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ABSTRACT OF THE DISSERTATION

Statistical Inference for Large and Complex Data

by

Xinkai Zhou
Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2022
Professor Hua Zhou, Chair

Statistical inference aims to quantify the amount of uncertainty in parameters or functions

estimated from a statistical procedure and lies at the heart of modern decision-making. The

problem is, however, when data sets become large and high-dimensional, which is the case

for many modern health-related applications (electronic health records, multiomics, imaging

data, etc.), classical statistical inference tools fail due to computational and methodological

issues. The problem is further exacerbated when data sets also exhibit dependency structures

or nonignorable missingness due to censoring. This dissertation summarizes our effort in

addressing some of these challenges.

Specifically, chapter 1 provides a bag of little bootstrap (BLB) based method for con-

ducting statistical inference of linear mixed models on massive and distributed longitudinal

data sets such as electronic health records. For the statistical inference of variance compo-

nent parameters, our software package MixedModelsBLB.jl achieves 200 times speedup

on the scale of 1 million subjects (20 million total observations), and is the only currently

available tool that can handle more than 10 million subjects (200 million total observations)

using a desktop computer.

Chapter 2 provides an extremely flexible and general framework called proximal Markov
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Chain Monte Carlo (ProxMCMC) for conducting statistical inference on constrained or reg-

ularized estimation procedures, which are indispensable for analyzing high-dimensional data

and the inference of which has been considered difficult. Many frequently encountered statis-

tical learning tasks such as constrained lasso, graphical lasso, matrix completion, and sparse

low-rank matrix regression fall into this category.

Chapter 3 provides tools for the estimation and inference of heteroscedastic linear models

for analyzing censored data using synthetic variables. Our motivating applications are ad-

justing for treatment effects in studies of quantitative traits and variance quantitative trait

loci (vQTL) analysis, which arise frequently in genetic and epidemiological studies, but our

method is general and computationally scalable to be applied to other fields of applications

where censored data can arise from, for example, measurements that are out of the limit of

detection.
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INTRODUCTION

Many modern data sets are large and high-dimensional. Three prime examples include the

Million Veteran Project, All of US program, and the UK Biobank. They occupy terabytes of

storage with sample sizes ranging from 105 to 106. Moreover, there is a rich set of information

for each individual in these programs, making them high-dimensional. In the case of the UK

Biobank, participants’ genomic, imaging, physical activity, and electronic health records

(EHR) data are all available for analysis. These data sets present a great opportunity

for scientific discovery, but at the same time, their size and dimensionality impose fresh

challenges on existing tools for statistical analysis.

The first chapter focuses on the analysis of longitudinal datasets, where linear mixed

models are widely used and the inference for variance component parameters relies on

the bootstrap method. However, health systems and technology companies routinely gen-

erate massive longitudinal datasets that make the traditional bootstrap method infeasi-

ble. To solve this problem, we extend the highly scalable bag of little bootstraps method

for independent data to longitudinal data and develop a highly efficient Julia package

MixedModelsBLB.jl. Simulation experiments and real data analysis demonstrate the

favorable statistical performance and computational advantages of our method compared to

the traditional bootstrap method.

The second chapter focuses on the statistical inference of constrained and regularized es-

timation problems, which are commonly encountered when analyzing high-dimensional data.

The inference for these problems is traditionally considered difficult from both frequentist

and Bayesian perspectives. We propose proximal Markov Chain Monte Carlo (ProxMCMC)

as a flexible and general Bayesian inference framework to tackle this problem. Originally

introduced in the Bayesian imaging literature, ProxMCMC employs the Moreau-Yosida en-

velope for a smooth approximation of the total-variation regularization term, fixes nuisance

and regularization parameters as constants, and relies on the Langevin algorithm for the

1



posterior sampling. We extend ProxMCMC to the full Bayesian framework with modeling

and data-adaptive estimation of all parameters including the regularization strength param-

eter. More efficient sampling algorithms such as the Hamiltonian Monte Carlo are employed

to scale ProxMCMC to high-dimensional problems. Analogous to the proximal algorithms

in optimization, ProxMCMC offers a versatile and modularized procedure for the inference

of constrained and non-smooth problems. The power of ProxMCMC is illustrated on various

statistical estimation and machine learning tasks.

The third chapter focuses on statistical methods that can handle nonignorable miss-

ingness due to informatively censored data. We are motivated by the need for variance

quantitative trait loci (vQTL) analysis and adjusting for treatment effect in genetic and

epidemiological studies. We introduce weighting to estimation equations to improve the es-

timation efficiency, extend synthetic variables from positive-valued to real-valued, and derive

synthetic variables for higher moments to model heterogeneous variances.
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CHAPTER 1

Bag of Little Bootstraps for Massive and Distributed

Longitudinal Data

This project has been completed and published in Statistical Analysis and Data Mining at

https://doi.org/10.1002/sam.11563.

1.1 Introduction

Linear mixed models (LMMs) are powerful tools for analyzing longitudinal data, which

are ubiquitous in medical research and E-commerce applications. For example, Electronic

Medical Records (EMR) data contains longitudinal measurements from the same patient over

time. However, there are two challenges in applying LMMs to today’s problems. The first

one is the massive sample size of modern datasets. For instance, the UCLA Health System

alone has over 2.5 million annual patient visits. Analyzing such datasets with LMMs is

challenging, especially if the goal is to make statistical inference on the variance component

parameters. For example, to test if subjects have different slopes for a covariate, one needs

to test whether the corresponding random effect has zero variance. Statistical tests based

on asymptotics are dubious because the limiting distribution of random effect parameters

is difficult to derive. Therefore, researchers rely on the bootstrap method [Efr79], which

eliminates the need for asymptotics, but is computationally intensive. Specifically, running

the traditional bootstrap method on LMMs has a computational cost of O(BNq3), where

B is the number of bootstrap replicates, N is the number of subjects, and q is the number

3
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of random effect parameters. When N is on the scale of millions, the bootstrap method is

prohibitively slow.

The second challenge relates to distributed datasets. Modern datasets are often stored at

multiple locations: internet companies that harvest large volumes of data store them across

data centers worldwide to save data transfer costs; medical centers that collaborate in multi-

site studies try to avoid sending data over the internet due to security and privacy concerns.

However, to fit LMMs and use the traditional bootstrap method, one has to either move the

distributed datasets to one place or communicate model parameters and their derivatives

continuously between data centers, which incur high data transfer costs.

To overcome these challenges, we extend the Bag of Little Bootstraps (BLB) method

[KTS14] to the longitudinal data setting. It has a computational cost of O(Bbq3) where

b ≪ N , so it is capable of fitting and making statistical inference of LMMs on massive

longitudinal datasets using a fraction of the time compared to the traditional bootstrap

method. Moreover, by using the BLB framework, our software, MixedModelsBLB.jl,

provides a solution to the analysis of distributed longitudinal datasets.

1.2 Method

1.2.1 Model and Notation

Given a longitudinal dataset with N independent clusters (the word “cluster" is used inter-

changeably with “subjects" in this chapter), let yi ∈ Rni be the observed response vector of

length ni from subject i, and Xi ∈ Rni×p and Zi ∈ Rni×q be the observed covariates for the

fixed and random effect parameters, respectively. Consider an LMM of the form

yi = Xiβ +Zibi + εi, (1.1)

where β ∈ Rp denotes the fixed effect parameters, bi ∼ N(0,Σ) denotes the random effect

for the i-th subject, Σ is a q×q covariance matrix, and εi ∼ N(0, σ2
0Ini

) denotes the random

4



error. bi and εi are jointly independent. Σ and σ2
0 are the variance component parameters.

1.2.2 Statistical Inference for LMMs

For fixed effect parameters, statistical inference is usually based on the asymptotic distri-

bution of β̂. This approach relies on approximations that may not be accurate when the

data is unbalanced or when the residuals have non-constant variance [HH14, BMB15]. For

distributed datasets, the asymptotic approach is difficult to implement and is potentially

costly because it involves transferring parameters and their derivatives between different

data centers.

Statistical inference of variance component parameters is more challenging. For testing

if a random effect should be included in the model, one needs to test the hypothesis that

the corresponding random effect variance equals zero. Since zero lies on the boundary of

the parameter space of variance, the usual regularity condition that the parameter should

be an interior point of the parameter space is not met. Testing such hypotheses involve

using complex asymptotic or exact null distributions [SL87, CR04, Cra08], which makes it

cumbersome to use in practice.

Following the notation in [KTS14, VW13], let wi = (yi,Xi,Zi) ∼ P be independent and

identically distributed (IID) for i = 1, ..., N , and let the corresponding empirical distribution

be PN = N−1
∑N

i=1 δwi
. θ(P ) = (β,Σ, σ2

0) denotes all model parameters, θ̂N = θ̂N(PN) is an

estimate of θ(P ). In its essence, statistical inference of θ̂N = θ̂N(PN) is a summary, denoted

by ξ{QN(P )}, of the distribution QN(P ) of u(PN , P ), which is a function of θ̂N and its form

depends on our inferential goal. For example, if we want to quantify the variance of θ̂N ,

then u(PN , P ) = θ̂N and ξ is the variance. In practice, since P and QN(P ) are unknown, we

cannot calculate ξ{QN(P )} directly, but we can estimate it using the observed dataset. The

asymptotic approach is one way to perform the estimation where we replace QN(P ) with the

asymptotic distribution of θ(P ). An alternative approach is the bootstrap method [Efr79],

which replaces QN(P ) by its bootstrap approximation.

5



Given IID data w1, ...,wN and its empirical distribution PN , the bootstrap method first

samples N data points with replacement from PN , which has empirical distribution function

P∗
N . From the bootstrap sample, u(P∗

N ,PN) can be calculated. This process is repeated many

times to obtain Q∗
N , which is the empirical distribution of the u’s and serves to approximate

QN(P ). Finally, we use ξ(Q∗
N) as an estimate of ξ{QN(P )}.

However, the bootstrap method is computationally expensive for large datasets, especially

for longitudinal data. In addition, it is awkward to apply the bootstrap method to distributed

datasets because re-sampling requires access to the full data. To solve these problems, we

extend the Bag of Little Bootstraps (BLB) method [KTS14], which was developed for cross-

sectional data, to the longitudinal data setting.

Given a longitudinal dataset with N clusters and a subset size b < N , the BLB method

first samples s subsets, each consisting of b clusters. The sampling is done without replace-

ment and uniformly at random. Let I1, ..., Is ⊂ {1, ..., N} denote the clusters that are in each

subset, where |Ij| = b for 1 ≤ j ≤ s. Further let P(j)
N,b = b−1

∑
i∈Ij δwi

denote the empirical

distribution for subset j. Then, for each subset, it samples N clusters with replacement to

obtain the bootstrap sample and calculates u(P∗
N,b,P

(j)
N,b), where P∗

N,b denotes the empirical

distribution of the bootstrap sample. Re-sampling is repeated B times and the empirical dis-

tribution of the u-values on subset j is denoted by Q∗
N,j. Finally, BLB estimate of ξ{QN(P )}

is given by

s−1

s∑
j=1

ξ(Q∗
N,j),

where ξ(Q∗
N,j) serves as an approximation of ξ{QN(P(j)

N,b)}.

The fact that BLB operates on subsets rather than the entire dataset confers two advan-

tages. First, it is more amenable to parallel processing than the bootstrap method. Since

each subset is much smaller than the full dataset, we can parallelize at the subset level such

that multiple CPU cores can work on multiple subsets at the same time. Secondly, to analyze

datasets stored at multiple data centers, BLB can treat each data center as a subset or take

6



further subsets at each data center, perform analysis on each subset, and obtain the final

statistical inference by aggregating parameter estimates from different data centers. Since

the final parameter estimates are all we need to transfer between data centers, BLB avoids

moving raw data over the internet and incurs minimal communication costs. In contrast,

the bootstrap method requires that we either move distributed datasets to one place, which

poses security and privacy concerns, or communicate large amounts of intermediate param-

eter estimates and their derivatives, which incurs high communication costs. We note that

in order for BLB to work in distributed data settings, one needs to be comfortable with

the assumption that subjects from different data centers are IID samples from the popula-

tion of interest. When certain variables demonstrate spatial heterogeneity, we expect more

variability in the corresponding estimates; see Supplementary Materials S3 for a simulation

experiment.

Another feature of BLB is the way it generates bootstrap samples. Given a subset with b

clusters, it samples N clusters (N > b) with replacement to form a bootstrap sample. Doing

so offers three advantages. First, it makes BLB automatic in the sense that re-scaling of

the resulting estimates is not needed because the u-values are calculated on datasets that

are of the same size as the original data. This contrasts to methods such as subsampling

[PRW99] and M out of N bootstrap [BGZ97]. Both methods estimate parameters on datasets

that are smaller than the original data, and thus require re-scaling the estimates. The

second advantage is that storing BLB re-samples requires O(b) rather than O(N) memory

because each re-sample has its support on b distinct clusters. In fact, re-sampling N clusters

from b clusters amounts to generating a weight vector from an N -trial uniform multinomial

distribution over b objects, so each re-sample can be compactly represented by b clusters and

a length-b vector denoting the number of repeats of each cluster. The third advantage is that

for estimators that can work with a weighted data representation, the computational time

using BLB re-samples scales as O(b) rather than O(N). Many commonly used estimators,

including Maximum Likelihood Estimators (MLE) and general M-estimators, fall into this
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category. This means that we can use either MLE or Generalized Estimating Equations

(GEE) to estimate model parameters.

Finally, BLB for longitudinal data enjoys the same consistency and higher-order cor-

rectness guarantee as BLB for IID data. Theoretical analysis of BLB is similar to that of

bootstrap and follows from standard empirical process results. Using weak convergence of

the bootstrapped empirical process [VW13, Theorem 3.6.3], [KTS14] showed that size n

resamples from P(j)
N,b behave asymptotically as if they were drawn directly from P . This

together with the delta method for bootstrap [Vaa00, Theorem 23.9] yields the consistency

of each individual ξ{QN(P(j)
N,b)} as b, n −→∞. Consistency of BLB is then obtained by using

the continuous mapping theorem [Vaa00]. This analysis assumes that the sampling units are

IID, which is satisfied in the longitudinal setting because our sampling units are clusters and

we assume that clusters are IID. Similar arguments can be made for the proof of higher-order

correctness.

Consistency and higher-order correctness of BLB for longitudinal data hold for estimators

that are Hadamard differentiable. Since M-estimators are generally Hadamard differentiable

[VW13, Vaa00] and both MLE and GEE produce M-estimators, these theoretical properties

hold with either MLE or GEE.

In the following sections we present results obtained by MLE. GEE results, which are

implemented through an approach called WiSER [GSZ21], are presented in Supplementary

Materials S4.

1.3 Computational Strategy

A key component of Algorithm 1 is fitting LMMs, and we do so by maximizing the log-

likelihood using the Fisher scoring algorithm. For model (1.1), the log-likelihood for the i-th
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Input: Clustered data w1, ...,wN ; b: number of clusters in the subset; s: number of

subsets; r: number of bootstrap samples within each subset; u: estimate of LMM

parameters; ξ: summary of the distribution of u

Output: An estimate of ξ{QN (P )}

1 for j ∈ 1 to s do

2 Randomly sample a set I = {i1, ..., ib} of b indices without replacement from {1, ..., N}

// Empirical distribution of the j-th subset

3 P(j)
N,b ←− b−1

∑
i∈I δwi

// Approximate ξ{QN (P(j)
N,b)} by ξ(Q∗

N,j)

4 for k ∈ 1 to r do

5 Sample (n1, ..., nb) ∼ Mult(N,1b/b)

// Empirical distribution of the BLB re-sample

6 P∗
N,k ←− N−1

∑b
l=1 nlδwil

7 Fit model using MLE or GEE on the re-sample to get

u∗N,k ←− u(P∗
N,k,P

(j)
N,b) = θ̂N (P∗

N,k).

