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Figure 6.43 Stress ŜZZ obtained by CFHL and present recovery procedure at B. . . . . . . . . . . . 116
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Composite materials play an important role in the aerospace industry. They are increasingly used

in primary structures, and recent manufacturing technology advancements are making Variable Angle Tow

(VAT) composites a valuable option for the design of innovative airplanes. One of the challenges of the future

of aviation is to have aerodynamically efficient configurations, which often result in very flexible structures.

Thus, the large deformation analysis of VAT composites is a necessary phase of the design. A difficulty is

often represented by the higher degree of anisotropy of these structures, which needs to be taken into account

with the necessary computational flexibility and without a compromise on the accuracy of the evaluations,

especially on the determination of stress levels.

This dissertation introduces a finite-element based computational framework for the variable-

kinematic analysis of geometrically nonlinear variable-stiffness composite laminates. A unified approach

allows the analyst to master a virtually infinite number of types of elements. They are based on a compact

writing of the equations of motion so that each layer can be independently modeled with an axiomatic
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approach, or effective equivalent single layer models, able to correctly take into account the zig-zag form of

the displacements, can be used. In particular, formulations originally developed for linear classical compos-

ites, are now introduced for the large displacement analysis of VAT laminates. The accurate prediction of

transverse stresses is achieved by a quasi-3D recovery procedure originally proposed and based on integration

of the Second-Piola Kirchhoff Stress Tensor. It is demonstrated that the level of accuracy is comparable to

the more computationally demanding three-dimensional finite element approaches.
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Chapter 1

Introduction

1.1 Motivation

Composite materials are widespread in aerospace applications due to their design flexibility and

capacity to form lightweight structures. They are commonly employed as laminates with straight fibers ori-

ented at a specific angle in each layer, Constant Stiffness Composite Laminate (CSCL). Recent advancement

in the manufacturing techniques allows the use of Variable Angle Tow (VAT) laminates [1–4]. The latter

are attractive because of the removal of the straight fibers constraint, dramatically increasing the design

space. Thus, more efficient structures can be achieved. Initial studies on VAT structures were done for their

ability to redistribute loads. For instance, a reduction of the stress concentration in the presence of holes was

observed [5]. One of the main issues of thin-walled structure is buckling. VAT laminates proved to be able

to increase the buckling load [6, 7] and improve the post-buckling behaviour [8, 9]. Recently, it was shown

the possibility to use VAT composites for primary structures like a wingbox [4] and how an improvement

in postbuckling behaviour can be obtained with respect to CSCL [10]. VAT composites can also be used to

improve the dynamic response of wing structures. The fiber orientation can be optimized to increase certain

frequency (e.g. bending and torsion) without affecting others [11]. Few studies have been done to asses

the advantage of VAT laminates to control aeroelastic instability and more needs to be done. Studies on

one- and two-dimensional wing models coupled with unsteady strip theory aerodynamics [12, 13] showed an

increase of both divergence and flutter speeds. An increase of flutter speed compared to straight fiber was

also found in case of a symmetric stacking sequence plate with supersonic flow [14]. A mass minimization

problem conducted on a high aspect ratio Common Research Model concluded that under aeroelastic stress

and flutter constraints the curvilinear fibers as well as using curvilinear stiffeners can reduce the mass up to

11% relative to un-steered composites [15]. Other studies show that VAT laminates potentially can increase
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the flutter speed of a plate in supersonic flows but their effect was strongly dependent on the boundary

conditions [16].

As shown in this brief review, VAT composite are promising. However, their analysis in a multi-

disciplinary design and optimization framework requires a higher computational cost than CSCL. Thus,

it becomes essential to have a fast and accurate model at the same time. The finite element method

(FEM) proved to be a useful tool for structural analysis. It is based on the subdivision of the domain in

elements. They can be one-, two- or three-dimensional based on the particular geometry to be analyzed.

In practical applications, composite laminates are produced as plates and two-dimensional elements can

often accurately describe these three-dimensional continuous structures. A-priori assumptions (axiomatic

theories) of the variation of field variables (e.g. displacements) along the thickness are adopted. Simpler and

computationally cheaper axiomatic theories can capture the global behavior of the structure, but they can

fail to provide an accurate stress representation. This is especially true for thicker laminates with strong

anisotropy. The correct evaluation of the stress field is of fundamental importance to successfully apply the

failure criteria [17]. An erroneous estimation can cause safety issues. In these situations it becomes necessary

the adoption of high-order theories or even three-dimensional elements. Many authors have dealt with the

problem to reduce the computational burden associated with composite laminates. Some are based on the

use of a combination of different methods (global-local methods) and others are based on post-processing

operations to recover the actual stress field in specific areas [18–21].

1.2 Contribution of the present study

The objective of this study is to develop a flexible computational tool for geometrically nonlinear

static and dynamic analysis of composite laminates. The focus is on the accurate evaluation of the stress

field in the area of interest at low computational cost. This tool is based on the Generalized Unified

Formulation (GUF) [22] originally proposed for linear composite structures. GUF provides the flexibility

to model each spatial direction independently using several axiomatic models, like Equivalent Single Layer

(ESL) and layer-wise (LW) [23] ones. It has been extensively validated for linear analysis of CSCL [24–26]

and VAT [27–29] composites. When applied to FEM, it generates polymorphic elements giving the user a

virtually infinite element library. Different elements can be used and compared, giving the opportunity of

finding the more cost effective modeling strategy for a particular application. Among all theories, particular

attention is given to the Zig-Zag theory [30–33] based on the Murakami’s Zig-Zag function (MZZF) [34].

It will be demonstrated for the first time in this dissertation that MZZF is an effective alternative to the

more expensive LW theory also in nonlinear analysis. This is especially true if used in conjunction with a
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dedicated stress recovery procedure. For this purpose a post-processing procedure based on the thickness

integration of the nonlinear equilibrium equations is developed to further enhance the stress accuracy of

computationally cheaper elements. It is also shown how all elements can be used simultaneously through

the use of a penalty formulation, making it a viable tool for global-local analysis.

The original contributions of this work are summarized below.

� The Generalized Unified Formulation is applied to the geometrically nonlinear static analysis of CSCL

and VAT laminates. The expressions of the kernels (formally invariant scalars and building block of

the notation) are derived for the first time for a total Lagrangian finite element formulation.

� The algorithm is further extended to dynamic analysis. Additional kernels expression are derived for

the inertial terms (mass matrix).

� The study of flapping wing systems and blades for wind and marine application can be more conve-

nient done in a frame of reference attached to the body. The nonlinear dynamic governing equation

are derived for a non-inertial reference system and the kernels associated with the additional terms

(apparent forces, dynamic stiffness matrix, gyroscopic damping matrix) are derived.

� Development of a point-wise stress recovery procedure for nonlinear analysis of VAT composites. The

method retains all the nonlinear terms of the governing equation written in terms of Second Piola-

Kirchhoff stress tensor.

� The effectiveness of Murakami’s Zig-Zag Function for the geometrical nonlinear analysis of VAT struc-

tures is presented for the first time. Results are compared with commercial codes or test cases found

in literature.

1.3 Outline

The dissertation is organized as follows:

� Chapter 2 is subdivided in three sections. First, the most commonly adopted displacement based

axiomatic theories are listed. Then, it is presented a literature review of the algorithms developed

to mitigate the additional computational cost that composites and laminates typically introduce in a

finite element analysis. The additional cost often is due to a complex three-dimensional stress field

that has to be accurately modeled to correctly apply failure criteria. Many of these algorithms are

based on the simultaneous usage of different axiomatic theories. Finally, the concepts of compact
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notation, unified formulation and invariant kernels are introduced. The main characteristics of GUF

are explained together with its implementation in a finite element framework.

� In Chapter 3 GUF is extended to the geometrically nonlinear static analysis of laminates. Novel

expressions of the nonlinear invariant kernels are derived using a total Lagrangian formulation.

� Chapter 4 further extends the nonlinear finite element analysis to dynamic problems. The kernels of

the mass matrix are obtained. With in mind a possible application on the analysis of flapping wings

and wind turbines, the formulation is also presented by using a frame of reference attached to the body.

With this intent, the weak form is rewritten in a non-inertial reference frame. Additional contributions

to the stiffness and damping matrix are obtained and the associated kernels derived for the first time.

� Chapter 5 illustrates the variable angle tow modeling in the finite element formulation. This is done as

preparatory step for developing a stress recovery procedure for the large displacements and rotations

analysis of generic composite laminates.

� In Chapter 6 the tools introduced in the previous chapters are validated against data from literature

and commercial codes. The capability to have an infinite library of elements allows one to compare

different models. In particular, it is shown how Murakami’s Zig-Zag function can be successfully used

also in nonlinear analysis to improve the accuracy of ESL theories in term of transverse stresses. It

is shown that an accuracy comparable with LW theories is achieved. In addition, it is shown the

effectiveness of GUF in reducing the computational cost using high-order axiomatic theories only in

the area of interest.

1.4 Acknowledgments

Chapter 1 is in part a reprint of:

� ”Computational Architecture Based on Murakami’s Zig-Zag function for the Geometrically Nonlinear

Analysis of Variable Angle Tow Laminates”, AIAA Scitech Forum, Orlando, Florida, January 2020

and co-authored by Luciano Demasi. The author of this dissertation is the primary investigator and

author of this paper.
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Chapter 2

Multi-model analysis and Unified

Formulation

In this chapter the most common axiomatic models for composite multilayered structures are de-

scribed. Follows a brief survey of algorithms used to minimize the computational cost that such composites

require in a Finite Element Analysis. Most of them are based on the usage of different element types

(multi-models) in different areas of the structure. Finally, the concept of unified formulation is introduced

together with a description of its practical implementation in a Finite Element framework. It is shown how

the particular form of the unified formulation used in this dissertation allows for simultaneous use of several

axiomatic models, making it a useful tool for multi-model analysis.

2.1 Axiomatic models

The most common methods for the structural analysis of composite laminates are based on the

so called axiomatic models. These methods rely on hypotheses on the shape of the solution without an

a-priori knowledge . Their accuracy is tested only a posteriori. These assumptions allow to reduce the three-

dimensional continuum elasticity problem to a two-dimensional one. They define how the field variables (e.g.

displacements) vary along the thickness of the plate (linearly, parabolic, or other type of description). There

are two main classes of axiomatic models: the Equivalent Single Layer (ESL) and the Layer-Wise (LW) ones.

The former hypothesizes the structure as a single lamina with smeared material property, whereas the latter

treats each layer independently. The ESL models are computationally inexpensive, but are not accurate for

thicker plates or when a strong anisotropy is present. Moreover, they do not provide a correct evaluation of

the transverse stresses. On the contrary, LW models are more accurate, but expensive, especially when the
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number of layer increases. They resemble the original three-dimensional modeling so that they are referred

as quasi-3D models.

Consider a planar composite panel assumed to be on the x-y plane and the thickness is along the

vertical z direction (Fig. 2.1).

y
z

x
Figure 2.1: Plate geometry and reference system

The layers are numbered from bottom to top and k indicates the identity of a generic layer (Fig.

2.2).

x, y

z

zbotk

ztopklayer k
h

hk

Figure 2.2: Thickness coordinate of a generic layer.

A list of the most common axiomatic model is presented. Then in the next sections it will be shown

how all these models can be included in one through the use of an unified formulation.

2.1.1 Equivalent Single Layer theories

The displacements variables are expresses as a Taylor expansion along the thickness direction from

the middle of the plate (z=0). The most general form is:

ux(x, y, z) =

nx∑
i=0

ziφxi(x, y)

uy(x, y, z) =

ny∑
i=0

ziφyi(x, y)

uz(x, y, z) =

nz∑
i=0

ziφzi(x, y)

(2.1)
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where φxi , φyi , φzi are the unknown coefficients that have to be found. nx, ny, nz are the orders of

the expansion for each coordinate direction. Depending on the number of terms retained, different theories

can be generated (see Fig. 2.3).

x, y

z

linear parabolic higher-order

Figure 2.3: Equivalent Single Layer theory. Displacement variables through the thickness.

Classical plate theory (CPT) In this theory the Kirchhoff’s hypothesis are applied. It is assumed that

straight lines perpendicular to the mid-surface remain straight and normal to it after deformation and that

the thickness of the plate does not change. Thus, Eq. 2.1 becomes:

ux(x, y, z) = ux0(x, y)− z ∂uz0
∂x

uy(x, y, z) = uy0
(x, y)− z ∂uz0

∂y

uz(x, y, z) = uz0(x, y)

(2.2)

As a consequence of these assumptions the transverse shear and normal effects are neglected. This theory

can provide accurate results only for thin plates and with low levels of anisotropy.

First-order shear deformation theory (FSDT) The Kirchhoff hypothesis are relaxed. In particular,

straight lines perpendicular to the mid-surface do not remain as such during deformation. The resulting

axiomatic model becomes:

ux(x, y, z) = ux0(x, y) + zux1(x, y)

uy(x, y, z) = uy0(x, y) + zuy1(x, y)

uz(x, y, z) = uz0(x, y)

(2.3)

where ux1 and uy1 have the meaning of rotation of a transverse normal about the y and x axis respectively.

These hypothesis allows a constant transverse shear to exist. Nonetheless a constant shear is not physically

possible for equilibrium consideration and a correction factor is often used.
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High-order shear deformation theories (HSDT) Increasing the order of the polynomial, more ac-

curate and complex theories can be developed. The higher order coefficients do not present a classical

interpretation (e.g. rotations). These theories do not need a shear correction factor because they allow the

shear stresses to go to zero on the top and bottom of the plate. An example of higher order theory reported

below:

ux(x, y, z) = ux0(x, y) + zux1(x, y) + z2ux2(x, y)

uy(x, y, z) = uy0(x, y) + zuy1(x, y) + z2uy2(x, y)

uz(x, y, z) = uz0(x, y) + zuz1(x, y)

(2.4)

But many other options are available, as the commonly used third-order laminated plate theory of Reddy

[35].

2.1.2 Layerwise theories

The ESL theories can accurately predict the global behavior of the plate, especially if thin. But

they can not capture the three-dimensional state of stress with adequate accuracy. This issue is overcome

modeling each ply separately with an ESL theory (see Fig. 2.4). The most general expression is:

ukx(x, y, z) =

nx∑
i=0

(
z −

ztopk + zbotk

2

)i
φkxi(x, y)

uky(x, y, z) =

ny∑
i=0

(
z −

ztopk + zbotk

2

)i
φkyi(x, y) zbotk ≤ z ≤ ztopk

ukz(x, y, z) =

nz∑
i=0

(
z −

ztopk + zbotk

2

)i
φkzi(x, y)

(2.5)

where k denotes the ply number. The term (ztopk + zbotk)/2 has been added because the ESL theories use

as reference frame the middle plane of the corresponding layer instead of the entire plate.

x, y

z

linear parabolic high-order

Figure 2.4: Layer-Wise displacement variables.

In case a first order shear deformation theory is used for the inplane displacement and a constant
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value for the out-of-plane displacement at each layer Eq. 2.5 becomes:

ukx(x, y, z) = ukx0(x, y) +

(
z − ztopk + zbotk

2

)
ukx1(x, y)

uky(x, y, z) = uky0(x, y) +

(
z − ztopk + zbotk

2

)
uky1(x, y) zbotk ≤ z ≤ ztopk

ukz(x, y, z) = ukz0(x, y)

(2.6)

In the practical modeling a Taylor expansion is not ideal to describe the thickness variation of a LW theory.

It makes the imposition of the inter-laminar continuity a cumbersome process. An axiomatic expansion

based on Legendre polynomial is far more convenient, because it allows for an effective application of the

interlaminar compatibility of the displacements (i.e., the displacements must be continuous functions in the

thickness direction). The expansion (Fig. 2.5) using the Legendre polynomial becomes:

ukx(x, y, z) =

nx∑
i=0

F ki+1(z)ψkxi(x, y)

uky(x, y, z) =

ny∑
i=0

F ki+1(z)ψkyi(x, y)

ukz(x, y, z) =

nz∑
i=0

F ki+1(z)ψkzi(x, y)

(2.7)

where ψkxi , ψ
k
yi , ψ

k
zi are the unknowns and F ki+1 are the known coefficients that depend on the

thickness through the Legendre polynomials. Their explicit expression is as follow:

F k1 =
P k0 + P k1

2

F ki = P ki − P ki−2 i = 2, nx

F knx+1 =
P k0 − P k1

2

(2.8)

where Pi is the Legendre polynomial of order i. The Legendre polynomials are defined between −1

and 1, so a transformation of the thickness coordinate is needed before evaluating them:

ζk =
2

ztopk − zbotk

z −
ztopk + zbotk

ztopk − zbotk

(2.9)

The advantage resides on the fact that the first and last unknown terms in equation 2.7 represent the

displacement of the top and bottom surface of the layer respectively when equation 2.8 is adopted. Thus,
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the compatibility condition between layer k and k + 1 simply becomes:

ψkx0
= ψk+1

xnx

ψky0
= ψk+1

yny

ψkz0 = ψk+1
znz

(2.10)

Although the stress state is considerably improved with respect to the ESL theories, the continuity

of the transverse stresses is still not guaranteed. For this reason mixed theory can be used where also the

transverse stress variables are modeled with an axiomatic theory [36–39]. This kind of theories are called

mixed layer-wise theories and they guarantee continuity of the transverse stress, but in this dissertation only

displacement based axiomatic theory are considered.

2.1.3 Partially-layerwise theory

It is possible to combine all the theories listed. For example the inplane displacements can be

modeled with a LW theory and the out-of-plane displacement with an ESL one:

ukx(x, y, z) = ukx0(x, y) +

(
z −

ztopk + zbotk

2

)
ukx1(x, y) zbotk ≤ z ≤ ztopk

uky(x, y, z) = uky0(x, y) +

(
z −

ztopk + zbotk

2

)
uky1(x, y) zbotk ≤ z ≤ ztopk

uz(x, y, z) = uz0

(2.11)

Other options are available.

2.1.4 Zig-Zag theories

Zig-zag theories are ESL theories but are treated separately in this dissertation for their capability

to be as accurate as the more complex LW ones. One of the shortcoming of the classical ESL theories is their

incapability to take into account the discontinuity of the first displacements’ derivatives in the thickness

direction [26]. Zig-Zag theories have been developed to overcome this issue [30–33]. From an historical

perspective [40], this type of theories can be subdivided into 3 major categories: Lekhnitskii Multilayered

Theory (LMT) [41], Ambartsumian Multilayered Theory (AMT) [42–46], and Reissner Multilayered Theory

(RMT) [39, 47, 48].

The Zig-Zag models were applied to displacement-based formulations [49] but also postulated for

mixed variational statements. This is the case of Murakami [34] who adopted Reissner’s Mixed Variational

Theorem (RMVT) [39, 47]. This framework was the base of later work [50, 51] which indicated the effective-
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ness of considering the discontinuity of the first displacement derivative in the axiomatic modeling. Mixed

Zig-Zag theories were also proposed on the basis of Hu-Washizu [38] and Hellinger-Reissner principles [52].

The high numerical performance of these models has also been confirmed for the case of curvilinear fibers

[53] with particular reference to the calculation of the stress fields.

Recently, different Zig-Zag approaches emerged: the continuity of the transverse stresses is a priori

enforced without increasing the number of degrees of freedom [54, 55]. This is achieved by using a strain

enhancement able to obtain the interlaminar stress continuity while maintaining the value of strain energy.

A different approach is followed in Ref. [56], where the multilayered Zig-Zag theory is built by using C0
z

warping functions.

Zig-Zag models have also been used for geometrically nonlinear structural analysis due to the rel-

atively low computational cost with respect to layerwise models [57]. Ref. [48] used Murakami’s Zig-Zag

Function (MZZF) to enhance the in-plane displacements of an RMVT framework. The nonlinearity was

based on von-Kármán strains. The moderately large displacement model has also been adopted in Ref. [58],

where cubic expansion for the displacement field was enriched with a Zig-Zag function for the analysis of

composite plates in the postbuckled region. Results showed that the Zig-Zag modeling was superior to the

FSDT especially when the laminate had drastically different transverse stiffness properties from ply to ply

and for low length-to-thickness aspect ratios. A linear Zig-Zag model [59] was used to formulate a first

order sublaminate theory with a Total Lagrangian Formulation (TLF). A Zig-Zag FSDT was proposed in

Ref. [60], where the von-Kármán strain model was used to represent the geometric nonlinearity. A mixed

approach allowed the formulation to take into account the continuity of the stresses and boundary conditions.

Moreover, shear correction factor was not required.

More recently, Flores [61] introduced a Zig-Zag term to a FSDT for the large displacement analysis of

shells. Finally, a higher-order shear deformation Zig-Zag theory [62] was proposed for the aerothermoelastic

analysis of composite panels subjected to supersonic airflow under the assumption of moderately large

displacement field (von-Kármán sense).

In this dissertation the Murakammi’s Zig-Zag Function (MZZF) have been used to augment the

axiomatic displacement field. Its expression is the following:

MZZF: (−1)kξk = (−1)k
(

2

ztopk − zbotk

z −
ztopk + zbotk

ztopk − zbotk

)
(2.12)

where ζk is a thickness non-dimensional coordinate and its value is between −1 and 1. This function is added
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to the ESL displacement variables (see Fig. 2.5). For example:

ux(x, y, z) = ux0(x, y) + zux1(x, y) + z2ux2(x, y) + (−1)kξkuxζ (x, y)

uy(x, y, z) = uy0(x, y) + zuy1(x, y) + z2uy2(x, y) + (−1)kξkuyζ (x, y)

uz(x, y, z) = uz0(x, y) + zuz1(x, y) + (−1)kξkuzζ (x, y)

(2.13)

x, y

z

ESL
Murakami’s function
(−1)kζk

Zig-Zag

Figure 2.5: Equivalent Single Layer theory enhancement of the displacement variables with Murakami’s
Zig-Zag function.

