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Abstract

A Unifying Mathematical Framework for Neural-Symbolic Systems
by

Charles Dickens

The field of Neural-Symbolic (NeSy) systems is growing rapidly. Proposed

approaches show great promise in achieving symbiotic unions of neural and

symbolic methods. However, NeSy has not yet reached its full potential; ap-

proaches are often ad-hoc, problem-specific, and not easily generalizable. In this

dissertation, I identify four milestones that are necessary to realize general and

practical NeSy AI: (1) a mathematical framework, (2) modeling paradigms, (3)

learning techniques, and (4) a practical implementation. My research contributes

to reaching all four milestones. First, I introduce Neural-Symbolic Energy-Based

Models (NeSy-EBMs), a unifying mathematical framework for discriminative and

generative modeling with probabilistic and non-probabilistic NeSy approaches.

Energy-based modeling provides a unified perspective of many NeSy systems

and is a connection to the broader machine learning literature. Next, I uti-

lize NeSy-EBMs to introduce a taxonomy of modeling paradigms focusing on

a system’s neural-symbolic interface and reasoning capabilities. My primary

modeling paradigms organize and illuminate the capabilities of existing NeSy

systems. Moreover, I identify architectures that support compelling NeSy use

cases. Then, I introduce a suite of four NeSy learning techniques: one for learning

the neural and symbolic weights separately and three for end-to-end learning.

Moreover, I prove theoretical continuity properties and sufficient conditions for

the differentiability of a large class of NeSy-EBM losses. Further, I formalize the

challenges of NeSy learning using the NeSy-EBM mathematical framework and

discuss the applicability of my learning techniques to my modeling paradigms.

Finally, I present Neural Probabilistic Soft Logic (NeuPSL), an open-source

NeSy-EBM library designed to support every modeling paradigm and learning

technique I introduce and facilitate real-world applications of the NeSy approach.

Additionally, I introduce a novel formulation of the (Neu)PSL inference problem

as a linearly constrained quadratic program (LCQP) to prove differentiability

properties necessary for end-to-end learning. Further, I propose a new inference

algorithm that leverages the LCQP formulation and naturally exploits warm-

X



starts, leading to over 100x learning runtime improvements. Through extensive

empirical analysis across twelve datasets, I validate my proposed modeling,

inference, and learning methodologies while simultaneously demonstrating the

advantages of NeSy-EBMs in various real-world tasks, including image classifica-

tion, graph node labeling, autonomous vehicle situation awareness, and natural

language question answering.
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Chapter 1

Introduction

The field of artificial intelligence (AI) and machine learning is experiencing dramatic

and never before seen growth in both its capabilities and application. Recent

remarkable developments, including the groundbreaking chatbots powered by large

language models (LLMs), have been driven by advancements in deep neural network

architectures and training techniques [Goodfellow et al., 2014, Vaswani et al., 2017,

Kipf and Welling, 2017, Ho et al., 2020, Kaplan et al., 2020, Radford et al., 2021,

OpenAI, 2024]. However, models built purely on unconstrained deep neural networks

still struggle with tasks requiring consistency with knowledge and complex reasoning.

For instance, LLMs are notorious for hallucinating, i.e., performing unsound reasoning

or producing irrelevant or factually incorrect completions Maynez et al. [2020], Ji

et al. [2023]. This significantly hinders the utility and trustworthiness of AI models

built purely on deep neural networks. Symbolic frameworks, on the other hand,

have complementary properties. They execute logical and mathematical programs to

perform sound reasoning and consider domain knowledge, but struggle with low-level

perception and generation.

The promise of mutually beneficial neural and symbolic integrations has driven

significant advancements in machine learning research. Much of the recent progress

has been achieved in the neural-symbolic (NeSy) AI literature [d’Avila Garcez et al.,

2002, 2009, 2019]. NeSy is a large and quickly growing community that has been

holding regular workshops since 2005 [NeSy2005] and began holding conferences
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in 2024 [NeSy2024]. At a high level, NeSy research aims to build algorithms and

architectures for combining neural and symbolic components [Xu et al., 2018, Yang

et al., 2020, Cohen et al., 2020, Manhaeve et al., 2021a, Wang et al., 2019, Badreddine

et al., 2022, Ahmed et al., 2022a, Pryor et al., 2023a]. Researchers have demonstrated

multiple compelling applications of the NeSy approach.

1.1 Motivating NeSy Applications

Here, I highlight four use cases that motivate NeSy: (1) constraint satisfaction and

joint reasoning, (2) fine-tuning and adaptation, (3) few-shot and zero-shot reasoning,

and (4) semi-supervised learning. This list is not exhaustive, however, the efficacy

of the NeSy approach in these use cases is well established, and I will utilize these

applications in the empirical analysis. I define each of the use cases and the high-level

motivation for employing NeSy techniques in such settings below. Then, in Section

2.2 I revisit the four use cases and discuss concrete related work.

Constraint Satisfaction and Joint Reasoning: In real-world settings, a deployed

model’s predictions must meet well-defined requirements. Additionally, leveraging

known patterns or dependencies in the output can significantly improve a model’s

accuracy and trustworthiness. Constraint satisfaction is finding a prediction that

satisfies all requirements. NeSy systems perform constraint satisfaction by reasoning

across their output to provide a structured prediction, typically using some form of

joint reasoning. In other words, NeSy systems integrate constraints and knowledge

into the prediction process.

Fine-tuning and Adaptation: We are in the era of foundation models in AI

[Bommasani et al., 2022]. It is now standard practice to adjust a model that is

pre-trained on large amounts of general data (typically using self-supervision) for

downstream tasks. Fine-tuning and adaptation are two methods for leveraging a

pre-trained model to perform a specific task or to transfer to a new domain [Devlin

et al., 2019, J. Hu et al., 2022]. Fine-tuning and adaptation adjust the pre-trained

model to minimizing a learning objective over a dataset, both of which are specialized

for the downstream tasks. These are necessary steps in the modern AI development
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process. NeSy frameworks are used in the fine-tuning and adaptation steps to design

principled learning objectives that integrate knowledge and constraints relevant to

the downstream task and the application domain.

Few-Shot and Zero-Shot Reasoning: Training data for a downstream task may

be limited or even non-existent. In few-shot settings, only a few examples are available,

while in zero-shot settings, no explicit training data is provided for the task. In these

settings, few-shot and zero-shot reasoning techniques are used to enable a model

to generalize beyond the limited available training data. Leveraging pre-trained

models and domain knowledge are key ideas for succeeding in few-shot and zero-shot

contexts. NeSy techniques have been successfully applied for various few-shot and

zero-shot settings. Integrating symbolic knowledge and reasoning enables better

generalization from a small number of examples. NeSy systems can utilize symbolic

knowledge to make deductions about unseen classes or tasks.

Semi-Supervised Learning: Semi-supervised approaches facilitate learning from

labeled as well as unlabelled data by combining the goals of supervised and unsuper-

vised machine learning [E. van Engelen and H. Hoos, 2020]. Supervised methods fit

a model to predict an output label given a corresponding input, while unsupervised

methods infer the underlying structure in the data. The ability to leverage both

labeled and unlabelled data leads to performance improvements, better generalization,

and reduced labeling costs. NeSy is a functional approach to semi-supervised learning

that leverages knowledge and domain constraints to train a model. This is achieved

with loss functions that encode domain knowledge and structure and depend only on

the input and output; that is, the loss does not require a label.

1.2 Milestones on the Path to NeSy AI:

Despite the growing interest and multiple compelling use cases, NeSy approaches are

often ad-hoc, problem-specific, and not easily generalizable. I identify four milestones

that need to be reached to achieve practical and generally applicable NeSy systems:

(1) a mathematical framework, (2) modeling paradigms, (3) learning techniques, and

(3) a practical implementation. Each milestone represents significant progress and

3



depends on previous achievements.

A Mathematical Framework: First, NeSy needs a unifying mathematical frame-

work. The framework needs to be a common foundation for understanding and

communicating ideas within NeSy and to the broader AI and machine learning

community. Moreover, NeSy research and system design has to have a common and

formal starting point. Without such a framework, research in NeSy is at risk of being

misunderstood, confined, and impractical.

Modeling Paradigms: Next, using the language of a mathematical framework, pri-

mary NeSy modeling paradigms must be established. Practitioners need a taxonomy

of modeling paradigms to understand where NeSy systems can be applied. Likewise,

researchers need to be aware of the strengths and weaknesses of systems to build

new architectures and algorithms.

Learning Techniques: Following the creation of the mathematical framework and

standard modeling paradigms, foundational learning techniques can be created. It is

necessary for the learning techniques to be expressed with the unifying framework,

have transparent trade-offs, and connect to the modeling paradigms. This requirement

enables general progress in NeSy learning theory and educated algorithm design.

A Practical Implementation: Finally, the first three milestones culminate in a set

of modeling paradigms and learning techniques that need to be supported by a NeSy

modeling framework. Further, specialized inference algorithms that are tailored to

the NeSy modeling framework need to be explored.

1.3 Contributions

The contributions of my research are aligned with the four milestones described in

the previous section. Here, I provide a brief description of my contributions and cite

my published research on the topics. I provide thorough details of the contributions

in later chapters. Moreover, I demonstrate the value of the four use cases listed

earlier in this section and simultaneously analyze my proposed methodologies in an

extensive empirical analysis across multiple variations of twelve datasets. I deliver

compelling results for real-world applications, including graph node classification,
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computer vision object detection, and natural language question answering. Notably,

my methodologies are shown to lower runtimes, enhance prediction performance,

enforce constraints, and improve label and data efficiency.

A Mathematical Framework: To fill the need for a unifying mathematical NeSy

framework, I introduce Neural-Symbolic Energy-Based Models (NeSy-EBMs) [Pryor

et al., 2023a, Dickens et al., 2024b]. NeSy-EBMs are a family of Energy-Based Models

(EBMs) [LeCun et al., 2006] defined by energy functions that are compositions of

parameterized neural and symbolic components. The neural component is a collection

of deep models, and its output is provided to the symbolic component, which measures

the compatibility of variables using domain knowledge and constraints. This general

formalization captures discriminative and generative modeling with probabilistic and

non-probabilistic NeSy approaches. Further, energy-based modeling is an established

and recognized perspective that connects NeSy to the broader machine learning

literature.

Modeling Paradigms: I use the NeSy-EBM framework to introduce a general

formalization of reasoning as mathematical programming. This formalization mo-

tivates a new NeSy taxonomy that categorizes models based on their reasoning

capabilities [Dickens et al., 2024c]. Specifically, I organize approaches into three

modeling paradigms that vary with increasing expressivity and complexity: deep

symbolic variables (DSVar), deep symbolic parameters (DSPar), and deep symbolic

potentials (DSPot). These categories are differentiated by their neural-symbolic

connection, i.e., the way in which the neural component output is utilized in the sym-

bolic component. These primary NeSy modeling paradigms organize and illuminate

the capabilities of existing NeSy systems. Moreover, I identify architectures that

support the mentioned NeSy use cases. In my empirical analysis, I demonstrate the

strengths and weaknesses of each NeSy modeling paradigm. Notably, I show how to

use the DSVar and DSPar paradigms to obtain up to a 37% point improvement over

neural baselines in a semi-supervised setting and a 19% improvement over standard

prompting with GPT-4 in natural language question-answering.

Learning Techniques: Further, I develop a suite of principled neural and symbolic
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parameter learning techniques for NeSy [Srinivasan et al., 2021, Dickens et al.,

2024a,b]. NeSy-EBM predictions are typically obtained by finding a state of variables

with high compatibility (i.e., low energy). The high compatibility state is found

by minimizing the energy function via an optimization algorithm, for instance, an

interior point method for continuous variables [Nocedal and Wright, 2006] or a

branch-and-bound strategy for discrete problems [H. Papadimitriou and Steiglitz,

1998]. The complex prediction process makes finding a gradient or descent direction

of a standard machine learning loss with respect to the parameters difficult. To

formalize these challenges and propose solutions, I introduce a categorization of

learning losses based on the complexity of the relation to the NeSy-EBM energy

function. I derive general expressions for gradients of the categorized learning losses

with respect to the neural and symbolic parameters when the loss is differentiable.

Additionally, I introduce four NeSy-EBM learning techniques: one for learning

the neural and symbolic weights separately and three for end-to-end learning. I

discuss the strengths and limitations of each technique and describe its applicability

using the NeSy-EBM framework and modeling paradigms. Briefly, the separate

or modular learning approach is the most widely applicable with respect to the

NeSy-EBM architecture and utilizes black-box optimization techniques. However,

modular learning is not effective for some NeSy use cases. On the other hand, the end-

to-end learning approaches employ ideas from bilevel optimization and reinforcement

learning literature. The end-to-end learning techniques require some assumptions

about the NeSy-EBM architecture but are necessary for certain important NeSy

applications. In my empirical evaluation, I investigate the runtime and performance

trade-offs of the numerous learning techniques I propose. Importantly, the bilevel

algorithm balances the strengths of the direct gradient descent and reinforcement

learning methods, achieving up to a 16% point prediction performance improvement

over alternatives while maintaining a low runtime.

A Practical Implementation: The insights gained from the NeSy-EBMs frame-

work, modeling paradigms, and learning techniques motivate an encompassing system

that supports the primary modeling paradigms and differentiability properties to
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support learning. For this reason, I introduce Neural Probabilistic Soft Logic (Ne-

uPSL), a highly expressive and efficient framework for constructing NeSy-EBMs

[Pryor et al., 2023a, Dickens et al., 2024b]. NeuPSL uses the principled and com-

prehensive semantics of Probabilistic Soft Logic (PSL) [Bach et al., 2017] to create

a NeSy-EBM symbolic component. The neural component can then be seamlessly

integrated with the PSL symbolic component and built using any deep modeling

library. Further, to ensure differentiability properties and provide principled forms of

gradients for learning, I present a new formulation and regularization of PSL inference

as a constrained quadratic program. Additionally, I introduce a corresponding dual

block coordinate descent (dual BCD) inference algorithm that leverages the new

formulation with multiple advantages. The dual BCD algorithm produces principled

gradients for parameter learning and empirical results demonstrate that it can utilize

warm starts effectively, leading to over 100× learning runtime improvements over

the current best inference method.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, I discuss related work on

NeSy frameworks, NeSy applications, EBMs, black-box optimization, and bilevel

optimization. Then, I formally define NeSy-EBMs and introduce three fundamental

NeSy modeling paradigms in Chapter 3. Next, I present a suite of NeSy learning

techniques in Chapter 4. I introduce NeuPSL, a scalable and expressive NeSy-EBM

implementation, in Chapter 5. NeuPSL instantiates NeSy-EBMs in an empirical

analysis of NeSy use cases, modeling paradigms, and learning algorithms in Chapter 6.

Finally, I discuss limitations and conclusions in Chapter 7 and Chapter 8, respectively.
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Chapter 2

Background and Related Work

There is a long, rich history of research on the integration of symbolic knowledge and

reasoning with neural networks, which has rapidly evolved in the past decade. In this

work, I establish a unifying framework for achieving such integration by connecting

two foundational areas of machine learning research: Neural-Symbolic (NeSy) AI

and energy-based modeling (EBMs). I use black-box optimization techniques for

separate neural and symbolic component parameter learning. Additionally, I use

bilevel optimization techniques to propose a new family of end-to-end gradient-based

NeSy learning algorithms. The remainder of this section provides an overview of the

related work in NeSy frameworks, NeSy applications, EBMs, black-box optimization,

and bilevel optimization.

2.1 Neural-Symbolic Frameworks

NeSy empowers neural models with domain knowledge and reasoning through integra-

tions with symbolic systems [d’Avila Garcez et al., 2002, 2009, 2019, De Raedt et al.,

2020, Besold et al., 2022]. Various taxonomies have been proposed to categorize NeSy

literature. Bader and Hitzler (2005), d’Avila Garcez et al. (2019), and most recently

Besold et al. (2022) provide extensive surveys using characteristics such as knowledge

representation, neural-symbolic connection, and applications to compare and describe

methods. Similarly, the works of De Raedt et al. (2020) and Lamb et al. (2020)

propose taxonomies to connect NeSy to statistical relational learning and graph
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neural networks, respectively. Focused taxonomies are described by Giunchiglia

et al. (2022) and van Krieken et al. (2022) for deep learning with constraints and

symbolic knowledge representations and Dash et al. (2022) for integrating domain

knowledge into deep neural networks. Marconato et al. (2023) characterizes the

common reasoning mistakes made by NeSy models, and Marconato et al. (2024)

presents an ensembling technique that calibrates the model’s concept-level confidence

to attempt to identify these mistakes. Recently, Wan et al. (2024) explored various

NeSy AI approaches primarily focusing on workloads on hardware platforms, examin-

ing runtime characteristics and underlying compute operators. Finally, van Krieken

et al. (2024) propose a language for NeSy called ULLER that aims to unify the

representation of major NeSy systems, with the long-term goal of developing a shared

Python library. Each of these surveys and taxonomies contributes to the comparison,

understanding, and organization of the diverse collection of NeSy methodologies.

I contribute to these efforts by introducing a common mathematical framework

(Section 3.1) and a new taxonomy focused on the reasoning capabilities achievable

by different NeSy modeling paradigms (Section 3.2).

I organize the exposition of related NeSy AI frameworks into three broad research

areas: learning with constraints, differentiable reasoning layers, and reasoner agnostic

systems. In the following subsections, I define each of the research areas and describe

prominent examples of models belonging to the area.

2.1.1 Learning with Constraints

The essence of learning with constraints is using domain knowledge and common

sense to construct a loss function [Giunchiglia et al., 2022, van Krieken et al., 2022].

This approach encodes the knowledge captured by the loss into the weights of the

network. A key motivation is to ensure the compatibility of predictions with domain

knowledge and common sense. Moreover, learning with constraints avoids potentially

expensive post-prediction interventions that would be necessary with a model that is

not aligned with domain knowledge. However, consistency with domain knowledge

and sound reasoning are not guaranteed during inference for NeSy models in this
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class.

Demeester et al. (2016), Rocktäschel and Riedel (2017), Diligenti et al. (2017),

Bošnjak et al. (2017), and Xu et al. (2018) are prominent examples of the learning-with-

constraints NeSy paradigm. Demeester et al. (2016) incorporates domain knowledge

and common sense into natural language and knowledge base representations by

encouraging partial orderings over embeddings via a regularization of the learning

loss. Similarly, Rocktäschel and Riedel (2017) leverage knowledge represented as a

differentiable loss derived from logical rules to train a matrix factorization model

for relation extraction. Diligenti et al. (2017) use fuzzy logic to measure how

much a model’s output violates constraints, which is minimized during learning. Xu

et al. (2018) introduces a loss function that represents domain knowledge and common

sense by using probabilistic logic semantics. More recently, Giunchiglia et al. (2023)

introduced an autonomous event detection dataset with logical requirements, and

Stoian et al. (2023) shows that incorporating these logical requirements during the

learning improves generalization.

2.1.2 Differentiable Reasoning Layers

Another successful area of NeSy is in differentiable reasoning layers. The primary

difference between this family of NeSy approaches and learning with constraint is

that an explicit representation of knowledge and reasoning is maintained in the model

architecture during both learning and inference. A defining aspect of differentiable

reasoning layers is the instantiation of knowledge and reasoning components as

differentiable computation graphs. Differentiable reasoning layers support automatic

differentiation during learning and symbolic reasoning during inference.

Pioneering works in differentiable reasoning include those of Wang et al. (2019),

Cohen et al. (2020), Yang et al. (2020), Manhaeve et al. (2021a), Derkinderen

et al. (2024), Badreddine et al. (2022), Ahmed et al. (2022a) and Ahmed et al. (2023a).

Wang et al. (2019) integrates logical reasoning and deep models by introducing a differ-

entiable smoothed approximation to a maximum satisfiability (MAXSAT) solver as a

layer. Cohen et al. (2020) introduces a probabilistic first-order logic called TensorLog.
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This framework compiles tractable probabilistic logic programs into differentiable

layers. A TensorLog system is end-to-end differentiable and supports efficient par-

allelizable inference. Similarly, Yang et al. (2020) and Manhaeve et al. (2021a)

compile tractable probabilistic logic programs into differentiable functions with their

frameworks NeurASP and DeepProblog, respectively. NeurASP and DeepProblog

use answer set programming [Brewka et al., 2011] and ProbLog [De Raedt et al.,

2007] semantics, respectively. Winters et al. [2022] proposes DeepStochLog, a NeSy

framework based on stochastic definite clause grammars that define a probability

distribution over possible derivations. Recently, Maene and Raedt [2024] proposes

DeepSoftLog, a superset of ProbLog, adding embedded terms that result in prob-

abilistic rather than fuzzy semantics. The logic tensor network (LTN) framework

proposed by Badreddine et al. (2022) uses neural network predictions to parameterize

functions representing symbolic relations with real-valued or fuzzy logic semantics.

The fuzzy logic functions are aggregated to define a satisfaction level. Predictions

can be obtained by evaluating the truth value of all possible outputs and returning

the highest-valued configuration. Badreddine et al. (2023) has expanded upon LTNs

and presents a configuration of fuzzy operators for grounding formulas end-to-end

in the logarithm space that is more effective than previous proposals. Recently,

Ahmed et al. (2022a) introduced a method for compiling differentiable functions

representing knowledge and logic using the semantics of probabilistic circuits (PCs)

[Choi et al., 2020]. Their approach, called semantic probabilistic layers (SPLs),

performs exact inference over tractable probabilistic models to enforce constraints

over the predictions and uses the PC framework to ensure that the NeSy model is

end-to-end trainable.

As pointed out by Cohen et al. (2020), answering queries in many (probabilistic)

logics is equivalent to the weighted model counting problem, which is #P-complete

or worse. Similarly, the MAXSAT problem studied by Wang et al. (2019) is NP-

hard. Thus, since deep neural networks can be evaluated in time polynomial in

their size, no polysize network can implement general logic queries unless #P=P, or

MAXSAT solving, unless NP=P. For this reason, researchers have made progress
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towards building more efficient differentiable reasoning systems by, for example,

restricting the probabilistic logic to tractable families [Cohen et al., 2020, Ahmed

et al., 2022a, Maene et al., 2024], or performing approximate inference [Wang et al.,

2019, Manhaeve et al., 2021b, van Krieken et al., 2023].

2.1.3 Reasoner Agnostic Systems

More recently, researchers have sought to build NeSy frameworks with more general

reasoning and knowledge representation capacities with expressive mathematical

program blocks for reasoning. Mathematical programs are capable of representing

cyclic dependencies across variables and ensuring the satisfaction of prediction

constraints during learning and inference. Moreover, the system’s high-level inference

and training algorithms are agnostic to the solver used for the mathematical program.

Prominent reasoner-agnostic systems include the works of Amos and Kolter (2017),

Agrawal et al. (2019a), Vlastelica et al. (2020), and Cornelio et al. (2023). Amos and

Kolter (2017) integrate linearly constrained quadratic programming problems (LCQP)

as layers in deep neural networks with their OptNet framework, and show that the

solutions to the LCQP problems are differentiable with respect to the program param-

eters. The progress of OptNet was continued by the work of Agrawal et al. (2019a)

with the application of domain-specific languages (DSLs) for instantiating the LCQP

program layers. DSLs provide a syntax for specifying LCQPs representing knowledge

and constraints, making optimization layers more accessible. Vlastelica et al. (2020)

propose a method for computing gradients of solutions to mixed integer linear pro-

grams based on a continuous interpolation of the program’s objective. In contrast

to the works of Amos and Kolter (2017) and Agrawal et al. (2019a), the approach

introduced by Vlastelica et al. (2020) supports integer constraints and achieves this by

approximating the true gradient of the program output. Cornelio et al. (2023) takes

a different approach from these three methods by employing reinforcement learning

techniques to support more general mathematical programs. Specifically, the neural

model’s predictions are interpreted as a state in a Markov decision process. Actions

from a policy are taken to identify components that violate constraints to obtain
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a new state. The new state is provided to a solver, which corrects the violations,

and a reward is computed. The solver is not assumed to be differentiable, and the

REINFORCE algorithm [Williams, 1992] with a standard policy loss is used to train

the system end-to-end without the need to backpropagate through the solver.

2.2 Neural-Symbolic Applications

In this section, I revisit the four motivating applications discussed in Section 1.1:

(1) constraint satisfaction and joint reasoning, (2) fine-tuning and adaptation, (3)

few-shot and zero-shot reasoning, and (4) semi-supervised learning.

2.2.1 Constraint Satisfaction and Joint Reasoning

A commonly used example of constraint satisfaction and joint reasoning is puzzle-

solving. Many NeSy frameworks are introduced with an evaluation on visual Sudoku

and its variants [Wang et al., 2019, Augustine et al., 2022]. In the visual Sudoku

problem, puzzles are constructed with handwritten digits, and a model must classify

the digits and infer numbers to fill in the empty cells using the rules of Sudoku.

Empirical evaluations of NeSy systems that perform constraint satisfaction and joint

reasoning on visual Sudoku problems can be found in Wang et al. [2019], Augustine

et al. [2022], Pryor et al. [2023a], and Morra et al. [2023]. Similarly, Vlastelica

et al. (2020) introduces the shortest path finding problem as a NeSy task. Images

of terrain maps are partitioned into a grid, and the model must find a continuous

lowest-cost path between two points. The works of Vlastelica et al. (2020) and

Ahmed et al. [2022a] perform constraint satisfaction and joint reasoning with NeSy

models for shortest path finding.

Constraint satisfaction and joint reasoning with NeSy models are also effective

for real-world natural language tasks. For instance, Sachan et al. (2018) introduces

the Nuts&Bolts NeSy system to build a pipeline for parsing physics problems. The

NeSy system jointly infers a parsing from multiple components that incorporates

domain knowledge and prevents the accumulation of errors that would occur from a

naive composition. In another work, Zhang et al. (2023) propose GeLaTo (generating
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language with tractable constraints) for imposing constraints on text generated

from language models. GeLaTo generates text tokens by autoregressively sampling

from a distribution constructed from a pre-trained language model and a tractable

probabilistic model encoding the constraints. More recently, Pan et al. [2023]

introduced the Logic-LM framework for integrating LLMs with symbolic solvers to

improve complex problem-solving. Logic-LM formulates a symbolic model using an

LLM that uses prompts of the syntax and semantics of the symbolic language. Finally,

Abraham et al. (2024) introduced CLEVR-POC, which requires leveraging logical

constraints to generate plausible answers to questions about a hidden object in a

given partial scene. They then demonstrated remarkable performance improvements

over neural methods by integrating an LLM with a visual perception network and a

formal logical reasoner.

Computer vision systems also benefit from the constraint satisfaction and joint

reasoning capabilities of NeSy models. For instance, semantic image interpreta-

tion (SII) is the task of extracting structured descriptions from images. Donadello

et al. (2017) implemented a NeSy model for SII using the Logic Tensor Network (LTN)

[Badreddine et al., 2022] framework for reasoning about “part-of” relations between

objects with logical formulas. Similarly, Yi et al. (2019) propose a NeSy visual

question-answering framework (NS-VQA). The authors employ deep representation

learning for visual recognition to recover a structured representation of a scene and

then language understanding to formulate a program from a question. A symbolic

solver executes the formulated program to obtain an answer. Sikka et al. (2020) in-

troduced Deep Adaptive Semantic Logic (DASL) for predicting relationships between

pairs of objects in an image given the bounding boxes and object category labels,

i.e., visual relationship detection. The DASL system allows a modeler to express

knowledge using first-order logic and to combine domain-specific neural components

into a single deep network. A DASL model is trained to maximize a measured truth

value of the knowledge.
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2.2.2 Fine-tuning and Adaptation

Giunchiglia et al. (2022) provides a recent survey of the use of logically specified

background knowledge to train neural models. NeSy learning losses are applied in

the work of Giunchiglia et al. (2023) to fine-tune a neural system for autonomous

vehicle situation awareness [Singh et al., 2021]. In another computer vision task,

Arrotta et al. (2024) develop a NeSy loss for training a neural model to perform

context-aware human activity recognition. NeSy fine-tuning and adaptation have

also been explored in the natural language processing literature. Recently, Ahmed

et al. (2023b) proposed the pseudo-semantic loss for detoxifying large language

models. The authors disallow a list of toxic words and show this intuitive approach

steers a language model’s generation away from harmful language and achieves state-

of-the-art detoxification scores. Feng et al. (2024) has explored directly learning the

reasoning process of logical solvers within the LLM to avoid parsing errors. Finally,

Cunnington et al. (2024) introduced NeSyGPT, which fine-tunes a vision-language

foundation model to extract symbolic features from raw data before learning an

answer set program.

