
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Comparison of Depth Image-Based Rendering and Image Domain
Warping in 3D Video Coding

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Signal and Image Processing)

by

Can Bal

Committee in charge:

Professor Truong Q. Nguyen, Chair
Professor Serge J. Belongie
Professor Pamela C. Cosman
Professor Sujit Dey
Professor Donald I. MacLeod

2014

Copyright

Can Bal, 2014

All rights reserved.

The dissertation of Can Bal is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2014

iii

DEDICATION

To my mother, father and grandmother

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgments . x

Vita . xi

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1

Chapter 2 Framework for Comparison of View Synthesis Algorithms . . 5
2.1 Introduction . 5
2.2 Depth and Disparity Relation 5
2.3 Depth Map . 6
2.4 Depth Image-Based Rendering 7
2.5 Reverse Depth Image-Based Rendering 9
2.6 Warps and Disparity 10
2.7 Image Domain Warping 12
2.8 Warp Map . 13
2.9 Reverse Image Domain Warping 15
2.10 Blending and Stitching 16
2.11 Visual Quality . 17
2.12 Conclusion . 18

Chapter 3 Fast View Synthesis using CUDA and Depth Image-Based
Rendering . 20
3.1 Introduction . 20
3.2 View Synthesis using CUDA 22

3.2.1 Rendering Foreground Views 22
3.2.2 Rendering Background Layer 26
3.2.3 Hole Mapping on Background Layer 27
3.2.4 Hole Filling . 28
3.2.5 Texture Mapping on Foreground Views 29
3.2.6 Generating Additional Views 31

v

3.3 Experimental Results 31
3.3.1 View Synthesis Quality 31
3.3.2 Execution Speed 32

3.4 Conclusion . 34

Chapter 4 Multiview Video plus Depth Coding with Depth-based Predic-
tion Mode . 35
4.1 Introduction . 35
4.2 Depth-based Prediction Mode 39
4.3 Experimental Results 42

4.3.1 Rate-Distortion Analysis 43
4.3.2 Subjective Tests 48
4.3.3 DBPM Usage 50
4.3.4 Complexity Analysis 52
4.3.5 Virtual View Synthesis 53

4.4 Conclusion . 56

Chapter 5 A Novel 3D Video Codec Based on 3D-AVC and Image Domain
Warping . 59
5.1 Introduction . 59
5.2 Warp Map Coding using 3D-AVC 60
5.3 Experimental Results 61

5.3.1 Rate-Distortion Performance 62
5.3.2 Effect of Camera Noise on the PSNR Calculation

of the Synthesized Views 63
5.3.3 Performance of the Depth-based Coding Tools of

3D-AVC for Warp Maps 68
5.3.4 Performance of the View Synthesis Distortion in

3D-AVC for Warp Maps 70
5.3.5 Computational Complexity 71
5.3.6 Optimal Depth/Warp QP Selection 72

5.4 Conclusion . 73

Chapter 6 Conclusion . 78

Bibliography . 81

vi

LIST OF FIGURES

Figure 2.1: Rectified multiview camera setup with two anchor views (gray)
and a virtual view (white). 6

Figure 2.2: (a) Sample rendered image using DIBR and (b) the correspond-
ing disparity map for the reverse mapping operation for GTFly
sequence frame #150. 9

Figure 2.3: (a) Sample rendered image using R-DIBR and (b) the corres-
ponding disparity map for the reverse mapping operation for
GTFly sequence frame #150. 10

Figure 2.4: Illustration of Image Domain Warping for (a) an image (b) a
quad (c) a pixel in a quad. 11

Figure 2.5: (a) Sample rendered image using IDW and (b) the correspond-
ing disparity map for the reverse mapping operation for GTFly
sequence frame #150. 14

Figure 2.6: Sample (a) 25% reduced resolution depth map (b) warp map
corresponding to GTFly sequence frame #150 (sizes in propor-
tion). 15

Figure 2.7: (a) Sample rendered image using R-IDW and (b) the corres-
ponding disparity map for the reverse mapping operation for
GTFly sequence frame #150. 16

Figure 3.1: Block diagram of the proposed view synthesis method. 23
Figure 3.2: An example of a placement matrix (a) with cracks due to quan-

tized disparity map and (b) after refinement procedure. 23
Figure 3.3: Three possible cases that cause cracks on placement matrices. 24
Figure 3.4: The blended render (a) with ghost artifact (b) after refinement. 25
Figure 3.5: An example of a synthesized background layer. 27
Figure 3.6: The source region, fill region and fill front setting used in in-

painting. 29
Figure 3.7: Background layer (a) with mapped holes from foreground views

(b) after holes are filled. 29
Figure 3.8: Synthesized (left) and corresponding captured (right) views at

position (a) α = 0.25 (b) α = 0.5 (c) α = 0.75. 30
Figure 3.9: The execution time of the main blocks of the proposed view

synthesis method. 33

Figure 4.1: Illustration of the Depth-based Prediction Mode. 40
Figure 4.2: Block diagram of the proposed MVD codec with DBPM support. 42
Figure 4.3: RD curves for GTFly, 3 views, coding MVD data. 46
Figure 4.4: RD curves for GTFly, 3 views, coding multiview video (the

proposed codec also encodes the base view depth map). . . . 47

vii

Figure 4.5: Subjective test results for stereo video coding, for sequences
(a) UndoDancer (b) PoznanHall2 (c) PoznanStreet. 50

Figure 4.6: Percentage of the DBPM macroblocks for Depth-0.5, 3 views
and sequences (a) GTFly (b) Newspaper. 51

Figure 4.7: View interpolation quality for GTFly, Depth-0.5, (a) fixed depth
QP (26) and varying video QP (b) fixed video QP (26) and
varying depth QP. 54

Figure 4.8: View interpolation quality for fixed video QP (26), varying
depth QP and resolution for sequences (a) UndoDancer (b) GT-
Fly (c) Balloons. 55

Figure 5.1: Block diagram of the 3D-AVC codec for (a) depth map (b) warp
map inputs. 61

Figure 5.2: MSE of the (a) DIBR (Depth-1.0) (b) IDW (Warp) generated
synthesized views for the noise added GTFly sequence com-
pressed with texture QP 36. 64

Figure 5.3: Demonstration of camera noise on frame #140 of the (a) Poz-
nanStreet (b) PoznanHall2 sequence. 65

Figure 5.4: MSE of the DIBR (Depth-1.0) and IDW (Warp) generated syn-
thesized views for the (a) (b) PoznanHall2 (c) (d) PoznanStreet
sequence. 68

Figure 5.5: RD curves for the Newspaper sequence under CTC. 69
Figure 5.6: Demonstration of the optimal depth QP selection for the News-

paper sequence and Depth-0.25. 74

viii

LIST OF TABLES

Table 3.1: View synthesis quality comparison of the proposed method. . . 32

Table 4.1: DBPM syntax vs. MVC inter prediction modes 39
Table 4.2: Test conditions . 43
Table 4.3: BD-Rate (%) for coding 2 view MVD data - measured against

MVC. 45
Table 4.4: BD-Rate (%) for coding 3 view MVD data - measured against

MVC. 45
Table 4.5: BD-Rate (%) for depth maps - measured against MVC. 47
Table 4.6: BD-Rate (%) for coding 2 view multiview video - measured

against MVC. 48
Table 4.7: BD-Rate (%) for coding 3 view multiview video - measured

against MVC. 48
Table 4.8: Test sequences that are used for the subjective tests. 49
Table 4.9: Test platform. 52
Table 4.10: Average computational complexity of the proposed codec in com-

parison to MVC. 53

Table 5.1: BD-Rate (%) for anchor views for CTC QPs - measured against
Depth-1.0. 63

Table 5.2: BD-Rate (%) for synthesized views for CTC QPs - measured
against Depth-1.0. 63

Table 5.3: BD-Rate (%) for anchor views for CTC QPs - measured against
Depth-1.0 using texture bitrates only. 69

Table 5.4: Average computational complexity of the coding processes in
comparison to Depth-1.0. 71

Table 5.5: Optimal depth/warp QPs selected by the full-search algorithm. 75
Table 5.6: BD-Rate (%) for anchor views for optimal depth/warp QP se-

lection - measured against Depth-1.0 with CTC QPs. 75
Table 5.7: BD-Rate (%) for synthesized views for optimal depth/warp QP

selection - measured against Depth-1.0 with CTC QPs. 76
Table 5.8: Percentage (%) of the optimal depth/warp map bitrates with

respect to their corresponding texture bitrates. 76

ix

ACKNOWLEDGMENTS

First and foremost, I would like to acknowledge Prof. Truong Nguyen for

his support as my advisor and the chair of my committee. His leadership and

guidance during my studies have proved to be invaluable.

I would also like to thank Dr. Yan Ye, Dr. Aljoscha Smolic and Dr. Peng

Yin for their mentorship and support. They have contributed to my education and

career in an immeasurable way.

In addition, I want to thank all my friends for making San Diego feel like

home and being there for me through hard times.

Finally, I would like to express my immense gratitude to my mother, father

and grandmother. It is their patience and love that made all this possible.

Chapter 2, in part, has been submitted for publication of the material as it

may appear in IEEE Transactions on Circuits and Systems for Video Technology.

Bal, Can; Nguyen, Truong Q., IEEE, 2015 [1]. The dissertation author was the

primary investigator and author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in 3D Re-

search. Tran, Lam C.; Bal, Can; Pal, Christopher J.; Nguyen, Truong Q., Springer,

2012 [2]. The dissertation author was among the primary investigators and authors

of this paper.

Chapter 4, in full, is a reprint of the material as it appears in IEEE Transac-

tions on Circuits and Systems for Video Technology. Bal, Can; Nguyen, Truong Q.,

IEEE, 2014 [3]. It is an extension of the material appearing in the Proceedings of

the IEEE International Conference on Image Processing 2013. Bal, Can; Nguyen,

Truong Q., IEEE, 2013 [4]. The dissertation author was the primary investigator

and author of both of these papers.

Chapter 5, in full, has been submitted for publication of the material as it

may appear in IEEE Transactions on Circuits and Systems for Video Technology.

Bal, Can; Nguyen, Truong Q., IEEE, 2015 [1]. The dissertation author was the

primary investigator and author of this paper.

x

VITA

2014 Ph.D. in Electrical Engineering (Signal and Image Process-
ing), University of California, San Diego, CA

2010-2014 Gradate Student Researcher, University of California, San
Diego, CA

2013 Intern, InterDigital Communications, San Diego, CA

2012 Intern, Disney Research Zurich, Zurich, Switzerland

2012 Intern, InterDigital Communications, San Diego, CA

2011 Intern, Dolby Laboratories, Burbank, CA

2009 M.S. in Electrical and Electronics Engineering, Bilkent Uni-
versity, Ankara, Turkey

2007-2009 Research Assistant, Bilkent University, Ankara, Turkey

2007-2009 Teaching Assistant, Bilkent University, Ankara, Turkey

2007 B.S. in Electrical and Electronics Engineering, Bilkent Uni-
versity, Ankara, Turkey

PUBLICATIONS

Can Bal and T. Q. Nguyen, “A Novel 3D Video Codec Based on 3D-AVC and
Image Domain Warping,” IEEE Trans. Circuits Syst. Video Technol., submitted,
unpublished.

Can Bal and T. Q. Nguyen, “Multiview Video Plus Depth Coding With Depth-
Based Prediction Mode,” IEEE Trans. Circuits Syst. Video Technol., vol. 24,
no. 6, pp. 995–1005, Jun. 2014.

Can Bal and T. Q. Nguyen, “Depth-based Prediction Mode for 3D Video Coding,”
in IEEE Int. Conf. on Image Processing (ICIP), Sep. 2013, pp. 2187–2191.

N. Stefanoski, Can Bal, M. Lang, O. Wang, and A. Smolic, “Depth Estimation
and Depth Enhancement by Diffusion of Depth Features,” in IEEE Int. Conf. on
Image Processing (ICIP), Sep. 2013, pp. 1247–1251.

A. Jain, Can Bal, T. Q. Nguyen, “Tally: A Web-based Subjective Testing Tool”,
in Int. Workshop on Quality of Multimedia Experience (QoMEX), Jul. 2013, pp.
128,129.

xi

L. Tran, Can Bal, C. J. Pal, T. Q. Nguyen, “On consistent inter-view synthesis
for autostereoscopic displays”, 3D Research, vol. 3, no. 1, pp. 1–10, Jan. 2012.

A. Jain, Can Bal, A. Robinson, D. MacLeod, T. Q. Nguyen, “Temporal Aspects
of Binocular Suppression in 3D Video”, in Int. Workshop on Video Processing and
Quality Metrics for Consumer Electronics (VPQM), 2012.

R. Khoshabeh, Can Bal, A. Jain, L. Tran, S. Chan, T. Nguyen, “Next-generation
3D: From Depth Estimation to the Display”, IEEE COMSOC MMTC E-Letter,
vol. 6, no. 8, pp. 32–36, Aug. 2011.

Can Bal, A. K. Jain, and T. Q. Nguyen, “Detection and removal of binocular
luster in compressed 3D images,” in IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), May 2011, pp. 1345–1348.

PATENTS

Y. Ye, G. W. McClellan, Y. He, X. Xiu, Y. He, J. Dong, Can Bal, E. Ryu, “Codec
architecture for multiple layer video coding”, US Patent App. 13/937,645, Jan. 9,
2014.

T. Nguyen, L. Tran, Can Bal, and R. Khoshabeh, “Multi View Synthesis Method
and Display Devices with Spatial and Inter-View Consistency,” WO 2013/062944,
May 3, 2013.

xii

ABSTRACT OF THE DISSERTATION

Comparison of Depth Image-Based Rendering and Image Domain
Warping in 3D Video Coding

by

Can Bal

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2014

Professor Truong Q. Nguyen, Chair

3D became successful in the movie theaters but failed to become mainstream

for home use. The inconvenience of wearing glasses is arguably the reason and

researchers have been investigating solutions for glasses-free 3D displays. Today,

the most promising solution is the autostereoscopic display, which require many

views of the same scene to be displayed simultaneously for a comfortable viewing

experience. However, coding 3D video (3DV) with too many views is impractical

with current networks and the 3DV coding standard, H.264/MVC (MVC), as the

necessary bitrate is linearly proportional to the number of coded views. Instead,

only a sparse set of anchor views can be compressed with some supplementary data

and the remaining can be synthesized at the decoder.

xiii

In this dissertation, we compare two very popular view synthesis methods,

Depth Image-Based Rendering (DIBR) and Image Domain Warping (IDW), in

terms of their coding efficiency and complexity. First, we establish a common

formulation that allows us to compare DIBR and IDW and their associated 3DV

representations mathematically.

Then we provide the details of a fast DIBR-based view synthesis method

and its implementation on GPU. We show that it can synthesize views with good

objective quality and can provide inter-view consistency with almost constant time

complexity in terms of the number of synthesized views.

Moreover, we present a new coding tool, “Depth-based Prediction Mode”

(DBPM), and incorporate it into the coding loop of MVC. Using DBPM, we realize

a novel MVD codec and we show that view synthesis can also be used for better

prediction of the anchor views. DBPM uses the supplementary depth data and

DIBR to achieve up to 9.2%, 9.9% and 6.7% bitrate savings over MVC for coding

MVD data, depth maps and multiview videos, respectively.

Finally, we establish a codec framework based on the next generation can-

didate 3DV coding standard (3D-AVC), which has prediction tools similar to the

DBPM already incorporated, and show that both DIBR and IDW can be used in

this framework without any syntax changes to the standard. Using this framework

we show that IDW achieves better coding performance than DIBR with aver-

age bitrate savings of 12.8% for anchor views and 1.5% for the synthesized views

with significantly lower computational complexity. Finally, we provide an anal-

ysis on the effect of camera noise on measuring the quality of synthesized views

with DIBR and IDW and show that camera noise produce a bias towards better

measurements for DIBR. Recalculating the bitrate savings on sequences without

camera noise shows that IDW can actually achieve average bitrate savings of 8.8%

in the synthesized views instead of 1.5%.

xiv

Chapter 1

Introduction

In the past few years, 3D video technologies has been gaining interest with

a high pace both in the movie industry and in consumer electronics. Nowadays

almost all the blockbuster movies are released with a 3D option, and stereoscopic

3DTVs from all major brands are readily available on the market. With the interest

in 3D, some broadcasters even launched 3D channels.

3D has proven to be very successful in the movie industry, but even with all

of the high quality content, it did not achieve a similar success for home use. TV

manufacturers and broadcasters seem to be less interested in 3D than they were a

few years earlier. Some of previously mentioned 3D broadcast channels are even

announced to shut down due to low ratings.

This is arguably because of the current 3D display technologies. Current

mainstream 3D displays use polarization technology and require glasses for the 3D

perception. This inconvenience is rather minuscule for occasional use at the movie

theaters but it prevented 3DTVs to become mainstream. Additionally 3D glasses

cause headaches and nausea for some people.

To overcome this obstacle, the research community and companies have

been investigating solutions for glasses-free 3D displays. Currently, autostereo-

scopic displays are the most likely option to make it to the mass market. These

displays use a regular LCD panel with a “lenticular sheet”, which distributes the

light emitted from different pixels in different directions. They display multiple

views of the same scene simultaneously, where each of them is only visible from a

1

2

certain viewpoint. This allows the viewers to see a different stereo pair of views

depending on their position, which allows them to see 3D without glasses. In or-

der to deliver a comfortable viewing experience, autostereoscopic displays have to

accommodate a large number of views. Some of them display up to 28 views [5]

and this number is likely to grow as the resolution of TV panels increases.

The 3D video (3DV) representation supported by autostereoscopic displays

is called Multiview Video (MVV). MVV representation has some inherent prob-

lems. First, capturing MVV content requires a synchronized camera rig with one

camera for each viewpoint. Such setups are costly to build and maintain, imprac-

tical to calibrate, synchronize and operate, and usually immobile. Additionally,

the number of views and the amount of depth that each 3D display can accommo-

date varies. Since MVV consists of fixed number of viewpoints at fixed locations,

supporting a variety of displays is almost impossible with MVV.

The current standard 3DV compression method is the Multiview Video Co-

ding (MVC) extension of H.264/AVC (AVC) [6]. Although MVC achieves signifi-

cantly better compression in comparison to coding each view separately, MVC still

produces bitrates linearly proportional to the number of views in MVV data [7].

Hence, using MVC and broadcasting MVV data to be displayed on autostereo-

scopic displays is unrealistic given the bandwidth of current networks.

To address the problems associated with MVV and MVC, the Moving Pic-

ture Experts Group (MPEG) issued a Call for Proposals (CfP) to develop a new

3DV data format and an associated compression method, which will enable syn-

thesizing an arbitrary number of virtual views [8]. This will allow coding only a

sparse set of anchor views and synthesizing the remaining views of MVV as virtual

views at the display end. The caveat with this approach is that the view synthesis

operation has to be both very fast and be able to synthesize good quality views in

order to provide a good viewing experience on autostereoscopic displays.

Currently, the Joint Collaborative Team on 3D Video Coding Extension

Development (JCT-3V), a collaboration of International Telecommunication Union

Telecommunication Standardization Sector (ITU-T) and MPEG, is working on

solutions based on the existing video coding standards: High Efficiency Video

3

Coding (HEVC) [9] and AVC.

