-yet unmeasured states for future experiments. The researchers
at FRIB (Michigan State University) specialize in the study of rare isotope beams. They
are an authority on which states are currently of most interest to the community, and could
provide guidance on ones whose lifetimes likely fall in our feasibility range.

With that, I conclude my study of lifetime measurements with gamma-ray imaging. I
invite anyone who is interested to reach out to me, whether for help understanding a general
concept presented here, or to take over the reins of my work with lifetime measurements. It
has been a thoroughly engrossing project from which I’ve learned a great deal. My greatest
hope is that this dissertation has been useful to the reader, and I thank you for your interest
in my small corner of the world.
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Appendix A

Appendix

A.1 Derivation of the Compton Formula

The derivation of the Compton energy formula is straightforward, and included here for
reference.

Deriving the energy of a photon after Compton scattering is fairly straightforward. Let
the photon have initial 3-momentum pγ,i and final 3-momentum pγ,f , and let the scattering
electron have corresponding momenta pe,i and pe,f . If we assume the electron is initially at
rest, then pe,i = 0, and conservation of momentum gives:

pγ,i = pγ,f + pe,f (A.1)

Conservation of energy yields

Eγ,i +mec
2 = Eγ,f + Ee,f (A.2)

= Eγ,f +
√

(pe,fc)2 + (mec2)2 (A.3)

where me is the rest mass of the electron (511keV). The next step is to solve for pe,f from
Equation A.1:

pe,f = pγ,i − pγ,f (A.4)

pe,f · pe,f = (pγ,i − pγ,f ) · (pγ,i − pγ,f ) (A.5)

= pγ,i · pγ,i + pγ,f · pγ,f − 2pγ,i · pγ,f (A.6)

p2
e,f = p2

γ,i + p2
γ,f − 2pγ,ipγ,f cos θ (A.7)

= E2
γ,i/c

2 + E2
γ,f/c

2 − 2(Eγ,iEγ,f/c
2) cos θ (A.8)

where θ is the angle between pγ,i and pγ,f , i.e. the scattering angle of the photon. Note
that we used the standard relation between photon energy and momentum: Eγ = pγc. From
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Equation A.1 we now get:√
(pe,fc)2 + (mec2)2 = Eγ,i − Eγ,f +mec

2 (A.9)

(pe,fc)
2 + (mec

2)2 = (Eγ,i − Eγ,f )2 + 2mec
2(Eγ,i − Eγ,f )

+ (mec
2)2 (A.10)

E2
γ,i + E2

γ,f − 2Eγ,iEγ,f cos θ + (mec
2)2 = E2

γ,i + E2
γ,f − 2Eγ,iEγ,f

+ 2mec
2(Eγ,i − Eγ,f ) + (mec

2)2
(A.11)

−2Eγ,iEγ,f cos θ = −2Eγ,iEγ,f + 2mec
2(Eγ,i − Eγ,f ) (A.12)

−Eγ,iEγ,f cos θ/mec
2 = −Eγ,iEγ,f/mec

2 + (Eγ,i − Eγ,f ) (A.13)

Eγ,f + Eγ,fEγ,i/mec
2 − Eγ,fEγ,i cos θ/mec

2 = Eγ,i (A.14)

Eγ,f

[
1 +

Eγ,i
mec2

(1− cos θ)

]
= Eγ,i (A.15)

Eγ,f =
Eγ,i

1 + (Eγ,i/mec2)(1− cos θ)
(A.16)

This last result is the famous Compton energy formula.

A.2 Derivation of Relativistic Doppler Shift

Doppler-shift correction is one of the primary features of GRETINA. Here we derive the
formula relating a photon’s lab- and CM-frame energies.

Consider a nucleus traveling with velocity vp = βcx̂′ in the lab frame, S. Suppose
this nucleus emits a gamma at an angle φ relative to its velocity. Without loss of generality,
we can choose a coordinate system where the photon travels in the xy-plane. In natural
units, then, we can denote the photon’s lab-frame 4-momentum as:

pµ,Lab = (Eγ, px, py, pz) (A.17)

= (Eγ, |pγ | cosφ, |pγ | sinφ, 0) (A.18)

where pγ = (px, py, pz) is the photon’s 3-momentum. By the Lorentz transformation, the
photon’s 4-momentum in the CM-frame S′ of its parent nucleus is then:

pµ,CM = (E ′γ, p
′
x, p
′
y, p
′
z) (A.19)

= (γEγ − γβpx, γpx − γβEγ, py, pz) (A.20)

= (γEγ − γβ|pγ | cosφ, γ|pγ | cosφ− γβEγ, |pγ| sinφ, 0) (A.21)

From the energy coordinate, we see that:

E ′γ = γEγ − γβ|pγ | cosφ (A.22)
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Note that for photons, Eγ = |pγ |, so we have:

E ′γ = γEγ − γβEγ cosφ (A.23)

E ′γ = γEγ(1− β cosφ) (A.24)

In other words, recalling that S is the lab frame and S′ is the CM frame:

Eγ,Lab =
Eγ,CM

γ(1− β cosφ)
(A.25)

A.3 Other Methods of Sequencing

Photon tracks can be sequenced deterministically or stochastically. This section describes
multiple stochastic approaches.

The Compton kinematics approach discussed in Section 3.2 is only one approach to
sequencing a photon track. Other common sequencing methods make use of Maximum-
Likelihood (ML) techniques.