2.2 Global-local methods

The objective of the global-local methods is to maximize the solution accuracy given a certain

amount of computational resources. In absence of analytical solutions, the only way this can be done is

through numerical methods that are able to locally increase their resolution. This locality is usually enough

because either only specific areas of the structure have a complex stress field or the designer is only interested

in getting data from a specific part of it. During the years several different algorithms have been developed

for this purpose and researchers proposed different definitions of the term global-local analysis. Here some

examples:

Global/local stress analysis methodology is defined as a procedure to determine local, detailed

stress states for specific structural regions using information obtained from an independent global

stress analysis [63].

Global-local analysis refers to a solution procedure where the entire structure is modeled in two

steps. In the first step, a global model is analyzed and in the next step the area of interest, called

the local model, is analyzed using relevant data from the global solution [64].

Global-local analysis refers to a special case of the more general multiple model analysis; the
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Global-local

Multi-Models

Simultaneous

Generalized Unified Formulation

Node-dependent kinematic

Mesh superposition

Transition elements

Arlequin

Lagrange multipliers

Sublaminate grouping

Sequential

Iterative

Single-step

Single-Models

hp-refinement

p-refinement

h-refinement

Figure 2.6: Global-local analysis algorithms for Finite Element methods

former term is typically used when there exist a typical subregion of interest that occupies a

small portion of the computational domain [35].

In computational structural mechanics, the term global-local analysis refers to a variety of hier-

archical modeling strategies used to study structural response phenomena covering a wide range

of length scales [65].

In this dissertation the term global-local analysis refers to a generic numerical method that allows to

obtain different level of accuracy in different part of the structural domain. The global-local method utilized

in FEM can be classified in single-model and multi-model methods. Fig. 2.6 shows a list of method used for

global-local analysis.
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2.2.1 Single-model methods

The first class of method relies on one mathematical model and the localization is done either

refining the mesh in the area of interest (h-refinement) [66] or increasing the degree of the basis functions

(p-refinement) [67]. Also a combination of the two have been used (hp-refinement) [68]. These methods do

not change the kinematic theory and for this reason are called single-models.

2.2.2 Multi-model methods

Multi-model methods for global-local analysis can be subdivided in sequential and simultaneous.

There is a wide variety of simultaneous models e.g. transition elements, sublaminate grouping and others.

Here a description of the methods is provided.

Sequential These methods rely on the use of a simple model to obtain an approximate solution on the en-

tire domain (global region), immediately followed by a new simulation with a more refined model considering

only the zone of interest (local region). The results of the first simulation are used as boundary condition

for the latter [63, 69]. These methods have the shortcoming that there is no feedback from the local region

to the global one and consequently equilibrium is not guaranteed. To solve this issue iterative methods were

introduce, where a loop between the solution is performed [70–73].

Sublaminate grouping In the sublaminate grouping method the local zone is composed by selected plies

of the laminates. These plies are well resolved using three-dimensional solid elements or higher order plate

theories. This method was introduced by Wang [74] and it relays on the Saint-Venant’s principle. The idea is

that the interlaminar stresses between two layer are not affected if the force distribution of other layers acting

on the layer of interest is substituted with a statically equivalent force. The idea is to use an ESL theory

to model the layers not of interest. Later Jones [75] applied this technique by adopting three-dimensional

elements, whereas Pagano [76] employed two-dimensional elements. Sun [77] proposed this technique to

study delamination of thick laminates.

Transition elements Another way is to have different element types for different areas of the structure

and join them together with special transition elements [78–81]. The disadvantage is that there should be a

transition element for every element combination.

Lagrange multipliers Another solution is to augment the weak form of the elasticity problem to enforce

the compatibility of the displacements between the global and local zone where different discretization or/and
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mathematical models are used. This operation is done through Lagrange multipliers. The advantage is that

transitional elements are not necessary. Aminpour [82] applied this technique for the study of plates with

hole and a composite laminate fuselage panel. Carrera [83] used Lagrange multipliers for beam elements

together with the unified formulation for variable kinematic.

Mesh superposition Fish [84] introduced the s-Finite element method. It consists of an additional mesh

superimposed to the existing one. The new mesh can be finer or having higher polynomial order elements

allowing to more accurately capture higher gradient. This method can be seen as a generalization of the

h-, p- and hp- methods. It has been applied to the study of multilayered plates [85]. The continuity of the

displacement field between the two meshes is ensured through the use of homogeneous boundary conditions

of the superimposed mesh.

Arlequine In this method the laminate is subdivided in overlapping domains that can be modeled inde-

pendently with different finite element and kinematic theories. The weak statement is formed by weighting

the potential energies associated with each domain an additional gluing term through Lagrange multiplier.

Ben Dhia [86] introduced the method and used it for global-local analysis of plates [87]; Biscani [88] imple-

mented it in the context of a unified formulation where both ESL and LW theories were used simultaneously

for the analysis of square thick plates.

Node-dependent kinematics The node-dependent kinematics has been used in the framework of the

Carrera Unified formulation [89, 90]. This method focuses the attention on the finite element nodes and

not on the element itself. Each node can be modeled with a different axiomatic theory. The elements that

have nodes with different theory are practically transition elements, but the compatibility is automatically

ensured thanks to the shape function property and no special modeling is necessary [91–93].

2.3 Unified formulations

In the traditional FEM a two-dimensional plate element is built upon a single axiomatic theory

(see section 2.1). As a consequence codes have limited element libraries (only few axiomatic theories are

available). If an additional element is needed, heavy and time consuming modification of the code may be

required with the risk of introducing bugs. The Unified Formulations (UFs) enable to create polymorphic

elements capable to change the underlying axiomatic model by user request. This is achieved by means of a

compact notation that makes use of indicial notation. Practically, a code that uses an Unified Formulation

has an infinite number of elements in its library, each one associated with an axiomatic model. This feature
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makes the UF an ideal tool for multi-model analysis with the objective to reduce the number of degree of

freedom of the problem.

In this dissertation the Generalized Unified Formulation (GUF) is used. It is a direct extension of

Carrera Unified Formulation (CUF) [89, 90, 94]. In the latter all displacement components are described

using the same expansion in the thickness direction of order N . The displacement field for a layer k is as

follow:

CUF :


ukx(x, y, z) = F kαu(zk)ukxαu (x, y)

uky(x, y, z) = F kαu(zk)ukyαu (x, y) αu = t, l, b l = 2, . . . ,N

ukz(x, y, z) = F kαu(zk)ukzαu (x, y)

(2.14)

where ukxαu ,ukyαu ,ukzαu are the unknown function depending only on the in-plane coordinates. These

are the functions discretized using the two-dimensional Finite Element approximation. Instead F kαu are

the thickness functions. They contain the thickness coordinate (z) dependence in the displacement field

decomposition. The symbol t and b are used for the first and last term of the expansion (instead of 1 and

N + 1), because if Legendre polynomials are used the first and last unknown coefficient of the expansion are

the displacements at the top and bottom of the layer respectively. If an ESL theory, the layer identification

k can be dropped from Eq.2.14.

On the contrary, the Generalized Unified Formulation permits an independent modeling of each

displacement component, allowing a greater number of axiomatic theories. The bigger design space has the

potential to reduce the total number of dofs necessary to obtain a more accurate solution at less computational

cost. The displacement field for a layer k becomes:

GUF :


ukx = xF kαux (zk)ukxαux (x, y) αux = t, l, b l = 2, . . . ,Nx

uky = yF kαuy (zk)ukyαuy (x, y) αuy = t,m, b m = 2, . . . ,Ny

ukz = zF kαuz (zk)ukzαuz (x, y) αuz = t, n, b n = 2, . . . ,Nz

(2.15)

where Nx, Ny, Nz are the order of expansion in each directions. To note that different thickness

functions can be used for different directions. Also in this case the unknown functions depend on the in-plane

coordinates and discretized using two dimensional shape functions.

To explain how the equivalent GUF notation is adopted in the practice, an example is now intro-

duced. Let’s take the x displacement and assume we have a parabolic expansion in the thickness direction,
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as reported in the following equations:

ux = ux0 + zux1 + z2ux2 + z3ux3 (2.16)

The thickness function are introduced. In this particular case:

xFt = 1 xF2 = z xF3 = z2 xFb = z3 (2.17)

and Eq. 2.16 can be rewritten as:

ux = xFt(z)ux0 + xF2(z)ux1 + xF3(z)ux2 + xFb(z)ux3 (2.18)

then the expansion coefficient are renamed using the GUF convention:

uxt = ux0; ux3 = ux2

ux2
= ux1; uxb = ux3

(2.19)

and Eq. 2.16 is rewritten as

ux = xFt(z)uxt + xF2(z)ux2
+ xF3(z)ux3

+ xFb(z)uxb (2.20)

or using Einstein’s notation:

ukx = xF kαuxuxαux αux = t, l, b l = 2, . . . ,Nx (2.21)

Finally, the FEM approximation is applied to the two-dimensional unknown functions. The value

at each point (x,y) can be obtained as an interpolation of the nodal value of the element it belongs to:

uxt(x, y) = xNi(x, y) xUti (2.22)

where i and xNi are the local node number of the element and the associated shape function. The final

GUF approximation of the displacement component becomes:

ux = xFt(z)
xNi

xUti + xF2(z) xNi
xU2i + xF3(z) xNi

xU3i + xFb(z)
xNi

xUbi (2.23)
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or using Einstein’s notation again:

ux = xFαux (z) xNi
xUαuxi (2.24)

2.3.1 Thickness functions

The expression of the thickness function depends on the axiomatic theory used. If layer-wise:

xF kt =
P k0 + P k1

2

xF kl = P kl − P kl−2 l = 2, . . . ,N k
ux

xF kb =
P k0 − P k1

2

(2.25)

For an ESL theory a Taylor expansion is used and the thickness functions are:

xF kt = 1

xF kl = zl−1 l = 2, . . . ,N k
ux

xF kb = zNux

(2.26)

The Zig-Zag theory are build from the ESL with the addition of the Murakami’s zig-zag function.

So the notation becomes:

xF kt = 1

xF kl = zl−1 l = 2, . . . ,N k
ux + 1

xF kb = (−1)kζk

(2.27)

where (−1)
k
ζk is MZZF defined in Eq. 2.12.

2.3.2 Model classification

An acronym is used to identify the kinematic theory used for a specific element:

DuxDuyDuz
PVDNuxNuyNuz

where Duj and Nuj are the kinematic theory (E: ESL, L: LW and Z for Zig-Zag) and the order of the

polynomial used for the j direction. PVD stands for Principle of Virtual Displacements and it indicates that

the displacements are the only unknown, as opposed to mixed formulations like RMVT. The stress field is
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reconstructed through Hooke’s law or using ad-hoc post-processing procedure.

For example the theory LZEPVD324 is :


ukx =

P k0 + P k1
2

ukxt + (P k2 − P k0 )ukx2 + (P k3 − P k1 )ukx3 +
P k0 − P k1

2
ukxb

uky = uy0 + zuy1 + z2uy2 + (−1)kζkuy3

uz = uz0 + zuz1 + z2uz2 + z3uz3 + z4uz4

(2.28)

2.3.3 Finite element implementation

The application of the Finite Element method to GUF follows the same steps used for a classical

axiomatic theory. First the weak form of the governing equation is derived. This can be obtained through

the principle of the virtual displacements [35, 95], that states that the internal and external virtual work are

equal

δWin = δWext (2.29)

where the symbol δ indicate a virtual variation. The expression for the internal work for linear

analysis and a multilayered plate is:

δWin =

∫
V

δεijσijdV =

NL∑
k=1

∫
V k
δεkijσ

k
ijdV

k =

NL∑
k=1

δW k
in (2.30)

where εij and σij are the component of the strain and stress tensor. V is the volume occupied by

the body and NL is the total number of layers. The virtual internal work can be written in vector form

using Voigt’s notation:

δWin =

∫
V

δεTσdV =
NL∑
k=1

∫
V k

(
δεk
)T
σkdV k (2.31)

where ε and σ are the strain and stress vector

ε = [εxx εyy γxy γxzγyz εzz]
T (2.32)

σ = [σx σy σxy σxz σyz σzz]
T (2.33)

The external work due to the traction forces F is

δWext =

∫
A

δuTFdA (2.34)
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where A is the surface where the forces are applied. The equilibrium equation is expressed as a function

of the displacements and consequently as a function of the in-plane unknown of the unified formulation

(ukxαux , u
k
yαuy

, ukzαuz ) through the strain-displacement relationships

εk =



εkxx

εkyy

γkxy

γkxz

γkyz

εkzz



=



ukx,x

uky,y

ukx,y + uky,z

ukx,z + ukz,x

uky,z + ukz,y

ukz,z



=



xF kαuxu
k
xαux ,x

yF kαuyu
k
yαuy ,y

xF kαuxu
k
xαux ,y

+ yF kαuyu
k
yαuy ,x

xF kαux,zu
k
xαux

+ zF kαuzu
k
zαuz ,x

yF kαuy,zu
k
yαuy

+ zF kαuzu
k
zαuz ,y

zF kαuz,zu
k
zαuz



(2.35)

and Hooke’s law

σk = Ckεk (2.36)

Finally the FEM approximation is introduced. The plate is divided in elements and the displacement

values at each point can be derived as interpolation of the nodal values.

ukxαux = xNi
xUkαux i

ukyαuy = yNi
yUkαuy i

ukzαuz = zNi
zUkαuz i

(2.37)

Substituting the expression of the stress (Eq. 2.36), strains (Eq. 2.35) and the displacements

discretization (Eq. 2.37) in (Eq. 2.31) the discretized expression of the internal virtual work can be found.

The contribution for a single ply is:

δW k
int = δ xUkαuxI K

kαuxβuxIJ
uxux

xUkβuxJ + δUkxαuxI K
kαuxβuy IJ
uxuy

yUkβuyJ+

+ δ xUkαuxI K
kαuxβuz IJ
uxuz

zUkβuZ J
+ δUkyαuy I K

kαuyβuxIJ
uyux

xUkβuxJ+

+ δ yUkαuy I K
kαuyβuy IJ
uyuy

yUkβuyJ + δ yUkαuy I K
kαuyβuz IJ
uyuz

zUkβuZ J
+

+ δ zUkαuz I K
kαuzβuxIJ
uzux

xUkβuxJ + δ zUkαuz I K
kαuzβuy IJ
uzuy

yUkβuyJ+

+ δ zUkαuz I K
kαuzβuz IJ
uzuz

zUkβuZ J

(2.38)

Terms like K
kαuxβuxIJ
uxux are scalars and they are called the kernels of the Generalized Unified For-

mulation. Although they are functions of the axiomatic theory, material properties and geometry of the

structure their expression is formally invariant and they are the building blocks of the formulation. Full
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expression can be found in Appendix A. Only six of them are independent because of the symmetry property

of the elastic stiffness matrix. From this scalar invariant it is possible to build the stiffness matrix of the

multilayered plate (see Fig. 2.7).

Eq. 2.38 can be written more conveniently in matrix form:

δW k
int =

(
δUk

x

)T
Kk
uxuxU

k
x +

(
δUk

x

)T
Kk
uxuyU

k
y +

(
δUk

x

)T
Kk
uxuzU

k
z+

+
(
δUk

y

)T
Kk
uyuxU

k
x +

(
δUk

y

)T
Kk
uyuyU

k
y +

(
δUk

y

)T
Kk
uyuzU

k
z+

+
(
δUk

z

)T
Kk
uzuxU

k
x +

(
δUk

z

)T
Kk
uzuyU

k
y +

(
δUk

z

)T
Kk
uzuzU

k
z

(2.39)

and after assembling:

δW k
int =


δUk

x

δUk
y

δUk
z



T 
Kk
uxux Kk

uxuy Kk
uxuz

Kk
uyux Kk

uyuy Kk
uyuz

Kk
uzux Kk

uzuy Kk
uzuz




Uk
x

Uk
y

Uk
z

 =
(
δUk

)T
KkUk (2.40)

Kk is the layer stiffness matrix.

Similar procedure is done for the virtual work of the external forces and the linear system of equation

for a single lamina is as follows:


Kk
uxux Kk

uxuy Kk
uxuz

Kk
uyux Kk

uyuy Kk
uyuz

Kk
uzux Kk

uzuy Kk
uzuz




Uk
x

Uk
y

Uk
z

 =


Fkx

Fky

Fkz

 (2.41)

The multilayered finite element stiffness is obtained through a thickness assembly procedure of Eq.

2.41. Particular attention has to be taken during this process since it depends on the combination of the

selected theories. Fig. 2.8 shows the actual implementation for the term Kuxuy . In case of ESL theories

the layers are merged in one and consequently the layer stiffness terms are summed. For LW the layers are

kept separate and there is no superposition of the matrices with the consequence of a greater number of dofs

necessary. The interlayer displacement compatibility is imposed by applying Eq. 2.10. This results in the

superimposition of the bottom right corner of the upper layer matrix with the top left corner of the bottom

layer one (second case of Fig. 2.8). A combination of the two previous operations is obtained in case and

ESL and LW theories are used simultaneously.

A scalar kernel, instead of a 3×3 matrix kernel (CUF), derives from the hypothesis of indepen-
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Figure 2.7: Elastic stiffness matrix construction. From invariant kernels to assembled structure. Example
shown for one kernel.
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Figure 2.8: Example of thickness assembly for the term Kuxuy of the stiffness matrix. Different
combinations of axiomatic model (ESL and LW) for in-plane displacements (ux, uy) are shown. On the left
the assembled matrix and on the right the corresponding axiomatic model used for each component.
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dently model the components of the displacement vector. This provides the flexibility to assemble stiffness

contribution of ”mixed” terms that are modeled with different theories. This fact implies that assembled

kernels (Kuxuy , Kuyuz ) can be rectangular and of different sizes. Fig. 2.9 shows a simple example of matrix

structure in case there are two nodes and different theories.

2.3.4 In-plane assembly

Elements based on the GUF are polymorphic because an infinite number of kinematics can be

associated to them. These characteristic make the elements useful for a global-local analysis (see Fig. 2.10).

In the current formulation each finite element can have a different kinematic model assigned in the

local element reference system. This produces incompatibility between elements. A node can be described by

different kinematic theory depending which element is considered belonging to. This issue is solved through

a weak imposition of the interelement compatibility using a penalty method.
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Figure 2.9: Assembled stiffness matrix of a two layer plate using the axiomatic theory LEEPVD323. Only
two nodes I,J are shown. Blue and orange squares represent the stiffness of the top and bottom layer
respectively
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Figure 2.10: Application of GUF for global-local analysis. Different color corresponds to different
kinematic theories.
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Chapter 3

Geometrically Nonlinear Static

Analysis of Anisotropic Laminates

3.1 Governing equations

In this chapter it is described the procedure to solve a geometrically nonlinear problem for a

anisotropic laminate with variable thickness using a variable axiomatic plate model with the Finite Ele-

ment Method. The first step is to find a suitable form of the governing equations that allows an easy

application of the numerical algorithm. This form is called weak form. It can be derived from the differential

expression of the equilibrium equation using the Weighted Residual Method and an integration by parts.

The resulting equation is still difficult to solve because of the nonlinearity. Then a linearization is performed

and the solution is obtained incrementally.

3.1.1 Strong form of the boundary value problem

The equations that it is intended to solve are the ones of static elasticity of a general body subjected

to both Dirichlet and Neumann boundary conditions. The elastic body during the deformation is supposed

to occupy a region V of the three-dimensional space with boundary Γ (see Fig. 3.1). A left subscript 0 is

used to indicate the initial configuration. The body is subjected to both conservative volume forces (b),

surface forces (h) acting on part of the boundary (Γh) and it is constrained on the remaining part of the

boundary (Γg) where a displacement field is given (g). Defined a fixed Cartesian reference frame, it is

possible to identify each point on the solid by its position at the initial undeformed configuration (X) and

at the deformed (current) one (x), after a displacement field u is applied.
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Figure 3.1: Solid domain at initial undeformed configuration and after deformation occurs.

x = X + u (3.1)

The most natural way to define the equilibrium is to express it in the deformed configuration using

the Cauchy stress tensor σij . The associated system of differential equations (strong form) is shown in Box

3.2.

Given bi : V → R, ĝi : Γgi → R, ĥi : Γhi → R, find ui : V → R, such that
σji,j(x) + bi(x) = 0 in V

ui(x) = ĝi(x) on Γgi

nj(x)σji(x) = ĥi(x) on Γhi

(3.2)

Strong form at current configuration

This form turns out to be difficult to deal with using the current variable axiomatic theory due to

the continuous update of the current reference systems during the incremental algorithm. As a matter of

fact it is not possible to apply a rotation matrix to a quantity which components along a certain direction

are described by polynomials of different order. Other methods can be used like a least-square solution,

but it will degrade the performance. This issue can be avoided if the equilibrium is expressed in the initial

undeformed configuration (0V ) using the Second Piola-Kirchhoff stress tensor S (SPKST ) and the Green-

Lagrange strain tensor E (GLST ) [96]. The strong form in the undeformed configuration is shown in Box

3.3 (see Appendix B for derivation). Here G is the deformation gradient and J its determinant.

3.1.2 Weak form of the boundary value problem

The strong form of the boundary value problem (Eq. 3.3) is not easily solved. There are other forms

that can be used to solve it: such as the weighted residual forms or the weak forms (virtual work) and the

variational forms (energy principles). Since we allow the forces to be non-conservative, it is not possible to
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Given bi : 0V → R, ĝi : Γgi → R, 0ĥi : 0Γhi → R, find ui : 0V → R, such that
(Gip(X)Spj(X)),j + Jbi(X) = J ρ(X)üi(X) in 0V

ui(X) = ĝi(X) on 0Γgi

Gik(X)Skj(X) 0nj(X) = 0ĥi(X) on 0Γhi

(3.3)

Strong form at undeformed configuration

obtain a potential energy for the system and consequently it is not possible to use an energy principle like the

principle of minimum potential energy. In the Finite Element Method the weak form is often used. In order

to rewrite the system of equations (Eq. 3.3) in the corresponding weak form it is necessary to introduce the

trial functions (ui) and the weighting functions (δui) defined as follows:

ui ∈ Si Si = {ui | ui ∈ H1, ui = ĝi on 0Γgi} (3.4)

δui ∈Wi Wi = {δui | δui ∈ H1, δui = 0 on 0Γgi} (3.5)

where H1 is the space of functions with square-integrable derivatives.