JCT-3V is advancing the standardization process in two main categories

based on the underlying codec architecture [10]: HEVC-based and AVC-based.

The HEVC-based track includes MV-HEVC and 3D-HEVC. MV-HEVC will be

the HEVC-based counterpart of MVC for MVV coding, whereas 3D-HEVC is more

flexible and only requires the base view to be decodable by an HEVC decoder. In

comparison, AVC-based track includes MVC+D and 3D-AVC. MVC+D (Depth)

will be the standard for coding Multiview Video + Depth (MVD) data, which

consists of MVV data and associated depth values for each of the texture pixels. As

its name suggests, the requirement for MVC+D is the MVV data to be decodable

by an MVC decoder. Finally, 3D-AVC is the AVC-based counterpart of 3D-HEVC

and the only requirement is that the base view is decodable by an AVC decoder.

MVD is currently the most popular 3DV representation and is widely used

in research. It is also the main representation in the standardization process.

There are also alternative 3DV representations proposed to JCT-3V, such as Global

View and Depth (GVD) [11] and MVV + Warps (MVW) [12], that are also being

considered for the next generation 3DV codecs.

Each 3DV representation has an associated rendering method for synthe-

sizing virtual views. MVD uses the well-known Depth Image-Based Rendering

(DIBR) [13]; and since GVD is also a depth-based representation, it uses a mod-

ified version of DIBR as well [14]. On the other hand, the MVW representation

is based on warps and requires a special rendering method called Image Domain

Warping (IDW) [15,16].

In this dissertation we compare two very popular rendering methods, DIBR

and IDW in the context of 3DV coding. In Chapter 2, we first establish a common

formulation for DIBR and IDW, and their associated view synthesis algorithms.

This chapter lays the groundwork for the rest of the dissertation. Then, in Chap-

ter 3, we provide the details of an advanced and fast DIBR-based view synthesis

method and its implementation. This chapter serves as a proof of concept for the

feasibility of fast view synthesis with good synthesis quality. Next, in Chapter 4

we present a new coding tool called “Depth-based Prediction Mode” (DBPM), and

4

show that it is possible to achieve coding gains over MVC using this new prediction

mode. Our findings in this chapter support the need for a new 3DV representation

and show that addition of some supplementary data in the 3DV representation can

enhance the compression efficiency even when only the anchor views are considered.

Finally, in Chapter 5 we establish a codec framework based on 3D-AVC, which has

prediction tools similar to the DBPM already incorporated, and compare DIBR

and IDW in terms of coding efficiency and computational complexity.

Chapter 2

Framework for Comparison of

View Synthesis Algorithms

2.1 Introduction

View synthesis refers to a family of algorithms that generate an arbitrary

number of virtual views at the display end from a number of anchor views and

their associated supplementary data (e.g. depth data, camera parameters etc.).

These algorithms may consist of processing blocks such as rendering, linear and

non-linear filtering, blending and hole filling. Not all algorithms will contain all of

these blocks, but the rendering operation that maps pixels of an anchor view onto

the pixels of a virtual view is the core of all of them.

In this chapter, we build a unified formulation for two popular rendering

methods in 3DV coding, DIBR and IDW and their associated view synthesis algo-

rithms.

2.2 Depth and Disparity Relation

A multiview camera setup with two anchor cameras (gray) and a virtual

camera (white) is depicted in Fig. 2.1. An anchor and a virtual camera form a

stereo pair. Let us define these cameras as camera A and V with optical centers

5

6

c0
A

xVxA

X

Z

f

c1
AcV

Figure 2.1: Rectified multiview camera setup with two anchor views (gray) and
a virtual view (white).

cA and cV , and corresponding image planes IA, IV , respectively. Each pixel on IA

and IV are projections of points in 3D space and are related to each other.

For the rectified camera setup, pixels of IA and IV are related to each

other by a horizontal shift. The amount of shift d ∈ R is called disparity, and is

inversely proportional to the depth of the corresponding point in 3D space (Z).

Given the focal length (f) and the baseline between cameras (c = cV − cA), d can

be calculated from Z as d = (f · c)/Z .

Let x = (x, y) ∈ R2 indicate a pixel on an image plane. The disparity be-

tween pixel x on IA and the corresponding pixel on IV is denoted as dA→V (x) ∈ R.

Similarly, dA←V is the disparity between pixels of IV and IA. In our subscript nota-

tion, the first and second labels indicate the real and virtual cameras, respectively,

and the direction of the arrow indicates the direction of mapping.

Let X be a point in 3D space and IA(xA, y) and IV (xV , y) be the projections

of X on image planes IA and IV . From the definition, IA(xA, y) = IV (xV , y), where

xA and xV are related to each other as:

dA→V (xA, y) = xA − xV = −dA←V (xV , y) (2.1)

2.3 Depth Map

In order to represent the depth values in a format compatible with stan-

dard video coding methods, they are quantized and stored as n-bit monochro-

matic images called depth maps. The quantization is such that the depth values

7

Z ∈ [Zmin, Zmax], where Zmin and Zmax are the minimum and maximum depth val-

ues that exist in a scene, of nearby objects have smaller quantization steps and

greater magnitudes than the depths of farther objects.

Let DA denote the depth map associated with IA. Since depth and disparity

are related to each other, it is possible to relate the values of DA directly to the

disparities dA→V as:

DA(x) =

⌊
dA→V (x)− o

s
+ 0.5

⌋
(2.2)

dA→V (x) = s ·DA(x) + o (2.3)

where

s =
f · c
2n

(
1

Znear

− 1

Zfar

)
, o =

f · c
Zfar

(2.4)

2.4 Depth Image-Based Rendering

DIBR is the most popular rendering method in 3DV coding research. It

takes a reference image IA and an associated depth map DA as inputs, and uses

the depth information to map pixels of the reference image to points in 3D space.

Then, it projects these points onto the virtual image plane ÎV to finalize the render-

ing operation, producing geometrically correct renders. Since some of the pixels

on the virtual image plane do not have correspondences in the reference image

(e.g. revealed background regions that are covered by foreground objects in the

reference view), DIBR cannot fill the entire virtual image, which results in holes.

These holes are then filled by other components of the view synthesis algorithm.

The first step for DIBR is to calculate the disparity map dA→V from a given

depth map DA using Eq. (2.3). dA→V maps the pixels of IA to pixels on image

plane ÎV as:

ÎA→V (x, y) = IA(xA, y) = IA(x+ dA→V (xA, y), y) (2.5)

D̂A→V (x, y) = DA(xA, y) = DA(x+ dA→V (xA, y), y) (2.6)

Eq. (2.5) can be used to render ÎA→V directly, an operation we call “forward

mapping”. However, forward mapping yields a noisy render which contains errors

8

and missing pixels (appearing as cracks) due to depth quantization [2]. Instead, a

virtual depth map corresponding to image plane ÎA→V can first be rendered using

Eq. (2.6) and the artifacts can be treated with a post-processing filter, such as

median filtering [17] or by using “placement matrices” [2]. Due to their piece-wise

smooth nature and monochromaticity, treating depth maps usually yields better

results than treating images.

It is possible for two distinct pixels xA and x́A on DA to map to the same

pixel position on D̂A→V . In this case, the pixel closer to the camera is given

preference:

D̂A→V (x, y) =

DA(x+ dA→V (xA), y), if DA(xA) > DA(x́A).

DA(x+ dA→V (x́A), y), otherwise.
(2.7)

Explicit tracking of these cases can actually be avoided by simply using Algorithm 1

instead.

Algorithm 1 Forward mapping algorithm.

1: for D ∈ {0, . . . , 2n−1} do . scan through all depth map values

2: d = s ·D + o . calculate disparity value, s and o are defined in Eq. (2.2)

3: for (x, y) where DA == D do . find pixels where DA is equal to D

4: D̂A→V (x− d, y) = D . set the corresponding pixel value of D̂A→V to D

5: end for

6: end for

From D̂A→V and Eq. (2.1) & (2.3), a disparity map d̂A←V can be calculated

that relates the pixels of IA to pixels on ÎV as:

ÎA→V (x, y) = IA(x− d̂A←V (x, y), y) (2.8)

Once D̂A→V is calculated, rendering ÎA→V simply becomes a look-up oper-

ation, which we call “reverse mapping”. This operation is important as all the

rendering methods discussed in this chapter can ultimately be posed as a reverse

mapping operation, where the look-up table differs depending on the rendering

method.

A sample rendered image generated by DIBR and the associated disparity

map used for the reverse mapping operation are shown in Fig. 2.2.

9

(a) ÎA→V (b) d̂A←V

Figure 2.2: (a) Sample rendered image using DIBR and (b) the corresponding
disparity map for the reverse mapping operation for GTFly sequence frame #150.

2.5 Reverse Depth Image-Based Rendering

It is possible to have the depth map corresponding to the virtual view al-

ready available to the rendering method. This can happen when there are multiple

anchor views and the rendering method is mapping pixels of one anchor view to

another. In such a scenario it is possible to define a variant of DIBR and we call

it “Reverse Depth Image-Based Rendering” (R-DIBR).

R-DIBR takes the depth map corresponding to the virtual view, DV , as the

input and maps the pixels of the virtual view to points in 3D space. Each of these

points are then projected onto the reference image plane to find the correspon-

dences between the reference and virtual image planes. Finally the corresponding

pixels from the reference image are copied over to the virtual image plane to final-

ize the render. Assuming depth maps are error-free, R-DIBR is identical to DIBR

for the non-occlusion regions. However R-DIBR cannot identify occlusion regions

and fills them with incorrect pixels from the reference image.

For R-DIBR the first step is to calculate the disparity map dV→A from the

depth map DV using Eq. (2.3). Once dV→A is calculated, rendering operation

simply becomes a reverse mapping operation defined as:

ÎA→V (x, y) = IA(x− dV→A(x, y), y) (2.9)

R-DIBR is used when the virtual rendered image serves as a reference in

10

(a) ÎA→V (b) dV→A

Figure 2.3: (a) Sample rendered image using R-DIBR and (b) the corresponding
disparity map for the reverse mapping operation for GTFly sequence frame #150.

a 3DV codec as it allows each pixel to be rendered independently. This feature

allows the decoder to render only a region of interest on the virtual image plane

thus reduces the decoder complexity significantly [18].

A sample rendered image generated by R-DIBR and the associated disparity

map used for the reverse mapping operation are shown in Fig. 2.3.

2.6 Warps and Disparity

IDW, developed by Disney Research Zurich, is among the view synthesis

algorithms proposed to JCT-3V [12]. Unlike DIBR, IDW does not rely on depth

maps but uses warps to map pixels of the reference image onto a virtual image

plane.

A warp operates over a quad grid defined on an image plane. A quad grid

consists of quads Q defined by four quad vertices (v ∈ R2). Note that these quad

vertices are not necessarily aligned with the integer pixel grid.

A warp operator ΨA→V is a mapping from vertices of quads QA defined

on the reference image plane IA to the vertices of warped quads Q̃V defined on

the virtual image plane ĨV . In order to differentiate between different quads,

subscripts k ∈ [0, . . . , K − 2] and l ∈ [0, . . . , L− 2] are introduced where K and L

are the number of quad vertices in the horizontal and vertical directions. With this

notation, Qk,l indicates the quad with vertices {vk,l,vk+1,l,vk,l+1,vk+1,l+1} and is

11

eQVQA

IA
eIV

 A!V

(a)

vA
k,l vA

k+1,l

vA
k,l+1 vA

k+1,l+1

evV
k+1,levV

k,l

evV
k,l+1 evV

k+1,l+1

QA eQV
 A!V

wA!V (vA
k,l)

(b)

 A!V

(xA
k , yl) (xA

k+1, yl)

(xA
k+1, yl+1)(xA

k , yl+1)

(xA, y)

� 1 � �

1
�

↵
↵

1
�
↵

↵

� 1 � �

(⇢k, y) (⇢k+1, y)

(c)

Figure 2.4: Illustration of Image Domain Warping for (a) an image (b) a quad
(c) a pixel in a quad.

illustrated in Fig. 2.4.

For the rectified camera setup, the warp operator shifts the quad vertices

only horizontally. Therefore, the warp operator ΨA→V is defined by the amount of

horizontal disparities wA→V ∈ R between the corresponding quad vertices of IA and

ĨV . This is analogous to the disparities in DIBR, hence we use a similar notation.

Let vAk,l be a quad vertex located at (xAk , yl), and ṽVk,l be the corresponding warped

12

quad vertex at (x̃Vk , yl). Then the warp from vAk,l to ṽVk,l is defined as:

ΨA→V (vAk,l) = ΨA→V (xAk , yl) = (x̃Vk , yl)

= (xAk − wA→V (xAk , yl), yl)
(2.10)

ΨA→V defines a one-to-one correspondence between the quad vertices on IA

and ĨV ; hence, an equivalent warp operator ΨA←V can be defined as a mapping in

the opposite direction. Similarly for this operator, since wA→V is the disparity be-

tween two vertices, the disparity in the opposite direction, wA←V , can be calculated

as:

w̃A←V (x̃Vk , yl) = x̃Vk − xAk = −wA→V (xAk , yl) (2.11)

2.7 Image Domain Warping

IDW uses the warp operator ΨA→V to warp the pixels within each quad QA

onto the pixels of the corresponding quad Q̃V , generating the rendered virtual im-

age ĨA→V from the reference image IA. This produces virtual images without holes

(except for when the corresponding pixels are out of the reference image bound-

aries). This inevitably introduces geometrical distortions in the virtual image;

hence, warps have to be carefully generated in order to introduce the geometrical

distortions only around non-salient regions [15,16].

From Eq. (2.11), a pixel ĨA→V (x, y) where (x, y) ∈ Q̃V
k,l can be computed

from the corresponding pixel (xA, y) in QA
k,l by the reverse mapping operation as:

ĨA→V (x, y) = IA(xA, y) = IA(x− w̃A←V (x, y), y) (2.12)

However, wA→V , and thus w̃A←V from Eq. (2.11), is only defined at the quad

vertices. The disparity value w̃A←V (x, y) for an arbitrary pixel must be interpolated

from the disparities at the vertices of Q̃V
k,l. Different interpolation methods can be

used in this step. For example, Krähenbühl et al. [19] propose using EWA splatting.

In our experiments, we found that simple bilinear interpolation suffices, yielding

visually comparable results at a much lower computational cost to EWA splatting.

As illustrated in Fig. 2.4, for the rectified camera setup, bilinear interpola-

tion can be handled in two steps. The first step is to calculate the locations of the

13

intermediate pixels (ρk, y) and (ρk+1, y), which lie on the line segments connecting

left and right quad vertices respectively. Let α = (y − yl)/(yl+1 − yl). Then ρk is

calculated as:

ρk = xAk − (1− α) · wA→V (xAk , yl)− α · wA→V (xAk , yl+1)

Secondly, with β = (x − ρk)/(ρk+1 − ρk), the interpolated values of w̃A←V

are simply:

w̃A←V (x, y) = x− (1− β) · xAk − β · xAk+1

The interpolated w̃A←V is analogous to a full-resolution disparity map re-

lating the virtual image plane to the reference. Therefore, the reverse mapping

operation defined in Eq. (2.12) is actually equivalent to Eq. (2.8). With that, we

can define a unified reverse mapping operation that describes the final rendering

step for all the rendering methods discussed in this chapter as:

ĬA→V (x, y) = IA(x− d̆A←V (x, y), y) (2.13)

where d̆A←V is the interpolated w̃A←V for IDW, the rendered d̂A←V for DIBR and

the input disparity map dV→A for R-DIBR. Please note that the symbol ˘ refers to

a generic rendering operation in the rest of the paper, which is replaced by ˜ for

IDW and ̂ for DIBR.

A sample rendered image generated by IDW and the associated disparity

map used for the reverse mapping operation are shown in Fig. 2.5.

2.8 Warp Map

For IDW, warp vertices vAk,l are positioned on a regular quad grid. Such

a grid, illustrated on the image plane IA in Fig. 2.4, consists of quads with fixed

width and height and is determined by the number of vertices in the warp and

the corresponding image resolution. For instance, for an image with M ×N pixels

and a warp with K × L vertices, the quad width and height are M/(K − 1) and

N/(L− 1), respectively, and the vertices of the regular quad are defined as:

vAk,l = (k · M
K−1

, l · N
L−1

)

14

(a) ĨA→V (b) w̃A←V

Figure 2.5: (a) Sample rendered image using IDW and (b) the corresponding
disparity map for the reverse mapping operation for GTFly sequence frame #150.

For this choice of vAk,l, the warp operator ΨA→V (vAk,l) is uniquely defined by

only its vertex disparities wA→V (xAk , yl). This allows quantizing and storing warps

as monochromatic images that can be compressed efficiently using standard video

codecs. Stefanoski et al. [20] propose using linear quantization to quantize the

vertex disparities and store them as an n-bit warp map (W) as:

WA(v) =

⌊
wA→V (v)− o

s
+ 0.5

⌋
(2.14)

In our implementation, we used the same quantization scheme but chose

the scale s and offset o parameters according to Eq. (2.2). This consistency with

depth map quantization allowed us to use the depth-based coding tools and syntax

of existing 3DV codecs without change. An example warp map with this choice of

s and o is depicted in Fig. 2.6 along with a sample depth map corresponding to

the same frame in the video.

The number of quad vertices are chosen such that a warp can be calcu-

lated robustly from a sparse set of constraints while providing enough granularity

to avoid salient distortions around object boundaries. With this trade-off, warp

maps typically have smaller resolutions than depth maps. For example, the warp

maps calculated from the warp data provided by Stefanoski and Smolic [12] have

resolutions of 401 × 201. In addition, as discussed earlier, warp maps do not en-

force exact geometrical constraints; hence, they typically contain lower frequency

content than the corresponding depth maps. These features, as shown in Fig. 2.6,

15

(a) (b)

Figure 2.6: Sample (a) 25% reduced resolution depth map (b) warp map corres-
ponding to GTFly sequence frame #150 (sizes in proportion).

make warp maps ideal for block-based video coding as they can be compressed

very efficiently.

2.9 Reverse Image Domain Warping

Similar to R-DIBR, it is also possible to define a variant of IDW, which

defines the regular quad grid on the virtual image plane ĨV and we call this “Reverse

Image Domain Warping” (R-IDW).

For R-IDW, the input warp operator ΨV→A warps the regular quads QV

on the virtual image onto the warped quads Q̃A on the reference image. This

is equivalent to having a warp ΨV←A in the opposite direction operating on the

already warped vertices ṽA = ΨV→A(vV) of the quad grid on IA. Hence, for

rendering the virtual view ĨV , R-IDW is the same as IDW except the pixels within

a regular quad QV are interpolated from the pixels falling into the warped quad

Q̃A.

As the quadsQV already have fixed dimensions, for R-IDW, the interpolated

pixel disparities w̃V→A can be simply calculated by directly applying a standard

image interpolation technique on the vertex disparities wV→A. Once w̃V→A is cal-

culated, the virtual image is rendered using Eq. (2.13) with the reverse mapping

operator d̆A←V = w̃V→A.