One approach uses the energy-dependence of the Klein-Nishina formula (Equation

2.4) to determine a sequence. Let dσ(E)
dθ

be the differential Compton scattering cross-section
and let σC(E) be the integrated cross-section for a photon of energy E. Then the normalized
probability for scattering at an angle between θ and θ + dθ is:

dP (θ)

dθ
=

(
1

σC(E)

)(
dσ(E)

dθ

)
(A.26)

Picking a sufficiently small ∆θ such that the cross-sections are constant over the angular
range, we get:

P (θ) =

(
1

σC(E)

)(
dσ(E)

dθ

)
∆θ (A.27)

The next step is to find the total probability for all scatters in the track. Since ∆θ is
arbitrary, we can write:

Ptotal =

Nhits−1∏
j=2

P (θj) ∝
Nhits−1∏
j=2

(
1

σC(E)

)(
dσ(E)

dθ

)
(A.28)

FoM =

Nhits−1∏
j=2

(
1

σC(E)

)(
dσ(E)

dθ

)
(A.29)

As before, we just go through every possible sequence of hits and find the one that maximizes
this quantity.
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A second ML approach takes advantage of the energy-dependence of mean-free-paths
in the detector. Roughly speaking, a low-energy photon should travel less distance than a
high-energy photon before undergoing an interaction. (This is not strictly true, since the
total interaction cross-section increases again above the pair-production threshold.) The
probability that a photon of energy E will travel a distance between x and x + dx in a
detector volume is:

dP (E)

dx
=

1

L(E)
e−x/L(E) (A.30)

=
1

nσ(E)
e−xnσ(E) =

M

NAρσ(E)
e−

xNAρσ(E)

M (A.31)

With small enough ∆x, the integrated probability becomes:

P (E) =
M∆x

NAρσ(E)
e−

xNAρσ(E)

M (A.32)

Here, L(E) = 1/nσ(E) is the photon’s mean-free-path, σ(E) is the total interaction cross-
section (including photoabsorption, etc.), n is the detector’s atom density, ρ is its mass
density, NA is Avogradro’s Number, and M is the material’s molar mass. In HPGe, ρ =
5.32 g/cm3, M = 72.6 g/mol, and n = 4.4 x 1022 atoms/cm3. Using similar arguments as
above, we define a FoM by the total probability of the photon traveling the full length of the
observed track:

FoM =

Nhits−1∏
j=1

P (Ej) =

Nhits−1∏
j=1

1

L(Ej)
e−xj/L(Ej) (A.33)

where xj is the distance from Xj to Xj+1 and Ej is the outgoing photon energy from Xj .
As before, we seek to find the sequence that maximizes this figure-of-merit. Note that this
last approach can be used to sequence 2-hit tracks.

It is possible to combine multiple approaches into a single FoM. For example, we
might use the product of Eq. A.29, A.33, and 3.9:

FoM =

(
1

(Nscatters − 1)

Nhits−1∑
j=2

(∆Emeas,j −∆Ecalc,j)
2

∆E2
meas,j

)
×(

Nhits−1∏
j=2

(
1

σC(E)

)(
dσ(E)

dθ

))(Nhits−1∏
j=1

P (Ej)

) (A.34)

In Section 3.3, we discuss the effectiveness of deterministic sequencing methods. It would be
very interesting to do a comparison with the stochastic approaches described above.
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A.4 Cone-Beam Intersections in Compton Imaging

This section provides the algebra behind the cone-beam intersections in Compton imaging. It
requires a little matrix math, but nothing too fancy.

In Compton imaging, we need to find where the Compton cones intersect the beam
axis. Reference [9] provides a general geometric expression for this problem, which we can
adapt here for our specific problem.

As noted in Section 4.1, a Compton cone is defined by its vertex XC , central axis
V̂C , and cosine of opening angle µC = cos θC . A point Z lies on the cone if:

V̂C ·
(Z −XC)

‖Z −XC‖
= µC (A.35)

Re-arranging terms, we can rewrite this equation as:

V̂C · (Z −XC) = µC‖Z −XC‖ (A.36)

Squaring both sides, we get:

(V̂C · (Z −XC))2 = µ2
C‖Z −XC‖2 (A.37)

Noting the vector identities (a ·(b−c))2 = (b−c)TaaT (b−c) and (b−c)T (b−c) = ‖b−c‖2,
the above becomes:

(Z −XC)T V̂CV̂
T
C (Z −XC) = µ2

C(Z −XC)T (Z −XC) (A.38)

(Z −XC)TM(Z −XC) = 0 (A.39)

where M = V̂CV̂
T
C − µ2

CI3 is a 3 × 3 symmetric matrix. We seek an emission point X0

somewhere on the beam, which can be parametrized as X0(t) = B0 + B̂t with beam axis
B̂ and beam anchor point B0. In GRETINA, the beamline lies along the ẑ-axis and passes
through the origin of the lab frame, so we can simply set B0 = (0, 0, 0) and B̂ = (0, 0, 1).
This simplifies our expression for the emission point to X0(t) = B̂t. Substituting this
expression for X0(t) for Z(t) into Equation A.39, we get:

(B̂t−XC)TM(B̂t−XC) = 0 (A.40)

B̂TMB̂t2 − (B̂TMXC −XT
CMB̂)t+ XT

CMXC = 0 (A.41)

With the matrix identity (DEF )T = F TETDT , we note that:

(XT
CMB̂)T = B̂TMTXC = B̂TMXC (A.42)
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because M is symmetric. Since M is a 3 × 3 matrix, we know XC is a 3 × 1 column vector
and B̂T is a 1 × 3 row vector. Therefore, B̂TMXC and XT

CMB̂ are both 1 × 1 scalars.
So,

B̂TMXC = (XT
CMB̂)T = XT

CMB̂ (A.43)

This fact lets us rewrite Equation A.41 as a quadratic equation:

B̂TMB̂t2 − 2B̂TMXCt+ XT
CMXC = 0 (A.44)

Let a = B̂TMB̂ = B̂ · (MB̂), b = −2B̂TMXC = −2B̂ · (MXC), and c = XT
CMXC =

XC · (MXC), so at2 + bt + c = 0. This can be readily solved for t, and from there the
cone-beam intersections are given by X0,1 = t1B̂ and X0,2 = t2B̂. (Note: With imperfect
detectors, a Compton cone may not intersect the beamline at all. This is the situation when
b2 − 4ac < 0.)

A.5 Cone-Beam Intersections in Doppler-Shift

Imaging

This section provides the algebra for finding cone-beam intersections in Doppler-shift imaging.
Things are considerably simpler here than for Compton imaging.

Finding the emission point in Doppler-shift imaging is a straightforward geometry
exercise. The emission angle µ defines the opening angle of a “Doppler” cone – the set of
photon vectors with the same Doppler-shift. Unlike in Compton imaging, the cone axis here
is simply defined by the beam axis, B̂. The emission point X0 is the vertex of the cone, and
of course lies on the beamline. The point X1 is a point on the forward sheet of the cone.
These constraints limit us to a single solution for X0. Figure A.1 illustrates the geometry.

First, define a right triangle from the three points X0, X1, and Z0. Here, Z0 is the
point of closest approach on the beamline to X1. The lengths of the three sides are given
by:

h = ‖X1 −Z0‖ (A.45)

r = ‖X1 −X0‖ (A.46)

s = ‖X0 −Z0‖ (A.47)

The height and emission angle, θ, are related by h = r sin θ and s = r cos θ. So:

h

s
= tan θ =

√
1− µ2

µ
(A.48)

s =
µh√
1− µ2

(A.49)
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where µ = cos θ. This gives the distance between X0 and the point of closest approach.
Now that we have s, the emission point is given simply by:

X0 = Z0 − sB̂ (A.50)

Note that s will be positive if the emission angle is acute, and negative if θ is acute. This
sign is determined by µ in the numerator of Equation A.49.

Figure A.1: Deriving the cone-beam intersection in Doppler-shift imaging

So now we just need to find h, which turns out to also be quite straightforward. [8]
Define the beam-line as A(t) = B0 + tB̂, where B0 is a set point on the beamline and B̂
is a unit vector defining the beam axis. (We put B0 at the lab-frame origin for simplicity.)
The point of closest approach can be written Z0 = B0 + t0B̂. Let K = X1 −B0 be the
vector from the beam set point to the first interaction point in the photon track. Referring
again to Figure A.1, we see that the distance between B0 and Z0 is:

t0 = ‖K‖ cos θ = K · B̂ (A.51)

Now that we have the 3D coordinates of Z0, we can solve Equation A.45 for h.

A.6 Imaging Effects from Non-Ideal Beams

Here we discuss imaging errors that arise from realistic product beams. While beams generally
are very highly-focused, parent nuclei still do not form a pencil beam downstream of the target.
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From the derivations from Appendices A.4 and A.5, a photon’s calculated emission
point depends on the beam axis. In my imaging reconstruction code, I’ve assumed a strict
pencil beam directed along A(t) = B0 + tB̂ = (0, 0, 0)+ t(0, 0, 1) in the lab-frame. However,
the actual angular distribution for the reaction products will have a finite spread. Reactions
are highly forward-directed in the lab-frame, but the degree to which this is true depends
on the specific kinematics of the reaction. Depending on the target thickness, the product
nuclei may also undergo significant straggling as they exit the target.

Consider a projectile that hits at a point B′0 = (x′, y′) in the plane of the target, and
subsequently reacts. Suppose the recoil nucleus (the parent of the photon we’ll measure)
heads off at an angle θ relative to the nominal beam axis, B̂. For the sake of generality,
suppose also that the nucleus has a radial angle of η as measured in the target XY-plane. We
can define this heading vector as A′(t) = B′0 + tB̂′, where B̂′ = (sin θ cos η, sin θ sin η, cos θ).
This is the line along which the photon will be emitted.

Figure A.2: Estimated effects of beam deviations on imaged emission point

Because our imaging techniques use A(t) instead of A′(t) as the emission vector, there
will be some intrinsic imaging error associated with each calculated cone-beam intersection.
Figure A.2 provides a simplified illustration to estimate these errors. For example, consider
a parent nucleus that is created 4.00 mm above center on the target, and which recoils at
0.3c with a 1.00° divergence from the nominal beam axis (B̂ = ẑ). For simplicity, assume
the beam divergence and photon emission are both in the YZ-plane. Suppose this nucleus
de-excites after traveling 100.0 mm, emitting a photon at 29.0° relative to its line of motion
(or 30.0° relative to B̂). At the emission point, the parent nucleus is 5.75 mm away from the
beam axis. The true emission point is X ′0 = (0.00 mm, 5.75 mm, 99.98 mm), but tracing the
emission vector back to B̂ yields an intersection at X0 = (0.00 mm, 0.00 mm, 90.04 mm).
The difference in true vs. imaged travel distance is |d − d′| = 9.96 mm, which corresponds
to a full 105 ps difference in apparent emission time. To rigorously quantify this error in the
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more general case, we would need to re-run full beam-cone calculations using the adjusted
trajectory of the parent nucleus.