2.2.3 Few-Shot and Zero-Shot Reasoning

Providing recommendations for new items or users can be viewed as a few-shot or

zero-shot problem. Kouki et al. (2015) introduce the HyPER (hybrid probabilistic

extensible recommender) framework for incorporating and reasoning over a wide

range of information sources. By combining multiple information sources via logical

relations, the authors outperformed the state-of-the-art approaches of the time.

More recently, Carraro et al. [2022] developed an LTN-based recommender system

to overcome data sparsity. This model uses background knowledge to generalize

predictions for new items and users quickly. Few-shot and zero-shot reasoning tasks

are also prevalent in object navigation. The ability to navigate to novel objects and

unfamiliar environments is vital for the practical use of embodied agents in the real

world. In this context, Zhou et al. (2023) presents a method for “exploration with soft

commonsense constraints” (ESC). ESC first employs a pre-trained vision and language
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model for semantic scene understanding, then a language model to reason from the

spatial relations, and finally PSL to leverage symbolic knowledge and reasoning to

guide exploration. In natural language processing, Pryor et al. (2023b) infers the

latent dialog structure of a goal-oriented conversation using domain knowledge to

overcome the challenges of limited data and out-of-domain generalization. Further,

the previously cited works of Pan et al. (2023) and Sikka et al. (2020) also find that

the few-shot and zero-shot capabilities neural models can be improved with the NeSy

approach. Specifically, in Pan et al. (2023), the authors achieve performance gains

over 39% by integrating symbolic reasoners with LLMs and in Sikka et al. (2020) the

addition of commonsense reasoning and knowledge improves performance by over

10% in data-scarce settings.

2.2.4 Semi-Supervised Learning

Early work on semi-supervision with knowledge was carried out by Chang et al. (2007),

who unify and leverage task-specific constraints to encode structure in the input and

output data and possible labels. They evaluate their semi-supervised learning method

on the task of named entity recognition in citations as well as advertisements. More

recently, Ahmed et al. (2022b) introduced the neuro-symbolic entropy regularization

loss to encourage model confidence in predictions satisfying a set of constraints on

the output. They demonstrate that the regularization improves model performances

in the task of entity relation extraction in text. Additionally, Stoian et al. (2023)

studied the effect of various t-norms used to soften the logical constraints for the

symbolic component and demonstrated on a challenging road event detection dataset

with logical requirements [Giunchiglia et al., 2023] that incorporating a symbolic loss

drastically improves performance.

2.3 Energy-Based Models

My NeSy framework makes use of Energy-Based Models (EBMs) [LeCun et al.,

2006]. EBMs measure the compatibility of a collection of observed (input) variables

x ∈ X and target (output) variables y ∈ Y via a scalar-valued energy function:
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E : Y×X → R. Low energy states represent high compatibility. EBMs are appealing

due to their generality in both modeling and application. For instance, EBMs can

be used to perform density estimation by defining conditional, joint, and marginal

Gibbs distributions with the energy function:

P (y|x) :=
e−βE(y,x)∫

ŷ∈Y e
−βE(ŷ,x)

, (2.1)

P (y,x) :=
e−βE(y,x)∫

ŷ∈Y,x̂∈X e
−βE(ŷ,x̂)

, (2.2)

P (x) :=

∫
ŷ∈Y e

−βE(y,x)∫
ŷ∈Y,x̂∈X e

−βE(ŷ,x̂)
. (2.3)

A fundamental motivation for the use of the Gibbs distribution is that any density

function can be represented by the distribution shown above with a (potentially

un-normalized) energy function E. For this reason, EBMs are a unified framework

for probabilistic and non-probabilistic approaches and are applicable for generative

and discriminative modeling.

EBMs are applied throughout machine learning to model data and provide pre-

dictions. The Boltzmann machine [Ackley et al., 1985, Salakhutdinov and Larochelle,

2010] and Helmholtz machine [Dayan et al., 1995] are some of the earliest EBMs to

appear in the machine learning literature. Hinton (2002) is another seminal work

that shows EBMs to be useful for building mixture-of-expert models. Specifically, a

single complex distribution is produced by multiplying many simple distributions

together and then renormalizing.

More recently, the EBM framework has been utilized for generative modeling

[Zhao et al., 2017, Du and Mordatch, 2019, Du et al., 2023]. Zhao et al. (2017)

introduce energy-based generative adversarial networks (EBGANs), which view the

GAN discriminator as an energy function that attributes low energies (high com-

patibility) to points near the data manifold. The EBGAN approach is a principled

framework for using GAN discriminators with a variety of architectures and learning

loss functionals to achieve more stable training than traditional GANs. Du and

Mordatch [2019] advocate for using EBMs directly for generative modeling, citing as
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motivation their simplicity, stability, parameter efficiency, flexibility of generation,

and compositionality. They show generative results that achieve performance close

to modern GANs, achieving state-of-the-art results in out-of-distribution classifica-

tion, adversarially robust classification, and other tasks. In more recent work, Du

et al. (2023) propose an energy-based parameterization of diffusion models to support

compositional generation.

The EBM framework was shown recently to improve discriminative modeling

[Grathwohl et al., 2020, Liu et al., 2020]. Grathwohl et al. (2020) reinterpret

discriminative classifiers as EBMs to propose the joint energy-based model (JEM).

A JEM allows the parameters of the model to be fit on unlabeled data with a

likelihood-based loss, leading to improved accuracy, robustness, calibration, and

out-of-distribution detection. Similarly, Liu et al. (2020) developed an EBM for

out-of-distribution detection to achieve state-of-the-art performance. Liu et al. (2020)

creates a purely discriminative training objective (in contrast with the probabilistic

approach of JEM) and shows that unnormalized energy scores can be used directly

for out-of-distribution detection.

A primary challenge of the EBM framework is learning with a potentially in-

tractable partition function induced by the Gibbs distributions in (2.1), (2.2), and

(2.3). Some of the earliest EBMs worked around the partition function using the

contrastive divergence algorithm [Hinton, 2002] to estimate derivatives of the negative

log-likelihood loss of an EBM with Markov chain Monte Carlo (MCMC) sampling

from the Gibbs distribution. Later work on EBMs has improved the traditional

biased MCMC sampling-based approximation methods with a sampler based on

stochastic gradient Langevin dynamics (SGLD) [Welling and Teh, 2011]. For instance,

Du and Mordatch (2019) use SGLD for training generative EBMs and Grathwohl

et al. (2020) for discriminative models with a negative log-likelihood loss.

Score matching is an alternative probabilistic approach to training an EBM that

fits the slope (or score) of the model density to the score of the data distribution,

avoiding the need to estimate the Gibbs distribution partition function [Hyvarinen,

2005, P. Kingma and LeCun, 2010, Song and Ermon, 2019]. Hyvarinen (2005) initially
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proposed score matching for estimating non-normalized statistical models. Later,

P. Kingma and LeCun (2010) used score matching to train an EBM for image

denoising and super-resolution. Song and Ermon (2019) suggested training an EBM

to approximate the score of the data distribution that is then used with Langevin

dynamics for generation.

EBMs may also be trained via non-probabilistic losses that do not require esti-

mating the Gibbs distribution partition function [LeCun et al., 1998, Collins, 2002,

Scellier and Bengio, 2017]. For instance, the perceptron loss, which is the difference

between the energy of the observed training data and the minimum value of the

energy function (see Section 4.2 for a formal definition), has been used for recog-

nizing handwritten digits [LeCun et al., 1998] and part-of-speech tagging [Collins,

2002]. More recently, Scellier and Bengio (2017) proposed equilibrium propagation, a

two-phase learning algorithm for training EBMs with a twice differentiable energy

function. The equilibrium propagation algorithm can be used to train EBMs with

an arbitrary differentiable loss. A step of the learning algorithm proceeds by mini-

mizing the energy given some input (the free phase) and then minimizing the energy

augmented with a cost function (the nudged phase). The gradient of the learning

objective is a function of the results of these two minimizations.

The EBM framework has proven effective for a wide range of tasks in both

generative and discriminative modeling. The versatility of EBMs supports modeling

complex dependencies, the composition and fusion of models, and leveraging both la-

beled and unlabeled data. Moreover, EBMs provide a common theoretical framework

spanning probabilistic and non-probabilistic methods.

2.4 Black-Box Optimization

Black-box optimization, also referred to as derivative-free optimization, is a class of

optimization techniques where the gradient of the objective is treated as an unknown

and is only queried for evaluations at points in the problem domain [Nocedal and

Wright, 2006, R. Conn et al., 2009, Snoek et al., 2012, Bergstra and Bengio, 2012,

Shahriari et al., 2016]. The goal of black-box optimization is to find the best
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possible value for a set of parameters w from a domain W that optimizes a function

γ(w) :W → R:

arg min
w∈W

γ(w). (2.4)

A high-level framework for black-box optimization is to define a search space, choose

a point w̃ from the space, evaluate γ(w̃) to update a model of the function γ, and

repeat. The selection and evaluation process can be simple and parallelized for

algorithms like random grid search. On the other hand, more complex algorithms

assume a sequential setup to ensure optimal selection of the next point to evaluate.

For example, methods following the Bayesian optimization (BO) framework (Section

4.3.1) employ Gaussian process regression (GPR) to develop an approximation of

γ and use strategies, called acquisition functions, to choose the next point. In the

following subsections, background on GPR and acquisition functions is provided.

2.4.1 Gaussian Process Regression

A Gaussian process (GP) describes a distribution over a function space and is fully

characterized by a mean function µ0 :W → R and a covariance matrix K = [Ki,j ]

Rasmussen and Williams [2005]. More formally, consider a finite ordered set of s > 0

parameter values, W = {w1 ∈ W, · · · ,ws ∈ W}. Then, for any input wi ∈W, let

hi = γ(wi) represent the function γ evaluated at wi. In GPR, a prior distribution

is assumed over h = [h1, · · · , hs] that is jointly Gaussian. Specifically, the prior

distribution over g is g ∼ N (m,K), where mi = µ0(wi). To allow for a more general

setting with noisy function evaluations, let h̃i be the noisy output of the function

γ(wi), i.e., h̃i = γ(wi) + ϵ, where ϵ is Gaussian N (0, σ) noise. As the prior and noise

are both Gaussian, if the vector h̃ = [h̃i, · · · , h̃s] of function evaluations at a set of

points W is observed, then the likelihood of the noisy function evaluation at a new

point ws+1 is also jointly Gaussian. Hence, the posterior distribution over h̃s+1 given
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h̃ is h̃s+1|h̃ ∼ N (µs(ws+1), σs(ws+1)) where

µs(ws+1) = µ0(ws+1) +KT
s+1(K + σ2I)−1(h−m)

σs(ws+1) = Ks+1,s+1 −KT
s+1(K + σ2I)−1Ks+1

and Ks+1 is the vector of covariances between the new input ws+1 and every ob-

served input wi ∈ W. Assuming one has a method for computing covariances

between any two points in the input space, then the posterior mean and vari-

ance of the noisy output of the function γ at any point can be computed using

the above expressions. In GPR, a kernel function, k(·, ·), is used, and it plays

the crucial role of defining the covariance between points in the input space, i.e.,

Ki,j = E [(γ(wi)− µ0(wi))(γ(wj)− µ0(wj))] = k(wi,wj). Consequentially, k en-

codes assumptions about the function the GP is developing a distribution over. The

choice of kernel function is often the key to finding the best approximation of the

true function.

2.4.2 Kernel Functions

In its most general form, a kernel function, k(·, ·), is any mapping of two inputs from

a space W to R. For a valid GP, the choice of kernel function must correspond to an

inner product in some inner product space. Formally, for any two inputs wi,wj ∈ W ,

k(·, ·) is equal to the inner product of the inputs after being mapped to an inner

product space H via a transformation Ψ :W → H, i.e.,

k : X ×W → R, (wi,wj) 7→ k(wi,wj)

where

k(wi,wj) = ⟨Ψ(wi),Ψ(wj)⟩H (2.5)

Requiring that a kernel, k(·, ·), corresponds to an inner product ensures that the

matrix defined by the inputs w1, · · · ,ws ∈ W and the kernel, namely the Gram

matrix K = [Ki,j ] where Ki,j = k(wi,wj), is positive semi-definite, and hence can
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be used as a covariance matrix. Kernels with this property are referred to as positive

semi-definite kernels or covariance functions.

There is a suite of positive semi-definite kernels that have been proposed in the

literature, each equipped with different properties that may be more or less suited

for a problem domain [Genton, 2001, Schölkopf and Smola, 2002, Rasmussen and

Williams, 2005]. For instance, the stationary class of kernels, which includes the

widely used squared exponential (employed in later Section 4.3.1), and the Matérn

class of kernels [Matérn, 1960] assumes the covariance between inputs is translation

invariant. More formally, stationary kernels assume that for some vector ∆w ∈ W,

k(wi,wj) = k(wi+∆w,wj +∆w). Another common assumption is that of rotational

invariance. This property is held by a class of kernels called dot product kernels,

which only depend on the inputs wi,wj through wi · wj . One example of a dot

product kernel is the inhomogeneous polynomial kernel k(wi,wj) = (σ20 + wi ·wj).

A domain will typically not satisfy the assumptions made by a single standard

kernel. It is then necessary to design a specialized covariance function for the setting.

At a high level, two approaches for designing covariance functions that meet a set

of desired properties for a problem are: 1) proposing a novel positive semi-definite

kernel function or 2) creating a new kernel from existing covariance functions through

positive semi-definite preserving operations Genton [2001].

2.4.3 Acquisition Functions

An acquisition function α for BO determines the next weight configuration to evaluate

the function γ, i.e., wnext = arg maxw∈W α(w). The evaluation of γ(wnext) is used

to update the distribution described by the underlying GPR of a BO algorithm.

There is a tradeoff between exploring a variety of weights to allow the GPR to

develop a broad picture of the objective and exploiting previous observations to

target promising regions of the search space. Four well-studied acquisition functions

for balancing this tradeoff are:
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Upper confidence bound

The upper confidence bound (UCB) is an optimistic policy with provable cumulative

regret bounds [Srinivas et al., 2010]. The UCB acquisition function is:

α(W) = µ(w) + ψ · σ(w)

where µ and σ are the mean and variance predicted by the GP and ψ ≥ 0 is a

hyperparameter set to achieve optimal regret bounds.

Thompson Sampling

Thompson sampling (TS) is an information-based policy that considers the posterior

distribution over the weights W [Thompson, 1933]. The TS acquisition function is:

α(W) = p̃(w)

p̃(w) ∼ N (µ(w), σ(w))

where p̃ are samples obtained from the distribution computed at the point w.

Probability of Improvement

Probability of improvement (PI) is an improvement-based policy that favors points

that are likely to improve an incumbent target τ [Kushner, 1964]. The PI acquisition

function is:

α(W) = P(γ(w) > τ) = F
(µ(w)− τ

σ(w)

)

where F is the standard normal cumulative distribution function and τ is set adap-

tively to the current best observed value for γ.

Expected improvement

Expected improvement (EI) is an improvement-based policy similar to PI [Mockus

et al., 1978]. Instead of probability, it measures the expected amount of improvement.
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The EI acquisition function is:

α(W) =
{

(µ(w)− τ)F
(µ(w)− τ

σ(w)

)
+ (σ(w))F

(µ(w)− τ
σ(w)

)}
,

where F is the probability density function of a standard normal distribution.

2.5 Bilevel Optimization

Finally, in this dissertation, I use bilevel optimization as a natural formulation of

learning for a general class of NeSy systems [Bracken and McGill, 1973, Colson et al.,

2007, F. Bard, 2013, Dempe and Zemkoho, 2020]. The NeSy learning objective is a

function of predictions obtained by solving a lower-level program that encapsulates

symbolic reasoning. In the broader deep learning community, bilevel optimization also

arises in hyperparameter optimization [Pedregosa, 2016], meta-learning [Franceschi

et al., 2018, Rajeswaran et al., 2019], generative adversarial networks [Goodfellow

et al., 2014], and reinforcement learning [Sutton and Barto, 2018]. Researchers

typically take one of the following three approaches to bilevel optimization.

Implicit Differentiation. There is a long history of research on analyzing

the stability of solutions to optimization problems using implicit differentiation

[Fiacco and McCormick, 1968, Robinson, 1980, Bonnans and Shapiro, 2000]. These

methods compute or approximate the Hessian matrix at the lower-level problem

solution to derive an analytic expression for the gradient of the upper-level objective,

sometimes called a hypergradient. Bilevel algorithms of this type make varying

assumptions about the problem structure [Do et al., 2007, Pedregosa, 2016, Ghadimi

and Wang, 2018, Rajeswaran et al., 2019, Giovannelli et al., 2022, Khanduri et al.,

2023]. Building on these foundational techniques, the deep learning community has

proposed architectures that contain layers that are functions of convex programs

with analytic expressions for gradients derived from implicit differentiation [Amos

and Kolter, 2017, Agrawal et al., 2019a,b, Wang et al., 2019].

Automatic Differentiation. This approach unrolls inference into a differen-

tiable computational graph [Stoyanov et al., 2011, Domke, 2012, Belanger et al., 2017,
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Ji et al., 2021], and then leverages automatic differentiation techniques [Griewank

and Walther, 2008]. However, unrolling the inference computation creates a large,

complex computational graph that can accumulate numerical errors dependent on

the solver.

Bilevel Value-Function Approach. An increasingly popular approach is

to reformulate the bilevel problem as a single-level constrained program using the

optimal value of the lower-level objective (the value-function) to develop principled

gradient-based algorithms that do not require the calculation of Hessian matrices for

the lower-level problem [V. Outrata, 1990, J. Ye and L. Zhu, 1995, Liu et al., 2021,

Sow et al., 2022, Liu et al., 2022, 2023, Kwon et al., 2023]. Existing bilevel value-

function approaches are not directly applicable to NeSy systems as they typically

assume the lower-level problem to be unconstrained and the objective to be smooth.

Bilevel optimization with constraints in the lower level problem, is an open area

of research. Until now, implicit differentiation methods are applied with strong

assumptions about the structure of the lower-level problem [Giovannelli et al., 2022,

Khanduri et al., 2023]. The bilevel learning framework I present in this dissertation

is, to the best of my knowledge, the first value-function approach to work with

lower-level problem constraints.
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Chapter 3

A Unifying Mathematical

Framework and A Taxonomy of

Modeling Paradigms for NeSy

In this chapter, I introduce Neural-symbolic energy-based models (NeSy-EBMs): a

unifying mathematical framework for NeSy. Intuitively, NeSy-EBMs formalize the

neural-symbolic interface as a composition of functions. Then, I build a taxonomy of

NeSy modeling paradigms that is expressed using the NeSy-EBM framework. The

theory and notation introduced in this chapter are used throughout the rest of this

dissertation.

3.1 Neural Symbolic Energy-Based Models

NeSy-EBMs are a family of EBMs [LeCun et al., 2006] that integrate deep archi-

tectures with explicit encodings of symbolic relations via an energy function. EBM

energy functions measure the compatibility of variables where low energy states

correspond to high compatibility. For NeSy-EBMs, high compatibility indicates

that the variables are consistent with domain knowledge and common sense. In

the following section, the formal NeSy-EBM definition is grounded with intuitive

examples of NeSy modeling paradigms.
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As diagrammed in Fig. 3.1, a NeSy-EBM energy function composes a neural

component with a symbolic component, represented by the functions gnn and gsy,

respectively. The neural component is a deep model (or collection of deep models)

parameterized by weights from a domain Wnn, that takes a neural input from a

domain Xnn and outputs a real-valued vector of dimension dnn. The symbolic

component encodes domain knowledge and is parameterized by weights from a

domain Wsy. It maps inputs from a domain Xsy, target (or output) variables from Y ,

and neural outputs from Range(gnn) to a scalar value. In other words, the symbolic

component measures the compatibility of targets, inputs, and neural outputs with

domain knowledge.

Definition 1

A NeSy-EBM energy function is a mapping parameterized by neural and symbolic

weights from domains Wnn and Wsy, respectively, and quantifies the compatibility of

a target variable from a domain Y and neural and symbolic inputs from the domains

Xnn and Xsy, respectively, with a scalar value:

E : Y × Xsy ×Xnn ×Wsy ×Wnn → R. (3.1)

A NeSy-EBM energy function is a composition of a neural and symbolic

component. Neural weights parameterize the neural component, which outputs

a real-valued vector of dimension dnn:

gnn : Xnn ×Wnn → Rdnn . (3.2)

The symbolic component maps the symbolic variables, symbolic parameters, and a

real-valued vector of dimension dnn to a scalar value:

gsy : Y × Xsy ×Wsy × Rdnn → R. (3.3)
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Figure 3.1: A neural-symbolic energy-based model.

The NeSy-EBM energy function is

E : (y,xsy,xnn,wsy,wnn) 7→ gsy(y,xsy,wsy,gnn(xnn,wnn)).

Given inputs and parameters (xsy,xnn,wsy,wnn) ∈ Xsy × Xnn × Wsy × Wnn,

NeSy-EBM energy functions can be used to define several inference tasks, for instance:

• Prediction, classification, and decision making : Find targets minimizing the

energy function.

arg min
ŷ∈Y

E(ŷ,xsy,xnn,wsy,wnn). (3.4)

• Ranking : Sort a set of targets in order of increasing energy.

E(yr1 ,xsy,xnn,wsy,wnn) ≤ · · · ≤ E(yrp ,xsy,xnn,wsy,wnn) (3.5)

• Detection: Determine if a target, y, is below a threshold τ .

D(y,xsy,xnn,wsy,wnn; τ) :=


1 E(y,xsy,xnn,wsy,wnn) ≤ τ

0 o.w.

(3.6)

• Density estimation: Estimate the conditional probability of a target, y. The

energy function is used to define a probability density, such as a Gibbs distri-
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bution.

P (y|xsyxnn;wsy,wnn) :=
e−βE(y,xsy ,xnn,wsy ,wnn)∫

ŷ∈Y e
−βE(ŷ,xsy ,xnn,wsy ,wnn)

, (3.7)

where β is the positive inverse temperature parameter.

• Generation: Sample a target variable state using a distribution defined by the

energy function.

y ∼ P (y|xsyxnn;wsy,wnn). (3.8)

This dissertation focuses on the first and most common task in this list: prediction,

classification, and decision-making (3.4). Prediction with NeSy-EBMs captures

various reasoning frameworks, including probabilistic, logical, arithmetic, and their

combinations. It can represent standard applications of prominent NeSy systems,

including, DeepProbLog [Manhaeve et al., 2021a], LTNs [Badreddine et al., 2022],

Semantic Probabilistic Layers [Ahmed et al., 2022a], and NeuPSL [Pryor et al.,

2023a], to name a few.

3.2 A Taxonomy of Modeling Paradigms

Using the NeSy-EBM framework, I introduce a taxonomy of NeSy modeling paradigms

determined by the neural-symbolic interface. The modeling paradigms are character-

ized by how the neural component is utilized in the symbolic component to define

the prediction program in (3.4). To formalize the modeling paradigms, I introduce

an additional layer of abstraction I refer to as symbolic potentials, denoted by ψ.

Further, I collect symbolic potentials into symbolic potential sets, denoted by Ψ.

Symbolic potentials organize the arguments of the symbolic component by the role

they play in formulating the prediction program in (3.4).

Definition 2

A symbolic potential ψ is a function of variables from a domain Vψ and parameters
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from a domain Paramsψ, outputting a scalar value:

ψ : Vψ × Paramsψ → R. (3.9)

A symbolic potential set, denoted by Ψ, is a set of potentials indexed by JΨ.

Table 3.1: Summary of typical characteristics of the Deep Symbolic Variables (DSVar),
Deep Symbolic Parameters (DSPar), and Deep Symbolic Potentials (DSPot) modeling
paradigms.

DSVar DSPar DSPot

Definition gsy(y,xsy,wsy,gnn(xnn,wnn)) :=
ψ([y,xsy,gnn(xnn,wnn)] ,wsy) ψ([y,xsy] , [wsy,gnn(xnn,wnn)]) Ψgnn(xnn,wnn)([y,xsy] ,wsy)+IY(y,gnn(xnn,wnn))

Properties

Fast Learning ✓
Fast Inference ✓

Expressive ✓ ✓
Open Domain ✓

Applications

Constraint Satisfaction ✓ ✓
Fine-tuning ✓ ✓

Few/Zero-Shot ✓ ✓
Semi-Supervised ✓ ✓

Examples
Giunchiglia et al. [2022] Manhaeve et al. [2021a] Pan et al. [2023]

Pryor et al. [2023b] Badreddine et al. [2022] Dickens et al. [2024c]
Xu et al. [2018] Ahmed et al. [2022a] Olausson et al. [2023]

A “modeling paradigm” is a specification of the set of symbolic potentials and

the domains of the potentials belonging to the set. I describe three foundational

modeling paradigms in the following sections in increasing order of sophistication: deep

symbolic variables (DSVar), deep symbolic parameters (DSPar), and deep symbolic

potentials (DSPot). Table 3.1 presents a summary of these modeling paradigms. It is

important to note that many NeSy systems can represent multiple paradigms, such

as DeepProbLog [Manhaeve et al., 2021a], Logic Tensor Networks [Badreddine et al.,

2022], Semantic Probabilistic Layers [Ahmed et al., 2022a], and NeuPSL [Pryor et al.,

2023a]. However, the examples listed are specific instances of the corresponding

paradigm. While the properties and applications are generally representative, there

are instances where a modeling paradigm may not precisely conform to the table.

3.2.1 Deep Symbolic Variables

The deep symbolic variables (DSVar) paradigm trains neural components efficiently

with a loss that captures domain knowledge. Representative methods following

this paradigm include semantic loss networks [Xu et al., 2018] and learning with

logical constraints [Giunchiglia et al., 2022]. Concisely, the neural component directly
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(a)

(b)

(c)

Figure 3.2: (a) A NeSy-EBM for solving a Sudoku board constructed from handwritten
digits. The neural component classifies handwritten digits. Then, the symbolic
component uses the digit classifications and Sudoku rules to quantify the compatibility
of the inputs, neural predictions, and targets. (b) In the DSVar modeling paradigm
inference process, the neural component predicts squares with digits, while the
symbolic component measures incompatibility and predicts the latent (blank) squares.
(c) In the DSPar modeling paradigm inference process, the neural component predicts
squares with digits, and the symbolic component can alter these predictions to adhere
to symbolic constraints.

predicts the values of targets in a single symbolic potential. In other words, there is

a one-to-one mapping from the neural output to the targets. Note, however, that

the mapping is not necessarily onto, i.e., there may be target variables without a

corresponding neural output. For this discussion of modeling paradigms, I use the

term “latent” to refer to target variables without a neural output in a DSVar model.

Definition 3

In the deep symbolic variables (DSVar) modeling paradigm the symbolic potential

set is a singleton Ψ = {ψ} with a trivial index set JΨ = {1} such that Ψ1 = ψ.

Further, the neural prediction is treated as a variable by the symbolic potential; thus
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Vψ = Y × Xsy × Rdnn. Then, the symbolic parameters are the symbolic weights,

Paramsψ =Wsy. The neural component controls the NeSy-EBM prediction via this

function:

IY(y,gnn(xnn,wnn)) :=


0 yi = [gnn(xnn,wnn)]i , ∀i ∈ {1, · · · , dnn}

∞ o.w.

, (3.10)

where yi and gnn(xnn,wnn)i denote the i’th entry of the variable and neural output

vectors, respectively. Then, the symbolic component expressed via the symbolic

potential is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) (3.11)

:= ψ([y,xsy,gnn(xnn,wnn)] ,wsy) + IY(y,gnn(xnn,wnn)),

where [·] denotes concatenation.

The DSVar modeling paradigm typically yields the most straightforward prediction

program compared to the other modeling paradigms. This is because the neural

model fixes a subset of the decision variables, making the prediction program smaller.

This is achieved by adding the function (Equation 3.10) in the definition above to the

symbolic potential so infinite energy is assigned to variable values that do not match

the neural model’s predictions. However, for the same reason that this modeling

paradigm typically has a simpler prediction program, the symbolic component cannot

be used to resolve constraint violations made by the neural component. Rather,

DSVar models rely on learning to train a neural component to adhere to constraints.

For this reason, DSVar models typically have fast inference and learning processes

but cannot be applied for constraint satisfaction, as stated in Table 3.1. The DSVar

paradigm is demonstrated in the following example.

Example 1

Visual Sudoku [Wang et al., 2019] puzzle solving is the problem of recognizing hand-

written digits in non-empty puzzle cells and reasoning with the rules of Sudoku (no
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repeated digits in any row, column, or box) to fill in empty cells. Fig. 3.2 shows a

partially complete Sudoku puzzle created with MNIST images [LeCun et al., 1998]

and a NeSy-EBM designed for visual Sudoku solving. The neural component is a

digit classifier predicting the label of MNIST images, and the symbolic component

quantifies rule violations.