The first step is to multiply the equilibrium equation 3.3 by the weighting functions and integrate

over the domain

−
∫

0V

δui (GipSpj),j d 0V =

∫
0V

δuiJ bi d 0V (3.6)

This form corresponds to the weighted residual form. To obtain the weak form an integration by

part is used:

∫
0V

δui (GipSpj),j d 0V = −
∫

0V

δui,jGipSpj d 0V +

∫
0V

(δuiGipSpj),j d 0V (3.7)

Using Gauss theorem on the last term of the right-hand side of the equation 3.7:

∫
0V

δui (GipSpj),j d 0V = −
∫

0V

δui,jGipSpj d 0V

∫
0Γ

δuiGipSpj 0nj d 0Γ (3.8)

Since δui = 0 on Γgi by definition of weighting function (see Eq. 3.4) it is possible to write the

following:

29



∫
0V

δui (GipSpj),j d 0V = −
∫
V

δui,jGipSpj d 0V +
∑
i

∫
0Γhi

δuiGipSpj 0nj d 0Γ (3.9)

Using the Neumann boundary condition (see Eq. 3.3) in Eq. 3.9:

∫
0V

δui (GipSpj),j d 0V = −
∫

0V

δui,jGipSpj d 0V +
∑
i

∫
0Γhi

δui 0ĥi d 0Γ (3.10)

Substituting Eq. 3.10 in Eq. 3.6

∫
0V

δui,jGipSpj d 0V =

∫
0V

δuiJ bi d 0V +
∑
i

∫
0Γhi

δui 0ĥi d 0Γ (3.11)

Using the following relations δui,j = δGij :

∫
0V

δGijGipSpjd 0V =

∫
0V

δuiJ bi d 0V +
∑
i

∫
0Γhi

δui 0ĥi d 0Γ (3.12)

The left-hand side of Eq. 3.12 can be rewritten as a function of the Green-Lagrange strain and

Second-Piola Kirchhoff stress tensor. Introducing the variation of the Green-Lagrange strain:

δEpj =
1

2
(δGipGij +GipδGij) (3.13)

it is possible to show that using the symmetry of the stress tensor, the product of the strain variation

with the stress is:

δEpjSpj =
1

2
(δGipGij +GipδGij)Spj =

1

2
δGipGijSpj +

1

2
δGijGipSpj (3.14)

=
1

2
δGijGipSjp +

1

2
δGijGipSpj =

1

2
δGijGipSpj +

1

2
δGijGipSpj (3.15)

= δGijGipSpj (3.16)

Substituting Eq. 3.14 in Eq. 3.12 the weak form is obtained. The statement is as follows:

Given bi : 0V → R, ĝi : 0Γgi → R, 0ĥi : 0Γhi → R, find ui ∈ Si, such that for all δui ∈Wi∫
0V

δEijSij d 0V =

∫
0V

δuiJ bi d 0V +
∑
i

∫
0Γhi

δui 0ĥi d 0Γ (3.17)

Weak form undeformed configuration
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This form is equivalent to the work of virtual displacements. The left hand side represents the

virtual internal work and the right-hand side the work of the external forces.

3.1.3 Essential boundary condition

The weak form (Eq. 3.17) does not include the essential boundary conditions. There are different

methods to enforce them, e.g. direct substitution method, penalty method, Lagrange multiplier, Nitche’s

method. In this work the penalty method has been chosen for its simplicity and for not increasing the

number of unknown variables. In this method the energy of the system is modified due to the constraint.

The energy contribution of the constraint is:

UG =
1

2

∫
0Γg

(u− g)Tψ(u− g) d 0Γg (3.18)

where ψ is a diagonal matrix with the penalty factors.

ψ =


ψx 0 0

0 ψy 0

0 0 ψz

 (3.19)

The variation of the potential energy is taken:

δUG = δ

[
1

2

∫
0Γg

(u− g)Tψ(u− g) d 0Γg
]

=

=
1

2

∫
0Γg

δ(u− g)Tψ(u− g) d 0Γg +
1

2

∫
0Γg

(u− g)Tψδ(u− g) d 0Γg =

=
1

2

∫
0Γg

δuTψ(u− g) d 0Γg +
1

2

∫
0Γg

(u− g)Tψδu d 0Γg =

=

∫
0Γg

δuTψ(u− g)d 0Γg =

∫
0Γg

δuTψu d 0Γg −
∫

0Γg
δuTψg d 0Γg

(3.20)

This variation is then added to the weak form (Box 3.21).

3.1.4 Interelement compatibility

The weak form derived (Eq. 3.21) is applicable to a standard FEM in which a single axiomatic

theory is chosen for all elements and all displacement direction. An additional issue arises if this condition

is removed and different elements are allowed to have different theories and order of expansions. Foreseeing

this issue, the weak form is augmented with additional terms to take into account the inter-element dis-

placement compatibility. In doing so we imagine that the continuum solid to be splits into pieces. Each
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Given bi : 0V → R, ĝi : 0Γgi → R, 0ĥi : 0Γhi → R, find ui ∈ Si, such that for all δui ∈Wi∫
0V

δEijSij d 0V +

∫
0Γgi

δuiψiiui d 0Γgi =
∑
i

∫
0Γhi

δui 0ĥi d 0Γ +
∑
i

∫
0Γgi

δuiψiigi d 0Γgi+

∫
0V

δuiJ bid 0V

(3.21)

Weak form undeformed configuration

Γf

Γf

Γ
(+)
f Γ

(−)
f

Figure 3.2: Solid is subdivided into elements. Elements are connected through a distribution of springs
attached to the new generated faces.

piece corresponding to a future finite element. The division generates new internal surfaces (Γf ). Then the

surfaces are kept together using again a penalty method, that can be imagined as a distribution of springs

connecting the new generated surfaces (see Fig. 3.2).

The energy associated to the springs connecting each pair of faces is:

UCOMP =

nf∑
f=1

U
(f)
COMP (3.22)

U
(f)
COMP =

1

2

∫
0Γf

(uΓ
f(+)
− uΓ

f(−)
)Tγ(uΓ

f(+)
− uΓ

f(−)
) d 0Γf (3.23)

where

32



γ =


γx 0 0

0 γy 0

0 0 γz

 (3.24)

Note that the surface Γf(+) and Γf(−) are supposed to be equal. The variation of the energy is:

δU
(f)
COMP = δ

[
1

2

∫
0Γf

(uΓ
f(+)
− uΓ

f(−)
)Tγ(uΓ

f(+)
− uΓ

f(−)
) d 0Γf

]
=

=
1

2

∫
0Γf

δuTΓ
f(+)

γ(uΓ
f(+)
− uΓ

f(−)
) d 0Γf −

1

2

∫
0Γf

δuTΓ
f(−)

γ(uΓ
f(+)
− uΓ

f(−)
) d 0Γf+

+
1

2

∫
0Γf

(uΓ
f(+)
− uΓ

f(−)
)TγδuΓ

f(+)
d 0Γf −

1

2

∫
0Γf

(uΓ
f(+)
− uΓ

f(−)
)TγδuΓ

f(−)
d 0Γf =

=

∫
0Γf

δuTΓ
f(+)

γuΓ
f(+)

d 0Γf −
∫

0Γf

δuTΓ
f(+)

γuΓ
f(−)

d 0Γf+

+
∫

0Γf
δuTΓ

f(−)
γuΓ

f(−)
d 0Γf −

∫
0Γf

δuTΓ
f(−)

γuΓ
f(+)

d 0Γf

(3.25)

Adding this contribution to the weak form, the final expression for the variable kinematic plate is

obtained:

Given bi : 0V → R, ĝi : 0Γgi → R, 0ĥi : 0Γhi → R, find ui ∈ Si, such that for all δui ∈Wi∫
0V

δEijSij d 0V︸ ︷︷ ︸
Internal work

+

∫
0Γgi

δuiψiiui d 0Γgi︸ ︷︷ ︸
homogeneous part of

essential b.c.

−
∫

0Γgi

δuiψiigi d 0Γgi︸ ︷︷ ︸
Non-homogeneous part of

essential b.c.

=

+

∫
0V

δuiJ bid 0V︸ ︷︷ ︸
Volume forces

+
∑
i

∫
0Γhi

δui 0ĥi d 0Γ︸ ︷︷ ︸
Surface forces︸ ︷︷ ︸

External work

−

−
∑
i

nf∑
f=1

∫
0Γf

(
δuiΓ

f(+)
− δuiΓ

f(−)

)
γii

(
uiΓ

f(+)
− uiΓ

f(−)

)
d 0Γf︸ ︷︷ ︸

Interelement compatibility

(3.26)

Weak form for the variable kinematic plate theory in the undeformed configuration

The weak form derived has the same expression of the equation that it would have been obtained

if the principle of the virtual displacements (PVD) had been used. It states that the internal work due to

the virtual displacements (virtual work) is equal to the external virtual work with the addition of energy
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constraints to impose the boundary condition.

δWINT + δUG + δUCOMP = δWEXT (3.27)

where

δWINT =

∫
0V

δEijSij d 0V (3.28)

δWEXT =

∫
0V

δuiJ bi d 0V +
∑
i

∫
0Γhi

δui 0ĥi d 0Γ (3.29)

δUG =

∫
0Γgi

δuiψiiuid 0Γgi −
∫

Γgi

δuiψiigi d 0Γgi (3.30)

δU
(f)
COMP =

∑
i

nf∑
f=1

∫
0Γf

δuiΓ
f(+)

γiiuiΓ
f(+)

d 0Γf +
∑
i

nf∑
f=1

∫
0Γf

δuiΓ
f(−)

γiiuiΓ
f(−)

d 0Γf−

−
∑
i

nf∑
f=1

∫
0Γf

δuiΓ
f(+)

γiiuiΓ
f(−)

d 0Γf −
∑
i

nf∑
f=1

∫
0Γf

δuiΓ
f(−)

γiiuiΓ
f(+)

d 0Γf

(3.31)

3.1.5 Linearization for load stepping algorithm

During the linearization process the left sub- and super- scripts on a field variable refer to the

configuration in which that variable has measured and occurred respectively. Thus, for example, t
0δWtot

indicates that the total virtual work δWtot is calculated at the pseudo-time t and is referred to the initial

configuration. This is a static analysis. Thus, from a formal point of view, time t is not adopted. However,

the solution strategy requires the conceptual subdivisions in steps, which are easily identified by the “time”

t. For that reason, even when the quantities contain reference to the variable t, the reader needs to assume

that a nonlinear static solution of the structural problem is sought.

The nonlinear equation provided by the weak form (see Eq. 3.26) has to be linearized using a load step

algorithm in order to be solved with the Finite Element Method. In the present capability Newton-Raphson

technique has been implemented. Assuming that the solution corresponding to a load level identified by the

pseudo-time t is known, the algorithm needs to be able to identify the response to a load level corresponding

to an incremented pseudo-time t + ∆t, where ∆t is the pseudo-time increment. Following this logic, the

weak form (see Eq. 3.27) is written at pseudo-time t+ ∆t as follows:

t+∆t
0δWTOT = t+∆t

0δWINT − t+∆t
0δWEXT + t+∆t

0δUG + t+∆t
0δUCOMP = 0 (3.32)
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In the practice [97] an incremental decomposition of the variables is adopted as shown below for the generic

quantity �:
unknown︷ ︸︸ ︷
t+∆t

0� =

known︷︸︸︷
t
0� +

unknown︷ ︸︸ ︷
0∆� (3.33)

Using the approach described in Eq. 3.33 for the cases of displacement ui, strain Eij , and stress Sij

components, the following relations can be written:

t+∆t
0ui = t

0ui + 0∆ui

t+∆t
0Eij = t

0Eij + 0∆Eij

t+∆t
0Sij = t

0Sij + 0∆Sij

(3.34)

The GLST is a nonlinear function of the displacements as described in the following expression:

Eij =
1

2
(GkiGkj − δij) =

1

2
(ui,j + uj,i + uk,iuk,j) (3.35)

where G is the deformation gradient and is explicitly defined below:

t
0Gij = δij + t

0ui,j (3.36)

The symbol δij is Kronecker’s delta and the subscript “,” is used to indicate differentiation.

The expression for the increment 0∆Eij of the GLST (see Eqs. 3.34 and 3.35) can be derived by

subtracting the strains at time t from the ones at t+ ∆t:

0∆Eij =
1

2

(
0∆ui,j + 0∆uj,i + t

0uk,i 0∆uk,j + 0∆uk,i
t
0uk,j

)
+

1

2 0∆uk,i 0∆uk,j (3.37)

The increment 0∆Eij is conveniently decomposed as follows:

0∆Eij = 0∆eij + 0∆ηij (3.38)

where term 0∆eij is a linear function of the displacement increments, whereas 0∆ηij is a nonlinear function

of the displacement increments. Their explicit expressions are reported below:

0∆eij =
1

2

(
0∆ui,j + 0∆uj,i + t

0uk,i 0∆uk,j + 0∆uk,i
t
0uk,j

)
(3.39)

0∆ηij =
1

2 0∆uk,i 0∆uk,j (3.40)
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To apply PVD the variations δ 0∆eij and δ 0∆ηij need to be calculated from Eqs. 3.39 and 3.40, as reported

in the following relations:

δ 0∆eij =
1

2

(
δ 0∆ui,j + δ 0∆uj,i + t

0uk,i δ 0∆uk,j + δ 0∆uk,i
t
0uk,j

)
(3.41)

δ 0∆ηij =
1

2
(δ 0∆uk,i 0∆uk,j + 0∆uk,i δ 0∆uk,j) (3.42)

To obtain an equation that is a function of the displacements only, the SPKST increments are

related to the GLST increments through the Classical Form of Hooke’s Law (CFHL):

0∆Sij = 0Cijrs 0∆Ers (3.43)

where Cijrs are Hooke’s coefficients and are the ones usually adopted for linear analysis, provided that the

material can be assumed to behave in a linear manner even in the presence of large displacements [95].

Substituting Eqs. 3.34, 3.41, 3.42, and 3.43 into the expression for the internal virtual work (see Eq. 3.27)

the following result is obtained:

t+∆t
0δWINT =

∫
0V

δ 0∆eij
t
0Sijd 0V +

∫
0V

δ 0∆ηij
t
0Sij d 0V+

+

∫
0V

δ 0∆eij 0Cijrs 0∆Ers d 0V +

∫
0V

δ 0∆ηij 0Cijrs 0∆Ers d 0V

(3.44)

In the practical solution process, the terms representing higher order infinitesimal quantities are neglected.

The order of dependence with respect to the displacement increments can be directly deduced from Eq. 3.44:

t+∆t
0δWINT =

∫
0V

δ 0∆eij
t
0Sij d 0V (∼ 0∆u0)

+

∫
0V

δ 0∆eij 0Cijrs 0∆ers d 0V +

∫
0V

δ 0∆ηij
t
0Sij d 0V (∼ 0∆u1)

+

∫
0V

δ 0∆eij 0Cijrs 0∆ηrs d 0V (∼ 0∆u2)

+

∫
0V

δ 0∆ηij 0Cijrs 0∆ηrs d 0V (∼ 0∆u3)

(3.45)

The constant and linear terms appearing in Eq. 3.45 are boxed for convenience of the reader. Discarding the

higher order terms and substituting Eq. 3.45 into the PVD statement (Eqs. 3.27 and 3.32), the following
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approximation for the PVD is obtained:

t+∆t
0δW

ct 1
INT+t+∆t

0δW
ct 2
INT+ t+∆t

0δUG + t+∆t
0δUCOMP =− t+∆t

0δW
ct 3
INT + t+∆t

0δWEXT
(3.46)

where the definitions reported below have been used:

t+∆t
0δW

ct 1
INT =

∫
0V

δ 0∆eij 0Cijrs 0∆ersd 0V

t+∆t
0δW

ct 2
INT =

∫
0V

δ 0∆ηij
t
0Sijd 0V

t+∆t
0δW

ct 3
INT =

∫
0V

δ 0∆eij
t
0Sijd 0V

t+∆t
0δWEXT =

∫
0Γh

δ 0∆ui
t+∆t

0ĥi d 0Γh+

∫
0V

δuiJ bid 0V +
∑
p

δ 0∆upi
t+∆t

0fp i

t+∆t
0δUG =

∫
0Γgi

δ 0∆uiψii 0∆uid 0Γgi +

∫
0Γgi

δ 0∆uiψii
t
0uid 0Γgi −

∫
0Γgi

δ 0∆uiψiigid 0Γgi

t+∆t
0δUCOMP =

∑
i

nf∑
f=1

∫
Γf

δ 0∆uiΓ
f(+)

γii 0∆uiΓ
f(+)

dΓf +
∑
i

nf∑
f=1

∫
Γf

δ 0∆uiΓ
f(+)

γii
t
0uiΓ

f(+)
dΓf+

+
∑
i

nf∑
f=1

∫
Γf

δ 0∆uiΓ
f(−)

γii 0∆uiΓ
f(−)

dΓf +
∑
i

nf∑
f=1

∫
Γf

δ 0∆uiΓ
f(−)

γii
t
0uiΓ

f(−)
dΓf−

−
∑
i

nf∑
f=1

∫
Γf

δ 0∆uiΓ
f(+)

γii 0∆uiΓ
f(−)

dΓf −
∑
i

nf∑
f=1

∫
Γf

δ 0∆uiΓ
f(+)

γii
t
0uiΓ

f(−)
dΓf−

−
∑
i

nf∑
f=1

∫
Γf

δ 0∆uiΓ
f(−)

γii 0∆uiΓ
f(+)

dΓf −
∑
i

nf∑
f=1

∫
Γf

δ 0∆uiΓ
f(−)

γii
t
0uiΓ

f(+)
dΓf

(3.47)

Eq. 3.46 is the linear relation that has to be solved at each pseudo-time step t to obtain the solution at

t + ∆t. The solution is numerically obtained by using the finite element discretization in the framework of

GUF.

3.2 Variable axiomatic thickness expansion

The general idea is to represent the governing equations with the displacement arrays written in

indicial form, allowing the user to master a virtually infinite number of theories. Each displacement com-

ponent had its own independent indicial representation allowing a different structural theory for each finite

element coordinate direction.

To show how the GUF is extended to the large displacement model, let X,Y, Z be a coordinate

system located at finite element level (at this stage we assume that the reference undeformed geometry is

considered). The X − Y plane is coincident with the plate’s mid-plane and Z is the thickness coordinate.
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The incremental displacement 0∆ui (see Eq. 3.34) within GUF framework and at layer level is the following:

0∆ukX(X,Y, Zk) = X
0 F

k
αuX

(Zk) 0∆ukXαuX
(X,Y ) αuX= t, l, b l = 2, . . . ,NuX

0∆ukY (X,Y, Zk) = Y
0F

k
αuY

(Zk) 0∆ukY αuY
(X,Y ) αuY= t,m, b m= 2, . . . ,NuY

0∆ukZ(X,Y, Zk) = Z
0F

k
αuZ

(Zk) 0∆ukZαuZ
(X,Y ) αuZ= t, n, b n = 2, . . . ,NuZ

(3.48)

where t, b, and l, m, n are indices adopted for the axiomatic expansion in the thickness direction. Including

more terms is equivalent of having accurate higher-order theories, but the number of degrees of freedom

and related computational cost are increased. More in detail, NuX , NuY , and NuZ are the orders of the

layerwise theories used for the different displacement components. For instance, NuY = 3 means that the

displacement in the Y direction and layer k is expressed with a cubic expansion obtained by combining

Legendre polynomials (terms of the type Y
0F

k
αuY

(Z)).

The in-plane expressions of the displacements (terms 0∆ukXαuX
(X,Y ), 0∆ukY αuY

(X,Y ), and

0∆ukZαuZ
(X,Y ) in Eq. 3.48) are unknown functions at this stage. Within the typical finite element

discretization, these unknowns are further expressed in terms of shape functions and nodal (unknown)

incremental displacements as follows:

0∆ukXαuX
= X

0NI(X,Y ) 0∆UkXαuX I
I = 1, 2, . . .Mn

0∆ukY αuY
= Y

0NI(X,Y ) 0∆UkY αuY I
I = 1, 2, . . .Mn

0∆ukZαuZ
= Z

0NI(X,Y ) 0∆UkZαuZ I
I = 1, 2, . . .Mn

(3.49)

where X
0NI ,

Y
0NI , and Z

0NI are shape functions used for the displacements in the X, Y , and Z directions,

respectively. Subscript I indicates the identity of the node (local numbering) and the summation convention

is applied. Mn is the number of element nodes. As it is realized by inspection of Eq. 3.49, the formulation

is formally independent of the type of finite element (i.e., quadrilater with 9 nodes or triangular with 15

nodes).

3.3 Finite element discretization and solution of the system

The linearized system of governing equations (see Eq. 3.46) is rewritten by using FEM and GUF

notation (Eqs. 3.48 and 3.49). The resulting set of equations for a generic finite element is the following:

(
t
0KL + t

0KNL+ + t
0KSP

)
0∆U =

(
t
0KT + t

0KSP

)
0∆U = t+∆t

0FEXT − t
0FINT − t

0FSP (3.50)
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where t
0KL, t0KNL are the linear and nonlinear parts of the tangent stiffness matrix t

0KT, respectively. The

quantity t+∆t
0FEXT is the external force vector and t

0FINT represents the internal forces. 0∆U contains the

unknown nodal displacements. In the GUF architecture different axiomatic theories and number of degrees

of freedoms per finite element are allowed, so it is not generally possible to assemble the element stiffness

and force arrays using the typical standard procedure (which usually involves transformations from local to

global coordinate systems and then additions of portions of the stiffness matrices of the single elements to

get the stiffness matrix at structural level). In the present approach as have been shown in the previous

sections of this chapter the displacement compatibility of elements sharing the same node is imposed weakly

by using the penalty method, which, from a physical perspective, could be interpreted as a set of distributed

springs along the thickness. This compatibility imposition generates an additional stiffness matrix t
0KSP and

force vector t
0FSP. Box 3.51 show the connection between the weak form and the FEM arrays.