The adjusted trajectories can be measured with a pair of microchannel plate detectors.
[4] These detectors are thin, highly-pixelated scintillators which record timing and position of
ions as they pass through. The detectors ideally should be thin enough to detect an incident
particle’s passing without affecting its trajectory. Figure A.3 illustrates how this information
can be used to deduce the beam properties. Consider an ion which passes through the first
detector at position Z1 and time t1, and through the second detector at Z2 and time t2.
The adjusted heading vector for this particle is thus:

Â′ = B′0 + tB̂′ (A.52)

= Z1 + t(Z2 −Z1)/‖Z2 −Z1‖ (A.53)

Furthermore, the measured speed of the ion is:

β =
‖Z2 −Z1‖
t2 − t1

(A.54)

With this information, it is straightforward to re-run the beam-cone calculations to produce
adjusted emission times for each parent nucleus.

Figure A.3: Microchannel plate detectors

A.7 Error Propagation in Compton Imaging

This section describes computing analytical error estimates for Compton imaging. These
estimates can be used to judge the reliability of the reconstruction for an individual photon
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track. The full derivation contains 20 pages of partial derivatives – those have been omitted
and “left as an exercise to the reader”.

We are interested in estimating imaging resolution in Compton Imaging. One way to
do so is through analytic error propagation. Recall the general formula for computing these
errors:

σ2
z =

N∑
j=1

(
∂z

∂xj

)2

σ2
xj

(A.55)

where (x1, ..., xN) are the independent variables in our measurement. For this imaging prob-
lem, there are 8 such variables needed to define a given Compton cone. The cone vertex is
given by XC = X1 = (x1, x2, x3), and the second hit is at X2 = (x4, x5, x6). These two
points define the cone axis:

V̂C =
X1 −X2

‖X1 −X2‖
= (

x1 − x4

L
,
x2 − x5

L
,
x3 − x6

L
) = (v1, v2, v3) (A.56)

where L =
√

(x1 − x4)2 + (x2 − x5)2 + (x3 − x6)2 is the Compton lever arm. Lastly, the
cone angle is determined by:

µC = 1−mec
2

(
1

E1

− 1

E0

)
(A.57)

where E0 is the photon’s lab-frame emission energy and E1 is the energy after the initial
scatter in the detector. Therefore, the eight independent variables (i.e what we measure) are
(x1, x2, x3, x4, x5, x6, E0, E1).

Note that this analysis ignores the beam properties of the parent nuclei. To account
for variations in the beam, we would have to add the photon parent’s trajectory to the list of
independent variables. The velocity component is 4 variables: βB̂ = (βb1, βb2, βb3), where
B̂ is the heading for a particular recoil nucleus and βc is its speed. We would also need a
beam setpoint, B0 = (b0,1, b0,2, b0,3) that the nucleus passes through. In all, this would add
another 7 independent variables to the analysis: (b1, b2, b3, b0,1, b0,2, b0,3, β). For simplicity,
and because the variations in the beam are typically not large, I have ignored these.

In Appendix A.4 we went over the math behind finding emission points using Compton
imaging. The goal was to calculate the t in z(t) = B0 + tB̂. In the end, we arrived at a
quadratic equation:

t =
−b±

√
b2 − 4ac

2a
(A.58)

a = B̂ · (MB̂) (A.59)

b = −2B̂ · (MXC) (A.60)

c = XC · (MXC) (A.61)
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Again, M = V̂CV̂
T
C − µ2

CI3 is a 3 × 3 symmetric matrix:

M =

 v2
1 − µ2

C v1v2 v1v3

v1v2 v2
2 − µ2

C v2v3

v1v3 v2v3 v2
3 − µ2

C

 (A.62)

To get scalar expressions for error analysis, we evaluate a, b, and c with known quantities
for the beam:

B0 = (0, 0, 0) B̂ = (0, 0, 1) (A.63)

The matrix algebra is straightforward, yielding the following:

a = v2
3 − µ2

C (A.64)

b = −2[v1v3x1 + v2v3x2 + (v2
3 − µ2

C)x3] (A.65)

c = x2
1(v2

1 − µ2
C) + x2

2(v2
2 − µ2

C) + x2
3(v2

3 − µ2
C)

+ 2(v1v2x1x2 + v1v3x1x3 + v2v3x2x3)
(A.66)

Furthermore, note that Z(t) = B0 + tB̂ = (0, 0, t), so we can write the emission point
simply as its z-coordinate, z = t.