8 end

9 // Empirical distribution of the u-values on subset j

10 Q∗
N,j ←− r−1

∑r
k=1 δu∗

N,k

11 ξ∗N,j ←− ξ(Q∗
N,j)

12 end

13 // The BLB estimate of ξ{QN (P )} averages ξ∗N,j from subsets

14 Return s−1
∑s

j=1 ξ(Q∗
N,j)

Algorithm 1: BLB for LMM.
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cluster is

ℓi =−
ni

2
log(2π)− 1

2
logdet(ZiΣZ ′

i + σ2
0Ini

)− 1

2
(yi −Xiβ)

′(ZiΣZ ′
i + σ2

0Ini
)−1(yi −Xiβ).

Identifying a good starting point is crucial for fast convergence. In practice, we initialize β

and σ2
0 with least squares solutions

β(0) =

(∑
i

XT
i Xi

)−1(∑
i

XT
i yi

)

σ2
0 =

(∑
i

r
(0)T
i r

(0)
i

)
/

(∑
i

ni

)
,

where r
(0)
i = yi −Xiβ

(0). To initialize Σ, we minimize

∑
i

∥r(0)
i r

(0)T
i −ZiΣZT

i ∥2F,

which gives

vecΣ(0) =

(∑
i

ZT
i Zi ⊗ZT

i Zi

)−1(∑
i

ZT
i r

(0)
i ⊗ZT

i r
(0)
i

)
.

Besides a good starting point, we also need to evaluate the gradient and the Fisher infor-

mation matrix efficiently by exploiting structures in these quantities. For example, by using

the Woodbury structure in the marginal covariance ZiΣZ ′
i+σ2

0Ini
, we can avoid the storage

and decomposition of potentially large ni×ni matrices. See Supplementary Materials S2 for

detailed derivation and the implementation strategy.

1.4 Software

Our implementation, MixedModelsBLB.jl, is an open-source Julia package available at

https://github.com/xinkai-zhou/MixedModelsBLB.jl. Users can run the soft-

ware on Julia v1.5 or later, or use Docker without installing Julia. The package is compatible

with a wide range of data inputs, including data frames and datasets that are too large to
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fit in memory. Furthermore, it works with a variety of nonlinear programming solvers such

as Ipopt [WB06], NLopt [Joh20], and KNITRO [BNW06]. Finally, when the user has access

to multiple CPU cores, parallel processing can be turned on to gain further efficiency by

processing BLB subsets simultaneously.

We illustrate it on the sleepstudy example data [BWT03]. The BLB estimates and

the confidence intervals are printed. In addition, parameters estimates from all iterations

are returned in an object of type blbEstimates for further analyses. See https://

github.com/xinkai-zhou/MixedModelsBLB.jl for detailed documentation.

1.5 Simulation Study

This section presents two simulation experiments. The first one compares the statistical

performance between BLB and bootstrap. The second simulation applies BLB to ultra large

data sets to demonstrate its scalability.

In the first simulation, we define the relative error of the confidence intervals as |c−c0|/c0,

where c is the estimated confidence interval width and c0 is the true confidence interval

width. We then compare the relative error of the confidence intervals between BLB and the

bootstrap method. To calculate c0, we generate 1000 datasets of size N from the underlying

data generating distribution P , compute θ̂N on each of them, and use these estimates to

calculate confidence intervals and c0. To calculate c, we simulate one dataset of size N from

P , run BLB and bootstrap, and record the parameter estimates as well as the cumulative

processing time (after each bootstrap resample or BLB subset has been processed). To reduce

the variation in c induced by a particular dataset, we repeat this process on five simulated

datasets and average the resulting relative errors and processing times. We present the

trajectory of relative error versus time, where the relative error is averaged over variance

components parameters. Note that the time axis provides a single-number summary of

parameters b (subset size), s (number of subsets), and r (number of bootstrap iterations

11
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Listing 1.1: Illustrating software usage on the sleepstudy data.� �
using MixedModelsBLB, JuliaDB, StatsModels, Random

datatable = JuliaDB.loadtable("test/data/sleepstudy.csv")

blb_ests = blb_full_data(

MersenneTwister(1),

datatable;

feformula = @formula(Reaction ~ 1 + Days),

reformula = @formula(Reaction ~ 1),

id_name = "id",

cat_names = Array{String,1}(),

subset_size = 10,

n_subsets = 20,

n_boots = 500,

solver = Ipopt.IpoptSolver(print_level=0),

verbose = false,

nonparametric_boot = true

)

#Bag of Little Boostrap (BLB) for linear mixed models.

#Number of subsets: 20

#Number of grouping factors per subset: 10

#Number of bootstrap samples per subset: 500

#Confidence interval level: 95%

Variance Components parameters

Estimate CI Lower CI Upper

(Intercept) 1202.18 426.24 2087.30

Residual 826.92 513.64 1180.74

Fixed-effect parameters

Estimate CI Lower CI Upper

(Intercept) 250.88 237.66 263.59

Days 10.79 8.11 13.50� �
12



on a given subset) for BLB, and of r (number of bootstrap iterations) for bootstrap. We

used our package MixedModelsBLB.jl for BLB and the MixedModels.jl package for

bootstrap. Parallel processing was turned off for both methods because the primary focus

of this experiment is statistical performance.

We generate data under two settings. In the first one, non-intercept entries of Xi,Zi

and εi are drawn independently from the standard normal distribution. In the second one,

Xik,j ∼ Γ(1+5(j−1)/(p−1), 2)−2Γ(1+5(j−1)/(p−1), 2),Zik,j ∼ Γ(1+5(j−1)/(q−1), 2)−

2Γ(1 + 5(j − 1)/(q − 1), 2), and εik ∼ Γ(1, 2)− 2 independently for k = 1, ..., ni, j = 1, ..., p.

In both settings, N = 20, 000, ni = 10 for all i, p = 100, and q = 2. For BLB, we set the

subset size to be b = Nγ where γ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, and the number of Monte Carlo

iterations to be r = 200.

Figure 1.1 shows the results. For all subset sizes, BLB converges to low relative error

faster than bootstrap. When the subset size is small (γ = 0.5, 0.6, 0.7), it takes a very short

time for BLB to process each subset, and it takes no more than 10-20 subsets for BLB to

reach low relative error (each hinge corresponds to a subset for BLB). When the subset size

is larger (γ = 0.8, 0.9), it takes longer to process each subset, but only a small number of

subsets (3-5) is needed to achieve low relative error.

Besides the comparison with bootstrap, we also examined the subsampling method

[PRW99] as an alternative. However, we observed similar divergence in relative error for

smaller subset sizes as reported by [KTS14]. See Supplementary Materials section S5 for

more details.

[Insert Figure 1.1 here.]

The second simulation experiment compares the scalability of BLB and bootstrap. Since

data generating distributions do not affect scalability, we only consider the standard normal

case. We choose N = 1 million, ni = 20, p = 20, and q = 2. The truth is obtained by

simulating 200 instead of 1000 datasets due to the bigger sample size. For bootstrap, we set
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the number of Monte Carlo iterations r = 400. For BLB, we set b = N0.6 ≈ 3981, s = 10,

and r = 200. For both procedures, we turn on parallel processing. Specifically, BLB uses

ten worker nodes and bootstrap uses two threads. We cannot use ten threads for bootstrap

because it makes a copy of the model object and the bootstrap sample on each thread, so it

would quickly exhaust the memory on our computer (64GB) if we use more than two threads.

Figure 1.2 shows the simulation result. We see that BLB finishes all calculations within 170

seconds, which is more than 200 times faster than bootstrap, and achieves lower relative

error (0.0534 versus 0.0603, or an 11% reduction). A rough calculation shows that even if

our computer has more memory (> 300GB) so that bootstrap can run with ten threads, it

would still take two hours and thus be much slower than BLB.

To see how BLB compares with bootstrap on even larger data sets, we simulated a data

set with N = 10 million, ni = 20, p = 20, and q = 2 using the same data generating

distribution as above. The entire data set contains 200 million records and the CSV file

takes 79 GB disk space. For BLB, we set b = N0.6 ≈ 15850, s = 10, and r = 200. BLB

finishes all computation within 22 minutes. On the other hand, since the data set exceeds

our computer’s memory limit, we are unable to run bootstrap.

[Insert Figure 1.2 here.]

Besides these two experiments, we also examined the relationship between the number

of bootstrap samples on each subset (r) and relative error; see Supplementary Materials S6

for details.

1.6 Real Data

In this section we apply MixedModelsBLB.jl to the Action to Control Cardiovascular

Risk in Diabetes trial (ACCORD) dataset [ICB10]. The ACCORD study examined whether

the intensive therapy that targets normal glycated hemoglobin (HbA1c) levels (< 6.0%)

would reduce cardiovascular events when compared to the standard therapy among patients
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with type 2 diabetes who had either established cardiovascular disease (CVD) or additional

cardiovascular risk factors. A total of 12,251 patients aged 40–79 years participated; their

glucose concentrations were measured every four months in the initial year and then annually

up to a maximum of 84 months.

After data cleaning, our analytic dataset consists of 67,063 observations on 10,195 indi-

viduals. The outcome of interest is fasting plasma glucose, and the covariates include gender,

race, baseline age, BMI, visit number, baseline CVD history, adjusted insulin, and the type

of therapy they received. We follow [SRR15] and use insulin units per body weight in kg

(adjusted insulin) instead of raw total insulin units. In addition to random intercept, we

also included a random slope for the visit number. Since the ground truth is not available

for real data, we cannot compare methods using relative error. Instead, we present the 95%

confidence intervals given by BLB, bootstrap, and the Wald method. Note that the Wald

method can only produce confidence intervals for fixed effect parameters. For this analysis,

we used a subset size of 1600 individuals (γ = 0.8) and ran BLB on 30 subsets, each with

200 bootstrap samples. The subset size was chosen so that we would not get too few obser-

vations for certain categories in the unevenly distributed race variable. A sensitivity analysis

of other subset sizes is given in Supplementary Materials section S7. For bootstrap, we ran

it with 2000 bootstrap samples. Both methods used parallel processing. Table 1.1 shows the

results. We find the visit number, BMI, baseline age, race, adjusted insulin, and certain oral

medication classes to be significantly associated with fasting plasma glucose. We also find

the random slope for visit number to be significant and should be included in the model.

Finally, we note that BLB achieves similar inference compared to bootstrap, but uses much

less time.

[Insert Table 1.1 here.]
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1.7 Conclusion and Future Work

We have developed an algorithm based on the BLB method for the statistical inference

of fixed effect and variance component parameters of linear mixed models on large and dis-

tributed longitudinal datasets; we also developed a Julia software package MixedModelsBLB.jl

for this purpose. Unlike the bootstrap method, which typically requires O(BNq3) computa-

tional cost, our method only costs O(Bbq3), where b is much smaller than N . The simulation

and real data results demonstrate the efficiency and statistical performance of our method.

Code availability

The software package is publicly available at https://github.com/xinkai-zhou/

MixedModelsBLB.jl.
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Figure 1.1: Relative error versus processing time for BLB and bootstrap under Normal (left)

and Gamma (right) data generating distributions.
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Figure 1.2: Relative error versus processing time on N = 1 million subjects and 20 million

total observations. BLB subset size was set to b = N0.6 ≈ 3981.
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1.8 Supplementary Material

1.8.1 Notation

Our notation for multivariate calculus follows that of a standard text such as [MN99].

We use vecA to denote the vector that stacks the columns of a matrix A, and use vechA

to denote the vector that only stacks the columns of the lower triangular part of a square

matrix A. The diag operator has two meanings. For a vector v, diag(v) represents the

diagonal matrix with v on the diagonal. For a square matrix M , diag(M ) represents the

vector of diagonal elements of M .

The mn×mn commutation matrix is denoted by Kmn and satisfies Kmn ·vecA = vecAT

for an arbitrary m× n matrix A. The n2× n(n+1)/2 duplication matrix is denoted by Dn

and satisfies Dn · vechA = vecA for any n × n symmetric matrix A. The n2 × n(n + 1)/2

copying matrix is denoted by Cn and satisfies Cn · vechA = vecA for any n × n lower

triangular matrix A. The Kronecker product of two matrices A and B of arbitrary shape

is denoted by A⊗B.

The Jacobian matrix of a differentiable matrix function f : Rn×q 7→ Rm×p is defined as

the mp× nq matrix

D f(X) =
∂vecf(X)

∂(vecX)T
.

This definition includes scalar functions (m = p = 1) and vector functions (p = 1) as special

cases. Given a function composition h(X) = g(f(X)), the chain rule for the Jacobian

matrix

Dh(X) = D g(Y ) ·D f(X),

where Y = f(X).

19



1.8.2 Gradient, Hessian, expected Hessian, and computational details

We derive the gradient, Hessian, and expected Hessian of the LMM log-likelihood

ℓi = −
ni

2
log(2π)− 1

2
logdet(ZiΣZ ′

i + σ2
0Ini

)− 1

2
(yi −Xiβ)

′(ZiΣZ ′
i + σ2

0Ini
)−1(yi −Xiβ),

and describe how to evaluate them efficiently in O(q3) flops for each i. Due to the positive

semidefiniteness constraint on Σ, we parameterize it in terms of the Cholesky factor Σ =

LLT . For conciseness, we use the following notation throughout the derivation:

ri = yi −Xiβ

Ωi = ZiΣZ ′
i + σ2

0Ini
,

1.8.2.1 Gradient

1. Gradient of β.

Dβℓi = −
1

2
Dβ(y

′
iΩ

−1
i yi − 2y′

iΩ
−1
i Xiβ + β′X ′

iΩ
−1
i Xiβ)

= −1

2
(vec(−2X ′

iΩ
−1
i yi + 2X ′

iΩ
−1
i Xiβ))

′

= (vecX ′
iΩ

−1
i ri)

′.

(1.2)

Thus ∇βℓi = X ′
iΩ

−1
i ri.
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2. Gradient of σ2
0.

Dσ2
0
logdet(Ωi) = DΩi

logdet(Ωi)Dσ2
0
Ωi

= (vecΩ−1
i )′vec(I)

= tr(Ω−1
i ),

Dσ2
0
r′
iΩ

−1
i ri = Dσ2

0
r′
iΩ

−1
i ri

= Dσ2
0
tr(rir′

iΩ
−1
i )

= DΩi
tr(rir′

iΩ
−1
i )Dσ2

0
Ωi

= (−vec(Ω−1
i rir

′
iΩ

−1
i ))′vec(I)

= −tr(Ω−1
i rir

′
iΩ

−1
i )

= −r′
iΩ

−2
i ri.

(1.3)

Thus

∇σ2
0
ℓi = −

1

2
tr(Ω−1

i ) +
1

2
r′
iΩ

−2
i ri.