∫
0V

δ 0∆eij 0Cijrs 0∆ers d 0V︸ ︷︷ ︸
Stiffness matrix (linear)

δ 0∆U t
0KL 0∆U

+

∫
0V

δ 0∆ηij
t
0Sij d 0V︸ ︷︷ ︸

Stiffness matrix (nonlinear)

δ 0∆U t
0KNL 0∆U

+

∫
0Γgi

δ 0∆uiψii 0∆ui d 0Γgi︸ ︷︷ ︸
Spring stiffness (b.c.)

δ 0∆U t
0KSP 0∆U

+

∑
i

nf∑
f=1

∫
Γf

(
δ 0∆uiΓ

f(+)
− δ 0∆uiΓ

f(−)

)
γii

(
0∆uiΓ

f(+)
− 0∆uiΓ

f(−)

)
d 0Γf︸ ︷︷ ︸

Spring stiffness (inter-element)

δ 0∆U t
0KSP 0∆U

=

=

∫
0Γh

δ 0∆ui
t+∆t

0ĥi d 0Γh+

∫
0V

δuiJ bi d 0V +
∑
p

δ 0∆upi
t+∆t

0fp i︸ ︷︷ ︸
External forces
δ 0∆U t+∆t

0FEXT

−
∫

0V

δ 0∆eij
t
0Sijd 0V︸ ︷︷ ︸

Internal forces
δ 0∆U t

0FINT

−

∫
0Γgi

δ 0∆uiψii
t
0uid 0Γgi︸ ︷︷ ︸

Spring forces (b.c.)

δ 0∆U t
0FSP

+

∫
0Γgi

δ 0∆uiψiigid 0Γgi︸ ︷︷ ︸
Spring forces (b.c. nonhomog.)

δ 0∆U t
0FSP

−

∑
i

nf∑
f=1

∫
Γf

(
δ 0∆uiΓ

f(+)
− δ 0∆uiΓ

f(−)

)
γii

(
t
0uiΓ

f(+)
− t

0uiΓ
f(−)

)
d 0Γf︸ ︷︷ ︸

Spring forces (inter-element)

δ 0∆U t
0FSP

(3.51)

Linearized weak form for load stepping algorithm
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The explicit expression of the finite element equation (see Eq. 3.50) is reported below:


t
0KTuXuX + t

0KSPuXuX
t
0KTuXuY + t

0KSPuXuY
t
0KTuXuZ + t

0KSPuXuZ

t
0KTuY uX + t

0KSPuY uX
t
0KTuY uY + t

0KSPuY uY
t
0KTuY uZ + t

0KSPuY uZ

t
0KTuZuX + t

0KSPuZuX
t
0KTuZuY + t

0KSPuZuX
t
0KTuZuZ + t

0KSPuZuX




0∆UX

0∆UY

0∆UZ

 =


t+∆t

0FEXTX − t
0FINTX − t

0FSPX

t+∆t
0FEXTY − t

0FINTY − t
0FSPY

t+∆t
0FEXTZ − t

0FINTZ − t
0FSPZ


(3.52)

where, for example, it is

0∆UX =
[

0∆UT
X 1 . . . 0∆UT

X I . . . 0∆UT
XMn

]T
(3.53)

0∆UT
X I is the vector containing the nodal displacements relative to node I of the element.

The system is solved iteratevely through Newton-Raphson iterations until a user-selected conver-

gence criterium is satisfied. In the following paragraphs, the GUF kernels of each term of the discretized

linearized system of equations will be derived for the first time.

3.3.1 Kernels of linear stiffness matrix

The linear stiffness matrix t
0KL is built from the first term on the LHS of Eq. 3.46:

t+∆t
0δW

ct 1
INT =

∫
0V

δ 0∆eij 0Cijrs 0∆ersd 0V (3.54)

The array representation of the linear part 0∆eij of the GLST (see Eq. 3.39) can be expressed in matrix

form using Voigt notation:

0∆e = t
0L 0∆u (3.55)

where the following definitions have been used:

0∆e = [ 0∆eXX 0∆eYY 2 0∆eXY 2 0∆eXZ 2 0∆eYZ 0∆eZZ ]T (3.56)

0∆u = [ 0∆uX 0∆uY 0∆uZ ]T (3.57)
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t
0L=



t
0GXX 0∂X

t
0GYX 0∂X

t
0GZX 0∂X

t
0GXY 0∂Y

t
0GYY 0∂Y

t
0GZY 0∂Y

t
0GXX 0∂Y +GXY 0∂X

t
0GYX 0∂Y +GYY 0∂X

t
0GZX 0∂Y + t

0GZY 0∂X

t
0GXZ 0∂X+GXX 0∂Z

t
0GYZ 0∂X+GYX 0∂Z

t
0GZZ 0∂X+ t

0GZX 0∂Z

t
0GXY 0∂Z+GXZ 0∂Y

t
0GYY 0∂Z+GYZ 0∂Y

t
0GZY 0∂Z+ t

0GZZ 0∂Y

t
0GXZ 0∂Z

t
0GYZ 0∂Z

t
0GZZ 0∂Z



(3.58)

The expression for the deformation gradient within the GUF formalism can be found in Appendix C. The

displacement increments can be expressed as a function of the nodal displacements of the element. Thus,

the strains can be expressed as a function of the unknowns (at finite element level) as follows:

0∆e = t
0BL 0∆U (3.59)

where

0∆U = [ 0∆UT
1 . . . 0∆UT

J . . . 0∆UT
Mn

]
T (3.60)

t
0BL = [ t0B

1
L . . . t

0B
J
L . . . t

0B
Mn

L ] (3.61)

The index J = 1, . . . ,Mn is the identity of the local element node.

Introducing the GUF notation (see Eqs. 3.48 and 3.49) we can rewrite 0∆e (see Eq. 3.55) for an

element as follows:

0∆e = t
0B

J
L 0∆UJ =



t
0B

βuX J

L 11
t
0B

βuY J

L 12
t
0B

βuZ J

L 13

t
0B

βuX J

L 21
t
0B

βuY J

L 22
t
0B

βuZ J

L 23

t
0B

βuX J

L 31
t
0B

βuY J

L 32
t
0B

βuZ J

L 33

t
0B

βuX J

L 41
t
0B

βuY J

L 42
t
0B

βuZ J

L 43

t
0B

βuX J

L 51
t
0B

βuY J

L 52
t
0B

βuZ J

L 53

t
0B

βuX J

L 61
t
0B

βuY J

L 62
t
0B

βuZ J

L 63




0∆UXβuX J

0∆UY βuY J

0∆UZβuZ J

 (3.62)

The components of the GUF linear strain-displacement matrix t
0B

J
L are defined in D. t

0B
J
L is conveniently
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written in a more compact form, as reported below:

t
0B

J
L =

[
t
0B

βuX J

L 1
t
0B

βuY J

L 2
t
0B

βuZ J

L 3

]
(3.63)

where the following definitions are used:

t
0B

βuX J

L q =[ t0B
βuX J

L 1q
t
0B

βuX J

L 2q
t
0B

βuX J

L 3q
t
0B

βuX J

L 4q
t
0B

βuX J

L 5q
t
0B

βuX J

L 6q ]T q = 1, 2, 3 (3.64)

The linear part 0∆e of the incremental strains (see Eq. 3.62) are explicitly written by the means of Eq. 3.63

and explicitly indicating the nodal contributions:

0∆e = t
0B

J
L 0∆UJ =

[
t
0B

βuX J

L 1
t
0B

βuY J

L 2
t
0B

βuZ J

L 3

]


0∆UXβuX J

0∆UY βuY J

0∆UZβuZ J

 (3.65)

Next, the linear stiffness matrix contribution is obtained. To reach that goal, Eq. 3.54 can be rewritten

through Eq. 3.59 in the following form:

t+∆t
0δW

ct 1
INT = δ 0∆UT

I

(∫
0V

t
0B

I T
L C̃ t

0B
J
L d 0V

)
0∆UJ = δ 0∆UT

I
t
0K

IJ
L 0∆UJ (3.66)

where the linear stiffness matrix has been defined as

t
0K

IJ
L =

∫
0V

t
0B

I T
L C̃ t

0B
J
L d 0V (3.67)

Examples of kernels of the linear stiffness matrix are reported below:

t
0K

αuX βuX IJ

LuXuX
=

∫
0V

t
0B

αuX I T

L 1 C̃ t
0B

βuX J

L 1 d 0V (3.68)

t
0K

αuX βuZ IJ

LuY uZ
=

∫
0V

t
0B

αuY I T

L 2 C̃ t
0B

βuZ J

L 3 d 0V (3.69)

The explicit details and examples of fully expanded kernels are discussed in E.
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3.3.2 Kernels of the nonlinear stiffness matrix

The nonlinear stiffness matrix t
0KNL is obtained from t+∆t

0δW
ct 2
INT (see its definition in Eq. 3.47):

t+∆t
0δW

ct 2
INT =

∫
0V

δ 0∆ηij
t
0Sij d 0V (3.70)

Using Eq. 3.40 for the definition of 0∆ηij , it is possible to obtain the following relation:

t+∆t
0δW

ct 2
INT =

∫
0V

δ 0∆uk,i
t
0Sij 0∆uk,j d 0V (3.71)

Introducing the GUF relations (see Eqs. 3.48 and 3.49), it can be shown that Eq. 3.71 leads to the stiffness

matrix at nodal level. The matrix relating nodes I and J is:

t
0K

IJ
NL =

∫
0V

0B
I T
NL

t
0τ 0B

J
NL d 0V (3.72)

where

0B
J
NL =



X
0F βuX

X
0NJ,X

X
0F βuX

X
0NJ,Y

X
0F βuX,Z

X
0NJ

0

0

0

0

0

0

0

0

0

Y
0F βuY

Y
0NJ,X

Y
0F βuY

Y
0NJ,Y

Y
0F βuY,Z

Y
0NJ

0

0

0

0

0

0

0

0

0

Z
0F βuZ

Z
0NJ,X

Z
0F βuZ

Z
0NJ,Y

Z
0F βuZ,Z

Z
0NJ



(3.73)

and

t
0τ =


t
0S 0 0

0 t
0S 0

0 0 t
0S

 (3.74)
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The kernels of the nonlinear stiffness matrix can be expressed in compact form introducing the following

notation for the nonlinear strain-displacement matrix:

0B
J
NL =


0T

βuX J

X 0 0

0 0T
βuY J

Y 0

0 0 0T
βuZ J

Z

 (3.75)

where

0T
βuX J

X = [ X0F βuX
X
0NJ,X

X
0F βuX

X
0NJ,Y

X
0 FβuX,Z

X
0NJ ]

T

0T
βuY J

Y = [ Y0F βuY
Y
0NJ,X

Y
0F βuY

Y
0NJ,Y

Y
0 FβuY,Z

Y
0NJ ]

T

0T
βuZ J

Z = [ Z0F βuZ
Z
0NJ,X

Z
0F βuZ

Z
0NJ,Y

Z
0 FβuZ,Z

Z
0NJ ]

T

(3.76)

Using Eqs. 3.72-3.76, it is deduced that the the nonzero kernels generating the nonlinear stiffness matrix are

the following:

t
0K

αuX βuX IJ

NLuXuX
=

∫
0V

0T
αuX I T

X
t
0S 0T

βuX J

X d 0V (3.77)

t
0K

αuY βuY IJ

NLuY uY
=

∫
0V

0T
αuY I T

Y
t
0S 0T

βuY J

Y d 0V (3.78)

t
0K

αuZβuZ IJ

NLuZuZ
=

∫
0V

0T
αuZ I T

Z
t
0S 0T

βuZ J

Z d 0V (3.79)

3.3.3 Internal forces

The unbalanced load is the difference between the vector of external forces and the array containing

the internal forces. In this section how to determine the internal forces is discussed.

The internal force vector generates from t+∆t
0δW

ct 3
INT (see Eq. 3.47):

t+∆t
0δW

ct 3
INT =

∫
0V

δ 0∆eij
t
0Sij d 0V (3.80)

here the SPKST is known and the variation of the linear part of the GLST can be expressed in matrix

form (see Eq. 3.65) to obtain at finite element level an expression involving the internal forces:

∫
0V

δ 0∆e t
0S d 0V = δ 0∆UT t

0FINT (3.81)

44



where the internal force array t
0FINT is partitioned to separate the contributions of each finite element node

as follows:

t
0FINT = [ t0F

T
INT 1 . . .

t
0F

T
INT I . . .

t
0F

T
INTMn

]T (3.82)

The force array at nodal level has the expression reported below:

t
0FINT I =

∫
0V

t
0B

I T
L

t
0S d 0V (3.83)

where t
0B

I
L can be deduced from equations 3.63 and 3.64.

3.3.4 External forces

The external force vector due to the surface traction and point loads is derived from the external

virtual work t+∆t
0δWEXT appearing in Eq. 3.47:

t+∆t
0δWEXT = t+∆t

0δW
ct 1
EXT + t+∆t

0δW
ct 2
EXT + t+∆t

0δW
ct 3
EXT (3.84)

where

t+∆t
0δW

ct 1
EXT =

∫
0Γh

δ 0∆ui
t+∆t

0ĥi d 0A

t+∆t
0δW

ct 2
EXT =

∑
p

δ 0∆ui
t+∆t

0fp i

t+∆t
0δW

ct 3
EXT =

∫
0V

δuiJ bid 0V

(3.85)

Distributed surface loads and concentrated forces are taken into account by t+∆t
0δW

ct 1
EXT and t+∆t

0δW
ct 2
EXT,

respectively. The body forces are not considered in this dissertation. Moreover the load stiffness correction

matrix has been neglected.

Concentrated Loads

The case of structure subjected to concentrated loads is now analyzed. In this formulation the types

of theories and orders of expansion are in general different if different finite elements are considered. This

requires a special attention in the formulation of the concentrated loads, since the finite element quantities

need to be referred to a local element coordinate system. The methodology adopted here to write the finite

element equations is a TLF. This means that the integrals and geometry transformations are evaluated at

the initial geometry. So far we indicated with X,Y, Z the coordinates of a generic point at element level in

the undeformed continuum. We need now to introduce (see Figure 3.3) the coordinates X , Y, and Z which
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element reference plane

e2

e1

e3

2

3

The angle      is known   

1

Layer 1
(k = 1)

Layer 2
(k = 2)

Layer 3
(k = 3)

X

Y

i 2

i 1

Z

       :  Coordinate SystemGlobal

X, Y, Z:  Coordinate SystemElement

H

,    ,    

Figure 3.3: Global and local coordinate systems (undeformed geometry) [98].

identify the initial position of that point but referred to a global coordinate frame (i.e., the frame is the same

for the entire structure made of a collection of finite elements).

Let now 0
0a
k
ij be the generic coefficient of the transformation matrix that relates the global to local

coordinate systems (centered on node 1 in the local numbering of the element, see Fig. 3.3) at layer level in

the undeformed configuration. For example, it is

0
0a
k
12 = 0

0
˜
ik1 •

˜
e2 = 0

0
˜
i1 •

˜
e2 = 0

0a12 (3.86)

where 0
0
˜
i1 is the unit vector in the local X direction and

˜
e2 is the unit vector in the global Y direction.

Consider now a force applied to a position defined by local coordinates X, Y , and Zk (it is now

necessary to identify the layer in which the force is applied to properly calculate the equivalent forces) on

a triangular finite element. The algorithm usually employed to solve the nonlinear equations adopts the

concept of load step to gradually apply the external loads to the structure. Thus, to take into account this

fact, concentrated forces are written as products between a load factor t+∆tλ and nominal load which has

components 0f
k
pX , 0f

k
pY , and 0f

k
pZ in the global coordinate system (undeformed state). For simplicity it is

shown the case in which the loads are not “follower” forces. That is, the directions and magnitudes do not

change while the structure deforms. The first operation is to express the force by using the local coordinate
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system on the element. This is easily achieved by setting

t+∆t
0f
k
X = t+∆tλ

(
0
0a
k
11 0f

k
X + 0

0a
k
12 0f

k
Y + 0

0a
k
13 0f

k
Z
)

t+∆t
0f
k
Y = t+∆tλ

(
0
0a
k
21 0f

k
X + 0

0a
k
22 0f

k
Y + 0

0a
k
23 0f

k
Z
)

t+∆t
0f
k
Z = t+∆tλ

(
0
0a
k
31 0f

k
X + 0

0a
k
32 0f

k
Y + 0

0a
k
33 0f

k
Z
)

(3.87)

Since the coordinate transformations of Eq. 3.87 are done in the undeformed configuration, the related

matrices are computed only once at the beginning of the simulation (this would not be true in a corotational

[99–101] approach). Now the nodal forces (not yet expressed consistently to the actual degrees of freedom

at this stage) can be found by using an energetic approach based on the concept of the virtual work of the

applied generic force, as reported below:

t+∆t
0δW

ct 2
EXT = t+∆t

0f
k
X

(
X,Y, Zk

)
δ 0∆ukX

(
X,Y, Zk

)
+

t+∆t
0f
k
Y

(
X,Y, Zk

)
δ 0∆ukY

(
X,Y, Zk

)
+

t+∆t
0f
k
Z

(
X,Y, Zk

)
δ 0∆ukZ

(
X,Y, Zk

)
(3.88)

The finite element discretization and GUF expansion imply the writing reported below:

0∆ukX
(
X,Y, Zk

)
= X

0 F
k
αuX

(
Zk
)

0∆ukXαuX
(X,Y )

= X
0 NI (X,Y ) X

0 F
k
αuX

(
Zk
)

0∆UkXαuX I

(3.89)

thus,

δ 0∆ukX
(
X,Y, Zk

)
= X

0 NI (X,Y ) X
0 F

k
αuX

(
Zk
)
δ 0∆UkXαuX I (3.90)

similar expressions can be obtained for the other virtual displacements:

δ 0∆ukY
(
X,Y, Zk

)
= Y

0 NI (X,Y ) Y
0 F

k
αuY

(
Zk
)
δ 0∆UkY αuY I (3.91)

δ 0∆ukZ
(
X,Y, Zk

)
= Z

0 NI (X,Y ) Z
0 F

k
αuZ

(
Zk
)
δ 0∆UkZαuZ I

(3.92)

Substituting Eqs. 3.90, 3.91, and 3.92 into the expression of the external concentrated force virtual work
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(see Eq. (3.88)) the obtained result is the following:

t+∆t
0δW

ct 2
EXT = t+∆t

0f
k
X

X
0NI

X
0 F

k
αuX

δ 0∆UkXαuX I

+ t+∆t
0f
k
Y

Y
0NI

Y
0 F

k
αuY

δ 0∆UkY αuY I

+ t+∆t
0f
k
Z

Z
0NI

Z
0 F

k
αuZ

δ 0∆UkZαuZ I

(3.93)

An alternative expression for the virtual work produced by the external load can be written in terms of finite

element equivalent forces as reported below:

t+∆t
0δW

ct 2
EXT = t+∆t

0f
k
xαuX I δ 0∆UkXαuX I + t+∆t

0f
k
Y αuY I δ 0∆UkY αuY I

+ t+∆t
0f
k
ZαuZ I

δ 0∆UkZαuZ I

(3.94)

Direct comparison of Eqs. 3.93 and 3.94 leads to the nodal forces written in a form consistent with the

actual degrees of freedom:

t+∆t
0f
k
XαuX I = t+∆t

0f
k
X

X
0 NI

X
0 F

k
αuX

t+∆t
0f
k
Y αuY I = t+∆t

0f
k
Y

Y
0 NI

Y
0 F

k
αuY

t+∆t
0f
k
ZαuZ I

= t+∆t
0f
k
Z

Z
0 NI

Z
0 F

k
αuZ

(3.95)

The local forces expressed as a function of the global components (see Eq. 3.87) can be substituted into Eq.

3.95. The result is the represented by the finite element consistent nodal forces:

t+∆t
0f
k
XαuX I = t+∆tλ

(
0
0a
k
11 0f

k
X + 0

0a
k
12 0f

k
Y + 0

0a
k
13 0f

k
Z
)
X
0 NI

x
0F

k
αuX

t+∆t
0f
k
Y αuY I = t+∆tλ

(
0
0a
k
21 0f

k
X + 0

0a
k
22 0f

k
Y + 0

0a
k
23 0f

k
Z
)
Y
0 NI

y
0F

k
αuY

t+∆t
0f
k
ZαuZ I

= t+∆tλ
(

0
0a
k
31 0f

k
X + 0

0a
k
32 0f

k
Y + 0

0a
k
33 0f

k
Z
)
Z
0 NI

z
0F

k
αuZ

(3.96)

Expansion of the indices of Eq. 3.96 and assembling in the thickness direction lead to the nodal forces

equivalent to the external loadings.

Distributed load

Now we consider the case we have an arbitrary load distribution
t+∆t

0ĥ(X,Y ) applied on the surface

(Zk) of the layer of an element. This load distribution can have a component normal to the surface (pressure)

and a tangential component (shear).
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The surface forces are written as products between a load factor t+∆tλ and nominal load which has

components ĥX , ĥY , and ĥZ in the global coordinate system.