Now that we have these expressions, the partial derivatives of z with respect to the
independent variables (x1, ..., x6, E0, E1) can be calculated using the chain rule:

∂z(y1, ..., yN)

∂xj
=

N∑
n=1

(
∂z

∂yn

)(
∂yn
∂xj

)
(A.67)

Here, z is a function of the variables a(x1, ..., x6, E0, E1), b(x1, ..., x6, E0, E1), and c(x1, ..., x6, E0, E1)
from our earlier quadratic equation. So, for example:

∂z

∂x1

=
∂z

∂a

∂a

∂x1

+
∂z

∂b

∂b

∂x1

+
∂z

∂c

∂c

∂x1

(A.68)

Calculating the partial derivatives was a lengthy ordeal, and so I’ll just provide the
results below. Note that the partial derivatives of z contain a ± or ∓ sign, which reflect
the root chosen in Equation A.58. (This only works when Compton imaging yields a unique
emission point for the photon.)
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Partial Derivatives of z

∂z

∂a
=

b

2a2
± c− b2/2a

a
√
b2 − 4ac

(A.69)

∂z

∂b
=
−1± b/

√
b2 − 4ac

2a
(A.70)

∂z

∂c
=

∓1√
b2 − 4ac

(A.71)

Partial Derivatives of a

∂a

∂x1

= −2v1v
2
3

L

∂a

∂x4

= − ∂a

∂x1

(A.72)

∂a

∂x2

= −2v2v
2
3

L

∂a

∂x5

= − ∂a

∂x2

(A.73)

∂a

∂x3

=
2v3(1− v2

3)

L

∂a

∂x6

= − ∂a

∂x3

(A.74)

∂a

∂E0

=
2µme

E2
0

∂a

∂E0

= −2µme

E2
1

(A.75)
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Partial Derivatives of b

∂b

∂x1

=
2v3(2v2

1x1 − 2x1 + x4) + 4v1v2v3x2

L
− 2x3

∂a

∂x1

(A.76)

∂b

∂x2

=
2v3(2v2

2x2 − 2x2 + x5) + 4v1v2v3x1

L
− 2x3

∂a

∂x2

(A.77)

∂b

∂x3

=
2(2v2

3 − 1)(v1x1 + v2x2)

L
− 2(a+ x3

∂a

∂x1

) (A.78)

∂b

∂x4

= −2v3x1(2v2
1 − 1)− 4v1v2v3x2

L
− 2x3

∂a

∂x4

(A.79)

∂b

∂x5

= −2v3x2(2v2
2 − 1)− 4v1v2v3x1

L
− 2x3

∂a

∂x5

(A.80)

∂b

∂x6

= −2(2v2
3 − 1)(v1x1 + v2x2)

L
− 2x3

∂a

∂x6

(A.81)

∂b

∂E0

= −2x3
∂a

∂E0

∂b

∂E1

= −2x3
∂a

∂E1

(A.82)
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Partial Derivatives of c

∂c

∂x1

= 2v1x
2
1(1− v2

1)/L+ 2v1v2x2(1− v2x2)/L− 4v1v2v3x2x3/L

+ 2x1(v2x2 + v3x3)(1− 2v2
1)/L+ x2

3

∂a

∂x1

+ 2x1(v2
1 − µ2) + 2v1v3x3

(A.83)

∂c

∂x2

= 2v2x
2
2(1− v2

2)/L+ 2v1v2x1(1− v1x1)/L− 4v1v2v3x1x3/L

+ 2x2(v1x1 + v3x3)(1− 2v2
2)/L+ x2

3

∂a

∂x2

+ 2x2(v2
2 − µ2) + 2v2v3x3

(A.84)

∂c

∂x3

= 2x3(v1x1 + v2x2)(1− 2v2
3)/L− 2v3(v2

1x
2
1 + v2

2x
2
2)/L− 4v1v2v3x1x2/L

+ 2v3(v1x1 + v2x2) + x2
3

∂a

∂x3

+ 2x3a

(A.85)

∂c

∂x4

= − 2v1x
2
1(1− v2

1)/L+ 2v1v
2
2x

2
2/L+ 4v1v2v3x2x3/L

− 2x1(v2x2 + v3x3)(1− 2v2
1)/L+ x2

3

∂a

∂x4

(A.86)

∂c

∂x5

= − 2v2x
2
2(1− v2

2)/L+ 2v2v
2
1x

2
1/L+ 4v1v2v3x1x3/L

− 2x2(v1x1 + v3x3)(1− 2v2
2)/L+ x2

3

∂a

∂x5

(A.87)

∂c

∂x6

= − 2x3(v1x1 + v2x2)(1− 2v2
3)/L+ 2v3(v2

1x
2
1 + v2

2x
2
2)/L

+ 4v1v2v3x1x2/L+ x2
3

∂a

∂x6

(A.88)

∂c

∂E0

=
2µme

E2
0

(x2
1 + x2

2) + x2
3

∂a

∂E0

(A.89)

∂c

∂E1

= − 2µme

E2
1

(x2
1 + x2

2) + x2
3

∂a

∂E1

(A.90)

For my work, I have assumed that (x1, ..., x6) are all equally-affected by position
resolution, σxyz, and E0 and E1 are equally-affected by energy resolution, σE. To avoid
confusion, we will refer to the estimated imaging resolution as σimg instead of σz. Summing
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everything together with the Chain Rule, we find:

σ2
img =

[(
∂z

∂x1

)2

+

(
∂z

∂x2

)2

+

(
∂z

∂x3

)2

+

(
∂z

∂x4

)2

+

(
∂z

∂x5

)2

+

(
∂z

∂x6

)2
]
σ2
xyz

+

[(
∂z

∂E0

)2

+

(
∂z

∂E1

)2
]
σ2
E

(A.91)

= σ2
img,pos + σ2

img,energy (A.92)

I’ve separated the resolution estimate into two components – one depending entirely on
position resolution (σimg,pos) and one only on energy resolution (σimg,energy). For typical
resolutions in GRETINA, σimg,pos >> σimg,energy. (See Figure 4.3)

As mentioned, the derivation of the above partial derivatives was a lengthy process,
and certainly open to error. I checked each expression numerically using Mathematica’s
procedural derivative-calculator (which unfortunately did not produce tractable formulae).
In addition, I performed an independent numerical check by tweaking each independent
variable for a sample Compton reconstruction. By introducing small changes in x1 or another
of the variables, I obtained numerical derivatives to compare with the results of the analytical
expressions above.