Formally, the target variables, y, are the categorical labels of both the handwritten

digits and the empty entries in the puzzle, i.e., the latent variables. The symbolic

inputs, xsy, indicate whether two puzzle positions are in the same row, column, or

box. The neural model, gnn(xnn,wnn), is the categorical label of the handwritten

digits predicted by the neural component. Then, the symbolic parameters, wsy, are

used to shape the single symbolic potential function, ψ, that quantifies the amount of

Sudoku rule violations.

The DSVar modeling paradigm is applied to fit neural parameters with a

knowledge-informed loss in a semi-supervised setting in the empirical analysis. How-

ever, neural model predictions cover a subset of the target values, and the model

cannot resolve rule violations. Therefore, when the neural model predicts digit labels

that violate a Sudoku rule, the predicted target variables will also violate the rule.

3.2.2 Deep Symbolic Parameters

The deep symbolic parameters (DSPar) modeling paradigm allows targets and neural

predictions to be unequal or represent different concepts. Prominent NeSy frameworks

supporting this technique include DeepProbLog [Manhaeve et al., 2021a], semantic

probabilistic layers [Ahmed et al., 2022a], and logic tensor networks [Badreddine et al.,

2022]. Succinctly, the neural component is applied as a parameter in the symbolic

potential. This paradigm allows the symbolic component to correct constraint

violations made by the neural component during prediction. For this reason, DSPar’s

inference and learning processes are typically more complex than the DSVar model

but can perform constraint satisfaction, as indicated in Table 3.1.

Definition 4

In the deep symbolic parameters (DSPar) modeling paradigm, the symbolic poten-
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tial set is a singleton Ψ = {ψ} with a trivial index set JΨ = {1} such that Ψ1 = ψ.

Further, the neural prediction is treated as a parameter by the symbolic potential,

thus Paramsψ = Wsy × Rdnn. Then the symbolic variables are the targets and the

symbolic inputs: Vψ = Y × Xsy. The symbolic component expressed via the single

symbolic potential is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) := ψ([y,xsy] , [wsy,gnn(xnn,wnn)]).

This paradigm is demonstrated in the following example.

Example 2

Again, consider the Visual Sudoku puzzle-solving problem illustrated in Fig. 3.2. As

in the DSVar model, the neural component of the DSPar model is a digit classifier

predicting the label of MNIST images. However, the digit classifications of the neural

component are used as initial predictions in the symbolic component, as a prior for a

probabilistic model. Then, the symbolic component is used to quantify rule violations

as well as the difference between neural outputs and target variables.

The target variables, y, are the categorical labels of both the handwritten digits

and the puzzle’s empty entries. The symbolic inputs, xsy, indicate whether two puzzle

positions are in the same row, column, or box. The neural model, gnn(xnn,wnn)

consists of the categorical labels of the handwritten digits predicted by the neural

component. The symbolic parameters wsy are used to shape the single symbolic

potential function ψ that quantifies the amount of Sudoku rule violations.

The DSPar modeling paradigm is widely applicable. For instance, the DSPar

modeling paradigm is applied for constraint satisfaction, fine-tuning, few-shot, and

semi-supervised settings in the empirical analysis. Note, however, that DSVar and

DSPar models have only a single fixed symbolic potential. This property makes

these paradigms well-suited for dedicated tasks but less applicable to open-ended

settings, where the relevant domain knowledge depends on context. To address this

challenge, the following modeling paradigm leverages generative modeling to perform

in open-ended tasks.
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3.2.3 Deep Symbolic Potentials

Deep-symbolic potentials (DSPot), the most advanced paradigm I propose, enhances

deep models with symbolic reasoning tools. The Logic-LM pipeline proposed by Pan

et al. (2023) is an excellent example of this modeling paradigm. At a high level, the

neural component is a generative model that samples symbolic potentials from a

set to define the symbolic component. Specifically, input data is used as context to

retrieve relevant domain knowledge and formulate a program to perform inference in

open-ended problems.

Definition 5

In the deep symbolic potentials modeling paradigm, the symbolic potential set

Ψ is the set of all potential functions that can be created by a NeSy framework.

Ψ is indexed by the output of the neural component, i.e., JΨ = Range(gnn) and

Ψgnn(xnn,wnn) is the potential function indexed by the neural prediction. The variable

and parameter domains of the sampled symbolic potential are Vψ = Y × Xsy, and

Paramsψ =Wsy, respectively. The symbolic component expressed via the symbolic

potential is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) := Ψgnn(xnn,wnn)([y,xsy] ,wsy).

Figure 3.3: A deep symbolic potential model for answering questions about a set of
objects’ order described in natural language. The neural component is an LLM that
generates syntax to create a symbolic potential. The symbolic potential is used to
perform deductive reasoning and answer the question. See Example 3 for details.

This paradigm is demonstrated in the following example.

Example 3
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Question answering is the problem of giving a response to a question posed in natural

language. Fig. 3.3 shows a set of word problems asking for the order of a set of

objects given information expressed in natural language and a NeSy-EBM designed

for question answering. The neural component is a large language model (LLM) that

is prompted with a word problem and tasked with generating a program within the

syntax of a symbolic framework. The symbolic framework uses the generated program

to instantiate a symbolic component used to perform deductive reasoning.

Formally, the target variables, y, represent object positions, and there is no

symbolic input, xsy, in this example. The neural input, xnn, is a natural language

prompt that includes the word problem. The neural model, gnn(xnn,wnn), is an

LLM that generates syntax for a declarative symbolic modeling framework that creates

the symbolic potential. For instance, the symbolic potential generated by the neural

model Ψgnn(xnn,wnn)([y,xsy] ,wsy) could be the total amount of violation of arithmetic

constraints representing ordering. Finally, the symbolic parameters, wsy, shape the

symbolic potential function.

DSPot is the only applicable paradigm for truly open-ended tasks. Moreover,

DSPot enhances generative models, such as LLMs, with consistent symbolic reasoning

capabilities. This feature is demonstrated in constraint satisfaction and joint reasoning

experiments in the empirical analysis. DSPot’s limitation is that the neural component

must learn to sample from a large potential set. For instance, in the example, an

LLM must reliably generate syntax to define a symbolic potential for solving the word

problem. LLMs require a substantial amount of computational resources to train

and then fine-tune for a specific NeSy framework. Furthermore, the inference time is

dependent on the sampled symbolic potential. If the neural component samples a

complex symbolic potential, inference may be slow. These strengths and limitations

are outlined in Table 3.1.
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Chapter 4

A Suite of Learning Techniques

for NeSy

Having identified a variety of modeling paradigms, I turn to learning. This chapter

formalizes the NeSy-EBM learning problem, identifies challenges, and proposes

effective solutions. At a high level, NeSy-EBM learning is finding weights of an energy

function that associates higher compatibility scores (lower energy) to targets and

neural outputs near their true labels provided in training data. Further, predictions

with NeSy-EBMs are obtained by minimizing a complex mathematical program,

raising several obstacles to learning. For instance, NeSy-EBM predictions may not

be differentiable with respect to the model parameters, and a direct application

of automatic differentiation may not be possible or may fail to produce principled

descent directions for the learning objective. Moreover, I will show that even when

predictions are differentiable, their gradients are functions of properties of the energy

function at its minimizer that are prohibitively expensive to compute. I create general

and principled learning frameworks for NeSy-EBMs that address these challenges.

This chapter is organized into four sections. I begin with preliminary notation

and a general definition of NeSy-EBM learning. Then, I present a classification of

learning losses and establish differentiability properties of NeSy-EBMs. Finally, the

learning losses motivate and organize the exposition of four NeSy-EBM learning

frameworks, one for learning the neural and symbolic weights separately and three
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for end-to-end learning.

4.1 NeSy-EBM Learning

I use the following notation and general definition of NeSy-EBM learning throughout

this section. The training dataset, denoted by S, is comprised of P samples and

indexed by {1, · · · , P}. Each sample, Si where i ∈ {1, · · · , P}, is a tuple of inputs,

labels, and latent variable domains. Sample inputs consist of neural inputs, xinn

from Xnn, and symbolic inputs, xisy from Xsy. Similarly, sample labels consist of

neural and symbolic labels, which are truth values corresponding to a subset of the

neural predictions and target variables, respectively. Neural labels, denoted by tinn,

are dinn ≤ dnn dimensional real vectors from a domain T inn, i.e., tinn ∈ T inn ⊆ Rdinn .

Target labels, denoted by tiY , are from a domain T iY that is a dT i
Y
≤ dY dimensional

subspace of the target domain Y , i.e., tiY ∈ T iY . Lastly, the neural and symbolic latent

variable domains are subspaces of the range of the neural component and the target

domain, respectively, corresponding to the set of unlabeled variables. The range of

the neural component, Rdnn
, is a superset of the Cartesian product of the neural

latent variable domain, denoted by Z inn, and T inn, i.e., Rdnn ⊇ T inn ×Z inn. Similarly,

the target domain Y is a superset of the Cartesian product of the latent variable

domain, denoted by Z iY , and T iY , i.e., Y ⊇ T iY ×Z iY . With this notation, the training

dataset is expressed as follows:

S := {(t1Y , t1nn,Z1
nn,Z1

Y ,x
1
sy,x

1
nn), · · · , (tPY , tPnn,ZPnn,ZPY ,xPsy,xPnn)}. (4.1)

A learning objective, denoted by L, is a functional that maps an energy function

and a training dataset to a scalar value. Formally, let E be a family of energy

functions indexed by weights from Wsy ×Wnn:

E := {E(·, ·, ·,wsy,wnn) | (wsy,wnn) ∈ Wsy ×Wnn}. (4.2)
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Then, a learning objective is the function:

L : E × {S} → R. (4.3)

Learning objectives follow the standard empirical risk minimization framework and

are separable over elements of S as a sum of per-sample loss functionals denoted by

Li for each i ∈ {1, · · · , P}. A loss functional for the sample Si ∈ S is the function:

Li : E × {Si} → R. (4.4)

A regularizer, denoted by R : Wsy ×Wnn → R, is added to the learning objective

and NeSy-EBM learning is the following minimization problem:

arg min
(wsy ,wnn)∈Wsy×Wnn

L(E(·, ·, ·,wsy,wnn),S) +R(wsy,wnn) (4.5)

= arg min
(wsy ,wnn)∈Wsy×Wnn

1

P

P∑
i=1

Li(E(·, ·, ·,wsy,wnn),Si) +R(wsy,wnn).

4.2 Learning Losses

A NeSy-EBM learning loss functional, Li, is separable into three parts: neural,

value-based, and minimizer-based losses. In this section, I formally define each of the

three loss types. At a high level, the neural loss measures the quality of the neural

component independent from the symbolic component. Then, the value-based and

minimizer-based losses measure the quality of the NeSy-EBM as a whole. Moreover,

value-based and minimizer-based losses are functionals mapping a parameterized

energy function and a training sample to a real value and are denoted by LV al :

E × S → R and LMin : E × S → R, respectively. The learning loss components are

aggregated via summation:
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Li(E(·,·, ·,wsy,wnn),Si) (4.6)

= LNN (gnn(xinn,wnn), tinn) Neural

+ LV al(E(·, ·, ·,wsy,wnn),Si) Value-Based

+ LMin(E(·, ·, ·,wsy,wnn),Si) Minimizer-Based

4.2.1 Neural Learning Losses

Neural learning losses are scalar functions of the neural network output and the

neural labels and are denoted by LNN : Range(gnn) × T inn → R. For example,

a neural learning loss may be the familiar binary cross-entropy loss applied in

many categorical prediction settings. Minimizing a neural learning loss with respect

to neural component parameters is achievable via backpropagation and standard

gradient-based algorithms.

4.2.2 Value-Based Learning Losses

Value-based learning losses depend on the model weights strictly via minimizing

values of an objective defined with the energy. More formally, denote an objective

function by f , which maps a compatibility score, target variables, and the training

sample to a scalar value:

f : R× Y × {Si} → R. (4.7)

An optimal value-function, denoted by V , is the value of f composed with the energy

function and minimized over the target variables:

V (wsy,wnn,Si) := min
ŷ∈Y

f
(
E(ŷ,xisy,x

i
nn,wsy,wnn), ŷ,Si

)
:= min

ŷ∈Y
f(gsy(ŷ,x

i
sy,wsy,gnn(xinn,wnn)), ŷ, Si) (4.8)
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Value-based learning losses are functions of one or more optimal value functions. In

this work, I consider three instances of optimal value functions: 1) latent, VZ , 2) full,

VY , 3) and convolutional, Vconv. The latent optimal value function is the minimizing

value of the energy over the latent targets. Further, the labeled targets are fixed to

their true values using the following indicator function:

IT i
Y

(y, tiY) :=


0 y = tiY

∞ o.w.

. (4.9)

The full optimal value function is the minimizing value of the energy over all of the

targets. Lastly, the convolutional optimal value function is the infimal convolution of

the energy function and a function d : Y × Y → R scaled by a positive real value

λ ∈ R. Formally:

VZ(wsy,wnn,Si) := min
ŷ∈Y

E(ŷ,xi
sy,x

i
nn,wsy,wnn) + IT i

Y
(ŷ, tiY),

= min
ẑ∈Zi

Y

E((tiY , ẑ),xi
sy,x

i
nn,wsy,wnn), latent

(4.10)

VY(wsy,wnn,Si) := min
ŷ∈Y

E(ŷ,xi
sy,x

i
nn,wsy,wnn), full

(4.11)

Vconv(wsy,wnn,Si;y, λ) := min
ŷ∈Y

E(ŷ,xi
sy,x

i
nn,wsy,wnn) + λ · d(ŷ,y). convolutional

(4.12)

An illustration of an example latent optimal value-function is provided in Fig. 4.1.

Intuitively, the latent optimal value-function is the greatest lower bound of the set of

symbolic components defined for each latent variable.

The simplest value-based learning loss is the energy loss, denoted by LEnergy.

The energy loss is the latent optimal value function,

LEnergy(E(·, ·, ·,wsy,wnn),Si) := VZ(wsy,wnn,Si). (4.13)

Minimizing the energy loss encourages the parameters of the energy function to

produce low energies given the observed true values of the input and target variables.
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Figure 4.1: An illustrated example of a latent optimal value-function with a scalar
neural component output and a discrete latent variable domain Z := {ẑ1, ẑ2, ẑ3}.

This loss is motivated by the intuition that the energy should be low for the desired

values of the targets. Notice, however, that the loss does not consider the energy

of incorrect target variable values. An extreme illustration of the issue this causes

involves two energy functions. In the first function, the minimizing point corresponds

to the desired true values of the targets, while in the second function, the maximizing

point corresponds to the desired true values of the targets. Despite these differences,

both functions could technically have the same energy loss; however, the first energy

function is clearly preferred. Thus, the energy loss does not universally lead to energy

functions with better predictions.

The Structured Perceptron loss, denoted by LSP , pushes the energy of the current

energy minimizer up and the energy of the true values of the targets down [LeCun

et al., 1998, Collins, 2002]. Specifically, the structured perceptron loss is the difference

between the latent and full optimal value functions,

LSP (E(·, ·, ·,wsy,wnn),Si) := VZ(wsy,wnn,Si)− VY(wsy,wnn,Si). (4.14)

Although the structured perceptron loss will technically encourage the target’s desired

values to be an energy minimizer, i.e., a valid prediction, it still has degenerate

solutions for some energy function architectures. For instance, one could minimize

the energy for all target values, leading to a collapsed energy function (equal energy

for all targets) with no predictive power.

The energy and structured perceptron losses require regularization and specific
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energy architectures to work well in practice. For instance, energy architectures that

naturally push up on other target values when pushing down on the desired targets.

Energies with limited total energy mass are examples of functions with this property.

The gradient of a value-based loss with respect to neural and symbolic weights

is non-trivial since both the energy function and the point the energy function is

evaluated at are dependent on the neural output and symbolic weights, as exemplified

by the definition of an optimal value function in (4.8). Nonetheless, Milgrom and

Segal (2002) delivers a general theorem providing the gradient of optimal value-

functions with respect to problem parameters, if they exist. I specialize their result

in the following theorem for optimal value-functions of NeSy-EBMs.

Theorem 6

Consider the weights wsy ∈ Wsy and wnn ∈ Wnn and the sample

Si = (tiy, t
i
nn,Z inn,Z iY ,xisy,xinn) ∈ S.

Suppose there exists a minimizer of the objective function f ,

y∗ ∈ arg min
ŷ∈Y

f(E(ŷ,xisy,x
i
nn,wsy,wnn), ŷ,Si),

such that f(E(y∗,xisy,x
i
nn,wsy,wnn),y∗,Si) is finite.

If the optimal value-function:

V (wsy,wnn,Si) := min
ŷ∈Y

f(E(ŷ,xisy,x
i
nn,wsy,wnn), ŷ,Si),

:= min
ŷ∈Y

f(gsy(ŷ,x
i
sy,wsy,gnn(xinn,wnn)), ŷ, Si),

is differentiable with respect to the neural weights, wnn, then the gradient of V with

respect to wnn is:

∇wnn
V (wsy,wnn,Si) =

∂

∂1
f(E(y∗,xi

sy,x
i
nn,wsy,wnn),y∗,Si) · ∇5E(y∗,xi

sy,x
i
nn,wsy,wnn),

(4.15)

where ∂
∂1f is the partial derivative of f with respect to its 1st argument, and ∇5E is
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the gradient of the energy with respect to its 5th argument with all other arguments

fixed.

Similarly, if V is differentiable with respect to the symbolic weights, wsy, then

the gradient of V with respect to wsy is:

∇wsyV (wsy,wnn,Si)

=
∂

∂1
f(E(y∗,xisy,x

i
nn,wsy,wnn),y∗,Si) · ∇4E(y∗,xisy,x

i
nn,wsy,wnn).

Proof. I first establish the partial derivative of the optimal value-function with respect

to each component of the neural output, gnn(xinn,wnn). Then, I use the chain rule

to derive the expression for the gradient of the optimal value-function with respect

to the neural weights, wnn.

For an arbitrary index j ∈ {1, · · · , dnn}, let ej be the j′th standard basis vector

of Rdnn , i.e., ej ∈ Rdnn such that ejj = 1 and ejk = 0 for k ̸= j. Further, to clarify the

relationship between the optimal value-function and the neural component output,

define the following function:

V : Wsy × Rdnn × Si → R

(wsy,u, Si) 7→ min
ŷ∈Y

f(gsy(ŷ,x
i
sy,wsy,u), ŷ,Si)

In other words, the optimal value-function, V , is equal to V evaluated at the neural

output:

V (wsy,wnn,Si) ≜ V (wsy,gnn(xinn,wnn),Si).

For any δ ∈ R, by definition:

f(gsy(y
∗,xisy,wsy,gnn(xinn,wnn) + δej),y∗, Si)

− f(gsy(y
∗,xisy,wsy,gnn(xinn,wnn)),y∗, Si)

≥ V (wsy,gnn(xinn,wnn) + δej , Si)− V (wsy,gnn(xinn,wnn), Si).
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For δ ̸= 0, dividing both sides by δ and taking the limit as δ → 0+ and as δ → 0−

yields upper and lower bounds relating partial derivatives of f to V when f and V

are right and left hand differentiable, respectively.

∂

∂gnn(xinn,wnn)j+
f(gsy(y

∗,xisy,wsy,gnn(xinn,wnn)),y∗, Si)

≥ ∂

∂gnn(xinn,wnn)j+
V (wsy,gnn(xinn,wnn), Si),

∂

∂gnn(xinn,wnn)j−
f(gsy(y

∗,xisy,wsy,gnn(xinn,wnn)),y∗, Si)

≤ ∂

∂gnn(xinn,wnn)j−
V (wsy,gnn(xinn,wnn), Si),

Then, by the squeeze theorem, the partial derivatives of V with respect to each

component of the neural output when V is differentiable are:

∂

∂gnn(xinn,wnn)j
f(gsy(y

∗,xisy,wsy,gnn(xinn,wnn)),y∗, Si)

=
∂

∂gnn(xinn,wnn)j
V (wsy,gnn(xinn,wnn), Si).

Then, the chain rule of differentiation and the partial derivatives of V with respect

to each component of the neural output derived above yields the gradient in (4.15).

A similar approach is used to obtain gradients with respect to symbolic weights

in (4.16).

Theorem 6 holds for arbitrary target variable domains and energy functions

and is, therefore, widely applicable. However, it is important to emphasize that

Theorem 6 states if the value-function is differentiable, then the gradients have

the form provided in (4.15) and (4.16). Milgrom and Segal (2002) also provide

sufficient conditions for guaranteeing the differentiability of optimal value-functions

with arbitrary decision variable domains. Beyond Milgrom and Segal’s (2002) work,

there is extensive literature on analyzing the sensitivity of optimal value-functions

and guaranteeing their differentiability, including the seminal papers of Danskin

[1966] on parameterized objective functions and Rockafellar [1974] for parameterized

constraints. I direct the reader to the cited articles for properties that guarantee
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differentiability of value-functions and, hence, NeSy-EBM value-based losses.

The conditions ensuring differentiability of the optimal value-functions as well as

the tractability of computing the gradient of the symbolic component with respect to

its arguments in (4.15) and (4.16) directly connect to the energy function architecture

and modeling paradigms discussed in the previous chapter. Specifically, if principled

gradient-based learning is desired, then practitioners must design the symbolic

potential such that it is 1) differentiable with respect to the neural output and symbolic

potentials, 2) the gradient of the symbolic potential with respect to its arguments is

tractable, and 3) it satisfies sufficient conditions for ensuring differentiability of its

minimizing value over the targets.

Performance metrics are not always aligned with value-based losses. Moreover,

they are known to have degenerate solutions [LeCun et al., 2006, Pryor et al., 2023a].

For example, without a carefully designed inductive bias, the energy loss in (4.13)

may only learn to reduce the energy of all target variables without improving the

predictive performance of the NeSy-EBM. One fundamental cause of this issue is

that value-based losses are not directly functions of the NeSy-EBM prediction as

defined in (3.4), i.e., value-based losses are not functions of an energy minimizer,

which is what I turn to next.

4.2.3 Minimizer-Based Learning Losses

A minimizer-based loss is a composition of a differentiable loss, such as cross-entropy

or mean squared error, with the energy minimizer. Intuitively, minimizer-based

losses penalize parameters yielding predictions distant from the labeled training data.

In the remainder of this section, I formally define minimizer-based learning losses.

Further, for completeness, I derive general expressions for gradients of minimizer-

based losses with respect to symbolic and neural weights. However, I will show that

direct computation of minimizer-based loss gradients requires prohibitive assumptions

on the energy function and can be impractical to compute. Moreover, the derivation

of the gradients motivates learning algorithms that do not perform direct gradient

descent on minimizer-based losses. For this reason, in the following section I propose
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algorithms that do not require minimizer gradients.

To ensure a minimizer-based loss is well-defined, I assume a unique energy

minimizer exists, denoted by y∗, for every training sample. This assumption is

formalized below.

Assumption 1

The energy function is minimized over the targets at a single point for every input

and weight and is, therefore, a function:

y∗ : Xsy ×Xnn ×Wsy ×Wnn → Y

(xsy,xnn,wsy,wnn) 7→ arg min
ŷ∈Y

E(ŷ,xsy,xnn,wsy,wnn)

Under Assumption 1, d is a mapping of targets and labels to a scalar value:

d : Y × T iY → R, (4.16)

and a minimizer-based loss is a composition of d and y∗:

LMin(E(·, ·, ·,wsy,wnn),Si) := d(arg min
ŷ∈Y

E(ŷ,xisy,x
i
nn,wsy,wnn), tiY) (4.17)

:= d(y∗(xisy,x
i
nn,wsy,wnn), tiY)

To ensure principled direct gradient-based learning, it is necessary to assume that

the minimizer is differentiable.

Assumption 2

The minimizer, y∗, is differentiable with respect to the weights at every point in

Xsy ×Xnn ×Wsy ×Wnn.

Under Assumption 2, the chain rule of differentiation yields the gradient of a
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minimizer-based loss with respect to the neural and symbolic weights:

∇wsyLMin(y∗(xisy,x
i
nn,wsy,wnn)), tiY)

= ∇3y
∗(xisy,x

i
nn,wsy,wnn)T∇1d(y∗(xisy,x

i
nn,wsy,wnn), tiY), (4.18)

∇wnnLMin(y∗(xisy,x
i
nn,wsy,wnn)), tiY)

= ∇4y
∗(xisy,x

i
nn,wsy,wnn)T∇1d(y∗(xisy,x

i
nn,wsy,wnn), tiY), (4.19)

where ∇3y
∗(xisy,x

i
nn,wsy,wnn) and ∇4y

∗(xisy,x
i
nn,wsy,wnn) are the Jacobian matri-

ces of the unique energy minimizer with respect to the third and fourth arguments of

y∗, the symbolic and neural weights, respectively, and ∇1d(y∗(xisy,x
i
nn,wsy,wnn), tiY)

is the gradient of the supervised loss with respect to its first argument.

A primary challenge of minimizer-based learning is computing the Jacobian ma-

trices of partial derivatives, ∇3y
∗(xisy,x

i
nn,wsy,wnn) and ∇4y

∗(xisy,x
i
nn,wsy,wnn).

To derive explicit expressions for them typically demands the following additional

assumption on the continuity properties of the energy function.

Assumption 3

The energy, E, is twice differentiable with respect to the targets at the minimizer,

y∗, and the Hessian matrix of second-order partial derivatives with respect to the

targets, ∇1,1E(y∗(xisy,x
i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn), is invertible. Further, the

minimizer is the unique target satisfying first-order conditions of optimality, i.e.,

∀y ∈ Y, ∇1E(y,xisy,x
i
nn,wsy,wnn) = 0 ⇐⇒ y = y∗(xisy,x

i
nn,wsy,wnn)

Assumption 3 is satisfied by energy functions that are, for instance, smooth

and strongly convex in the targets. Under Assumption 3, the first-order optimality

condition establishes the minimizer as an implicit function of the weights, and implicit
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differentiation yields the following equalities:

∇1,1E(y∗(xisy,x
i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn)∇3y

∗(xisy,x
i
nn,wsy,wnn) (4.20)

= −∇1,4E(y∗(xisy,x
i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn)

∇1,1E(y∗(xisy,x
i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn)∇4y

∗(xisy,x
i
nn,wsy,wnn) (4.21)

= −∇1,5E(y∗(xisy,x
i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn)

Solving for the Jacobians of the minimizer:

∇3y
∗(xi

sy,x
i
nn,wsy,wnn) = −

(
∇1,1E(y∗(xi

sy,x
i
nn,wsy,wnn),xi

sy,x
i
nn,wsy,wnn)−1

(4.22)

∇1,4E(y∗(xi
sy,x

i
nn,wsy,wnn),xi

sy,x
i
nn,wsy,wnn)

)
,

∇4y
∗(xi

sy,x
i
nn,wsy,wnn) = −

(
∇1,1E(y∗(xi

sy,x
i
nn,wsy,wnn),xi

sy,x
i
nn,wsy,wnn)−1

(4.23)

∇1,5E(y∗(xi
sy,x

i
nn,wsy,wnn),xi

sy,x
i
nn,wsy,wnn)

)
.

The Jacobians in (4.22) and (4.23) applied to (4.18) and (4.19), respectively, are

referred to as hypergradients in the machine learning literature and are utilized in

hyperparameter optimization and meta-learning [Do et al., 2007, Pedregosa, 2016,

Rajeswaran et al., 2019]. Oftentimes, approximations of the (inverse) Hessian matrices

are made to estimate the hypergradient.

4.3 Learning Algorithms

Next, I present four principled techniques for learning the neural and symbolic

weights of a NeSy-EBM to minimize the losses introduced in the previous section:

1) Modular, 2) Gradient Descent, 3) Bilevel Value-Function Optimization, and 4)

Stochastic Policy Optimization. The four techniques are defined, and I discuss their

strengths and limitations in relation to the motivating applications in Section 1.1

and modeling paradigms in Section 3.2.
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4.3.1 Modular Learning

The first and most straightforward NeSy-EBM learning technique is to train and

connect the neural and symbolic components as independent modules. For instance,

the neural component can be trained via backpropagation and Adam to optimize

a neural loss given neural labels. Then, the symbolic component can be trained

using an appropriate black-box or gradient-based method to optimize a value or

minimizer-based loss. The neural component weights are frozen during the symbolic

weight learning process. In this subsection I first discuss the general tradeoffs of

modular learning techniques and then introduce three black-box methods for symbolic

parameter learning. Black-box approaches make little to no assumptions about the

learning objective and symbolic component architecture and are feasible for low-

dimensional parameters spaces. Black-box approaches are therefore used to optimize

losses directly related to the downstream task of the model. The gradient-based

symbolic parameter learning algorithms that will be introduced in the following

sections are also applicable to modular learning.