Defining the regular quad grid on the virtual image plane provides an im-

16

(a) ĨA→V (b) w̃V→A

Figure 2.7: (a) Sample rendered image using R-IDW and (b) the corresponding
disparity map for the reverse mapping operation for GTFly sequence frame #150.

portant advantage to R-IDW. For IDW, just to determine which warped quad a

certain pixel belongs to, initially the warped quad vertices and quad boundaries

have to be calculated on ĨV . On the other hand, for R-IDW this process is very

simple due to the regularity of the quads, which makes R-IDW less computa-

tionally complex than IDW and more suitable for block-based prediction in 3DV

compression.

A sample rendered image generated by R-IDW and the associated disparity

map used for the reverse mapping operation are shown in Fig. 2.7.

Please note that R-IDW is only defined for the completeness of this chapter,

but it has not been utilized in any of the projects discussed in this dissertation.

2.10 Blending and Stitching

In 3DV coding, the virtual views are typically synthesized from a stereo

pair of anchor views. In this setup, rendering is repeated for each of the anchor

views and these individual renders are then combined into the final render. This

blending operation can mitigate potential artifacts or fill in holes introduced by

the individual renders.

Let the optical centers for the left and the right anchor cameras be c0
A and

c1
A, respectively. Since we assume a rectified camera setup, the optical center of

the virtual camera cV is located in between c0
A and c1

A. Without loss of generality,

17

let us assume c0
A = 0 and c1

A = 1, and θ ∈ (0, 1) be the baseline between c0
A and

cV . Then the final rendered image Ĭθ corresponding to cV = θ is calculated as:

Ĭθ(x) = (1− γ(x)) · Ĭ0→θ(x) + γ(x) · Ĭ1→θ(x) (2.15)

where γ is a blending operator that defines how individual renders are combined

together. For DIBR γ is:

γ̂(x) =

0, if D̂0→θ(x) > (D̂1→θ(x) + τ) or Î1→θ(x) is a hole.

1, if D̂1→θ(x) > (D̂0→θ(x) + τ) or Î0→θ(x) is a hole.

θ, if |D̂0→θ(x)− D̂1→θ(x)| < τ.

(2.16)

where τ > 0 is a preset threshold. After blending, the image rendered with DIBR

might still have holes left. A hole-filling operation is applied to these remaining

holes to finalize the synthesis.

On the other hand, for IDW γ is much simpler and depends only on the

virtual camera location θ:

γ̃(x) =

0, if θ ≤ 0.5 or Ĩ1→θ(x) is missing.

1, if θ > 0.5 or Ĩ0→θ(x) is missing.
(2.17)

Eq. (2.17) simply states that the anchor view closer to the virtual view is used

to render Ĭθ completely, except for the missing pixels which are taken from the

other anchor view. This is because the warps used for IDW introduce geometrical

distortions around non-salient regions, and if a complex blending operation such

as Eq. (2.16) is used, the distortions from each render clash and become salient

in the final render. In order to differentiate the choices of γ, we will refer to the

blending operation for IDW as “stitching” in the rest of the paper. Finally, unlike

DIBR, after stitching IDW does not produce any holes, therefore does not require

any additional steps to obtain the final synthesized view.

2.11 Visual Quality

DIBR and IDW generate very different virtual images, making objective

quality metrics potentially unreliable for comparing the visual quality of the syn-

thesized views. In order to address this issue, a number of subjective studies have

18

been conducted comparing DIBR and IDW with compressed data [21–23]. Some

of these studies [21,22] report that a significant majority of the subjects found no

quality difference between DIBR and IDW, and the rest of the subjects presented

no significant bias toward any of the rendering methods. Although these studies

involved a rather small number of subjects, Stefanoski et al. [23] also present re-

sults for an extensive subjective study conducted by MPEG. Those results show

that the IDW-based coding solution achieves comparable visual quality with the

competing depth-based solutions and is actually among the top performers. Based

on these findings, we conclude DIBR and IDW produce visually equivalent syn-

thesized views, thus assume that objective quality metrics such as PSNR should

provide reliable measurements for their direct comparison.

2.12 Conclusion

In this chapter we established a common formulation for DIBR and IDW,

and showed that both rendering methods can be represented as a “reverse map-

ping” operation. The reverse mapping operation is defined by a per-pixel disparity

map, which allows a direct comparison of DIBR and IDW. We also presented a

“warp map” representation and a quantization scheme consistent with the depth

maps, which allows warps to be coded using existing video codecs and depth-based

coding tools.

To begin with, DIBR produces geometrically correct renders and naturally

marks the occlusion regions in the renders, which allows a more advanced and

geometrically correct blending operation.

In comparison, IDW does not generate occlusion regions. This eliminates

the need of a hole filling operation, but inevitably introduces geometrical errors

in the rendered images. Therefore, warps have to be carefully generated so that

these geometrical errors are introduced only around non-salient regions.

Additionally, when the disparity maps for IDW and DIBR corresponding to

the reverse mapping operations are compared, it can be observed that IDW gener-

ates renders that have lower frequency depth content. This is only partially due to

19

the resolution of the warps as reduced resolution depth maps still yield disparity

maps with significantly higher frequency content. Warps inherently possess this

characteristic and this allows warp maps to be compressed very efficiently using

existing block-based video codecs.

Acknowledgments

This chapter, in part, has been submitted for publication of the material as

it may appear in IEEE Transactions on Circuits and Systems for Video Technology.

Bal, Can; Nguyen, Truong Q., IEEE, 2015 [1]. The dissertation author was the

primary investigator and author of this paper.

Chapter 3

Fast View Synthesis using CUDA

and Depth Image-Based

Rendering

3.1 Introduction

To provide an enjoyable depth perception on autostereoscopic displays, the

baseline between each displayed view needs to be adjusted according to the spec-

ifications of the display, the distance of the user to the screen, and the degree of

depth perception desired to be perceived by the user. Given all these constraints

and the number of views required by the display, the necessary baseline between

the anchor cameras typically has to be quite large.

A large baseline introduces the occlusion problem, where some of the regions

that would be visible in the synthesized views are occluded in all of the captured

views. This is where most DIBR-based view synthesis methods differentiate from

each other. So far a significant number of different approaches have been proposed

in the literature. There exist methods that range from very fast but simplistic to

very advanced but slow.

Some of the view synthesis methods use a circular camera setup so that

the occluded areas in one anchor view is almost always uncovered in another.

20

21

This type of camera setup allows a layered approach where a background layer

is extracted from the anchor views and then used for filling in the holes in the

virtual views [24,25]. This approach is especially useful when the virtual cameras

are to be positioned arbitrarily in the 3D space, as in the case of free viewpoint

TV (FTV).

On the other hand, capture systems with a circular camera setup are not

always preferable depending on the application. For example, for autostereoscopic

displays, the cameras corresponding to the displayed views have to be positioned

along a line or a wide arc. This setup is called the rectified camera setup. However

when the application requires rectified viewpoints, capturing anchor views with a

circular camera setup brings unnecessary complexity to the depth estimation and

view synthesis processes.

For rectified camera setups, the occlusion regions are filled by hole filling

algorithms that aim to generate realistic looking texture data. Some of these algo-

rithms process the occlusion regions pixel-by-pixel while others use patch-based in-

painting. The pixel-based algorithms tend to use interpolation or simple inpainting

methods but they typically suffer from blur [26,27]. Some of the pixel-based algo-

rithms employ more advanced techniques and optimization steps to overcome this

problem [17, 28] but patch-based algorithms are usually superior [29, 30]. Finally,

some algorithms take it a step further and can also provide spatial, temporal [31]

and inter-view consistency [29] for the generated texture data.

As view synthesis methods are intended to be used for 3DV playback on

autostereoscopic displays, it is crucial that they are capable of synthesizing many

views in real-time. Typically view synthesis methods that employ more complex

hole filling algorithms fail to provide fast enough synthesis and simpler methods are

not able to create visually pleasing synthesized views for a good user experience.

In the recent years, CPU clock speeds have been saturated and chip man-

ufacturers started to focus on increasing the number of cores on each chip rather

than trying to make each core faster. This raised the interest in parallel com-

puting. More recently, Graphics Processing Unit (GPU) processors have enabled

real-time implementation of many algorithms by housing hundreds of cores on a

22

single GPU. This advancement brought excitement about using GPUs for scien-

tific calculations and GPU manufacturers started to invest in developing specific

programming languages to make GPUs more accessible for scientific computing.

In order to take advantage of the multiple cores on a GPU, an algorithm

needs to be highly parallelizable. Luckily many image processing tasks are well

suited for this as each pixel or group of pixels can be processed separately. Most

processes in the view synthesis methods are also parallelizable; therefore some re-

searchers proposed taking advantage of the processing power of the current GPUs

to significantly speed-up synthesis process [32, 33]. These existing methods can

achieve very fast view synthesis, but they are rather limited to very simple ap-

proaches.

In order to provide fast and also high quality view synthesis, in this chapter,

we propose an advanced DIBR-based view synthesis method and analyze its perfor-

mance for a CUDA implementation. CUDA is the programming language Nvidia

chips support and is the most commonly used general purpose GPU programming

language today.

3.2 View Synthesis using CUDA

The proposed view synthesis method combines the “coordinate alignment”

approach introduced by Tran et al. [29] with the background layer idea mentioned

earlier in order to provide inter-view consistency and fast hole filling with a patch-

based depth-assisted inpainting method. A high level block diagram of the pro-

posed method is provided in Fig. 3.1.

3.2.1 Rendering Foreground Views

Placement Matrix

As described in Section 2.4, the first step for DIBR-based view synthesis is

calculating the reverse mapping operator d̂A←V . Due to the quantization of depth

map values (Eq. (2.2)) d̂A←V might contain errors and missing pixels appearing

as cracks. In the proposed method, before the reverse mapping operation, we

23

Rendering
Foreground

Views

Hole Mapping on
Background

Layer

Rendering
Background

Layer

Hole Filling on
Background

Layer

Texture Mapping
on Foreground

Views

I0

I1

D0

D1

bI↵

Figure 3.1: Block diagram of the proposed view synthesis method.

(a) (b)

Figure 3.2: An example of a placement matrix (a) with cracks due to quantized
disparity map and (b) after refinement procedure.

first form a “placement matrix” to treat these artifacts. Placement matrices are

introduced by Tran et al. [28] for a more robust rendering process for the virtual

view ÎA→V . The corresponding placement matrix for ÎA→V is defined as:

PMA→V (x, y) = x− d̂A←V (x, y) (3.1)

The placement matrix PMA→V (x, y) = x́ determines the pixel IA(x́, y) that

should be mapped to the pixel ÎA→V (x, y) after the reverse mapping operation. An

example of a placement matrix with the mentioned cracks is depicted in Fig. 3.2(a).

For this specific example, the cracks are most salient on the face of the sculpture

and on the rings located on the right-hand side.

Due to the construction of placement matrices and as neighboring pixels

24

PM(x, y)

x

(a) No value

PM(x, y)

x

(b) Low value

PM(x, y)

x

(c) High value

Figure 3.3: Three possible cases that cause cracks on placement matrices.

are expected to have similar depth values, on each row (fixed y) we expect to

observe non-decreasing PM values for increasing x, with rapid jumps around object

boundaries. The discussed cracks contradict to this and are easy to detect on the

placement matrices. They appear in three different forms and these are depicted

in Fig. 3.3. In this figure, on the bottom half there are 16×8 pixel sections from

the placement matrices. The red lines on these sections depict the rows and three

neighboring PM values where the cracks appear. On the top half the corresponding

values of the PM that lead to a crack is illustrated. The first case happens when

there is a missing PM value in between two known values. The second case happens

when a background object fills in a crack although that value should correspond to

a foreground object, and the last case happens when the opposite happens. In each

case, we simply replace these middle values with the average of the neighboring

two values. Fig. 3.2(b) shows the placement matrix after this refinement step.

After the placement matrices are formed and refined, the pixels of IA are

mapped to the image plane ÎV as:

ÎA→V (x, y) = IA(PMA→V (x, y), y)

D̂A→V (x, y) = DA(PMA→V (x, y), y)

25

(a) (b)

Figure 3.4: The blended render (a) with ghost artifact (b) after refinement.

Blending

For the stereo anchor view case, the individual renders from each anchor

view are blended together by using Eq. (2.15) and Eq. (2.16). In order to simplify

the blending operation for a faster implementation, τ is chosen to be 0 in Eq. (2.16).

This operation corresponds to the following: If there is only one candidate pixel

for a certain location, we simply use that. Otherwise we choose the one that is

closer to the camera. We also keep track of the locations that have two candidate

pixels for later use.

Refinement

Usually depth values are unreliable at the object boundaries, and after the

blending operation this may cause “ghost artifacts”. This problem is depicted in

Fig. 3.4(a), and it is most salient in the background region around the ring on the

upper right hand corner.

In order to repair the ghost artifacts, we apply a refinement step after the

blending operation. For the locations where we had two candidate pixels, we apply

the following refinement operation and decide on the final value of the blended

26

image:

Îθ(x) = ÎA∗→V (x) where A∗ = arg min
A∈{0,1}

1∑

m=−1

1∑

n=−1
n6=m=0

|Îθ(x−m, y − n)− ÎA→θ(x, y)|

This operation essentially checks the likelihood of the candidate values of

a pixel with respect to its 8-point neighborhood. Then it chooses the one that is

more likely among the two candidates. This refinement step needs to get executed

multiple times before all the ghost images are removed. In our experiments we

found 5 or fewer iterations to be sufficient. Fig. 3.4(b) shows the the blended

image after the refinement step is applied.

Hole Dilation

As mentioned before, depth values along the object boundaries are unre-

liable. This also causes problems around hole boundaries. As it can be seen in

Fig. 3.4(a), the boundaries of the holes contain textures from other objects. This

becomes a problem during hole filling if not treated prior to it. In order to remove

these pixels, we simply apply a morphological dilation operation to the holes,

specifically using a disk with radius of 3 pixels in our method.

3.2.2 Rendering Background Layer

Once the foreground views are rendered, generally DIBR-based methods

apply the hole filling algorithm directly on the rendered foreground views [17,28].

This is not optimal since holes are most likely to belong to the background, but

the background pixels are partially covered by the foreground objects after the

rendering process. Since some of the important background pixels might be cov-

ered in the rendered foreground views, hole filling algorithm cannot utilize all the

important information available in the captured views.

In our method, we account for this problem by synthesizing a background

layer as well that combines all the pixels belonging to background region onto

a single layer. This is similar to the previously mentioned background layer

27

Figure 3.5: An example of a synthesized background layer.

idea [24,25]. In order to do that, the pixel mapping steps described for fore-

ground views are repeated, except the pixels that are farther away from the camera

are mapped over the closer ones. Mathematically this requires the Eq. (2.7) and

Eq. (2.16) to be changed to Eq. (3.2) and Eq. (3.3), respectively. An example of

the background layer is depicted in Fig. 3.5.

D̂A→V (x) =

DA(x+ dA→V (xA)), if DA(xA) < DA(x́A).

DA(x+ dA→V (x́A)), otherwise.
(3.2)

γ̂(x) =

0, if D̂0→θ(x) < D̂1→θ(x) or Î1→θ(x) is a hole.

1, if D̂1→θ(x) < D̂0→θ(x) or Î0→θ(x) is a hole.
(3.3)

3.2.3 Hole Mapping on Background Layer

In section 3.2.1 rendering an initial foreground view is discussed. Before

proceeding onto the hole mapping step of the proposed method, first multiple

views corresponding to different virtual camera positions are rendered.

All the rendered initial foreground views have a number of holes, but some

of these holes actually correspond to the same occlusion regions in other views

(i.e. same uncovered region in the background). In order to keep the synthesized

texture consistent for different rendered views, these holes need to be filled to-

gether. Tran et al. [29] handles this problem by explicitly aligning the coordinates

28

of the corresponding holes in different views. This operation requires a lot of com-

putation since every hole in each view needs to be compared to all the holes in the

other views.

Instead, we propose a simpler approach where we first decide on a depth

level for each of the holes in each rendered foreground view. This determines where

these holes would be positioned on the background layer. Once we know these

positions, we locate the holes on the background layer and mark the corresponding

pixels as holes. This step essentially overlays the corresponding holes from each

foreground view on the background layer, which are then filled as a single hole in

the hole filling step.

For deciding on the depth level of the holes, we check for the depth values

on the boundary of the hole and simply select the minimum value encountered.

This choice of depth level forces the holes to be filled in with the neighboring

background texture.

3.2.4 Hole Filling

After locating all the holes on the background layer, we apply the hole filling

algorithm on the background layer. This allows us to utilize all of the background

information available from the anchor views in order to fill in the missing regions.

In the proposed method, we use the very popular patch-based inpainting

algorithm called “Exemplar based Inpainting” [34] for the hole filling step. Briefly,

this technique fills in the target region (Ω), from a source region (Φ) in an image

by copying over an appropriate patch from the source region. Fig. 3.6 shows an

illustration of this setting. The patches are copied onto the target region one by

one, and centered on a pixel on the contour of the fill region, or the so-called “fill

front” (δΩ), in each iteration of the algorithm.

In our implementation, we directly applied the method proposed by Crim-

inisi et al. [34], except we did not use Φ = I − Ω (I signifies the whole image).

Instead we calculate Φ as follows: Let DBG be the depth map of the background

layer and DΩ be the minimum depth map value along the boundary of the hole.

Then in order to incorporate the depth information within the inpainting process,

29

⌦

�

�⌦

Source
region

Target
region

Fill front

Figure 3.6: The source region, fill region and fill front setting used in inpainting.

(a) (b)

Figure 3.7: Background layer (a) with mapped holes from foreground views (b)
after holes are filled.

we choose Φ = |DBG − DΩ| < ζ · |s|−1, where s is defined in Eq. (2.4) and ζ is a

constant threshold and is taken to be 3 in our experiments.

The background layer after the hole filling step is shown in Fig. 3.7(b).

3.2.5 Texture Mapping on Foreground Views

Once the holes are filled on the background layer, then the newly synthesized

textures are simply mapped back onto the previously rendered foreground views.

In Fig. 3.8, the final synthesized views for camera positions θ ∈ {0.25, 0.5, 0.75}
are shown.

30

(a)

(b)

(c)

Figure 3.8: Synthesized (left) and corresponding captured (right) views at posi-
tion (a) α = 0.25 (b) α = 0.5 (c) α = 0.75.

31

3.2.6 Generating Additional Views

After the view synthesis process is completed, with the proposed method

any number of additional views can be synthesized with low computational com-

plexity as only a subset of the previously described steps need to be executed.

As it has already been calculated, the background layer is utilized directly

while synthesizing new views, which allows the synthesis process to skip the cum-

bersome hole filling operation. This also ensures that the holes of the new views

are filled with texture that is consistent with the previously synthesized views.

With the proposed method, an additional view is synthesized simply as

follows: First the new foreground view is rendered with holes. Then each hole

is assigned a depth level, which determines its position on the background layer.

Once the hole is positioned on the background layer, it is simply filled by copying

the corresponding pixels from the background layer.

3.3 Experimental Results

3.3.1 View Synthesis Quality

The proposed method is tested on the well known Middlebury dataset [35],

and the quality of the synthesized views is measured using PSNR. There are other

view synthesis methods that use the same experimental setup as ours [17, 28, 29],

therefore we use their reported results as reference. In our experiments, for each

scene in the dataset, we synthesized three views positioned at θ = {0.25, 0.5, 0.75},
but some of the reference view synthesis methods [28, 29] only report results for

position θ = 0.5. Therefore for direct comparison with the competing methods,

we also only report the results for position θ = 0.5 in this section.