The force is expressed in the local coordinate system of the element at time step t+ ∆t as follow:

t+∆t

0ĥX = t+∆tλ
(

0
0a
k
11ĥX + 0

0a
k
12ĥY + 0

0a
k
13ĥZ

)
t+∆t

0ĥY = t+∆tλ
(

0
0a
k
21ĥX + 0

0a
k
22ĥY + 0

0a
k
23ĥZ

)
t+∆t

0ĥZ = t+∆tλ
(

0
0a
k
31ĥX + 0

0a
k
32ĥY + 0

0a
k
33ĥZ

) (3.97)

The external work contribution (see Eq. 3.85) is:

t+∆t

0δW
ct 1
EXT =

∫
0Γh

δ 0∆uT
t+∆t

0ĥd 0Γh =

=

∫
0Γh

δ 0∆uX
t+∆t

0ĥX d 0Γh +

∫
0Γh

δ 0∆uY
t+∆t

0ĥY d 0Γh +

∫
0Γh

δ 0∆uZ
t+∆t

0ĥZ d 0Γh

(3.98)

where
t+∆t

0ĥ = [
t+∆t

0ĥX
t+∆t

0ĥY
t+∆t

0ĥZ ]T

Using GUF to express the variation of the displacement increments:

t+∆t

0δW
ct 1
EXT = δ 0∆UkXαuX I

∫
0Γh

X
0 NI (X,Y ) X0 F

k
αuX

(Zk)
t+∆t

0ĥX d 0Γh+

+ δ 0∆UkY αuY I

∫
0Γh

Y
0 NI (X,Y ) Y0 F

k
αuY

(Zk)
t+∆t

0ĥY d 0Γh+

+ δ 0∆UkZαuZ I

∫
0Γh

Z
0 NI (X,Y ) Z0 F

k
αuZ

(Zk)
t+∆t

0ĥZ d 0Γh

(3.99)

The equivalent nodal forces can be found comparing the above expression (eq. 3.99) with the

following:

t+∆t

0δW
ct 1
EXT = δ 0∆UkXαuX I

t+∆t
0f
k
XαuX I + δ 0∆UkY αuY I

t+∆t
0f
k
Y αuY I+

+ δ 0∆UkZαuZ I
t+∆t

0f
k
ZαuZ I

(3.100)

The equivalent nodal forces then can be recognized:

t+∆t
0f
k
XαuX I =

∫
0Γh

X
0 NI (X,Y ) X0 F

k
αuX

(
Zk
) t+∆t

0ĥX(X,Y )d 0Γh

t+∆t
0f
k
Y αuY I =

∫
0Γh

Y
0 NI (X,Y ) Y0 F

k
αuY

(
Zk
) t+∆t

0ĥY (X,Y )d 0Γh

t+∆t
0f
k
ZαuZ I

=

∫
0Γh

Z
0 NI (X,Y ) Z0 F

k
αuZ

(
Zk
) t+∆t

0ĥZ(X,Y )d 0Γh

(3.101)

49



3.3.5 Boundary conditions

The essential boundary conditions are imposed weakly by using the penalty method [27, 102]. This

can be physically interpreted as placing a distribution of translational springs along the thickness. When

a boundary condition is imposed (for example the structure is externally “fixed”), one end of the spring

connects to the ground and a zero displacement is prescribed. When the springs are used to impose Dirichlet

boundary condition, also a point spring can be used in cases the rotational dofs are set free (e.g. hinges).

The springs modify the linear system to solve as shown in Eq. (3.50), introducing an additional

contribution to the tangent stiffness matrix and residual ( t0KSP and t
0FSP, respectively). To highlight the

main concepts, we start the discussion by showing how the kernels of the spring stiffness matrix are derived.

Let’s recall the contribution to the linearized weak form of the boundary condition (see Eq.3.47):

t+∆t
0δUG =

∫
0Γgi

δ 0∆uiψii 0∆uid 0Γgi +

∫
0Γgi

δ 0∆uiψii
t
0uid 0Γgi −

∫
0Γgi

δ 0∆uiψiigid 0Γgi (3.102)

In the current implementation the essential boundary conditions are applied directly at the element nodes

(not the element sides). Then Eq. 3.102 is rewritten:

t+∆t
0δUG =

∑
I

∑
k

∫ Ztopk

Zbotk

δ 0∆uki (XI ,YI , Z)ψii 0∆uki (XI ,YI , Z)dZ+

+
∑
I

∑
k

∫ Ztopk

Zbotk

δ 0∆uki (XI ,YI , Z)ψii
t
0u
k
i (XI ,YI , Z)dZ−

−
∑
I

∑
k

∫ Ztopk

Zbotk

δ 0∆uki (XI ,YI , Z)ψii g
k
i (XI ,YI , Z)dZ

(3.103)

where I are the ID of the nodes to be constrained.

The first term on the right-hand side is the contribution to the tangent stiffness matrix, the second

and third terms are the contribution to the internal force vector.

Stiffness

The first term on the right-hand side of Eq. 3.103 generates an additional stiffness matrix to be

added to the tangent stiffness.

t+∆t
0δU

stiff
G =

∑
I

∑
k

∫ Ztopk

Zbotk

δ 0∆uki (XI ,YI , Z)ψii 0∆uki (XI ,YI , Z)dZ (3.104)

For simplicity let’s consider only a single node I connected to the ground and a single layer. Then

Eq. 3.104 can be expanded as
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∫ Ztopk

Zbotk

δ 0∆ukiI ψii 0∆ukiIdZ =

∫ Ztopk

Zbotk

δ 0∆ukXI ψXX 0∆ukXIdZ +

∫ Ztopk

Zbotk

δ 0∆ukYI ψYY 0∆ukYIdZ+

+

∫ Ztopk

Zbotk

δ 0∆ukZI ψZZ 0∆uZIdZ

(3.105)

where 0∆ukiI = 0∆uki (XI ,YI , Z) has been used. The resulting contribution to the stiffness matrix has to

be expressed in the local reference system of the element that has the node I. Thus, a transformation is

necessary to express the global displacements (X ,Y,Z) in the element reference systems (X,Y, Z):

0∆ukXI = 0
0a
k
11 0∆ukXI + 0

0a
k
21 0∆ukYI + 0

0a
k
31 0∆ukZI

0∆ukYI = 0
0a
k
12 0∆ukXI + 0

0a
k
22 0∆ukYI + 0

0a
k
32 0∆ukZI

0∆ukZI = 0
0a
k
13 0∆ukXI + 0

0a
k
23 0∆ukYI + 0

0a
k
33 0∆ukZI

(3.106)

The finite element discretization and GUF expansion applied at the local displacements results in

the following expressions:

0∆ukXI = X
0 F

k
αuX

0∆UkXαuX I

0∆ukYI = Y
0 F

k
αuY

0∆UkY αuY I

0∆ukZI = Z
0 F

k
αuZ

0∆UkZαuZ I

(3.107)

and the virtual displacements

δ 0∆ukZI = X
0 F

k
αuX

δ 0∆UkXαuX I

δ 0∆ukYI = Y
0 F

k
αuY

δ 0∆UkY αuY I

δ 0∆ukZI = Z
0 F

k
αuZ

δ 0∆UkZαuZ I

(3.108)

Substituting Eq. 3.106-3.108 in Eq. 3.103 it is possible to recognize the kernels of the boundary condition

contribution to the tangent stiffness matrix:

t+∆t
0δU

k stiff
GI

= δ 0∆UkXαuX I K
kαuxβuxII
spuxux 0∆UkXαuX I + δ 0∆UkXαuX I K

kαuxβuyII
spuxuy 0∆UkY αuY I+

+ δ 0∆UkXαuX I K
kαuxβuzII
spuxuz 0∆UkZαuZ I

+ other terms

(3.109)

where for example:
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t
0K

k αuX βuX II

SPuXuX
=
[(

0
0a
k
11

)2
ψXX+

(
0
0a
k
12

)2
ψYY+

(
0
0a
k
13

)2
ψZZ

]∫ Ztopk

Zbotk

X
0 F

k
αuX

X
0 F

k
βuX

dZ (3.110)

These terms are components of the spring stiffness matrix t
0KSP. From a computational point of view it is

also relevant to point out that the springs’ kernels, generating the related matrix, are constant during the

solution of the nonlinear set of equations, with relevant advantages in terms of CPU time. This means

t
0KSP = 0

0KSP (3.111)

Internal forces

The last two terms on the left-hand side of Eq. 3.103 generates an additional force contribution to

be added to the internal force vector.

t+∆t
0δU

hom.
G =

∑
I

∑
k

∫ Ztopk

Zbotk

δ 0∆uki (XI ,YI , Z)ψii
t
0u
k
i (XI ,YI , Z)dZ (3.112)

t+∆t
0δU

nonhom.
G =

∑
I

∑
k

∫ Ztopk

Zbotk

δ 0∆uki (XI ,YI , Z)ψii g
k
i (XI ,YI , Z)dZ (3.113)

Also in this case a generic node I and layer is considered. The procedure follows the same

steps performed for the stiffness matrix. The virtual displacements are manipulated as before. The term

t
0u
k
i (XI ,YI , Z) represent the displacement at the beginning of the current load step. Its value can be obtained

as a sum of all the incremental displacements of the previous converged iterations. And since in the total

Lagrangian formulation the reference configuration is the initial one, the value of the thickness functions

and rotation matrix do not change. These allows to treat the cumulative displacements as the incremental

displacements. Then, it is possible to express it in terms of local variables:

t
0u
k
XI = 0

0a
k
11

t
0u
k
XI

+ 0
0a
k
21

t
0u
k
YI

+ 0
0a
k
31

t
0u
k
ZI

t
0u
k
YI = 0

0a
k
12

t
0u
k
XI

+ 0
0a
k
22

t
0u
k
YI

+ 0
0a
k
32

t
0u
k
ZI

t
0u
k
ZI = 0

0a
k
13

t
0u
k
XI

+ 0
0a
k
23

t
0u
k
YI

+ 0
0a
k
33

t
0u
k
ZI

(3.114)

and apply the finitie element discretization and GUF expansion as in Eq. 3.107:
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t
0u
k
XI = X

0 F
k
αuX

t
0U

k
XαuX I

t
0u
k
YI = Y

0 F
k
αuY

t
0U

k
Y αuY I

t
0u
k
ZI = Z

0 F
k
αuZ

t
0U

k
ZαuZ I

(3.115)

The final results shows, as expected, that the contribution to the internal force due to the spring is

computed as the product of the spring stiffness by the cumulative displacements:

t+∆t
0δU

k hom
GI

= δ 0∆UkXαuX I K
kαuxβuxII
SPuxux

t
0U

k
XαuX I + δ 0∆UkXαuX I K

kαuxβuyII
SPuxuy

t
0U

k
Y αuY I+

+ δ 0∆UkXαuX I K
kαuxβuzII
SPuxuz

t
0U

k
ZαuZ I

+ . . .

(3.116)

After assembly:

t
0FSP = t

0KSP
t
0U (3.117)

Since the stiffness matrix of the springs is constant, the spring force vector at a generic load step is:

t
0F

sp = 0
0Ksp

t
0U (3.118)

The non-homogeneous contribution is not shown, because in this dissertation only homogeneous

boundary condition have been used, although the derivation is straightforward.

3.3.6 Inter-element compatibility

The compatibility of the displacements [86–88, 103] between adjacent nodes of different elements is

imposed weakly by using the penalty method as done for the essential boundary conditions. The springs

modify the linear system to solve as shown in Eq. (3.50), introducing an additional contribution to the

spring stiffness matrix and spring force vector already computed for the boundary condition ( t0KSP and

t
0FSP, respectively). The construction of the stiffness matrix follows the same steps used for the essential

boundary condition. For this reason an alternative procedure is shown based on the derivative of the potential

energy.

To highlight the main concepts, we start the discussion by showing how the kernels of the spring

stiffness matrix are derived when there is a point spring connecting node J of element c and node L of

element d. The identity of the connected layer is k.

First, the total potential energy Vk is written considering the displacements (at generic locations of
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elements c and d respectively) expressed in global coordinates:

t+∆t
0Vk =

1

2

(
t+∆t

0u
k c − t+∆t

0u
k d
)T
γk
(
t+∆t

0u
k c − t+∆t

0u
k d
)

(3.119)

where γk is a diagonal matrix containing the value of the spring stiffness (penalty constants) in each direction

(global frame).

Second, an incremental decomposition, as shown in Eq. 3.34, is done for the node displacements:

t+∆t
0u

k c = t
0u

k c + 0∆uk c

t+∆t
0u

k d = t
0u

k d + 0∆uk d

(3.120)

Third, the incremental displacement of layer k is written from global coordinate system to local element

frame (both systems referred to the undeformed geometry) through a rotation matrix. For the node J of

element c we have:

0∆uk cXJ = 0
0a
k c
11 0∆uk cXJ + 0

0a
k c
21 0∆uk cY J + 0

0a
k c
31 0∆uk cZJ

0∆uk cYJ = 0
0a
k c
12 0∆uk cXJ + 0

0a
k c
22 0∆uk cY J + 0

0a
k c
32 0∆uk cZJ

0∆uk cZJ = 0
0a
k c
13 0∆uk cXJ + 0

0a
k c
23 0∆uk cY J + 0

0a
k c
33 0∆uk cZJ

(3.121)

Notice that the incremental displacements are referred to the undeformed configuration. Thus, the transfor-

mation matrix does not change with time.

Fourth, the incremental displacement is written using the GUF formalism (see Eqs. 3.48 and 3.49).

For node J of element c we have the following relations:

0∆uk cXJ = X
0 F

k c
αuX

0∆Uk cXαuX J

0∆uk cY J = Y
0F

k c
αuY

0∆Uk cY αuY J

0∆uk cZJ = Z
0F

k c
αuZ

0∆Uk cZαuZ J

(3.122)

substituting Eq. 3.122 into Eq. 3.121, the incremental displacements in the global coordinate system are
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obtained:

0∆uk cXJ = 0
0a
k c
11

X
0 F

k c
αuX

0∆Uk cXαuX J
+ 0

0a
k c
21

Y
0F

k c
αuY

0∆Uk cY αuY J

+ 0
0a
k c
31

Z
0F

k c
αuZ

0∆Uk cZαuZ J

0∆uk cYJ = 0
0a
k c
12

X
0 F

k c
αuX

0∆Uk cXαuX J
+ 0

0a
k c
22

Y
0F

k c
αuY

0∆Uk cY αuY J

+ 0
0a
k c
32

Z
0F

k c
αuZ

0∆Uk cZαuZ J

0∆uk cZJ = 0
0a
k c
13

X
0 F

k c
αuX

0∆Uk cXαuX J
+ 0

0a
k c
23

Y
0F

k c
αuY

0∆Uk cY αuY J

+ 0
0a
k c
33

Z
0F

k c
αuZ

0∆Uk cZαuZ J

(3.123)

Similar operations and relations can be performed for element d and on the generic node L. The details are

omitted for brevity.

Fifth, it is observed that the total potential energy t+∆t
0Vk reported in Eq. 3.119 ca be conceptually

written in terms of 3 distinct contributions. In particular, the first one depends only on the unknown

incremental displacements and is indicated with t+∆t
0V∆t−∆t. The second contribution is a “mixed” term

and is indicated with the symbol t+∆t
0V∆t−t. The last energy contribution depends only on the cumulative

displacement at pseudo-time t and is indicated with t+∆t
0Vt−t. In mathematical terms, the conceptual

subdivision earlier mentioned is expressed as

t+∆t
0Vk = t+∆t

0Vk∆t−∆t + t+∆t
0Vk∆t−t + t+∆t

0Vkt−t (3.124)

Sixth, the second derivatives of the potential energy (see Eq. 3.124 and the mathematical derivations

presented in Appendix F) with respect to the incremental nodal displacement unknowns evaluated at time t of

the three energy contribution are performed. Since the rotation matrix relating global and local coordinates

is evaluated at the reference undeformed geometry, it is also known and not dependent on the displacements.

Thus, only t+∆tV∆t−∆t gives nonzero values of the kernels of the spring contribution to the tangent stiffness

matrix. Also in this case the springs’ kernels, generating the related matrix, are constant during the solution

of the nonlinear set of equations.

Since the stiffness matrix of the springs is constant (consequence of the TLF), the spring force vector

at a generic load step is (see Eq. F.13):

t+∆t
0FSP = 0

0KSP
t+∆t

0U (3.125)
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Chapter 4

Dynamics

4.1 Governing equations

The geometrically nonlinear formulation developed in the previous chapter is applied to dynamical

systems. As for the static case, the starting point are the governing equations in strong form.

4.1.1 Strong form of the boundary value problem

The problem statement for dynamical system is an extension of the nonlinear static one (Eq. 3.2)

with the addition of the inertial forces and the initial conditions. It can be expressed in the current (see

Box. 4.1) or undeformed configuration (see Box. 4.2). where ρ is the density, ¯̇ui is the initial velocity field,

S̄ij the initial state of stress and t is the time variable.

Given bi : V → R, ρ : V → R, ĝi : Γgi → R, ĥi : Γhi → R, ¯̇u : V → R, σ̄ij : V → R, find
ui : V → R, such that 

σji,j(x, t) + bi(X, t) = ρ(x)üi(x, t) in V

ui(x, t) = ĝi(x, t) on Γgi
nj(x, t)σji(x, t) = ĥi(x, t) on Γhi
u̇i(x, 0) = ¯̇ui in V

σij(x, 0) = σ̄ij in V

(4.1)

Strong form current configuration
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Given bi : 0V → R, ρ : 0V → R, ĝi : 0Γgi → R, 0ĥi : 0Γhi → R, ¯̇u : V → R, σ̄ij : V → R, find
ui : 0V → R, such that

(Gip(X, t)Spj(X, t)),j + J bi(X, t) = J ρ(X)üi(X, t) in 0V

ui(X, t) = ĝi(X, t) on 0Γgi
GikSkj(X, t) 0nj(X, t) = 0ĥi(X, t) on 0Γhi
u̇i(X, 0) = ¯̇ui in 0V

Sij(X, 0) = S̄ij in 0V

(4.2)

Strong form undeformed configuration

4.1.2 Weak form of the boundary value problem

The derivation of the weak form follows the same steps already shown for the static case (see

paragraph 3.1.2). The definition of the space of the weighting function remains as defined in Eq. 3.4 for the

static analysis. Instead the space of the trial functions (ui) is now time dependent. The differential equation

is multiplied by the weighting functions and integrated over the domain in the undeformed configuration at

time t = 0: ∫
0V

δui

(
(GipSpj),j + J bi − J ρüi

)
d 0V = 0 (4.3)

Follows an integration by part, application of the divergence theorem and the natural boundary condition

with the following results:

∫
0V

δui,jGipSpj d 0V =

∫
0V

δuiJ bi d 0V −
∫

0V

δuiJ ρüi d 0V +
∑
i

∫
0Γhi

δui 0ĥi d 0Γ (4.4)

Introducing the relations between the variation of strain and the variation of the displacement, the weak

form for the dynamical system is obtained:

∫
0V

δEijSij d 0V =

∫
0V

δuiJ bi d 0V −
∫

0V

δuiJ ρüi d 0V +
∑
i

∫
0Γhi

δui 0ĥi d 0Γ (4.5)

The complete statement of the weak form is shown in Box 4.6. Eq. 4.6 can be interpreted using the principle

of virtual displacements:

δWINT + δWKIN = δWEXT (4.7)

the additional term is the virtual work of the inertial forces:

δWKIN =

∫
0V

δuiJ ρüi d 0V (4.8)
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Given bi : 0V → R, ρ : 0V → R, ĝi : 0Γgi → R, 0ĥi : 0Γhi → R, find ui ∈ Si, such that for all
δui ∈Wi∫

0V

δEijSijd 0V︸ ︷︷ ︸
Internal work

+

∫
0V

δuiJ ρüid 0V︸ ︷︷ ︸
Inertial work

=

∫
0V

δuiJ fid 0V +
∑
i

∫
0Γhi

δui 0ĥid 0Γ︸ ︷︷ ︸
External work

(4.6)

Weak form undeformed configuration

4.1.3 Imposition of time-dependent boundary conditions and interelement com-

patibility

In the dynamic case the boundary conditions and the displacement compatibility between elements

are imposed weakly. The weak form is augmented with the variation of the potential energy as shown in

section 3.1.3 and 3.1.4. The resulting weak form for a geometrically nonlinear dynamical system in a inertial

reference frame is shown in Box 4.9.

Given bi : 0V → R, ρ : 0V → R, ĝi : 0Γgi → R, 0ĥi : 0Γhi → R, find ui ∈ Si, such that for all
δui ∈Wi ∫

0V

δEijSijd 0V︸ ︷︷ ︸
Internal work

+

∫
0Γgi

δuiψiiuid 0Γgi︸ ︷︷ ︸
homogeneous part of

essential b.c.

−
∫

0Γgi

δuiψiigid 0Γgi︸ ︷︷ ︸
Non-homogeneous part of

essential b.c.

=

∫
0V

δuiJ bid 0V︸ ︷︷ ︸
Volume forces

+
∑
i

∫
0Γhi

δui 0ĥid 0Γ︸ ︷︷ ︸
Surface forces︸ ︷︷ ︸

External work

−
∫

0V

δuiJ ρüid 0V︸ ︷︷ ︸
Inertial work

−

−
∑
i

nf∑
f=1

∫
0Γf

(
δuiΓ

f(+)
− δuiΓ

f(−)

)
γii

(
uiΓ

f(+)
− uiΓ

f(−)

)
d 0Γf︸ ︷︷ ︸

Interelement compatibility

(4.9)

Weak form for the variable kinematic plate theory in the undeformed configuration

4.2 Finite element discretization

The spacial discretization is obtained by means of the finite element approximation and axiomatic

plate models expressed in GUF notation. But, unlike the static case, the weak form is not yet fully discretized

because it is still a continuous function of time. The finite element matrices and vector are unchanged with
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respect to the static case. The only new term is the mass matrix (M) obtained by the discretization of the

inertial contribution (see paragraph 4.2.1).

For time integration purpose it is convenient to recast the finite element equation in residual form:

R = MÜ + FINT(U) + KSPU− FEXT + FSP = 0 (4.10)

This residual equation should be satisfied at every time instant. The internal force vector is a nonlinear

function of the displacement field. Its linearization will be performed for convenience during the time

discretization phase.