By definition, modular learning algorithms are not trained end-to-end, i.e., the

neural and symbolic parameters are not jointly optimized to minimize the learning

loss. For this reason, modular approaches may struggle to find a weight setting

with a learning loss as low as end-to-end techniques. Moreover, modular approaches

are not suitable for every motivating NeSy usecase presented in Section 1.1, for

instance fine-tuning and adaptation. Additionally, they require labels to train the

neural component. Thus, modular learning is not used to learn neural parameters in

unsupervised or semi-supervised settings.

Nevertheless, modular learning approaches are appealing and widely used for

their simplicity and general applicability. Importantly, no assumptions are made

about the neural-symbolic interface; hence, modular learning is effective for every

modeling paradigm presented in Section 3.2. Notably, minimizers and value-functions

of DSPot models are typically non-differentiable with respect to the neural weights

due to the complex neural-symbolic interface. However, because modular techniques

are not end-to-end, this is not an issue. Moreover, modular learning can be used to

50



train a NeSy-EBM for constraint satisfaction and joint reasoning, zero-shot reasoning,

and reasoning with noisy data.

Random Grid Search

Algorithm 1 Random Grid Search for Symbolic Parameter Learning

Require: Parameter Grid: W̃sy, Max Samples: b
1: Wexplored ← {}
2: for all k ∈ {1, · · · , b} do
3: w

(k)
sy ← RandomSample(W̃sy \Wexplored)

4: if (k = 1) or
(
γ(y∗(w

(k)
sy )) < γ(y∗(w∗

sy))
)
then

5: w∗
sy ← w

(k)
sy

6: Wexplored ←Wexplored ∪
{
wsy

}
7: return w∗

sy

The most straightforward approach to fitting the symbolic parameters of a NeSy-

EBM is an exploration over a finite grid of weight configurations W̃sy ⊂ Wsy. For each

configuration, wsy ∈ W̃sy, γ(y∗(wsy)) is evaluated. Finally, the weight configuration

with the lowest objective value is selected.

An exhaustive grid search is usually infeasible due to a combinatorial explosion

in the grid size with respect to the dimension of the parameter space. Thus, to

make the approach tractable, only b unique samples from W̃sy are evaluated. This

approach is called random grid search (RGS). The complete algorithm for RGS is

shown in Algorithm 1.

Continuous Random Search

Algorithm 2 Continuous Random Search for Symbolic Parameter Learning

Require: Dirichlet Parameter: A ∈ Rr+, Max Samples: b
1: for all k ∈ {1, · · · , b} do
2: w

(k)
sy ∼ Dirichlet(A);

3: if (k = 1) or
(
γ(y∗(w

(k)
sy )) < γ(y∗(w∗

sy))
)
then

4: w∗
sy ← w

(k)
sy ;

5: return w∗
sy

A primary difficulty of applying RGS is defining a grid over the search space that

includes a variety of weights yielding different predictions. While specifying a grid
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might seem straightforward, several properties of the symbolic parameter space make

specifying the right grid non-trivial. For instance, the symbolic parameter domain for

symbolic components intantiated by the NeSy-EBM library I introduce in Chapter 5

is the probability simplex. In this case, one may be tempted to simply define a grid

of evenly spaced points in the unit hypercube and then project the point onto the

simplex. However, this leads to a sampling bias towards configurations that are near

the center of the simplex.

Continuous random search (CRS) is similar to RGS in that, rather than exploring

the entire space, a finite number of weight configurations are chosen for evaluation

and the highest-performing configuration is returned. The difference is that CRS

does not require a discrete grid of weights. Rather, CRS samples continuous points

from the symbolic parameter space. For weights constrained to the r-dimensional

unit simplex, points are sampled from a r-dimensional Dirichlet distribution, and the

configuration with the lowest objective value is returned. The Dirichlet distribution

is parametrized by the r-dimensional concentration hyperparameter A ∈ Rr+. The

complete algorithm is provided in Algorithm 2

Bayesian Optimization

Algorithm 3 Bayesian Optimization for Symbolic Parameter Learning

Require: Dirichlet Parameter: A ∈ Rr+, Initial Sample Size: B, Max Iterations:
MaxIter

1: WInitialSample ← {wsy,1, · · · ,wsy,B |wsy,1 ∼ Dirichlet(A)};
2: for all k ∈ {1, · · · ,MaxIter} do
3: w

(k)
sy ← arg maxwsy∈WInitialSample

α(wsy);
4: Update GPR model with γ(y∗(w∗

sy));

5: if (k = 1) or
(
γ(y∗(w

(k)
sy )) < γ(y∗(w∗

sy))
)
then

6: w∗
sy ← w

(k)
sy

7: return w∗
sy

Previously discussed black box symbolic weight learning approaches make no

assumptions about the search space and the evaluation function. The exploration

process of black-box methods can be made more efficient by making a reasonable

assumption that the objective value of two weight configurations wsy,1 and wsy,1
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are likely to be similar (γ(wsy,1) ≈ γ(wsy,1)) if the distance between them is small.

This implies that when searching the symbolic parameter space, one could use

previous observations to decide either to continue exploring or exploit and sample

configurations near previous weights that performed well.

Bayesian Optimization for Weight Learning (BOWL) uses GPR (Section 2.4) to

build a probabilistic model of the objective function over the symbolic parameter space.

The algorithm for symbolic parameters constrained to the r-dimensional probability

simplex is detailed in Algorithm 3. First, an initial sample of B symbolic weight

configurations is sampled from a r-dimensional Dirichlet distribution parameterized

by the concentration hyperparameter A ∈ Rr+: Dirichlet(A). Then, for each iteration,

a weight configuration is chosen using an acquisition function, denoted by α(wsy) :

∆r → R. Next, the objective is evaluated and used to update the GPR model of the

objective function. Finally, the weight configuration that resulted in the best value

for γ after a specified number of iterations is returned. To adapt Algorithm 3 to a

different symbolic parameter space only the sampling process on line 1 needs to be

change accordingly.

In this dissertation, I use the squared exponential kernel, kSE :

k(wsy,i,wsy,j) = kSE(wsy,i,wsy,j) = σ̃ · exp{∥wsy,i −wsy,j∥22
2ρ2

},

where σ̃ is the amplitude parameter and ρ is the characteristic length-scale parameter

of kSE . The scaling factor ρ affects the smoothness of the approximation (the larger

the value, the more smooth the approximation), and the number of iterations that

are required to create a low variance approximation of the objective function.

As mentioned in Section 2.4.2, the squared exponential kernel is a stationary

kernel. In fact, the kernel can be written as a function of only the absolute value of

the Euclidean distance of its inputs. Kernels with this property are called isotropic,

or radial basis functions Rasmussen and Williams [2005]. Furthermore, the squared

exponential kernel approximates the objective γ with a smooth function. This

approximation is justified by the continuity properties proven for the NeSy-EBM

inference program of NeuPSL.
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4.3.2 Gradient Descent

A conceptually simple but oftentimes difficult in-practice technique for end-to-end

NeSy-EBM training is direct gradient descent. Specifically, the gradients derived in the

previous section are directly used with a gradient-based algorithm to optimize a NeSy-

EBM loss with respect to both the neural and symbolic weights. Backpropagation

and Theorem 6 produce relatively inexpensive gradients for neural and value-based

losses for a general class of NeSy-EBMs. Moreover, for a smaller family of NeSy-

EBMs, gradients of energy minimizers exist and may be cheap to compute. For

instance, if the energy minimizer is determined via a simple closed-form expression

(e.g., if inference is an unconstrained strongly convex quadratic program or a finite

computation graph).

As shown in Section 4.2, learning loss gradients for fully expressive NeSy-EBMs

only exist under certain conditions. Further, computing the gradients generally

requires expensive second-order information about the energy function at the min-

imizer. For this reason, direct gradient descent only applies to a relatively small

class of NeSy-EBMs with specialized architectures that ensure principled and effi-

cient gradient computation. Such specialized architectures are less likely to support

more complex modeling paradigms such as DSPar and DSPot. However, provided a

NeSy-EBM with such an architecture, gradient descent techniques can be used in all

motivating applications cited in Section 1.1.

4.3.3 Bilevel Value-Function Optimization

As shown in Section 4.2.3, minimizer gradients are relatively more computationally

expensive to compute and require more assumptions than value-function gradients.

In this subsection, I introduce a technique for optimizing a minimizer-based loss

with only first-order gradients. This technique is built on the fact that the general

definition of NeSy-EBM learning (4.5) is naturally formulated as bilevel optimization.

In other words, the NeSy learning objective is a function of variable values obtained
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by solving a lower-level inference problem that is symbolic reasoning:

arg min
(wsy ,wnn)∈Wsy×Wnn

(ŷ1,··· ,ŷP )∈Y1×···×YP

1

P

P∑
i=1

(
LNN (gnn(xinn,wnn), tinn) + LV al(E(·, ·, ·,wsy,wnn),Si)

+ d(ŷi, tiY)

)
+R(wsy,wnn) (4.24)

s.t. ŷi ∈ arg min
ỹ∈Y

E(ỹ,xisy,x
i
nn,wsy,wnn), ∀i ∈ {1, · · · , P}.

Regardless of the continuity and curvature properties of the upper and lower level

objectives, (4.24) is equivalent to the following:

arg min
(wsy ,wnn)∈Wsy×Wnn

(ŷ1,··· ,ŷP )∈Y1×···×YP

1

P

P∑
i=1

(
LNN (gnn(xinn,wnn), tinn) + LV al(E(·, ·, ·,wsy,wnn),Si)

+ d(ŷi, tiY)

)
+R(wsy,wnn) (4.25)

s.t. E(ŷi,xisy,x
i
nn,wsy,wnn)− VY(wsy,wnn,Si) ≤ 0, ∀i ∈ {1, · · · , P}.

The formulation in (4.25) is referred to as a value-function approach in bilevel

optimization literature [V. Outrata, 1990, Liu et al., 2021, 2022, Sow et al., 2022,

Kwon et al., 2023]. Value-function approaches view the bilevel program as a single-

level constrained optimization problem by leveraging the value-function as a tight

lower bound on the lower-level objective.

The inequality constraints in (4.25) do not satisfy any of the standard constraint

qualifications that ensure the feasible set near the optimal point is similar to its

linearized approximation [Nocedal and Wright, 2006]. This raises a challenge for

providing theoretical convergence guarantees for constrained optimization techniques.

Following a recent line of value-function approaches to bilevel programming [Liu

et al., 2021, Sow et al., 2022, Liu et al., 2023], I overcome this challenge by allowing

at most an ι > 0 violation in each constraint in (4.25). With this relaxation, strictly

feasible points exist and, for instance, the linear independence constraint qualification

(LICQ) can hold.

Another challenge that arises from (4.25) is that the energy function of NeSy-
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EBMs is typically non-smooth with respect to the targets and even infinite-valued

to represent constraints implicitly. As a result, penalty or augmented Lagrangian

functions derived from (4.25) are intractable. Therefore, I substitute each instance of

the energy function evaluated at the training sample Si, where i ∈ {1, · · · , P}, and

with weights wsy and wnn in the constraints of (4.25) with the following function:

M(ŷi,Si,wsy,wnn; ρ) := inf
ỹ∈Y

(
E(ỹ,xisy,x

i
nn,wsy,wnn) +

1

2ρ
∥ỹ − ŷi∥22

)
, (4.26)

= Vconv(wsy,wnn,Si; ŷi,
1

2ρ
)

where ρ is a positive scalar. For convex E, (4.26) is the Moreau envelope of the energy

function [Rockafellar, 1970, Parikh and Boyd, 2013]. In general, even for non-convex

energy functions, M is finite for all y ∈ Y and it preserves global minimizers and

minimum values, i.e.,

y∗(xisy,x
i
nn,wsy,wnn) = arg min

ŷi∈Y
M(ŷi,Si,wsy,wnn; ρ), (4.27)

VY(wsy,wnn,Si) = min
ŷi∈Y

M(ŷi,Si,wsy,wnn; ρ). (4.28)

When the energy function is a lower semi-continuous convex function, its Moreau

envelope is convex, finite, and continuously differentiable, and its gradient with

respect to ŷi is:

∇ŷiM(ŷi,Si,wsy,wnn; ρ) =
1

ρ

(
ŷi − arg min

ỹ∈Y

(
ρE(ỹ,xi

sy,x
i
nn,wsy,wnn) +

1

2
∥ỹ − ŷi∥22

))
.

(4.29)

Convexity is a sufficient but not necessary condition to ensure M is differentiable with

respect to ŷi. See Bonnans and Shapiro [2000] for results regarding the sensitivity of

optimal value-functions to perturbations. Further, as M is a value-function, gradients

of M with respect to weights are derived using Theorem 6.

I propose the following relaxed and smoothed value-function approach to finding
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an approximate solution of (4.24):

arg min
(wsy ,wnn)∈Wsy×Wnn

(ŷ1,··· ,ŷP )∈Y1×···×YP

1

P

P∑
i=1

(
LNN (gnn(xinn,wnn), tinn) + LV al(E(·, ·, ·,wsy,wnn),Si)

+ d(ŷi, tiY)

)
+R(wsy,wnn) (4.30)

s.t. M(ŷi,Si,wsy,wnn; ρ)− VY(wsy,wnn,Si) ≤ ι, ∀i ∈ {1, · · · , P},

The formulation (4.30) is the core of my proposed NeSy-EBM learning framework

outlined in Algorithm 4 below. The algorithm proceeds by approximately solving

instances of (4.30) in a sequence defined by a decreasing ι. This is a graduated

approach to solving (4.25) with instances of (4.30) that are increasingly tighter

approximations.

Algorithm 4 Bilevel Value-Function Optimization for NeSy-EBM Learning

Require: Moreau Param.: ρ, Starting weights: (wsy,wnn) ∈ Wsy ×Wnn

1: ŷi ← (tiY , arg minẑ∈Zi
Y
E((tiY , ẑ),xisy,x

i
nn,wsy,wnn)), ∀i = 1, · · · , P

2: ι← maxi∈{1,··· ,P}M(ŷi,Si,wsy,wnn; ρ)− VY(wsy,wnn,Si)
3: for t = 0, 1, 2, · · · do
4: Find wsy,wnn,y

1, · · · ,yP minimizing (4.30) with ι
5: if Stopping criterion satisified then
6: Stop with: wsy,wnn,y

1, · · · ,yP
7: ι← 1

2 · ι

I suggest starting points for each ŷi to be the corresponding latent inference

minimizer and ι to be the maximum difference in the value-function and the smooth

energy function. At this suggested starting point, the supervised loss is initially 0, and

the subproblem reduces to minimizing the learning objective without increasing the

most violated constraint. Then, the value for ι is halved every time an approximate

solution to the subproblem, (4.30), is reached. The outer loop of the NeSy-EBM

learning framework may be stopped by either watching the progress of a training or

validation evaluation metric or by specifying a final value for ι.

Each instance of (4.30) in Algorithm 4 can be optimized using only first-order

gradient-based methods. Specifically, for my empirical analysis I employ the bound-

constrained augmented Lagrangian algorithm, Algorithm 17.4 from Nocedal and
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Wright (2006). The augmented Lagrangian algorithm finds approximate minimizers

of the problem’s augmented Lagrangian for a fixed setting of the penalty parameters

using gradient descent. To simplify notation, let the constraints in (4.30) be denoted

by:

c(ŷi,Si,wsy,wnn; ι) := M(ŷi,Si,wsy,wnn; ρ)− VY(wsy,wnn,Si)− ι, (4.31)

for each constraint indexed i ∈ {1, · · · , P}. Moreover, let

c(y1, · · · ,yP ,S,wsy,wnn; ι) := [c(ŷi,Si,wsy,wnn; ι)]Pi=1. (4.32)

The augmented Lagrangian function corresponding to (4.30) introduces a quadratic

penalty parameter µ and P linear penalty parameters λ := [λi]
P
i=1, as follows:

LA(ŷ1, · · · , ŷP ,wsy,wnn,S, s;λ, µ, ι) (4.33)

:=
1

P

P∑
i=1

(
LNN (gnn(xi

nn,wnn), tinn) + LV al(E(·, ·, ·,wsy,wnn),Si) + d(ŷi, tiY)
)

+
µ

2

P∑
i=1

(
c(ŷi,Si,wsy,wnn; ι) + si

)2
+

P∑
i=1

λi
(
c(ŷi,Si,wsy,wnn; ι) + si

)
+R(wsy,wnn),

where I introduced P slack variables, s = [si]
P
i=1, for each inequality constraint. The

bound-constrained augmented Lagrangian algorithm provides a principled method

for updating the penalty parameters and ensures fundamental convergence properties

of my learning framework. Notably, the limit points of the iterate sequence are

stationary points of ∥c(y1, · · · ,yP ,S,wsy,wnn; ι) + s∥2 when the problem has no

feasible points. When the problem is feasible, and LICQ holds at the limits, they are

KKT points of (4.30) (Theorem 17.2 in Nocedal and Wright [2006]). Convergence

rates and stronger guarantees are possible by analyzing the structure of the energy

function for specific NeSy-EBMs.

The bilevel value-function optimization technique in Algorithm 4 is an end-to-end

algorithm for minimizing a general NeSy-EBM learning loss with only first-order

value-function gradients. Thus, Algorithm 4 is a more practical and widely applicable

technique for NeSy-EBM learning than modular and direct gradient descent methods.
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Specifically, the bilevel approach can be employed for a broader class of NeSy-EBMs

than direct gradient descent methods and for every motivating application. Moreover,

I demonstrate that it can be used to train DSVar and DSPot NeSy-EBMs in my

empirical analysis.

4.3.4 Stochastic Policy Optimization

Figure 4.2: A stochastic NeSy-EBM. The symbolic weights and the neural component
parameterize stochastic policies. A sample from the policies is drawn to produce
arguments of the symbolic component.

Finally, another approach to NeSy-EBM learning that avoids directly computing

the energy minimizer’s gradients with respect to the weights is to reformulate NeSy

learning as stochastic policy optimization. Fig. 4.2 shows the modifications to the

standard NeSy-EBM framework to create a stochastic NeSy-EBM. The symbolic and

neural weights are used to condition a symbolic weight and neural policy, denoted by

πsy and πnn, respectively. Samples from the policies replace the symbolic weights

and neural output as arguments of the symbolic component. Specifically, given

symbolic and neural weights wsy and wnn and input features xinn from a training

sample Si ∈ S, hsy and hinn are random variables with the following conditional

distributions:

hsy ∼ πsy(hsy |wsy), (4.34)

hinn ∼ πnn(hinn |gnn(xinn,wnn)). (4.35)
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Moreover, the random variables hsy and hinn are modeled independently, thus the

conditional joint distribution, denoted by π, is:

π(hsy,h
i
nn |wsy,gnn(xinn,wnn)) := πsy(hsy |wsy) · πnn(hinn |gnn(xinn,wnn)) (4.36)

The stochastic NeSy-EBM energy is the symbolic component evaluated at a sample

from the joint distribution above:

E(y,xisy,x
i
nn,wsy,wnn) := gsy(y,x

i
sy,hsy,h

i
nn) (4.37)

The NeSy-EBM energy and all of the NeSy-EBM per-sample loss functionals discussed

in Section 4.2 are, therefore, random variables with distributions that are defined by

π. Under the stochastic policy optimization framework, loss functionals are denoted

by the function J i for each i ∈ {1, · · · , P} such that:

J i(gsy(·,xisy,hsy,hinn),Si) := Li(E(·,·, ·,wsy,wnn),Si) (4.38)

Learning is minimizing the expected value of the stochastic loss functional and is

formulated as:

arg min
(wsy ,wnn)∈Wsy×Wnn

1

P

P∑
i=1

Eπ
[
J i(gsy(·,xisy,hsy,hinn),Si)

]
+R(wsy,wnn), (4.39)

where Eπ is the expectation over the joint distribution π.

I apply gradient-based learning algorithms to find an approximate solution to

(4.39). The policy gradient theorem [Williams, 1992, Sutton et al., 1999, Sutton and

Barto, 2018] yields the following expression for the gradients of the expected value of
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a loss functional:

∇wnnEπ
[
J i(gsy(·,xisy,hsy,hinn),Si)

]
(4.40)

= Eπ
[
J i(gsy(·,xisy,hsy,hinn),Si) · ∇wnn log π(hsy,h

i
nn |wsy,gnn(xinn,wnn))

]
.

∇wsyEπ
[
J i(gsy(·,xisy,hsy,hinn),Si)

]
(4.41)

= Eπ
[
J i(gsy(·,xisy,hsy,hinn),Si) · ∇wsy log π(hsy,h

i
nn |wsy,gnn(xinn,wnn))

]
.

The expression for the gradient of the expected loss functional above motivates a

family of gradient estimators. Notably, the REINFORCE gradient estimator for

NeSy-EBM learning is:

∇wnnEπ

[
J i(gsy(·,xi

sy,hsy,h
i
nn),Si)

]
(4.42)

≈ 1

N

N∑
k=1

(
J i(gsy(·,xi

sy,h
(k)
sy ,h

i(k)
nn ),Si)∇wnn

log π(h(k)
sy ,h

i(k)
nn |wsy,gnn(xi

nn,wnn))
)
,

∇wsyEπ

[
J i(gsy(·,xi

sy,hsy,h
i
nn),Si)

]
(4.43)

≈ 1

N

N∑
k=1

(
J i(gsy(·,xi

sy,h
(k)
sy ,h

i(k)
nn ),Si)∇wsy log π(h(k)

sy ,h
i(k)
nn |wsy,gnn(xi

nn,wnn))
)
,

where each h
(k)
sy and h

i(k)
nn for k ∈ {1, · · · , N} is an independent sample of the random

variables.

Stochastic policy optimization techniques are broadly applicable for end-to-end

training of NeSy-EBMs because they are agnostic to the neural-symbolic interface

and the symbolic inference process. Moreover, they can be used for every motivating

application and modeling paradigm. The tradeoff with the stochastic policy approach,

however, is the high variance in the sample estimates for the policy gradient. This

is a common challenge in policy optimization that becomes more prominent with

increasing dimensionality of the policy output space [Sutton and Barto, 2018]. Thus,

learning with a stochastic policy optimization approach may take significantly more

iterations to converge compared to the other presented techniques.
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Chapter 5

Neural Probabilistic Soft Logic

and Deep Hinge-Loss Markov

Random Fields

Chapters 4-6 covered a general mathematical framework, modeling paradigms, and

learning algorithms for NeSy EBMs. Here, I introduce Neural Probabilistic Soft Logic

(NeuPSL), an expressive framework for constructing a broad class of NeSy-EBMs

by extending the probabilistic soft logic (PSL) probabilistic programming language

[Bach et al., 2017]. NeuPSL is designed to be expressive and efficient to support

every modeling paradigm and easily be used for a range of applications. I begin

by presenting the essential syntax and semantics of NeuPSL, encompassing Deep

Hinge-Loss Markov Random Fields (deep HL-MRF), the underlying probabilistic

graphical model (see Bach et al. [2017] for an in-depth introduction to PSL syntax

and semantics). Then, I present a new formulation and regularization of (Neu)PSL

inference as a constrained quadratic program. This formulation is utilized to guarantee

differentiability properties and provide principled gradients to support end-to-end

neural and symbolic parameter learning. Moreover, I introduce a new deep HL-MRF

inference algorithm that leverages the new formulation to naturally produce statistics

necessary for computing gradients for learning and fully leverage warm-starts to

improve learning runtime.
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5.1 Neural Probabilistic Soft Logic

NeuPSL is a declarative language used to construct NeSy-EBMs. Intuitively, NeuPSL

provides a syntax for encoding dependencies between relations and attributes of

entities and for integrating neural components in a symbolic model. Specifically,

dependencies and neural component compositions are expressed as first-order logical

or arithmetic statements referred to as rules. Each rule is a template for instantiating,

i.e., grounding, potentials or constraints to define the NeuPSL energy function. Every

rule is grounded over a set of domains, D = {D1, D2, · · · }, where each of the domains

Di is a finite set of elements referred to as constants. For instance, referring to the

visual Sudoku problem described in Example 2, the constant “A1” can denote the

cell at position A1 in a Sudoku puzzle and the constant “1” can denote the digit

1. Constants are grouped and aligned with a corresponding domain from D using

placeholders or variables. Relations between constants are predicates. In NeuPSL,

a predicate is referenced using its unique identifier. For instance, CellDigit is a

predicate that can represent whether a cell contains a specified digit. Another example

is the predicate SudokuViolation representing whether a Sudoku rule is violated

given the digits in two specified cells. Finally, the predicate NeuralClassifier is

a predicate that represents the predicted digit in a cell made by a neural network

classifier. Predicates with specified constant domains are atoms. NeuPSL extends

PSL with deep atoms: atoms backed by a deep model.

Definition 7

Atom. An atom, A, is a predicate associated with a list of k > 0 domains D′
1, · · · , D′

k

from D:

A : (D′
1 × · · · ×D′

k)→ [0, 1]

where k is the corresponding predicate’s arity.

A deep atom, DA, with domains D′
1, · · · , D′

k from D is an atom parameterized
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by a set of weights wnn from a domain Wnn

DA : (D′
1 × · · · ×D′

k;wnn)→ [0, 1].

A ground atom is an atom with constant arguments.

Building on the definition above, a NeuPSL rule is a symbolic relation between

atoms.

Definition 8

Rule. A rule, R, is a function of s ≥ 1 variables v1, · · · , vs from the domains

D′
1, · · · , D′

s ∈ D, respectively:

R : (D′
1 × · · · ×D′

s)→ [0, 1]

v1, · · · , vs 7→ R(v1, · · · , vs)

Moreover, a rule is a composition of l ≥ 1 atoms, A1, · · ·Al.

All rules are either associated with a non-negative weight and a value q ∈ {1, 2},

or are unweighted. The weight (or absence of) and value q of a rule determine the

structure of the potentials the rule instantiates. A weighted rule is referred to as a

soft rule, and an unweighted rule is referred to as a hard rule.

A logical rule is expressed as a logical implication of atoms.

An arithmetic rule is expressed as a linear inequality of atoms.

A ground rule is a rule with constant arguments, i.e., a rule with only ground

atoms.

For instance, the following is an example of two rules for solving visual Sudoku

with NeuPSL.

1.0 : NeuralClassifier(Pos, Digit) = CellDigit(Pos, Digit)

CellDigit(Pos1, Digit1) ∧ SudokuViolation(Pos1, Pos2, Digit1, Digit2)

→ ¬CellDigit(Pos2, Digit2) .

The first rule in the example above is soft as it is weighted with weight 1.0. Moreover,
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the first rule is arithmetic and encodes a dependency between the digit label predicted

by a neural classifier and the atom CellDigit(Pos, Digit), i.e., if the neural classifier

predicts the digit Digit is in position Pos, then the Digit is in position Pos. The

second rule is a hard logical rule that encodes the rules of Sudoku. Moreover, the

rule the second rule can be read: if the digit Digit1 is in position Pos1 and the

Digit2 in Pos2 causes a Sudoku rule violation, then Digit2 is not in Pos2.

Rules are grounded by performing every distinct substitution of the variables in

the atoms for constants in their respective domain. For example, every substitution

for the Pos and Digit variable arguments from the domains of non-empty Sudoku

puzzle cell positions, A1, · · · , I9, and digits 1, · · · , 9 is realized to ground the first

rule:

1.0 : NeuralClassifier(“A1”, “1”) = CellDigit(“A1”, “1”)

...

1.0 : NeuralClassifier(“19”, “9”) = CellDigit(“I9”, “9”)

Similarly, every substitution for the Pos1, Pos2, Digi1, and Digit2 variable argu-

ments from the domains of all Sudoku puzzle cell positions, A1, · · · , I9, and digits

1, · · · , 9 is realized to ground the second rule:

CellDigit(“A1”, “1”) ∧ SudokuViolation(“A1”, “A2”, “1”, “1”)

→ ¬CellDigit(“A2”, “1”) .

...

CellDigit(“I9”, “9”) ∧ SudokuViolation(“I9”, “I8”, “9”, “9”)

→ ¬CellDigit(“I8”, “9”) .
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5.2 Deep-Hinge Loss Markov Random Fields

The rule instantiation process described in the previous section results in a set of

ground atoms. Each ground atom is mapped to either an observed variable, xsy,i,

target variable, yi, or a neural function with inputs xnn and parameters wnn,i:

gnn,i(xnn,wnn,i). Specifically, all atoms instantiated from a deep atom are mapped

to a neural function, and the observed and target atom partitions are pre-specified.

Further, variables are aggregated into the vectors xsy = [xsyi ]
nx
i=1 and y = [yi]

ny

i=1 and

neural outputs are aggregated into the vector gnn = [gnn,i]
ng

i=1.