According to the results in Table 3.1, the proposed method is not the top

performer. However it can synthesize views with competitive object quality to the

best performing methods. In average the quality of the synthesized views with the

top performing method [29] is only 0.47 dB better in PSNR than the proposed

method.

32

Table 3.1: View synthesis quality comparison of the proposed method.

Jain et al. [17] Tran et al. [28] Tran et al. [29] Proposed

Image Name PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB)

Art 31.63 32.66 32.82 32.09
Books 30.23 30.92 31.06 30.15
Cloth1 35.00 35.99 35.99 35.68
Dolls 31.56 33.05 33.22 31.95
Laundry 32.05 32.13 32.16 31.63
Moebius 33.35 34.30 34.58 33.92
Monopoly 30.14 32.19 32.27 32.65
Plastic 37.79 37.77 34.10 38.09
Reindeer 33.40 33.70 37.90 33.40
Wood1 36.34 37.47 37.50 37.36

Average 33.15 34.02 34.16 33.69

3.3.2 Execution Speed

A fast view synthesis method is crucial for supporting autostereoscopic

displays with many views. Hence, we also provide the details of the execution

time for our method. We implemented the proposed method in CUDA and ran

the experiments on an Nvidia 580GTX graphics card with 512 CUDA cores and

1536MB memory. For the images listed in Table 3.1, the execution times for each

main block of the proposed method are shown in Fig. 3.9.

As it can be seen from Fig. 3.9, the bottleneck of our method is the hole

filling algorithm. That is because it can not be parallelized as it fills the holes

sequentially, only one patch at a time. On the other hand, other parts of the

proposed method can be parallelized to take advantage of the processing power of

the GPU. Thus once the background layer is synthesized, an additional view can

be generated in almost real-time as the proposed algorithm can skip the hole filling

step.

The view synthesis methods that we compare the proposed method against

also report their execution speeds. Our implementation is the fastest among all of

them; however this is not a fair comparison as they are all implemented in different

programming languages. Instead we compare the complexity of each method with

33

0 2 4 6 8 10 12

Cloth1

Plastic

Wood1

Books

Laundry

Moebius

Reindeer

Art

Monopoly

Time (s)

Initializations
Rendering FG Views (x3)
Rendering BG Layer
Hole Mapping on BG Layer
Hole Filling on BG Layer
Texture Mapping on FG Views (x3)
Synthesizing An Additional View

Figure 3.9: The execution time of the main blocks of the proposed view synthesis
method.

respect to the number of synthesized views.

The complexity of the method proposed by Jain et al. [17] is almost linear

with the number of synthesized views. On the other hand, due to the coordinate

alignment step, the method proposed by Tran et al. [29] requires even more time,

which is a polynomial of the number of synthesized views. In comparison, the

proposed method first uses a small number of views (3 in our experiments) to

generate the background layer, and then each additional view can be synthesized

using the same background layer. Therefore the complexity of the proposed method

can be assumed to be almost constant with the number of synthesized views since

the time required by synthesizing a new view is negligible in comparison to the

time required by the hole filling step. This makes the proposed method ideal to

be used with autostereoscopic displays that require many viewpoints.

To demonstrate the power of the proposed method, we also implemented

an interface that allows the user to adjust the point of view and the depth content

of a 3D image interactively in real-time. This interface was only for demo purposes

and the details of it is omitted in this chapter.

34

3.4 Conclusion

In this chapter, we proposed a fast view synthesis method that synthesizes

views with good objective quality and also provides inter-view consistency. Among

the compared methods, the proposed method produces PSNR values only 0.47dB

lower on average than the top performer but has almost constant time complexity in

terms of the synthesized views. In comparison, the better performing two methods

have linear and polynomial time complexity.

Due to its efficiency and speed, the proposed method is useful for gener-

ating content for autostereoscopic displays that require many viewpoints. It can

also be used to support different displays with different specifications as it allows

synthesizing any number of views very efficiently and can provide an interactive

experience to the user.

Acknowledgments

This chapter, in full, is a reprint of the material as it appears in 3D Re-

search. Tran, Lam C.; Bal, Can; Pal, Christopher J.; Nguyen, Truong Q., Springer,

2012 [2]. The dissertation author was among the primary investigators and authors

of this paper.

Chapter 4

Multiview Video plus Depth

Coding with Depth-based

Prediction Mode

4.1 Introduction

Similar to H.264/AVC (or simply AVC), the current 3DV compression stan-

dard H.264/MVC (or simply MVC) uses block-based prediction modes and ex-

ploits the statistical correlation between views as well as the temporal redundan-

cies within a view. In addition to AVC intra and motion-compensated prediction

(MCP) modes, MVC introduces a new disparity-compensated prediction (DCP)

mode. DCP requires only high-level syntax changes to the AVC standard, making

the implementation an easy task given AVC implementations (both in software and

hardware) are readily available. DCP operates similarly to MCP, with the only

difference that DCP references previously decoded frames of other views whereas

MCP references the frames within the same view.

Although the addition of DCP can provide significant bitrate savings over

separate coding of views with AVC, as discussed in Chapter 1, bitrates generated

by MVC are linearly proportional to the number of encoded views [7]. Moreover,

the multiview video (MVV) representation restricts the number and location of

35

36

the views to the captured data. To address these limitations the multiview video

plus depth (MVD) representation has been proposed.

The addition of depth data to the 3DV representation created new chal-

lenges for compression. This triggered interest in the research community to de-

velop new coding tools tailored to the characteristics of the new representation.

First, depth maps consist of piece-wise smooth regions with sharp edges

around the object boundaries. Existing lossy compression techniques proved to

be competent for coding large textureless regions within depth maps, yet they

tend to flatten the depth edges after the transform and quantization operations.

This causes unnatural geometrical distortions to the synthesized views. In order

to account for this, new coding tools that yield sharper edges along the depth

discontinuities have been proposed [36–41]. In addition to these, methods that

increase the coding efficiency for smooth depth regions are also developed. Some

researchers proposed using depth specific prediction modes [42], and others showed

that reduced resolution depth maps can provide coding gains while maintaining

good synthesis quality [43]. JCT-3V mandates to use reduced resolution depth

maps in the common test conditions for the 3DV standardization process [44].

Second, in MVD representation, texture videos and depth maps contain

significant statistical correlations and it is possible to exploit these for better com-

pression. For instance, there are coding methods that recognize structural sim-

ilarity, and recycle block partitioning information from coded texture videos for

coding the depth maps [37, 45]. Additionally, there are methods that take advan-

tage of the shared motion between the texture and depth data [38,46–49] in order

to improve coding efficiency.

While coding MVD data, the encoder has to make certain optimizations

to provide the best quality for the given bitrate constraints. Initially, the encoder

needs to decide on the allocation of the total bitrate between the texture video and

the depth maps. Various solutions that address this problem have been proposed in

the literature [50–54]. Once the bitrate budget for the depth maps is determined,

the depth encoder uses rate-distortion optimization (RDO) to decide between the

available coding tools to provide the best possible quality. However, since depth

37

maps are never seen by the end users, but are used for virtual view synthesis,

measuring the depth map quality directly using video quality metrics such as PSNR

can be misleading. Instead, researchers proposed new metrics and models that

measure the geometrical distortions introduced in the synthesized views to assist

the RDO process [55–59].

Finally, there are coding methods that take advantage of the multiview

geometry between different views of 3DV in order to increase the overall coding

efficiency. The depth-based 3DV representation enables synthesis of virtual views,

which can also be utilized as a means of prediction within the codec. The typical

view synthesis consists of the following steps: Initially pixels of the reference views

get mapped and are blended together on a common virtual image plane. Depending

on the scene geometry, some of these pixels on the virtual image plane may not

have correspondences in the reference views (i.e. revealed background regions that

are covered by foreground objects in the reference views). These regions are then

filled by hole filling algorithms. Additionally, synthesis algorithms may employ

linear and/or non-linear filtering operations to treat potential synthesis artifacts.

Among these methods, Martinian et al. propose to insert synthesized vir-

tual frames in the reference picture buffer (RPB) and show that this can increase

coding efficiency even with a simple extension to MVC [60]. This approach requires

using the existing macroblock level signaling, and transmitting disparity vectors

and reference picture IDs to the decoder for the synthesized references. However,

if depth maps are reliable signaling the disparity vectors is redundant as the pixels

of the synthesized reference are expected to be aligned already with the frame be-

ing predicted. Thus, others extend this approach by adding new DIRECT/SKIP

modes to the codec that are specific to the synthesized reference [61–63]. These

methods report that these modes get chosen the majority of the time [61] allowing

the encoder to signal “view synthesis prediction” (VSP) very efficiently.

Apart from others, in order to reduce the complexity of the decoding process

for VSP, Jäger and Feldmann propose to use only the base view information for

synthesizing the virtual frames and skip the computationally expensive steps of

full view synthesis, such as the blending and hole filling operations [63]. They also

38

implement an alternative decision mechanism instead of the typical Lagrangian

RDO process to decide on using their proposed SKIP mode.

Contrarily, Bosse et al. propose a depth-aware encoder control method to

utilize view synthesis for bitrate savings without changing the codec syntax [64].

Their proposed method identifies reliable regions from the synthesized virtual

frames and encodes them with lower fidelity by omitting the coding of redun-

dant residual information. These regions are then detected at the decoder and

enhanced in a post-processing step using the synthesized virtual frames.

All the mentioned methods so far rely on forward mapping of anchor view

texture pixels to the virtual image plane, using the depth map belonging to the

anchor view. Alternatively, Rusanovskyy et al. propose to use backwards view

synthesis prediction (B-VSP), which uses the depth map belonging to the view

to be coded to find the correspondences between the reference views and that

particular view [65]. The advantage of B-VSP is that it does not require an entire

virtual view to be synthesized for decoding. Instead, it allows individual blocks

to be decoded separately only from the information contained in the collocated

block of its associated depth map. This reduces the complexity of the decoder

over forward VSP methods. On the other hand, it requires the depth maps for all

the anchor views to be contained in the bitstream, and each corresponding depth

map to be decoded prior to decoding the anchor texture videos (except for the

base view).

VSP is shown to be effective for coding texture videos, but it can also be

utilized for depth map coding. As an example, Morvan et al. propose a simple

extension to the H.264/AVC codec for depth map coding, and report bitrate sav-

ings by using a synthesized reference for prediction [66]. They insert a synthesized

depth frame to the RPB and position it such that the SKIP mode uses this frame

as the reference instead. They test for different synthesis algorithms with varying

complexities and show a trade-off between computational complexity and coding

efficiency.

In this chapter we propose a “depth-based prediction mode” (DBPM) and

a MVC-based MVD codec that uses the base view texture and depth information

39

Table 4.1: DBPM syntax vs. MVC inter prediction modes

MVC Inter Prediction Modes DBPM

mb type mb type
mb pred(mb type) { skipped
ref idx s reference is the base view
mvd s } motion info not needed

coded block pattern (cbp) coded block pattern
if (cbp) { if (cbp) {
residual(0,15) } residual(0,15) }

for enhancing the coding efficiency of multiview videos as well as depth maps. The

DBPM works similar to VSP DIRECT mode, but it requires only minor changes to

MVC. Its simple syntax allows using a synthesized reference with a small signaling

cost.

With DBPM, we utilize the multiview geometry for enhanced prediction of

both the texture videos and their associated depth maps. In this chapter, first we

provide a rate-distortion analysis of the proposed codec and compare it with MVC

in the contexts of MVD data, depth map and multiview video coding. Second, we

report the results of a subjective study comparing the perceptual quality of stereo

videos coded with DBPM support and with MVC. Then we analyze the usage

statistics of DBPM in the proposed codec and show that a typical Lagrangian rate-

distortion optimization is effective to successfully choose between DBPM and other

prediction modes available to the proposed encoder. Additionally, we provide a

complexity analysis of the proposed codec, and finally discuss the effects of different

encoder control parameters on the decoder side virtual view synthesis quality.

4.2 Depth-based Prediction Mode

MVC exploits interview correlations to increase the video coding efficiency

through DCP mode, which uses estimated disparity vectors to relate macroblocks

from one view to another. Estimating disparity vectors is similar to estimating a

block level depth map; however it fails to capture the true multiview geometry in

the scene. Attempts to exploit multiview geometry for compression show that VSP

40

Ba
se
!

vi
ew

!
Ad

di
tio

na
l!

vi
ew

!
R

en
de

re
d!

re
fe

re
nc

es
!

Depth Image-based Rendering (DIBR)!

Texture video! Depth map!

Depth-based Prediction Mode (DBPM)!

Figure 4.1: Illustration of the Depth-based Prediction Mode.

can further improve video coding efficiency by utilizing pixel level depth maps. As

discussed in Section 4.1, some of these coding methods require picture level syntax

changes to existing codecs, while others propose additional macroblock changes for

efficient signaling of VSP modes.

In contrast the “depth-based prediction mode” (DBPM) allows using a

synthesized reference picture for prediction without any high level syntax changes

to the MVC, and requires only simple macroblock level syntax changes to the

standard. DBPM can be used concurrently with existing prediction modes of MVC

without introducing a significant overhead due to the changes in the syntax [4].

The novelty of DBPM is its simple syntax design, and its simplicity is based

on two valid assumptions. First, a synthesized reference picture is most effective

for a particular frame of a particular view and does not need to be stored for

longer term use. Hence, with DBPM the synthesized reference frame is stored in

a temporary buffer instead of the RPB. This allows avoiding picture level syntax

changes to the codec. Second, a pixel level synthesis operation is expected to

41

align the pixels of the reference frame with the frame to be predicted. With this

assumption, similar to VSP DIRECT/SKIP modes, DBPM does not signal any

motion information to the decoder.

In addition to these assumptions, DBPM restricts how the synthesized ref-

erence is generated and limits the synthesis operation to use the base view infor-

mation only. This restriction has certain benefits. Initially, combined with the

first assumption, it allows skipping to signal the reference picture IDs (or refer-

ence views in this case) to the decoder, making the DBPM syntax even simpler.

In addition, with a single reference view, the codec requires to repeat the Depth

Image-Based Rendering (DIBR) [13] only once and can skip the blending operation

for generating the synthesized reference. This reduces the computational cost of

the DBPM. Furthermore, since hole filling is a costly and an error prone operation,

it is also skipped for generating the DBPM references. This reduces the computa-

tional cost required by DBPM even further. Since only a single DIBR operation is

conducted for generating the DBPM references, to differentiate with virtual view

synthesis, they will be referred as rendered references in the rest of the chapter.

DBPM is essentially signaled only through a new mb type. Once it is sig-

naled to the decoder, the decoder simply refers to the rendered reference and copies

the collocated macroblock for prediction. Since depth maps are typically estimated

and contain local errors, the rendered references may suffer from local geometric

distortions and fail to serve as strong reference for certain regions. If that is the

case, similar to VSP DIRECT mode, DBPM supports signaling additional residual

data. The comparison of the DBPM syntax with existing MVC inter prediction

modes is provided in Table 4.1. Additionally, an illustration of DBPM is provided

in red in Fig. 4.1 along with the DIBR operation, which is depicted in blue.

In this chapter we propose an MVC-based MVD codec with DBPM-support.

In the proposed codec we utilize DBPM both for the prediction of the texture videos

and the depth maps. The decoding process is very similar for both, with the only

difference that depth maps are already self sufficient for generating the rendered

reference. A block diagram of the proposed codec is provided in Fig. 4.2.

Due to errors in the depth map or simply because of the occlusion regions

42

Proposed MVD Codec with DBPM Support
Prediction Module

Entropy
Coding

Transform
Scale

Quantization

Intra
&

Motion
&

Disparity

Prediction

references

Depth
Decoder

Depth
Based

Prediction

Rendering
Module

Depth:

prediction
data

residual

depth
bitstream-

Multiview
Video Codec
with DBPM

Support

from [66]

Video:

Inputs Output

mux

video
bitstream

bitstream

D

D
DA!V

DPred
V

Figure 4.2: Block diagram of the proposed MVD codec with DBPM support.

in the rendered references, DBPM cannot always provide good prediction quality.

To maintain video quality, a DBPM-enabled codec needs a decision mechanism to

detect when this happens and rely on other prediction modes. In order to achieve

that, the proposed encoder uses a typical Lagrangian rate-distortion optimization

(RDO) mechanism to choose the best performing prediction mode between DBPM

and existing MVC prediction modes. This decision mechanism proves to be effec-

tive and chooses DBPM only when the depth map is reliable. This will be further

addressed in Section 4.3.3.

The proposed DBPM-enabled MVD codec is compatible with the 3D-AVC

standardization track. It first encodes the base view video and its associated depth

map using AVC. Then, while encoding additional views, along with DCP, DBPM

gets enabled and the mode with the least Lagrangian cost is selected.

4.3 Experimental Results

In this section, we report results on the performance of the proposed codec.

We use both objective metrics and subjective tests to assess its performance. First,

43

Table 4.2: Test conditions

Codec Based on JMVC 8.5
Interview coding structure 2 views: P-I — 3views: P-I-P

Texture QPs 26, 31, 36, 41
Depth QPs 26, 31, 36, 41

Depth resolution
Tested for both 50% and 25%

reduction in each direction
GOP structure IPPP. . .
Anchor period 24 frames
Symbol mode CABAC

we use Bjontegaard Delta Rate (BD-Rate) [67] and rate-distortion (RD) curves to

measure the coding efficiency. Second, we provide results of a subjective study

that evaluates the perceptual quality of stereo videos coded with DBPM support.

To further understand its prediction quality, we report the percentage of the mac-

roblocks the proposed encoder chooses to predict using DBPM. Then we compare

the complexity of the proposed codec with MVC; and finally we analyze the effects

of different encoder parameters on the decoder side virtual view synthesis quality.

We use the AVC-based experiments described in 3DV common test condi-

tions (CTC) [44] for analysis. Our test conditions have minor differences with the

CTC and are listed in Table 4.2. Instead of using fixed texture and depth quan-

tization parameter (QP) combinations, we test the proposed codec with various

combinations of texture and depth QPs. Additionally, CTC mandates only using

depth maps with 50% reduced resolution in each direction. Instead we also test

for 25% resolution reduction. For the sake of simplicity, in the rest of the chapter

we will refer to 50% and 25% reduced resolution depth map inputs as “Depth-0.5”

and “Depth-0.25”, respectively.

4.3.1 Rate-Distortion Analysis

In this section, we compare the coding performance of the proposed codec

with MVC using BD-Rate and RD curves. Note that BD-Rate calculates the

average difference between two RD curves and its negative values signify percent

bitrate savings against an anchor coding method.

44

We analyze the rate-distortion performance of DBPM in three different

contexts. First, we provide results for the proposed MVD codec. The proposed

codec encodes the texture videos and the depth maps both with DBPM support. In

comparison we use MVC to encode texture and depth channels disjointly. Second,

to isolate the contribution of the DBPM support for depth maps, we analyze its

prediction performance in the context of depth map coding. Third, we report

results for coding multiview videos as DBPM is effective also for coding texture

videos without depth maps. Since DBPM requires a depth map, in this comparison

the bitstream generated by our codec includes the base view depth map, whereas

MVC bitstream does not.