4.2.1 Kernels of the mass matrix

The mass matrix is computed through discretization of Eq. 4.8, reported here for convenience

t+∆t
0δWKIN =

∫
0V

δuiJ ρ t+∆t
0üi d 0V (4.11)

Its kernels are obtained after expressing the virtual displacements (δui) and accelerations (üi) as a function

of the GUF unknown. For example the X components for a layer k are:

0δu
k
X(X,Y, Zk) = X

0 F
k
αuX

(Zk)X0NI(X,Y ) 0δU
k
XαuX I

αuX= t, l, b l= 2, . . . , NuX I = 1, 2, . . .Mn

(4.12)

0ü
k
X(X,Y, Zk, t) = X

0 F
k
αuX

(Zk)X0NI(X,Y ) 0Ü
k
XαuX I

(t) αuX= t, l, b l= 2, . . . , NuX I = 1, 2, . . .Mn

(4.13)

And then substituting Eq. 4.12 and Eq. 4.13 in Eq. 4.11 the virtual work as a function of the nodal variables

is found:

t+∆t
0δWKIN = 0δU

k
XαuX I

[∫
0V

J ρX0NI X0 F kαuX
X
0 F

k
αuX

X
0NJ d 0V

]
0Ü

k
XβuX J

+

0δU
k
Y αuY I

[∫
0V

J ρ Y0NI Y0F kαuY
Y
0F

k
αuY

Y
0NJ d 0V

]
0Ü

k
Y βuY J

+

0δU
k
ZαuZ I

[∫
0V

J ρ Z0NI Z0F kαuZ
Z
0F

k
αuZ

Z
0NJ d 0V

]
0Ü

k
ZβuZ J

(4.14)
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The mass matrix is identified:

t+∆t
0δWKIN = δUTMÜ =

= 0δU
k
XαuX I

[
0
0M

αuX βuX IJ
uXuX

]
0Ü

k
XβuX J

+

0δU
k
Y αuY I

[
0
0M

αuY βuY IJ
uY uY

]
0Ü

k
Y βuY J

+

0δU
k
ZαuZ I

[
0
0M

αuZβuZ IJ
uZuZ

]
0Ü

k
ZβuZ J

(4.15)

where

0
0M

αuX βuX IJ
uXuX =

∫
0V

J ρX0NI X0 F kαuX
X
0 F

k
αuX

X
0NJ d 0V

0
0M

αuY βuY IJ
uY uY =

∫
0V

J ρ Y0NI Y0F kαuY
Y
0F

k
αuY

Y
0NJ d 0V

0
0M

αuZβuZ IJ
uZuZ =

∫
0V

J ρ Z0NI Z0F kαuZ
Z
0F

k
αuZ

Z
0NJ d 0V

(4.16)

are its kernels. The mass matrix is block diagonal and only three kernels exist for this matrix.

4.3 Non-inertial reference frame

The equations derived so far are valid for an inertial reference frame. For the study of rotors or

flapping wing is often convenient to derive the equations in a reference frame that moves synchronously with

the elastic body (corotational) [104, 105]. The weak form can be expressed in this moving reference frame

with the addition of the apparent forces.

With the presence of multiple frames it is necessary to introduce new quantities and notations.

The transformation matrix between two coordinate system is indicated as Tαβ . This matrix transform the

component of a vector from the reference system β to α

αv = Tαβ βv (4.17)

where the subscript indicates the reference system in which the vector components are projected. The letter

I and G are used for identify the inertial and the global/body reference system respectively. Then TIG

project the components of an array from the global/body coordinate system to the inertial one.

The vector ω is the angular velocity of the moving frame with respect to the inertial one. And Ω

is the matrix associated with the cross product operation ω×. The time derivative of the transformation

matrix is

Ṫαβ = αΩTαβ (4.18)
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In the following paragraph arrays that are expressed in the inertial coordinate systems (I) have a tilde on

top of them, e.g. (̃•).

4.3.1 Position, velocity and acceleration of a point

The position of a point in an inertial reference frame can be expressed as:

r̃ = r̃o + x̃ = r̃o + TIGx (4.19)

where r̃o is the origin of the moving frame and x̃ is the position of the point measured from this origin (see

Fig. 4.1). The velocity obtained from the time derivative of Eq. 4.19 is:

x̃1

x̃2

x̃3

0x1

0x2

0x3

reference configu-

ration at time zeroP

tx1

tx2

tx3

P

x

X

u
reference config-

uration at time t

deformed config-

uration at time t

r0

Figure 4.1: Reference systems and position of a point P during deformation.

˙̃r = ˙̃ro + ṪIGx + TIGẋ = ˙̃ro + Ω̃TIGx + TIGẋ (4.20)

And in the same way the acceleration is:

¨̃r = ¨̃ro +
˙̃
ΩTIGx + Ω̃ṪIGx + Ω̃TIGẋ + ṪIGẋ + TIGẍ

= ¨̃ro +
˙̃
ΩTIGx + Ω̃Ω̃TIGx + Ω̃TIGẋ + Ω̃TIGẋ + TIGẍ

= ¨̃ro +
˙̃
ΩTIGx + Ω̃Ω̃TIGx + 2Ω̃TIGẋ + TIGẍ

(4.21)

Using the relation 3.1 in Eq. 4.21:

¨̃r = ¨̃ro +
˙̃
ΩTIGX +

˙̃
ΩTIGu + Ω̃Ω̃TIGX + Ω̃Ω̃TIGu + 2Ω̃TIGu̇ + TIGü (4.22)
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The governing equations are referred to the body reference frame (G), for this reason the components of the

acceleration are projected in such reference:

r̈ = TT
IG

¨̃r = r̈o + Ω̇X + Ω̇u + ΩΩX + ΩΩu + 2Ωu̇ + ü (4.23)

where :

Ω = TT
IGΩ̃TIG (4.24)

4.3.2 Weak form modifications

To express the weak form (Eq. 4.9) in a relative reference frame it suffices to include an appropriate

expression for the acceleration in the inertia contribution. The virtual work of the inertial forces in the

inertial reference frame is:

δWKIN =

∫
0V

J ρδx̃T ¨̃x d 0V (4.25)

and the virtual displacements of the position vector (Eq. 4.19) is

δr̃ = TIGδu (4.26)

where δr̃o = 0 has been used. This is due to the fact that the rigid motion of the body is predetermined

as well the position of the origin of the attached reference system (r̃o). Substituting the expression of the

variation of the position (Eq. 4.26) and the acceleration (Eq. 4.23) in the variation of the inertial virtual

work (Eq. 4.25):

δWKIN =

∫
0V

J ρδuT
(
r̈o + Ω̇X + ΩΩX

)
d 0V +

∫
0V

J ρδuT
(
Ω̇ + ΩΩ

)
u d 0V +

+

∫
0V

J ρδuT (2Ω) u̇ d 0V +

∫
0V

J ρδuT ü d 0V (4.27)

or in indicial notation

δWKIN =

∫
0V

J ρδui
[
r̈oi + Ω̇ijXj + ΩipΩpjXj

]
d 0V +

∫
0V

J ρδui
(

Ω̇ij + ΩipΩpj

)
uj d 0V +

+

∫
0V

J ρδui2Ωij u̇j d 0V +

∫
0V

J ρδuiüi d 0V (4.28)

After substitution of Eq. 4.28 in Eq. 4.9, the weak form of the elastic body deforming in a non-inertial

reference frame is obtained (see Box 4.29).
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Given bi : 0V → R, ρ : 0V → R, ĝi : 0Γgi → R, 0ĥi : 0Γhi → R, find ui ∈ Si, such that for all
δui ∈Wi∫

0V

δEpjSpj d 0V︸ ︷︷ ︸
Virtual work of
internal forces

+

∫
0V

J ρδuiüi d 0V︸ ︷︷ ︸
Virtual work of inertia
in body coord. syst.

+

∫
0V

J ρδui (ΩipΩpjuj + ΩipΩpjXj) d 0V︸ ︷︷ ︸
Virtual work of

centrifugal forces

+

∫
0V

J ρδuiẍoi d 0V︸ ︷︷ ︸
Virtual work of

rigid body translation

+ +

∫
0V

J ρδui
(

Ω̇ijuj + Ω̇ijXj

)
d 0V︸ ︷︷ ︸

Virtual work of
Euler forces

+

∫
0V

J ρδui2Ωij u̇j d 0V︸ ︷︷ ︸
Virtual work of
Coriolis forces

+

∫
0Γgi

δuiψiiui d 0Γgi︸ ︷︷ ︸
homogeneous part of

essential b.c.

−−
∫

0Γgi

δuiψiigid 0Γgi︸ ︷︷ ︸
Non-homogeneous part of

essential b.c.

+

+
∑
i

nf∑
f=1

∫
0Γf

(
δuiΓ

f(+)
− δuiΓ

f(−)

)
γii

(
uiΓ

f(+)
− uiΓ

f(−)

)
d 0Γf︸ ︷︷ ︸

Interelement compatibility constraint

=

=

∫
0V

δuiJ bi dV︸ ︷︷ ︸
Virtual work of

body forces

+
∑
i

∫
0Γhi

δui 0ĥi d 0Γ︸ ︷︷ ︸
Virtual work of
surface forces

(4.29)

Weak form of undeformed configuration in body coordinate system
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4.3.3 Finite element discretization

The virtual work of inertial forces (Eq. 4.28) written in a moving frame provides several FEM arrays

when discretized, in addition to the mass matrix. Here the expression for each array are derived. The virtual

work is decomposed as follows:

δWKIN = δWM + δWTR + δWCF + δWEU + δWCR (4.30)

where

δWTR =

∫
0V

J ρδuir̈oi d 0V

δWCF =

∫
0V

J ρδuiΩipΩpjXj d 0V +

∫
0V

J ρδuiΩipΩpjuj d 0V

δWEU =

∫
0V

J ρδuiΩ̇ijuj d 0V +

∫
0V

J ρδuiΩ̇ijXj d 0V

δWCR =

∫
0V

J ρδui2Ωij u̇j d 0V

δWM =

∫
0V

J ρδuiüi d 0V

The nodal unknown are expressed in the undeformed element coordinate systems (E) that move rigidly with

the global/body systems. Then another constant transformation TGE is implicity used since the expression

are formally invariant. The virtual work is then decomposed at element level

δWKIN =
∑
e

δW e
KIN (4.31)

Translation forces

The first contribution is due to the rigid translation of the body identified by the motion of the body

reference frame origin (ro). The corresponding virtual work term (see Eq. 4.30) at element level is:

t+∆t
0δW

e
TR =

∫
0V e
J ρδuir̈oj d 0V (4.32)

Once the virtual displacements are spatially discretize Eq. 4.32 is rewritten as:

t+∆t
0δW

e
TR = 0δU

k
XαuX I

[∫
0V e
J ρX0NI X0 F kαuX r̈oj d 0V

]
+

0δU
k
Y αuY I

[∫
0V e
J ρ Y0NI Y0F kαuY r̈oj d 0V

]
+

0δU
k
ZαuZ I

[∫
0V e
J ρ Z0NI Z0F kαuZ r̈oj d 0V

] (4.33)
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In this form it is possible to recognize the equivalent nodal forces generated by the apparent force due to

rigid translation of the body FTR:

t+∆t
0δW

e
TR = 0δU

k
XαuX I

t+∆t
0F

αuX I

TRuX
+ 0δU

k
Y αuY I

t+∆t
0F

αuY I

TRuY
+ 0δU

k
ZαuZ I

t+∆t
0F

αuZ I

TRuZ
=

= δUTFTR

(4.34)

Its kernels are:

t+∆t
0F

αuX I

T uX
=

∫
0V e
J ρX0NI X0 F kαuX r̈0j d 0V

t+∆t
0F

αuY I

T uY
=

∫
0V e
J ρ Y0NI Y0F kαuY r̈0j d 0V

t+∆t
0F

αuZ I

T uZ
=

∫
0V e
J ρ Z0NI Z0F kαuZ r̈0j d 0V

(4.35)

Centrifugal forces

The centrifugal acceleration in a finite element formulation generates both an additional stiffness

matrix and an apparent force vector. Its contribution to the virtual work is:

t+∆t
0δW

e stiff.
CF =

∫
0V e
J ρδui (ΩipΩpj)uj d 0V (4.36)

t+∆t
0δW

e force
CF =

∫
0V e
J ρδui (ΩipΩpjXj) d 0V (4.37)

Performing the spatial discretization of both terms:

t+∆t
0δW

e stiff.
CF = 0δU

k
XαuX I

[∫
0V e
J ρX0NI X0 F kαuX Ω1pΩp1

X
0 F

k
αuX

X
0NJ d 0V

]
0U̇

k
XβuX J

+

0δU
k
XαuX I

[∫
0V e
J ρX0NI X0 F kαuX Ω1pΩp2

Y
0F

k
αuY

Y
0NJ d 0V

]
0U̇

k
Y βuY J

+

0δU
k
XαuX I

[∫
0V e
J ρX0NI X0 F kαuX Ω1pΩp3

Z
0F

k
αuZ

Z
0NJ d 0V

]
0U̇

k
ZβuZ J

+ . . .

(4.38)

t+∆t
0δW

e force
CF = 0δU

k
XαuX I

[∫
0V e
J ρX0NI X0 F kαuX Ω1pΩpqXjd 0V

]
+

0δU
k
Y αuY I

[∫
0V e
J ρ Y0NI Y0F kαuY Ω2pΩpqXjd 0V

]
+

0δU
k
ZαuZ I

[∫
0V e
J ρ Z0NI Z0F kαuZ Ω3pΩpqXjd 0V

] (4.39)
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The stiffness and force kernels of the apparent centrifugal force due to the rotation of the body can be

identified:

t+∆t
0δW

e
CF = δUTFCF + δUTKCFÜ =

= 0δU
k
XαuX I

t+∆t
0F

αuX I

CFuX
+ 0δU

k
Y αuY I

t+∆t
0F

αuY I

CFuY
+ 0δU

k
ZαuZ I

t+∆t
0F

αuZ I

CFuZ
+

+ 0δU
k
XαuX I

[
0
0K

αuX βuX IJ

CFuXuX

]
0U̇

k
XβuX J

+ 0δU
k
XαuX I

[
0
0K

αuX βuY IJ

CFuXuY

]
0U̇

k
Y βuY J

+

+ 0δU
k
XαuX I

[
0
0K

αuX βuZ IJ

CFuXuZ

]
0U̇

k
ZβuZ J

+ 0δU
k
Y αuY I

[
0
0K

αuY βuX IJ

CFuY uX

]
0U̇

k
XβuX J

+

+ 0δU
k
Y αuY I

[
0
0K

αuY βuY IJ

CFuY uY

]
0U̇

k
Y βuY J

+ 0δU
k
Y αuY I

[
0
0K

αuY βuZ IJ

CFuY uZ

]
0U̇

k
ZβuZ J

+

+ 0δU
k
ZαuZ I

[
0
0K

αuZβuX IJ

CFuZuX

]
0U̇

k
XβuX J

+ 0δU
k
ZαuZ I

[
0
0K

αuZβuY IJ

CFuZuY

]
0U̇

k
Y βuY J

+

+ 0δU
k
ZαuZ I

[
0
0K

αuZβuZ IJ

CFuZuZ

]
0U̇

k
ZβuZ J

(4.40)

For example:

t+∆t
0F

αuX I

CFuX
=

∫
0V e
J ρX0NI X0 F kαuX Ω1pΩpjXj d 0V (4.41)

0
0K

αuX βuX IJ

CFuXuX
=

∫
0V e
J ρX0NI X0 F kαuX Ω1pΩp1

X
0 F

k
αuX

X
0NJ d 0V (4.42)

Euler forces

As the centrifugal force also the Euler force provides an additional stiffness matrix and an apparent

force vector. Its contribution to the virtual work is:

t+∆t
0δW

e stiff
EU =

∫
0V e
J ρδuiΩ̇ijuj d 0V (4.43)

t+∆t
0δW

e force
EU =

∫
0V e
J ρδuiΩ̇ijXj d 0V (4.44)

Performing the spatial discretization of both terms:

t+∆t
0δW

e stiff.
EU = δUTKEUU =

= 0δU
k
XαuX I

[∫
0V e
J ρX0NI X0 F kαuX Ω̇11

X
0 F

k
αuX

X
0NJ d 0V

]
0U

k
XβuX J

+

0δU
k
XαuX I

[∫
0V e
J ρX0NI X0 F kαuX Ω̇12

Y
0F

k
αuY

Y
0NJ d 0V

]
0U

k
Y βuY J

+

0δU
k
XαuX I

[∫
0V e
J ρX0NI X0 F kαuX Ω̇13

Z
0F

k
αuZ

Z
0NJ d 0V

]
0U

k
ZβuZ J

+ . . .

(4.45)
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t+∆t
0δW

e force
EU = δUTFEU =

= 0δU
k
XαuX I

[∫
0V e
J ρX0NI X0 F kαuX Ω̇1jXj d 0V

]
+

0δU
k
Y αuY I

[∫
0V e
J ρ Y0NI Y0F kαuY Ω̇2jXj d 0V

]
+

0δU
k
ZαuZ I

[∫
0V e
J ρ Z0NI Z0F kαuZ Ω̇3jXj d 0V

]
(4.46)

The relative kernels can be identified, e.g.:

t+∆t
0F

αuX I

EUuX
=

∫
0V e
J ρX0NI X0 F kαuX Ω̇1jXj d 0V (4.47)

0
0K

αuX βuX IJ

EUuXuX
=

∫
0V e
J ρX0NI X0 F kαuX Ω̇11Xj d 0V (4.48)

Coriolis forces

The Coriolis acceleration provides an additional damping matrix added, if present, to the structural

ones. The virtual work contribution is:

t+∆t
0δW

e
CR =

∫
0V e
J ρδui2 IΩij u̇j d 0V (4.49)

GUF as well the spatial discretization are applied to both the virtual displacement and the velocity. e.g.

0δu
k
X(X,Y, Zk) = X

0 F
k
αuX

(Zk)X0NI(X,Y ) 0δU
k
XαuX I

(X,Y ) αuX= t, l, b l= 2, . . . , Nk
uX I = 1, 2, . . .Mn

(4.50)

0u̇
k
X(X,Y, Zk) = X

0 F
k
αuX

(Zk)X0NI(X,Y ) 0U̇
k
XαuX I

(X,Y ) αuX= t, l, b l= 2, . . . , Nk
uX I = 1, 2, . . .Mn

(4.51)

The explicit expression for the semi-discretized form of Eq. 4.49 is

t+∆t
0δW

e
CR = 0δU

k
XαuX I

[
2

∫
0V e
J ρX0NI X0 F kαuX Ω11

X
0 F

k
αuX

X
0NJ d 0V

]
0U̇

k
XβuX J

+

0δU
k
XαuX I

[
2

∫
0V e
J ρX0NI X0 F kαuX Ω12

Y
0F

k
αuY

Y
0NJ d 0V

]
0U̇

k
Y βuY J

+

0δU
k
XαuX I

[
2

∫
0V e
J ρX0NI X0 F kαuX Ω13

Z
0F

k
αuZ

Z
0NJ d 0V

]
0U̇

k
ZβuZ J

+ . . .

(4.52)
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It is possible to recognize the damping matrix:

t+∆t
0δW

e
CR = δUTDCRU̇ =

= 0δU
k
XαuX I

[
0
0D

αuX βuX IJ
uXuX

]
0U̇

k
XβuX J

+ 0δU
k
XαuX I

[
0
0D

αuX βuY IJ
uXuY

]
0U̇

k
Y βuY J

+

+ 0δU
k
XαuX I

[
0
0D

αuX βuZ IJ
uXuZ

]
0U̇

k
ZβuZ J

+ 0δU
k
Y αuY I

[
0
0D

αuY βuX IJ
uY uX

]
0U̇

k
XβuX J

+

+ 0δU
k
Y αuY I

[
0
0D

αuY βuY IJ
uY uY

]
0U̇

k
Y βuY J

+ 0δU
k
Y αuY I

[
0
0D

αuY βuZ IJ
uY uZ

]
0U̇

k
ZβuZ J

+

+ 0δU
k
ZαuZ I

[
0
0D

αuZβuX IJ
uZuX

]
0U̇

k
XβuX J

+ 0δU
k
ZαuZ I

[
0
0D

αuZβuY IJ
uZuY

]
0U̇

k
Y βuY J

+

+ 0δU
k
ZαuZ I

[
0
0D

αuZβuZ IJ
uZuZ

]
0U̇

k
ZβuZ J

(4.53)

where for example the kernel of the matrix relating the αux term of the polynomial/Legendre function for

the x displacement of the node I and the αuy for the y velocity function of node J is

0
0D

αuX βuY IJ

CRuXuY
= 2

∫
0V e
J ρX0NI X0 F kαuX Ω12

Y
0F

k
αuY

Y
0NJ d 0V (4.54)

Residual equation

The choice of a moving frame attached to the body alter the expression of the semidiscrete residual

equation (see Eq. 4.10). It modifies the effective stiffness, damping matrices and the external force vector.

At a generic instant the residual is:

R = MÜ + DGYR(Ω)U̇ + KDYN(Ω, Ω̇)U + FINT(U)− FEXT + FTR(r̈o) + FEU(Ω̇) + FCF(Ω) = 0

(4.55)

where DGYR is the gyroscopic damping matrix (Eq. 4.53) and KDYN is the dynamic stiffness matrix :

DGYR = DCR

KDYN = KCR + KEU

(4.56)

4.4 Time integration algorithm

Up to this point the weak form has been discretized in space through the use of a finite element

method. The resulting semidiscrete equation has been derived for both inertial (see Eq. 4.10) and body

(see Eq. 4.55) reference systems. These equations now have to be discretized in time and solved with a

time integration algorithm. In structural dynamic the most common is the Newmark β-method [106]. Its

characteristics like stability, accuracy and numerical dissipation are controlled by two free parameters. In

many application it is useful to have some numerical dissipation to remove the high-frequency content from
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the solution. This is possible with the Newmark method, but at the cost of loosing the quadratic convergence

rate. Several other methods were developed to mantain second order accuracy and dissipate high-frequency

modes like the HHT-α method [107] and Bossak-Newmark method [108]. The integration algorithm adopted

in this dissertation is the generalized α-method [109]. This method encompass many family of methods,

including the few just cited. This section will provide an overview of the procedure to derived the discretized

equation of motion and its practical implementation in a software used to generate the results that will be

shown in the next chapters.