The ground rules and variables are used to define linear inequalities in a standard

form: ℓ(y,xsy,gnn(xnn,wnn)) ≤ 0, where ℓ is a linear function of its arguments. To

achieve this, logical rules are first converted into disjunctive normal form. Then,

the rules are translated into linear inequalities using an extended interpretation of

the logical operators, namely  Lukasiewicz logic [Klir and Yuan, 1995]. Similarly,

arithmetic rules define one or more standard form inequalities that preserve the rules’

dependencies via algebraic operations.

Linear inequalities instantiated from hard ground rules are constraints in Ne-

uPSL. Further, linear inequalities instantiated from soft ground rules define potential

functions of the form:

ϕ(y,xsy,gnn(xnn,wnn)) := (max{ℓ(y,xsy,gnn(xnn,wnn)), 0})q. (5.1)

Intuitively, the value of potential is the, possibly squared, level of dissatisfaction of

the linear inequality created by the ground rule. Further, each potential is associated

with the weight of its instantiating rule. Weight sharing among the potentials is

formalized by defining a partitioning using the instantiating rules, i.e., every potential

instantiated by the same rule belongs to the same partition and shares a weight. The

potentials and weights from the instantiation process are used to define a tractable

class of graphical models, which we refer to as deep hinge-loss Markov random fields

(Deep HL-MRF):

Definition 9 (Deep Hinge-Loss Markov Random Field)
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Let gnn = [gnn,i]
ng

i=1 be functions with corresponding weights wnn = [wnn,i]
ng

i=1 and

inputs xnn such that gnn,i : (wnn,i,xnn) 7→ [0, 1]. Let y ∈ [0, 1]ny and xsy ∈ [0, 1]nx.

A deep hinge-loss potential is a function of the form:

ϕ(y,xsy,gnn(xnn,wnn)) := (max{aTϕ,yy + aTϕ,xsy
xsy + aTϕ,gnn

gnn(xnn,wnn) + bϕ, 0})q

(5.2)

where aϕ,y ∈ Rny , aϕ,xsy ∈ Rnx, and aϕ,gnn ∈ Rng are variable coefficient vectors,

bϕ ∈ R is a vector of constants, and q ∈ {1, 2}. Let T = [τi]
r
i=1 denote an ordered

partition of a set of m deep hinge-loss potentials. Further, define

Φ(y,xsy,gnn(xnn,wnn)) :=

∑
k∈τi

ϕk(y,xsy,gnn(xnn,wnn))

r
i=1

. (5.3)

Let wsy be a vector of r non-negative symbolic weights corresponding to the partition

T . Then, a deep hinge-loss energy function is:

E(y,xsy,xnn,wsy,wnn) := wT
syΦ(y,xsy,gnn(xnn,wnn)). (5.4)

Let ack,y ∈ Rny , ack,xsy ∈ Rnx, ack,gnn ∈ Rng , and bck ∈ R for each k ∈ 1, . . . , q and

q ≥ 0 be vectors defining linear inequality constraints and a feasible set:

Ω(xsy,gnn(xnn,wnn)) :={
y ∈ [0, 1]ny |aTck,yy + aTck,xsy

xsy + aTck,gnn
gnn(xnn,wnn) + bck ≤ 0 ,∀ k = 1, . . . , q

}
.

Then a deep hinge-loss Markov random field defines the conditional probability

density:

P (y|xsy,xnn) :=


exp(−E(y,xsy ,xnn,wsy ,wnn))∫

ŷ exp(−E(ŷ,xsy ,xnn,wsy ,wnn))dŷ
y ∈ Ω(xsy,gnn(xnn,wnn))

0 o.w.

(5.5)

NeuPSL models are NeSy-EBMs with an extended-value deep HL-MRF energy

function capturing the constraints that define the feasible set. In other words, the
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symbolic component of NeuPSL is infinity if the targets are outside of the deep

HL-MRF feasible set, else it is equal to the deep HL-MRF energy function:

gsy(y,xsy,wsy,gnn(xnn,wnn))

=


wT
syΦ(y,xsy,gnn(xnn,wnn)) y ∈ Ω(xsy,gnn(xnn,wnn))

∞ o.w.

(5.6)

Further, NeuPSL prediction is finding the MAP state of the deep HL-MRF conditional

distribution. Note that in deep HL-MRFs, the partition function is constant over the

target variables. Moreover, as the exponential function is monotonically increasing,

prediction is equivalent to finding the minimizer of the negative log probability of

the deep HL-MRF joint distribution. This reduces to minimizing the deep HL-MRF

energy function constrained to the feasible set. Therefore, deep HL-MRF MAP

inference is equivalent to minimizing the NeuPSL symbolic component in (5.6):

arg max
y∈Rny

P (y|xsy,xnn) ≡ arg min
y∈Rny

gsy(y,xsy,wsy,gnn(xnn,wnn)) (5.7)

≡ arg min
y∈Rny

wT
syΦ(y,xsy,gnn(xnn,wnn))

s.t. y ∈ Ω(xsy,gnn(xnn,wnn)) (5.8)

Deep HL-MRF potentials are non-smooth and convex. Thus, as Deep HL-MRF

energy functions are non-negative weighted sums of the potentials, they are also

non-smooth and convex. Moreover, Deep HL-MRFs feasible sets are, by definition,

convex polyhedrons. Therefore, Deep HL-MRF inference, as defined above in (5.8),

is a non-smooth convex linearly constrained program. A natural extension of the

definition above that is often used in practice adds support for integer constraints on

the target variables. This change is useful in discrete problems and for leveraging

hard logic semantics. However, adding integer constraints breaks the convexity

property of MAP inference. Nevertheless, for many problems of practical scale,

global minimizers or high-quality approximations of the MAP inference problem with

integer constraints can be quickly found with modern solvers.
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5.3 A Smooth Formulation of Deep HL-MRF Inference

In this section I introduce a primal and dual formulation of Deep HL-MRF MAP

inference as a linearly constrained convex quadratic program (LCQP) (see Appendix

B for details). The primal and dual LCQP formulation has theoretical and practical

advantages. Theoretically, the new formulation will be utilized to prove continuity

and curvature properties of the Deep HL-MRF energy minimizer and value-function.

Practically, LCQP solvers (e.g. Gurobi [Gurobi Optimization, 2024]) can be employed

to achieve highly efficient MAP inference. Moreover, features of modern solvers,

including support for integer constraints, can be leveraged to improve predictions.

In summary, m slack variables with lower bounds and 2 ·ny +m linear constraints

are defined to represent the target variable bounds and deep hinge-loss potentials.

All 2 · ny +m variable bounds, m potentials, and q ≥ 0 constraints are collected into

a (2 ·ny +q+2 ·m)× (ny +m) dimensional matrix A and a vector of (2 ·ny +q+2 ·m)

elements that is an affine function of the neural predictions and symbolic inputs

b(xsy,gnn(xnn,wnn)). Moreover, the slack variables and a (ny + m) × (ny + m)

positive semi-definite diagonal matrix, D(wsy), and a (ny +m) dimensional vector,

c(wsy), are created using the symbolic weights to define a quadratic objective.

Further, the original target variables and the slack variables are gathered into a

vector ν ∈ Rny+m. Altogether, the regularized convex LCQP reformulation of Deep

HL-MRF MAP inference is:

V (wsy,b(xsy,gnn(xnn,wnn))) := (5.9)

min
ν∈Rny+m

νT (D(wsy) + ϵI)ν + c(wsy)
T ν s.t. Aν + b(xsy,gnn(xnn,wnn)) ≤ 0,

where ϵ ≥ 0 is a scalar regularization parameter added to the diagonal of D to

ensure strong convexity. The function V (wsy,b(xsy,gnn(xnn,wnn))) in (5.9) is the

optimal value-function of the LCQP formulation of NeuPSL inference referred to in

the previous chapter.

By Slater’s constraint qualification, strong duality holds when there is a feasible

solution to (5.9) Boyd and Vandenberghe [2004]. In this case, an optimal solution to
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the dual problem yields an optimal solution to the primal problem. The Lagrange

dual problem of (5.9) is:

min
µ∈R2·(ny+m)+q

≥0

h(µ;wsy,b(xsy,gnn(xnn,wnn))) (5.10)

:=
1

4
µTA(D(wsy) + ϵI)−1ATµ+

1

2
(A(D(wsy) + ϵI)−1c(wsy)

− 2b(xsy,gnn(xnn,wnn)))Tµ,

where µ is the vector of dual variables and h(µ;wsy,b(xsy,gnn(xnn,wnn))) is the

LCQP dual objective function. As (D(wsy) + ϵI) is diagonal, it is easy to invert, and

thus it is practical to work in the dual space and map dual to primal variables. The

dual-to-primal variable mapping is:

ν ← −1

2
(D(wsy) + ϵI)−1(ATµ+ c(wsy)). (5.11)

On the other hand, the primal-to-dual mapping is more computationally expensive

and requires calculating a pseudo-inverse of the constraint matrix A.

I use the LCQP formulation in (5.9) to establish continuity and curvature prop-

erties of the NeuPSL energy minimizer and the optimal value-function provided in

the following theorem:

Theorem 10

Suppose for any setting of wnn ∈ Rng there is a feasible solution to NeuPSL inference

(5.9). Further, suppose ϵ > 0, wsy ∈ Rr+, and wnn ∈ Rng . Then:

• The minimizer of (5.9), y∗(wsy,wnn), is a O(1/ϵ) Lipschitz continuous function

of wsy.

• V (wsy,b(xsy,gnn(xnn,wnn))), is concave over wsy.

• V (wsy,b(xsy,gnn(xnn,wnn))) is convex over b(xsy,gnn(xnn,wnn)).

• V (wsy,b(xsy,gnn(xnn,wnn))) is differentiable with respect to wsy. Moreover,

∇wsyV (wsy,b(xsy,gnn(xnn,wnn))) = Φ(y∗(wsy,wnn),xsy,gnn(xnn,wnn)).
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Furthermore, ∇wsyV (wsy,b(xsy,gnn(xnn,wnn))) is Lipschitz continuous over wsy.

• If there is a feasible point ν strictly satisfying the i′th inequality constraint of (5.9),

i.e., A[i]ν + b(xsy,gnn(xnn,wnn))[i] < 0, then V (wsy,b(xsy,gnn(xnn,wnn))) is

subdifferentiable with respect to the i′th constraint constant b(xsy,gnn(xnn,wnn))[i].

Moreover,

∂b[i]V (wsy,b(xsy,gnn(xnn,wnn)))

= {µ∗[i] |µ∗ ∈ arg min
µ∈R2·(ny+m)+q

≥0

h(µ;wsy,b(xsy,gnn(xnn,wnn)))}.

Furthermore, if gnn(xnn,wnn) is a smooth function of wnn, then b(xsy,gnn(xnn,wnn))

is a smooth function of wnn. Additionally, the set of regular subgradients of

V (wsy,b(xsy,gnn(xnn,wnn))) is:

∂̂wnnV (wsy,b(xsy,gnn(xnn,wnn))) (5.12)

⊃ ∇wnnb(xsy,gnn(xnn,wnn))T∂bV (wsy,b(xsy,gnn(xnn,wnn))).

Proof. See Appendix B.2.

Theorem 10 establishes the continuity properties of the NeuPSL value-function,

complementing the result in Theorem 6. Further, it provides a simple explicit form

of the value-function gradient with respect to the symbolic weights and regular

subgradient with respect to the neural weights (equivalent to those suggested by

Theorem 6). Thus, Theorem 10 supports the principled application of the end-to-end

learning algorithms presented in Section 4.3 for training both the symbolic and neural

weights of a NeuPSL model.

5.4 Dual block coordinate descent

In this section, I introduce a block coordinate descent (BCD) [Wright, 2015] algorithm

for working directly with the dual LCQP formulation of inference in (5.10). The

dual BCD algorithm is the first method specialized for the regularized NeuPSL dual

LCQP inference formulation. It is, therefore, also the first to produce optimal dual
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variables that directly yield both optimal primal variables and principled gradients

for learning.

At a high-level, the dual BCD algorithm proceeds by successively minimizing the

objective along the subgradient of a block of dual variables. For this reason, dual

BCD guarantees descent at every iteration, partially explaining its effectiveness at

leveraging warm-starts and improving learning runtimes. The algorithm is stopped

when the primal-dual gap drops below a threshold δ > 0.

In this section, I omit the symbolic and neural weights from the function arguments

to simplify notation. Further, define Ui, i = 1, 2, . . . , p to be a cover of the dual

variable components {1, 2, . . . , ny +m+ q}. In practice, blocks are defined as a single

dual variable corresponding to a constraint from the feasible set or a deep hinge-loss

function, along with the dual variables corresponding to the bounds of the primal

variables in the constraint or hinge-loss.

I work with a slightly more general objective,

h(µ) :=
1

2
µTAD̃ATµ+ c̃Tµ, (5.13)

from which one can recover (B.12) by replacing D̃ ← (D + ϵI)−1 and c̃ ← A(D +

ϵI)−1c− 2b.

I use the superscript ·(l) to denote values in the l-th iteration and subscript ·[i] for

the values corresponding to the block Ui. The row submatrix of A that corresponds

to block i is denote by A[i].

At each iteration l, one block i ∈ {1, 2, . . . , p} is chosen at random and the

subvector of ∇h(µ[l]) that corresponds to this block is computed,

d
(l)
[i] := ∇[i]h(µ(l)) = (AD̃ATµ(l) + c̃)[i]. (5.14)

Defining d(l) to be the vector in RN whose ith block is d
(l)
[i] with zeros elsewhere, I
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perform a line search along the negative of this direction. Note that

h(µ(l) − αd(l)) =
1

2
α2d(l)TAD̃ATd(l) − αd(l)T (AD̃ATµ(l) + c̃) + constant (5.15)

=
1

2
α2d

(l)T
[i] A[i]D̃AT

[i]d
(l)
[i] − αd

(l)T
[i] d

(l)
[i] + constant. (5.16)

The unconstrained minimizer of this expression is

α∗
l =

d
(l)T
[i] d

(l)
[i]

d
(l)T
[i] A[i]D̃AT

[i]d
(l)
[i]

. (5.17)

Given the nonnegativity constraints, I also need to ensure that µ
(l)
[i] − αd

(l)
[i] ≥ 0.

Therefore, my choice of steplength is

αl = min

α∗
l , min
j∈Ui :d

(l)
j >0

µ
(l)
j

d
(l)
j

 . (5.18)

To save some computation, I introduce intermediate variables f (l) := ATd(l) = AT
[i]d

(l)
[i] ,

and m(l) := ATµ(l). With the intermediate variables, the updates of the BCD

algorithm are:

d
(l)
[i] ← A[i]D̃m(l) + c̃[i], f

(l) ← AT
[i]d

(l)
[i] (5.19)

m(l+1) ← AT (µ(l) − αld(l)) = m(l) − αlf (l). (5.20)

With the steplength suggested by (5.18), descent is guaranteed at each iteration.

This property is partially why the dual BCD algorithm is effective at leveraging

warmstarts which is valuable for improving the runtime of learning algorithms, as is

demonstrated in Section 6.3.1.

As strong duality holds for the LCQP formulation of deep HL-MRF inference,

stopping when the primal-dual gap is below a given threshold δ > 0, is a principled

stopping criterion. Formally, at any iteration Algorithm 5 applied to (B.11), I recover

an estimate of the primal variable v from (B.13) and terminate when the gap between

the primal and the dual objective falls below δ. The stopping criterion is checked
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Algorithm 5 Dual LCQP Block Coordinate Descent

1: Set l = 0 and compute an initial feasible point µ(0);
2: Compute m(0) = ATµ(0);
3: while Stopping Criterion Not Satisfied do
4: Sk ← Permutation([1, 2, . . . , p]);
5: for all i ∈ Sk (in order) do

6: Compute d
(l)
[i] ← A[i]D̃m(l) + c̃[i]; f (l) ← AT

[i]d
(l)
[i] ;

7: Compute αl ← min

{
d
(l)T
[i]

d
(l)
[i]

f (l)T D̃f (l)
,min

j∈Ui:d
(l)
j >0

µ
(l)
j

d
(l)
j

}
8: µ

(l+1)
[i] ← µ

(l)
[i] − αld

(l)
[i] ; µ

(l+1)
[j] ← µ

(l)
[j] for all j ̸= i;

9: m(l+1) ←m(l) − αlf (l);
10: l← l + 1;
11: k ← k + 1;

after every permutation block has been completely iterated over.

Connected Component Parallel D-BCD Oftentimes, the NeuPSL dual infer-

ence objective is additively separable over partitions of the variables. In this case,

the dual BCD algorithm is parallelizable over the variable partitions. I propose an

efficient method for identifying the separable components via the primal objective and

constraints. More formally, prior to the primal problem instantiation, a disjoint-set

data structure [Cormen et al., 2009] is initialized such that every primal variable

belongs to a single unique disjoint set. Then, during instantiation, the disjoint-set

data structure is maintained to preserve the property that two primal variables exist

in the same set if and only if they occur together with a non-zero coefficient in a

constraint or a potential. This is achieved by merging the sets of variables in every

generated constraint or potential. This process is made extremely efficient with a

path compression strategy implemented to optimize finding set representatives. This

parallelization strategy is empirically studied in Chapter 6 where I refer to it as

Connected Component Parallel D-BCD (CC D-BCD).

Lock Free Parallel D-BCD For sparse factor graphs with few connected compo-

nents (e.g., a chain), the CC variant of D-BCD is ineffective as the updates cannot

be distributed to maximize CPU utilization. One solution to overcome this issue

and preserve the guaranteed descent property is to lock access and updates to dual
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variables. In other words, processes checkout locks on the dual variables to access

and update its value and corresponding statistics. Unfortunately, in practice there

is too much overlap in the blocks for this form of synchronization to see runtime

improvements. For this reason, I additionally propose a method that sacrifices

the theoretical guaranteed descent property of the dual BCD algorithm for signif-

icant runtime improvements. My approach is inspired by lock free parallelization

strategies in optimization literature [Bertsekas and N. Tsitsiklis, 1989, Recht et al.,

2011, Liu et al., 2015]. Specifically, rather than having processes checkout locks on

dual variables for the entire iteration, I only assume dual and intermediate variable

updates are atomic. This assumption ensures the dual variables and intermediate

variables are synchronized across processes. However, the steplength subproblem

solution and the gradient may be incorrect. Despite this, in Section 6.2.1, I show this

distributed variant of the dual BCD algorithm consistently finds a solution satisfying

the stopping criterion and realizes significant runtime improvements over the CC

D-BCD algorithm in some datasets.

5.5 Deep HL-MRF Learning

Deep HL-MRF learning follows the NeSy-EBM learning framework presented in

Chapter 3. Additionally, symbolic parameters are constrained to lie on the unit

simplex, ∆r = {wsy ∈ Rr+ | ∥w∥1 = 1}, when the deep HL-MRF is exclusively used

to obtain MAP inference predictions. This is because MAP inference in HL-MRFs is

invariant to scalar multiplications of the weights, as stated in the following lemma.

Lemma 11

Consider a Deep-HL-MRF with r symbolic parameters wsy ∈ Rr+. For all symbolic

weight configurations, wsy ∈ Rr+, and scalars, c̃ ∈ R+, the solution of MAP inference

with symbolic parameters wsy and c̃ ·wsy are the same, i.e.,

arg min
y∈Ω(xsy ,g(xnn,wnn))

E(y,xsy,xnn,wsy,wnn)

= arg min
y∈Ω(xsy ,g(xnn,wnn))

E(y,xsy,xnn, c̃ ·wsy,wnn).
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Proof. Scaling the symbolic parameters by a positive scalar c̃ ∈ R+ is equivalent to

a positive scaling of the MAP inference objective:

arg min
y∈Ω(xsy ,g(xnn,wnn))

E(y,xsy,xnn, c̃ ·wsy,wnn) (5.21)

= arg min
y∈Ω(xsy ,g(xnn,wnn))

c̃ ·wT
syΦ(y,xsy,g(xnn,wnn)))

= arg min
y∈Ω(xsy ,g(xnn,wnn))

wT
syΦ(y,xsy,g(xnn,wnn)))

= arg min
y∈Ω(xsy ,g(xnn,wnn))

E(y,xsy,xnn,wsy,wnn).

The energy function E(·, ·, ·,wsy = 0,wnn) cannot be captured by any symbolic

parameter in the unit simplex. However, this is a benefit of adding the simplex

constraint. The zero-weight configuration is a degenerate solution and should be

avoided. Formally, wsy = 0 results in a collapsed energy function: a function

that assigns all points to the same energy. Collapsed energy functions have no

predictive power since finding the lowest energy state of the variables is trivial and

uninformative.

With the simplex constraint on the symbolic parameters, deep HL-MRF parameter

learning is:

arg min
wsy∈∆r,wnn

L(Ẽ(·, ·, ·,wsy,wnn),S) +R(wsy,wnn)

= arg min
wsy∈∆r,wnn

1

P

P∑
i=1

Li(Ẽ(·, ·, ·,wsy,wnn),Si) +R(wsy,wnn), (5.22)

where Ẽ is the extended value extension of the deep HL-MRF energy function

capturing the constraints imposed by Ω:

Ẽ(y,xsy,xnn,wsy,wnn) :=


E(y,xsy,xnn,wsy,wnn) y ∈ Ω(xsy,g(xnn,wnn))

∞ o.w.

.
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5.5.1 Symbolic Parameter Regularizers

Generally, any convex loss function over the symbolic weights can be used to encourage

solutions that are not at a corner or edge of the simplex. I suggest using the negative

logarithm function as a symbolic weight regularizer:

RLog(wsy,wnn) := −
r∑
i=1

logb(wsy[i]).

The negative logarithm function gives configurations with symbolic weights equal to

0 an infinite loss. A related regularization is the negative entropy function:

REntropy(wsy,wnn) :=

r∑
i=1

wsy[i] logb(wsy[i]).

This regularization does not give infinite loss for configurations with symbolic weights

equal to 0 like the negative logarithm function, However, it does bias the loss towards

symbolic weights at the center of the simplex.

5.5.2 Gradient-Based Symbolic Weight Learning

See Wright and Recht (2022) for a complete introduction to gradient-based methods

for constrained optimization. In this work, I consider the projected gradient descent

and mirror descent algorithms for minimizing the learning loss over the symbolic

weights of a deep HL-MRF. I give details on the updates for both algorithms in the

following two sections.

When fitting only symbolic parameters, the gradient-based learning algorithms

are stopped when the gradient of the objective with respect to the current iterate is

nearly normal to the simplex. This stopping criterion is motivated by the following

definition and theorem. The definition is the standard formal description of the

normal cone of a set at a point. Then the theorem (see Wright and Recht (2022)

for more details) states that at a local solution of the objective, the gradient of the

objective is in the normal cone of the feasible set.

Definition 12
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Let Ω ⊂ Rn be a closed convex set. For a point x ∈ Ω, the normal cone is:

NΩ(x) = {d ∈ Rn : dT (x′ − x) ≤ 0 ∀x′ ∈ Ω}.

Theorem 13

Consider the problem

min
x∈Ω

f(x),

where Ω ⊂ Rn is a closed convex set and f is continuously differentiable. If x∗ ∈ Ω

is a local solution, then the gradient of the function at x is in the normal cone of the

feasible set at x: −∇f(x∗) ∈ NΩ(x∗).

The distance to the normal cone for both methods is measured using the KL-

divergence between the gradient passed through a softmax function and the discrete r

dimensional uniform distribution. Formally, when learning only symbolic parameters,

the first-order learning methods presented in the following subsections are stopped

when:

KL(SoftMax(∇wsyL(Ẽ(·, ·, ·,w(k)
sy ,w

(k)
nn ), S))∥Unif({1, · · · , r})) ≤ δ,

where δ > 0 is a user-specified tolerance.

Projected Gradient Descent

The projected gradient algorithm is a standard approach to optimizing over a set of

constraints. When the symbolic parameters, wsy, are constrained to ∆r, and given an

initial step size parameter η(0) > 0 and feasible starting point (w0
sy,w

0
nn) ∈ ∆r×Wnn,

the projected gradient algorithm for Deep HL-MRF symbolic weight learning is defined
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by the process:

w(k+1)
sy ← P∆r(w(k)

sy − η(k)∇wsyL(Ẽ(·, ·, ·,w(k)
sy ,w

(k)
nn ), S))

w(k+1)
nn ← w(k)

nn − η(k)∇wnnL(Ẽ(·, ·, ·,w(k)
sy ,w

(k)
nn ), S)

η(k+1) ← η(0)

k + 1
,

where P∆r(·) is the euclidean projection operator for the feasible set ∆r.

Mirror Descent

Alternatively, minimizing the learning objective with the symbolic weights constrained

to the unit simplex is achieved via mirror descent with the softmax link function

[Kivinen and Warmuth, 1997, Shalev-Shwartz, 2012]. Given an initial step size

parameter η(0) > 0 and feasible starting point (w0
sy,w

0
nn) ∈ ∆r ×Wnn, the mirror

descent updates are

w(k+1)
sy [i]←

w
(k)
sy [i] exp{−η(k) ∂L(E(·,·,·,w(k)

sy ,w(k)
nn ),S)

∂w
(k)
sy [i]

}∑r
j=1 w

(k)
sy [j] exp{−η(k) ∂L(E(·,·,·,w(k)

sy ,w
(k)
nn ),S)

∂w
(k)
sy [j]

}
, ∀i = 1, · · · , r

w(k+1)
nn ← w(k)

nn − η(k)∇wnnL(E(·, ·, ·,w(k)
sy ,w

(k)
nn ), S)

η(k+1) ← η(0)

k + 1
.

The symbolic parameters are guaranteed to satisfy the simplex constraints at every

iteration.
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Chapter 6

Empirical Analysis

In this chapter, I perform an empirical analysis of the NeSy-EBM modeling paradigms

and learning algorithms presented in this work using the NeuPSL system introduced

in Chapter 5. My experiments are designed to investigate the four following research

questions:

• RQ1: What are the empirical runtime tradeoffs among the presented NeuPSL

inference approaches?

• RQ2: Can the NeSy-EBM framework enhance the accuracy and reasoning

capabilities of deep learning models?

• RQ3: Can the value-function gradients provided in Theorem 6 be used as a

reliable descent direction for value-based learning losses?

• RQ4: Can symbolic constraints be used to train a deep learning model with

partially labeled data?

• RQ5: What are the prediction performance and runtime tradeoffs among the

presented modular, gradient descent, bilevel, and stochastic policy learning

techniques?

The empirical analysis is organized into three subsections. First, in Section 6.1,

I introduce the neural-symbolic datasets and models used in the experiments. In

Section 6.2, I examine the runtime and the prediction performance of NeSy-EBMs
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for constraint satisfaction, few-shot, and zero-shot reasoning of the NeuPSL inference

algorithms presented in Chapter 5. In Section 6.3, I evaluate the runtime and

performance of the learning techniques presented in Chapter 4 for the applications

of fine-tuning, few-shot learning, and semi-supervision. All code and data for

reproducing the empirical analysis are available at https://github.com/linqs/

dickens-arxiv24.

6.1 Datasets and Models

This section introduces the NeSy datasets and models, which will be utilized through-

out the empirical analysis. A summary of the datasets studied in the the empirical

analysis is provided in Table 6.1. Any modifications to the datasets and models made

to answer specific research questions will be described in the following sections. De-

tails and implementations of the model architectures of both the neural and symbolic

components are available at https://github.com/linqs/dickens-arxiv24.

Table 6.1: Datasets with data source citation and the NeSy-EBM model task. Every
dataset task is a structured prediction problem.

Dataset Citation Task Perf. Metric

MNIST-Add-k Manhaeve et al. (2021a) Image Classification Accuracy
Visual-Sudoku Wang et al. (2019) Puzzle Solving Accuracy
Pathfinding Vlastelica et al. (2020) Min Cost Path. Accuracy

Debate Hasan and Ng (2013) Stance Classification AUROC
4Forums Walker et al. (2012) Stance Classification AUROC
Epinions Richardson et al. (2003) Link Prediction AUROC

DDI Wishart et al. (2006) Link Prediction AUROC
Yelp Kouki et al. (2015) Regression MAE
Citeseer Sen et al. (2008) Text Classification Accuracy

Cora Sen et al. (2008) Text Classification Accuracy
RoadR Singh et al. (2021) Scene Understanding IoU & F1
Logical-Deduction Srivastava et al. (2022) Question Answering Accuracy

• MNIST-Add-k Dataset: MNIST-Add-k is a canonical NeSy dataset intro-

duced by Manhaeve et al. (2021a) where models must determine the sum of

each pair of digits from two lists of MNIST images. An MNIST-Addk equation

consists of two lists of k > 0 MNIST images. For instance,
[ ]

+
[ ]

= 8

is an MNIST-Add1 equation, and
[

,
]

+
[
,
]

= 41 is an MNIST-Add2
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equation.