MVD Coding

The BD-Rate results for coding MVD data using the proposed codec vs.

MVC are reported in Tables 4.3 and 4.4. These results show that the proposed

codec can achieve up to 9.2% bitrate savings with DBPM support and expectedly,

the gains vary depending on the depth map quality. For example, GTFly and

UndoDancer are among the sequences with largest gain since they are computer

generated sequences with ground truth depth maps. In comparison, the depth

maps of the Newspaper sequence are noisy, and consist of both temporal inconsis-

tencies and spatial errors. This leads to inefficient coding of the depth maps and

geometric distortions in the rendered references for DBPM. Thus, Newspaper is

among the sequences that benefited the least from DBPM support. In addition,

comparing the BD-Rates for different depth map resolutions, we see that both

Depth-0.5 and Depth-0.25 yield comparable gains to each other. This is because

the reduction in depth map resolution and consequently the reduction of depth bi-

trate compensates for the loss of effectiveness of DBPM. This shows that a depth

bitrate constraint can be satisfied for different combinations of depth map resolu-

tion and QP, and the optimal choice depends on the desired quality of virtual view

synthesis. This problem is addressed in Section 4.3.5.

Another important observation is that bitrate savings from DBPM add

up as the number of anchor views increase from 2 to 3. This is expected due

45

Table 4.3: BD-Rate (%) for coding 2 view MVD data - measured against MVC.

Depth-0.5 Depth-0.25

Depth QP 26 31 36 41 26 31 36 41

Balloons -1.58 -1.93 -2.06 -2.19 -1.90 -2.08 -2.11 -2.11
Kendo -0.84 -1.09 -1.14 -1.13 -1.01 -1.12 -1.13 -1.03
Newspaper -0.07 -0.12 -0.10 -0.11 -0.01 -0.12 -0.04 -0.12
UndoDancer -2.90 -2.14 -1.42 -0.93 -2.62 -2.11 -1.48 -0.82
GTFly -6.12 -6.06 -5.70 -4.99 -5.80 -5.67 -5.30 -4.80
PoznanHall2 -4.03 -4.21 -3.78 -3.59 -4.46 -4.52 -4.11 -3.75
PoznanStreet -1.88 -1.97 -1.87 -1.56 -1.94 -1.97 -1.80 -1.58

Table 4.4: BD-Rate (%) for coding 3 view MVD data - measured against MVC.

Depth-0.5 Depth-0.25

Depth QP 26 31 36 41 26 31 36 41

Balloons -2.57 -3.16 -3.33 -3.53 -3.20 -3.55 -3.51 -3.50
Kendo -2.03 -2.53 -2.84 -2.88 -2.61 -2.90 -2.99 -2.80
Newspaper -2.55 -3.17 -3.52 -3.64 -3.32 -3.80 -3.78 -3.67
UndoDancer -7.06 -5.52 -3.93 -2.94 -6.57 -5.42 -3.97 -2.62
GTFly -9.19 -9.03 -8.51 -7.50 -8.82 -8.56 -7.97 -7.16
PoznanHall2 -5.26 -5.35 -4.95 -4.49 -5.82 -5.78 -5.26 -4.68
PoznanStreet -3.81 -4.04 -3.75 -3.09 -4.13 -4.05 -3.64 -3.08

to the P-I and P-I-P interview coding structures used for our experiments. Yet,

it is not possible to generalize this for more anchor views. DBPM can provide

good prediction as long as there is enough correlation between the base and the

additional views, and this might not hold true depending on the sequence, position

of the cameras of anchor views and the interview coding structure.

BD-Rate allows measuring bitrate savings in a concise manner, yet it fails to

associate these savings with the absolute number of bits saved. Hence, in addition

to the BD-Rate results, we also provide the RD curves for the GTFly sequence

(3 views), which yields the most gain for the proposed codec. Fig. 4.3 shows that

the proposed codec can deliver the same quality of MVD data with up to 900 kbps

less bitrate than MVC.

46

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

32

34

36

38

40

42

Bitrate (kbps)

Y
−

P
S

N
R

 (
dB

)

MVC
Proposed (50% red.res.depth − QP: 26)

Figure 4.3: RD curves for GTFly, 3 views, coding MVD data.

Depth Map Coding

In the proposed codec DBPM is utilized not only for the prediction of the

texture videos but also for the depth maps. To better understand the contribu-

tion of the DBPM support for the depth maps to the bitrate savings reported in

Section 4.3.1, we also provide BD-Rate results for depth map coding in Table 4.5.

Since depth maps consist of piece-wise smooth regions, DBPM faces a stronger

competition against existing MVC prediction modes. Looking at the results in

Table 4.5, DBPM proves to be successful with up to 9.9% bitrate saving when

the depth maps are accurate. On the other hand, for depth maps with limited

accuracy, the encoder chooses DBPM infrequently and the DBPM-enabled codec

starts to yield slightly worse performance than MVC. These bitrate losses are lim-

ited to around or less than 1%, which are due to the syntax overhead introduced

by DBPM.

Multiview Video Coding

DBPM is also effective for coding multiview video. The BD-Rate results

analyzing the DBPM performance for multiview video coding are provided in Ta-

bles 4.6 and 4.7. These results show that even with the overhead spent on the base

47

Table 4.5: BD-Rate (%) for depth maps - measured against MVC.

Depth-0.5 Depth-0.25

2 views 3 views 2 views 3 views

Balloons 0.32 0.51 0.41 0.74
Kendo 0.08 0.26 0.29 0.36
Newspaper 0.75 1.24 0.61 0.79
UndoDancer -2.98 -4.37 -2.46 -3.00
GTFly -7.56 -9.93 -5.88 -8.00
PoznanHall2 1.03 0.22 0.19 -1.33
PoznanStreet -1.69 -2.59 -0.99 -2.05

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
32

34

36

38

40

42

Bitrate (kbps)

Y
−

P
S

N
R

 (
dB

)

MVC
Proposed (25% red.res.depth − QP: 36)

Figure 4.4: RD curves for GTFly, 3 views, coding multiview video (the proposed
codec also encodes the base view depth map).

view depth map, the DBPM support can provide up to 6.7% bitrate savings over

MVC, which corresponds to about 500 kbps. This bitrate savings can be seen in

Fig. 4.4. On the other hand, there exist cases where the proposed codec cannot

provide any savings and even yields significant bitrate loss in comparison to MVC.

Nonetheless, this happens when an unnecessarily large bitrate is allocated to the

depth map and gains achieved by DBPM cannot account for this depth overhead.

However it is important to notice that for almost all sequences and all the tested

number of anchor views, there is at least one combination of depth map QP and

48

Table 4.6: BD-Rate (%) for coding 2 view multiview video - measured against
MVC.

Depth-0.5 Depth-0.25

Depth QP 26 31 36 41 26 31 36 41

Balloons 23.98 11.30 4.80 1.66 8.62 3.08 0.60 -0.49
Kendo 32.53 18.30 9.41 4.86 14.90 7.63 3.47 1.57
Newspaper 37.06 17.76 8.31 4.24 14.71 6.96 3.32 1.75
UndoDancer 2.31 1.12 0.65 0.36 -0.19 -0.59 -0.55 -0.24
GTFly 7.69 2.17 -0.89 -2.24 -0.31 -2.49 -3.48 -3.73
PoznanHall2 14.06 5.80 1.21 -0.67 3.14 -0.31 -1.86 -2.33
PoznanStreet 14.22 6.40 2.46 0.95 4.57 1.40 -0.03 -0.49

Table 4.7: BD-Rate (%) for coding 3 view multiview video - measured against
MVC.

Depth-0.5 Depth-0.25

Depth QP 26 31 36 41 26 31 36 41

Balloons 13.69 5.12 0.91 -1.14 3.28 -0.41 -1.87 -2.51
Kendo 18.83 9.36 3.57 0.79 7.05 2.32 -0.22 -1.21
Newspaper 20.24 7.49 1.40 -1.12 5.41 0.32 -1.86 -2.59
UndoDancer -3.77 -3.47 -2.64 -2.14 -5.04 -4.46 -3.38 -2.24
GTFly 0.22 -3.36 -5.12 -5.58 -5.16 -6.41 -6.71 -6.40
PoznanHall2 6.33 1.01 -1.85 -2.66 -0.95 -3.04 -3.80 -3.75
PoznanStreet 6.80 1.50 -0.85 -1.39 0.06 -1.86 -2.46 -2.32

resolution that yields gain over MVC. Although not addressed in this work, this

shows that the encoder can consider this while allocating bitrate between texture

videos and the depth map, and optimize for the depth map resolution and QP to

spend bits on the depth map only when it is beneficial.

4.3.2 Subjective Tests

Although PSNR provides an easy way of measuring the quality of coded

pictures, it is arguable that it is not always correlated with perceptual quality. For

example, a pixel shift on a picture could yield low PSNR values although it would

not be perceived as a degradation. On the contrary, a temporal flicker in a video

sequence would be highly disturbing although PSNR values of each individual

49

Table 4.8: Test sequences that are used for the subjective tests.

Sequence Depth resolution Depth QP

UndoDancer Depth-0.25 31
PoznanHall2 Depth-0.25 41
PoznanStreet Depth-0.25 41

frame could be high. Hence, we provide results of a subjective study that compare

the performance of the proposed codec with MVC for stereo video coding.

This study is conducted using the ITU-R recommended standard testing

method, Double Stimulus Impairment Scale (DSIS) [68]. Stereo videos are dis-

played on a 47” LG 47LW6500 stereoscopic 3D TV and the experiments are con-

ducted using “Tally”, a subjective testing software introduced by Jain et al. [69].

22 subjects participated in the experiments with at most 3 subjects in each session.

14 of them were male and 8 were female, with ages ranging from 21 to 53 with an

average age of 29. Each participant is screened for visual acuity, color blindness

and stereo acuity.

The study consisted of 24 test cases, (3 sequences, 4 bitrate levels and 2

tested codecs). The sequences chosen for the tests are listed in Table 4.8. For MVC

only the texture videos are encoded, whereas for the proposed codec an additional

depth map is also encoded, only to be used by DBPM. While using the proposed

codec, the depth map QP and resolution for each sequence are chosen based on

the gains reported in Table 4.6.

The RD curves based on the Mean Opinion Scores (MOS) of the subjects

are depicted in Fig. 4.5. These plots show that for all sequences, the perceptual

quality of the proposed codec is very close to MVC. Due to the confidence levels,

it is not possible to derive strict conclusions on which codec performs better from

the reported MOS scores. Yet, it is possible to confirm that the proposed codec

does not generate any unexpected visual artifacts (e.g. temporal flicker) that PSNR

measurements reported in Section 4.3.1 could have overlooked.

50

0 0.5 1 1.5 2 2.5 3

x 10
4

1

2

3

4

5

Bitrate (kbps)

M
ea

n
O

pi
ni

on
 S

co
re

MVC
Proposed

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

2

3

4

5

Bitrate (kbps)

M
ea

n
O

pi
ni

on
 S

co
re

MVC
Proposed

(b)

0 2000 4000 6000 8000 10000 12000
1

2

3

4

5

Bitrate (kbps)

M
ea

n
O

pi
ni

on
 S

co
re

MVC
Proposed

(c)

Figure 4.5: Subjective test results for stereo video coding, for sequences (a) Un-
doDancer (b) PoznanHall2 (c) PoznanStreet.

4.3.3 DBPM Usage

The strength of DBPM is its low signaling cost, but it should be preferred

over other MVC prediction modes when it can also provide good prediction quality.

51

26
31

36
41 26313641

0
10
20
30
40
50

24%
30%

36%

23%

47%

29%

Depth QP

35%

23%

46%

28%
33%

22%

43%

26%
31%

Video QP

40%
P

er
ce

nt
ag

e
(%

)

(a)

26
31

36
41

26 31 36 41

0

5

Video Q
P

5.0%
4.0%

2.7%

5.2%

1.9%

4.0%

2.7%

5.3%

1.9%

Depth QP

4.1%

2.7%

5.4%

1.8%

4.1%

2.7%
1.8%

P
er

ce
nt

ag
e

(%
)

(b)

Figure 4.6: Percentage of the DBPM macroblocks for Depth-0.5, 3 views and
sequences (a) GTFly (b) Newspaper.

In order to achieve this, the proposed codec uses the Lagrangian RDO module of

MVC to decide between DBPM and other available modes. Here, we report the

percentage of macroblocks that are predicted with DBPM and show that this

framework can indeed adapt to different conditions affecting the prediction quality

of DBPM. The DBPM usage for sequences GTFly and Newspaper are provided in

Fig. 4.6. These sequences, as discussed in Section 4.3.1, reflect the two extreme

cases for depth map quality and are the most informative.

For GTFly, results show that the proposed encoder chooses DBPM for

up to 47% of the macroblocks. This shows that DBPM can be very effective for

prediction when the depth map quality is high. Expectedly, DBPM usage decreases

with increasing depth map QP but this drop in usage is minimal. On the other

hand, increasing video QP has a more pronounced affect on DBPM usage, lowering

it down to 22%. This is caused by the decreasing quality of the base view video

with increasing video QP, which consequently reduces the quality of the rendered

reference for DBPM.

In comparison, when the depth maps have low quality as in the case of

Newspaper, encoder infrequently prefers DBPM, with DBPM usage ranging only

from 2% to 5%. The trend for DBPM usage with varying depth QP for Newspaper

is similar to the trend for GTFly ; but the effect of video QP on DBPM usage is the

opposite. For Newspaper DBPM usage increases with video QP, and it is because

DBPM starts to operate as a low cost alternative to existing MVC prediction

modes for lower bitrates.

52

Table 4.9: Test platform.

CPU Intel i7-980X 6-core 3.33GHz
Memory 12GB DDR3-1066

Operating system Ubuntu Linux 10.04 LTS

4.3.4 Complexity Analysis

In this section we compare the complexity of the proposed codec with MVC.

We estimate the complexity based on the run-time of the encoding and decoding

processes. The experiments are conducted on a desktop computer with specifica-

tions listed in Table 4.9. The average percent increase in complexity for different

test sequences and depth resolutions are listed in Table 4.10. According to the

results, the encoder complexity is only slightly more than MVC, with around 4%

increase. In comparison, the increase in decoder complexity is more prominent

and is about twice the complexity of MVC; yet we believe that this is still within

acceptable boundaries and real-time implementations could be possible.

We designed DBPM such that the rendering module in the codec is sim-

ple and introduces only a limited complexity increase over MVC. In the proposed

codec, we limited the rendering operation to DIBR, which allowed us to skip other

costly view synthesis operations that would contribute to the complexity increase

much more than the DIBR [2]. However, the majority of the complexity increase

in the proposed codec is still due to the rendering operation. For a fair comparison

with the MVC software, in our experiments, we did not use any hardware acceler-

ation for the DIBR operation; yet a GPU implementation of the DIBR can render

an entire picture in the order of milliseconds. Hence, a hardware acceleration could

considerably lower the run-time of the proposed codec [2]. In the future we foresee

that codecs will employ hardware implementations of the DIBR operation as real-

time decoder side virtual view synthesis is desired for the next generation 3DV

codecs.

53

Table 4.10: Average computational complexity of the proposed codec in compar-
ison to MVC.

Depth-0.5 Depth-0.25

Encoder Decoder Encoder Decoder

Balloons 105 189 101 190
Kendo 105 175 104 183
Newspaper 97 222 95 216
UndoDancer 104 200 104 187
GTFly 106 211 106 210
PoznanHall2 101 276 101 256
PoznanStreet 110 232 110 223

Average 104% 215% 103% 209%

4.3.5 Virtual View Synthesis

As discussed earlier, one of the biggest advantages of having a depth-based

3D video representation is the support for the virtual view synthesis. So far we

investigated the effects of encoder parameters on the quality of the coded anchor

views. On the other hand, encoder control parameters also affect the quality of

the virtual view synthesis and it is important to understand the effect of each

parameter.

Virtual view synthesis, as also mandated in the 3DV common test condi-

tions [44], typically refers to synthesizing virtual views in between pairs of neigh-

boring anchor views, or so called view interpolation. In order to analyze the

performance of the proposed codec in this context, 7 virtual views are interpolated

in between each neighboring pair of anchor views. To serve as a reference, the

synthesis operation is conducted first using uncompressed texture videos and their

associated full resolution depth maps. Then the same operations are repeated for

the compressed data to explore effects of different video QPs, depth QPs and res-

olutions on the quality of interpolated views. For these experiments we used the

software provided in the 3DV CTC [44].

The change in view synthesis quality for GTFly is depicted in Figure 4.7

for varying video and depth QPs. Results for other sequences follow similar trends

and therefore are omitted here. The results show that the view synthesis quality

54

1 2 3 4 5 6 7 8 9
30

32

34

36

38

40

view id

Y
−

P
S

N
R

 (
dB

)

Video QP:26 31 36 41

(a)

1 2 3 4 5 6 7 8 9

37

38

39

40

view id

Y
−

P
S

N
R

 (
dB

)

Depth QP:26 31 36 41

(b)

Figure 4.7: View interpolation quality for GTFly, Depth-0.5, (a) fixed depth QP
(26) and varying video QP (b) fixed video QP (26) and varying depth QP.

decreases both with increasing video QP and depth QP. This is not surprising as

increasing video QP degrades the quality of the reference views, and increasing

depth QP introduces geometrical error to the synthesis. Yet, one interesting ob-

servation is that the quality is more robust against high QPs of depth maps than

texture videos. For high quality depth maps (low QP), the PSNR values for the

interpolated views level around the PSNR values of the anchor views, and they

decrease slightly more as depth QP increases.

Depth map resolution provides an additional control over the bitrate spent

on the depth, and has a more pronounced effect on the view synthesis quality than

depth map QP. The view synthesis quality for various combinations of depth map

55

1 2 3 4 5 6 7 8 9

26

28

30

32

34

36

view id

Y
−

P
S

N
R

 (
dB

)

Depth−0.5 − QP:26 − 511 kbps
Depth−0.5 − QP:36 − 219 kbps
Depth−0.5 − QP:41 − 140 kbps
Depth−0.25 − QP:26 − 224 kbps
Depth−0.25 − QP:41 − 58 kbps

(a)

1 2 3 4 5 6 7 8 9
32

34

36

38

40

view id

Y
−

P
S

N
R

 (
dB

)

Depth−0.5 − QP:26 − 939 kbps
Depth−0.5 − QP:36 − 322 kbps
Depth−0.5 − QP:41 − 193 kbps
Depth−0.25 − QP:26 − 366 kbps
Depth−0.25 − QP:41 − 70 kbps

(b)

1 1.5 2 2.5 3 3.5 4 4.5 5
34

36

38

40

42

view id

Y
−

P
S

N
R

 (
dB

)

Depth−0.5 − QP:26 − 1086 kbps
Depth−0.5 − QP:36 − 279 kbps
Depth−0.5 − QP:41 − 151 kbps
Depth−0.25 − QP:26 − 442 kbps
Depth−0.25 − QP:41 − 59 kbps

(c)

Figure 4.8: View interpolation quality for fixed video QP (26), varying depth QP
and resolution for sequences (a) UndoDancer (b) GTFly (c) Balloons.

resolution and QP are plotted in Figure 4.8. Since similar depth map bitrates

can be achieved with different combinations of depth map resolution and QP, the

56

bitrates associated with each plot are also provided (total for 3 views).