4.4.1 Generalized α-method

For the analysis of the method is convenient to use the semidiscretized finite element equation derived

from the weak form in residual form:

R = MÜ + DU̇ + FINT(U)− FEXT = 0 (4.57)

This residual should be satisfied always, but in a numerical method only the satisfaction at discrete times are

requested. In general the solution a time step t is known and we are looking for the value of the displacement

field at time t+ ∆t that satisfy the residual equation:

t+∆tR = M t+∆tÜ + t+∆tFEXT − t+∆tFINT( t+∆tU) = 0 (4.58)

In the generalized α-method intermediate values inside the time step are considered and a modified version

of the residual has to be satisfied:

t+∆tR = M αmÜ + D αf U̇ + αfFINT − αfFEXT = 0 (4.59)

where αf and αm are parameter used to interpolate the displacement solution:

αfU = (1− αf ) tU + αf
t+∆tU = tU + αf∆U

αf U̇ = (1− αf ) tU̇ + αf
t+∆tU̇ = tU̇ + αf∆U̇

αmÜ = (1− αm) tÜ + αm
t+∆tÜ = tÜ + αm∆Ü

αfFEXT = (1− αf ) tFEXT + αf
t+∆tFEXT = tFEXT + αf∆FEXT

(4.60)
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The Newmark approximation [106] is also used:


t+∆tU = tU + ∆t

t
U̇ + ∆t2

[(
1

2
− β

)
t
Ü + β

t+∆t
Ü

]
t+∆t

U̇ =
t
U̇ + ∆t

[
(1− γ)

t
Ü + γ

t+∆t
Ü
] (4.61)

where β and γ are parameters that regulate how much the acceleration at the end of the time steps

affect the displacement and velocity values. Rearranging it is possible to express the velocity and acceleration

at the end of the time step (t+ ∆t) as a function of their initial values (t) and the displacement increments:


t+∆t

U̇ =
γ

β∆t
∆U +

(
1− γ

β

)
t
U̇ + ∆t

(
1− γ

2β

)
t
Ü

t+∆t
Ü =

1

β∆t2
∆U− 1

β∆t

t
U̇ +

(
1− 1

2β

)
t
Ü

(4.62)

with ∆U = t+∆tU− tU. Substituting the Newmark approximation in Eq. 4.60 the velocities and accelera-

tions at the intermediate times are known as a function of the incremental displacements:

αfU = tU + αf∆U

αf U̇ =

(
1− αf

γ

β

)
tU̇ + αf∆t

(
1− γ

2β

)
tÜ +

αfγ

β∆t
∆U

αmÜ =

(
1− αm

2β

)
tÜ− αm

β∆t
tU̇ +

αm
β∆t2

∆U

And then substituting Eq. 4.63 in Eq. 4.59 the residual expression for the generalized α-method can be

found:

t+∆tR =
αm
β∆t2

M∆U +
αfγ

β∆t
D∆U + αf

t+∆tFINT(U) + (1− αf ) tFINT − (1− αf ) tFEXT+

−αf t+∆tFEXT +

[(
1− αm

2β

)
M + αf∆t

(
1− γ

2β

)
D

]
tÜ +

[
− αm
β∆t

M +

(
1− αf

γ

β

)
D

]
tU̇ = 0

(4.63)

Since the equation is nonlinear an iterative algorithm should be used to solve a series of linearized systems.

If we use Newton-Raphson to drive the residual to zero:

0 = t+∆tRi +

(
∂ t+∆tRi

∂ t+∆tU

)
∆Ui+1 (4.64)

71



where i is the iteration counter and ∆Ui+1 = t+∆tUi+1 − t+∆tUi. The resulting linearized equation:

[
αm
β∆t2

M +
αfγ

β∆t
D + αfK

i
TAN

]
∆Ui+1 =

(
− αm
β∆t2

M− αfγ

β∆t
D

)
∆Ui + αf

(
t+∆tFiEXT − t+∆tFiINT

)
−

−(1− αf ) ( tFEXT − tFINT)−
[(

1− αm
2β

)
M + αf∆t

(
1− γ

2β

)
D

]
tÜ−

[
− αm
β∆t

M +

(
1− αf

γ

β

)
D

]
tU̇

(4.65)

This equation can be used for both an inertial and a moving reference system and the actual arrays expressions

depend on which is chosen. The complete expressions are shown in table 4.1. The material stiffness matrices

KL and KNL, the spring stiffness matrix KSP, the internal FINT and external force vector FEXT have been

derived in chapter 3 because unchanged with respect the static case.

Table 4.1: Finite element arrays for time integration algorithm used in Eq. 4.65. The terms in the last two
columns are the arrays as computed in the previous sections.

Array Symbols (Eq.4.65) Inertial coord. sys. Body coord. sys.

tangent stiffness matrix KTAN KL + KNL + KSP KL + KNL + KSP + KDYN

damping matrix D 0 DGYR

mass matrix M M M

external force vector FEXT FEXT FEXT - FTR - FEU - FCF

internal force vector FINT FINT + FSP FINT + FSP

4.4.2 Predictor

The convergence, number of iteration, of the Newton-Raphson method can be accelerated with a

good initial guess of the final solution. These guessed values are based only on the current converged state

(t) of the systems and they are called predictors. In the current dissertation the following expression are

used: 
t+∆tUp = tU + ∆t tU̇ + (1− 2β)

∆t2

2
tÜ

t+∆tU̇p = tU̇ + (1− γ)∆t tÜ

t+∆tÜp = 0

(4.66)

(4.67)

(4.68)

Then Newmark approximation (see Eq. 4.61) can be rewritten as:


t+∆tÜ =

1

β∆t2
(
t+∆tU− t+∆tUp

)
t+∆tU̇ = t+∆tU̇p +

γ

β∆t

(
t+∆tU− t+∆tUp

)
(4.69)

(4.70)
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From this new expression the linearized residual (Eq. 4.65) can be recasted as follows:

[
αm
β∆t2

M +
αfγ

β∆t
D + αfK

i
TAN

] (
t+∆tUi+1 − t+∆tUi

)
=

(
− αm
β∆t2

M− αfγ

β∆t
D

)(
t+∆tUi − t+∆tUp

)
−αfD t+∆tU̇p − (1− αf )D tU̇− (1− αm)M tÜ + αf

(
t+∆tFiEXT − t+∆tFiINT

)
+(1− αf ) ( tFEXT − tFINT)

(4.71)

From a purely implementation point of view it is convenient to compute and store the terms of the residual

that are not updated during the Newton-Raphson iterations at the beginning of the time step. These terms

are collected in the following arrays:

t+∆tRp =

(
αm
β∆t2

M +
αfγ

β∆t
D

)
t+∆tUp − αfD t+∆tU̇p − (1− αf )D tU̇− (1− αm)M tÜ

+ (1− αf ) ( tFEXT − tFINT)

(4.72)

KKIN =
αm
β∆t2

M +
αfγ

β∆t
D (4.73)

And the equation to be solve at each iteration is:

[
KKIN + αfK

i
TAN

]
∆Ui+1 = −KKIN

t+∆tUi + αf
(
t+∆tFiEXT − t+∆tFiINT

)
+ t+∆tRp (4.74)

The iteration is stopped when the displacement increment and/or the residual norm are below certain

tolerance value set by the user.
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Chapter 5

Variable Angle Tow fiber model and

stress recovery procedure

5.1 Variable Angle Tow

In a finite element method the modeling of the fiber’s path comes down to the correct evaluation of

the material coefficients and their in-plane derivatives at the Gauss points. This information is then used

for the numerical integration over the domain to compute the elastic stiffness of the structure and for the

correct evaluation of the transverse stresses through a recovery procedure.

5.1.1 Path definition

In the proposed formulation it is possible to define a different fiber’s path for each layer. In accor-

dance with the plate model the fiber path is defined on a plane parallel to the element X-Y plane. Moreover

the fiber pattern associated with each layer is generated by translation of a single fiber called fundamen-

tal curve (see Fig. 5.1). The problem of describing the pattern is then shifted to the description of this

fundamental curve. Its definition requires the introduction of multiple coordinate systems:

� global coordinate system (X ,Y,Z)

� local element coordinate system (X,Y,Z)

� local layer coordinate system (X̂k,Ŷ k,Ẑk)

� material coordinate systems (Xk
M , Y

k
M , Z

k
M )

� fundamental curve coordinate system (ξk,ηk)
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Figure 5.1: Allowed curvilinear pattern. It is generated by translation of a single fiber, fundamental curve,
(in red).

The pattern for each layer is build in their layer coordinate systems (X̂k,Ŷ k). It is generated from the

translation of the fundamental curve along the X̂k axis. However the actual paths needs to be known

through the point-wise definition of the angle ϑk between the element X-axis and the fibers’ tangent (see

Fig. 5.2). The stiffness matrix is build in the element reference system and consequently also the material

coefficients have to be expressed in such reference.

X

Y

1 2

3

X̂k

Ŷ k

P

YM

XM

φk

ϑ̂k
ϑk

Figure 5.2: Layer coordinate systems and angles.

The spatial variation of the angle ϑk is provided by the user as input. Successively the equation of

the fundamental fiber is approximated as a combination of Legendre polynomials whose coefficients can be

determined through a collocation method.

ϑ k
(
µ k
)

= a k0 P
k

0

(
µ k
)

+ a k1 P
k

1

(
µ k
)

+ ... = a kt P
k
t

(
µ k
)

t = 0, 1, ..., T (5.1)

Legendre polynomials are function of the parameter µk restricted in the interval [-1,1]. The mapping between

this variable and the physical ones is obtained through the introduction of a new coordinate system (ξk,ηk)

as shown in Fig. 5.3.
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A

Figure 5.3: Fundamental curve coordinate system. (ξk,ηk)

The coordinate relations between the layer coordinate system and the auxiliary one are:

X̂ k =
X̂ k

max + X̂ k
min

2
+
X̂ k

max − X̂ k
min

2
ξ k

Ŷ k =
Ŷ k

max + Ŷ k
min

2
+
Ŷ k

max − Ŷ k
min

2
η k

(5.2)

or equivalently

ξ k = −X̂
k
max + X̂ k

min

X̂ k
max − X̂ k

min

+
2

X̂ k
max − X̂ k

min

X̂ k

η k = − Ŷ
k

max + Ŷ k
min

Ŷ k
max − Ŷ k

min

+
2

Ŷ k
max − Ŷ k

min

Ŷ k

(5.3)

where X̂ k
min, X̂ k

max, Ŷ k
min, Ŷ k

max are the minimum and maximum coordinate values of the element in consid-

eration. The coordinate ηk, as µ k, is defined in the interval [-1,1]. It is assumed:

µk =


+η k if µkA = −1

−η k if µkA = +1

(5.4)

then

µ k = ±η k (5.5)

Thus, the transformation in Eq. 5.2 becomes:

Ŷ k =
Ŷ k

max + Ŷ k
min

2
± Ŷ k

max − Ŷ k
min

2
µ k =

Ŷ k
max + Ŷ k

min

2
+
µ k

F
(5.6)

where

F = ∓ 2

Ŷ k
max − Ŷ k

min

(5.7)

Expression 5.6 allows to perform the derivatives of the material properties using the path approxi-
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mation in Eq. 5.1:

∂(�)

∂Ŷ k
= F

∂(�)

∂µ k
(5.8)

∂(�)/∂X̂ k = 0 by construction (see Fig. 5.3).

5.1.2 Material coefficients

If the strain are small the constitutive relations developed for linear analysis can be used also for

large displacement and large rotation analysis. The material is suppose to be orthotropic in the material

reference frame and the stress-strain relation in terms of SPKST and GLST is



SXX

SY Y

SXY

SXZ

SY Z

SZZ



k

=



C11 C12 C16 0 0 C13

C12 C22 C26 0 0 C23

C16 C26 C66 0 0 C36

0 0 0 C55 C45 0

0 0 0 C45 C44 0

C13 C23 C36 0 0 C33



k 

EXX

EY Y

2EXY

2EXZ

2EY Z

EZZ



k

(5.9)

C
k

ij are the material coefficient (Ckij) rotated in the element reference frame:

Ck11 =
1− υk23υ

k
32

∆k
Ek11 Ck12 =

υk21 + υk23υ31

∆k
Ek11 Ck22 =

1− υk13υ
k
31

∆k
Ek22

Ck13 =
υk21υ

k
32 + υ31

∆k
Ek11 Ck23 =

υk32 + υk12υ31

∆k
Ek22 Ck33 =

1− υk12υ
k
21

∆k
Ek33

Ck44 = Gk23 Ck55 = Gk13 Ck66 = Gk12

∆k = 1− υk23υ
k
32 − υk12υ21 − υk13υ

k
31 − 2υk21υ

k
32υ

k
13

υk32 =
Ek33

Ek22

υk23 υk21 =
Ek22

Ek11

υk12 υk31 =
Ek33

Ek11

υk13

(5.10)

where Ek11, Ek22, Ek33, Gk12, Gk13, Gk23, νk12, νk13, νk23 are the the elastic moduli and Poisson’s ratios.
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The rotation of the fourth-order stiffness tensor can be shown to be:

C
k

11 = c4ϑC
k
11 + 2c2ϑs

2
ϑC

k
12 + s4

ϑC
k
22 + 4c2ϑs

2
ϑC

k
66

C
k

12 = c4ϑC
k
12 + s4

ϑC
k
12 + c2ϑs

2
ϑC

k
11 + c2ϑs

2
ϑC

k
22 − 4c2ϑs

2
ϑC

k
66

C
k

16 = c3ϑsϑC
k
11 − c3ϑsϑCk12 + cϑs

3
ϑC

k
12 − cϑs3

ϑC
k
22 + 2cϑs

3
ϑC

k
66 − 2c3ϑsϑC

k
66

C
k

13 = c2ϑC
k
13 + s2

ϑC
k
23

C
k

22 = c4ϑC
k
22 + 2c2ϑs

2
ϑC

k
12 + s4

ϑC
k
11 + 4c2ϑs

2
ϑC

k
66

C
k

26 = cϑs
3
ϑC

k
11 + c3ϑsϑC

k
12 − cϑs3

ϑC
k
12 − c3ϑsϑCk22 + 2c3ϑsϑC

k
66 − 2cϑs

3
ϑC

k
66

C
k

23 = c2ϑC
k
23 + s2

ϑC
k
13

C
k

66 = c4ϑC
k
66 − 2c2ϑs

2
ϑC

k
66 + s4

ϑC
k
66 + c2ϑs

2
ϑC

k
11 − 2c2ϑs

2
ϑC

k
12 + c2ϑs

2
ϑC

k
22

C
k

36 = cϑsϑC
k
13 − cϑsϑCk23

C
k

55 = c2ϑC
k
55 + s2

ϑC
k
44

C
k

44 = c2ϑC
k
44 + s2

ϑC
k
55

C
k

45 = −cϑsϑCk44 + cϑsϑC
k
55

C
k

33 = Ck33

(5.11)

where cϑ = cosϑk, sϑ = sinϑk.

5.2 Stress derivatives

During the proposed stress recovery procedure, as shown in the next section, it is necessary to

perform the derivatives of the SPKST .

Sk,X = C
k

,XEk + C
k
Ek
,X

Sk,Y = C
k

,Y Ek + C
k
Ek
,Y

(5.12)

For example the Y derivative of the inplane stress SY Y is compute as follow:

SkY Y,Y = C̄k12E
k
XX,Y + C̄k22E

k
Y Y,Y + C̄k262EkXY,Y + C̄k23E

k
ZZ,Y +

C̄k12,Y E
k
XX + C̄k22,Y E

k
Y Y + C̄k26,Y 2EkXY + C̄k23,Y E

k
ZZ

(5.13)
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where C̄kij are the material coefficient already rotated in the local element reference systems. To demonstrate

the procedure the derivative of C̄k12 with respect to Y is chosen. Using Eq. 5.11

∂C̄k12

∂Y
=

(
4(cosϑk)3 ∂ cosϑk

∂Y
+ 4(sinϑk)3 ∂ sinϑk

∂Y

)
Ck12+

+

(
2(cosϑk)2 sinϑk

∂ sinϑk

∂Y
+ 2(sinϑk)2 cosϑk

∂ cosϑk

∂Y

)(
Ck11 + Ck22 − 4Ck66

) (5.14)

The derivatives of the trigonometric functions with respect the in-plane coordinate are computed:

∂ cosϑk

∂X
= ∇̂(cosϑk) · i1 =

∂ cosϑk

∂X̂k
î
k

1 · i1 +
∂ cosϑk

∂Ŷ k
î
k

2 · i1
∂ cosϑk

∂Y
= ∇̂(cosϑk) · i2 =

∂ cosϑk

∂X̂k
î
k

1 · i2 +
∂ cosϑk

∂Ŷ k
î
k

2 · i2
∂ sinϑk

∂X
= ∇̂(sinϑk) · i1 =

∂ sinϑk

∂X̂k
î
k

1 · i1 +
∂ sinϑk

∂Ŷ k
î
k

2 · i1
∂ sinϑk

∂Y
= ∇̂(sinϑk) · i2 =

∂ sinϑk

∂X̂k
î
k

1 · i2 +
∂ sinϑk

∂Ŷ k
î
k

2 · i2

(5.15)

where (̂i
k

1 , î
k

2) are the unit versor of the layer coordinate systems and (i1, i2) are the ones of the

element coordinate system (see Fig. 5.2).

î
k

1 · i1 = cosφk

î
k

1 · i2 = sinφk

î
k

2 · i1 = − sinφk

î
k

2 · i2 = cosφk

(5.16)

Using the following angular relationships

ϑk = ϑ̂k + φk (5.17)
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and the trigonometric identities Eq. 5.15 can be rewritten as:

∂ cosϑk

∂X
=

(
cosφk

∂ cos ϑ̂k

∂X̂k
− sinφk

∂ sin ϑ̂k

∂X̂k

)
cosφk − ∂ cosϑk

∂Ŷ k
sinφk

∂ cosϑk

∂Y
=

(
cosφk

∂ cos ϑ̂k

∂X̂k
− sinφk

∂ sin ϑ̂k

∂X̂k

)
sinφk +

∂ cosϑk

∂Ŷ k
cosφk

∂ sinϑk

∂X
=

(
sinφk

∂ sin ϑ̂k

∂X̂k
+ cosφk

∂ cos ϑ̂k

∂X̂k

)
cosφk − ∂ sin ϑ̂k

∂Ŷ k
sinφk

∂ sinϑk

∂Y
=

(
sinφk

∂ sin ϑ̂k

∂X̂k
+ cosφk

∂ cos ϑ̂k

∂X̂k

)
sinφk +

∂ sinϑk

∂Ŷ k
cosφk

(5.18)

where the fact that ∂φk/∂X̂k = 0 has been used. The fiber is rigidly translated along the X̂k then

ϑ̂ is constant along that directions and Eq. 5.18 is simplified:

∂ cosϑk

∂X
= −∂ cosϑk

∂Ŷ k
sinφk

∂ cosϑk

∂Y
=

∂ cosϑk

∂Ŷ k
cosφk

∂ sinϑk

∂X
= −∂ sinϑk

∂Ŷ k
sinφk

∂ sinϑk

∂Y
=

∂ sinϑk

∂Ŷ k
cosφk

(5.19)

The angle ϑ is known as a function of the parameter µk and it will be simpler to compute the

derivative with respect to that parameter. This can be done using Eq. 5.8 in Eq. 5.19:

∂ cosϑk

∂X
= −F ∂ cosϑk

∂µk
sinφk = F sinϑk

∂ϑk

∂µk
sinφk

∂ cosϑk

∂Y
= F

∂ cosϑk

∂µk
cosφk = −F sinϑ

∂ϑk

∂µk
cosφk

∂ sinϑk

∂X
= −F ∂ sinϑk

∂µk
sinφk = −F cosϑ

∂ϑk

∂µk
sinφk

∂ sinϑk

∂Y
= F

∂ sinϑk

∂µk
cosφk = F cosϑk

∂ϑk

∂µk
cosφk

(5.20)

The angle derivative is calculated through Eq. 5.1:

∂ϑk

∂µk
= akt

dP kt
dµk

(5.21)

and the final expression of the trigonometric function derivatives as a function of the known Legendre

80



polynomial coefficient are obtained:

∂ cosϑk

∂X
= F sin

(
aktP

k
t

)
akt

dP kt
dµk

sinφk

∂ cosϑk

∂Y
= −F sin

(
aktP

k
t

)
akt

dP kt
dµk

cosφk

∂ sinϑk

∂X
= −F cos

(
aktP

k
t

)
akt

dP kt
dµk

sinφk

∂ sinϑk

∂Y
= F cos

(
aktP

k
t

)
akt

dP kt
dµk

cosφk

(5.22)

Eq. 5.22 allows to compute the derivative of the material coefficient (Eq. 5.14) from the knowledge

of µk and consequently of Ŷ k using Eq. 5.6.

In conclusion, it is now possible to compute the derivatives of the SPKST (Eq. 5.12) once the

GLST is computed through kinematic relationship from the displacement solution and the user input fiber

equation given by Eq. 5.1.

5.3 The proposed stress recovery procedure

PVD-based theories have only displacements as primary unknowns. This means that the stress field

caused by the nonlinear deformation of the structure has to be computed successively during a post-processing

phase. The stresses can be computed by using CFHL (Eq. (3.43)). This method provides excellent in-plane

SPKST stress components, but the transverse stresses are not accurately calculated and the interlaminar

continuity violated. The Cauchy Stress Tensor (CST), directly obtained from SPKST, are also inaccurate.

