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ARTICLE

Modeling genome-wide enzyme evolution predicts
strong epistasis underlying catalytic turnover rates
David Heckmann1, Daniel C. Zielinski1 & Bernhard O. Palsson 1,2

Systems biology describes cellular phenotypes as properties that emerge from the complex

interactions of individual system components. Little is known about how these interactions

have affected the evolution of metabolic enzymes. Here, we combine genome-scale meta-

bolic modeling with population genetics models to simulate the evolution of enzyme turnover

numbers (kcats) from a theoretical ancestor with inefficient enzymes. This systems view of

biochemical evolution reveals strong epistatic interactions between metabolic genes that

shape evolutionary trajectories and influence the magnitude of evolved kcats. Diminishing

returns epistasis prevents enzymes from developing higher kcats in all reactions and keeps the

organism far from the potential fitness optimum. Multifunctional enzymes cause synergistic

epistasis that slows down adaptation. The resulting fitness landscape allows kcat evolution to

be convergent. Predicted kcat parameters show a significant correlation with experimental

data, validating our modeling approach. Our analysis reveals how evolutionary forces shape

modern kcats and the whole of metabolism.
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The biological systems we observe today are the results of
evolutionary trajectories that were shaped by their under-
lying genotype-to-fitness map, termed the fitness land-

scape. The components of the system constantly change to
increase fitness in the current environment. It is thus tempting to
assume that, given the right environment, biological systems can
be described as the state that results in the highest fitness possible
under all biophysical constraints. Whereas such optimality
assumptions were successfully applied to understand a variety of
systems properties like bacterial growth rates1,2, gene expression
patterns3–5, and metabolic fluxes6,7, they are expected to prove
futile when the underlying fitness landscape is rugged and exhi-
bits local optima8,9, or when the natural selection cannot over-
come genetic drift to establish potential fitness gains10–12. The
topography of the fitness landscape is determined by epistasis13,
i.e., the extent to which the fitness effect of a mutation depends on
the genetic background. Understanding epistasis is thus crucial
for understanding evolutionary dynamics and constraints, and
systems models can serve as a key tool to understand these
interactions9,14,15.

It was suggested that the catalytic turnover numbers (kcats) of
metabolic enzymes constitute an example of a system state that is
distant from a potential optimum, as the efficiency of most
enzymes remains far from its theoretical maximum16,17. Enzyme
turnover numbers span over six orders of magnitude and are
essential for understanding biological processes on a quantitative
level, as they quantitatively describe the proteomic demands of
reaction flux, growth, and thus fitness2,18–23. In contrast to this
high variability and functional importance, experimental data on
kcat is scarce (data in the enzyme kinetics database BRENDA24

accounts for about 10% of the reactions in the E. coli model
iJO136616,25) and exhibits high noise16. An improved under-
standing of the evolutionary and biophysical forces that shape the
distribution of kinetic parameters on a systems scale would thus
constitute an important step towards quantitative understanding
of cellular metabolism. A meta-analysis of databases of kcats
showed two major patterns16. On the one hand, kcats in primary
metabolism are consistently higher than those in pathways of
secondary metabolism, a finding that can be interpreted as the
result of differential selection pressure on the respective genes. On
the other hand, the underlying biochemical mechanism has a
measurable effect on kcat, suggesting that an interplay between
biophysical and evolutionary constraints determines metabolic
kcats. How these factors have acted mechanistically to result in the
diverse kinetic turnover numbers we observe today is unknown.

The study of evolution is often limited to retrospective phy-
logenetic analysis of genome sequences. Nevertheless, when the
selective advantage conferred by a metabolic system can be
identified, quantitative models can be used to predict fitness
correlates and evolution. In the past, systems models of meta-
bolism have been used successfully to describe a variety of evo-
lutionary phenomena like the dynamics of genome reduction26,
properties of ancient metabolism27, the global optimum of
metabolic adaptation1, and the trajectories of photosynthesis
evolution28. In this study, we aim to understand the evolutionary
mechanisms that underlie kcat evolution and its apparent failure
to reach optimality. As kcats provide a quantitative link between
proteome costs and metabolic flux, metabolic models can be used
to predict how kcats affect growth as a proxy for fitness. To this
end, we combine genome-scale modeling of metabolism with
population genetics models to simulate how modern kcats evolved
from slow ancestors in a network context. We predict that kcat
evolution is convergent and constrained by strong epistasis. In
order to validate the model, we compare end points of our evo-
lutionary simulations to experimental turnover rates from in vitro
and in vivo sources.

Results
A model for simulating systems-wide kcat evolution. As kcats
affect fitness by controlling the proteomic cost of enzyme
reactions2,18,19,29, we hypothesize that genome-scale models of
cell growth can be used to retrace kcat evolution in a network
context.

The core structure of the metabolic network is conserved
across the tree of life30,31, and thus modern metabolic networks
can be expected to contain information about the network
context in which enzymes evolved. Because of the quality of its
metabolic reconstruction and the relatively high coverage of
kinetic data, we choose the metabolic network of E. coli K-12
MG1655 as an ideal candidate to study kcat evolution.

To predict kcat-dependent growth as a proxy for fitness, we use
the MOMENT algorithm4 and a genome-scale reconstruction of
E. coli metabolism25. The MOMENT algorithm optimizes growth
under a constraint on the total metabolic proteome a cell can
sustain. As changes in gene expression can be achieved by the
gene regulatory network of the cell or through mutations in a
genetic target that is much larger than that for kinetic parameter
evolution, we model gene expression as growth optimal.

Modern enzymes exhibit relatively high substrate specificity,
but are assumed to have evolved from slow multifunctional
ancestors32–34. We aim to model adaptation of kinetic turnover
numbers after specificity increased, but where turnover numbers
were still low. We thus assign turnover numbers of 10−3 s−1,
similar to the slowest enzymes observed today16. Starting from
these ancestral slow enzymes, mutations are drawn randomly as
multiplicative changes in kcats of a random reaction, where the
majority are assumed to be decreasing kcat (decreasing:increasing
= 100:1, see Fig. 1 and Methods). Whether a novel mutation
achieves fixation is then calculated for the estimated effective
population size of E. coli (Ne= 2.5e735,36), and kcat evolution is
simulated with a Markov Chain Monte Carlo approach (MCMC,
Fig. 1). The model thus uses a strong-selection-weak-mutation
regime37.