Table A.2 shows the comparison for the following photon track. To determine nu-
merical derivatives, I shifted positions in 0.01 mm increments and energies in 0.025 keV
increments.

Hit x (mm) y (mm) z (mm) ∆E (keV)

#1 -81.4542 172.469 -30.0678 288.424
#2 -100.3864 193.4548 -49.6538 210.0868
#3 -101.4564 193.9505 -52.1735 474.4475
#4 -96.0459 197.7831 -44.1857 0.6924
#5 -95.9333 197.857 -43.978 199.5873

Table A.1: Sample photon track used in error estimates
Hits: 5, Track Energy: 1173.238keV

As we can see, the differences between the analytical and numerical results are gen-
erally within 0.5%. This confirms the formulas above. A final note – both the analytic
and numeric estimated errors for this sample track are 29.253 mm, assuming (3.000 mm,
2.000 keV) detector resolution. The track has a Compton lever arm of 34.387 mm, which is
why the error is relatively small. Other tracks I tested have errors in the hundreds or even
thousands of mm. It’s also clear that the position resolution error component dominates
(σimg,pos). Energy resolution only affects the Compton cone angle, and in this case we see
σθ = 0.00292 radians (0.168°).
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Partial Analytic Numeric Partial Analytic Numeric
Derivative Estimate Estimate Derivative Estimate Estimate

∂z/∂a -0.08191 – ∂θ/∂E0 0.000723 0.000720
∂z/∂b 0.02344 – ∂θ/∂E1 -0.001271 -0.001266
∂z/∂c -0.00671 – – – –
∂a/∂x1 -0.01039 -0.01040 ∂b/∂x1 -4.0290 -4.0284
∂a/∂x2 0.01152 0.01150 ∂b/∂x2 1.7436 1.7467
∂a/∂x3 0.02238 0.02237 ∂b/∂x3 5.2351 5.2424
∂a/∂x4 0.01039 0.01040 ∂b/∂x4 3.4018 3.4033
∂a/∂x5 -0.01152 -0.01153 ∂b/∂x5 -1.0484 -1.0458
∂a/∂x6 -0.02244 -0.02237 ∂b/∂x6 -4.4115 -4.4043
∂a/∂E0 0.000637 0.000640 ∂b/∂E0 0.0383 0.0383
∂a/∂E1 -0.001120 -0.001120 ∂b/∂E1 -0.0674 -0.0673
∂c/∂x1 -167.46 -166.95 ∂z/∂x1 1.0295 1.0253
∂c/∂x2 -734.68 -733.81 ∂z/∂x2 4.9671 4.9613
∂c/∂x3 -780.21 -780.22 ∂z/∂x3 5.3535 5.3571
∂c/∂x4 103.26 103.73 ∂z/∂x4 -0.6136 -0.6170
∂c/∂x5 684.85 685.43 ∂z/∂x5 -4.6166 -4.6217
∂c/∂x6 633.98 633.96 ∂z/∂x6 -4.3535 -4.3510
∂c/∂E0 23.752 23.746 ∂z/∂E0 -0.1585 -0.1584
∂c/∂E1 -41.761 -41.755 ∂z/∂E1 0.2786 0.2785

Table A.2: Numerical check of Compton imaging error estimates

Partial Partial Partial
Derivative Units Derivative Units Derivative Units

∂a/∂xj mm-1 ∂b/∂xj – ∂c/∂xj mm
∂a/∂Ek keV-1 ∂b/∂Ek mm keV-1 ∂c/∂Ek mm2 keV-1

∂z/∂a mm ∂z/∂xj – ∂θ/∂Ek rad keV-1

∂z/∂b – ∂z/∂Ek mm keV-1 – –
∂z/∂c mm-1 – – – –

Table A.3: Units for partial derivatives
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A.8 Error Propagation in Doppler-Shift Imaging

This section is very similar to the previous one, Section A.7. However, the math behind
analytic imaging errors in Doppler-shift imaging is much simpler.

In Section A.5 we solved for a photon emission point based on the measured lab-
frame energy, assumed CM-frame energy, and track vertex. As with Compton imaging, we
are interested in estimating the imaging error per each track. Here, though, the math is
much simpler. There are only 5 independent variables: X1 = (x1, x2, x3), ELab, and ECM .
Again, we’re ignoring the variations in the beam for simplicity. Of these properties, the
beam speed would be expected to have the most effect, as it directly affects the calculation
of emission angle from Doppler-shift. (However, that effect should be small, as recoil speed
typically varies only by 1% or less at β = 0.3c.)