Looking at the results in Tables 4.6 and 4.7, for coding multiview video, we

see that low resolution depth maps typically yield better coding performance for

the proposed codec. However, as shown in Tables 4.3 and 4.4, the coding gains

achieved by different combinations of depth map QP and resolution vary only

slightly while coding an MVD sequence. Hence, for coding MVD data, the choice

of depth resolution and QP should be mostly based on the virtual view synthesis

quality. For the tested depth map resolutions, the higher resolution but higher QP

depth maps achieve better synthesis quality than their lower resolution alternative

at a similar bitrate. This holds true for all the sequences in Figure 4.8 and is most

noticeable for the UndoDancer sequence.

All in all, the optimal choice for the depth map resolution is application

dependent. If depth information is only to be used for DBPM but not for virtual

view synthesis, a lower resolution depth map can be a better candidate. Contrarily,

when view interpolation is desired, QP seems to be a better option for controlling

the depth map bitrate instead of the depth map resolution.

4.4 Conclusion

In this chapter, we proposed a multiview video plus depth (MVD) codec

that utilizes the depth-based macroblock prediction mode (DBPM) to increase

coding efficiency. The proposed codec uses DBPM not only for coding texture

videos but also for the depth maps.

Addition of DBPM to the codec requires only minor macroblock level

changes to the MVC syntax, and this design allows DBPM to be signaled very

efficiently. DBPM provides a reliable method of prediction when depth informa-

tion is accurate, and it gets chosen by the encoder for up to 47% of the macroblocks.

Contrarily, when depth information is unreliable, encoder mostly relies on other

prediction modes, yet for some macroblocks DBPM still serves as a low cost option.

In comparison to MVC, for the AVC-based experiments described in 3DV

common test conditions, the proposed codec can provide up to 9.2%, 9.9% and

57

6.7% bitrate savings for coding MVD data, depth map and multiview video coding

respectively.

Moreover, we reported results for a subjective study comparing the percep-

tual quality of stereo videos coded with DBPM support and with MVC. Based on

our findings in this study, we showed that the proposed codec does not introduce

any unexpected visual artifacts and attain similar perceptual quality as MVC.

We also provided a complexity analysis of the proposed codec and compared

it with the complexity of MVC. According to the results, the encoder complex-

ity of the proposed codec is comparable to MVC, and the decoder complexity is

about two times of the complexity of MVC. The complexity increase is due to the

rendering module in the codec and we argue that the rendering module can be

implemented in hardware, which would decrease decoder complexity significantly.

Finally, we analyzed the effects of different encoder parameters of the pro-

posed codec on virtual view synthesis quality. For these experiments, we syn-

thesized intermediate views between neighboring pairs of coded anchor views and

measured the quality degradation with respect to varying texture video QP, depth

map QP and resolution. The results show that video QP has the most influence.

It controls the quality of the anchor views, which essentially determines the upper

bound for the synthesis quality. Depth map QP and resolution also contribute to-

wards the synthesis quality and they both provide means for controlling the bitrate

allocated to the depth maps. For the tested conditions, we showed that there is a

trade-off between the depth map resolution and QP, with the optimal combination

depending on the application. According to our findings, typically low resolution

depth maps yield better coding gains for anchor views of multiview video; however

for similar bitrates, higher resolution but higher QP depth maps generally yield

better view synthesis performance.

Acknowledgments

This chapter, in full, is a reprint of the material as it appears in IEEE

Transactions on Circuits and Systems for Video Technology. Bal, Can; Nguyen,

58

Truong Q., IEEE, 2014 [3]. It is an extension of the material appearing in the

Proceedings of the IEEE International Conference on Image Processing 2013. Bal,

Can; Nguyen, Truong Q., IEEE, 2013 [4]. The dissertation author was the primary

investigator and author of both of these papers.

Chapter 5

A Novel 3D Video Codec Based

on 3D-AVC and Image Domain

Warping

5.1 Introduction

3D-AVC is the upcoming AVC-based 3DV coding standard for MVD data.

It aims to efficiently compress the depth maps while utilizing them to increase the

coding efficiency of the texture videos. Currently, some of the new coding tools

adopted in 3D-AVC are the In-loop Block-based View Synthesis Prediction (VSP),

Depth-based Motion Vector Prediction (DMVP), Adaptive Luminance Compensa-

tion (ALC), Nonlinear Depth Representation (NDR) and View Synthesis Distor-

tion (VSD). Details of these tools can be found in the current 3D-AVC Test Model

Description document [70].

Additionally, 3D-AVC and its syntax are designed to support reduced reso-

lution depth maps, which have been shown to provide significant coding gains and

can be rescaled with minimal error for view synthesis [43, 71]. This feature allows

the resolution of the depth maps to be independent of the resolution of their as-

sociated videos. However, researchers generally adopt dyadic subsampling for the

depth maps to simplify the upsampling process.

59

60

The block diagram of the coding process for 3D-AVC is shown in Fig. 5.1(a).

The dashed blocks in the diagram are only present for the reduced resolution depth

map coding. The Post Dilation Filter is proposed to JCT-3V by Seok et al. [72] and

has been shown to be very effective in treating the synthesis artifacts introduced by

depth map rescaling. It is adopted into the reference codec software (3DV-ATM)

and mandated to be enabled in the Common Test Conditions (CTC) [73].

In this work, instead of using the typical MVD representation, we propose

a novel warp-based 3DV codec that uses the MVW representation. We realize

the proposed codec using 3D-AVC without any changes to its syntax. To the

best of our knowledge, this codec is the first in literature that compresses MVW

data using 3D-AVC. Using the proposed codec, we also establish a framework that

allows us to compare warp and depth-based 3DV coding in terms of performance

and complexity.

5.2 Warp Map Coding using 3D-AVC

For warp map coding, 3D-AVC can be used without any changes to the

syntax. The support for arbitrary depth map resolution already exists and this

allows warps to be incorporated within the bitstream by simply replacing depth

map inputs with warp maps. Especially if s and o in Eq. (2.14) are selected

carefully, specifically according to Eq. (2.2), all of the new coding tools present in

3D-AVC continue to function effectively even with warp map inputs.

In our experiments, we use the latest 3D-AVC reference codec software

3DV-ATM (v13.1) [74]. 3DV-ATM is not programmed to fully support arbitrary

depth resolutions as some of functions in the software work only for dyadic sub-

sampling of the depth maps. We slightly modified the codec to add this support

but we did not make any modifications to the 3D-AVC syntax. With that, we

realized the proposed warp-based codec using 3D-AVC as depicted in Fig. 5.1(b).

The two main differences of the proposed codec with its depth-based counterpart

is that it does not require the warp maps to be upsampled at the decoder, and

DIBR operations in the view synthesis are replaced by IDW.

61

I0

I1

D0

D1 D1

D0

I0

I1

bI↵

Decoding Synthesis Encoding

3D
-A

VC
D

ec
od

er

C
ha

nn
el D
IB

R
D

IB
R

D
ep

th
 M

ap
U

ps
am

pl
in

g

Po
st

 D
ila

tio
n

Fi
lte

r

Bl
en

di
ng

3D
-A

VC
En

co
de

r

H
ol

e
Fi

llin
g

(a)

v

I1

I0

I0

I1

eI↵

W 0

W 1W1

W0

Decoding Synthesis Encoding

3D
-A

VC
D

ec
od

er

C
ha

nn
el ID

W
ID

W St
itc

hi
ng

3D
-A

VC
En

co
de

r

(b)

Figure 5.1: Block diagram of the 3D-AVC codec for (a) depth map (b) warp map
inputs.

As mandated by CTC, in our experiments we used the rendering software

from 3D-HTM (v9.3) [73] for view synthesis. This rendering software implements

all of the necessary depth-based view synthesis components such as DIBR, blend-

ing, and hole filling. It is written in C++ and does not use any GPU hardware

acceleration. We implemented IDW using bilinear upsampling as discussed in Sec-

tion 2.7, and incorporated it into the 3D-HTM rendering software. Our additions

to the software are also written in C++ and do not use any special optimized

libraries or GPU hardware acceleration either.

5.3 Experimental Results

In this section, we analyze the coding efficiency and computational com-

plexity of the proposed codec and compare it with the depth-based 3D-AVC. In

our experiments, we follow the 3D-AVC test conditions mandated by CTC [73]

unless otherwise stated. We only consider the stereo input case as the warp data

provided by Stefanoski and Smolic [12] contains only 2 anchor views.

62

Due to the resemblance of warp maps to reduced resolution depth maps, we

compare the proposed codec with 3D-AVC using depth maps with full resolution,

and 50% and 25% reduced resolution in each direction. For the sake of simplicity,

in the rest of the paper we will refer to depth-based coding methods with full

resolution, and 50% and 25% reduced resolution depth map inputs as “Depth-1.0”,

“Depth-0.5” and “Depth-0.25”, respectively. In comparison, we will refer to the

proposed warp-based codec as “Warp”. As there are no preset depth/warp QP

values for Depth-0.25 and Warp in CTC, for these methods we simply use the

same set of QPs mandated for Depth-0.5.

5.3.1 Rate-Distortion Performance

To measure the rate-distortion performance, we rely on Bjontegaard Delta

Rate (BD-Rate) [67] and rate-distortion (RD) curves. Note that BD-Rate is mea-

sured against an anchor coding method, and its negative values signify average

bitrate savings in percentage achieved by another coding method for the same

objective quality video.

In our analysis we use Depth-1.0 as the anchor and the associated BD-Rate

results are provided in Table 5.1 and 5.2. According to these results the proposed

codec (Warp) can provide 12.8% and 1.5% bitrate savings on average for the anchor

and synthesized views, respectively. This shows that warp maps can be compressed

very efficiently using 3D-AVC. However, Warp is not the best performing method

among the competition, especially for the synthesized views. In comparison to

Warp, Depth-0.25 provides a slightly better average bitrate savings for anchor

views with a difference of only 0.2%, while Depth-0.5 provides better synthesis

quality at the expense of a significant bitrate loss in anchor views.

An important observation here is that Warp is performing poorly for the

Poznan sequences, and these sequences are the only ones that adversely affect its

average BD-Rate for the synthesized views. The reason behind this is discussed in

Section 5.3.2.

63

Table 5.1: BD-Rate (%) for anchor views for CTC QPs - measured against
Depth-1.0.

Depth-0.5 Depth-0.25 Warp (no VSD) Warp

Balloons -6.78 -12.74 -10.75 -12.52
Kendo -7.79 -16.48 -14.14 -16.73
Newspaper -6.02 -10.41 -10.16 -11.40
UndoDancer -9.90 -13.22 -12.37 -12.49
GTFly -10.11 -14.13 -12.97 -13.36
PoznanHall2 -8.34 -13.48 -12.73 -13.24
PoznanStreet -6.79 -10.81 -9.59 -9.91

Average -7.96 -13.04 -11.81 -12.81

Average w/o
-8.12 -13.40 -12.08 -13.30Poznan seq.

Table 5.2: BD-Rate (%) for synthesized views for CTC QPs - measured against
Depth-1.0.

Depth-0.5 Depth-0.25 Warp (no VSD) Warp

Balloons -2.67 -4.83 -3.41 -4.40
Kendo -4.53 -10.44 -4.50 -5.81
Newspaper 0.60 5.37 -13.66 -14.46
UndoDancer 0.40 8.25 -9.83 -9.60
GTFly -9.76 -10.49 -10.87 -9.72
PoznanHall2 -5.27 -5.87 15.37 14.66
PoznanStreet -5.82 -7.63 18.10 18.56

Average -3.87 -3.66 -1.26 -1.54

Average w/o
-3.19 -2.43 -8.46 -8.80Poznan seq.

5.3.2 Effect of Camera Noise on the PSNR Calculation of

the Synthesized Views

Due to the camera sensor, lighting conditions, etc., camera noise might be

present in the captured videos. The noise level in the anchor views affects the

PSNR results measured on the synthesized views. To model such a camera noise

N on the anchor views, we use zero-mean (µ = 0) additive white Gaussian noise

(AWGN) with variance σ2.

64

5 6 7 8 9

20

30

40

50

60

view id

Y
−

M
S

E

MSE(Ĭθ ,
˘
Iθ)

E{MSE(X̆θ ,
˘
Xθ)}

σ
2(θ2 + (1 − θ)2)

(a)

5 6 7 8 9

20

30

40

50

60

view id

Y
−

M
S

E

E{(N̆θ −
˘
N θ)

2})

MSE(Ĭθ ,
˘
Iθ) + E{(N̆θ −

˘
N θ)

2}

σ
2

(b)

Figure 5.2: MSE of the (a) DIBR (Depth-1.0) (b) IDW (Warp) generated syn-
thesized views for the noise added GTFly sequence compressed with texture QP
36.

Let X̆θ be the noisy observation of a synthesized image Ĭθ. From Eq. (2.15),

X̆θ can be written as:

X̆θ = Ĭθ + N̆θ (5.1)

= Ĭθ + (1− γ) · N̆0→θ + γ · N̆1→θ (5.2)

Since the rendering operation for both DIBR and IDW is based on pixel shifting

and the pixels of N are i.i.d., we can assume that N̆0→θ(x) and N̆1→θ(x) are equiv-

alent to the noise on the left (N0) and right (N1) reference images. With that, N̆θ

becomes a zero-mean Gaussian with variance σ̆2 = (γ2 + (1− γ)2) · σ2 ≤ σ2.

3D-AVC is a block-based lossy coding algorithm and relies on quantiza-

tion matrices for compression. Quantization matrices operate on the DCT co-

efficients such that high-frequency coefficients are quantized more heavily than

low-frequency coefficients. This quantization step can be modeled as a low-pass

filtering operation, and the compressed noise N can be modeled as low-pass filtered

colored Gaussian noise. Let H(ejω) be the frequency response of this low-pass fil-

ter. Then (N − N) can also be modeled as colored Gaussian noise generated by

65

(a)

(b)

Figure 5.3: Demonstration of camera noise on frame #140 of the (a) PoznanStreet
(b) PoznanHall2 sequence.

the high-pass filter G(ejω) = 1−H(ejω). Since µ = 0 and quantization matrices

do not introduce any offset to the DC coefficient, then E{N −N} = 0. Addition-

ally, the variance of the high-pass filtered noise E{(N − N)2} can be calculated

as [75, eq. (C.67), Appendix C]:

E{(N −N)2} = σ́2 = σ2 · 1

2π

∫ π

π

|G(ejω)|2dω (5.3)

In order not to introduce any bias, quantization matrices are designed not to

amplify the input. Therefore we can also assume that σ́2 ≤ σ2.

Following a similar analysis to the mean and variance calculation of N̆θ,

66

(N̆θ − N̆ θ) can be shown to be a zero-mean Gaussian noise with variance:

E{(N̆θ − N̆ θ)
2} = σ̆2 = (γ2 + (1− γ)2) · σ́2 (5.4)

In Section 5.3, we calculate PSNR or equivalently the mean squared error

(MSE) on a M ×N compressed noisy synthesized image, X̆θ as:

MSE(X̆θ, X̆θ) =
1

MN

∑
(X̆θ − X̆θ)

2 (5.5)

Using Eq. (5.1), we can rewrite Eq. (5.5) as:

MSE(X̆θ, X̆θ) =
1

MN

∑
((Ĭθ − Ĭθ) + (N̆θ − N̆ θ))

2

and since the noise is uncorrelated with the synthesized images, its expected value

becomes:

E{MSE(X̆θ, X̆θ)} = MSE(Ĭθ, Ĭθ) + E{(N̆θ − N̆ θ)
2}+

2

MN

∑
(Ĭθ − Ĭθ) · E{N̆θ − N̆ θ}

(5.6)

Using E{N̆θ − N̆ θ} = 0 and Eq. (5.4), Eq. (5.6) is simplified to:

E{MSE(X̆θ, X̆θ)} = MSE(Ĭθ, Ĭθ) + E{(N̆θ − N̆ θ)
2}

= MSE(Ĭθ, Ĭθ) + (γ2 + (1− γ)2) · σ́2
(5.7)

For DIBR, the blending operator γ is given in Eq. (2.16). We argue that

most of the pixels in rendered images Î0→θ and Î1→θ are non-hole pixels. Moreover,

the overlapping non-hole pixels of Î0→θ and Î1→θ typically have similar corres-

ponding depth values such that |D̂0→θ(x) − D̂1→θ(x)| < τ . This is clearly not

valid for occlusion regions, yet the percentage of the occluded pixels are generally

low enough that we can assume otherwise for this analysis. In comparison, from

Eq. (2.17), γ is always either 0 or 1 for IDW. With these observations we can

update Eq. (5.7) as:

E{MSE(X̆θ, X̆θ)} =

MSE(Ĭθ, Ĭθ) + (θ2 + (1− θ)2) · σ́2 if DIBR.

MSE(Ĭθ, Ĭθ) + σ́2 if IDW.
(5.8)

67

In order to verify our analysis, we conducted experiments on the GTFly

sequence. GTFly is a computer generated sequence and is known to contain no

camera noise. We generated independent N with σ = 6 for both of the anchor

views. We chose this σ to visually match the noise levels in the Poznan sequences.

We also created a new sequence from the same realization of the noise and com-

pressed the noise and the noisy GTFly sequence using a fixed texture QP of 36.

The associated depth/warp QPs are selected according to the CTC. We repeated

the experiment for 10 realizations of the noise and took the average to approximate

the E{·}. The results are plotted in Fig. 5.2 and are consistent with our analysis.

Both from Fig. 5.2 and Eq. (5.8), due to the blending operation, it can be

seen that DIBR yields a smaller MSE than IDW for the synthesized views in the

presence of camera noise. Please note that this does not necessarily correlate with

the true visual quality of the synthesized views.

Clearly, camera noise biases BD-Rate calculations in favor of DIBR relative

to IDW for the synthesized views. Among our test sequences, we found that the

Poznan sequences possess enough camera noise that this effect becomes significant.

The camera noise present in these sequences is depicted in Fig. 5.3. To confirm

this bias, we also provide the MSE of the synthesized views for these sequences in

Fig. 5.4. The trends of MSE in Fig. 5.4 are consistent with the plots provided in

Fig. 5.2, which supports our claim.

Since Poznan sequences skew the results toward the advantage of DIBR,

we recalculated the BD-Rates without these sequences and listed these results in

Table 5.1 and 5.2 as well. With the new averages, Warp becomes the top performer

for synthesized views with average bitrate savings of 8.8%. For anchor views, it

still yields slightly less bitrate savings than Depth-0.25 but the difference drops to

only 0.1%. Similar results can also be seen from the RD curves corresponding to

the noise-free GTFly sequence in Fig. 5.5.

68

4 4.5 5
0

5

10

15

20

25

view id

Y
−

M
S

E

QP:26

(a) DIBR

4 4.5 5
0

5

10

15

20

25

view id

QP:31

(b) IDW

6 6.5 7
0

10

20

30

40

50

view id

QP:36

(c) DIBR

6 6.5 7
0

10

20

30

40

50

view id

QP:41

(d) IDW

Figure 5.4: MSE of the DIBR (Depth-1.0) and IDW (Warp) generated synthe-
sized views for the (a) (b) PoznanHall2 (c) (d) PoznanStreet sequence.