As biological catalysts are limited to natural amino acids to
stabilize transition states, it is expected that many reactions will
have a distinct biophysical upper limit to the turnover rate that is
lower than the theoretical limit resulting from diffusion rate of
collisions. As certain reaction mechanisms were shown to
consistently exhibit high kcats16, we use the enzyme commission
(EC) number to decide on a candidate set of 569 biophysically
unconstrained reactions (see Methods). The remaining 1087
enzymes were considered biophysically constrained and were
fixed to the median of in vitro kcat measurements (13.7 s−1). In
the context of evolutionary predictions, the number of enzymes in
the constrained and unconstrained set are more meaningfully
compared in terms of reactions that are contributing to growth.
Flux variability analysis38 for aerobic growth on glucose reveals
that 278 growth-relevant reactions (see Methods) are uncon-
strained, while 183 carry a biophysical constraint; the majority
of in silico growth-relevant reactions is thus evolving without
upper limit.

Evolutionary trajectories exhibit jumps and convergence.
When simulating kcat evolution with the MCMC algorithm, we
can trace the dynamics of adaptation through evolutionary tra-
jectories of growth rates (Fig. 2a). As a starting point, we choose
an aerobic glucose environment. Ancestral slow enzymes cause
initial growth rates to be low, but fixation of mutations that
increase selected kcats leads to an irregular increase in growth rates
that eventually saturates towards a growth rate close to 0.5 h−1.
This behavior is reproducible across replicates, and final growth
rates are convergent across these independent evolutionary
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trajectories. The average trajectory shows a sigmoidal shape that
can be explained by a simple analytical model (Supplementary
Note 1, Supplementary Figs. 16, 17, and 20), where variance in
fitness is highest in intermediate states. Even though the majority
of growth-contributing reactions—as determined by flux varia-
bility analysis38—were not assigned biophysical constraints on
the evolution of higher kcats, growth rates are unable to surpass
0.5 h−1, even when simulations are continued further than shown
in Fig. 2 (Supplementary Figs. 2 and 5). This effect is the result of
diminishing returns epistasis (DRE) acting between the evolving
genes: the same mutation will result in a smaller fitness gain when
the genetic background already enables a high growth rate (inset
of Fig. 2b). Due to this effect, even large improvements in kcats of
high-flux pathways can only confer a fitness benefit that
approaches that of a neutral mutation and thus become subject to
drift rather than selection10,11 (Fig. 2b). We confirm this idea by
using a greedy search that iteratively fixes the most beneficial
mutations that double kcat: the maximum achievable fitness gain
will reach the neutral barrier (where s is smaller ~1/Ne

10,11)
without achieving a growth rate >0.5 h−1 (Supplementary Fig. 5).
The underlying mechanism for the observed DRE is the disper-
sion of biophysical constraints through the shared metabolic
proteome (Supplementary Note 1, Supplementary Fig. 4); as
genome-wide adaptation progresses, improvements of already
high kcats free up little protein that can be invested in limited
reactions. This effect is independent of whether multiplicative
or additive mutations are used and is particularly strong because
many enzymes contribute to fitness (Supplementary Note 1,
Supplementary Figs. 17, 18, 19, and 21). We simulated a max-
imum growth rate that ignores evolutionary constraints by setting
the kcat of all unconstrained reactions to a value similar to the
fastest known enzymes of 1e5 s−1. We find a theoretically
achievable growth rate of 1.58 h−1, more than three times the rate
of the evolved result. This result indicates the strong effect that
DRE has in constraining kcat evolution: it acts to keep the system
far from a theoretical fitness optimum.

Although in vitro data and biochemical reaction mechanisms
defined our set of biophysically constrained reactions, the true
identity of this set is unknown. We thus conducted a sensitivity

analysis for the identity and size of this set. The identity of the
evolving set affects the final growth rate, but not the qualitative
dynamics of adaptation or the occurrence of DRE (Supplemen-
tary Fig. 7). The speed of adaptation decreases with the size of
the evolving set, as more reactions are required to acquire
mutations to reach higher growth rates. An additional source
of uncertainty comes from the nature of the distribution of
mutational effects, which is unknown. We varied the mean
of the distribution of mutational effects, but again found no effect
on the qualitative dynamics of adaptation or the occurrence of
DRE, but a small quantitative effect on the final growth rate
(Supplementary Fig. 9).

Multifunctional enzymes cause evolutionary jump dynamics.
In order to understand the irregular increase in growth rate
observed in adaptive trajectories (Fig. 2A), we summarized genes
for which mutation coincided with unusually high fitness gains.
We found a small set of genes that was repeatedly associated with
large jumps in fitness (Supplementary Table 1). When removing
reactions catalyzed by the product of these genes, fitness jumps
are drastically reduced and the speed of adaptation increases
(p < 2e−3, Wilcoxon rank-sum test on the number of mutations
required to reach half the end point growth rate), showing that
they are indeed responsible for the irregular adaptation dynamics.
Investigation of metabolic network model and gene-protein-
reaction context of these genes revealed that all of them are
multifunctional enzymes that catalyze multiple reactions in
the same linear pathways. These genes are involved in histidine
biosynthesis (histb), purine biosynthesis (purH), cell wall bio-
synthesis (glmU), and fatty acid biosynthesis (fabG). The irregular
behavior in adaptive trajectories thus has a mechanistic reason
that lies in the structure of the underlying network: protein cost
of the linear pathway cannot be mitigated by increasing an
individual kcat of a single active site, resulting in a fitness land-
scape that shows synergistic epistasis (Fig. 3). The pathway can
then become a bottleneck for the adaptation process, where
fixation of a specific neutral mutation in a multifunctional
enzyme is required for further fitness gains (Fig. 3b).

Population of constant size N

?