Equation A.93 gives this emission angle in terms of the measured lab-frame energy
and assumed CM-frame energy:

µ =
1

β

(
1− ECM

γELab

)
(A.93)

Let the emission point be denoted X0 = B0 + tB̂. If we assume an ideal beam as before,
then B0 = (0,0,0) and B̂ = (0,0,1). This lets us characterize the emission point simply by
its ẑ-coordinate, z = t, thereby simplifying the expressions we used in Section A.5. Recall
that Z0 = B0 + t0B̂ is the point of closest approach between the track vertex X1 and the
beamline.

t0 = ‖B0 −Z0‖ = ‖X1 −B0‖ cos θ = (X1 −B0) · B̂ = X1 · B̂
= x3

(A.94)

h = ‖X1 −Z0‖ = ‖X1 − t0B̂‖ = ‖X1 − x3B̂‖

=
√
x2

1 + x2
2

(A.95)

s = ‖X0 −Z0‖ = hµ/
√

1− µ2

=
µ
√
x2

1 + x2
2√

1− µ2

(A.96)

z = ‖Z0 − sB‖ = t0 − s

= x3 −
µ
√
x2

1 + x2
2√

1− µ2

(A.97)
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Now we’re left to calculate all partial derivatives of z with respect to the independent
variables, (x1, x2, x3, ELab, ECM). The math is straightforward and I will simply quote the
results here:

Partial Derivatives for Position Measurements

∂z

∂x1

= − x1µ√
(x2

1 + x2
2)(1− µ2)

(A.98)

∂z

∂x2

= − x2µ√
(x2

1 + x2
2)(1− µ2)

(A.99)

∂z

∂x3

= 1 (A.100)

(A.101)

Partial Derivatives for Energy Measurements

∂z

∂µ
= −

√
x2

1 + x2
2

(
√

1− µ2)3

∂θ

∂µ
= − 1√

1− µ2
(A.102)

∂µ

∂ELab
=

ECM
γβE2

Lab

∂µ

∂ECM
= − 1

γβELab
(A.103)

∂z

∂ELab
=
∂z

∂µ

∂µ

∂ELab

∂z

∂ECM
=
∂z

∂µ

∂µ

∂ECM
(A.104)

∂θ

∂ELab
=
∂θ

∂µ

∂µ

∂ELab

∂θ

∂ECM
=
∂θ

∂µ

∂µ

∂ECM
(A.105)

I again assumed (x1, x2, x3) are all equally-affected by position resolution, σxyz, while
ELab and ECM are equally-affected by energy resolution, σE. To avoid confusion, we will
refer to the estimated imaging resolution as σimg instead of σz. Summing everything together
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with Equation A.55, we get:

σ2
img =

[(
∂z

∂x1

)2

+

(
∂z

∂x2

)2

+

(
∂z

∂x3

)2
]
σ2
xyz

+

[(
∂z

∂ELab

)2

+

(
∂z

∂ECM

)2
]
σ2
E

(A.106)

= σ2
img,pos + σ2

img,energy (A.107)

As before, I’ve separated the resolution estimate into two components – one depending
entirely on position resolution (σimg,pos) and one only on energy resolution (σimg,energy).
However, in this case we see that σimg,pos ≈ σimg,energy for typical resolutions – very different
than in Compton imaging. (Compare Figures 4.3 and 5.2.) For these tests, I assumed
ECM was precisely known, so that it did not affect the overall error estimates. Similarly, I
assumed the beam velocity was precisely controlled – though as we can see from Appendix
A.5, uncertainty in β will certainly have an effect on the imaging error. The beam-cone
intersections explicitly depend on β.

I ran the same numerical checks of these error propagation formulas as I did for
Compton imaging. Table A.5 shows the comparison for a sample photon track. To determine
numerical derivatives, I shifted positions in 0.01 mm increments and energies in 0.025 keV
increments.

Hit x (mm) y (mm) z (mm) ∆E (keV)

#1 -81.4542 172.469 -30.0678 288.424
#2 -100.3864 193.4548 -49.6538 210.0868
#3 -101.4564 193.9505 -52.1735 474.4475
#4 -96.0459 197.7831 -44.1857 0.6924
#5 -95.9333 197.857 -43.978 199.5873

Table A.4: Sample photon track used in error estimates
Hits: 5, Lab Energy: 1173.238keV, CM Energy: 1000.000keV

The differences between the analytical and numerical results are generally within
0.5%. This confirms the formulas above. A final note – both the analytic and numeric
estimated errors for this sample track are 4.255 mm, assuming (3.000 mm, 2.000 keV) de-
tector resolution. Both the position and energy resolution error components are on similar
scales. The emission angle is only affected by energy resolution, and in this case we find
σθ = 0.00591 radians (0.338°).
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Partial Analytic Numeric Partial Analytic Numeric
Derivative Estimate Estimate Derivative Estimate Estimate

∂z/∂x1 0.34018 0.34081 – – –
∂z/∂x2 -0.72028 -0.71972 – – –
∂z/∂x3 1.00000 0.99997 ∂θ/∂µ -1.2785 -1.2759
∂z/∂µ -398.59 -396.82 ∂θ/∂β – –

∂z/∂ELab -0.92076 -0.92122 ∂z/∂ECM – –
∂µ/∂ELab 0.00231 0.00232 ∂µ/∂ECM – –
∂θ/∂ELab -0.00295 -0.00296 ∂θ/∂ECM – –

Table A.5: Numerical check of Doppler-Shift imaging error estimates

Partial Partial
Derivative Units Derivative Units

∂z/∂xj – ∂µ/∂Ek keV-1

∂z/∂Ek mm keV-1 ∂θ/∂µ radians
∂z/∂µ mm ∂θ/∂Ek radians keV-1

Table A.6: Units for partial derivatives
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A.9 Gaussian Curve Fitting

I used Gaussian fits extensively in Chapters 4 and 5. This section goes into the details of
the curve-fitting algorithm I employed.