Evaluation: For all experiments, I evaluate models over 5 splits of the low-data

setting proposed by Manhaeve et al. (2021a) with 600 total images for training

and 1, 000 images each for validation and test. Prediction performance in this

setting is measured by the accuracy of the image classifications and the inferred

sums. Constraint satisfaction consistency in this setting is the proportion of

predictions that satisfy the semantics of addition.

Baseline Architecture: The baseline neural architecture for all MNIST-Addk

datasets is a ResNet18 convolutional neural network backbone [He et al., 2016]

with a 2-layer multi-layer perceptron (MLP) prediction head. The baseline

is trained and applied as a digit classifier. Further, to allow the baseline to

leverage the unlabeled training data in the semi-supervised settings, the digit

classifier backbone is pre-trained using the SimCLR self-supervised learning

framework [Chen et al., 2020]. Augmentations are used to obtain positive pairs

for the contrastive pre-training process.

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of

the baseline digit classifier and a symbolic component created with NeuPSL

that encodes the semantics of addition. The target variables of the symbolic

component are the labels of the MNIST digits and their sum. The neural

classification is used as a prior for the digit labels.

• Visual-Sudoku Dataset: Visual-Sudoku, first introduced by Wang et al. (2019),

is a dataset containing a collection of 9× 9 Sudoku puzzles constructed from

MNIST images. In each puzzle, 30 cells are filled with MNIST images and are

referred to as clues. The remaining cells are empty. The task is to correctly

classify all clues and fill in the empty cells with digits that satisfy the rules of

Sudoku: no repeated digits in any row, column, or box.

Evaluation: For all experiments, results are reported across 5 splits with 20

puzzles for training and 100 puzzles each for validation and test. There is an

equal number of MNIST images (600) in the training datasets for Visual-Sudoku
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and MNIST-Add-k. Prediction performance in this setting is measured by the

accuracy of the image classifications. Constraint satisfaction consistency in this

setting is the proportion of predictions that satisfy the rules of Sudoku.

Baseline Architecture: The baseline neural architecture for Visual-Sudoku

is the same as that of the MNIST-Addk.

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of

the baseline digit classifier and a symbolic component created with NeuPSL that

encodes the rules of Sudoku. The target variables of the symbolic component

are the labels of the clues and the empty cells. The neural classification is used

as a prior for the clues.

• Pathfinding Dataset: Pathfinding is a NeSy dataset introduced by Vlastelica

et al. (2020) consisting of 12000 randomly generated images of terrain maps

from the Warcraft II tileset. The images are partitioned into 12 × 12 grids

where each vertex represents a terrain with a cost. The task is to find the

lowest cost path from the top left to the bottom right corner of each image.

Evaluation: For all experiments, results are reported over 5 splits generated

by partitioning the images into sets of 10, 000 for training, 1, 000 for validation,

and 1, 000 for testing. Prediction performance in this setting is measured

by the proportion of valid predicted paths, i.e., continuous, and that have a

minimum cost. Constraint satisfaction continuity in this setting is measured

by the proportion of predictions with a continuous predicted path.

Baseline Architecture: The baseline neural architecture for the Pathfinding

dataset is a ResNet18 convolutional neural network. The input of the ResNet18

path-finder baseline is the full Warcraft II map, and the output is the predicted

shortest path. The model is trained using the labeled paths from the training

data set.

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition

of the baseline path-finder and a symbolic component created with NeuPSL

that encodes end-points and continuity constraints, i.e., the path from the top
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left corner of the map to the bottom right corner must be continuous. The

target variables of the symbolic component are variables indicating whether

a vertex of the map grid is on the path. The neural classification is used as

a prior for the path, and the symbolic component finds a valid path near the

neural prediction.

• 4Forums and CreateDebate: Stance-4Forums and Stance-CreateDebate are

two datasets containing dialogues from online debate sites: 4forums.com and

createdebate.com, respectively. In this paper, I study stance classification,

i.e., the task of identifying the stance of a speaker in a debate as being for or

against. The evaluation protocol and models follow Sridhar et al. (2015).

Evaluation: For all experiments, I evaluate models over 5 splits. Prediction

performance is measured by the AUROC of the stance classifications.

Baseline Architecture: The baseline neural architecture for Stance-4Forums

and Stance-CreateDebate is a logistic regression classifier using features includ-

ing n-grams, lexical category counts, and text lengths.

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of

the baseline logistic regression model and a symbolic component created with

NeuPSL that encodes domain knowledge of agreement and disagreement using

user interactions.

• Epinions: Epinions is a trust network with 2, 000 individuals connected by

8, 675 directed edges representing whether they know each other and whether

they trust each other Richardson et al. [2003]. I study link prediction, which

in this setting is whether two individuals trust each other. The evaluation

protocol and models follow Bach et al. (2017).

Evaluation: For all experiments, I evaluate models over 5 splits. Prediction

performance is measured by the AUROC of the link predictions. In each of the

5 data splits, the entire network is available, and the prediction performance is

measured on 1
8 of the trust labels. The remaining set of labels are available for

training.
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Baseline Architecture: There is no neural component in this model.

NeSy-EBM Architecture: The symbolic component encodes multiple rules

relating trust to the users an individual knows.

• DDI: Drug-drug interaction (DDI) is a network of 315 drugs and 4, 293 in-

teractions derived from the DrugBank database [Wishart et al., 2006]. The

edges in the drug network represent interactions and seven different similarity

metrics. In this paper, we perform link prediction, which in this setting infering

unknown drug-drug interactions. The evaluation protocol and models follow

Sridhar et al. (2016).

Evaluation: For all experiments, I evaluate models over 5 splits. Prediction

performance is measured by the AUROC of the link predictions.

Baseline Architecture: The baseline neural architecture for DDI is a collec-

tion of similarity-based models.

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of

the baseline similarity based models and a symbolic component created with

NeuPSL that combines the baseline predictions and utilizes known interactions.

• Yelp: Yelp is a network of 34, 454 users and 3, 605 items connected by 99, 049

edges representing ratings. The task is to predict missing ratings, in this setting

we model this as a regression task. The evaluation protocol and models follow

Kouki et al. (2015).

Evaluation: For all experiments, I evaluate models over 5 splits. Prediction

performance is measured by the MAE of the predicted ratings.

Baseline Architecture: The baseline neural architecture for DDI is a collec-

tion of matrix factorization and similarity models.

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition

of the baseline models and a symbolic component created with NeuPSL that

combines the baseline predictions and utilizes social relationships between users.

• Citeseer and Cora Dataset: Citeseer and Cora are two widely studied
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citation network node classification datasets first introduced by Sen et al. (2008).

Citeseer consists of 3, 327 scientific publications classified into one of 6 topics,

while Cora contains 2, 708 scientific publications classified into one of 7 topics.

Evaluation: For all experiments, I evaluate models over 5 randomly sampled

splits using 20 examples of each topic for training, 200 of the nodes for validation,

and 1000 nodes for testing. Prediction performance in this setting is measured

by the categorical accuracy of a paper label.

Baseline Architecture: The baseline neural architecture for the Citation

network settings is a Simple Graph Convolutional Network (SGC) [Wu et al.,

2019]. SGCs are graph convolutional networks with linear activations in the

hidden layers to reduce computational complexity. The SGC neural baseline

uses bag-of-words feature vectors associated with each paper as node features

and citations as bi-directional edges. Then, a MLP is trained to predict the

topic label given the SGC-transformed features.

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of

the baseline SGC and a symbolic component created with NeuPSL that encodes

the homophilic structure of the citation network, i.e., two papers connected in

the network are more likely to have the same label. Target variables indicate

the degree to which a paper has a particular topic. The neural classification

is used as a prior for the labels of the nodes, and the symbolic component

propagates this knowledge to its neighbors.

• RoadR Dataset: RoadR is an extension of the ROAD (Road event Awareness

Dataset) dataset, initially introduced by Singh et al. (2021). The ROAD dataset

was developed to evaluate the situational awareness of autonomous vehicles in

various road environments, weather conditions, and times of day by. It contains

22 videos, 122k labeled frames, 560k bounding boxes, and a total of 1.7M

labels, which include 560k agents, 640k actions, and 499k locations. RoadR

builds upon this by adding 243 logical requirements that must be satisfied,

further enhancing its utility for testing autonomous vehicles [Giunchiglia et al.,
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2023]. For instance, a traffic light should never be simultaneously predicted as

red and green.

Evaluation: For all experiments, I evaluate models with 15 videos for training

and 3 videos for testing. Prediction performance in this setting is measured by

the matching boxes using Intersection over Union (IoU) and then multi-class f1.

Constraint satisfaction consistency in this setting is the proportion of frame

predictions with no constraint violations.

Baseline Architecture: The baseline neural architecture for the RoadR

dataset is a DEtection TRansformer (DETR) model with a ResNet50 backbone

[Carion et al., 2020]. The baseline is trained and applied to detect objects in a

frame, along with a multi-label classification for its class labels (e.g., car, red,

traffic light, etc.).

NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of

the baseline object detector and classifier and a symbolic component created

with NeuPSL that encodes the logical requirements. The target variables are

the classification labels of a bounding box. The neural classification is used as

both the bounding box creation and a prior on the labels that the symbolic

component uses as a starting point to find a valid solution to the constraints.

• Logical-Deduction is a multiple-choice question-answering dataset introduced

by Srivastava et al. [2022]. These questions require deducing the order of a

sequence of objects given a natural language description and then answering a

multiple-choice question about that ordering.

Evaluation: I report results for a single test set of 300 deduction problems,

with a prompt containing two examples. Prediction performance in this setting

is measured by the accuracy of the predicted multiple-choice answer.

Baseline Architecture: The baseline neural architecture for the Logical-

Deduction dataset is the models presented in Pan et al. (2023) on GPT-3.5-turbo

and GPT-4 OpenAI [2024]. Each model is run using Standard and Chain-of-

Thought (CoT) [Wei et al., 2022] prompting.
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NeSy-EBM Architecture: The NeSy-EBM architecture is a composition of

the baseline LLM that is being prompted to create the constraints within the

symbolic program. Symbolic inference is then performed, and the output is

returned to the LLM for final evaluation. In this sense, the NeSy-EBM writes

a program to perform reasoning rather than depending on the language model

to reason independently.

6.2 NeSy-EBM Inference

In this section I investigate research questions RQ1 and RQ2. First, I examine the

runtime of the dual BCD NeuPSL inference algorithms presented in Section 5.4. Then

I study the prediction performance of NeSy-EBMs for constraint satisfaction and

few-shot reasoning. For all experiments in this section, I employ a modular training

approach to obtain neural and symbolic component weights. Specifically, neural

components undergo training using the complete training dataset for supervision,

and symbolic weights are either fixed or trained using a random grid search. A DSPot

NeSy-EBM is used for Logical Deduction and a DSPar NeSy-EBM is used for all

other datasets.

6.2.1 Runtime

To answer research question RQ1, I investigate the runtime of NeuPSL inference

using the new inference algorithms: connected component parallel dual BCD (CC

D-BCD) and lock-free parallel dual BCD (LF D-BCD), and the alternating direction

method of multipliers (ADMM) Boyd et al. [2010], the current state-of-the-art

inference algorithm. I also evaluate the performance of Gurobi, a leading off-the-shelf

optimizer, and subgradient descent (GD) in Appendix C.2 and show ADMM and dual

BCD consistently match or outperform GD and the proprietary solver. All inference

algorithms have access to the same computing resources detailed in Section C.1.

Moreover, for each algorithm, I run a hyperparameter search, detailed in Appendix

C.2. The hyperparameter configuration yielding a prediction performance that is

within a standard deviation of the best and completed with the lowest runtime is
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reported. All algorithms are stopped when the L∞ norm of the primal variable

change between iterates is less than 0.001.

Table 6.2: Time in seconds for inference using ADMM and my proposed CC D-BCD
and LF D-BCD algorithms on nine datasets.

ADMM CC D-BCD LF D-BCD

Debate 9.98± 1.13 0.05± 0.02 0.05± 0.03
4Forums 15.17± 0.74 0.11± 0.02 0.05± 0.01
Epinions 0.36± 0.041 1.84± 0.4 0.26± 0.04

Citeseer 0.63± 0.07 1.36± 0.24 0.49± 0.08
Cora 0.71± 0.07 6.46± 3.5 0.79± 0.19
DDI 7.85± 0.28 31.47± 0.17 1.76± 0.17

Yelp 6.37± 1.19 48.44± 3.82 7.58± 0.48
MNIST-Add1 11.45± 1.32 10.23± 1.04 115± 45
MNIST-Add2 285± 66 29.09± 8.00 1, 189± 16

The total average inference runtime in seconds for each algorithm and model is

provided in Table 6.2. Surprisingly, despite the potential for an inexact solution to

the BCD steplength subproblem, LF D-BCD is faster than CC D-BCD in the first 7

datasets and demonstrates up to 6× speedup over CC D-BCD in Yelp. However, in

MNIST-Add datasets, CC D-BCD is up to 10× faster than LF D-BCD as there is a

high number of tightly connected components, one for each addition instance. This

behavior highlights the complementary strengths of the two parallelization strategies.

LF D-BCD should be applied to problems with larger factor graph representations

that are connected, while CC D-BCD is effective when there are many similarly sized

connected components.

Dual BCD and Regularization

The regularization parameter added to the LCQP formulation of NeuPSL inference in

(5.9) ensures strong convexity of the optimal value of the energy function. However,

adding regularization makes the new formulation an approximation. Here, the

runtime and prediction performance of the D-BCD inference algorithm is evaluated

at varying levels of regularization to understand its effect on NeuPSL inference. The

regularization parameter varies in the range ϵ ∈ {100, 10, 1, 0.1, 0.01}. The D-BCD

algorithm is stopped when the primal-dual gap drops below δ = 0.1 Inference time is
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provided in seconds, and the performance metric is consistent with Table 6.1. Results

are provided in Table 6.3.

Table 6.3: D-BCD Inference time in seconds and prediction performance with varying
values for the LCQP regularization parameter ϵ.

Dataset ϵ Time (sec) Perf.

CreateDebate

100 0.02± 0.01 64.77± 10.61
10 0.02± 0.01 64.83± 10.53
1 0.02± 0.01 64.74± 10.67

0.1 0.05± 0.02 65.39± 9.07
0.01 0.42± 0.51 66.01± 9.35

4Forums

100 0.11± 0.02 61.31± 6.17
10 0.10± 0.03 61.26± 6.16
1 0.09± 0.01 61.12± 6.18

0.1 0.43± 0.11 62.73± 5.46
0.01 7.11± 3.05 62.31± 5.47

Epinions

100 0.33± 0.05 72.59± 2.27
10 0.28± 0.04 72.69± 2.21
1 0.33± 0.05 74.24± 1.95

0.1 1.08± 0.16 77.05± 1.06
0.01 5.21± 0.37 77.45± 0.70

Citeseer

100 0.95± 0.14 71.28± 1.31
10 1.00± 0.12 71.28± 1.30
1 1.48± 0.29 71.59± 1.01

0.1 7.01± 1.57 71.75± 1.10
0.01 62.41± 14.67 71.92± 1.09

Cora

100 4.53± 2.20 81.31± 1.73
10 4.56± 2.39 81.57± 1.83
1 7.36± 4.19 81.48± 1.70

0.1 42.24± 25.06 81.88± 1.82
0.01 269.45± 49.50 81.79± 1.72

DDI

100 24.56± 0.25 94.85± 0.00
10 29.23± 0.59 94.85± 0.00
1 47.15± 0.95 94.82± 0.00

0.1 280.62± 5.19 94.80± 0.00
0.01 266.07± 42.68 94.81± 0.00

Yelp

100 105.60± 5.03 0.23± 0.01
10 3, 239± 81 0.22± 0.01
1 3, 227± 54 0.19± 0.01

0.1 421± 202 0.18± 0.00
0.01 2, 472± 297 0.18± 0.00

Table 6.3 shows there is a consistent correlation between the LCQP regularization

parameter and the runtime and performance of inference. As ϵ increases, there is

a significant decrease in the runtime as the D-BCD algorithm can find a solution

with a gradient meeting the stopping criterion in fewer iterations. Notably, for the

Citeseer inference problem, the D-BCD algorithm realizes a roughly 45× speedup.

On the other hand, while the runtime performance improves with increasing ϵ, the

prediction performance can sometimes decay. There is a tradeoff between runtime
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and prediction performance when setting the ϵ regularization parameter.

6.2.2 Prediction Performance

Next, to answer research question RQ2, I examine the prediction performance of

NeSy-EBMs for the motivating applications of constraint satisfaction and few-shot

reasoning.

Constraint Satisfaction and Joint Reasoning

To investigate constraint satisfaction and joint reasoning, I use the dataset settings

outlined in Section 6.1 for Visual-Sudoku, Pathfinding, RoadR, Citeseer, and Cora.

Additionally, I introduce the following variant of the MNIST-Add-k dataset.

• MNIST-Addk: The k = 1, 2, 4 MNIST-Addk datasets with the sums of the

MNIST-Add-k equations available as observations during inference. Prediction

performance is measured by the accuracy of the image classifications.

The MNIST-Add-k modification allows the NeSy-EBM to use the semantics of

addition and the sum observation to form constraints to correct the neural component

predictions. For instance, consider the MNIST-Add-1 equation
[ ]

+
[ ]

= 8. If

the neural component incorrectly classifies the first MNIST image, , as an 8 with

low confidence but correctly classifies the second MNIST image, , as a 5 with high

confidence, then it can use the sum label, 8, to correct the first digit label.

Table 6.4: Digit accuracy and constraint satisfaction consistency of the ResNet18
and NeuPSL models on the MNIST-Add-k and Visual-Sudoku datasets.

ResNet18 NeuPSL
Digit Acc. Consistency Digit Acc. Consistency

MNIST-Add1

97.60± 0.55

93.04± 1.33 99.80± 0.14 100.0± 0.00
MNIST-Add2 86.56± 2.72 99.68± 0.22 100.0± 0.00
MNIST-Add4 75.04± 4.81 99.72± 0.29 100.0± 0.00
Visual-Sudoku 70.20± 2.17 99.37± 0.11 100.0± 0.00

Tables 6.4 to 6.6 report the prediction performance and constraint satisfaction

consistency of a neural baseline and NeuPSL model on the MNIST-Addk, Visual-

Sudoku, Pathfinding, and RoadR datasets, respectively. Across all settings, the
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Table 6.5: Accuracy of finding a minimum cost path (Min. Cost Acc.) and consistency
in satisfying continuity constraints (Continuity) of the ResNet18 and NeuPSL models
on the Pathfinding dataset.

ResNet18 NeuPSL
Min. Cost Acc. Continuity Min. Cost Acc. Continuity

Pathfinding 80.12± 22.44 84.80± 17.11 90.02± 11.70 100.0± 0.00

Table 6.6: Object detection F1 and constraint satisfaction consistency of the DETR
and NeuPSL models on the RoadR dataset.

DETR NeuPSL
F1 Consistency F1 Consistency

RoadR 0.457 27.5 0.461 100.0

baseline neural models frequently violate constraints within the test dataset. Further,

the frequency of these violations increases with the complexity of the constraints.

This behavior is best illustrated in the MNIST-Addk datasets, where consistency

decreases as the number of digits, k, increases. This decline can be attributed to

the baseline ResNet18 model treating each digit prediction independently and thus

failing to account for the dependencies from the sum relation. Moreover, in the

RoadR experiment, the DETR baseline adheres to road event constraints only 27.5%

of the time. On the other hand, NeuPSL always satisfies the problem constraints

in the MNIST-Addk, Visual-Sudoku, Pathfinding, and RoadR datasets, achieving

100% consistency. This is because the DSPar NeSy-EBM models used in these

experiments can enforce constraints on all target variables. This allows the NeSy-

EBM models to leverage the structural relations inherent in the constraints to infer

target variables and jointly improve prediction accuracy. Prediction performance

gains from constraint satisfaction and joint reasoning are possible when the neural

component accurately quantifies its confidence. The symbolic component uses the

confidence of the neural component and the constraints together to correct the neural

model’s erroneous predictions. This observation motivates an exciting avenue of

future research: exploring whether calibrating the confidence of the neural component

can further improve the structured prediction and joint reasoning capabilities of

NeSy-EBMs.
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Table 6.7: Node classification accuracy of the SGC and NeuPSL models on the
Citeseer and Cora datasets.

SGC NeuPSL

Citeseer 65.14± 2.96 66.52± 3.26
Cora 80.90± 1.54 81.82± 1.73

Unlike MNIST-Addk, Visual-Sudoku, Pathfinding, and RoadR, which have hard

constraints on the target variables, the citation network datasets showcase the

capacity of NeSy-EBMs to perform joint reasoning with constraints and dependencies

that are not strictly adhered to. For Citeseer and Cora, NeuPSL enhances prediction

accuracy by leveraging the homophilic structure of the citation networks, i.e., papers

that are linked tend to share topic labels.

Table 6.7 reports the baseline and NeuPSL NeSy-EBM prediction performance

on the citation network node classification datasets. In all instances, NeuPSL

outperforms the baseline. The performance gain from NeuPSL in the citation

network experiments is verified to be statistically significant with a paired t-test and

p-value less than 0.05.

Few-Shot Reasoning

To investigate the few-shot reasoning capabilities of NeSy-EBMs, I use the Logic

Deduction dataset and DSPot NeSy-EBM model outlined in Section 6.1. Similarly, in

the question-answering logical deduction problem, NeuPSL uses an LLM to generate

rules representing the dependencies described in natural language. Although the

LLM may sometimes fail to generate accurate rules, NeuPSL will consistently use

the rules for logical reasoning.

Table 6.8: Comparison of accuracy in answering logical deduction questions using
two large language models, GPT-3.5-turbo and GPT-4 OpenAI [2024], across three
methods: Standard few-shot prompting, Chain of Thought (CoT) few-shot prompting,
and NeuPSL.

LLM Standard CoT NeuPSL

Logical Deduction
GPT-3.5-turbo 40.00 42.33 70.33

GPT-4 71.33 75.25 90.67
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Table 6.8 reports the baseline and NeuPSL NeSy-EBM prediction performance

on logical deduction datasets. NeuPSL obtains a 15% improvement over the GPT-

3.5-turbo and GPT-4 LLMs with standard and chain of thought few-shot prompting.

This performance gain is achieved despite the fact that the LLM neural component

in NeuPSL could produce invalid syntax or an infeasible set of logical constraints.

The LLM was able to produce valid programs 89.0% and 98.7% of the time with

GPT-3.5-turbo and GPT-4, respectively. This observation motivates a promising

avenue of future research in employing self-refinement approaches similar to that

of Pan et al. [2023] to correct the infeasible programs and further improve LLM

reasoning capabilities.

6.3 NeSy-EBM Learning

Next, I investigate NeSy-EBM learning to answer research questions RQ3, RQ4,

and RQ5. The analysis is divided into two parts. First, I study the runtime of

the learning techniques, then I examine the prediction performance. I compare the

results of two value-based losses, Energy and Structure Perceptron (SP), and two

minimizer-based losses, Mean Square Error (MSE), and Binary Cross Entropy (BCE).

In all but the semi-supervised prediction performance experiments, models within

this section use the DSPar modeling paradigm. Moreover, in this section I study the

following modular and end-to-end NeSy-EBM learning algorithms.

• RGS: The modular random grid search (RGS) algorithm optimizing the dataset

evaluation metric.

• CRS: The modular continuous random search (CRS) algorithm optimizing the

dataset evaluation metric.

• BOWL: The modular Bayesian optimization for weight learning algorithm

(BOWL) optimizing dataset evaluation metric.

• Energy: Direct gradient descent minimizing the value-based energy loss.

94



• SP: Direct gradient descent minimizing the value-based structured-perceptron

(SP) loss.

• MSE: Bilevel value-function optimization for NeSy-EBM learning algorithm

minimizing the mean-squared error (MSE) and energy loss.

• BCE: Bilevel value-function optimization for NeSy-EBM learning algorithm

minimizing the binary cross entropy (BCE) and energy loss.

• IndeCateR: Stochastic policy optimization algorithm optimizing the dataset

evaluation metric.

Theorem 6 in Section 4.2 is used to compute the learning gradients with respect

to the neural output and symbolic weights for the Energy, SP, and Bilevel algorithms.

Similarly, the Independent Categorical REINFORCE (IndeCateR) gradient estima-

tor [De Smet et al., 2023] estimate is used to compute the learning gradients with

respect to the neural output and symbolic weights for stochastic policy optimization.

Then, gradients with respect to the neural parameters are found via backpropagation

for all methods. The neural parameters are updated via AdamW [Loshchilov and

Hutter, 2019], and the symbolic parameters are updated using gradient descent with

a fixed step size. Additional details on the hardware and hyperparameters settings

of the learning algorithms are provided in Appendix C.

6.3.1 Runtime

Inference and Learning

I study how the algorithms applied to solve inference affect the learning runtime

with the SP and MSE losses. Specifically, I examine the cumulative time required for

ADMM and D-BCD inference to complete 500 epochs. Hyperparameters used for SP

and MSE learning are reported in Appendix C.2.1. For inference, I apply the same

hyperparameters used in the previous section and the fastest parallelization method

for D-BCD.

Table 6.9 shows that the D-BCD algorithm consistently results in the lowest total

inference runtime, validating its ability to leverage warm starts to improve learning
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Table 6.9: Cumulative inference time in seconds for ADMM and D-BCD during
learning with gradient-descent on SP and bilevel optimization on MSE.

Gradient Descent - SP Bilevel - MSE
ADMM D-BCD ADMM D-BCD

Debate 10.68± 8.63 0.34± 0.36 49.00± 31.23 0.62± 0.09
4Forums 11.87± 12.81 0.65± 0.05 67.09± 13.79 1.11± 0.16
Epinions 12.54± 0.37 1.33± 0.06 17.48± 0.62 2.27± 0.98

Citeseer 167± 37 41.57± 6.39 225± 32 70.01± 5.86
Cora 183± 26 48.16± 5.82 241± 37 79.62± 13.77
DDI 4, 554± 13 19.65± 0.30 7, 652± 218 52.78± 4.23

Yelp 1, 835± 47 114± 4 2, 250± 100 170± 12
MNIST-Add1 1, 624± 34 232± 44 2, 942± 109 2,738± 93
MNIST-Add2 TIME-OUT 804± 106 TIME-OUT 4,291± 114

runtimes. Notably, on the DDI dataset, D-BCD achieves roughly a 100× speedup

over ADMM. Moreover, on MNIST-Add2, ADMM timed out with over 6 hours of

inference time for SP and MSE learning, while D-BCD accumulated less than 0.5

and 1.2 hours of inference runtime on average for SP and MSE, respectively.

Gradient Descent Symbolic Weight Learning

Here, I evaluate the practical convergence rate of two gradient descent methods

proposed for learning symbolic weights of a NeuPSL model. Both algorithms use the

dual BCD method for their inference subproblems using the regularization param-

eter λ = 0.001. Furthermore, for both algorithms, the negative log regularization

parameter is set to 0.001 (Section 5.5.1). The initial stepsize hyperparameter is

searched over the range η ∈ {1.0, 0.1, 0.01}. Both algorithms are stopped when the

KL-divergence stopping criteria discussed in Section 5.5.2 is satisfied with δ = 0.01

or after 1000 iterations.

Table 6.10: Number of learning iterations needed to converge on the structured
perceptron learning loss.

Mirror Descent Projected GD

Epinions 38 59
Citeseer 70 597

Cora 57 398
Yelp 128 1000+
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The results of the first-order learning convergence experiments for the structured

perceptron learning loss are shown in Table 6.10. The mirror descent algorithms

consistently finds a solution satisfying the stopping criteria in fewer iterations than

projected gradient descent. This indicates the mirror descent algorithm more effi-

ciently optimizes the learning objective over the unit simplex. For the remainder

of the first-order learning experiments, the mirror descent algorithm is used on the

symbolic parameters.

6.3.2 Prediction Performance

Impact of Dirichlet Parameter on Black-Box Performance

Here I evaluate the impact of the Dirichlet concentration parameter, A, on the

performance of CRS and BOWL. I chose four different values for A = {10, 1, 0.1, 0.01}

and evaluate the methods on one discrete dataset: Citeseer, and one continuous

dataset: Jester. Large values of the concentration hyperparameter, A, generate

samples concentrated towards the center (near equally valued weights), while low

values of the parameter bias the distribution towards the edges and vertices of the

simplex.

Table 6.11: The mean and standard deviation of the performance of different search-
based approaches with varying the A parameter in the Dirichlet distribution.