3. Gradient of L. By the chain rule,

DL logdet(Ωi) = DΩi
logdet(Ωi) ·DΣΩi ·DLΣ

DLr
′
iΩ

−1
i ri = DΩi

r′
iΩ

−1
i ri ·DΣΩi ·DLΣ,

(1.4)

where

DΩi
logdet(Ωi) = (vec(Ω−1

i ))′

DΩi
r′
iΩ

−1
i ri = DΩi

tr(Ω−1
i rr′)

= −(vec(Ω−1
i rr′Ω−1

i ))′

= −r′Ω−1
i ⊗ r′Ω−1

i

DΣΩi = Zi ⊗Zi

DLΣ = (Iq2 +Kqq)(L⊗ Iq).
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Plugging these into (1.4), we get

DL logdet(Ωi)

= (vec(Ω−1
i ))′(Zi ⊗Zi)((Iq2 +Kqq)(L⊗ Iq))

= (vec(Ω−1
i ))′(Zi ⊗Zi)(L⊗ Iq) + (vec(Ω−1

i ))′(Zi ⊗Zi)Kqq(L⊗ Iq)

= (vec(Ω−1
i ))′(ZiL⊗Zi) + (vec(Ω−1

i ))′Knini
(ZiL⊗Zi)

= (vec(Ω−1
i ))′(ZiL⊗Zi) + (Knini

vec(Ω−1
i ))′(ZiL⊗Zi)

= (vec(Ω−1
i ))′(ZiL⊗Zi) + (vec(Ω−1

i ))′(ZiL⊗Zi)

= 2(vec(Ω−1
i ))′(ZiL⊗Zi)

= 2((L′Z ′
i ⊗Z ′

i)vec(Ω
−1
i ))′

= 2(vec(Z ′
iΩ

−1
i ZiL))′

DLr
′
iΩ

−1
i ri

= −(r′Ω−1
i ⊗ r′Ω−1

i )(Zi ⊗Zi)(Iq2 +Kqq)(L⊗ Iq)

= −(r′Ω−1
i ⊗ r′Ω−1

i )(Zi ⊗Zi)(L⊗ Iq)− (r′Ω−1
i ⊗ r′Ω−1

i )(Zi ⊗Zi)Kqq(L⊗ Iq)

= −(r′Ω−1
i ZiL⊗ r′Ω−1

i Zi)−K11(r
′Ω−1

i ZiL⊗ r′Ω−1
i Zi)

= −2(r′Ω−1
i ZiL⊗ r′Ω−1

i Zi).

Thus

∇vechLℓi = (vech(−Z ′
iΩ

−1
i ZiL+Z ′

iΩ
−1
i rr′Ω−1

i ZiL))′.

1.8.2.2 Hessian

1. The (β,β) block.

Hβ,βℓi = −X
′
iΩ

−1
i Xi

E(Hβ,βℓi) = −X
′
iΩ

−1
i Xi.

(1.5)
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2. The (σ2
0, σ

2
0)block.

Dσ2
0
Dσ2

0
logdet(Ωi) = Dσ2

0
tr(Ω−1

i )

= DΩi
tr(Ω−1

i )Dσ2
0
Ωi

= −(vec(Ω−2
i ))′vec(I)

= −tr(Ω−2
i )

Dσ2
0
Dσ2

0
r′
iΩ

−1
i ri = Dσ2

0
(−r′

iΩ
−2
i ri)

= −DΩ−1

i
tr(rir′

iΩ
−2
i )DΩi

Ω−1
i Dσ2

0
Ωi

= −(vec(2Ω−1
i rir

′
i))

′(−Ω−1
i ⊗Ω−1

i )vec(I)

= 2((rir
′
i ⊗Ω−1

i )vec(I))′(Ω−1
i ⊗Ω−1

i )vec(I)

= 2(vec(I))′(rir
′
i ⊗Ω−1

i )(Ω−1
i ⊗Ω−1

i )vec(I)

= 2(vec(I))′(rir
′
iΩ

−1
i ⊗Ω−2

i )vec(I)

= 2(vec(I))′vec(Ω−3
i rir

′
i)

= 2tr(Ω−3
i rir

′
i)

= 2r′
iΩ

−3
i ri.

(1.6)

Thus

Hσ2
0 ,σ

2
0
ℓi = −

1

2
(−tr(Ω−2

i ))− 1

2
(2r′

iΩ
−3
i ri)

=
1

2
tr(Ω−2

i )− r′
iΩ

−3
i ri

E(Hσ2
0 ,σ

2
0
ℓi) =

1

2
tr(Ω−2

i )− E tr(Ω−3
i rir

′
i)

=
1

2
tr(Ω−2

i )− tr(Ω−2
i )

= −1

2
tr(Ω−2

i ).

(1.7)

3. The (vechL, vechL) block. Let ∇Lℓi = (vec(−u+ v))′, where

u = Z ′
iΩ

−1
i ZiL,

v = Z ′
iΩ

−1
i rr′Ω−1

i ZiL.
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Since

DLΩ
−1
i = DΩi

Ω−1
i ·DΣΩi ·DLΣ

= (−Ω−1
i ⊗Ω−1

i )(Zi ⊗Zi)(Iq2 +Kqq)(L⊗ Iq)

= (−Ω−1
i Zi ⊗Ω−1
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i ZiL⊗Ω−1

i Zi)

= (In2 +Knn)(−Ω−1
i ZiL⊗Ω−1

i Zi),

we have

DLu

= (L′Z ′
i ⊗Z ′

i)(In2 +Knn)(−Ω−1
i ZiL⊗Ω−1

i Zi) + (Iq ⊗Z ′
iΩ

−1
i Zi)

= (L′Z ′
i ⊗Z ′

i + (L′Z ′
i ⊗Z ′

i)Knn)(−Ω−1
i ZiL⊗Ω−1

i Zi) + (Iq ⊗Z ′
iΩ

−1
i Zi)

= (−L′Z ′
iΩ

−1
i ZiL⊗Z ′

iΩ
−1
i Zi) + (L′Z ′

i ⊗Z ′
i)(Ω

−1
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Furthermore,
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Thus
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Then

E(HvechL,vechLℓi) = C ′ E(HL,Lℓi)C,

where C is the matrix such that vecL = C · vechL, i.e., it’s the duplication matrix

where the rows that correspond to the upper triangular elements of L are replaced by

0.

4. The (β, σ2
0) block.
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i)DLΩ

−1
i DvechLL) = 0.
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6. The (σ2
0, vechL) block.
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1.8.3 When data centers exhibit spatial heterogeneity

In this section, we examine the effect of spatial correlation on the resulting estimates. Specif-

ically, we generate data sets for 9 data centers that lie on a 3-by-3 grid ({(0, 10, 20) ×

(0, 10, 20)}) and adopt an exponential spatial covariance structure: Ωkl = 0.07·exp(−0.1·dkl),

where dkl is the euclidean distance between data centers k and l. The parameters were cho-

sen so that the spatial correlation is roughly 10% of the intra-class correlation. Entries of

Ω ranges between 0.004 to 0.07. Then we generate spatial random effects αk, k ∈ {1, ..., 9},

from the N(0,Ω) distribution and use them for data generation. The response for subject i

from center k thus becomes

yik = Xikβ +Zikbik + αk1+ εik. (1.8)

The added spatial random effect αk, which is shared by all subjects from center k, induces

correlation among subjects from the same center and also spatial correlation between centers.

We test the BLB procedure, assuming no spatial correlation, on simulated data sets and

the result is in Fig. 1.3. There are 10 fixed effects (including the intercept), a random

intercept and a random slope in the model. The truth is 1 for all parameters except that the

variance of the random slope is 1.5 (for making the random effect covariance matrix positive

definite). Each dot in the boxplot represents an estimate from a data center. Compared to

the case without spatial random effect, the one with it has more dispersed fixed intercept

estimates. This is not surprising because the random spatial effect is absorbed into the

fixed intercept and we expect to see wider bars for effects that have spatial heterogeneity.

Estimates for all other parameters look quite similar between the two scenarios, suggesting

that our method is robust when the data is generated with mild spatial correlation.
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Figure 1.3: Boxplots of estimates for fixed and random effects from nine data centers. A:

data was generated with spatial random effect. B: no spatial random effect. x1, ..., x10: fixed

effects; s1, s12, s2: random effect covariance; e: error variance.
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Figure 1.4: Relative error versus processing time for BLB (using GEE rather than maximum

likelihood) and bootstrap under a Normal data generating distribution.

1.8.4 Parameter estimation using GEE

As mentioned in Sec 2.2 of the main text, we can use either MLE or GEE to estimate model

parameters. For GEE, we incorporate it through an approach called WiSER [GSZ21] that

was developed for within-subject variance estimation for linear mixed models and was shown

to be equivalent to a specific quadratic GEE with a working covariance structure assuming

marginal normality of the response. We repeated our first simulation experiment using this

approach and present the results in Fig 1.4.

1.8.5 The performance of subsampling

As mentioned in the main article, we also examined subsampling [PRW99] as an alternative

method for performing inference on large longitudinal data sets. The main issue with sub-

sampling is that it may fail to converge for some subset sizes. This phenomenon was observed

by [KTS14] on cross sectional datasets, and we observe the same thing for longitudinal data
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through our simulation experiments. We run subsampling on the same data sets as we used

for the first simulation experiment, and calculate relative error in the same way as before.

Figure 1.5 shows the results for the gamma data generating distribution. We can see that

subsampling fails to converge when subset size equals 200000.5 ≈ 141, 200000.8 ≈ 2759, or

200000.9 ≈ 7429.

Figure 1.5: Relative error versus processing time for subsampling and bootstrap.

1.8.6 The relationship between r and relative error

We use the simulated data from simulation 1 (the Gaussian case). Instead of changing the

subset size, we fix it at 20, 0000.6 ≈ 380 and vary the number of bootstrap iterations on each

subset (r). We tried r = (100, 200, 300, 400, 500) and the relative error is presented in Fig

1.6. We can see that setting r to 100 is too small because the relative error does not go down

fast enough compared to other r values. Setting r to 200-500 makes little difference after

500 seconds, but r = 200 achieves small relative error in less time and thus we recommend

it to users.
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Figure 1.6: Relative error versus processing time for BLB at different r (number of bootstrap

iterations on each subset).

1.8.7 Sensitivity analysis of the ACCORD data

As a sensitivity analysis, we compare BLB results at subset sizes 1000, 1600, and 2000 of the

ACCORD data. The results are mostly consistent; but we do note the difference in the race

variable (Hispanic and Other) at subset size 1000. This is mainly because the race variable is

unevenly distributed and has less observations in the Hispanic and Other category so that at

smaller subset sizes, some subsets may risk sampling too few observations in those categories

to produce stable estimates. See Table 1.2 for a summary of the race variable.
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Table 1.1: 95% Confidence Intervals for the ACCORD data using a LMM that includes

a random intercept, a random slope, and a covariance term between the random effects.

We can see that all three methods give similar results, but BLB is much faster than the

bootstrap.

Method BLB Bootstrap Wald

Fixed Effect

Intercept (215.45, 232.02) (216.72, 232.54) (216.56, 232.56)

Visit Number ( -0.26, -0.22) ( -0.27, -0.22) ( -0.27, -0.22)

BMI ( -0.28, -0.05) ( -0.28, -0.06) ( -0.28, -0.06)

Female ( -2.39, 0.23) ( -2.17, 0.41) ( -2.25, 0.42)

Baseline Age ( -0.86, -0.67) ( -0.87, -0.68) ( -0.87, -0.67)

Race

Black ( -10.42, -7.08) ( -10.26, -6.98) ( -10.30, -6.95)

Hispanic ( -4.12, 0.97) ( -4.80, 0.18) ( -4.83, 0.20)

Other ( -4.00, 0.32) ( -4.01, 0.13) ( -4.05, 0.10)

CVD History ( -0.87, 1.81) ( -0.32, 2.37) ( -0.34, 2.35)

Adjusted Insulin (units/kg body weight) ( -12.23, -8.64) ( -12.06, -9.36) ( -12.18, -9.35)

Sulphonylureas ( -0.51, 1.72) ( -0.57, 1.48) ( -0.58, 1.47)

Metformin ( -7.35, -4.69) ( -7.27, -4.88) ( -7.23, -4.82)

Meglitinides (-14.93, -12.58) (-14.80, -12.41) (-14.82, -12.37)

Thiazolidinediones ( -21.28, -19.29) ( -21.35, -19.56) ( -21.38, -19.59)

Variance Components

Intercept (772.93, 883.30) (809.81, 890.68)

Visit Number ( 0.20, 0.28) ( 0.21, 0.26)

Intercept : Visit Number ( -6.17, -3.82) ( -6.20, -4.49)

Residual (1814.22, 1906.54) (1837.48, 1884.00)

Time (second) 230 2650

Table 1.2: Summary of the race variable for the ACCORD data

Race White Black Hispanic Other

N (%) 6351 (63%) 1946 (19%) 733 (7%) 1165 (11%)
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Table 1.3: BLB 95% Confidence Intervals for the ACCORD data at different subset sizes

Method Subset Size 1000 Subset Size 1600 Subset Size 2000

Fixed Effect

Intercept (219.29, 235.48) (215.45,232.02) (213.19, 229.81)

Visit Number ( -0.26, -0.22) ( -0.26, -0.22) ( -0.26, -0.22)

BMI ( -0.30, -0.08) ( -0.28, -0.05) ( -0.28, -0.05)

Female ( -2.19, 0.35) ( -2.39, 0.23) ( -2.40, 0.22)

Baseline Age ( -0.91, -0.72) ( -0.86, -0.67) ( -0.84, -0.64)

Race

Black ( -9.94, -6.67) ( -10.42, -7.08) ( -10.36, -7.07)

Hispanic ( -5.90, -0.89) ( -4.12, 0.97) ( -4.59, 0.45)

Other ( -4.26, -0.04) ( -4.00, 0.32) ( -3.89, 0.29)

CVD History ( -0.13, 2.47) ( -0.87, 1.81) ( -0.40, 2.30)

Total Injected Insulin ( -12.14, -8.54) ( -12.23, -8.64) ( -12.37, -8.80)

Sulphonylureas ( -0.39, 1.84) ( -0.51, 1.72) ( -0.38, 1.79)

Metformin ( -8.05, -5.38) ( -7.35, -4.69) ( -7.03, -4.44)

Meglitinides (-14.93, -12.51) (-14.93,-12.58) (-14.57, -12.10)

Thiazolidinediones (-20.77, -18.79) (-21.28, -19.29) (-21.25, -19.20)

Variance Components

Intercept (781.15, 884.05) (772.93, 883.30) (789.33, 901.13)

Visit Number ( 0.19, 0.28) ( 0.20, 0.28) ( 0.20, 0.27)

Intercept : Visit Number ( -6.22, -3.96) ( -6.17, -3.82) ( -6.67, -4.27)

Residual (1823.22, 1919.71) (1814.22, 1906.54) (1807.12, 1899.79)
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CHAPTER 2

Proximal MCMC for Bayesian Inference of Constrained

and Regularized Estimation

2.1 Introduction

Many statistical learning tasks are posed as penalized maximum likelihood estimation prob-

lems, which require solving optimization problems of the form

maximize ℓ(θ)− ρg(θ),

where θ is a parameter specifying a model, ℓ(θ) is a log-likelihood quantifying lack-of-

fit between the model parameterized by θ and the data, g(θ) is a penalty function that

promotes the recovery of parameter estimates that have a desired structure, and ρ is a

nonnegative regularization strength parameter that trades off model fit encoded in ℓ(θ)

with the desired structure encoded in g(θ). Canonical examples of penalty functions for

g(θ) include the ℓ1-norm which incentivizes recovery of sparse models and the nuclear norm

which incentivizes recovery of low-rank models. To date, most work has focused exclusively

on point estimates without quantifying the uncertainty in the estimates. Lacking tools for

assessing the uncertainty in findings from regularized models, practitioners often resort to

classical inference tools designed for fixed models. This practice can lead to seriously inflated

type I error and is partly to blame for the reproducibility crisis in science [Ioa05].