Population of constant size N

Mutation: 
kcat kcat,mutated

Fixation of mutation?

p (fixation | �(kcat), �(kcat,mutated), N )

�(kcat,mutated)

I) II)

Fig. 1 The MCMC algorithm used for simulating genome-scale kcat evolution. A single iteration of the algorithm proceeds as follows: (I) A mutation in
the kcat of a random reaction of a single cell in the population is introduced. The original growth rate µ(kcat) and the novel growth rate µ(kcat,mutated)
are predicted by solving the respective MOMENT problems (see Methods). (II) The probability of fixation for the novel mutation is calculated with a
population genetics model based on µ(kcat), µ(kcat,mutated), and the population size N. Fixation of the novel change in kcat is then decided based on this
probability. If fixation fails, the mutation is discarded. A typical simulation run includes around 108 of the described iterations
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Most reactions show repeatable evolution. The high level of
convergence that is exhibited in the adapted growth rates (Fig. 2a)
is reflected in the turnover numbers of the evolved populations:
vectors of adapted kcats show a high correlation across replicates
(all Pearson’s R > = 0.9, Supplementary Fig. 1). Clustering of the
most divergent reactions reveals that the remaining differences
in evolved kcats cannot be exclusively attributed to the stochas-
ticity of the adaptation process: redundant metabolic routes in
central carbon metabolism and redox metabolism cause kcat
evolution to be divergent (Supplementary Fig. 1B). Nevertheless,
kcat evolution is highly convergent and repeatable, indicating
that similar patterns in turnover numbers across species could
be the result of independent evolutionary trajectories.

The evolved kcats agree with in vivo and in vitro data. How
well do our simulated end points of kcat evolution agree with
experimental data on modern kcats? In order to answer this
question, we simulate kcat evolution in randomly changing model

environments to model a more realistic environmental diversity.
We randomly chose a set of environmental carbon, nitrogen,
and sulfur components, as well as random availability of oxygen
(see Methods) and compared prediction performance of this
diverse environment simulation with the simulations under
constant aerobic glucose conditions.

In vitro measurements of kcat were previously mined from
the BRENDA database and filtered for natural substrates16.
We compared the simulated end points for both constant and
diverse environments to this dataset while focusing on reactions
without data-driven biophysical constraints to avoid circular
conclusions. We found that the predictions agree in magnitude
(Fig. 4a, Supplementary Fig. 11 A) and show a significant
correlation (Pearson’s R= 0.37, p < 6e−4 for diverse environ-
ments. R= 0.25, p < 0.02 for aerobic growth on glucose.
See Methods) with the in vitro data (Fig. 4b, Supplementary
Fig. 11B). Simulation of evolution in diverse environments
thus results in a better agreement with in vitro data. In addition
to in vitro measurements, estimates of in vivo maximal
turnover rates (kapp,max) became recently available based on the
combination of proteomics data and flux predictions across
multiple conditions39. The predicted kcats from both diverse and
constant evolutionary environments agree with this in vivo
data in magnitude (Fig. 4c, Supplementary Fig. 11C) and show
a highly significant correlation (R= 0.67, p < 5e−29, for diverse
environments. R= 0.57, p < 2.4e−19 for aerobic growth on
glucose. See Methods). Like in the case of in vitro measurements,
a model of diverse environments explains in vivo data better
than constant environments.

What factors affect the speed of evolution of a reaction’s kcat
until system-wide DRE prevents further adaptation? We find that
the kcats in the end points of evolution in diverse environments are
correlated with enzyme molecular weight (R= 0.28, p < 4.4e−6.

a

kcat2kcat1

b

kcat2

kcat1

0

0

Fitness gains:

0

1

Fig. 3 Multifunctional enzymes cause synergistic epistasis in kcat evolution.
a A multifunctional enzyme with two distinct active sites catalyzes two
reactions in the same linear fitness-relevant pathway. b Mutations that
increase either kcat individually cannot be used to reduce protein cost of
the pathway and thus exhibit synergistic epistasis
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See Methods) and with the mean of fluxes of parsimonious FBA40

across diverse growth environments (R= 0.62, p < 2.2e−16. See
Methods), indicating that these two factors are the major
determinants of selection pressure on a given reaction. This
finding explains why the enzymes that catalyze high flux reactions

in central metabolism are associated with high in vitro kcats16.
When we repeat our evolutionary simulations in models with
random perturbations of reaction stoichiometries and biomass
components, agreement with experimental data are abolished
(Supplementary Fig. 15). This result confirms the important role
of reaction flux as a selection pressure in kcat evolution.

Finally, the convergent behavior we found for evolution in a
static environment (Supplementary Fig. 1) is also present in the
end points of evolution in diverse environments (all Pearson’s
R > 0.87 across three replicates).

Discussion
The turnover numbers of enzymes in central energy metabolism
are significantly higher than those of pathways in amino acid,
fatty acid, nucleotide, and secondary metabolism16, even though
phylogenetic evidence suggest that the core of the metabolic
network is conserved across the tree of life30,31 and extensive
enzyme optimization should thus have had sufficient time to
occur. In order to understand the mechanistic reason for this
observation, we developed an in silico model that predicts the
dynamics and long-term end point of kcat evolution, and validated
these predictions with experimental data.

It has been suggested that the suboptimal turnover number of
many enzymes is the result of an increasing difficulty to achieve
kcat improvements that occurs in all metabolic genes16. We show
that even without such intragenic constraints, a small number
of biophysically constrained reactions are sufficient to cause
diminishing returns epistasis in otherwise unconstrained reac-
tions (Fig. 2, Supplementary Fig. 7, Supplementary Note 1). As
the fitness gain of improvements in kcats (i.e., their selection
coefficient s) decreases, it approaches the neutral boundary that
lies around 1/Ne

10,11,41, and mutations that yield large improve-
ments in kcat are rendered effectively neutral. Metabolic control
theory42 has been used in the past to postulate the occurrence of
diminishing fitness returns when the activity of a single enzyme
changes, e.g., explaining the genetic dominance of metabolic
genes43 and the frequency of neutral mutations41. In our fra-
mework, that situation is comparable to assigning a single reac-
tion to the unconstrained set.