A Gaussian has the form:

y(x) = Ae−(x−x0)2/2σ2

(A.108)

where A is the Gaussian’s amplitude, x0 is its centroid, and σ is its standard deviation. For
a normalized Gaussian, A = 1/σ

√
2π. The Full-Width-Half-Max (FWHM) is related to the

standard deviation by FWHM = 2
√

2ln2σ.

Suppose we’re given a set of data points {(x′, y′)} and want to fit a Gaussian shape
to them. One way is to linearize Equation A.108:

y/A = e−
(x−x0)

2

2σ2 (A.109)

ln y − lnA = −(x− x0)2

2σ2
(A.110)

= −x
2 − 2xx0 + x2

0

2σ2
(A.111)

ln y = − 1

2σ2
x2 +

x0

σ2
x+

(
lnA− x2

0

2σ2

)
(A.112)

= ax2 + bx+ c (A.113)

where a = −1/(2σ2), b = x0/σ
2, and c = lnA− x2

0/2σ
2. This equation is now in a form that

is readily solved by Matlab’s polyfit() function. [10]

Matlab’s polyval() function returns value for the coefficients a, b, and c above. We
can then solve for the Gaussian’s standard deviation, centroid, and amplitude using:

σ =
√
−1/2a x0 = bσ2 A = ec+x02/(2∗σ2) (A.114)

Furthermore, we can use error propagation on these expressions to estimate the error on
each parameter:

σσ =
1

2
√
−2a3

σa (A.115)

σx0 =
√

(b/2a2)2σ2
a + (1/2a)2σ2

b (A.116)

σA = A
√

(b2/2a3)2σ2
a + (b/2a2)2σ2

b + σ2
c (A.117)
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(I’ll leave the partial derivative calculations to the reader.) In addition to the coefficients a,
b, and c, the polyval() function also returns a covariance matrix from which the values of σa,
σb, and σc can be calculated. The formula below gives a vector V whose elements are the
standard deviations of the fit parameters:

V =

√
diag(C)

ν
‖R‖ (A.118)

= 〈σa, σb, σc〉 (A.119)

‖R‖2 =
K∑
k=1

(yk,meas − yk,fit)2 (A.120)

where C is the covariance matrix, ν is the degrees of freedom of the fit, and ‖R‖ is the norm
of the residuals vector. These residuals are calculated for the kth x-bin as the difference
between the measured number of counts yk,meas and the fitted number of counts yk,fit.

Deciding the range over which to perform the fit is an important question. In this
work, the gamma-ray images extend from -180mm < z < 180mm, and are generally not
Gaussian over this entire range. In my approach, I assume the x-bin with the most counts
is the centroid of the distribution. From there, I set the left- and right-bounds as the first
and last bins with at least half the maximum counts, respectively. I then extend the range
by two bins to either side. In special cases where the peak is very wide or very far off-center,
the FWHM may not be entirely contained in the imaging range. If we have at least half of
the peak, though, we can reflect it about its center to get a full peak to fit to. Otherwise,
the fit just uses the entire imaging range. Note that negative-count bins are set to 0 counts.

Lastly, choice of binning can also significantly affect the fit. For example, using
overly-wide bins may produce overly-wide FWHM’s. Overly-narrow bins will result in a
sparse counts vector that obscures the shape of the source distribution. I chose to use David
Scott’s 1979 “rule of thumb” [19], wherein the number of bins used to histogram data is
approximated as:

Nbins = 2(2Npts)
1/3 (A.121)

where Npts is the number of samples to be histogrammed and Nbins is rounded up to the
nearest integer.

A.10 Source Code

I developed a C++ program called AnalysisTool specially for this project, from which I drew
most of my calculations. My work also relies on a series of Octave and Python scripts for
data interpretation and plotting.

AnalysisTool is a stand-alone executable written in C++. It depends on both the
C++ standard library as well as well-known Boost library [2]. The executable provides a
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command-line interface for many common tasks, including gamma-ray imaging with both
main imaging methods, and using either measured or simulated GRETINA track data. There
is also simple macro functionality by which a series of commands can be automated. However,
the tool is far from complete. Given more time, I would like to redesign AnalysisTool with
a GUI, multi-core support, and a more-unified set of features. As is, the software has
been built over many years and would benefit from greater standardization. Many features
simply spit out text files for use with an Octave or Python script. I also have yet to write
up comprehensive documentation.

The full source code used in this project is well over 1 MB, and would require a
few hundred pages to print. Instead, for those for are interested, please download the source
archives here: https://drive.google.com/file/d/0B9vcljsiWJjvamlFcVZwNlVZTXc/view?
usp=sharing

If you would like to use AnalysisTool, the best way would be to contact me directly
for instructions. (I can be reached at rdcrabbs@gmail.com.) I am happy to help you get
started.

https://drive.google.com/file/d/0B9vcljsiWJjvamlFcVZwNlVZTXc/view?usp=sharing
https://drive.google.com/file/d/0B9vcljsiWJjvamlFcVZwNlVZTXc/view?usp=sharing
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