This challenge has motivated the development of post-selection inference techniques such

as simultaneous inference [BBB13, BPS20, KBB20] and selective inference [LSS16, CTT17,
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TT18]. A closely related approach calculates confidence intervals for coefficients of high-

dimensional linear models through bias-correction [GBR14, ZZ14, JM14]. Most of this lit-

erature, however, focuses on variable selection through the ℓ1-penalty. Extending these

strategies to more complicated penalties and constraints is not straightforward. Moreover,

caution is warranted when reporting these confidence intervals because their interpretation

(e.g., conditional on the selection event) can be quite different from traditional ones.

An alternative approach is to cast the problem in the Bayesian framework. For ex-

ample, [PC08] introduced the Bayesian lasso. In this work, the ℓ1-penalty was identified

with a Laplace prior and a Gibbs sampler was used to sample from the posterior distribu-

tion. This early work helped spark the development of Bayesian variable selection methods,

specifically alternative sparsity inducing prior distributions such as the spike-and-slab prior

[MB88, GM93], horseshoe prior [CPS10, PS10, PV17], the orthant normal prior [Han11],

the correlated Normal-Gamma prior [GB12, GB13], the generalized double Pareto prior

[ADL13], and the Dirichlet-Laplace prior [BPP15]. While there have been many innovations

in Bayesian techniques for variable selection, more general penalties and constraints beyond

sparsity require substantially more problem-specific analysis.

More recently, [Per16] and [DMP18] proposed the proximal Markov Chain Monte Carlo

(ProxMCMC) algorithm for quantifying uncertainty in Bayesian imaging applications where

the penalties of interest include the total-variation semi-norm [ROF92] and the ℓ1-norm. To

deal with the non-smoothness of these penalties, they employ the Moreau-Yosida envelope to

obtain a smooth approximation to the total-variation semi-norm and ℓ1-norm penalties. Sam-

ples from the smooth approximate posterior distribution can be generated via the Langevin

algorithm.

Their proposed approach opens the door to a potentially general and flexible framework

for performing posterior inference for penalized regression models whenever the penalty term

is convex and admits a proximal map which can be computed easily – a situation that holds

true for a wide variety of convex penalties. The fly in the ointment, however, is that their
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approach requires manually setting the regularization strength parameter ρ. This limitation

prevents the previous formulations of ProxMCMC from being a fully Bayesian framework

for generating posterior samples for many existing and more importantly potentially yet-to-

be-invented non-smooth penalties.

Contributions: In this chapter, we address this limitation and extend ProxMCMC

to be fully Bayesian by incorporating penalties and constraints through epigraph priors.

Our extended ProxMCMC inference framework is suitable for regularized or constrained

statistical learning problems and offers three main advantages.

First, it provides valid and automatic statistical inference even for problems that involve

non-smooth and potentially non-convex penalties or constraints. The inference for such

problems is traditionally considered difficult.

Second, it is fully Bayesian so that parameter tuning is not required, in contrast to

previous ProxMCMC methods [DMP18] where the regularization strength parameters are

either manually fixed or needs to be tuned.

Third, the method is highly modular in the sense that its components – model, prior,

proximal map, and sampling algorithm – are independent of each other and thus can be mod-

ified to accommodate new problems. This feature makes ProxMCMC easily customizable so

that practitioners can adapt it to their unique problems. For example, in analyzing compo-

sitional data from microbiome studies, one often needs to fit a lasso model where regression

coefficients sum to 0. Although such problems are difficult to tackle in a post-selection infer-

ence framework, as we will demonstrate later in Section 2.5.1, it is straightforward to solve

using our ProxMCMC method.

Finally, we put our ProxMCMC method on firm foundations by providing guarantees

on properness of the approximate posterior and show that the approximate posterior can be

made arbitrarily close to a target posterior in total-variation for both convex and non-convex

penalties and constraints.
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The rest of our chapter is organized as follows. Section 2 reviews concepts from convex

optimization that underlie the algorithmic building blocks of our ProxMCMC framework.

Section 3 illustrates our method using the familiar lasso problem. Section 4 summarizes the

key elements from our case study of the lasso to show how our ProxMCMC method can be

applied generally. Section 5 presents a variety of illustrative applications. Sections 6 and 7

provide theoretical guarantees and discussions respectively.

2.2 Background

We review concepts from convex analysis essential for ProxMCMC, specifically Moreau-

Yosida envelopes and proximal maps. For a more thorough review of proximal maps and their

applications in statistics and machine learning, we refer readers to [CW05, CP11, PSW15].

Recall in convex optimization it is often convenient to work with functions that map into

the extended reals, R̄ = R ∪ {∞}. The indicator function of a set C, denoted δC(x), is the

function that is zero for all x ∈ C and is infinity for all x ̸∈ C. When the set C is closed and

convex, the indicator function δC(x) of C is lower-semicontinuous and convex. A function g

is proper if it takes on a finite value for some element in its domain. Let Γ(Rm) denote the

set of all proper, lower-semicontinuous, convex functions from Rm into R̄. Let ∥x∥ denote

the Euclidean norm of a point x.

2.2.1 Moreau-Yosida Envelopes and Proximal Maps

Definition 1. Given g ∈ Γ(Rm) and a positive scaling parameter λ, the Moreau-Yosida

envelope of g, denoted by gλ, is given by

gλ(x) = inf
ω

{
g(ω) +

1

2λ
∥ω − x∥2

}
.

The infimum is always attained at a unique point when g ∈ Γ(Rm), and the minimizer

defines the proximal map of g.
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Definition 2. Given g ∈ Γ(Rm) and a positive scaling parameter λ, the proximal map of g,

denoted proxλg , is given by

proxλg (x) = argmin
ω

{
g(ω) +

1

2λ
∥ω − x∥2

}
.

The well known Huber function [Bec17, Example 6.54]

gλ(x) =


1
2λ
x2 if |x| ≤ λ

|x| − λ
2

otherwise

is the Moreau-Yosida envelope of the absolute value function g(x) = |x|. Figure 2.1 shows

g(x) and gλ(x) for three different λ values. We can see immediately from this familiar

example from robust statistics that the Moreau-Yosida envelope provides a differentiable

approximation to a non-smooth function where the approximation improves as λ gets smaller.

In general, the Moreau-Yosida envelope gλ(x) has several important properties. First,

gλ(x) is convex when g(x) is convex. Second, if g(x) is convex, then gλ(x) is always differ-

entiable even if g(x) is not, and its gradient can be expressed in terms of proxλg (x), namely

∇gλ(x) =
1

λ

[
x− proxλg (x)

]
. (2.1)

Moreover, ∇gλ(x) is λ−1-Lipschitz since proximal operators are firmly nonexpansive [CP11].

Finally and most importantly, gλ(x) converges pointwise to g(x) as λ tends to zero [RW09].

In summary, the Moreau-Yosida envelope of a non-smooth function g(x) is a Lipschitz-

differentiable, arbitrarily close approximation to g(x).

The closely related proximal maps play a prominent role in modern statistical learning

since many popular non-smooth penalties have unique proximal maps that either have ex-

plicit formulas or can be computed efficiently. For example, the proximal map of g(x) = ∥x∥1
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Figure 2.1: The Moreau-Yosida envelope of the absolute value function g(x) = |x|.
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is the celebrated soft-thresholding operator Sλ(x) defined by

Sλ(x)i =


xi − λ if xi > λ

0 if |xi| ≤ λ

xi + λ if xi < −λ.

(2.2)

When the function g is an indicator function δE of a set E , the proximal map proxλδE (x) is

the Euclidean projection operator onto the set E , namely

PE(x) = argmin
ω∈E

∥ω − x∥

for all λ > 0. Let dE(x) denote the Euclidean distance of the point x to the set E , namely

dE(x) = inf
y∈E
∥x− y∥,

then PE(x) is the point in E that is closest in Euclidean distance to the set x, namely

dE(x) = ∥x− PE(x)∥,

and the Moreau-Yosida envelope gλ(x) of g(x) = δE(x) is

gλ(x) =
1

2λ
d2E(x) =

1

2λ
∥x− PE(x)∥2.

2.2.2 Projections onto Epigraphs

The key algorithmic primitive in our ProxMCMC framework is the projection onto the

epigraph of a penalty function g(x), namely the set

E = epi(g) = {(x, α) : g(x) ≤ α}.

The Moreau-Yosida envelope of the indicator function g(x, α) = δE(x, α) of E = epi(g)

plays a central role in defining our Bayesian hierarchical model. The Moreau-Yosida envelope

of δE(x, α) is 1
2λ
d2E(x, α), which is jointly differentiable in x and α. Subsequently, we can
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assign α a prior to incorporate it into posterior inference. Computing with these priors relies

on projection onto epigraphs which we describe next.

Projection onto the epigraph of g(x, α) depends on the proximal map of g(x, α) [Bec17,

Theorem 6.36], namely

PE(x, α) =


(x, α) g(x) ≤ α(
proxλ

∗
g (x), α+ λ∗) g(x) > α

, (2.3)

where λ∗ is any positive root of the auxiliary function

F (λ) = g
(
proxλg (x)

)
− λ− α,

and can be found using bisection.

2.3 An illustrative case study

To introduce our framework, we first consider a canonical example: the lasso regression

[Tib96]

minimize
1

2
∥y −Xβ∥22 + ρ∥β∥1, (2.4)

where y ∈ Rn is a vector of continuous responses, X ∈ Rn×p is a design matrix whose

p columns are covariates, β ∈ Rp is the vector of regression coefficients that we seek to

estimate, and ρ is a nonnegative regularization strength parameter that trades off model fit

with sparsity in our estimate of β. To attack this problem in the ProxMCMC framework,

we first write the penalized form (2.4) in an equivalent constrained form

minimize
1

2
∥y −Xβ∥22

subject to ∥β∥1 ≤ α.

There is a one-to-one correspondence between the regularization strength parameter ρ and

the constraint parameter α. For this reason we will refer to α as the regularization strength
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parameter as well. We specify the following Bayesian hierarchical model for the constrained

formulation of the lasso:

• Data likelihood: Y | β, σ2 ∼ N(Xβ, σ2I),

• A prior π(σ2) for the variance: σ2 ∼ IG(rσ2 , sσ2), where IG(r, s) denotes the Inverse-

Gamma distribution with scale parameter r and shape parameter s (mean = r
s−1

for

s > 1),

• A prior π(β | α) for β conditional on α, namely

π(β | α) = p!

αp2p
exp [−δE(β, α)] ,

where E = {(β, α) : ∥β∥1 ≤ α} and p!
αp2p

is the reciprocal of the volume of E . Note

that π(β | α) is a flat prior over an ℓ1-ball of radius α.

• A prior π(α) on α that controls the ℓ1-regularization strength: α ∼ IG(rα, sα).

The distribution π(β, α) = π(β | α) · π(α) specifies a prior on the epigraph E = {(β, α) :

∥β∥1 ≤ α} ⊂ Rp+1. The posterior log-density takes the following form, up to an irrelevant

additive constant,

log π(β, σ2, α)

=−
(n
2
+ sσ2 + 1

)
log σ2 − ∥y −Xβ∥2 + 2rσ2

2σ2

− (sα + 1) logα− rα
α
− g(β, α),

where g(β, α) = δE(β, α).

The above posterior is not differentiable, but we can approximate it arbitrarily well with

a differentiable posterior. The key idea is to approximate the non-smooth function g(β, α)
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by its Moreau-Yosida envelope gλ(β, α). The smoothed posterior log-density is

log πλ(β, σ2, α)

=−
(n
2
+ sσ2 + 1

)
log σ2 − ∥y −Xβ∥2 + 2rσ2

2σ2

− (sα + 1) logα− rα
α
− gλ(β, α),

which, due to the smoothness of the Moreau-Yosida envelope gλ(β, α) [RW09], can be readily

sampled using any of a multitude of sampling algorithms for smooth log-densities. In this

work, we use Hamiltonian Monte Carlo (HMC) [Nea11] due to its efficiency and generality.

Since HMC works on unconstrained domains, we use the parameterization (β, log σ2, logα),

so

log πλ(β, log σ2, logα)

=−
(n
2
+ sσ2

)
log σ2 − ∥y −Xβ∥2 + 2rσ2

2σ2

− sα logα−
rα
α
− gλ(β, α).

We compare ProxMCMC to the Bayesian lasso on the diabetes data set in [EHJ04]. The

outcome is a quantitative measure of disease progression over a year, and the covariates are

age, sex, body mass index, average blood pressure, and six blood serum measurements. All

variables are standardized to have zero mean and unit variance. For the Bayesian lasso, we

use the blasso function from the R package monomvn [Gra19] with default parameters. We

show the results of the Bayesian lasso with and without using reversible jump MCMC (RJM-

CMC) to perform model selection. For ProxMCMC, we set λ = 0.001, σ2 ∼ IG(0.1, 0.1),

and α ∼ IG(1, 10 + 2). We also calculate the 95% selective inference confidence intervals

[LSS16] using the R package selectiveInference [TTT19]. Since this method requires

a model to be selected first, we use lasso with 10-fold cross-validation and choose the largest

regularization parameter such that the error is within 1 standard error of the minimum (the

lambda.1se option from the glmnet package). Figure 2.2 displays the interval estimates

of the regression coefficient computed by each method. We see that for null covariates, the
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credible intervals of the Bayesian lasso are narrower when model selection by RJMCMC

is used. This is because RJMCMC results in many exact zeros (75% in this example) in

the posterior sample, which reduce the variability and thus the width of credible intervals.

When RJMCMC is not used, the credible intervals of the null covariates become wider and

are similar to those obtained by the ProxMCMC method. The credible intervals for non-null

covariates are similar regardless of which method is used. The selective inference confidence

intervals have a different interpretation. The coverage guarantee is in the frequentist sense

and is conditional on the model being selected, so they are not directly comparable with

credible intervals. Nevertheless, it is interesting to note that two of the four intervals for the

selected variables are extremely wide.

2.4 Methodology

Having seen how to apply our ProxMCMC method in the special case of the lasso, we next

present the framework in greater generality. Our proposed ProxMCMC method consists of

three steps.

1. Likelihood and prior. The first step is to specify the likelihood model for the data

Y and priors for the model parameters. This is a standard step in Bayesian modeling. For

incorporating a penalty function g(x) with a regularization strength parameter α, we specify

a prior through an indicator function δE(x, α) on the epigraph set

E = {(x, α) : g(x) ≤ α}.

For example, in the lasso example where β was a vector of regression coefficients and α was

a regularization parameter, E = {(β, α) : ∥β∥1 ≤ α}.