Diminishing returns are often implicitly assumed in quantita-
tive models of adaptation, e.g. in the form of Gaussian fitness
landscapes13, and our results on kcat evolution give a mechanistic
example of how diminishing returns can arise, even when the
population is still distant from a global optimum. In terms of
experimental data, intergenic diminishing returns epistasis has
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in vitro (n= 188)16, in vivo (n= 210)39, and simulated data (n= 276).
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between experimental in vivo data (kapp,max) and simulated data for
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standard deviation across three simulated replicates. The p-values in b and
c are based on Pearson’s R to test for significant correlation with a two-
sided t-test (see Methods). See Supplementary Figure 13 for sensitivity
analysis against assumptions about the ancestral state and Supplementary
Figure 15 for sensitivity analysis against reaction stoichiometries
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been found to play a crucial row in a long-term evolutionary
experiment44 and in adaptation to heterologous pathway opti-
mization45. In the latter example, the expression cost of a
heterologous pathway was reduced by reducing over-expression,
a process conceptually similar to the reduction of protein
costs through the increase in kinetic parameters. Whereas the
adjustment of expression levels is a mechanism commonly found
in experimental evolution, kinetic parameter evolution is a
smaller mutational target and thus more difficult to study in such
a framework.

Structural genomics studies have found convergent evolution
of function to be a common pattern in enzyme evolution46.
Our model shows that kinetic parameter evolution is likely to
similarly exhibit convergent behavior. The evolutionary end
points show a high correlation of kcats across replicates—even
though some reactions diverge—(Supplementary Fig. 1), and
final growth rates are very similar (Fig. 2). This suggests a
smooth single-peaked phenotypic fitness landscape, where
the low level of divergence indicates a plateau of comparable
fitness that is reached in a repeatable and convergent manner.
Pairwise averaging of end point kcats shows that these inter-
mediate points are also intermediate in fitness (Supplementary
Fig. 12), thus confirming the lack of fitness valleys between
end points. Remarkably, this high level of convergence is even
found when environments differ during the adaptation process
(all R > 0.87 between end points, also see Fig. 4). As our analysis
of end point kcats indicates that selection pressure is mostly
determined by flux and—to a lesser extent—enzyme molecular
weight, convergence might be caused by correlated flux
distributions across environments. We calculate the correlation
of flux across 10,000 environments chosen by our sampling
algorithm (see Methods) and find a median Pearson correlation
of 0.7 between flux distributions on log scale, indicating that
this similarity in flux underlies the observed high level of
convergence.

Even though diminishing returns epistasis arises for the growth
rate effect of mutations, epistatic effects of mutations in the same
gene are not modeled explicitly. Thus, even though structural
models argue against this47, intragenic sign epistasis—where the
sign of a mutation’s effect depends on the genetic background—
could cause a more rugged landscape.

Although the model suggests a remarkably smooth fitness
landscape, multifunctional enzymes cause “neutral plateaus” that
slow adaptation by requiring a neutral mutation to occur before
kcat improvements can yield fitness gains (Fig. 3): when removing
reactions catalyzed by the product of these genes, fitness jumps
are drastically reduced, and the speed of adaptation increases
(Supplementary Fig. 6). Most of these cases are caused by mul-
tifunctional enzymes that possess two distinct active sites and that
have likely resulted from gene fusion events—e.g. purH48 and
histb49. It is thus likely that these gene fusion events occurred
after the individual gene products had been selected for higher
kcats. Gene fusions are highly polyphyletic50–52, a finding that
supports this idea.

Further genes associated with jump behavior catalyze multiple
reactions using the same binding site—e.g., fabG (Supplementary
Table 1). Kacser and Beeby33 discussed the effect of such multi-
functional enzymes for a scenario of highly un-specific proto-
enzymes, where gene duplication becomes necessary to render
increased specificity adaptive. Nevertheless, the mechanism
Kacser and Beeby33 proposed requires assumptions about how
mutations affect each catalytic activity, where experimental data
indicate that such effects have to be studied on a case-by-case
basis32. For the case of multifunctional enzymes that result from
gene fusion events, independent mutation effects on both active
sites seem a reasonable assumption.

A variety of sources of uncertainty make it difficult to predict
experimental kcat data with the ab initio approach we present.
Condition-dependent metabolite levels and enzyme affinities (i.e.,
the Km values) will affect enzyme saturation where our model
assumes full saturation. Undersaturation is thus expected to
influence kcat evolution by increasing the selection pressure
on kcat. A similar effect is expected for the backward flux in
thermodynamically unfavorable reactions; e.g., the simulations
predict a kcat for the thermodynamically unfavorable malate
dehydrogenase reaction of 805 s−1 that underestimates in vitro
data (931 s−1 53), whereas in vivo data suggest a much lower
effective turnover rate of 7 s−1 39, probably caused by substantial
backward flux39. Whereas computational feasibility will be a
challenge, modeling the interaction between kcat, Km, metabolite
concentrations, and allosteric regulation is a promising topic for
future studies that could also shed light on the co-evolution of
isozymes that often vary in Km