5.3.3 Performance of the Depth-based Coding Tools of

3D-AVC for Warp Maps

As mentioned in Section 5.2, 3D-AVC uses depth maps to increase the

coding efficiency of the texture videos. Since the proposed codec does not introduce

any syntax changes to 3D-AVC, the depth-based coding tools treat the input warp

maps as depth maps during the encoding process. Since warps are not calculated

to provide accurate depth information, they cannot provide the same efficiency as

the depth maps for texture video coding.

The results reported in Table 5.1 and 5.2 are calculated using the total bi-

trate of the texture videos and depth/warp maps. However, in order to understand

the loss in coding efficiency for the texture videos, we also calculated the BD-Rate

results for the anchor views using texture bitrates only. As it can be seen from

these results, which are provided in Table 5.3, the depth-based coding tools of

3D-AVC perform slightly worse for warp map inputs, accounting for about 1.7%

bitrate loss. However, this loss is more than recouped by the efficiency of warp

map coding.

69

200 400 600 800 1000 1200 1400 1600
30

32

34

36

38

40

Bitrate (kbps)

Y
−

P
S

N
R

 (
dB

)

Anchor views

Depth−1.0
Depth−0.5
Depth−0.25
Warp

200 400 600 800 1000 1200 1400 1600
30

32

34

36

38

40

Bitrate (kbps)

Y
−

P
S

N
R

 (
dB

)

Synthesized views

Depth−1.0
Depth−0.5
Depth−0.25
Warp

Figure 5.5: RD curves for the Newspaper sequence under CTC.

Table 5.3: BD-Rate (%) for anchor views for CTC QPs - measured against
Depth-1.0 using texture bitrates only.

Depth-0.5 Depth-0.25 Warp

Balloons -0.09 0.07 0.47
Kendo -0.03 0.21 0.94
Newspaper 0.08 0.06 0.48
UndoDancer -0.10 0.19 2.63
GTFly -0.18 0.40 2.80
PoznanHall2 -0.12 -0.17 1.84
PoznanStreet -0.18 0.27 2.45

Average -0.09 0.15 1.66

70

5.3.4 Performance of the View Synthesis Distortion in

3D-AVC for Warp Maps

In 3D-AVC, depth maps are encoded with block-based coding tools, and

the mode decision, block size selection, etc. are decided by standard Lagrangian

RD optimization functions. Since the depth-maps are not observed but only used

for view synthesis, using typical distortion metrics such as Sum of Squared Errors

(SSE) or Mean Squared Error (MSE) do not necessarily yield the best synthesis

results. To address this, researchers have proposed various new metrics for mea-

suring the distortion of a depth map in terms of the geometrical distortions it will

introduce to the synthesized views [55–59]. The 3DV-ATM codec software also

employs such a distortion metric called the View Synthesis Distortion (VSD) [76],

and is adopted by JCT-3V because of its effectiveness and simplicity.

For a block in a K × L depth map frame with a corresponding M × N

texture frame, VSD is calculated as:

VSD =
∑

k,l

[
s|D(k, l)−D(k, l)|︸ ︷︷ ︸

disparity error

·

M

K

N

L

∑

i,j

1

2
(|I(i, j)− I(i− 1, j)|+ |I(i, j)− I(i+ 1, j)|)

︸ ︷︷ ︸
simple measure of corresponding amount of texture

]2 (5.9)

where i ∈ [k·M
K
, (k+1)·M

K
), j ∈ [l·N

L
, (l+1)·N

L
).

VSD consists of the multiplication of two parts. The first part calculates

the disparity error, which translates to the amount of error in shifting the cor-

responding texture pixels. The second part is a simple measure of the amount

of texture corresponding that specific depth map pixel. With this design, VSD

aims to yield high values only when there is a large error in disparity that also

corresponds to a highly textured area.

Since VSD does not use any depth-specific assumptions, it works effectively

for warp map coding as well. When enabled, it yields some coding gain for Warp

both for anchor and synthesized views, and this can be seen from Table 5.1 and 5.2.

71

Table 5.4: Average computational complexity of the coding processes in compar-
ison to Depth-1.0.

Operation Depth-0.5 Depth-0.25 Warp

Encoder 74.1% 68.4% 68.6%
Decoder 102.4% 184.4% 64.8%
Synthesis 99.9% 99.6% 83.2%

5.3.5 Computational Complexity

As discussed in Section 5.2, the proposed codec is implemented in C++

without any specialized libraries and does not use GPU hardware acceleration.

This ensured that we can reliably compare complexity of the proposed codec

with its depth-based counterpart directly from the run-time measurements. The

computational complexity comparison of the competing coding methods against

Depth-1.0 is reported in Table 5.4. These results are the average complexities

calculated over all sequences and QP levels.

As expected the encoding process with reduced resolution depth map and

warp map inputs require less computation. This is because of the reduction in the

size of the input data and the encoder complexities are actually proportional to

the resolution of the depth/warp maps.

Contrarily, due to the upsampling and post dilation filtering operations, the

decoding process for Depth-0.5 and Depth-0.25 require more computation than

Depth-1.0. Therefore, the bitrate savings from using reduced resolution depth

maps come at the expense of increased computational complexity. On the other

hand, since Warp does not require any post processing on the decoded warp maps,

its decoding complexity is only 65% of Depth-1.0.

Finally, the complexity of the view synthesis is the same for all depth-based

methods as the depth maps are upsampled to the same resolution prior to this

operation. In contrast, Warp requires less computation also for view synthesis,

only 83% of the depth-based methods. This is because IDW uses stitching instead

of blending, and unlike DIBR, it does not require a hole-filling operation.

72

5.3.6 Optimal Depth/Warp QP Selection

In both depth and warp-based coding, the allocation of the total bitrate

between the texture videos and their supplementary data is crucial. Every sequence

has different statistics, such as varying amounts of texture, motion, and depth,

and the optimal bitrate allocation depends on these statistics. Hence, the optimal

choice of the set of QPs for texture videos and the depth/warp maps also varies

with the sequence. For depth-based coding, various models have been proposed

to help the encoder determine the optimal allocation for the best view synthesis

quality [50–54]. This problem has not been investigated for warp-based coding.

The CTC predetermines a set of depth QPs for every test sequence and it is

clear that these choices might be suboptimal. In this section, we used a full-search

algorithm to find the optimal set of QPs for each coding method. To reduce the

search space we fixed the texture QPs to the ones from CTC ({26,31,36,41}). Then,

for every sequence, we searched for the best set of depth/warp QPs from a set of

QPs calculated with offsets {-15,-10,-5,0,4,8,12} from each corresponding texture

QP. The set of best depth/warp QPs are simply determined as the combination

that yielded the best RD-curve for the synthesized views; and this selection process

is depicted in Fig. 5.6. The optimal depth/warp QPs selected by the full-search

algorithm are listed in Table 5.5. In order to differentiate with our previous con-

vention, we pad a “*” to the names of each coding method in order to indicate

they use the optimal QPs (e.g. Warp becomes Warp*).

As discussed earlier, the statistics of warp maps are very different than

depth maps. They contain fewer high frequency elements, yet the distortion in-

troduced for every pixel has a larger impact on the view synthesis. Consequently,

the optimal QPs for the warp maps tend to be smaller than the ones from CTC,

which can be seen in Table 5.5.

To analyze the RD performance of the compared coding methods, we cal-

culated the BD-Rates again for the optimal set of QPs. To keep the anchor co-

ding method consistent across the paper, the BD-Rates are again calculated with

Depth-1.0 as the anchor. These results are provided in Table 5.6 and 5.7.

With the optimal depth/warp QPs, Depth-0.25* still yields the best RD

73

performance for anchor views with average bitrate savings of 11.5%. This bitrate

savings is only marginally better than the performance of Warp* with a difference

of 0.05%. For the synthesized views, Depth-0.5* also remains as the best perform-

ing method with bitrate savings with an average of 5.2%, whereas Warp* yields

3.4%.

As discussed in Section 5.3.2, BD-Rates for the Poznan sequences are

skewed for the synthesized views to the advantage of depth-based coding methods.

When the average BD-Rates are calculated without these sequences, as presented

in Table 5.6 and 5.7, the proposed codec becomes the best performing coding met-

hod both for the anchor and the synthesized views with average bitrate savings of

12.1% and 10.3% respectively.

For the optimal QPs, we also calculated the percentage of the depth/warp

map bitrates with respect to their corresponding texture bitrates. We observed

that these percentages are consistent for different texture QPs per sequence, thus

we only report the average percentages in Table 5.8.

Using the same fixed set of texture QPs across all coding methods produces

very similar texture bitrates for all of them, with a variation of less than 1%.

Therefore, this choice makes it possible to compare the percentages reported in

Table 5.8 directly to each other. Based on these results, it is apparent that warp

maps can be coded more effectively than any resolution of the tested depth maps.

The supplementary data for Warp* brings only 5.5% overhead to the bitstream

on average, whereas for Depth-1.0*, Depth-0.5* and Depth-0.25* this overhead is

17.3%, 8.7% and 7.3% respectively.

5.4 Conclusion

In this chapter, we proposed a novel 3DV codec based on warp map coding

using 3D-AVC. We showed that due to their small resolution and low frequency

content, warp maps can be very efficiently compressed, accounting for an average

bitrate savings of 12.8% and 1.5% in comparison to coding full resolution depth

maps for anchor and synthesized views, respectively.

74

200 400 600 800 1000 1200 1400 1600 1800 2000
22

24

26

28

30

32

34

36

38

Bitrate (kbps)

Y
−

P
S

N
R

(d
B

)

Synthesized views

Best RD Curve
Varying Depth QP / Fixed Texture QP

Depth QP: 21Depth QP: 26
Depth

QP: 31

Depth
QP: 36 Texture QP: 26

Texture QP: 31

Texture QP: 36

Texture QP: 41

Figure 5.6: Demonstration of the optimal depth QP selection for the Newspaper
sequence and Depth-0.25.

Due to their similarity, we also compared the proposed codec with depth-

based 3D-AVC using reduced resolution depth maps. For anchor views, the pro-

posed codec performed very close to the best performing depth map resolution

with only a 0.2% difference in bitrate savings.

In comparison, for the synthesized views, reduced resolution depth maps

yielded the best results. We showed that this is due to the bias camera noise

brings on the metric we use to compare the quality of the synthesized views. Once

the noisy sequences are removed from our calculations, the proposed codec became

the best for synthesized views with bitrate savings of 8.8% on average.

Since the proposed codec does not introduce changes to the 3D-AVC syntax,

warp maps are treated as depth maps for the depth-based coding tools present in

3D-AVC. We showed that these tools continue working for warp map inputs with

only minimal bitrate loss, which is well-compensated for by the gains from warp

map coding.

75

Table 5.5: Optimal depth/warp QPs selected by the full-search algorithm.

Texture QPs 26 31 36 41 26 31 36 41

Depth-1.0* Depth-0.5*

Balloons 34 39 44 49 30 35 40 45
Kendo 34 43 48 49 34 39 44 45
Newspaper 30 35 40 45 26 31 36 41
UndoDancer 21 26 40 45 21 26 31 41
GTFly 30 39 48 49 26 31 40 45
PoznanHall2 30 35 40 45 26 31 40 41
PoznanStreet 34 39 44 45 30 35 40 45

Depth-0.25* Warp*

Balloons 26 31 36 41 26 31 36 41
Kendo 26 31 36 41 26 31 36 41
Newspaper 21 26 31 36 21 26 31 36
UndoDancer 16 21 26 31 11 21 26 31
GTFly 21 26 31 41 16 21 31 36
PoznanHall2 21 26 31 41 21 21 31 36
PoznanStreet 26 31 36 36 21 21 31 36

Table 5.6: BD-Rate (%) for anchor views for optimal depth/warp QP selection -
measured against Depth-1.0 with CTC QPs.

Depth-1.0* Depth-0.5* Depth-0.25* Warp*

Balloons -6.44 -10.75 -12.74 -12.52
Kendo -12.09 -17.03 -16.48 -16.73
Newspaper 0.00 -6.02 -5.61 -8.33
UndoDancer 6.01 -7.70 -10.80 -10.76
GTFly -5.62 -11.20 -13.00 -11.91
PoznanHall2 0.00 -9.77 -11.32 -11.75
PoznanStreet -3.67 -8.93 -10.67 -8.32

Average -3.12 -10.07 -11.52 -11.47

Average w/o
-3.63 -10.61 -11.72 -12.05Poznan seq.

Additionally, we analyzed the proposed codec in terms of computational

complexity. We showed that it is significantly less complex than all competing

methods we compared, for all of the coding processes. We also showed that using

reduced resolution depth maps increases the decoder complexity significantly in

76

Table 5.7: BD-Rate (%) for synthesized views for optimal depth/warp QP selec-
tion - measured against Depth-1.0 with CTC QPs.

Depth-1.0* Depth-0.5* Depth-0.25* Warp*

Balloons -2.94 -4.76 -4.83 -4.40
Kendo -5.73 -9.34 -10.44 -5.81
Newspaper 0.00 0.60 4.45 -14.86
UndoDancer -2.94 -0.12 4.07 -14.94
GTFly -2.91 -10.13 -10.80 -11.25
PoznanHall2 0.00 -5.53 -6.71 11.68
PoznanStreet -1.32 -6.92 -7.62 16.10

Average -2.26 -5.17 -4.55 -3.35

Average w/o
-2.90 -4.75 -3.51 -10.25Poznan seq.

Table 5.8: Percentage (%) of the optimal depth/warp map bitrates with respect
to their corresponding texture bitrates.

Depth-1.0* Depth-0.5* Depth-0.25* Warp*

Balloons 13.52 8.15 5.70 5.52
Kendo 15.72 8.12 8.72 7.45
Newspaper 19.86 12.28 12.80 9.24
UndoDancer 25.10 9.58 7.14 3.57
GTFly 14.34 6.93 4.84 3.52
PoznanHall2 20.94 10.38 7.62 5.49
PoznanStreet 11.93 5.49 3.95 3.93

Average 17.34% 8.70% 7.25% 5.53%

comparison to using full resolution depth maps, so the bitrate savings they bring

comes at the expense of increased complexity. On the other hand, the proposed

codec reduces the computational complexity while achieving similar or better co-

ding performance relative to using the reduced resolution depth maps.

We also observed that using the same set of QPs for warp and depth maps is

suboptimal. We identified the optimal bitrate ratio between texture video and the

depth/warp maps, and found that optimal QPs for warp maps tend to be smaller

than they are for depth maps. With the optimal set of QPs, in comparison to using

full resolution depth maps, the proposed codec yielded average bitrate savings of

77

11.5% for the anchor views, making it the second best performing coding method

but only with a marginal difference of 0.05%.

For the synthesized views, reduced resolution depth maps still yielded better

bitrate savings, but once the bitrate savings are recalculated without the noisy

sequences, the proposed codec became the best performing coding method by a

large margin with an average bitrate savings of 10.3%.

Finally, with the optimal set of QPs, we calculated the bitrate ratio between

the depth/warp maps and texture videos. We found that warp maps can be com-

pressed more efficiently than any of the tested depth map resolutions, requiring

only a 5.5% overhead to the bitstream.

Acknowledgments

This chapter, in full, has been submitted for publication of the material as it

may appear in IEEE Transactions on Circuits and Systems for Video Technology.

Bal, Can; Nguyen, Truong Q., IEEE, 2015 [1]. The dissertation author was the

primary investigator and author of this paper.

Chapter 6

Conclusion

In this dissertation we developed a framework for comparing Depth Image-

Based Rendering and Image Domain Warping in the context of 3D video coding.

First, in Chapter 2 we established a common formulation for DIBR and IDW

and showed that both rendering methods can be posed as a “reverse mapping”

operation. When their corresponding reverse mapping operators are compared,

it can be observed that IDW generates renders with significantly lower frequency

depth content than DIBR. Due to this characteristic and also by using the “warp

map” representation, it is possible to use existing block-based video codecs to

compress warps very efficiently, and use warps as an alternative to depth maps in

the next generation 3DV codecs.

Then, in Chapter 3, we proposed a fast DIBR-based view synthesis method

that synthesizes views with good objective quality and also provides inter-view

consistency. The proposed view synthesis method is designed such majority of its

main processing blocks can be parallelized and therefore implemented on CUDA

to take advantage of multiple cores of the GPU. We also showed that the proposed

method requires almost constant time in terms of the number of synthesized views;

hence it is very effective for generating content for autostereoscopic displays that

require many viewpoints. This chapter is intended to serve as a proof of concept

for the feasibility of fast view synthesis with good synthesis quality.

Moreover, in Chapter 4, we presented a new coding tool called the “Depth-

based Prediction Mode” (DBPM), and incorporated it into the coding loop of

78

79

MVC. Using DBPM, we realized a novel MVD codec and we showed that view

synthesis can also be used for better prediction of the anchor views. DBPM uses

the supplementary depth data and DIBR to achieve up to 9.2%, 9.9% and 6.7%

bitrate savings over MVC for coding MVD data, depth maps and multiview videos

respectively. In this chapter, we also provided a complexity analysis for the pro-

posed codec using run time measurements, and showed that its encoder complexity

is comparable to MVC. On the other hand, due to the DIBR its decoder complex-

ity is about twice of the decoder complexity of MVC. In this implementation we

did not employ any hardware acceleration to enhance the speed of DIBR, but as

we showed in Chapter 3, it is possible to take advantage of GPUs to significantly

reduce the decoder complexity of the proposed codec.

Finally, in Chapter 5, we established a codec framework based on 3D-AVC

that allowed a direct comparison of DIBR and IDW in terms of coding efficiency

and computational complexity. 3D-AVC is designed for MVD input and has depth-

based coding tools similar to the DBPM already incorporated. It also has support

for reduced resolution depth maps; hence warp maps can simply be replaced with

depth maps and compressed using 3D-AVC directly without changes to its syntax.

According to our findings, depth-based coding tools present in 3D-AVC continue

working effectively even with warp map inputs. Using this framework, we showed

that IDW achieves better coding performance than DIBR with average bitrate sav-

ings of 12.8% for anchor views and 1.5% for synthesized views with significantly

lower computational complexity. We also provided an analysis on the effect of

camera noise on the view synthesis quality metric and show that noise produces

a bias towards better measurements for DIBR. Once the bitrate savings are re-

calculated using only the sequences without camera noise, IDW starts to provide

average bitrate savings of 8.8% in the synthesized views instead of 1.5%. The

QPs used in these experiments were based on CTC, but these fixed set of QPs are

suboptimal. Instead we determined the optimal bitrate allocation between texture

video and the supplementary depth/warp maps, and showed that the proposed

codec can achieve average bitrate savings of 12.1% for the anchor and 10.3% for

the synthesized views respectively. With this optimal bitrate allocation, in aver-

80

age warp maps only require a 5.5% bitrate overhead to be incorporated into the

bitstream, whereas depth maps require up to 17.3% depending on their resolution.

Bibliography

[1] C. Bal and T. Q. Nguyen, “A Novel 3D Video Codec Based on 3D-AVC
and Image Domain Warping,” IEEE Trans. Circuits Syst. Video Technol.,
submitted, unpublished.