Note that the regularization parameter α must be nonnegative and thus requires a prior

with nonnegative support. In our experience, placing an inverse Gamma prior on α works

well in practice and will be used throughout this chapter.
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Figure 2.2: The 95% credible intervals calculated by Bayesian lasso (bls) and ProxMCMC.

bls-RJ-T denotes that RJMCMC is used in computing the posterior samples of the Bayesian

lasso, while bls-RJ-F denotes results when RJMCMC is not used . Also shown are the 95%

selective inference confidence intervals (SelInf) for the four variables selected by the lasso

using 10-fold cross-validation.
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Figure 2.3: The ProxMCMC epigraph prior and two other commonly used shrinkage priors.

To gain a sense of how the ProxMCMC epigraph prior differs from existing alternatives,

consider the simple case where we put a ℓ1-penalty on a single parameter β, namely

E = {(β, α) : |β| ≤ α}.

With an IG(r, s) prior on α, the marginal density for β is

fβ(t) =

∫ ∞

|t|

1

2α
π(α)dα =

s

2r

[
1− FIG(r,s+1)(|t|)

]
,

where FIG(r,s+1)(|t|) is the cumulative distribution function of IG(r, s + 1) evaluated at |t|.

Figure 2.3 contrasts the prior densities of the ProxMCMC epigraph prior, Laplacian prior,

and horseshoe prior. We can see that the ProxMCMC epigraph prior density shrinks small

β while allowing strong signals to remain large.

In the multivariate case, when a vector of parameters β is penalized, e.g., E = {(β, α) :

∥β∥1 ≤ α}, the ProxMCMC epigraph prior enforces negative correlation among the com-

ponents of β. This repulsive feature distinguishes it from other Bayesian priors such as

the Laplacian or horseshoe prior, where components of β are independent of each other

conditional on the hyperparameter and marginally positively correlated.
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Besides incorporating penalties, our framework can also handle cases where we wish to

impose constraints. As before, we will enforce the constraints via an indicator function of

the constraint set.

Once the likelihood model and the priors are specified, we can write down the posterior.

Let θ ∈ Rd denote all model parameters, which includes the constrained or regularized

parameters τ ∈ Rp and all other parameters η ∈ Rq (so d = p+q) including the regularization

strength parameter α. Further let ℓ(θ) be the log-likelihood, π(η) denote the prior density

for η, and g(τ ) = δE(τ ), where E denotes either the constraint set or the epigraph set

depending on the problem. Note that if E is an epigraph set, then g is a function of both

τ and α, otherwise it is a function of τ alone. For simplicity, we will write g(τ ) unless it is

necessary to be more specific. The posterior density is given by

π(θ | Y ) =
e−U(θ)∫
e−U(s) ds

,

where U(θ) = f(θ) + g(τ ) and f(θ) = −ℓ(θ) − log π(η). The posterior π(θ | Y ) is not

differentiable because g(τ ) is not differentiable, but π(θ | Y ) can be smoothed by substituting

g(τ ) with its Moreau-Yosida envelope gλ(τ ) so that both Uλ(θ) = f(θ) + gλ(τ ) and

πλ(θ | Y ) =
e−Uλ(θ)∫
e−Uλ(s) ds

become smooth functions.

2. Gradient. We need to efficiently evaluate the gradient of the smoothed posterior

log-density. This is another standard step in Bayesian modeling, and for commonly used like-

lihood models and priors, the gradient can be computed numerically by auto-differentiation

in software packages such as Stan [Sta20] and Turing.jl [GXG18].

As noted earlier, the existence of the gradient of the Moreau-Yosida envelope gλ(τ ) de-

pends on the convexity of g(τ ) and thus of the convexity of the regularization term or con-

straint set E . When g(τ ) is convex, which is the case for many commonly used regularization

and constraints, proximal mappings have been extensively studied in the optimization liter-

ature [Bec17, Chapter 6] and efficient implementations are available from mature libraries
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such as FOM Matlab toolbox [BG19], Python package PyProximal, and Julia package

ProximalOperators.jl.

When g(τ ) is non-convex, gλ(τ ) is no longer differentiable. However, as we will show in

Section 2.5.4, under certain regularity conditions, gλ(τ ) will be semidifferentiable and we can

calculate a subgradient using the above formula and use it in place of gradient in gradient

based samplers.

3. Sampling algorithm. Finally, we invoke a gradient based sampling algorithm such

as HMC or the Langevin algorithm to efficiently explore the posterior landscape. Software

libraries include DynamicHMC.jl, AdvancedHMC.jl, and pyhmc, to name a few.

Remark: Before we proceed to examples, we pause to highlight ProxMCMC’s close con-

nection to distance majorization and proximal distance algorithms [CZL14, XCL17, KZL19,

LL21, LWL22, LPZ22]. Proximal distance algorithms are used to solve distance penalty

problems.

minimize f(θ) +
ρ

2
dE(θ)

2, (2.5)

where f(θ) is typically a negative log-likelihood term quantifying model fit, E is a target

constraint set that we wish our estimate of θ to be close to, and ρ is a nonnegative tuning

parameter that trades off model fit with the amount of constraint violation quantified as the

distance to E . A solution to (2.5) is a maximum a posteriori estimate under a distance-to-set

prior π(θ) ∝ exp(−ρ
2
dE(θ)

2). Thus, the ProxMCMC method that we introduce in this work

provides a fully Bayesian framework for generating posterior samples under a distance-to-

epigraph set prior.

2.5 Examples

We present four examples to illustrate the generality of ProxMCMC. Since the potential

applications of ProxMCMC are innumerable, our examples are not comprehensive. Nonethe-
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less, we chose these four examples because inference in these problems are either unknown

or regarded difficult.

2.5.1 Constrained lasso

The constrained lasso problem is formulated as

minimize
1

2
∥y −Xβ∥22 + ρ∥β∥1

subject to Aβ = b,

where A has full row-rank. The constrained lasso is relevant to the analysis of compositional

data, where the rows of A represents proportions of a whole and thus must sum to one.

The method has been applied in problems involving consumer spending in economics, topic

consumption of documents in machine learning, and the analysis of the human microbiome

[GKZ18, JPR20].

The ℓ1-penalization is reparameterized using an indicator function on the epigraph of the

ℓ1-norm

E1 = {(β, α) : ∥β∥1 ≤ α}.

The equality constraint is imposed through an indicator function on the hyperplane

E2 = {β : Aβ = b}.

We use an IG(rσ2 , sσ2) prior for σ2 and an IG(rα, sα) prior for α. Using the (β, log σ2, logα)

parameterization, the smoothed posterior log-density up to an irrelevant additive constant

is

log πλ(β, log σ2, logα)

=−
(n
2
+ sσ2

)
log σ2 − ∥y −Xβ∥2 + 2rσ2

2σ2

− sα logα−
rα
α
− gλ1 (β, α)− gλ2 (β),
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where gλ1 (β, α) and gλ2 (β) are the Moreau-Yosida envelopes of the indicator functions g1(β, α) =

δE1(β, α) and g2(β) = δE2(β), respectively. According to (2.3), the proximal map of g1(β, α)

is the projection onto the epigraph E1

proxλg1(β, α) =


(β, α) if ∥β∥1 ≤ α

(Sλ∗(β), α+ λ∗) if ∥β∥1 > α

,

where Sλ is the soft-thresholding operator given in (2.2) and λ∗ is any positive root of the

nonincreasing function ϕ(λ) = ∥Sλ(β)∥1 − λ − α [Bec17]. The proximal map of g2 is the

projection onto the hyperplane given by

proxg2(β) = β −AT (AAT )−1(Aβ − b),

assuming A has full row rank. The gradient of the posterior log-density is given block-wise

by

∂ log πλ

∂β
= σ−2XT (y −Xβ)− λ−1

[
β − proxλg1(β, α)β

]
−λ−1

[
β − proxλg2(β)

]
∂ log πλ

∂ log σ2
= −

(n
2
+ sσ2

)
+
∥y −Xβ∥2 + 2rσ2

2σ2

∂ log πλ

∂ logα
= −sα +

rα
α
− λ−1α[α− proxλg (β, α)α].

2.5.1.1 Simulated microbiome data

We illustrate our proxMCMC method for the constrained lasso using a simulated microbiome

data set. The 16S microbiome sequencing technology measures the number of various organ-

isms called operational taxonomic units (OTUs) in samples. For statistical analysis, counts

are normalized into proportions for each sample, resulting in a covariate matrix X with each

of its rows summing to 1. For identifiability, we need to have a sum-to-zero constraint on

the regression coefficients, i.e.,
∑

j βj = 0. We generate a data set with n = 300 samples and

p = 20 OTUs. We set β1 = 1, β2 = −1 and the remaining βj, j = 3, ..., 20, to 0 so that 10%
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of the entries in β are nonzero. The design matrix X is generated as follows. First, for each

element in X an i.i.d. sample from a uniform distribution (U[0,1]) is drawn. Second, the rows

of X are then scaled so that each row of X sums to 1. The noise is generated from a normal

distribution with mean 0 and σ = 0.1 so that the sample signal-to-noise ratio Var(Xβ)/σ2

is approximately 0.2. We use IG(0.1, 0.1) as a prior for σ2 and IG(1, p+1) as a prior for α,

set λ = 10−6, and ran HMC for 10,000 iterations. From Figure 2.6 (a), we can see that the

95% credible intervals provide good coverage for the first 10 coefficients; those for the other

coefficients are similar. Figure 2.6 (b) shows the histogram of posterior samples of
∑

j βj,

which is highly concentrated around 0.

2.5.2 Graphical lasso

Given i.i.d. p-dimensional observations {x1, ...,xn}, where xi ∼ N(0,Σ), the graphical lasso

method infers the underlying conditional dependencies among the covariates by estimating

the precision matrix Θ = Σ−1 through maximizing the regularized log-likelihood

−n

2
tr(SΘ) +

n

2
logdet(Θ)− ρ

∑
j ̸=k

|Θjk|,

where S is the sample covariance and ρ is the regularization strength parameter. Equiva-

lently, we can maximize

−n

2
tr(SΘ) +

n

2
logdet(Θ)− g(Θ, α),

where g(Θ, α) = δE(Θ, α) and E = {(Θ, α) :
∑

j ̸=k |Θjk| ≤ α}. The function g(Θ, α) can be

thought as a uniform prior for Θ over the ℓ1-ball {Θ :
∑

j ̸=k |Θjk| ≤ α}. With an IG(rα, sα)

prior for α, the smoothed posterior log-density of (Θ, logα) is

log πλ(Θ, logα) =− n

2
tr(SΘ) +

n

2
logdet(Θ)

− sα logα−
rα
α
− gλ(Θ, α).

Since HMC works on unconstrained domains and Θ needs to be positive definite, we param-

eterize Θ in terms of its lower Cholesky factor L. Adjusting for the log-Jacobian terms, the
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Figure 2.4: 95% credible intervals for the first 10 coefficients. Dots mark the truth.

Figure 2.5: Histogram of
∑

i βi.

Figure 2.6: Results from the simulated microbiome data
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smoothed posterior log-density becomes

log πλ(L, logα) =− n

2
tr(SLLT ) +

n

2
logdet(LLT )

− sα logα−
rα
α
− gλ(LLT , α)

+ p log(2) +

p∑
j=1

(p− j + 2)Ljj.

The gradients are given by

∇vechL log πλ = −
(
nvech(SL)

)T
+ n
(
vech(L−1)T

)T
−2

λ

(
vech

(
[Θ− proxλg (Θ, α)Θ]L

))T

+
(
vech

(
diag(p+ 1, p, ..., 2)

))T
∂ log πλ

∂ logα
= −sα +

rα
α
− λ−1α[α− proxλg (Θ, α)α],

where vech(A) denotes the vector obtained from stacking the columns of the lower triangular

part of a square matrix A.

2.5.2.1 Cytometry data

We compare ProxMCMC with the Bayesian graphical lasso [Wan12] on the cell-signalling

data from [SPP05], which was used in the original graphical lasso paper [FHT08]. The data

set contains flow cytometry measurements on p = 11 proteins and n = 7466 cells. We first

use the R package CVglasso to compute 5-fold cross-validated graphical lasso estimates for

Θ and use them as reference in the results below. For the Bayesian graphical lasso we use the

R package BayesianGLasso [Wan12]. We experimented with both the default prior and a

few other prior settings, but found little difference among them. Thus we report the results

using the default prior (Gamma distribution with shape parameter 1 and scale parameter

0.1). For ProxMCMC we use an IG(1, p + 1) prior for α and set λ = 0.01. We ran 10,000

iterations for both methods. Figure 2.7 displays the credible intervals. Due to the large

number of parameters, we only show the results for the first ten parameters in the plot, but
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Figure 2.7: Comparing the 95% credible intervals of Bayesian graphical lasso versus ProxM-

CMC on the cytometry data. Black dots are estimates obtained from 5-fold cross-validated

graphical lasso.

the same pattern is observed in other parameters. We can see that the ProxMCMC credible

intervals are consistently narrower and provide good coverage of the graphical lasso estimate,

whereas those provided by the Bayesian graphical lasso can be wide and fail to cover the

cross-validated estimates. Among all 66 parameters, all ProxMCMC credible intervals cover

the reference values whereas only 24% of the Bayesian graphical lasso credible intervals do.
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2.5.3 Matrix completion

Given a matrix Y with entries only observed on the set Ω = {(i, j) : yij is observed},

[MHT10] propose to complete the matrix by minimizing the convex objective function

1

2

∑
(i,j)∈Ω

(yij − xij)
2 + ρ∥X∥∗,

where ρ is a regularization strength parameter and ∥X∥∗ is the nuclear norm of the completed

matrix X. The nuclear norm is defined as ∥X∥∗ = ∥σ(X)∥1 =
∑

i σi(X), where σ1(X) ≥

· · · ≥ σm(X) ≥ 0 are the singular values of X. To put the problem into the ProxMCMC

framework, we assume vecY ∼ N(vecX, σ2I). Let E = {(X, α) : ∥X∥∗ ≤ α} and g(X, α) =

δE(X, α). With an IG(rσ2 , sσ2) prior for σ2 and an IG(rα, sα) prior for α, the smoothed

posterior log-density using the log σ2, logα parameterization is

log πλ(X, log σ2, logα)

=−
(
|Ω|
2

+ sσ2

)
log σ2 −

∑
(i,j)∈Ω(yij − xij)

2 + 2rσ2

2σ2

− sα logα−
rα
α
− gλ(X, α),

The proximal mapping of g(X, α) is the projection given by

proxλg (X, α)

=


(X, α) if ∥X∥∗ ≤ α

(Udiag(Sλ∗(σ(X)))V T , α+ λ∗) if ∥X∥∗ > α

,

where Sλ is the soft-thresholding operator defined in (2.2) and λ∗ is any positive root of the

nonincreasing function ϕ(λ) = ∥Sλ(σ(X))∥1−λ−α. The gradient of the smoothed posterior
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log-density is

∂ log πλ

∂X
= σ−2 [PΩ(Y )− PΩ(X)]

−λ−1[X − proxλg (X, α)X ],

∂ log πλ

∂ log σ2
= −

(
|Ω|
2

+ sσ2

)
+

∑
(i,j)∈Ω(yij − xij)

2 + 2rσ2

2σ2
,

∂ log πλ

∂ logα
= −sα +

rα
α
− λ−1α

[
α− proxλg (X, α)α

]
,

where PΩ(Y ) is the projection of Y onto the set of observed entries Ω, namely, the ij-th entry

of PΩ(Y )ij is yij for (i, j) ∈ Ω and is zero otherwise. Thus, the difference PΩ(Y ) − PΩ(X)

denotes the matrix of residuals of the observed entries.