54. As gene duplication is fre-
quently observed in short-term adaptation55, we assume that
most kcats evolved before isozymes emerged and model kcat
mutation at the reaction level. Furthermore, our model has
to make an assumption about the identity of biophysically con-
strained reactions. Whereas EC numbers serve as a first
approximation for estimating this set, there is still a high level of
uncertainty in its true identity. It is in fact possible that a growth-
limiting process outside of metabolism causes diminishing
returns epistasis, e.g., the expression machinery of the cell.
Encouragingly, sensitivity analyses indicate that the qualitative
adaptation dynamics and agreement of simulated kcats with
experimental data are robust against the identity of the con-
strained set (Supplementary Figs. 7 and 8, Supplementary
Table 2). As studies shed more light on the nature of intragenic
fitness landscapes56, it will be valuable to model the relative
contribution of intergenic and intragenic diminishing returns in
more detail. The effect of Km and allosteric effects mentioned
above might affect the shape of the inferred fitness landscape; e.g.,
kcat and Km frequently show trade-offs57, a factor that might
result in local optima on the fitness landscape. Other sources of
uncertainty lie in the choice of selective environments and the
shape and parameters of the distribution of mutation effects.
Again, sensitivity analyses show that our results are robust against
these factors (Supplementary Figs. 9 and 11). As decreases in kcat
are expected to be either fitness-neutral or deleterious, they are
associated with very low fixation probabilities. Thus, even though
we assume mutations that decrease kcats to occur a hundred times
more frequently than those that increase kcat, only 1.8% of fixed
mutations decrease kcats in our evolutionary simulations of
varying environments. When ancestral kcat vectors are sampled
randomly from the empirical distribution of kcats, the correlation
of end points with experimental data decreases (kcat in vitro: R=
0.29, p < 0.007; kapp,max: R= 0.5, p < 2e−14; Supplementary
Fig. 13, see Methods) as well as the degree of convergence
between end points (mean R2= 0.26, Supplementary Fig. 14, see
Methods). This effect is due to the slow accumulation of dele-
terious mutations that is negligible on the timescale tractable for
our simulations—reactions that have a high initial kcat assigned
are very unlikely to have substantially decreased it in the end
point, even if the reaction is not used in the simulated conditions
(Supplementary Fig. 14).

Finally, the strong-selection-weak-mutation regime (SSWM)
we use to model adaptation dynamics does not account for the
effects of clonal interference, like a decreased rate of adaptation
and higher fitness gains of fixed mutations58. As the occurrence of
diminishing returns are independent of the mutation dynamics,
we do not expect clonal interference to have a large effect on end
point kcat distributions, although it could prove to be important
in future studies quantifying the timescale of kcat fixation.
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To validate the assumptions of our modeling approach we
compared model predictions to in vitro and in vivo datasets.
Despite the sources of uncertainty listed above and the high level
of noise in the experimental data (see Bar-Even et al.16 for dis-
cussion) we found a significant agreement with in vitro data
and in vivo estimates, where the model explained about 45%
of the observed variance in in vivo kcats. In vitro kcats were
shown to correlate with enzyme molecular weight and reaction
flux (R= 0.22 and R= 0.45, respectively4). Similarly, predicted
kcats in our model for diverse environments are correlated with
enzyme molecular weight (R= 0.28, p < 4.4e−6) and with the
mean of fluxes of parsimonious FBA40 across diverse growth
environments (R= 0.62, p < 2.2e−16). This result indicates that
enzyme usage and size determine the selection pressure on
individual reactions and thus the magnitude of final kcats, a
hypothesis that we confirmed by sensitivity analysis: randomly
perturbing network stoichiometry, biomass components, and
enzyme molecular weights abolishes the correlation with experi-
mental data (Supplementary Fig. 15). Surprisingly, we found
agreement not only by correlation, but also by magnitude
(Fig. 4a). This finding is consistent with the realistic growth rates
to which the adaptation process converges (Fig. 2). The in vivo
data used are based on quantitative proteomics data and flux
estimates that assume growth maximization39. The better agree-
ment of our simulations with in vivo data might be due to the
latter being less noisy than in vitro estimates, but in vivo data
could also be biased to prefer our model-based predictions, as
model-derived fluxes were used in combination with proteomics
data to derive kapp,max

39. Nevertheless, using the limited flux data
available from metabolic flux analysis (MFA) instead of model-
derived flux, a high correlation with model-derived kapp,max

was found (R2= 0.85)39. Sensitivity analyses (Supplementary
Figs. 7 and 9) and our minimal model (Supplementary Note 1)
show that the magnitude of evolved kcats can depend on the
size of the evolving set, the distribution of mutational effects,
and the magnitude of biophysical constraints (Supplementary
Fig. 10). We thus provide a consistent set of these parameters,
but additional data are required to confirm this parameter set
in the future.

In summary, the presented models suggest the following
mechanism for kcat evolution: initially, ancestral inefficient
enzymes are under strong selection to increase their kcat in order
to reduce the protein costs of metabolism. This selection pressure
increases with the average flux through the respective reaction
and—to a lesser extent—with the molecular weight of the cata-
lyzing enzyme. As soon as some growth-relevant reactions do
not have mutations available that could increase their kcat—i.e.,
the reaction becomes biochemically constrained—diminishing
returns epistasis affects all other enzymes in the network, and the
extent of these diminishing returns is more pronounced in large
networks (Supplementary Note 1). Reactions that carry high flux,
e.g., those in primary carbon metabolism, still yield substantial
fitness benefits and evolve faster than low-flux reactions. Never-
theless, the extent of diminishing returns increases with each
mutation that improves a reaction’s kcat until selection coefficients
become too small to distinguish beneficial from neutral mutations
and adaptation comes to a halt. The evolutionary end points
exhibit fitness levels that are far lower than theoretically possible
states, a property associated with large metabolic networks
(Supplementary Note 1).

The prediction of evolutionary outcomes is an ultimate goal in
evolutionary biology9. The model we present predicts data on kcat
in terms of correlation and magnitude, showing that evolutionary
long-term end points of kcat evolution can be predicted using
evolutionary systems models with considerable accuracy, espe-
cially given the sources of model uncertainty listed above. The

model predicts that diminishing returns epistasis keeps kcats—and
thus fitness—far from the global optimum, indicating the
potential of engineering strategies for more efficient enzymes.
Whereas we chose E. coli as a model organism to study kcat
evolution, the patterns we find are likely to generalize across the
tree of life, where organisms with smaller effective population size
than E. coli can be expected to show an even stronger mark of
insufficient selection in their catalytic properties.

Optimality assumptions are a promising tool for understanding
complex biological systems, but finite population sizes and epi-
static interactions can render individual molecules far from the-
oretical optima—even when the underlying fitness landscape is
smooth. Seeing cells through the systems perspective and mod-
eling evolutionary history can be crucial for understanding cell
behavior, as is the case for kinetic turnover numbers.