[2] L. C. Tran, C. Bal, C. J. Pal, and T. Q. Nguyen, “On consistent inter-view
synthesis for autostereoscopic displays,” 3D Research, vol. 3, no. 1, pp. 1–10,
Jan. 2012.

[3] C. Bal and T. Q. Nguyen, “Multiview Video Plus Depth Coding With Depth-
Based Prediction Mode,” IEEE Trans. Circuits Syst. Video Technol., vol. 24,
no. 6, pp. 995–1005, Jun. 2014.

[4] ——, “Depth-based Prediction Mode for 3D Video Coding,” in IEEE Int.
Conf. on Image Processing (ICIP), Sep. 2013, pp. 2187–2191.

[5] Dimenco Displays — 3D Displays. Accessed: 2014-08-30. [Online]. Available:
http://www.dimenco.eu/dimencodisplays/3d-displays/

[6] ITU-T, “Advanced video coding for generic audiovisual services,” ITU-T Rec-
ommendation H.264, Apr. 2013.

[7] K. Müller, P. Merkle, and T. Wiegand, “3-D Video Representation Using
Depth Maps,” Proceedings of the IEEE, vol. 99, no. 4, pp. 643–656, Apr.
2011.

[8] “Call for Proposals on 3D Video Coding Technology,” ISO/IEC
JTC1/SC29/WG11, Doc. M12036, Mar. 2011.

[9] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[10] J.-R. Ohm, D. Rusanovskyy, A. Vetro, and K. Müller, “Work Plan in 3D
Standards Development,” JCT on 3DV Coding Ext. Dev. of ITU-T SG16
WP3 and ISO/IEC JTC1/SC29/WG11, Doc. JCT3V-B1006, Oct. 2012.

81

http://www.dimenco.eu/dimencodisplays/3d-displays/

82

[11] T. Senoh, Y. Ichihashi, H. Sasaki, K. Yamamoto, M. Tanimoto, and K. Suzuki,
“AHG8: Report on Relation of GVD Format with Current 3D Video Stan-
dardization Tracks,” JCT on 3DV Coding Ext. Dev. of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11, Doc. JCT3V-C0043, Jan. 2013.

[12] N. Stefanoski and A. Smolic, “AHG8: New warp data for IDW-based view
synthesis experiments,” JCT on 3DV Coding Ext. Dev. of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11, Doc. JCT3V-B0074, Oct. 2012.

[13] C. Fehn, “Depth-image-based rendering (DIBR), compression, and transmis-
sion for a new approach on 3D-TV,” in SPIE Stereoscopic Displays and Virtual
Reality Systems XI, vol. 5291, May 2004, pp. 93–104.

[14] K. Suzuki, M. Tanimoto, and T. Senoh, “AHG08: Technical Description of
residual data generation and target view synthesis in GVD (Global View and
Depth) 3D Format,” JCT on 3DV Coding Ext. Dev. of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11, Doc. JCT3V-C0058, Jan. 2013.

[15] M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross, “Non-
linear Disparity Mapping for Stereoscopic 3D,” ACM Trans. Graph., vol. 29,
no. 4, pp. 75:1–75:10, Jul. 2010.

[16] M. Farre, O. Wang, M. Lang, N. Stefanoski, A. Hornung, and A. Smolic,
“Automatic content creation for multiview autostereoscopic displays using
image domain warping,” in IEEE Int. Conf. on Multimedia and Expo (ICME),
Jul. 2011, pp. 1–6.

[17] A. K. Jain, L. C. Tran, R. Khoshabeh, and T. Q. Nguyen, “Efficient Stereo-
to-Multiview Synthesis,” in IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP), May 2011, pp. 889–892.

[18] W. Su, D. Rusanovskyy, and H. M.M., “3DV-CE1.a: Block-based View Syn-
thesis Prediction for 3DV-ATM,” JCT on 3DV Coding Ext. Dev. of ITU-T
SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Doc. JCT3V-A0107, Jul. 2012.

[19] P. Krähenbühl, M. Lang, A. Hornung, and M. Gross, “A System for Retarget-
ing of Streaming Video,” ACM Trans. Graph., vol. 28, no. 5, pp. 126:1–126:10,
Dec. 2009.

[20] N. Stefanoski, C. Bal, and A. Smolic, “3DV: Results on coding of warps using
HEVC,” JCT on 3DV Coding Ext. Dev. of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, Doc. JCT3V-A0004, Jul. 2012.

[21] N. Stefanoski, “Report: Subjective testing results on comparing synthesis
quality of IDWR and VSRS 1D Fast,” JCT on 3DV Coding Ext. Dev. of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Doc. JCT3V-B0225,
Oct. 2012.

83

[22] ——, “Report: Subjective testing results on comparing warp-based with
depth-based synthesis from coded data at same bit-rate,” JCT on 3DV Co-
ding Ext. Dev. of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Doc.
JCT3V-C0240, Jan. 2013.

[23] N. Stefanoski, O. Wang, M. Lang, P. Greisen, S. Heinzle, and A. Smolic,
“Automatic View Synthesis by Image-Domain-Warping,” IEEE Trans. Image
Process., vol. 22, no. 9, pp. 3329–3341, Sep. 2013.

[24] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High-
quality Video View Interpolation Using a Layered Representation,” ACM
Trans. Graph., vol. 23, no. 3, pp. 600–608, Aug. 2004.

[25] K. Müller, A. Smolic, K. Dix, P. Merkle, P. Kauff, and T. Wiegand, “View
synthesis for advanced 3D video systems,” EURASIP Journal on Image and
Video Processing, vol. 2008, no. 438148, 2009.

[26] S. Zinger, L. Do, and P. H. N. de With, “Free-viewpoint depth image based
rendering,” Journal of Visual Communication and Image Representation,
vol. 21, no. 56, pp. 533–541, Jul./Aug. 2010.

[27] Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View gener-
ation with 3D warping using depth information for FTV,” Signal Processing:
Image Communication, vol. 24, no. 12, pp. 65–72, Jan. 2009.

[28] L. C. Tran, C. J. Pal, and T. Q. Nguyen, “View synthesis based on Conditional
Random Fields and graph cuts,” in IEEE Int. Conf. on Image Processing
(ICIP), Sep. 2010, pp. 433–436.

[29] L. Tran, R. Khoshabeh, A. Jain, C. Pal, and T. Nguyen, “Spatially Consistent
View Synthesis with Coordinate Alignment,” in IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), May 2011, pp. 905–908.

[30] P. Ndjiki-Nya, M. Köppel, D. Doshkov, H. Lakshman, P. Merkle, K. Müller,
and T. Wiegand, “Depth image based rendering with advanced texture syn-
thesis,” in IEEE Int. Conf. on Multimedia and Expo (ICME), Jul. 2010, pp.
424–429.

[31] S.-J. Lin, C.-M. Cheng, and S.-H. Lai, “Spatio-temporally Consistent Multi-
view Video Synthesis for Autostereoscopic Displays,” in Advances in Multime-
dia Information Processing - PCM 2009. Springer Berlin Heidelberg, 2009,
vol. 5879, pp. 532–542.

[32] J. Lu, S. Rogmans, G. Lafruit, and F. Catthoor, “High-Speed Stream-Centric
Dense Stereo and View Synthesis on Graphics Hardware,” in IEEE Workshop
on Multimedia Signal Processing (MMSP), Oct. 2007, pp. 243–246.

84

[33] S. Rogmans, J. Lu, P. Bekaert, and G. Lafruit, “Real-time stereo-based view
synthesis algorithms: A unified framework and evaluation on commodity
GPUs,” Signal Processing: Image Communication, vol. 24, no. 12, pp. 49–
64, Jan. 2009.

[34] A. Criminisi, P. Perez, and K. Toyama, “Region filling and object removal by
exemplar-based image inpainting,” IEEE Trans. Image Processing, vol. 13,
no. 9, pp. 1200–1212, Sep. 2004.

[35] D. Scharstein and C. Pal, “Learning Conditional Random Fields for Stereo,”
in Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Con-
ference on, Jun. 2007, pp. 1–8.

[36] P. Merkle, Y. Morvan, A. Smolic, D. Farin, K. Müller, P. H. N. de With, and
T. Wiegand, “The effects of multiview depth video compression on multiview
rendering,” Signal Processing: Image Communication, vol. 24, no. 1-2, pp.
73–88, Jan. 2009.

[37] S. Liu, P. Lai, D. Tian, and C. W. Chen, “New Depth Coding Techniques
With Utilization of Corresponding Video,” IEEE Trans. Broadcast., vol. 57,
no. 2, pp. 551–561, Jun. 2011.

[38] H. Schwarz, C. Bartnik, S. Bosse, H. Brust, T. Hinz, H. Lakshman, D. Marpe,
P. Merkle, K. Müller, and H. Rhee, “3D video coding using advanced pre-
diction, depth modeling, and encoder control methods,” in Picture Coding
Symposium (PCS), May 2012, pp. 1–4.

[39] K. Müller, P. Merkle, G. Tech, and T. Wiegand, “3D video coding with depth
modeling modes and view synthesis optimization,” in Asia-Pacific Signal
& Information Processing Association Annual Summit and Conf. (APSIPA
ASC), Dec. 2012, pp. 1–4.

[40] J. Ruiz-Hidalgo, J. R. Morros, P. Aflaki, F. Calderero, and F. Marqués, “Mul-
tiview depth coding based on combined color/depth segmentation,” Journal
of Visual Communication and Image Representation, vol. 23, no. 1, pp. 42–52,
Jan. 2012.

[41] B. T. Oh, H.-C. Wey, and D.-S. Park, “Plane segmentation based intra predic-
tion for depth map coding,” in Picture Coding Symposium (PCS), May 2012,
pp. 41–44.

[42] K.-J. Oh, J. Lee, and D.-S. Park, “Depth intra skip prediction for 3D video
coding,” in Asia-Pacific Signal & Information Processing Association Annual
Summit and Conf. (APSIPA ASC), Dec. 2012, pp. 1–4.

85

[43] K.-J. Oh, S. Yea, A. Vetro, and Y.-S. Ho, “Depth Reconstruction Filter and
Down/Up Sampling for Depth Coding in 3-D Video,” IEEE Signal Process.
Lett., vol. 16, no. 9, pp. 747–750, Sep. 2009.

[44] D. Rusanovskyy, K. Müller, and A. Vetro, “Common Test Conditions for 3DV
Core Experiments,” JCT on 3DV Coding Ext. Dev. of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, Doc. JCT3V-D1100, Apr. 2013.

[45] P. Merkle, C. Bartnik, K. Müller, D. Marpe, and T. Wiegand, “3D video:
Depth coding based on inter-component prediction of block partitions,” in
Picture Coding Symposium (PCS), May 2012, pp. 149–152.

[46] H. Oh and Y.-S. Ho, “H.264-Based Depth Map Sequence Coding Using Mo-
tion Information of Corresponding Texture Video,” in Advances in Image and
Video Technology. Springer Berlin Heidelberg, 2006, vol. 4319, pp. 898–907.

[47] J. Konieczny and M. Domanski, “Extended Inter-View Direct mode for Mul-
tiview Video Coding,” in IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), May 2011, pp. 845–848.

[48] S. Ryu and K. Sohn, “Depth-based direct mode for multiview video coding,”
Signal Processing: Image Communication, vol. 27, no. 6, pp. 571–578, Jul.
2012.

[49] W. Su, D. Rusanovskyy, M. M. Hannuksela, and H. Li, “Depth-based motion
vector prediction in 3D video coding,” in Picture Coding Symposium (PCS),
May 2012, pp. 37–40.

[50] Y. Morvan, D. Farin, and P. H. N. de With, “Joint Depth/Texture Bit-
Allocation For Multi-View Video Compression,” in Picture Coding Symposium
(PCS), Nov. 2007.

[51] Y. Liu, Q. Huang, S. Ma, D. Zhao, and W. Gao, “Joint video/depth rate
allocation for 3D video coding based on view synthesis distortion model,”
Signal Processing: Image Communication, vol. 24, no. 8, pp. 666–681, Sep.
2009.

[52] W.-S. Kim, A. Ortega, P. Lai, D. Tian, and C. Gomila, “Depth map distortion
analysis for view rendering and depth coding,” in IEEE Int. Conf. on Image
Processing (ICIP), Nov. 2009, pp. 721–724.

[53] H. Yuan, Y. Chang, J. Huo, F. Yang, and Z. Lu, “Model-Based Joint Bit
Allocation Between Texture Videos and Depth Maps for 3-D Video Coding,”
IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 4, pp. 485–497, Apr.
2011.

86

[54] J. Xiao, T. Tillo, and H. Yuan, “Real-Time Macroblock Level Bits Allocation
for Depth Maps in 3-D Video Coding,” in Advances in Multimedia Information
Processing - PCM 2012. Springer Berlin Heidelberg, 2012, vol. 7674, pp. 232–
240.

[55] T.-Y. Chung, W.-D. Jang, and C.-S. Kim, “Efficient depth video coding based
on view synthesis distortion estimation,” IEEE Visual Communications and
Image Processing (VCIP), pp. 1–4, Nov. 2012.

[56] Q. Zhang, P. An, Y. Zhang, and Z. Zhang, “Efficient rendering distortion esti-
mation for depth map compression,” in IEEE Int. Conf. on Image Processing
(ICIP), Sep. 2011, pp. 1105–1108.

[57] W.-S. Kim, A. Ortega, P. Lai, D. Tian, and C. Gomila, “Depth map coding
with distortion estimation of rendered view,” in Proc. SPIE Visual Infor-
mation Processing and Communication, vol. 7543, Jan. 2010, pp. 75 430B–
75 430B–10.

[58] G. Tech, H. Schwarz, K. Müller, and T. Wiegand, “3D video coding using the
synthesized view distortion change,” in Picture Coding Symposium (PCS),
May 2012, pp. 25–28.

[59] H.-P. Deng, L. Yu, B. Feng, and Q. Liu, “Structural similarity-based synthe-
sized view distortion estimation for depth map coding,” IEEE Trans. Consum.
Electron., vol. 58, no. 4, pp. 1338–1344, Nov. 2012.

[60] E. Martinian, A. Behrens, J. Xin, A. Vetro, and H. Sun, “Extensions of
H.264/AVC for multiview video compression,” in IEEE Int. Conf. on Image
Processing (ICIP), Oct. 2006, pp. 2981–2984.

[61] S. Yea and A. Vetro, “View synthesis prediction for multiview video coding,”
Signal Processing: Image Communication, vol. 24, no. 1-2, pp. 89–100, Jan.
2009.

[62] C. Lee and Y.-S. Ho, “A framework of 3D video coding using view synthesis
prediction,” in Picture Coding Symposium (PCS), May 2012, pp. 9–12.

[63] F. Jäger and C. Feldmann, “Warped-skip mode for 3D video coding,” in
Picture Coding Symposium (PCS), May 2012, pp. 145–148.

[64] S. Bosse, H. Schwarz, T. Hinz, and T. Wiegand, “Encoder Control for Ren-
derable Regions in High Efficiency Multiview Video plus Depth Coding,” in
Picture Coding Symposium (PCS), May 2012, pp. 129–132.

[65] D. Rusanovskyy, M. M. Hannuksela, and W. Su, “Depth-based coding of
MVD data for 3D video extension of H.264/AVC,” 3D Research, vol. 4, no. 2,
pp. 1–10, Jun. 2013.

87

[66] Y. Morvan, D. Farin, and P. H. N. de With, “Multiview Depth-Image Com-
pression Using an Extended H.264 Encoder,” in Int’l Conf. on Advanced Con-
cepts for Intelligent Vision Systems (ACIVS), ser. ACIVS’07. Berlin, Hei-
delberg: Springer-Verlag, Aug. 2007, pp. 675–686.

[67] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves,” ITU VCEG, Doc. VCEG-M33, Apr. 2001.

[68] ITU-R, “Methodology for the subjective assessment of the quality of television
pictures,” Recommendation ITU-R BT.500-13, Jan. 2012.

[69] A. K. Jain, C. Bal, and T. Q. Nguyen, “Tally: A Web-based Subjective Testing
Tool,” in Int. Workshop on Quality of Multimedia Experience (QoMEX), Jul.
2013, pp. 128,129.

[70] D. Rusanovskyy, F.-C. Chen, L. Zhang, and T. Suzuki, “3D-AVC Test Model
9,” JCT on 3DV Coding Ext. Dev. of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, Doc. JCT3V-G1003, Jan. 2014.

[71] P. Aflaki, M. M. Hannuksela, and X. Huang, “CE7: Removal of texture-to-
depth resolution ratio restrictions,” JCT on 3DV Coding Ext. Dev. of ITU-T
SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Doc. JCT3V-E0035, Jul./Aug.
2013.

[72] S. Lee, S. Lee, H. Wey, and J. Lee, “3D-CE3.a results on dilation filter for
depth post processing,” JCT on 3DV Coding Ext. Dev. of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11, Doc. JCT3V-A0038, Jul. 2012.

[73] D. Rusanovskyy, K. Müller, and A. Vetro, “Common Test Conditions of 3DV
Core Experiments,” JCT on 3DV Coding Ext. Dev. of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, Doc. JCT3V-E1100, Jul./Aug. 2013.

[74] D. Rusanovskyy, “JCT-3V AHG Report: 3D-AVC Software Integration
(AHG3),” JCT on 3DV Coding Ext. Dev. of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, Doc. JCT3V-I0003, Jul. 2014.

[75] S. Mitra, Digital Signal Processing: A Computer-based Approach, 4th ed.
McGraw-Hill, 2010.

[76] B. T. Oh, J. Lee, and D. S. Park, “3D-CE8.a results on view synthesis
optimization using distortion in synthesized views by Samsung,” ISO/IEC
JTC1/SC29/WG11, Doc. M24826, May 2012.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Vita
	Abstract of the Dissertation
	Introduction
	Framework for Comparison of View Synthesis Algorithms
	Introduction
	Depth and Disparity Relation
	Depth Map
	Depth Image-Based Rendering
	Reverse Depth Image-Based Rendering
	Warps and Disparity
	Image Domain Warping
	Warp Map
	Reverse Image Domain Warping
	Blending and Stitching
	Visual Quality
	Conclusion

	Fast View Synthesis using CUDA and Depth Image-Based Rendering
	Introduction
	View Synthesis using CUDA
	Rendering Foreground Views
	Rendering Background Layer
	Hole Mapping on Background Layer
	Hole Filling
	Texture Mapping on Foreground Views
	Generating Additional Views

	Experimental Results
	View Synthesis Quality
	Execution Speed

	Conclusion

	Multiview Video plus Depth Coding with Depth-based Prediction Mode
	Introduction
	Depth-based Prediction Mode
	Experimental Results
	Rate-Distortion Analysis
	Subjective Tests
	DBPM Usage
	Complexity Analysis
	Virtual View Synthesis

	Conclusion

	A Novel 3D Video Codec Based on 3D-AVC and Image Domain Warping
	Introduction
	Warp Map Coding using 3D-AVC
	Experimental Results
	Rate-Distortion Performance
	Effect of Camera Noise on the PSNR Calculation of the Synthesized Views
	Performance of the Depth-based Coding Tools of3D-AVC for Warp Maps
	Performance of the View Synthesis Distortion in3D-AVC for Warp Maps
	Computational Complexity
	Optimal Depth/Warp QP Selection

	Conclusion

	Conclusion
	Bibliography