2.5.3.1 Simulated matrix

We apply our method to a simulated matrix of size 250 × 200. The truth is generated by

Y = Y1Y2 + σE where Y1 (250 × 3), Y2 (3 × 200), and entries of E are generated from

the standard normal distribution and σ = 0.1. We randomly mask 20% of the entries (9853

missing) and apply ProxMCMC to calculate 95% credible intervals for the missing entries.

We use an IG(0.01, 0.01) prior for σ2 and an IG(1, 250 × 200 + 1) prior for α, and set

λ = 0.001. Figure 2.8 shows the 95% credible intervals for the first 20 missing entries and

we observe that the credible intervals cover the truth well. In fact, all 9853 missing entries

are covered by their credible intervals.

2.5.4 Sparse low rank matrix regression

We consider linear regression with matrix covariates, where the rank of coefficient matrix is

subject to regularization. One approach is to penalize the nuclear norm of the coefficient

matrix [ZL14], the ProxMCMC version of which is very similar to the matrix completion

example above because they share the same proximal map. Alternatively, one can constrain

the coefficient matrix to have a user-specified rank k [ZLZ13]. Here we explore the second
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Figure 2.8: 95% credible intervals and truth (dots) for the first 20 missing entries of the

simulated matrix.
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approach to illustrate the potential of ProxMCMC for problems where the regularization or

constraints are not convex.

Let yi be the response for the i-th sample. Further let Zi ∈ Rp and Xi ∈ Rq×r be the

vector and matrix covariates, respectively. The model is

yi = ZT
i γ + ⟨B,Xi⟩+ ϵi,

where γ and B are the vector and matrix coefficients, ⟨B,Xi⟩ = tr(BTXi) = ⟨vecB, vecXi⟩

is the inner product of the two matrices, and ϵi ∼ N(0, σ2). We fix rank(B) at a user-specified

value k through an explicit constraint δE1(B) where E1 = {B : rank(B) = k}. To promote

sparsity in B, we also incorporate δE2(B, α), where E2 = {(B, α) : ∥vecB∥1 ≤ α}. With a

flat prior on γ (i.e., π(γ) ∝ 1), an IG(rσ2 , sσ2) prior for σ2, and an IG(rα, sα) prior for α,

the smoothed posterior log-density is

log π(γ,B, log σ2, logα)

=−
∑n

i=1(yi −ZT
i γ − ⟨B,Xi⟩)2 + 2rσ2

2σ2

− (
n

2
+ sσ2) log σ2 − sα logα−

rα
α

− gλ1 (B)− gλ2 (B, α),

where gλ1 (B) and gλ2 (B, α) are the Moreau-Yosida envelopes of g1(B) = δE1(B) and g2(B, α) =

δE2(B, α). The proximal map of g1(B) is the projection onto the set E1 obtained by thresh-

olding the singular values of B. However, since gλ1 (B) is non-convex, the gradient formula

(2.1) for Moreau-Yosida envelope no longer holds. Instead, we resort to the subsmoothness

property of Moreau-Yosida envelopes, for which we need the following definitions [RW09].

Definition 3. (Prox-boundedness) A function g : Rn → R̄ is prox-bounded if there exists

λ > 0 such that its Moreau-Yosida envelope gλ > −∞ for some x ∈ Rn. The supremum of

the set of all such λ is the threshold λg of prox-boundedness for g.

In the ProxMCMC framework, we only need the Moreau-Yosida envelope of indicator
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functions, for which we have gλ(x) > −∞ for any λ > 0, so they are always prox-bounded

and the threshold λg =∞.

Definition 4. (Semidifferentiability) Let g : Rn → R̄ and x̄ be a point such that g(x̄) is

finite. If the (possibly infinite) limit

lim
τ↓0,w′→w

g(x̄+ τw′)− g(x̄)

τ

exists, it is the semiderivative of g at x̄ for w, and g is semidifferentiable at x̄ for w. If this

holds for every w, g is semidifferentiable at x̄.

By [RW09, Example 10.32], if g(x) is lower-semicontinuous, proper, and prox-bounded

with threshold λg, then for λ ∈ (0, λg), the Moreau-Yosida envelope gλ(x) is semidifferen-

tiable and the subgradient set is

∂gλ(x) ⊂ λ−1
[
x− proxλg (x)

]
.

The function g1(B) = δE1(B) satisfies the above conditions, so we can calculate its

subgradient using the above formula and use it in place of the gradient in HMC

∂ log π

∂γ
= σ−2

∑
i

(yi −ZT
i γ − ⟨B,Xi⟩)Zi,

∂ log π

∂B
= σ−2

∑
i

(yi −ZT
i γ − ⟨B,Xi⟩)Xi

−λ−1
[
B − proxλg1(B)

]
−λ−1

[
B − proxλg2(B, α)B

]
,

∂ log π

∂ log σ2
= −

(n
2
+ sσ2

)
+

∑n
i=1(yi −ZT

i γ − ⟨B,Xi⟩)2 + 2rσ2

2σ2
,

∂ log π

∂ logα
= −sα +

rα
α
− λ−1α

[
α− proxλg2(B, α)α

]
.

Since gλ1 (B) is non-convex, proxλg1(B) is not unique. Our approach is to pick an arbitrary

element in the proximal map set, which works well in practice.
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2.5.4.1 Detecting the cross-shaped signal

We illustrate the method on a simulated data of cross-shaped signal. The mean responses are

µi = ZT
i γ + ⟨B,Xi⟩, where Zi ∈ R2 and Xi ∈ R16×16 and their entries are generated from

i.i.d. standard normal. We set γ = (1, 1)T and B to have a cross shape (Figure 2.12(a)),

where the white cross entries equal 1 and the rest 0. The response yi equals µi + ϵi, where

ϵi (i = 1, ..., n and n = 100) are also generated from independent standard normal. We use

an IG(0.01, 0.01) prior for σ2 and an IG(
∑

i σ(B0)i, 2) prior for α, where σ(B0)i is the i-th

singular value of B0 and B0 is the initial estimate of B obtained by least squares without

regularization or constraints. We set the Moreau-Yosida envelope parameter λ = 0.001.

Figure 2.12 shows the true signal B (panel (a)), the posterior mean from 10,000 HMC

samples (panel (b)), and the standard error (panel (c)). Due to space limitations, we only

show the 95% credible intervals of the 8-th column of B (Figure 2.13), but all entries of B

are covered by their 95% credible intervals.
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2.6 Theoretical properties

This section presents theoretical results for the ProxMCMC method. The proofs simplify

those in [DMP18] because we focus on the Moreau-Yosida envelope of indicator functions.

Our proofs, however, extend to non-convex settings while [DMP18] assume convexity. As

defined in Section 2.4, θ ∈ Rd represents all model parameters that include both the con-

strained or regularized parameters τ ∈ Rp and other parameters η ∈ Rq. We also use ℓ(θ)

for the log-likelihood and π(η) for the prior density of η. Our main theoretical results are

summarized as follows:

Proposition 1. (1) For any λ > 0, the smoothed posterior πλ(θ | Y ) defines a proper

density of a probability measure on Rd, so

0 <

∫
Rd

e−Uλ(θ) dθ <∞.

(2) The approximation πλ(θ | Y ) converges to π(θ | Y ) in total-variation as λ ↓ 0, i.e.,

lim
λ↓0
∥πλ(θ | Y )− π(θ | Y )∥TV = 0.

Proof. (Posterior properness) The properness of the smoothed posterior πλ(θ | Y ) follows

from the fact that the Moreau-Yosida envelope of an indicator function is always nonnegative.

Specifically, when g = δE(τ ),

gλ(τ ) =
1

2λ
dE(τ )

2 ≥ 0,

where dE(τ ) = infy∈E d(τ ,y) is the distance from τ to E , so −Uλ(θ) = −f(θ) − gλ(τ ) ≤

−f(θ), from which we have

e−Uλ(θ) ≤ e−f(θ).

Since f(θ) = −ℓ(θ) − log π(η) and both the likelihood and the priors π(η) are integrable

(note that η does not include constrained parameters), we have the desired result.

(Convergence in total-variation) Let c =
∫
e−U(s) ds and cλ =

∫
e−Uλ(s) ds. Since gλ(x)

uniformly bounds g(x) from below, i.e., gλ(x) ≤ g(x) for all x [RW09], we have Uλ(x) ≤
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Figure 2.9: True Signal

Figure 2.10: Posterior Mean

Figure 2.11: Standard Error

Figure 2.12: Proximal MCMC for sparse low rank matrix regression on the cross-shaped

data.
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Figure 2.13: 95% credible intervals of the eighth column of the cross-shaped signal. X-axis

indicates their position in vec(B). Dots mark the truth.
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U(x) and thus cλ ≥ c. Note that

∥πλ − π∥TV

=

∫
|πλ(x)− π(x)| dx

=

∫
πλ≥π

[
πλ(x)− π(x)

]
dx

+

∫
πλ<π

[
π(x)− πλ(x)

]
dx.

Let A1 =
{
x : πλ ≥ π

}
and A2 =

{
x : πλ < π

}
,∫

A1

[
πλ(x)− π(x)

]
dx

=

∫
A1

πλ(x)

[
1− π(x)

πλ(x)

]
dx

=

∫
A1

πλ(x)
[
1− cλ

c
eg

λ(x)−g(x)
]
dx

≤
∫
A1

[
πλ(x)− eg

λ(x)−g(x)πλ(x)
]
dx

≤ 1− c

cλ
,

and ∫
A2

[
π(x)− πλ(x)

]
dx

=

∫
A2

π(x)

[
1− πλ(x)

π(x)

]
dx

=

∫
A2

π(x)

[
1− c

cλ
eg(x)−gλ(x)

]
dx

≤
∫
A2

π(x)

[
1− c

cλ

]
dx

≤ 1− c

cλ
.

So ∥πλ−π∥TV ≤ 2(1− c
cλ
). By [RW09], when g(x) is proper, lower-semicontinuous, and prox-

bounded with threshold λg > 0, gλ(x) converges pointwise to g(x) as λ ↓ 0. Moreover, since

gλ(x) is pointwise non-decreasing as λ decreases, by the monotone convergence theorem,
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limλ↓0 cλ = c. Thus

lim
λ↓0
∥πλ − π∥TV ≤ lim

λ↓0
2

(
1− c

cλ

)
= 0.

We remark that convergence in total-variation only holds when c ̸= 0, which is violated in

the presence of equality constraints. Thus the constrained lasso and sparse low rank matrix

regression examples do not enjoy this property.

2.7 Discussion

Our examples demonstrate that the ProxMCMC method is a highly flexible tool for per-

forming statistical inference on regularized or constrained statistical learning problems. We

find that it works well when the regularization or constraints are non-smooth and even non-

convex. In addition, by adopting epigraph priors, our method is fully Bayesian, eliminating

the need for tuning the regularization parameter.

For the Moreau-Yosida envelope parameter λ, a smaller value leads to better satisfaction

of the constraints. For example, the histogram of
∑

j βj from the microbiome example is

more concentrated around 0 when λ is smaller. Extremely small λ, however, renders slow

mixing of the sampling algorithm. We recommend using smaller λ when computational

resources allow. Setting λ = 0.001 works in most applications as the examples show.

Finally, we emphasize that the four examples are meant to whet readers’ appetites, not

to satiate them. As we mentioned before, the ProxMCMC algorithm is highly modular and

can be readily extended to other problems. We hope this work encourages readers to discover

new applications of the ProxMCMC algorithm.
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CHAPTER 3

Improved Estimation Equations for Semiparametric

Censored Linear Regressions

3.1 Introduction

This work aims to address two problems that arise frequently in epidemiological and genetic

studies. The first one is how to estimate associations between covariates and an outcome

whose values are likely altered through the use of medications. For example, patients on

anti-hypertensive medications are likely to have lower blood pressure measurements. Other

examples include diabetic patients on glucose-lowering medications and hyperlipidemic pa-

tients on lipid-lowering medications. For patients on medications, we only observe the treated

outcome. However, in many cases the scientific interests lie in the “untreated" outcome. For

example, for studying associations with covariates such as gender and genetics, which are

present before medication use, the “untreated" outcome is clearly of interest. Several publi-

cations have shown that if we simply ignore medication use, exclude those on medication, or

adjust for medication use in regression models, the results would be invalid in most practical

situations [WCM94, Coo97, WKC03, TSS05]. [MKH08] proposes an alternative approach of

parametrically imputing the “untreated" value as a function of the observed treated value,

dose, and type of medication, and then accounting for the variability induced by estimation

through multiple imputation. While this method improves upon more naive approaches, it

is more difficult to use because it requires two steps and may pose computational difficulties

for large data sets.
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The second problem is how to perform variance quantitative trait loci (vQTL) analysis

on right-censored traits. The medication-use example can be considered right-censored and

thus falls into this category. Other examples include time to event outcomes such as time

to cardiovascular disease in diabetic patients [BG07]. The importance of vQTL analysis is

highlighted by its direct applicability to inferring gene-by-environment interactions (GEI)

[YLP12, WZZ19, WMG22], which is a fundamental component in understanding complex

trait variation, and yet is challenging to identify due to the difficulty of measuring environ-

mental exposures. The advantage of vQTL is that it works even if we do not have environ-

mental exposure data. In fact, we do not even need a target environmental factor. For quanti-

tative traits that are not subject to censoring, [RV12] provides a good summary of both para-

metric [Bar37, BF74, FK76] and nonparametric methods [CWB14, RFF10, RV11, Smy89]

for detecting vQTL. For quantitative traits that are right-censored, however, we are not

aware of any methods or software packages that can perform vQTL analysis.

To address these problems, we adopt the synthetic variable approach proposed by [KSV81],

[Leu87], and [Zhe08]. The synthetic variable approach for censored linear regression enjoys

simplicity and robustness, but in practice may suffer from low estimation efficiency. To im-

prove efficiency, [LL09] proposes a weighted least squares (WLS) method which estimates the

conditional variance of the synthetic data nonparametrically, and then applies the standard

WLS principle in the estimation procedure. This work extends the previous one in two di-

rections. First, we derive the second moment synthetic variables and use them to construct

a quadratic estimation equation (QEE) for modeling the potentially heterogeneous noise

variances among subjects. Second, using the initial estimate of β from classical synthetic

variable approach and σ2 from QEE, we compute the working variances of synthetic vari-

ables, which are then used to construct more efficient estimation equations. This procedure

is iterated to obtain more accurate estimates.

The next section gives a detailed account of our methodology, followed by preliminary

simulation results.
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3.2 Method

Consider the linear model

yi = xT
i β + ϵi, i = 1, ..., n (3.1)

where β ∈ Rp denotes the regression parameters for the mean, ϵi’s are independent with

mean zero and variance σ2
i , and the responses yi are subject to potential censoring. In the

right-censoring case, the observed data is (ỹi, δi), i = 1, . . . , n, where ỹi = min{yi, ci} is the

observed value and δi = I(yi ≤ ci) is the censoring indicator. We assume the distribution G

of the censoring times ci is known (will be relaxed later) and independent of yi and xi. The

variance of yi is further modeled by

Varyi = σ2
i = g(τ ,wi), (3.2)

where τ ∈ Rq denotes the regression coefficients for the variance and W = [w1, ...,wn]
T is

an n× q design matrix with the first column being a vector of ones. The function g can take

on forms such as g(τ ,wi) = exp(wT
i τ ).