Datasets Methods A = 10 A = 1 A = 0.1 A = 0.01

Citeseer
CRS 84.40± 0.03 84.40± 0.02 84.30± 0.02 84.40± 0.03
BOWL 84.40± 0.02 84.40± 0.03 84.50± 0.02 84.30± 0.02

Jester
CRS 0.064± 1.8e-3 0.054± 5.6e-4 0.053± 9.4e-4 0.056± 2.2e-3
BOWL 0.053± 2.3e-4 0.053± 4.0e-4 0.053± 7.3e-4 0.053± 2.3e-4

Table 6.11 reports the metrics obtained for different values of A on Citeseer and

Jester with CRS and BOWL. The effect of A on Citeseer is minimal in both methods.

This is likely because the accuracy function with respect to the weights is nearly

uniform, and small weight changes have minimal impact. Therefore as long as there

is at least one sampled point in a region, it is sufficient to get a good solution. Next,

considering the Jester dataset, the parameter A has a more significant impact on

CRS. CRS performs the best for a value of A = 0.1; then, as it is increased to 10,
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it produces the worst MSE value. This is because the samples generated by the

Dirichlet distribution using the relatively large parameter values do not include many

high-performing configurations. Finally, BOWL is shown to be more robust to the

parameter A as it uses a large initial sampling from the Dirichlet distribution and an

acquisition function to choose the next point.

Symbolic Weight Learning

In this subsection I focus on symbolic weight learning performance, in other words,

the neural components are first trained using supervised neural losses and are then

frozen. I use the following dataset variations.

• Citeseer and Cora The NeSy-EBM models for symbolic weight learning

performance experiments are extended versions from Bach et al. (2017) Bach

et al. [2017]. Specifically, a copy of each rule that is specialized for the topic is

made. Moreover, topic propagation across citation links is considered for papers

with differing topics. For instance, the possibility of a citation from a paper with

topic ′A′ could imply a paper is more or less likely to be topic ′B′. The extended

models are available at https://github.com/linqs/dickens-arxiv24/tree/

main/modular_learning/psl-extended-examples. The models for learning

prediction performance experiments are from Pryor et al. (2023a). The data

and models are available at: https://github.com/linqs/dickens-arxiv24/

tree/main/citation/models/symbolic.

Table 6.12: Prediction performance of HL-MRF models with symbolic weights trained
with direct modular learning, gradient descent, and bilevel techniques.

Modular Gradient Descent Bilevel
CRS BOWL Energy SP MSE BCE

Debate 65.87± 10.09 66.87± 9.54 64.76± 9.54 64.68± 11.05 65.33± 11.98 64.83± 9.70
4Forums 62.63± 6.49 62.29± 5.34 62.96± 6.11 63.15± 6.40 64.22± 6.41 64.85± 6.01

Epinions 79.35± 1.52 79.49± 1.60 78.96± 2.29 79.85± 1.62 81.18± 2.21 80.89± 2.32
Citeseer 63.45± 2.02 63.31± 2.52 70.29± 1.54 70.92± 1.33 71.22± 1.56 71.94± 1.17

Cora 61.52± 1.70 62.81± 0.31 54.30± 1.74 74.16± 2.32 81.05± 1.41 81.07± 1.31
DDI 94.90± 0.27 95.00± 0.13 94.54± 0.00 94.61± 0.00 94.70± 0.00 95.08± 0.00

Yelp 18.08± 1.74 18.68± 0.62 18.11± 0.34 18.57± 0.66 18.14± 0.36 17.93± 0.50

Table 6.12 reports the prediction performance achieved by each of the four learning
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techniques across the seven modular datasets. Models trained with bilevel-based

losses consistently achieve better average predictive performance than those trained

with value-based losses. Notably, on the Cora dataset, the NeuPSL model trained

with the BCE loss achieved a remarkable improvement of over six percentage points

compared to the SP loss, which was the better-performing value-based loss. The

models trained with the Energy and SP loss suffered from a collapsed solution, i.e.,

symbolic parameters giving nearly equal energy to all settings of the target variables.

End-to-End Learning

In this section I analyze the performance and empirical convergence properties of the

three end-to-end gradient-based NeSy-EBM learning techniques: Energy, Bilevel, and

IndeCateR. To investigate the performance of the NeSy-EBM learning techniques, I

use the dataset settings outlined in Section 6.1 for Citeseer and Cora. Additionally, I

introduce the following variants of the MNIST-Addk, Visual-Sudoku, and Pathfinding

datasets:

• MNIST-Addk: The k = 1, 2 MNIST-Addk datasets with no digit supervision,

i.e., parameters are learned only from the addition relations.

• Visual-Sudoku: A few-shot setting with 5 labeled examples of each of the 9

possible classes available for training. The remaining images in the training

data are unlabeled, and the model must primarily rely on the Sudoku rules for

learning.

• Pathfinding: A limited supervision setting where only 10% of the training

data is labeled, and the remaining training data is unlabeled. Specifically, only

5% of the map vertices are observed to be on or off the labeled minimum cost

path. In other words, supervision is distributed across maps, and the minimum

cost paths for a map are only partially observed.

Table 6.13 presents the average and standard deviation of the prediction perfor-

mance for the symbolic component of the NeuPSL NeSy-EBM model across the six

datasets examined in this section. In five of the six datasets, the Bilevel learning
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Table 6.13: The average and standard deviation of the prediction performance of
NeuPSL NeSy-EBMs trained using end-to-end learning algorithms on 6 datasets.

NeuPSL
Energy IndeCateR Bilevel

MNIST-Add1 93.80± 1.12 94.52± 0.99 94.92± 1.40
MNIST-Add2 87.92± 1.63 86.88± 1.82 89.36± 1.54

Visual-Sudoku 98.12± 0.37 TIMEOUT 98.10± 0.19
Path-Finding 22.53± 0.75 TIMEOUT 22.85± 1.33

Citeseer 67.04± 1.82 TIMEOUT 67.96± 1.11
Cora 80.40± 0.74 TIMEOUT 81.88± 0.65

algorithm achieves the best results. Notably, in MNIST-Add1, IndeCateR’s perfor-

mance was comparable to Bilevel’s. However, as the complexity of the target variable

constraints increased, IndeCateR’s performance deteriorated, exemplified by poor

results in MNIST-Add2 and failures to find viable solutions within the allotted time

in the other datasets.

While Energy generally underperformed compared to Bilevel across most settings,

it was the fastest in execution time. For instance, Fig. 6.1 plots the validation

image classification accuracy of the MNIST-Add1 and MNIST-Add2 NeuPSL NeSy-

EBMs trained with the Energy, IndeCater, and Bilevel learning algorithms versus

the training epoch and wall-clock time for a single fold. The Bilevel and IndeCateR

algorithms reach higher validation performance levels than the Energy algorithm on

both MNIST-Addk datasets for the reported fold. This pattern is consistent with

the average prediction performance results reported in Table 6.13 for MNIST-Add1.

For the MNIST-Add2 dataset, on the other hand, the IndeCateR algorithm was

timed out after 10 hours of training rather than allowing it to fully converge, which

explains the drop in the relatively lower average test performance results in Table 6.13.

Surprisingly, the IndeCateR algorithm has the best empirical rate of improvement

with respect to training epochs on both datasets; the next best is Bilevel, and

finally, Energy. However, the IndeCateR algorithm’s per-iteration cost counteracts

its advantage, and it has a significantly slower rate of improvement with respect to

wall-clock time. On the other end of the spectrum, Energy has the slowest rate of

prediction performance improvement, but its per iteration cost is low enough that it
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Figure 6.1: Validation image classification accuracy versus training (a) epoch and
(b) time in minutes for NeuPSL models trained with the Energy, IndeCateR, and
Bilevel NeSy-EBM learning algorithms.

(a)

(b)

converges the fastest with respect to wall-clock time. The Bilevel algorithm balances

the strengths of the two algorithms. It has a lower per-iteration cost because it only

uses value-function gradients and optimizes a minimizer-based loss. The convergence

results in Fig. 6.1 motivate future work on training pipelines that pre-train with a

value-based loss, eithe and fine-tune with a more expensive minimizer-based loss to

achieve the fastest training time and best final prediction performance.

Semi-Supervision

In this set of experiments, I investigate the effectiveness of the NeSy-EBM framework

in training a deep learning model in a semi-supervised setting. This experiment aims

to further investigate research questions RQ4 and RQ5. Specifically, I compare the

prediction performance of a neural baseline trained solely with a supervised neural

loss to that of a NeuPSL model’s neural component (with the same architecture)
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Table 6.14: Digit accuracy of the ResNet18 models trained with varying levels of
supervision.

ResNet18

Supervised
NeuPSL

Labeled Semi-Supervised

MNIST-Add1

1.00 97.84± 0.23 97.40± 0.51
0.50 97.42± 0.30 97.02± 0.65
0.10 93.05± 0.69 96.78± 0.80
0.05 75.35± 0.33 96.82± 0.72

MNIST-Add2

1.00 97.84± 0.23 97.22± 0.19
0.50 97.42± 0.30 96.84± 0.42
0.10 93.05± 0.69 95.14± 1.21
0.05 75.35± 0.33 95.90± 0.43

Visual-Sudoku

1.00 97.84± 0.23 97.89± 0.15
0.50 97.42± 0.30 97.26± 0.70
0.10 93.05± 0.69 96.82± 0.32
0.05 75.35± 0.33 96.49± 0.67

trained using an end-to-end NeSy-EBM learning technique. In both cases, only a

subset of the training set labels is available to the neural component. To enhance

neural performance with a structured loss, the MNIST-Addk and Visual-Sudoku

models in this section employ the DSVar modeling paradigm due to its simplicity

and speed, while Pathfinding, Citeseer, and Cora models use the DSPar modeling

paradigm. I use the following variants of four datasets for the experiments.

• MNIST-Addk: The k = 1, 2 MNIST-Addk datasets with the proportion of

image class labels available in the training data varying over {1.0, 0.5, 0.1, 0.05}.

Prediction performance in this section is measured by the accuracy of the image

classifications.

• Visual-Sudoku: The proportion of image class labels available in the training

data varies over {1.0, 0.5, 0.1, 0.05}.

• Pathfinding: Supervision is distributed across all training maps, so the shortest

paths in the training data are only partially observed. The proportion of vertex

labels available in the training data varies over {1.0, 0.5, 0.1}.

• Citeseer and Cora: The proportion of paper topic labels available in the
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Table 6.15: Topic accuracy of the trained SGC models with varying levels of supervi-
sion.

SGC

Supervised
NeuPSL

Labeled Semi-Supervised

Citeseer

1.00 76.12± 1.71 75.92± 2.23
0.50 74.70± 1.68 74.38± 1.82
0.10 68.64± 1.06 69.66± 0.16
0.05 64.56± 1.68 66.12± 1.22

Cora

1.00 87.62± 0.97 87.18± 1.08
0.50 85.82± 0.50 86.74± 0.54
0.10 80.88± 2.00 81.96± 2.62
0.05 74.98± 3.32 78.88± 2.85

Table 6.16: Accuracy of finding a minimum cost path (Min. Cost Acc.) and
consistency in satisfying continuity constraints (Continuity) of the ResNet18 models
with varying levels of supervision.

ResNet18

Supervised
NeuPSL

Semi-Supervised
Labeled Min. Cost Acc. Continuity Min. Cost Acc. Continuity

Pathfinding
1.00 80.12± 22.44 84.80± 17.11 80.90± 21.93 83.02± 20.09
0.50 52.06± 14.77 61.86± 14.28 59.84± 16.51 67.94± 14.25
0.10 2.60± 1.04 9.02± 1.90 4.26± 1.40 35.18± 3.40

training data varies over {1.0, 0.5, 0.1}.

The Bilevel learning algorithm is applied to train the NeSy-EBM neural components

for the MNIST-Addk, Citeseer, and Cora datasets. The Energy learning algorithm

is applied to train the NeSy-EBM neural components for the Visual-Sudoku and

Pathfinding datasets.

Tables 6.14 to 6.16 report the average and standard deviation of the predic-

tion performance of the supervised neural baseline and the semi-supervised neural

component on the MNIST-Addk, Visual-Sudoku, Citeseer, Cora, and Pathfinding

datasets. Across all datasets, as the proportion of unlabeled data increases, the

semi-supervised neural component begins to outperform the supervised baseline.

This behavior indicates that NeSy-EBMs are able to leverage the unlabeled training

data by using the knowledge encoded in the NeuPSL rules. The benefit of utilizing

symbolic knowledge is most evident in the lowest supervision settings, with the

103



NeuPSL semi-supervised ResNet18 model achieving over 20 percentage points of

improvement when there is only 5% percent of the training labels in the MNIST-Addk

and Visual-Sudoku datasets. Surprisingly, this outcome is repeated in the Citeseer

and Cora datasets, where the NeuPSL rules are not always adhered to. In other

words, leveraging domain knowledge becomes more valuable for improving prediction

performance as the amount of supervision decreases, even if the domain knowledge is

not strictly accurate.

The Pathfinding results in Table 6.16 show there is not only a prediction perfor-

mance gain achievable by making use of the symbolic component but also a reliability

improvement. The reported Continuity metric measuring the consistency of the

ResNet18 model in satisfying path continuity constraints is significantly improved

when there is limited supervision and the model is trained with a NeSy-EBM loss.

The NeuPSL semi-supervised ResNet18 model attains an over 25% improvement in

path continuity consistency when only 10% of training labels are available. These

results show NeSy-EBMs are valuable for aligning neural networks with desirable

properties beyond accuracy.
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Chapter 7

Limitations

In this chapter, I discuss the limitations of the NeSy-EBM framework, NeuPSL,

and the empirical analysis. The NeSy-EBM framework is a high-level and general

paradigm for NeSy. The value of the framework is that it provides a unifying

theory for NeSy and a foundation for creating widely applicable modeling paradigms

and learning algorithms. Progress on developing highly efficient NeSy inference

algorithms, on the other hand, benefits from a perspective that considers the specific

structure of the energy function and inference task. For instance, I show prediction in

NeuPSL is a quadratic program, a property that is leveraged to create the dual BCD

inference algorithm tailored for leveraging warm starts to realize learning runtime

improvements. Similarly, the inference task of density estimation for NeSy systems

such as semantic probabilistic layers [Ahmed et al., 2022a] is made highly efficient by

levering constraints on the design of the energy function.

The taxonomy of NeSy modeling paradigms introduced in Section 3.2 is not

exhaustive. For instance, it omits NeSy systems that integrate symbolic knowledge

extraction from deep neural networks [Tran and d’Avila Garcez, 2018]. Moreover, I

do not discuss DSVar, DSPar, and DSPot model combinations. I leave the exploration

of utilizing multiple NeSy modeling paradigms to fuse neural components operating

over multiple modalities for future work.

The four learning techniques proposed in this manuscript are presented with

necessary assumptions on the energy function. For instance, direct gradient descent
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can only be principally applied to minimize a NeSy-EBM loss at points where

the energy function is twice differentiable with respect to the neural output and

symbolic weights. Similarly, the bilevel technique is principled at points where the

optimal value-function is differentiable with respect to the neural output and symbolic

weights. I do not explore methods for extending the gradient descent and bilevel

learning techniques to support NeSy-EBMs that do not satisfy all assumptions. One

approach is to substitute the inference program with an approximation. The modular

and stochastic policy optimization learning techniques require significantly fewer

assumptions on the form of the energy function. However, these two techniques have

their own limitations, which I discuss in their respective subsections.

The NeuPSL modeling framework, while expressive, does not currently support the

implementation of every NeSy-EBM energy function and inference task. Specifically,

NeuPSL can create energy functions defined as a weighted sum of potentials derived

via arithmetic, logic, and Lukasiewicz real-logic semantics, as described in Chapter

5. NeuPSL does not support potentials constructed from other real-logic semantics.

Further, NeuPSL is currently only designed to perform non-probabilistic inference

tasks (e.g., prediction, ranking, and detection). This is due to the complexities of

computing marginal distributions with the Gibbs partition function defined from the

energy.

The empirical evaluations do not encompass every NeSy application, for instance,

reasoning with noisy data. Furthermore, although my research advances the incor-

poration of commonsense reasoning and domain knowledge into LLMs for question

answering, I have not extended the investigation to more complex reasoning tasks

like summarization or explanation.
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Chapter 8

Conclusion and Future Work

In this dissertation, I contributed to reaching four milestones that are necessary to

achieve general and practical NeSy systems: a mathematical framework, modeling

paradigms, learning techniques, and a practical implementation. I introduced a

unifying mathematical framework for neural-symbolic (NeSy) reasoning with Neural-

Symbolic Energy-Based Models (NeSy-EBMs). The NeSy-EBM framework is a

foundation for NeSy and a bridge for adapting techniques from the broader machine

learning literature to solve challenges in NeSy. I utilized the framework to create a

principled taxonomy of NeSy modeling paradigms based on reasoning capabilities

and a suite of learning losses and algorithms. Additionally, I introduced Neural Prob-

abilistic Soft Logic (NeuPSL), an open-source and highly expressive implementation

of NeSy-EBMs. NeuPSL supports the primary modeling paradigms and continuity

properties required for efficient end-to-end neural and symbolic parameter learning.

I demonstrated that NeSy-EBMs provide a unifying view of NeSy by building a

taxonomy of fundamental modeling paradigms. The modeling paradigms organize the

strengths and limitations of NeSy systems and clarify architecture requirements for

applications. NeSy-EBMs and the paradigms are valuable mechanisms for practition-

ers and researchers to understand the growing NeSy literature and design effective

systems.

Further, NeSy-EBMs illuminate connections between NeSy and the broader

machine learning community. For instance, I formalized a general categorization of
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NeSy learning losses and the necessary assumptions for supporting direct gradient

descent. Moreover, I leverage methods from reinforcement learning and bilevel

optimization literature to work around the assumptions and design more practical

and general algorithms.

The insights gained from creating the mathematical framework, the taxonomy of

modeling paradigms, and the suite of learning techniques shaped the development

of the NeuPSL NeSy modeling library. NeuPSL is built to support every modeling

paradigm and learning technique I discuss. Moreover, I developed a new inference

algorithm for NeuPSL that greatly improves learning runtimes. I demonstrated

the effectiveness of NeuPSL in an empirical analysis. Specifically, I explored four

real-world use cases of NeSy. I showed compelling results confirming NeSy-EBMs

enhance neural network predictions, enforce constraints, improve label and data

efficiency, and empower LLMs with consistent reasoning.

Several promising avenues for future research have emerged. A more extensive

exploration into techniques for leveraging symbolic knowledge to fine-tune and adapt

foundation models is a promising direction. The NeSy-EBM framework and my

proposed learning techniques are a solid basis for building pipelines to fine-tune

foundation models. Moreover, stochastic policy optimization for end-to-end NeSy

learning has great potential due to its general applicability. Finally, contributing

to the active area of research on overcoming the challenge of high-variance gradient

estimates would be highly beneficial for improving NeSy learning.

Looking ahead, I foresee symbolic knowledge and reasoning remaining necessary

for practical machine learning and AI systems. This conclusion is drawn from a

number of observations. First, interpretable and or explainable decision making,

which is inherently symbolic, is a requirement for many applications [Burkart and

Huber, 2021]. Similarly, guardrails on AI systems are critical to ensure operation

within a set of parameters and neural-symbolic integrations are an effective method

for reliably controlling model behaviors [Dong et al., 2024]. Finally, there is a limit

to human-generated training data Villalobos et al. [2024]. We therefore need to

begin generating synthetic data or improving the data efficiency of our models and
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algorithms, both approaches can leverage symbolic knowledge and reasoning. For

instance, training on synthetic data that can be verified with symbolic systems, such

as mathematics, logic, programming, and games, has shown great promise [Silver

et al., 2017, Haluptzok et al., 2023, Yang et al., 2024, Trinh et al., 2024]. It is time

we embrace the value of symbolic knowledge and reasoning to create practical AI.
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Appendix A

Introduction

The appendix includes the following chapters: Extended Neural Probabilistic Soft

Logic (Appendix B), and Extended Empirical Analysis (Appendix C).
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Appendix B

Extended Neural Probabilistic

Soft Logic

In this section, I expand on the smooth formulation of NeuPSL inference and provide

proofs for the continuity results presented in Section 5.3.

B.1 Extended Smooth Formulation of Inference

Recall the primal formulation of NeuPSL inference restated below:

arg min
y∈Rny

wT
syΦ(y,xsy,gnn(xnn,wnn)) s.t. y ∈ Ω(xsy,gnn(xnn,wnn)). (B.1)

Importantly, note the structure of the deep hinge-loss potentials defining Φ:

ϕk(y,xsy,gnn(xnn,wnn)) (B.2)

:= (max{aTϕk,yy + aTϕk,xsy
xsy + aTϕk,gnn

gnn(xnn,wnn) + bϕk , 0})
pk .

The LCQP NeuPSL inference formulation is defined using ordered index sets: IS for

the partitions of squared hinge potentials (indices k which for all j ∈ tk the exponent

term pj = 2) and IL for the partitions of linear hinge potentials (indices k which for
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all j ∈ tk the exponent term pj = 1). With the index sets, define

WS :=


wIS [1]I 0 · · · 0

0 wIS [2]I

...
. . .

 and wL :=


wIL[1]1

wIL[2]1

...

 (B.3)

Let mS := |∪IS tk| and mL := |∪IL tk|, be the total number of squared and linear hinge

potentials, respectively, and define slack variables sS := [sj ]
mS
j=1 and sL := [sj ]

mL
j=1 for

each of the squared and linear hinge potentials, respectively. NeuPSL inference is

equivalent to the following LCQP:

min
y∈[0,1]ny , sS∈RmS , sH∈RmL

+

sTSWSsS + wT
LsL (B.4a)

s.t. aTci,yy + aTci,xsy
xsy + aTci,gnn

gnn(xnn,wnn) + bci ≤ 0 ∀ i = 1, . . . , q,

(B.4b)

aTϕj ,yy + aTϕj ,xsy
xsy + aTϕj ,gnn

gnn(xnn,wnn) + bϕj − sj ≤ 0 ∀j ∈ IS ∪ IL.

(B.4c)

I ensure strong convexity by adding a square regularization with parameter ϵ to

the objective. Let the bound constraints on y and sL and linear inequalities in the

LCQP be captured by the (2 ·ny + q+mS + 2 ·mL)× (ny +mS +mL) matrix A and

(2 · ny + q +mS + 2 ·mL) dimensional vector b(xsy,gnn(xnn,wnn)). More formally,

A := [aij ] where aij is the coefficient of a decision variable in the implicit and explicit
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constraints in the formulation above:

ai,j :=



0 (i ≤ q) ∧ (j ≤ mS +mL)

aci,y[j − (mS +mL)] (i ≤ q) ∧ (j > mS +mL)

0 (q < i ≤ q +mS +mL) ∧ (j ≤ mS +mL) ∧ (j ̸= i− q)

−1 (q < i ≤ q +mS +mL) ∧ (j ≤ mS +mL) ∧ (j = i− q)

aϕi−q,y[j − (mS +mL)] (q < i ≤ q +mS +mL) ∧ (j > mS +mL)

0 (q +mS +mL < i ≤ q +mS + 2 ·mL + ny)

∧ (j ̸= i− (q +mL))

−1 (q +mS +mL < i ≤ q +mS + 2 ·mL + ny)

∧ (j = i− (q +mL))

0 (q +mS + 2 ·mL + ny < i ≤ q +mS + 2 ·mL + 2 · ny)

∧ (j ̸= i− (q +mS +mL))

1 (q +mS + 2 ·mL + ny < i ≤ q +mS + 2 ·mL + 2 · ny)

∧ (j = i− (q +mS +mL))

.

(B.5)

Furthermore, b(xsy,gnn(xnn,wnn)) = [bi(xsy,gnn(xnn,wnn))] is the vector of con-

stants corresponding to each constraint in the formulation above:

bi(xsy,gnn(xnn,wnn)) (B.6)

:=



aTci,xsy
xsy + aTci,gnn

gnn(xnn,wnn) + bci i ≤ q

aTϕi−q,xsy
xsy + aTϕi−q,gnn

gnn(xnn,wnn) + bϕi−q
q < i ≤ q +mS +mL

0 q +mS +mL < i

≤ q +mS + 2 ·mL + ny

−1 q +mS + 2 ·mL + ny < i

≤ q +mS + 2 ·mL + 2 · ny

.

(B.7)

Note that b(xsy,gnn(xnn,wnn)) is a linear function of the neural network out-

puts, hence, if gnn(xnn,wnn) is a smooth function of the neural parameters, then
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b(xsy,gnn(xnn,wnn)) is also smooth.

With this notation, the regularized inference problem is:

V (wsy,b(xsy,gnn(xnn,wnn))) := min
y,sS,sH


sS

sL

y


T 

WS + ϵI 0 0

0 ϵI 0

0 0 ϵI



sS

sL

y

+


0

wL

0


T 

sS

sL

y



s.t. A


sS

sL

y

+ b(xsy,gnn(xnn,wnn)) ≤ 0. (B.8)

For ease of notation, let

D(wsy) :=


WS 0 0

0 0 0

0 0 0

 , c(wsy) :=


0

wL

0

 , ν :=


sS

sL

y

 . (B.9)

Then the regularized primal LCQP MAP inference problem is concisely expressed as

min
ν∈Rny+mS+mL

νT (D(wsy) + ϵI)ν + c(wsy)
T ν (B.10)

s.t. Aν + b(xsy,gnn(xnn,wnn)) ≤ 0.

By Slater’s constraint qualification, strong-duality holds when there is a feasible

solution. In this case, an optimal solution to the dual problem yields an optimal

solution to the primal problem. The Lagrange dual problem of (B.10) is

arg max
µ≥0

min
ν∈Rny+mS+mL

νT (D(wsy) + ϵI)ν + c(wsy)T ν + µT (Aν + b(xsy,gnn(xnn,wnn)))

= arg max
µ≥0

−1

4
µTA(D(wsy) + ϵI)−1ATµ (B.11)

− 1

2
(A(D(wsy) + ϵI)−1c(wsy)− 2b(xsy,gnn(xnn,wnn)))Tµ

where µ = [µi]
nµ

i=1 are the Lagrange dual variables. For later reference, denote the
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negative of the Lagrange dual function of MAP inference as:

h(µ;wsy,b(xsy,gnn(xnn,wnn))) (B.12)

:=
1

4
µTA(D(wsy) + ϵI)−1ATµ+

1

2
(A(D(wsy) + ϵI)−1c(wsy)

− 2b(xsy,gnn(xnn,wnn)))Tµ.

The dual LCQP has more decision variables but is only over non-negativity con-

straints rather than the complex polyhedron feasible set. The dual-to-primal variable

translation is:

ν = −1

2
(D(wsy) + ϵI)−1(ATµ+ c(wsy)) (B.13)

As (D(wsy) + ϵI) is diagonal, it is easy to invert and hence it is practical to work in

the dual space to obtain a solution to the primal problem.

B.2 Extended Continuity of Inference

I now provide background on sensitivity analysis that I then apply in my proofs on

the continuity properties of NeuPSL inference.

B.2.1 Background

Theorem 14 (Boyd and Vandenberghe [2004] p. 81)

If for each y ∈ A, f(x,y) is convex in x then the function

g(x) := sup
y∈A

f(x,y) (B.14)

is convex in x.

Theorem 15 (Boyd and Vandenberghe [2004] p. 81)

If for each y ∈ A, f(x,y) is concave in x then the function

g(x) := inf
y∈A

f(x,y) (B.15)
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is concave in x.

Definition 16 (Subgradient: Boyd and Vandenberghe [2004] and Shalev-Shwartz

[2012])

Consider a convex function f : Rn → [−∞,∞] and a point x with f(x) finite. For a

vector v ∈ Rn, one says that v is a (convex) subgradient of f at x, written v ∈ ∂f(x),

iff

f(x) ≥ f(x)+ < v,x− x >, ∀x ∈ Rn. (B.16)

Definition 17 (Closedness: Bertsekas (2009))

If the epigraph of a function f : Rn → [−∞,∞] is a closed set, then f is a closed

function.

Definition 18 (Lower Semicontinuity: Bertsekas [2009])

The function f : Rn → [−∞,∞] is lower semicontinuous (lsc) at a point x ∈ Rn if

f(x) ≤ lim inf
k→∞

f(xk), (B.17)

for every sequence {xk} ⊂ Rn with xk → x. f is lsc if it is lsc at each x in its

domain.

Theorem 19 (Closedness and Semicontinuity: Bertsekas [2009] Proposition 1.1.2.)

For a function f : Rn → [−∞,∞], the following are equivalent:

1. The level set Vγ = {x | f(x) ≤ γ} is closed for every scalar γ.

2. f is lsc.

3. f is closed.