Methods
Growth rate predictions using MOMENT. In the simulation of kinetic parameter
evolution, the growth rate that results from a given vector of catalytic turnover
rates κ is predicted using the MOMENT algorithm4. MOMENT is conceptually
similar to flux balance analysis (FBA59), in that it maximizes the growth rate µ by
maximizing flux into a biomass reaction (vz) given a set of constraints (vmin and
vmax):

maxðvzÞs:t:

Sv ¼ 0

vmin;i � vi � vmax;i:

Here, S represents the stoichiometric matrix and v the vector of fluxes.
MOMENT extends FBA by introducing enzyme concentrations as model variables
(gi, mmol gDW−1) and recursively parsing gene-protein-reaction (GPR) rules to
obtain upper limit constraints on metabolic fluxes:

vi � f ðκi;GiÞ;

where Gi represents the set of genes involved in catalyzing reaction i. The respective
GPR is parsed by using the maximum of enzyme concentrations to represent AND
relations and the sum to model OR relations. Finally, the total weight of the
metabolic proteome (C, gprotein gDW-1) and the respective enzyme molecular
weights (MW) are used to constrain enzyme concentrations:X

giMWi � C:

MOMENT was used to simulate growth in iJO1366, a genome-scale model of E.
coli K-12 MG1655 metabolism25. Enzyme molecular weights were calculated based
on the E. coli K12 MG1655 protein sequences (NCBI Reference Sequence
NC_000913.3), and C was set to 0.32 gprotein gDW−1 in accordance with the E. coli
metabolic protein fraction across diverse growth conditions4,60. Linear
programming problems were constructed using the R61 packages sybil62 and
sybilccFBA and solved using IBM CPLEX version 12.7. The growth rate μ
(compare Fig. 1) can then be obtained as the flux into the biomass reaction vz.

We classify a reaction as contributing to in silico growth using flux variability
analysis38. When either the maximal flux or the absolute minimal flux through a
reaction that still optimizes the growth rate μ in FBA is >10−6 mmol gDW−1 h−1,
we call a reaction “contributing to growth in silico”.

An MCMC algorithm for simulating kcat evolution. We assume a genetically
homogenous population of cells with a population size equal to the effective
population size estimated for E. coli (Ne= 2.5e735). A single iteration of the
Markov Chain Monte Carlo (MCMC) algorithm starts as follows: A mutation
affecting the kcat of a single randomly chosen reaction i is simulated as multiplying
an original kcat (= κi) by a factor α that is drawn from a lognormal distribution
with mean and standard deviation in log scale log(3/2) and 0.3, respectively. This
distribution determines the jump size in the space of kcats, but not the ratio between
deleterious to advantageous mutations (see below).

κi;mut ¼ ακi:

As formulated by the Haldane relationship63, kcats of forward and backward
directions and respective Kms cannot change independently from each other. To
account for the Haldane relationship, we implement mutations that affect the
forward and backward kcat of reversible reactions equally. The growth rate of the
original strain (µ) and the strain carrying the mutation affecting κi (µmut) is then
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calculated by solving the MOMENT problem detailed above (also see Fig. 1).
Assuming that fitness is proportional to growth rate, we can obtain the selection
coefficient s and the fixation probability π36:

s ¼ 1� μ

μmut
;

π ¼
1
N ; if s ¼ 0

1�e�2s

1�e�2Ns ; otherwise

(
:

The fixation probability π is then used to decide the fixation of the novel
mutation. In case of a successful fixation event, the vector of kcats, κ, is updated at
position i with the newly fixed mutation, or, in case of an unsuccessful fixation
event, the previous κi remains the most abundant allele. The next iteration of the
algorithm starts with introducing a novel change in the kcat of a random enzyme,
and so on. A typical simulation run simulates around 108 mutations that have the
chance to become fixed, requiring 108 linear programs to be solved for a single
replicate.

The high population size allowed us to optimize simulation performance by
heuristically setting the ratio of deleterious to advantageous mutations: the growth
rate for a deleterious mutation was simulated once, but their fixation was sampled
multiple times to arrive at a 100:1 ratio between deleterious and advantageous
mutations (see Supplementary Table 3 for sensitivity analysis). Certain reaction
mechanisms were shown to consistently exhibit low kcats16. We use the enzyme
commission (EC) number to set the reactions belonging to the three (out of six) top
level codes with the highest median in vitro kcat—namely oxidoreductases,
hydrolases, and isomerases—as biophysically unconstrained. In order to allow an
unbiased comparison to experimental data, all reactions for which data was
available were also set as unconstrained. The remaining reactions were considered
biophysically constrained and were fixed to the median of in vitro kcat
measurements (13.7 s−1). The kcats of unconstrained reactions were initialized to
10−3 s−1. See Supplementary Figures 7 and 8, and Supplementary Table 2 for
sensitivity analysis against the identity of the constrained set.

In order to simulate diverse environments, we applied random sampling of a
new environment every 1000 iterations. Here, oxygen uptake was allowed with
probability 1/2, and the environment always contained at least one randomly
chosen source of each carbon, nitrogen, sulfur, and phosphate. A number of
additional sources were drawn from a binomial of size 2 with success probability
1/2. This process was repeated until a growth sustaining environment was found
and the following 1000 mutations were simulated in this novel environment.

Statistics. Pearson’s R was used to test for significant correlation with a two-sided
t-test as implemented in the cor.test() function of the R environment61.

Code availability. R code for the simulations presented in this study is available
from the authors upon request.

Data availability
Predicted kcat end points that are presented in this study are available from the
authors upon request.

Received: 28 November 2017 Accepted: 13 November 2018

References
1. Ibarra, R. U., Edwards, J. S. & Palsson, B. O. Escherichia coli K-12 undergoes

adaptive evolution to achieve in silico predicted optimal growth. Nature 420,
186–189 (2002).

2. O’Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R. & Palsson, B. O.
Genome-scale models of metabolism and gene expression extend and refine
growth phenotype prediction. Mol. Syst. Biol. 9, https://doi.org/10.1038/
msb.2013.52 (2013).