There is a long history on estimating the unknown regression parameters β using syn-

thetic variables. The idea is to construct surrogate responses y∗i that are unbiased for estimat-

ing yi, i.e., E y∗i = E yi, and then perform regression analysis using the surrogate responses.

[KSV81] proposes the inverse probability-weighted synthetic variables

y∗i =
δiỹi

1−G(ỹi−)
, (3.3)

which we refer to as the KSvR synthetic variable in the rest of the chapter and may be the

most widely used in literature. [Leu87] proposes an improved synthetic variable

y∗i =

∫ ỹi

0

1

1−G(t−)
dt. (3.4)

Independent of [Leu87], [Zhe87] proposes a general framework

y∗i = δiφ1(ỹi) + (1− δi)φ2(ỹi), (3.5)
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which includes (3.3) and (3.4) as special cases. The functions φi, i = 1, 2, are chosen to

satisfy E(y∗ | y) = y almost surely. [Zhe87] shows that the Leurgans synthetic variables

(3.4) have smaller variance than (3.3). Asymptotic normality of coefficient estimate β̂ is

established in [Zho92, LYZ95].

[BJ79] proposes an iterative procedure based on

y∗i = δiỹi + (1− δi)

[
xT
i β +

∫∞
(ỹi−xT

i β)+
s dF (s)

1− F (ỹi − xT
i β)

]

where F is the assumed distribution function for ϵi. Note that E[E(yi | δi, ỹi,xi) | xi] =

E(yi | xi) = xT
i β since we assume ci ⊥ yi | xi and ϵi ⊥ xi. When F is unknown, we replace it

by the Kaplan-Meier estimate F̂ based on (ỹi−xT
i β, δi). Compared to the synthetic variable

approach, Buckley-James estimator only requires conditional independence ci ⊥ yi | xi and

thus is more reliable in real applications [MH82]. However, the Buckley-James procedure

may not converge to a consistent root of the estimation equation and needs to be carefully

initialized from a consistent estimate [JLY06]. Furthermore, the Buckley-James procedure

cannot handle left- and interval-censored data and generalization to more complex models

such as heterogeneous variances is not straightforward.

3.2.1 M-Estimators

To estimate model parameters from (3.1) and (3.2), we propose M-estimators of the form

β̂ = argmin
β

n∑
i=1

wi1(y
∗
i1 − xT

i β)
2 (3.6)

τ̂ = argmin
τ

n∑
i=1

wi2[ϵ
∗
i2 − g(τ ,wi)]

2, (3.7)

where y∗i1 and ϵ∗i2 are the synthetic variables satisfying E y∗i1 = E yi and E ϵ∗i2 = E ϵ2i , respec-

tively. The weights wi1 > 0 and wi2 > 0 are inverse of the working variances of y∗i1 and ϵ∗i2.

To use (3.6) and (3.7), we start with uninformative weights w2
i1 ≡ w2

i2 ≡ 1. Equation (3.6)

reduces to the classical synthetic variable approach, which produces an initial estimator β̂
(1)
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and fitted values η̂
(1)
i1 = xT

i β̂
(1)

. By calculating the residuals ϵi = ỹi − η̂
(1)
i1 and its second

moment synthetic variables ϵ∗i2, we can obtain an initial estimate τ̂ (1) from (3.7) through

nonlinear least squares.

From here, we would like to calculate the working variances of synthetic variables y∗i1

and ϵ∗i2, and set weights wi1 and wi2 to be their inverses, which are used in estimation

equations (3.6) and (3.7) for improved efficiency. But to calculate the working variances, we

first need to estimate the distribution of ϵi. Since ϵ1, ..., ϵn are not identically distributed, we

cannot directly use the Kaplan-Meier estimator (KME). Instead, let ϵ0i = ϵi/
√

g(τ ,wi), then

Varϵ0i = 1 and ϵ01, ..., ϵ0n are independent and identically distributed, and have a common

distribution function F0(t) = P (ϵ0i ≤ t) that can be estimated using KME.

Our estimation strategy can be iterated. We will use superscript, β̂
(k)

and τ̂ (k), to

indicate the estimates after k rounds of estimation. In the next sub-section, we derive

synthetic variables y∗i1, ϵ∗i2, and their working variances.

3.2.2 Synthetic variables

To enable the estimation procedure, we construct both first and second moment synthetic

variables and derive explicit expressions for their variances. We assume yi ∈ R, in contrast

to most papers assuming yi > 0. We follow the [Zhe87] framework (3.5) because of its

generality. The subscripts 1 and 2 in y∗i1 and ϵ∗i2 are used to differentiate between the first

and second moment synthetic variables.

For the first moment synthetic variable based on the observed response, let

y∗i1 = δiφ1(ỹi) + (1− δi)φ2(ỹi). (3.8)

The condition

E(y∗i1 | yi) = EG[δiφ1(ỹi) + (1− δi)φ2(ỹi) | yi]

= [1−G(yi−)]φ1(yi) +

∫ yi−

−∞
φ2(t) dG(t) = yi (3.9)
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for all yi ensures the unbiasedness E y∗i1 = EE(y∗i1 | yi) = E yi. Assuming G is continuous

with density g and differentiability of φ1, condition (3.9) can be written as a differential

equation

[1−G(yi−)]φ′
1(yi)− g(yi−)φ1(yi) + g(yi−)φ2(yi−) = 1. (3.10)

The variance of synthetic variable (3.8) is

Vary∗i1 = E(y∗i1 − E yi)
2 = E(y∗i1 − yi + yi − E yi)

2 = Varyi + E(y∗i1 − yi)
2,

where the cross term vanishes because

E(y∗i1 − yi)(yi − E yi) = EE[(y∗i1 − yi)(yi − E yi) | yi] = E{(yi − E yi)E[(y∗i1 − yi) | yi]} = 0.

This expression shows y∗i1 always have larger variance than yi; this is the price we pay without

observing all yi.

For the second moment synthetic variable based on residuals

ϵ∗i2 = δiφ1(ϵ̃i) + (1− δi)φ2(ϵ̃i), (3.11)

since

E(δiϕ1(ϵ̃i) | ϵi) = EG[δiϕ1(ϵi) | ϵi]

= ϕ1(ϵi)

∫
I{yi−xT

i β≤t−xT
i β}dG(t)

= ϕ1(ϵi)[1−G(ϵi + xT
i β−)],

E[(1− δi)ϕ2(ϵ̃i) | ϵi] = EG[(1− δi)ϕ2(ci − xT
i β) | ϵi]

=

∫ ∞

−∞
I{t−xT

i β<ϵi}ϕ2(t− xT
i β)dG(t)

=

∫ ϵi+xT
i β−

−∞
ϕ2(t− xT

i β)dG(t),

so

E[δiϕ1(ϵ̃i) + (1− δi)ϕ2(ϵ̃i) | ϵi] = ϕ1(ϵi)[1−G(ϵi + xT
i β−)] +

∫ ϵi+xT
i β−

−∞
ϕ2(t− xT

i β)dG(t).
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The unbiasedness condition E(ϵ∗i2 | ϵi) = ϵ2i dictates that

ϕ1(ϵi)[1−G(ϵi + xT
i β−)] +

∫ ϵi+xT
i β−

−∞
ϕ2(t− xT

i β)dG(t) = ϵ2i

for all ϵi, which leads to the differential equation

ϕ′
1(ϵi)[1−G(ϵi + xT

i β−)]− ϕ1(ϵi)g(ϵi + xT
i β−) + ϕ2(ϵi−)g(ϵi + xT

i β−) = 2ϵi.

The variance of the second moment synthetic variable ϵ∗i2 is

Varϵ∗i2 = Varϵ2i + E(ϵ∗i2 − ϵ2i )
2 = E(ϵ∗i2)2 − (E ϵ2i )

2.

Since (ϵ∗i2)
2 = δiϕ

2
1(ϵ̃i) + (1− δi)ϕ

2
2(ϵ̃i),

E δiϕ
2
1(ϵ̃i) = E

[
ϕ2
1(ϵi)

∫
I{yi−xT

i β≤t−xT
i β}dG(t)

]
= Eϕ2

1(ϵi)[1−G(ϵi + xT
i β−)]

E(1− δi)ϕ
2
2(ϵ̃i) =

∫
R
ϕ2
2(t− xT

i β)

∫ ∞

t−xT
i β

dFi(s)dG(t)

=

∫
R
ϕ2
2(t− xT

i β)(1− Fi(t− xT
i β))dG(t),

so

Varϵ∗i2 = Eϕ2
1(ϵi)[1−G(ϵi + xT

i β)] +

∫
R
ϕ2
2(t− xT

i β)(1− Fi(t− xT
i β))dG(t)− (E ϵ2i )

2.

Next we focus on two specific types of synthetic variables that are commonly used in practice.

3.2.2.1 KSvR

If we choose φ2 ≡ 0, then the unbiasedness condition (3.9) dictates φ1(ỹi) = ỹi/[1−G(ỹi−)].

The variance of the synthetic variable y∗i1 = δiỹi/[1−G(ỹi−)] is

Vary∗i1 = E y2i [1−G(yi−)]−1 − (E yi)
2

= Varyi + E
G(yi−)

1−G(yi−)
y2i

= Varyi +

∫
G(xT

i β + s−)
1−G(xT

i β + s−)
(xT

i β + s)2dFi(s).
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where Fi(s) = P (ϵi ≤ s) is the distribution function of ϵi. Due to heteroscedasticity, ϵ1, ..., ϵn

are independent but not identically distributed. To estimate Fi(s), we first calculate ϵ0i =

ϵi/
√

g(τ ,wi) so that ϵ01, ..., ϵ0n are independent and identically distributed. Then we can

estimate the distribution function F0(s0) of ϵ0i using the Kaplan-Meier estimator. Since s

and s0 are related through s = s0
√
g(τ ,wi), we have

Fi(s) = P (ϵi ≤ s) = P (ϵ0i
√

g(τ ,wi) ≤ s0
√
g(τ ,wi)) = P (ϵ0i ≤ s0) = F0(s0).

The above variance formula generalizes [KSV81] and Example 2 in [Zhe87] to the case yi ∈ R.

For the second moment synthetic variable, setting ϕ2(ϵ̃i) ≡ 0 gives

ϕ′
1(ϵ̃i) =

ϕ1(ϵ̃i)g(ϵ̃i + xT
i β−)

1−G(ϵ̃i + xT
i β−)

+
2ϵ̃i

1−G(ϵ̃i + xT
i β−)

,

so

ϕ1(ϵ̃i) =
ϵ̃2i

1−G(ϵ̃i + xT
i β−)

.

Substituting ϕ2(t) = 0 and ϕ1(ϵi) =
ϵ̃2i

1−G(ϵ̃i+xT
i β−)

into Varϵ∗i2 gives

Varϵ∗i2 = E
ϵ4i

1−G(xT
i β + ϵi−)

− E ϵ4i + E ϵ4i − (E ϵ2i )
2

= Varϵ2i + E
G(xT

i β + ϵi−)
1−G(xT

i β + ϵi−)
ϵ4i

= Varϵ2i +

∫
G(xT

i β + s−)
1−G(xT

i β + s−)
s4dFi(s).

3.2.2.2 Leurgans

If we enforce φ1 ≡ φ2 = φ, then the differential equation (3.10) simplifies to φ′
1(ỹi) =

φ′
2(ỹi) = 1/[1−G(ỹi−)]. Thus φ(ỹi) = ỹi+

∫ ỹ−
−∞ G(t)/[1−G(t)] dt, which generalizes [Leu87]

and [Zhe87, Example 3] to the case yi ∈ R. Intuitively, we compensate a larger observed

value by a larger positive quantity because it is more likely to be right-censored. We require

F−1(1) < G−1(1), otherwise the integral becomes infinity. The variance of the synthetic
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variable y∗i1 = ỹi +
∫ ỹi
−∞ G(t)/[1−G(t)] dt is

Vary∗i1 = Varyi + 2

∫ ∞

G−1(0)

[1− Fi(s)][φ(s)− s] ds

= Varyi + 2

∫ ∞

G−1(0)

[1− Fi(s)]

∫ xT
i β+s

−∞

G(t)

1−G(t)
dt ds.

See Supplementary Materials section 3.5.1 for derivation details. When yi > 0, we recover

the variance formula given in [Zhe87, Example 3].

For the second moment synthetic variable, setting ϕ1 = ϕ2 = ϕ gives

ϕ′(ϵ̃i) =
2ϵ̃i

1−G(ϵ̃i + xT
i β−)

,

so

ϕ(ϵ̃i) = ϵ̃2i +

∫ ϵ̃i+xT
i β−

−∞

2(t− xT
i β)G(t)

1−G(t)
dt.

The working variance is

Varϵ∗i2 = Varϵ2i + 4

∫ ∞

G−1(0)−xT
i β

[1− F (s)]s(ϕ(s)− s2)ds.

A detailed derivation is given in Supplementary Materials section 3.5.1. We can evaluate the

second term as

4

∫ ∞

G−1(0)−xT
i β

[1− Fi(s)]s(ϕ(s)− s2)ds

= 4

∫ ∞

G−1(0)−xT
i β

[1− Fi(s)]s
(∫ s+xT

i β

−∞

2tG(t)

1−G(t)
dt− 2xT

i β

∫ s+xT
i β

−∞

G(t)

1−G(t)
dt
)
ds

= 4

∫ ∞

G−1(0)−xT
i β

[1− Fi(s)]s

∫ s+xT
i β

−∞

2tG(t)

1−G(t)
dtds

−8xT
i β

∫ ∞

G−1(0)−xT
i β

[1− Fi(s)]s

∫ s+xT
i β

−∞

G(t)

1−G(t)
dtds.

3.2.3 Inference

For the mean parameter β, the asymptotics in [LYZ95] can be directly applied. Asymptotic

covariance of β̂ is estimated by a sandwich estimator of form A−1
n BnA

−1
n . For the KSvR
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synthetic variable,

An =
1

n

n∑
i=1

wi1xix
T
i ,

Bn =
1

n

n∑
i=1

wi1(y
∗
i1 − xT

i β)
2xix

T
i

− 1

n

n∑
j=1

{
−1

Yn(ỹj)−∆Nn(ỹj)

n∑
i=1

wi1y
∗
i1xiI(ỹi > ỹj)

}⊗2( n∑
i=1

I(ỹi > ỹj)

)
∆Nn(ỹj)

Yn(ỹj)
,

where Yn(s) =
∑n

i=1 I{ϵ̃i≥s} is the number of subjects who survive just before time s (natrisk),

Nn(s) is the number of failures that occurred by time s, and ∆Nn(s) = Nn(s) −Nn(s−) =∑n
i=1 I{ϵ̃i≤s,δi=0} is the number of failures that occur at time s (nevents). For the Leurgans

synthetic variable, we replace Bn by

Bn =
1

n

n∑
i=1

wi1(y
∗
i1 − xT

i β)
2xix

T
i

− 1

n

n∑
j=1

{
1

Yn(ỹj)−∆Nn(ỹj)

n∑
i=1

wi1δixi(ỹi − ỹj)

1− Ĝn(ỹi)

}⊗2( n∑
i=1

I(ỹi > ỹj)

)
∆Nn(ỹj)

Yn(ỹj)

3.3 Simulations

We perform a simulation study to evaluate the estimation accuracy of our proposed method.