The following definition and theorem are from Rockafellar and Wets [1997] and

they generalize the notion of subgradients to non-convex functions and the chain rule

of differentiation, respectively. For complete statements see Rockafellar and Wets

[1997] Rockafellar and Wets [1997].
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Definition 20 (Regular Subgradient: Rockafellar and Wets [1997] Definition 8.3)

Consider a function f : Rn → [−∞,∞] and a point x with f(x) finite. For a vector

v ∈ Rn, one says that v is a regular subgradient of f at x, written v ∈ ∂̂f(x), iff

f(x) ≥ f(x) + ⟨v,x− x⟩+ o(x− x), ∀x ∈ Rn, (B.18)

where the o(t) notation indicates a term with the property that

lim
t→0

o(t)

t
= 0. (B.19)

The relation of the regular subgradient defined above and the more familiar convex

subgradient is the addition of the o(x− x) term. Evidently, a convex subgradient is

a regular subgradient.

Theorem 21 (Chain Rule for Regular Subgradients: Rockafellar and Wets [1997]

Theorem 10.6)

Suppose f(x) = g(F (x)) for a proper, lsc function g : Rm → [−∞,∞] and a smooth

mapping F : Rn → Rm. Then at any point x ∈ dom f = F−1(dom g) one has

∂̂f(x) ⊃ ∇F (x)T ∂̂g(F (x)), (B.20)

where ∇F (x)T is the Jacobian of F at x.

Theorem 22 (Danskin’s Theorem: Danskin [1966] and Bertsekas [1971] Proposition

A.22)

Suppose Z ⊆ Rm is a compact set and g(x, z) : Rn × Z → (−∞,∞] is a function.

Suppose g(·, z) : Rn → R is closed proper convex function for every z ∈ Z. Further,

define the function f : Rn → R such that

f(x) := max
z∈Z

g(x, z).

Suppose f is finite somewhere. Moreover, let X := int(domf), i.e., the interior of the

set of points in Rn such that f is finite. Suppose g is continuous on X ×Z. Further,
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define the set of maximizing points of g(x, ·) for each x

Z(x) = arg max
z∈Z

g(x, z).

Then the following properties of f hold.

1. The function f(x) is a closed proper convex function.

2. For every x ∈ X ,

∂f(x) = conv {∂xg(x, z) | z ∈ Z(x)} . (B.21)

Corollary 23

Assume the conditions for Danskin’s Theorem above hold. For every x ∈ X , if Z(x)

consists of a unique point, call it z∗, and g(·, z∗) is differentiable at x, then f(·) is

differentiable at x, and

∇f(x) := ∇xg(x, z∗). (B.22)

Theorem 24 (Bonnans and Shapiro [1998] Theorem 4.2, Rockafellar [1974] p. 41)

Let X and U be Banach spaces. Let K be a closed convex cone in the Banach space

U. Let G : X → U be a convex mapping with respect to the cone C := −K and

f : X → (−∞,∞] be a (possibly infinite-valued) convex function. Consider the

following convex program and its optimal value function:

vP (u) := min
x∈X

f(x) (P)

s.t. G(x) + u ∈ K.

Moreover, consider the (Lagrangian) dual of the program:

vD(u) := max
λ∈K−

min
x∈X

f(x) + λT (G(x) + u) (D)

Suppose vP (0) is finite. Further, suppose the feasible set of the program is nonempty
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for all u in a neighborhood of 0, i.e.,

0 ∈ int{G(X)−K}. (B.23)

Then,

1. There is no primal dual gap at u = 0, i.e., vP (0) = vD(0).

2. The set, Λ0, of optimal solutions to the dual problem with u = 0 is non-empty

and bounded.

3. The optimal value function vP (u) is continuous at u = 0 and ∂vP (0) = Λ0.

Theorem 25 (Bonnans and Shapiro [2000] Proposition 4.3.2)

Consider two optimization problems over a non-empty feasible set Ω:

min
x∈Ω

f1(x) and min
x∈Ω

f2(x) (B.24)

where f1, f2 : X → R. Suppose f1 has a non-empty set S of optimal solutions over Ω.

Suppose the second order growth condition holds for S, i.e., there exists a neighborhood

N of S and a constant α > 0 such that

f1(x) ≥ f1(S) + α(dist(x,S))2, ∀x ∈ Ω ∩N , (B.25)

where f1(S) := infx∈Ωf1(x). Define the difference function:

∆(x) := f2(x)− f1(x). (B.26)

Suppose ∆(x) is L-Lipschitz continuous on Ω ∩N . Let x∗ ∈ N be an δ-solution to

the problem of minimizing f2(x) over Ω. Then

dist(x∗,S) ≤ L

α
+

√
δ

α
. (B.27)
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B.2.2 Proofs

I provide proofs of theorems presented in the main paper and restate them here for

completeness.

Theorem 10

Suppose for any setting of wnn ∈ Rng there is a feasible solution to NeuPSL inference

(5.9). Further, suppose ϵ > 0, wsy ∈ Rr+, and wnn ∈ Rng . Then:

• The minimizer of (5.9), y∗(wsy,wnn), is a O(1/ϵ) Lipschitz continuous function

of wsy.

• V (wsy,b(xsy,gnn(xnn,wnn))), is concave over wsy.

• V (wsy,b(xsy,gnn(xnn,wnn))) is convex over b(xsy,gnn(xnn,wnn)).

• V (wsy,b(xsy,gnn(xnn,wnn))) is differentiable with respect to wsy. Moreover,

∇wsyV (wsy,b(xsy,gnn(xnn,wnn))) = Φ(y∗(wsy,wnn),xsy,gnn(xnn,wnn)).

Furthermore, ∇wsyV (wsy,b(xsy,gnn(xnn,wnn))) is Lipschitz continuous over wsy.

• If there is a feasible point ν strictly satisfying the i′th inequality constraint of (5.9),

i.e., A[i]ν + b(xsy,gnn(xnn,wnn))[i] < 0, then V (wsy,b(xsy,gnn(xnn,wnn))) is

subdifferentiable with respect to the i′th constraint constant b(xsy,gnn(xnn,wnn))[i].

Moreover,

∂b[i]V (wsy,b(xsy,gnn(xnn,wnn)))

= {µ∗[i] |µ∗ ∈ arg min
µ∈R2·(ny+m)+q

≥0

h(µ;wsy,b(xsy,gnn(xnn,wnn)))}.

Furthermore, if gnn(xnn,wnn) is a smooth function of wnn, then b(xsy,gnn(xnn,wnn))

is a smooth function of wnn. Additionally, the set of regular subgradients of

V (wsy,b(xsy,gnn(xnn,wnn))) is:

∂̂wnnV (wsy,b(xsy,gnn(xnn,wnn))) (B.28)

⊃ ∇wnnb(xsy,gnn(xnn,wnn))T∂bV (wsy,b(xsy,gnn(xnn,wnn))).
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Proof of Theorem 10. I first show the minimizer of the LCQP formulation of

NeuPSL inference, ν∗, with ϵ > 0, wsy ∈ Rr+, and wnn ∈ Rng is a Lipschitz continuous

function of wsy. Suppose ϵ > 0 and wnn ∈ Rng is given. To show continuity over

wsy ∈ Rr+, first note the matrix (D + ϵI) is positive definite and the primal inference

problem (5.10) is an ϵ-strongly convex LCQP with a unique minimizer denoted by

ν∗(wsy,wnn). I leverage the Lipschitz stability result for optimal values of constrained

problems from Bonnans and Shapiro [2000] and presented here in Theorem 25. Define

the primal objective as an explicit function of the weights:

f(ν,wsy,wnn) := νT (D(wsy) + ϵI)ν + cT (wsy)ν (B.29)

Note that the solution ν∗ =


s∗S

s∗L

y∗

 will always be bounded, since from (B.4c), for all

j ∈ IS ∪ IL,

0 ≤ s∗j = max(aTϕk,yy
∗ + aTϕk,xsy

xsy + aTϕk,gnn
gnn(xnn,wnn) + bϕk , 0) (B.30)

≤ ∥aϕk,y∥+ |aTϕk,xsy
xsy + aTϕk,gnn

gnn(xnn,wnn) + bϕk |. (B.31)

Thus, setting these trivial upper bounds for sj will not change the solution of the

problem. I can henceforth consider the problem in a bounded domain ∥ν∥ ≤ C where

C does not depend on w’s.

Let w1,sy,w2,sy ∈ Rr+ and wnn ∈ Wnn be arbitrary. As ϵ > 0, f(ν,w1,sy,wnn) is

strongly convex in ν and it therefore satisfies the second-order growth condition in ν.

Define the difference function:

∆wsy(ν) := f(ν,w2,sy,wnn)− f(ν,w1,sy,wnn) (B.32)

= νT (D(w2,sy) + ϵI)ν + cT (w2,sy)ν −
(
νT (D(w1,sy) + ϵI)ν + cT (w1,sy)ν

)
(B.33)

= νT (D(w2,sy)−D(w1,sy))ν + (c(w2,sy)− c(w1,sy))
T ν. (B.34)
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The difference function ∆wsy(ν) over N has a finitely bounded gradient:

∥∇∆wsy(ν)∥2 =
∥∥∥2(D(w2,sy)−D(w1,sy))ν + c(w2,sy)− c(w1,sy)

∥∥∥
2

(B.35)

≤ ∥c(w2,sy)− c(w1,sy)∥2 + 2∥(D(w2,sy)−D(w1,sy))ν∥2 (B.36)

≤ ∥w2,sy −w1,sy∥2 + 2∥w2,sy −w1,sy∥2 ∥ν∥2 (B.37)

≤ ∥w2,sy −w1,sy∥2(1 + 2C) =: LN (w1,sy,w2,sy). (B.38)

Thus, the distance function, ∆wsy(ν) is LN (w1,sy,w2,sy)-Lipschitz continuous over

N . Therefore, by Bonnans and Shapiro [2000] (Theorem 25), the distance between

ν∗(w1,sy,wnn) and ν∗(w2,sy,wnn) is bounded above:

∥ν∗(w2,sy,wnn)− ν∗(w1,sy,wnn)∥2 ≤
LN (w1,sy,w2,sy)

ϵ
=

(1 + 2C)

ϵ
∥w2,sy −w1,sy∥2.

(B.39)

Therefore, the function ν∗(wsy,wnn) is O(1/ϵ)-Lipschitz continuous in wsy for any

wnn.

Next, I prove curvature properties of the value-function with respect to the

weights. Observe NeuPSL inference is an infimum over a set of functions that are

concave (affine) in wsy. Therefore, by Theorem 15, V (wsy,b(xsy,gnn(xnn,wnn))) is

concave in wsy.

I use a similar argument to show V (wsy,b(xsy,gnn(xnn,wnn))) is convex in the

constraint constants, b(xsy,gnn(xnn,wnn)). Assuming for any setting of the neural

weights, wnn ∈ Rng , there is a feasible solution to the NeuPSL inference problem, then

(5.9) satisfies the conditions for Slater’s constraint qualification. Therefore, strong

duality holds, i.e., V (wsy,b(xsy,gnn(xnn,wnn))) is equal to the optimal value of the

dual inference problem (B.11). Observe that the dual NeuPSL inference problem is a

supremum over a set of functions convex (affine) in b(xsy,gnn(xnn,wnn)). Therefore,

by Theorem 14, V (wsy,b(xsy,gnn(xnn,wnn))) is convex in b(xsy,gnn(xnn,wnn)).

I can additionally prove convexity in b from first principles. For simplicity, fix

other parameters, and write the objective and the value function as Q(ν) and V (b),

respectively. Let us first consider the domain where the optimization is bounded
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and the optimal solution exists. Given b1 and b2, let the corresponding optimal

solutions of (B.10) parameterized by b1 and b2 be ν1 and ν2. Take any α ∈ [0, 1],

note that αν1 + (1− α)ν2 is feasible for the optimization problem parameterized by

b = αb1 + (1 − α)b2. Because I take the inf over all νs, the optimal ν for this b

might be even smaller. Thus, (for convex quadratic objective Q)

V (αb1 + (1− α)b2) ≤ Q(αν1 + (1− α)ν2)

≤ αQ(ν1) + (1− α)Q(ν2)

= αV (b1) + (1− α)V (b2),

(B.40)

which shows that V is convex in b. To establish the convexity when V (b) takes

extended real-values (R ∪ {−∞}) to allow for unbounded optimization problems, it

suffices to consider sequences {νki }∞k=1 for bi (i = 1, 2, b1 ̸= b2) as follows:

(1) If V (bi) is finite, let νki = νi for all k, where νi is the optimal solution.

(2) If V (bi) = −∞, there exists sequence {νki }∞k=1 such that Q(νki ) → −∞ as

k →∞.

Now, for any 0 < α < 1, observe:

Case 1: Both V (b1) and V (b2) are finite. I can reuse the argument above.

Case 2: At least one of V (b1) and V (b2) is −∞. By convexity of Q, Q(ανk1 +

(1− α)νk2 ) ≤ αQ(νk1 ) + (1− α)Q(νk2 ). Therefore, I have Q(ανk1 + (1− α)νk2 )→ −∞

as k → ∞ when 0 < α < 1. Note that for all k, ανk1 + (1 − α)νk2 is feasible for

the optimization problem parameterized by b = αb1 + (1 − α)b2. It follows that

V (αb1 + (1− α)b2) = −∞.

Therefore, convexity holds when V (b) takes extended real-values (R ∪ {−∞}).

Next, I prove (sub)differentiability properties of the value-function. Suppose

ϵ > 0. First, I show the optimal value function, V (wsy,b(xsy,gnn(xnn,wnn))), is

differentiable with respect to the symbolic weights. Then, I show subdifferentiability

properties of the optimal value function with respect to the constraint constants.

Finally, I apply the Lipschitz continuity of the minimzer result to show the gradient

of the optimal value function is Lipschitz continuous with respect to wsy.

Starting with differentiability with respect to the symbolic weights, wsy, note,
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the optimal value function of the regularized LCQP formulation of NeuPSL inference,

(5.9), is equivalently expressed as the following maximization over a continuous

function in the primal target variables, y, the slack variables, sS and sL, and the

symbolic weights, wsy:

V (wsy,b(xsy,gnn(xnn,wnn))) (B.41)

= −

(
max

y,sH,sL
−
(

sS

sL

y


T 

WS + ϵI 0 0

0 ϵI 0

0 0 ϵI



sS

sL

y

+


0

wL

0


T 

sS

sL

y


))

s.t. A


sS

sL

y

+ b(xsy,gnn(xnn,wnn) ≤ 0,

where the matrix Ws and vector wL are functions of the symbolic parameters wsy

as defined in (B.3). Moreover, the objective above is and convex (affine) in wsy.

Additionally, note that the decision variables can be constrained to a compact domain

without breaking the equivalence of the formulation. Specifically, the target variables

are constrained to the box [0, 1]ny , while the slack variables are nonnegative and have

a trivial upper bound derived from (B.4c):,

0 ≤ s∗j = max(aTϕk,yy
∗ + aTϕk,xsy

xsy + aTϕk,gnn
gnn(xnn,wnn) + bϕk , 0)

≤ ∥aϕk,y∥+ |aTϕk,xsy
xsy + aTϕk,gnn

gnn(xnn,wnn) + bϕk |, (B.42)

for all j ∈ IS ∪ IL. Therefore, the negative optimal value function satisfies the condi-

tions for Danskin’s theorem Danskin [1966] (stated in Appendix B.2.1). Moreover,

as there is a single unique solution to the inference problem when ϵ > 0, and the

quadratic objective in (5.9) is differentiable for all wsy ∈ Rr+, I can apply Corollary

23. The optimal value function is therefore concave and differentiable with respect

to the symbolic weights with

∇wsyV (wsy,b(xsy,gnn(xnn,wnn)) = Φ(y∗,xsy,gnn(xnn,wnn)). (B.43)
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Next, I show subdifferentiability of the optimal value-function with respect to

the constraint constants, b(xsy,gnn(xnn,wnn)). Suppose at a setting of the neural

weights wnn ∈ Rng there is a feasible point ν for the NeuPSL inference problem.

Moreover, suppose ν strictly satisfies the i′th inequality constraint of (5.9), i.e.,

A[i]ν + b(xsy,gnn(xnn,wnn))[i] < 0. Observe that the following strongly convex

conic program is equivalent to the LCQP formulation of NeuPSL inference, (5.9):

min
ν∈Rny+mS+mL

νT (D(wsy) + ϵI)ν + c(wsy)
T ν + PΩ\i(ν) (B.44)

s.t. A[i]ν + b(xsy,gnn(xnn,wnn))[i] ∈ R≤0,

where PΩ\i(ν) : Rny+mS+mL → {0,∞} is the indicator function identifying feasibility

w.r.t. all the constraints of the LCQP formulation of NeuPSL inference in (5.9)

except the i′th constraint: A[i]ν + b(xsy,gnn(xnn,wnn))[i] ≤ 0. In other words,

in the conic formulation above only the i′th constraint is explicit. Note that R≤0

is a closed convex cone in R. Moreover, both the objective in the program and

the mapping G(ν) := A[i]ν + b(xsy,gnn(xnn,wnn))[i] are convex. Lastly, note the

constraint qualification (B.23) is similar to Slater’s condition in the case of (B.44)

which is satisfied by the supposition there exists a feasible ν that strictly satisfies

the i′th inequality constraint of (5.9). Therefore, (B.44) satisfies the conditions

of Theorem 24. Thus, the value function is continuous in the constraint constant

b(xsy,gnn(xnn,wnn))[i] at wnn and

∂b[i]V (wsy,b(xsy,gnn(xnn,wnn))) (B.45)

= {µ∗[i] |µ∗ ∈ arg min
µ∈R2·ny+m+q

≥0

h(µ;wsy,b(xsy,gnn(xnn,wnn)))}.

Moreover, when b(xsy,gnn(xnn,wnn)) is a smooth function of the neural weights

wnn, then I can apply the chain rule for regular subgradients, Theorem 21, to get

∂̂wnn
V (wsy,b(xsy,gnn(xnn,wnn)) (B.46)

⊃ ∇b(xsy,gnn(xnn,wnn)T∂bV (wsy,b(xsy,gnn(xnn,wnn)).
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To prove the optimal value function is Lipschitz smooth over wsy, it is equivalent to

show it is continuously differentiable and that all gradients have bounded magnitude.

To show the value function is continuously differentiable, I first apply the result

asserting the minimizer is unique and a continuous function of the symbolic parameters

wsy. Therefore, the optimal value function gradient is a composition of continuous

functions, hence continuous in wsy. The fact that the value function has a bounded

gradient magnitude follows from the fact that the decision variables y have a compact

domain over which the gradient is finite; hence a trivial and finite upper bound exists

on the gradient magnitude.
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Appendix C

Extended Empirical Analysis

In this section, I provide additional information on the empirical analysis. The

implementation of models and training processes can be found at https://github.

com/linqs/dickens-arxiv24.

C.1 Hardware

All timing experiments were performed on an Ubuntu 22.04.1 Linux machine with

Intel Xeon Processor E5-2630 v4 at 3.10GHz and 128 GB of RAM.

C.2 Extended Inference Runtime

This section details the hyperparameter settings and search process for the inference

runtime experiments in Section 6.2.1. The GD, ADMM, and D-BCD algorithms are

stopped when the L∞ norm of the primal variable change between iterates is less

than 0.001. For the D-BCD algorithms, the regularization parameter resulting in

the fastest runtime and yielding a prediction performance within a standard error of

the best is used. The default Gurobi optimizer hyperparameters are used. Table C.1

reports the range of hyperparameters searched over and the final values.

Table C.2 reports the average and standard deviation of the inference runtime

for Gurobi, GD, ADMM, and D-BCD algorithms on 4 of the datasets from Table

6.1. As in the main paper, the D-BCD algorithms are competitive with ADMM, the
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Table C.1: Hyperparameter ranges and final values for the inference runtime experi-
ments.

Dataset Parameter Range Final Value

CreateDebate
ADMM Step Length {10.0, 1.0, 0.1, 0.01} 1.0
LCQP Regularization {100, 10, 1, 0.1, 0.01} 0.1

4Forums
ADMM Step Length {10.0, 1.0, 0.1, 0.01} 1.0
LCQP Regularization {100, 10, 1, 0.1, 0.01} 0.1

Epinions
GD Step Length {10.0, 1.0, 0.1, 0.01, 0.001} 0.01

ADMM Step Length {10.0, 1.0, 0.1, 0.01} 0.1
LCQP Regularization {100, 10, 1, 0.1, 0.01} 0.1

Citeseer
GD Step Length {10.0, 1.0, 0.1, 0.01, 0.001} 0.1

ADMM Step Length {10.0, 1.0, 0.1, 0.01} 10.0
LCQP Regularization {100, 10, 1, 0.1, 0.01} 10.0

Cora
GD Step Length {10.0, 1.0, 0.1, 0.01, 0.001} 0.1

ADMM Step Length {10.0, 1.0, 0.1, 0.01} 10.0
LCQP Regularization {100, 10, 1, 0.1, 0.01} 10.0

DDI
ADMM Step Length {10.0, 1.0, 0.1, 0.01} 1.0
LCQP Regularization {100, 10, 1, 0.1, 0.01} 10.0

Yelp
GD Step Length {10.0, 1.0, 0.1, 0.01, 0.001} 0.001

ADMM Step Length {10.0, 1.0, 0.1, 0.01} 1.0
LCQP Regularization {100, 10, 1, 0.1, 0.01} 0.1

MNIST-Add1
ADMM Step Length {10.0, 1.0, 0.1, 0.01} 1.0
LCQP Regularization {100, 10, 1, 0.1, 0.01, 0.001} 0.001

MNIST-Add2
ADMM Step Length {10.0, 1.0, 0.1, 0.01} 1.0
LCQP Regularization {100, 10, 1, 0.1, 0.01, 0.001} 0.001

Table C.2: Inference time in seconds for each inference optimization technique.

Gurobi GD ADMM CC D-BCD LF D-BCD

Epinions 0.46± 0.01 34.63± 0.33 0.36± 0.041 1.84± 0.4 0.26± 0.04
Citeseer 0.66± 0.08 47.17± 0.61 0.63± 0.07 1.36± 0.24 0.49± 0.08
Cora 0.71± 0.08 48.66± 1.24 0.71± 0.07 6.46± 3.5 0.79± 0.19
Yelp 7.38± 0.20 6, 961± 46 6.37± 1.19 48.44± 3.82 7.58± 0.48

current state of the art optimizer for NeuPSL inference. Moreover, the LF D-BCD

algorithm is also competitive with Gurobi for a single round of inference.

C.2.1 Extended Learning Runtime

This section provides details of the hyperparameter settings for the learning runtime

experiments in Section 6.3.1. For both the SP and MSE learning losses, a negative

log regularization with coefficient 1.0e− 3 on the symbolic weights is added to the

learning loss. For ADMM inference, the same steplength from the inference runtime

experiment is used. Similarly, for D-BCD inference on both learning losses, the

same regularization parameter from the inference runtime experiment is used. For

the MNIST-Add experiments, I use the regularization parameter ϵ = 1.0e− 3 and

ADMM steplength 1.0 as the values were found to achieve the highest final validation

prediction performance.
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Mirror descent is applied to learn the symbolic weights for both SP and MSE

losses. The mirror descent steplength is set to a default value of 1.0e − 3 for all

datasets. The Adam steplength for the neural component of the MNIST-Add models

is set to a default value of 1.0e− 3.

For the bilevel learning algorithm minimizing the MSE loss, I set the initial

squared penalty parameter to a default value of 2.0. Moreover, for all but the

MNIST-Add datasets, I set the Moreau parameter to 0.01, the energy loss coefficient

to 0.1, and the steplength on the target variables y to 0.01. For the MNIST-Add

datasets, I set the Moreau parameter to 1.0e− 3, the energy loss coefficient to 10.0,

and the steplength on the target variables y to 1.0e− 3.

C.2.2 Extended Learning Prediction Performance

In this section, I provide additional details on the hyperparamter settings for the

learning prediction performance experiments. Table C.3 reports the hyperparameter

ranges and final values for the modular learning experiments. Table C.4 reports the

hyperparameter ranges and final values for the end-to-end learning experiments.
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Table C.3: Hyperparameter ranges and final values for the modular learning prediction
performance experiments in Table 6.12.

Dataset Learning Loss Parameter Range Final Value

CreateDebate

Energy
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

SP
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 10
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

4Forums

Energy
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

SP
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 3
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 3
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

Epinions

Energy
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

SP
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

Citeseer

Energy
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

SP
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 3
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

Cora

Energy
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

SP
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

DDI

Energy
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

SP
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 3
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

Yelp

Energy
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

SP
Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 1
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 10
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2
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Table C.4: Hyperparameter ranges and final values for the end-to-end learning
experiments.

Algorithm Parameter Range Final Value

MNIST-Add1

Energy Neural Learning Rate {10−3, 10−4, 10−5} 10−4

Bilevel
Energy Loss Coefficient {10−1, 1, 10} 10
Neural Learning Rate {10−3, 10−4, 10−5} 10−4

Policy
Energy Loss Coefficient {10−1, 1, 10} 10
Neural Learning Rate {10−3, 10−4, 10−5} 10−4

MNIST-Add2

Energy Neural Learning Rate {10−3, 10−4, 10−5} 10−4

Bilevel
Energy Loss Coefficient {10−1, 1, 10} 10
Neural Learning Rate {10−3, 10−4, 10−5} 10−4

Policy
Energy Loss Coefficient {10−1, 1, 10} 10
Neural Learning Rate {10−3, 10−4, 10−5} 10−4

Visual-Sudoku

Energy Neural Learning Rate {10−3, 10−4, 10−5} 10−4

Alpha {0.1, 0.5, 0.9} 0.1

Bilevel
Energy Loss Coefficient {10−1, 1, 10} 10
Neural Learning Rate {10−3, 10−4, 10−5} 10−3

Alpha {0.1, 0.5, 0.9} 0.1

Policy
Energy Loss Coefficient {10−1, 1, 10} 10
Neural Learning Rate {10−3, 10−4, 10−5} 10−3

Alpha {0.1, 0.5, 0.9} 0.1

Path-Finding

Energy Neural Learning Rate {10−3, 10−4, 10−5} 10−3

Bilevel
Energy Loss Coefficient {10−1, 1} 1
Neural Learning Rate {5−4, 10−4, 10−5} 5−4

Policy
Energy Loss Coefficient {10−1, 1} 1
Neural Learning Rate {5−4, 10−4, 10−5} 5−4

Alpha {0.1, 0.5, 0.9} 0.1

Citeseer

Energy
Neural Learning Rate {10−1, 10−2, 10−3} 10−3

Step Size {10−1, 10−2, 10−3} 10−3

Bilevel
Energy Loss Coefficient {0, 10−1, 1, 10} 1
Neural Learning Rate {10−1, 10−2, 10−3} 10−3

Step Size {10−1, 10−2, 10−3} 10−3

Policy
Energy Loss Coefficient {0, 10−1, 1, 10} 1
Neural Learning Rate {10−1, 10−2, 10−3} 10−3

Alpha {0.1, 0.5, 0.9} 0.1

Citeseer

Energy
Neural Learning Rate {10−1, 10−2, 10−3} 10−3

Step Size {10−1, 10−2, 10−3} 10−3

Bilevel
Energy Loss Coefficient {0, 10−1, 1, 10} 1
Neural Learning Rate {10−1, 10−2, 10−3} 10−3

Step Size {10−1, 10−2, 10−3} 10−3

Policy
Energy Loss Coefficient {0, 10−1, 1, 10} 1
Neural Learning Rate {10−1, 10−2, 10−3} 10−3

Alpha {0.1, 0.5, 0.9} 0.1
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Artur S. d’Avila Garcez, Lúıs C. Lamb, and Dov M. Gabbay. Neural-Symbolic

Cognitive Reasoning. Springer, 2009.

Peter Dayan, Geoffrey Hinton, Radford Neal, and Richard Zemel. The helmholtz

machine. Neural Computation, 7(5):889–904, 1995.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic

prolog and its application in link discovery. In IJCAI, 2007.
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Jivŕı V. Outrata. On the numerical solution of a class of stackelberg problems.

Methods and Models of Operations Research, 34(4):255–277, 1990.

Emile van Krieken, Erman Acar, and Frank van Harmelen. Analyzing differentiable

fuzzy logic operators. Artificial Intelligence (AI), 302:103602, 2022.

Emile van Krieken, Thiviyan Thanapalasingam, Jakub M. Tomczak, Frank van

Harmelen, and Annette ten Teije. A-nesi: A scalable approximate method for

probabilistic neurosymbolic inference. In NeurIPS, 2023.

Emile van Krieken, Samy Badreddine, Robin Manhaeve, and Eleonora Giunchiglia.

Uller: A unified language for learning and reasoning. arXiv, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS,

2017.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and

Marius Hobbhahn. Will we run out of data? limits of llm scaling based on

human-generated data. In ICML, 2024.

Marin Vlastelica, Anselm Paulus, Vı́t Musil, Georg Martius, and Michal Roĺınek.
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