3. Noor, E. et al. The protein cost of metabolic fluxes: prediction from enzymatic
rate laws and cost minimizatioron. PLoS Comput. Biol. 12, https://doi.org/
10.1371/journal.pcbi.1005167 (2016).

4. Adadi, R., Volkmer, B., Milo, R., Heinemann, M. & Shlomi, T. Prediction
of microbial growth rate versus biomass yield by a metabolic network with
kinetic parameters. PLoS Comput. Biol. 8, https://doi.org/10.1371/journal.
pcbi.1002575 (2012).

5. Reimers, A. M., Knoop, H., Bockmayr, A. & Steuer, R. Cellular trade-offs
and optimal resource allocation during cyanobacterial diurnal growth.
Proc. Natl Acad. Sci. USA 114, E6457–E6465 (2017).

6. Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M. & Sauer, U.
Multidimensional optimality of microbial metabolism. Science 336, 601–604
(2012).

7. Chen, X. W., Alonso, A. P., Allen, D. K., Reed, J. L. & Shachar-Hill, Y. Synergy
between C-13-metabolic flux analysis and flux balance analysis for
understanding metabolic adaption to anaerobiosis in E. coli. Metab. Eng. 13,
38–48 (2011).

8. Poelwijk, F. J., Tănase-Nicola, S., Kiviet, D. J. & Tans, S. J. Reciprocal sign
epistasis is a necessary condition for multi-peaked fitness landscapes. J. Theor.
Biol. 272, 141–144 (2011).

9. de Visser, J. A. G. M. & Krug, J. Empirical fitness landscapes and the
predictability of evolution. Nat. Rev. Genet. 15, 480–490 (2014).

10. Kimura, M. The neutral theory of molecular evolution. (Cambridge University
Press, Cambridge, 1983).

11. Li, W. H. Maintenance of genetic-variability under joint effect of mutation,
selection and random drift. Genetics 90, 349–382 (1978).

12. Wagner, A. Neutralism and selectionism: a network-based reconciliation.
Nat. Rev. Genet. 9, 965–974 (2008).

13. Martin, G., Elena, S. F. & Lenormand, T. Distributions of epistasis in microbes
fit predictions from a fitness landscape model. Nat. Genet. 39, 555–560 (2007).

14. Segre, D., DeLuna, A., Church, G. M. & Kishony, R. Modular epistasis in yeast
metabolism. Nat. Genet. 37, 77–83 (2005).

15. Heckmann, D. Modelling metabolic evolution on phenotypic fitness
landscapes: a case study on C4 photosynthesis. Biochem. Soc. Trans. 43,
1172–1176 (2015).

16. Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and
physicochemical trends shaping enzyme parameters. Biochemistry 50,
4402–4410 (2011).

17. Pettersson, G. Effect of evolution on the kinetic-properties of enzymes.
Eur. J. Biochem. 184, 561–566 (1989).

18. Khodayari, A. & Maranas, C. D. A genome-scale Escherichia coli kinetic
metabolic model k-ecoli457 satisfying flux data for multiple mutant strains.
Nat. Commun. 7, (2016).

19. Ebrahim, A. et al. Multi-omic data integration enables discovery of hidden
biological regularities. Nat. Commun. 7, (2016).

20. Radzicka, A. & Wolfenden, R. A proficient enzyme. Science 267, 90–93 (1995).
21. Goelzer, A. et al. Quantitative prediction of genome-wide resource allocation

in bacteria. Metab. Eng. 32, 232–243 (2015).
22. Mallmann, J. et al. The role of photorespiration during the evolution of C4

photosynthesis in the genus Flaveria. eLife. https://doi.org/10.7554/eLife.02478
(2014).

23. Sánchez, B. J. et al. Improving the phenotype predictions of a yeast genome‐
scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol.
13, (2017).

24. Schomburg, I., Chang, A. & Schomburg, D. BRENDA, enzyme data and
metabolic information. Nucleic Acids Res. 30, 47–49 (2002).

25. Orth, J. D. et al. A comprehensive genome-scale reconstruction of Escherichia
coli metabolism-2011. Mol. Syst. Biol. 7, https://doi.org/10.1038/msb.2011.65
(2011).

26. Pal, C. et al. Chance and necessity in the evolution of minimal metabolic
networks. Nature 440, 667–670 (2006).

27. Goldford, J. E., Hartman, H., Smith, T. F. & Segre, D. Remnants of an ancient
metabolism without phosphate. Cell 168, 1126–1134 (2017).

28. Heckmann, D. et al. Predicting C4 photosynthesis evolution: modular,
individually adaptive steps on a Mount Fuji Fitness Landscape. Cell 153,
1579–1588 (2013).

29. Karr, J. R. et al. A whole-cell computational model predicts phenotype from
genotype. Cell 150, 389–401 (2012).

30. Peregrin-Alvarez, J. M., Tsoka, S. & Ouzounis, C. A. The phylogenetic extent
of metabolic enzymes and pathways. Genome Res. 13, 422–427 (2003).

31. Ouzounis, C. A., Kunin, V., Darzentas, N. & Goldovsky, L. A minimal
estimate for the gene content of the last universal common ancestor -
exobiology from a terrestrial perspective. Res. Microbiol. 157, 57–68 (2006).

32. Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and
evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).

33. Kacser, H. & Beeby, R. Evolution of catalytic proteins or on the origin of
enzyme species by means of natural-selection. J. Mol. Evol. 20, 38–51 (1984).

34. Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: How duplicated
genes find new functions. Nat. Rev. Genet. 9, 938–950 (2008).

35. Charlesworth, J. & Eyre-Walker, A. The rate of adaptive evolution in enteric
bacteria. Mol. Biol. Evol. 23, 1348–1356 (2006).

36. Kimura, M. Diffusion models in population genetics. J. Appl. Probab. 1,
177–232 (1964).

37. Gillespie, J. H. Some properties of finite populations experiencing strong
selection and weak mutation. Am. Nat. 121, 691–708 (1983).