Nonintercept entries of X are generated from independent standard normal. Nonintercept

entries of W include both a binary variable (∼ Bernoulli(0.5)) and a standard normal

variable. The binary variable is standardized before model-fitting to improve the stabil-

ity of estimation. The true regression coefficients are βtrue = (1.5, 1.0,−0.5, 0.1, 0) and

τ true = (−0.5,−0.1, 0). We vary sample size N ∈ {500, 2000, 5000} and censoring rate

∈ {0.1, 0.25, 0.5, 0.75}. Each simulation scenario was run on 200 replicates. The weighted

estimates are obtained after five rounds of weighting. Figure 3.1 and 3.2 show the mean

squared error (MSE) of parameter estimates under different scenarios. We can see a sig-

nificant improvement in MSE for the weighted estimates and the difference is especially

pronounced for higher censoring rates and larger sample sizes.
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Figure 3.1: Mean squared error of mean parameters β
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Figure 3.2: Mean squared error of variance parameters τ .
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3.4 Conclusion

We have developed a synthetic variable based method for analyzing right censored data. Our

method accommodates heteroscedasticity, allows the variance to be explicitly modeled, and

uses iterative weighting to improve the estimation efficiency.
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3.5 Supplementary Materials

3.5.1 Working variance for Leurgans Synthetic Variable

Vary∗1 = Vary + E(y∗1 − yi)
2

= Vary +

∫ ∞

−∞
[1−G(yi)]φ

2(yi) dF (yi)

+

∫ ∞

−∞
[1− F (s)]φ2(s) dG(s)− E y2

= Vary + [1−G(yi)]φ
2(yi)F (yi) |∞−∞ −

∫ ∞

−∞
[1−G(s)]2φ(s)φ′(s)F (s) ds

+

∫ ∞

−∞
g(s)φ2(s)F (s) ds+

∫ ∞

−∞
φ2(s) dG(s)−

∫ ∞

−∞
g(s)φ2(s)F (s) ds− E y2

= Vary −
∫ ∞

−∞
2φ(s)F (s) ds+

∫ ∞

−∞
φ2(s) dG(s)− E y2

= Vary −
∫ 0

−∞
2φ(s)F (s) ds−

∫ ∞

0

2φ(s)F (s) ds

+

∫ 0

−∞
φ2(s) dG(s)−

∫ ∞

0

φ2(s) d[1−G(s)]

+

∫ 0

−∞
2sF (s) ds−

∫ ∞

0

2s[1− F (s)] ds

= Vary −
∫ 0

−∞
2φ(s)F (s) ds−

∫ ∞

0

2φ(s)F (s) ds

+φ2(s)G(s) |0−∞ −
∫ 0

−∞
2φ(s)

G(s)

1−G(s)
ds− φ2(s)[1−G(s)] |∞0 +

∫ ∞

0

2φ(s) ds

+

∫ 0

−∞
2sF (s) ds−

∫ ∞

0

2s[1− F (s)] ds

= Vary −
∫ 0

−∞
2φ(s)F (s) ds−

∫ 0

−∞
2φ(s)

G(s)

1−G(s)
ds+

∫ 0

−∞
2sF (s) ds

+φ2(0)−
∫ ∞

0

2φ(s)F (s) ds+

∫ ∞

0

2φ(s) ds−
∫ ∞

0

2s[1− F (s)] ds

= Vary −
∫ 0

G−1(0)

2φ(s)F (s) ds−
∫ 0

G−1(0)

2φ(s)

[
1

1−G(s)
− 1

]
ds

+

∫ 0

G−1(0)

2sF (s) ds+ φ2(0)−
∫ ∞

0

2φ(s)F (s) ds+

∫ ∞

0

2φ(s) ds

−
∫ ∞

0

2s[1− F (s)] ds
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= Vary +

∫ 0

G−1(0)

2[1− F (s)]φ(s) ds−
∫ 0

G−1(0)

2φ(s)φ′(s) ds+

∫ 0

G−1(0)

2sF (s) ds

+φ2(0) + 2

∫ ∞

0

[1− F (s)][φ(s)− s] ds

= Vary +

∫ 0

G−1(0)

2[1− F (s)]φ(s) ds− φ2(s) |0G−1(0) +

∫ 0

G−1(0)

2sF (s) ds

+φ2(0) + 2

∫ ∞

0

[1− F (s)][φ(s)− s] ds

= Vary +

∫ 0

G−1(0)

2[1− F (s)]φ(s) ds+

∫ 0

G−1(0)

2sF (s) ds−
∫ 0

G−1(0)

2s ds

+2

∫ ∞

0

[1− F (s)][φ(s)− s] ds

= Vary + 2

∫ ∞

G−1(0)

[1− F (s)][φ(s)− s] ds

When y > 0, we recover the variance formula given in [Zhe87, Example 3]: Vary+ 2
∫∞
0
[1−

F (s)][φ(s)− s] ds.
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Derivation for the working variance of the second moment synthetic variable.

Varϵ∗i2 = Varϵ2i +

∫ ∞

−∞
[1−G(s+ xT

i β)]ϕ
2(s)dF (s)

+

∫ ∞

−∞
ϕ2(t− xT

i β)(1− F (t− xT
i β))dG(t)− E ϵ4i

= Varϵ2i + [1−G(s+ xT
i β)]ϕ

2(s)F (s)|∞−∞

−
[
2

∫ ∞

−∞
[1−G(s+ xT

i β)]ϕ(s)ϕ
′(s)F (s)ds−

∫
g(s+ xT

i β)ϕ
2(s)F (s)ds

]
+

∫ ∞

−∞
ϕ2(t− xT

i β)dG(t)−
∫ ∞

−∞
ϕ2(t− xT

i β)F (t− xT
i β)dG(t)− E ϵ4i

Since ϕ′(s) =
2s

1−G(s+ xT
i β)

and∫
g(s+ xT

i β)ϕ
2(s)F (s)ds =

∫ ∞

−∞
g(t)ϕ2(t− xT

i β)F (t− xT
i β)dt

= Varϵ2i − 4

∫ ∞

−∞
ϕ(s)sF (s)ds+

∫ ∞

−∞
ϕ2(t− xT

i β)dG(t)− E ϵ4i

= Varϵ2i − 4

∫ 0

−∞
ϕ(s)sF (s)ds− 4

∫ ∞

0

ϕ(s)sF (s)ds

+ϕ2(−xT
i β)−

∫ 0

−∞
2ϕ(t− xT

i β)ϕ
′(t− xT

i β)dt

+

∫ 0

−∞
4ϕ(t− xT

i β)(t− xT
i β)dt+

∫ ∞

0

4ϕ(t− xT
i β)(t− xT

i β)dt

−
∫ ∞

0

4s3[1− F (s)] ds+

∫ 0

−∞
4s3F (s) ds

(Arrage terms so those with the same integral limits are together.)

= Varϵ2i − 4

∫ 0

−∞
ϕ(s)sF (s)ds−

∫ 0

−∞
2ϕ(t− xT

i β)ϕ
′(t− xT

i β)dt

+

∫ 0

−∞
4ϕ(t− xT

i β)(t− xT
i β)dt+

∫ 0

−∞
4s3F (s)ds

−4
∫ ∞

0

ϕ(s)sF (s)ds+

∫ ∞

0

4ϕ(t− xT
i β)(t− xT

i β)dt

−
∫ ∞

0

4s3[1− F (s)] ds+ ϕ2(−xT
i β)

= Varϵ2i − 4

∫ 0

−∞
ϕ(s)sF (s)ds−

∫ 0

G−1(0)−xT
i β

4s3ds

+

∫ 0

−∞
4ϕ(t− xT

i β)(t− xT
i β)dt+

∫ 0

−∞
4s3F (s)ds

−4
∫ ∞

0

ϕ(s)sF (s)ds+

∫ ∞

0

4ϕ(t− xT
i β)(t− xT

i β)dt−
∫ ∞

0

4s3[1− F (s)] ds84



To simplify it, note that the first integral is

−4
∫ 0

−∞
ϕ(s)sF (s)ds = −4

∫ 0

G−1(0)−xT
i β

ϕ(s)sF (s)ds− 4

∫ G−1(0)−xT
i β

−∞
s3F (s)ds,

because ϕ(s) = s2 on the interval (−∞, G−1(0)− xT
i β]. The second integral and the fourth

integral combine to

−4
∫ 0

G−1(0)−xT
i β

s3ds+ 4

∫ 0

−∞
s3F (s)ds

= −4
∫ 0

G−1(0)−xT
i β

s3[1− F (s)]ds+ 4

∫ G−1(0)−xT
i β

−∞
s3F (s)ds.

The third integral is

4

∫ 0

−∞
ϕ(t− xT

i β)(t− xT
i β)dt

= 4

∫ 0

G−1(0)

ϕ(t− xT
i β)(t− xT

i β)dt

= 4

∫ −xT
i β

G−1(0)−xT
i β

ϕ(s)sds

=


4
∫ 0

G−1(0)−xT
i β

ϕ(s)sds− 4
∫ 0

−xT
i β

ϕ(s)sds xT
i β ≥ 0

4
∫ 0

G−1(0)−xT
i β

ϕ(s)sds+ 4
∫ −xT

i β
0

ϕ(s)sds xT
i β < 0

.

Combining the above, we have

−4
∫ 0

−∞
ϕ(s)sF (s)ds−

∫ 0

G−1(0)−xT
i β

4s3ds

+

∫ 0

−∞
4ϕ(t− xT

i β)(t− xT
i β)dt+

∫ 0

−∞
4s3F (s)ds

=


4
∫ 0

G−1(0)−xT
i β

[1− F (s)]s(ϕ(s)− s2)ds− 4
∫ 0

−xT
i β

ϕ(s)sds xT
i β ≥ 0

4
∫ 0

G−1(0)−xT
i β

[1− F (s)]s(ϕ(s)− s2)ds+ 4
∫ −xT

i β
0

ϕ(s)sds xT
i β < 0

.
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Furthermore, since∫ ∞

0

4ϕ(t− xT
i β)(t− xT

i β)dt = 4

∫ ∞

−xT
i β

ϕ(s)sds =
4
∫∞
0

ϕ(s)sds+ 4
∫ 0

−xT
i β

ϕ(s)sds xT
i β ≥ 0

4
∫∞
0

ϕ(s)sds− 4
∫ −xT

i β
0

ϕ(s)sds xT
i β < 0

,

the last three integrals simplify to

−4
∫ ∞

0

ϕ(s)sF (s)ds+

∫ ∞

0

4ϕ(t− xT
i β)(t− xT

i β)dt−
∫ ∞

0

4s3[1− F (s)] ds

=


4
∫∞
0
[1− F (s)]s(ϕ(s)− s2)ds+ 4

∫ 0

−xT
i β

ϕ(s)sds xT
i β ≥ 0

4
∫∞
0
[1− F (s)]s(ϕ(s)− s2)ds− 4

∫ −xT
i β

0
ϕ(s)sds xT

i β < 0

.

All together, we get

Varϵ∗i2 = Varϵ2i + 4

∫ ∞

G−1(0)−xT
i β

[1− F (s)]s(ϕ(s)− s2)ds.

Details for simplifying
∫∞
−∞ ϕ2(t− xT

i β)dG(t):∫ ∞

−∞
ϕ2(t− xT

i β)dG(t)

=

∫ 0

−∞
ϕ2(t− xT

i β)dG(t)−
∫ ∞

0

ϕ2(t− xT
i β)d(1−G(t))

= ϕ2(t− xT
i β)G(t)|0−∞ −

∫ 0

−∞
2ϕ(t− xT

i β)ϕ
′(t− xT

i β)G(t)dt

−ϕ2(t− xT
i β)(1−G(t))|∞0 +

∫ ∞

0

2ϕ(t− xT
i β)ϕ

′(t− xT
i β)[1−G(t)]dt

= ϕ2(−xT
i β)G(0)−

∫ 0

−∞
2ϕ(t− xT

i β)ϕ
′(t− xT

i β)[1− (1−G(t))]dt

+ϕ2(−xT
i β)(1−G(0)) +

∫ ∞

0

4ϕ(t− xT
i β)(t− xT

i β)dt

= ϕ2(−xT
i β)−

∫ 0

−∞
2ϕ(t− xT

i β)ϕ
′(t− xT

i β)dt

+

∫ 0

−∞
4ϕ(t− xT

i β)(t− xT
i β)dt+

∫ ∞

0

4ϕ(t− xT
i β)(t− xT

i β)dt
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where the last line uses ϕ′(t− xT
i β) =

2(t−xT
i β)

1−G(t)
. Furthermore,∫ 0

−∞
2ϕ(t− xT

i β)ϕ
′(t− xT

i β)dt

=

∫ 0

G−1(0)

2ϕ(t− xT
i β)ϕ

′(t− xT
i β)dt

= 2ϕ2(t− xT
i β)|0G−1(0) −

∫ 0

G−1(0)

2ϕ(t− xT
i β)ϕ

′(t− xT
i β)dt.

So ∫ 0

−∞
2ϕ(t− xT

i β)ϕ
′(t− xT

i β)dt

= ϕ2(−xT
i β)− ϕ2(G−1(0)− xT

i β)

Since ϕ(ϵi) = ϵ2i +

∫ ϵi+xT
i β

−∞

2(t− xT
i β)G(t)

1−G(t)
dt

= ϕ2(−xT
i β)− (G−1(0)− xT

i β)
4

= ϕ2(−xT
i β) +

∫ 0

G−1(0)−xT
i β

4s3ds

= ϕ2(−xT
i β) +

∫ −xT
i β

G−1(0)−xT
i β

4s3ds− (xT
i β)

4

To implement the second moment Leurgans

ϕ(ϵi) = ϵ2i +

∫ ϵi+xT
i β

−∞

2(t− xT
i β)G(t)

1−G(t)
dt

= ϵ2i +

∫ ϵi+xT
i β

−∞

2tG(t)

1−G(t)
dt− 2xT

i β

∫ ϵi+xT
i β

−∞

G(t)

1−G(t)
dt

we cache both
∫ 2tG(t)

1−G(t)
dt and

∫ G(t)
1−G(t)

dt so there is no need to re-evaluate the integral given

a new xT
i β.
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CHAPTER 4

Concluding Remarks

This dissertation presents our recent effort in developing statistical inference tools for mod-

ern large and high-dimensional data sets. The first project provides a bag of little bootstrap

(BLB) based method for conducting statistical inference of linear mixed models on massive

and distributed longitudinal data sets. We provide theoretical guarantees for our algo-

rithm and implement it as a Julia software package MixedModelsBLB.jl, which is freely

available at https://github.com/xinkai-zhou/MixedModelsBLB.jl. A natural

extension of this project is to develop similar algorithms for other types of outcomes such as

binary or counts through generalized linear mixed models.

The second project provides a flexible and general statistical inference framework for

constrained or regularized estimation problems. Our ProxMCMC method is fully Bayesian

and can be easily adapted to handle various types of constraints and regularizations. Future

research directions include developing ProxMCMC algorithms for more estimation problems

and devising principled ways of choosing the Moreau-Yosida envelope parameter λ.

The third project provides tools for conducting estimation and inference of heteroscedas-

tic linear models for analyzing censored data using synthetic variables. Our method allows

for the explicit modeling of the heterogeneous variances and improves the estimation effi-

ciency compared to the classical synthetic variable approaches. Further work in this area may

extend the method to more general censoring mechanisms such as left or interval censoring.
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