38. Mahadevan, R. & Schilling, C. H. The effects of alternate optimal solutions
in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276
(2003).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07649-1

8 NATURE COMMUNICATIONS |          (2018) 9:5270 | DOI: 10.1038/s41467-018-07649-1 | www.nature.com/naturecommunications

https://doi.org/10.1038/msb.2013.52
https://doi.org/10.1038/msb.2013.52
https://doi.org/10.1371/journal.pcbi.1005167
https://doi.org/10.1371/journal.pcbi.1005167
https://doi.org/10.1371/journal.pcbi.1002575
https://doi.org/10.1371/journal.pcbi.1002575
https://doi.org/10.7554/eLife.02478
https://doi.org/10.1038/msb.2011.65
www.nature.com/naturecommunications


39. Davidi, D. et al. Global characterization of in vivo enzyme catalytic rates and
their correspondence to in vitro kcat measurements. Proc. Natl Acad. Sci. USA
113, 3401–3406 (2016).

40. Holzhutter, H. G. The principle of flux minimization and its application to
estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 271,
2905–2922 (2004).

41. Hartl, D. L., Dykhuizen, D. E. & Dean, A. M. Limits of adaptation - the
evolution of selective neutrality. Genetics 111, 655–674 (1985).

42. Kacser, H. & Burns, J. A. The control of flux. Symp. Soc. Exp. Biol. 27, 65–104
(1973).

43. Kacser, H. & Burns, J. A. The molecular basis of dominance. Genetics 97,
639–666 (1981).

44. Khan, A. I., Dinh, D. M., Schneider, D., Lenski, R. E. & Cooper, T. F. Negative
epistasis between beneficial mutations in an evolving bacterial population.
Science 332, 1193–1196 (2011).

45. Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segrè, D. & Marx, C. J.
Diminishing returns epistasis among beneficial mutations decelerates
adaptation. Science 332, 1190–1192 (2011).

46. Galperin, M. Y. & Koonin, E. V. Divergence and convergence in enzyme
evolution. J. Biol. Chem. 287, 21–28 (2012).

47. Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Predictability of evolutionary
trajectories in fitness landscapes. PLoS Comput. Biol. 7, e1002302 (2011).

48. Zhang, Y., Morar, M. & Ealick, S. E. Structural biology of the purine
biosynthetic pathway. Cell Mol. Life Sci. 65, 3699–3724 (2008).

49. Alifano, P. et al. Histidine biosynthetic pathway and genes: structure,
regulation, and evolution. Microbiol. Rev. 60, 44–69 (1996).

50. Henry, C. S. et al. Systematic identification and analysis of frequent gene
fusion events in metabolic pathways. BMC Genom. 17, 473 (2016).

51. Grieshaber, M. & Bauerle, R. Structure and evolution of a bifunctional
enzyme of tryptophan operon. Nat. New. Biol. 236, 232–235 (1972).

52. Yourno, J., Kohno, T. & Roth, J. R. Enzyme evolution - generation of a
bifunctional enzyme by fusion of adjacent genes. Nature 228, 820–824
(1970).

53. Nicholls, D. J. et al. The importance of arginine 102 for the substrate-
specificity of Escherichia coli malate dehydrogenase. Biochem. Biophys. Res.
Commun. 189, 1057–1062 (1992).

54. Markert, C. L., Shaklee, J. B. & Whitt, G. S. Evolution of a gene. Science 189,
102–114 (1975).

55. Romero, D. & Palacios, R. Gene amplification and genomic plasticity in
prokaryotes. Annu. Rev. Genet. 31, 91–111 (1997).

56. Tokuriki, N. et al. Diminishing returns and tradeoffs constrain the laboratory
optimization of an enzyme. Nat. Commun. 3, https://doi.org/10.1038/
ncomms2246 (2012).

57. Savir, Y., Noor, E., Milo, R. & Tlusty, T. Cross-species analysis traces
adaptation of Rubisco toward optimality in a low-dimensional landscape.
Proc. Natl Acad. Sci. USA 107, 3475–3480 (2010).

58. de Visser, J. A. G. M. & Rozen, D. E. Clonal interference and the periodic
selection of new beneficial mutations in Escherichia coli. Genetics 172,
2093–2100 (2006).

59. Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis?
Nat. Biotechnol. 28, 245–248 (2010).

60. Arike, L. et al. Comparison and applications of label-free absolute proteome
quantification methods on Escherichia coli. J. Proteom. 75, 5437–5448 (2012).

61. R: A Language and Environment for Statistical Computing (R Foundation
for Statistical Computing, 2017).

62. Gelius-Dietrich, G., Desouki, A. A., Fritzemeier, C. J. & Lercher, M. J. sybil –
Efficient constraint-based modelling in R. BMC Syst. Biol. 7, 125 (2013).

63. Haldane, J. B. S. Enzymes. (Longmans, London, 1930).

Acknowledgements
The authors would like to thank Abdelmoneim Amer Desouki for his support in using
the sybilccFBA package, and Ron Milo and Laurence Yang for helpful discussion. This
research used resources of the National Energy Research Scientific Computing Center,
a DOE Office of Science User Facility supported by the Office of Science of the U.S.
Department of Energy grant number DE-SC0008701. This work was supported by the
Novo Nordisk Foundation grant number NNF10CC1016517.

Author contributions
D.H., D.C.Z., and B.O.P. designed the study. D.H. conducted all modeling, simulation,
and data analysis. D.H., D.C.Z., and B.O.P. wrote the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-07649-1.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07649-1 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5270 | DOI: 10.1038/s41467-018-07649-1 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/ncomms2246
https://doi.org/10.1038/ncomms2246
https://doi.org/10.1038/s41467-018-07649-1
https://doi.org/10.1038/s41467-018-07649-1
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
	Results
	A model for simulating systems-wide kcat evolution
	Evolutionary trajectories exhibit jumps and convergence
	Multifunctional enzymes cause evolutionary jump dynamics
	Most reactions show repeatable evolution
	The evolved kcats agree with in�vivo and in�vitro data

	Discussion
	Methods
	Growth rate predictions using MOMENT
	An MCMC algorithm for simulating kcat evolution
	Statistics
	Code availability

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Electronic supplementary material
	ACKNOWLEDGEMENTS