The same problem have been encountered also in linear analysis. It has been shown that the

integration of equilibrium equations



∂σkzx
∂z

= −∂σ
k
xx

∂x
−
∂σkyx
∂y

∂σkzy
∂z

= −
∂σkxy
∂x
−
∂σkyy
∂y

∂σkzz
∂z

= −∂σ
k
xz

∂x
−
∂σkyz
∂y

(5.23)

along the thickness improves the results. Suppose the value of the stress is needed at a point (x̄,ȳ)

of the plate. The inplane stresses are computed using the Hooke’s formula and the transverse stresses as

follows:

81



σkzx(x̄, ȳ, z) = σkzx(x̄, ȳ, z0)−
∫ z

z0

(
∂σkxx
∂x
−
∂σkyx
∂y

)
dz

σkzy(x̄, ȳ, z) = σkzy(x̄, ȳ, z0)−
∫ z

z0

(
∂σkxy
∂x
−
∂σkyy
∂y

)
dz

σkzz(x̄, ȳ, z) = σkzz(x̄, ȳ, z0)−
∫ z

z0

(
∂σkxz
∂x
−
∂σkyz
∂y

)
dz

(5.24)

where z0 is a point where the stresses are known. At the start of the integration usually this point

is at the top (k = nl) or bottom (k = 1) of the plate. If the stress at the bottom of the plate is known

the stress integration starts from k = 1 up to the layer where the stress is wanted. The intermediate layers

will use the stress at the top (bottom) of the lower (current) layer as starting point, where the stress have

been already computed. The first two equations are independent and they can be solved separately. The

transverse shear stresses obtained should then be substituted in the third equation to obtain the correct

expression of the normal transverse stress. Although, previous numerical results have shown that using the

transverse shear stresses obtained from Hooke’s law does not affect the accuracy of the normal transverse

stress [28]. This fact will be used later also in the nonlinear case.

This problem for nonlinear analysis has been studied by few authors [18–21] and tackled with

different strategies, often for higher-order theories and von-Kármán strain model. Here a dedicated procedure

is proposed. It is based on the integration of the equilibrium equations written in terms of SPKST [98].

The procedure is tailored to take into account the variability of stiffness coefficients as prescribed by VAT

laminates.

Starting point is represented by the equilibrium equations [96, 110] written in the undeformed

configuration

∂
(
GkimS

k
mj

)
∂Xj

= 0 i, j = 1, 2, 3 (5.25)

If the coordinates X1, X2, X3 are replaced with X, Y , Z and i, j, and m take the values of X, Y , and Z,

respectively Eq. (5.25) becomes



∂
(
GkXmS

k
mX

)
∂X

+
∂
(
GkXmS

k
mY

)
∂Y

+
∂
(
GkXmS

k
mZ

)
∂Z

= 0

∂
(
GkYmS

k
mX

)
∂X

+
∂
(
GkYmS

k
mY

)
∂Y

+
∂
(
GkYmS

k
mZ

)
∂Z

= 0

∂
(
GkZmS

k
mX

)
∂X

+
∂
(
GkZmS

k
mY

)
∂Y

+
∂
(
GkZmS

k
mZ

)
∂Z

= 0

m = X,Y, Z (5.26)
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As opposed to the linear case all three equations are coupled and they have to be solved simultaneously. In

this dissertation the following assumption is made: only the derivatives of the transverse stress with respect to

Z are considered unknowns. The remaining terms are accurately computed with the CFHL. This hypothesis

allows to use an integration method similar to the one used for linear analysis. All terms with the derivative

of the stresses with respect to Z are kept on the left-hand side and all others are moved on the right-hand

side.



∂
(
GkXmS

k
mZ

)
∂Z

= −
∂
(
GkXmS

k
mX

)
∂X

−
∂
(
GkXmS

k
mY

)
∂Y

∂
(
GkYmS

k
mZ

)
∂Z

= −
∂
(
GkYmS

k
mX

)
∂X

−
∂
(
GkYmS

k
mY

)
∂Y

∂
(
GkZmS

k
mZ

)
∂Z

= −
∂
(
GkZmS

k
mX

)
∂X

−
∂
(
GkZmS

k
mY

)
∂Y

m = X,Y, Z (5.27)

As an example the first equilibrium relation of Eq. (5.26) is rewritten as

GkXXS
k
XZ,Z

+GkXY S
k
YZ,Z

+GkXZS
k
ZZ,Z

=−SkXX GkXX,X −S
k
YY GkXY,Y −S

k
XY G

k
XY,X

−SkXY GkXX,Y −G
k
XX S

k
XX,X

−GkXY SkYX,X

−GkXX SkXY,Y −G
k
XY S

k
YY,Y

−SkXZ GkXZ,X

−SkXZ GkXX,Z −S
k
YZ GkXZ,Y −S

k
YZ GkXY,Z

−SkZZ GkXZ,Z −G
k
XZ S

k
ZX,X

−GkXZ SkZY,Y

(5.28)

To simplify the notation, the deformation gradient is expressed as a function of the position vector R:

Gk =
[
Rk
,X Rk

,Y Rk
,Z

]
(5.29)

where

Rk =


X + ukX

Y + ukY

Z + ukZ

 (5.30)
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Using the rule of differentiation of product the equilibrium equations take the form reported below:

∂(GkŜ
k
)

∂Z
= −SkXXRk

,XX − SkXX,XRk
,X − SkYY Rk

,YY − SkYY,Y Rk
,Y − SkXY,Y Rk

,X − SkXY,XRk
,Y

−2SkXY Rk
,XY − SkXZ,XRk

,Z − SkXZRk
,XZ − SkYZ,Y Rk

,Z − SkYZRk
,YZ

(5.31)

where

Ŝ
k

=
[
SkXZ S

k
YZ S

k
ZZ

]T
(5.32)

Eq. (5.31) is the nonlinear counterpart of Eq. 5.23. It is integrated along the thickness of the element

starting from either the top or bottom surface. The values of the transverse stresses at a coordinate Z is

obtained as follow:

Ŝ
k

=
(
Gk
)−1

(GkŜ
k
)
Z0

+

∫ Z

Z0

∂
(
GkŜ

kH
)

∂Z
dZ

 (5.33)

In this case Z0 is the coordinate of the layer where the stress is known. Usually this happens at the top or

bottom of the laminate. In case it is of interest the stress field in an internal layer the same procedure used

for the linear case (Eq. 5.24) should be followed. The stresses in the right-hand side of Eq. (5.31) are known

and computed by using CFHL (ŜH). The main steps of the method are shown in Fig. 5.4.

Boundary condition at Z0(
GŜ
)
Z0

Thickness integration

GŜ =
(
GŜ
)
Z0

+

∫ Z

Z0

∂(GŜ
H
)

∂Z
dZ

Transverse stresses at Z

Ŝ
upd

= G−1
(
GŜ
)
Z

SPKST is updated

Supd =

 SH
XX SH

XY Supd
ZX

SH
Y X SH

Y Y Supd
ZY

Supd
ZX Supd

ZY Supd
ZZ



Cauchy stress tensor

σupd = J−1GSupdGT

Figure 5.4: Stress integration algorithm. G is known everywhere and computed from the solution vector.
SH is the SPKST computed by CFHL.

As it can be seen from Eq. 5.31, it is necessary to compute the in-plane derivatives of SPKST and
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particular attention should be paid if the material coefficients are not constant in the element coordinate

systems as for VAT composites [28]. This issue has been dealt with in section 5.2 (see Eq. 5.12).

In this work the acronym Q3D will be used to indicate that the transverse stresses have been

computed with this procedure.

5.3.1 Dynamic extension

In dynamical problems the stress recovery algorithm is formally unchanged. Eq. 5.33 still holds.

The main difference is the introduction of the inertial forces in the governing equation (Eq. 5.25):

∂
(
GkimS

k
mj

)
∂Xj

= ρküki i, j = 1, 2, 3 (5.34)

The additional term is known since both the density distribution and the acceleration field are

available. The density is given as input and the acceleration field is computed during the solution process

from the displacement field. The inertial contribution modifies only the right-hand side of Eq. 5.31:

∂(GkŜ
k
)

∂Z
= −SkXXRk

,XX − SkXX,XRk
,X − SkYY Rk

,YY − SkYY,Y Rk
,Y − SkXY,Y Rk

,X − SkXY,XRk
,Y

−2SkXY Rk
,XY − SkXZ,XRk

,Z − SkXZRk
,XZ − SkYZ,Y Rk

,Z − SkYZRk
,YZ + ρkük

(5.35)
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Chapter 6

Numerical examples

In this chapter the multi-theory and multi-fidelity model for nonlinear static and dynamic analysis

of composite laminates is tested on a series of benchmark problems from literature or direct comparison with

commercial codes.

In static analysis the stress and displacement fields are considered at specific in-plane global coordi-

nates (X ,Y) of the plate. At such points, the variation of their components along the thickness (Z) direction

is visualized. This allows us to check if the models adopted provide a solution that satisfies the physical

constraints, e.g. continuity of transverse stress at lamina interface.

In dynamic analysis, from the point of view of an aerolastic design it is of great interested to

evaluate the displacement correctly, because they change the boundary condition of the aerodynamic solver

and consequently the effective loads applied to the structure. The stress are checked monitoring a material

particle locate at specific points (X ,Y,Z) during time.

In this dissertation only the quartic triangular element is used. It proved to perform well in linear

analysis and to be locking free.

6.1 Static analysis

The following test are performed:

� Clamped, antisymmetric cross-ply laminated square plate under uniform load : a preliminary validation

of the nonlinear algorithm. The capability to capture the stress-stiffening along with the LW models

are checked. LW will be used as reference solution for other less refined theories (ESL, ZZ).

� Cantilever composite plate subjected to a tip load : this is a problem where very large displacements

and rotation comes into play. Here the performance of different axiomatic models in presence of
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geometrically nonlinear are compared as well as the stress recovery procedure.

� Thick three-layered simply supported plate with bottom surface pressure: In case of sandwich plates

the core and skins have different material properties making predominant the Zig-Zag form of the

displacement field.

� Thick three-layered VAT simply supported plate with bottom surface pressure: same problem as be-

fore but with inclusion of VAT composites. Both the curvilinear fiber path definition and the stress

integration algorithm for anisotropic materials are tested.

6.1.1 Clamped, antisymmetric cross-ply laminated square plate under uniform

load

This test involves the large displacement bending of a clamped square plate with a antisymmetric

cross-ply laminate (0/90/0/90/0/90) subjected to uniform load of 1800 psi. The material properties are the

following:

E2 = 106 psi E1

E2
= 40 E3

E2
= 1 G12 = G13 = 6

10 · E2

G23 = 1
2 · E2 ν12 = ν13 = ν23 = 1

4

(6.1)

The plate has an edge length of 12 in and a thickness of 0.3 in. In Fig. 6.1 the deflection (expressed in inches)

of the six-layered laminate together with at two-layer (0/90) case are compared against result obtained by

Reddy [57] who used a first order shear deformation theory (FSDT). Also the in-plane Cauchy stresses at

the middle of the plate (see Fig. 6.2) are compared with NASTRAN (results obtained with CHEXA solid

elements). The stresses are calculated in the undeformed global coordinate system indicated with X ,Y,Z.

The correlation is excellent.

6.1.2 Cantilevered composite plate subjected to a tip load

This test case has been adapted from Ref. [111], the geometry, constraints and material properties

are shown in Fig. 6.3 (see also Refs. [112, 113]). Two laminations schemes [111] are analyzed:

� Stacking Sequence # 1 (SS 1): -45/45/-45/45

� Stacking Sequence # 2 (SS 2): 30/-60/-60/30

The plate is subject to very large displacements of about eighty times the thickness. Using various layerwise

theories indicated as LLLPVD222, LLLPVD333, and LLLPVD444 for the parabolic, cubic, and fourth-order

cases, respectively, it was verified that the convergence of the SPKST was, as expected, slower than the
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Figure 6.1: Load-deflection curve for clamped anisymmetric cross-ply laminated square plates under
uniform load [57]. The displacements are expressed in inches.
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Figure 6.2: Cauchy stress (expressed in psi) σXX and σXY evaluated in the middle of the plate.
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Figure 6.3: Cantilever plate strip subjected to end shear loading [111]. Figure from [98].

displacements. Figs. 6.4 and 6.5 present the convergence1 for the SPKST component SYZ . With an

appropriate in-plane approximation, all layerwise theories considered provide a good accuracy. The symbols

“Q3D” is used in this work to indicate that the proposed post-processing SPKST stress recovery procedure

is applied. Based on these data a mesh 16×4 will be used for all following results shown for this benchmark

problem. And the fourth-order theory LLLPVD444 it will be used as a reference for the other axiomatic

models.
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LLLPVD444 16×4 (Q3D)

Figure 6.4: SPKST component SYZ at point B: convergence test with respect to the mesh

1Kulikov’s results for the stresses have been extracted from Ref. [111] by using the software WebPlotDigitizer and this is
the reason why the curves are not always perfectly smooth.
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Figure 6.5: SPKST component SYZ at point B: convergence test with respect to the order of expansion
along the thickness.

Displacements The displacements of the plate tip (point A) provided by the ESL and ZZ theories are

compared in Figs. 6.6 and 6.7, indicating the excellence performance in capturing displacements at global

level also by low order theories. As we will show later, the case of thick plate needs an accurate formulation

to correctly represents three-dimensional effects and the Zig-Zag models built by using MZZF achieve that.

Stress field: layerwise models The state of stress along the plate thickness can be obtained using both

the CFHL and the stress integration algorithm. On this regard, Fig. 6.8 compare the SPKST component SZZ

at point C indicating the superior performance of the proposed recovery procedure with respect to CFHL.

In this case, the layerwise approach provides a satisfactory performance even by applying the constitutive

equations (see Fig. 6.8). However, it is anticipated that for ESL theories the recovery procedure is necessary

to correctly reproduce these stresses. The excellent correlation with publish data is also confirmed for the

(30/-60/-60/30) stacking sequence, as documented in Figs. 6.9 and 6.10.

SPKST results are summarized in Fig. 6.11. These results are relative to points B and C (whose

locations are depicted in Fig. 6.3). Since results presenting transverse components of SPKST are not

very abundant in the literature, Tables 6.1 and 6.2 report numerical values of these stresses and could be

used to compare other theories. The present results are also validated using ABAQUS element C3D20R.

In particular, the SPKST (the transverse components of SPKST are evaluated using the proposed stress

recovery procedure) is transformed into the Cauchy Stress Tensor referred to the undeformed geometry. The

excellent correlation and the relevant stress values are reported in Figs. 6.12 and 6.13.
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Figure 6.6: Case of SS1. Transverse displacement point A.
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Figure 6.7: Case of SS1. Axial displacement point A.
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Figure 6.8: SPKST component SZZ at point C: evaluation using the present stress recovery procedure and
CFHL.
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Figure 6.9: SPKST component SXX at points B and C using CFHL.
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Figure 6.10: SPKST component SZZ at point C using the proposed stress recovery procedure.

Table 6.1: Kulikov’s test case [111]: present evaluations of SPKST components SXX and SXZ calculated at
points B and C with LLLPVD444 theory. Lamination scheme (-45/45/-45/45).

Location Point B Point C

(Layer) Z SXX SXZ SXX SXZ

1bot −h/2 +1961.43 +0.00 +4805.72 +0.00

1top −h/4 +929.13 +7.69 +2104.43 +24.60

2bot −h/4 +1089.47 +7.69 +2531.63 +24.60

2top −0 +57.10 +10.33 −144.25 +34.26

3bot +0 −98.01 +10.33 −569.17 +34.26

3top +h/4 −1122.42 +7.57 −3223.81 +24.40

4bot +h/4 −970.79 +7.57 −2794.50 +24.40

4top +h/2 −1996.80 −0.15 −5429.63 −0.01
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Figure 6.11: Distribution of the SPKST stresses. Lamination scheme (-45/45/-45/45).
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Table 6.2: Kulikov’s test case [111]: present evaluations of SPKST components SYZ and SZZ calculated at
points B and C with LLLPVD444 theory. Lamination scheme (-45/45/-45/45).

Location Point B Point C

(Layer) Z SYZ SZZ SYZ SZZ

1bot −h/2 +0.00 −0.00 −0.00 −0.00

1top −h/4 +0.22 −3.29 −4.01 −21.35

2bot −h/4 +0.22 −3.29 −4.01 −21.35

2top −0 +0.21 −4.58 +0.90 −30.48

3bot +0 +0.21 −4.58 +0.90 −30.48

3top +h/4 −0.84 −3.27 +1.41 −22.59

4bot +h/4 −0.84 −3.27 +1.41 −22.59

4top +h/2 +0.04 +0.43 +0.12 +0.75
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Figure 6.12: Cauchy stress component σYY at point C using the proposed stress recovery procedure for the
transverse components of SPKST.
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Figure 6.13: Cauchy stress component σYZ at point C using the proposed stress recovery procedure for the
transverse components of SPKST.

Stress field: ESL models The SPKST component SYZ calculated at point B (see Fig. 6.3) is calculated

with both CFHL and the present integration of the equilibrium equations in Fig. 6.14. Qualitative behavior

and quantitative values are incorrect when Hooke’s approach is used to calculate the stresses, and this is

particularly the case when low-order theories are adopted. On the other hand, the use of the proposed stress

recovery procedure is quite effective. Similar conclusions can be deduced from an analogous result relative to

SS2 (see Fig. 6.15). SPKST can be converted to CST to allow a comparison with the commercial software

ABAQUS. Results (see Fig. 6.16) indicate the excellent correlation of Zig-Zag theories with respect to the

reference solution obtained with ABAQUS. Cubic Zig-Zag theory is able to provide stress values comparable

to the ones obtained with the high-order layerwise approach (see Figs. 6.17 and 6.18). It is also observed

that the largest error occurs in correspondence of the first 2 layers (this finding is a case dependent property).

6.1.3 Thick three-layered simply supported plate with bottom surface pressure

The simply supported three-layered structure is presented in Fig. 6.19. Two lamination schemes,
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Figure 6.14: SPKST component SYZ at point B: case of SS1. Comparison of calculation of the stresses
with constitutive laws and with the present stress recovery procedure.
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Figure 6.15: SPKST component SYZ at point B: case of SS2. Comparison of calculation of the stresses
with constitutive laws and with the present stress recovery procedure.
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Figure 6.16: Cauchy stress component σYY at point C using the proposed stress recovery procedure for the
transverse components of SPKST. SS1 is used.
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Figure 6.17: SPKST component SYZ at point B: case of SS1. Comparison of 5 Zig-Zag theories against
literature and quasi-exact reference solution (Part I).
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Figure 6.18: SPKST component SYZ at point B: case of SS1. Comparison of 5 Zig-Zag theories against
literature and quasi-exact reference solution (Part II).
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named SS3 and SS4 are analyzed. All the results are written in dimensionless form as follows:

ûX = uX
Ek=1

22

ZP bh
(
a
h

)3 ûY = uY
Ek=1

22

ZP bh
(
a
h

)3 ûZ = uZ
100Ek=1

22

ZP bh
(
a
h

)4
σ̂ZX =

σZX
ZP b

(
a
h

) σ̂ZY =
σZY
ZP b

(
a
h

) σ̂ZZ =
σZZ
ZP b

;

σ̂XX =
σXX

ZP b
(
a
h

)2 σ̂YY =
σYY

ZP b
(
a
h

)2 σ̂XY =
σXY

ZP b
(
a
h

)2
(6.2)

k = 1 identifies the bottom layer identity; ûY is calculated at X = a/2,Y = 0; ûZ , σ̂XX , σ̂YY and σ̂ZZ are

calculated at X = a/2,Y = b/2.

Lamination SS3 The reference solution is obtained by comparison with commercial codes ABAQUS

and NASTRAN against the quasi-exact solution represented by a cubic layerwise theory (see Figs. 6.20,

6.21, 6.22). This is needed to create a benchmark reference case adopted later to compare various Zig-Zag

theories. It can be noticed that the present quasi-exact is particularly correlated with the results obtained

by NASTRAN.
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Figure 6.20: Case of SS3. In-plane normalized Cauchy stress σ̂XX .

The Zig-Zag theories with different orders of expansions for the various displacement variables show

an excellent agreement with the quasi-exact theory, as presented in Figs. 6.23, 6.24, and 6.25. The

convenience of adding MZZF is obvious if theories with the same degrees of freedom are compared. The

concept is shown in Figs. 6.26, 6.27, and 6.28 where a Zig-Zag theory with cubic expansion for all the
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Figure 6.21: Case of SS3. Transverse normalized Cauchy stress σ̂ZZ .
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Figure 6.22: Case of SS3. In-plane normalized displacement ûY .
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Figure 6.23: Case of SS3. In-plane normalized displacement ûY .
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Figure 6.24: Case of SS3. In-plane normalized Cauchy stress σ̂XX .
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Figure 6.25: Case of SS3. Transverse normalized Cauchy stress σ̂ZZ .

displacements (indicated with ZZZPVD333) and a fourth-order ESL theory (indicated with EEEPVD444) are

compared, indicating the undoubt advantage of adding MZZF also for the large displacement analysis case.

Lamination SS4 The results obtained including and discarding MZZF are also confirmed when generic

lamination schemes are considered, like SS4 (see Figures 6.29, 6.30, and 6.31).

6.1.4 Thick three-layered VAT simply supported plate with bottom surface

pressure

The capability of GUF for geometrical nonlinear VAT laminates is evaluated by the results with a

model made of solid elements obtained with the commercial software NX NASTRAN.

Notation used for the fiber pattern The path of any fiber of layer k is defined by the angle between

the fiber itself and the 0X axis

ϑk( 0X ) =
2(T k1 − T k0 )

a

∣∣ 0X − a

2

∣∣+ T k0 (6.3)

where T k0 is the value of the angle in the middle of the plate and T k1 its value on the edges ( 0X = 0 and

0X = a). Eq. (6.3) is equivalent to the expression available in the literature [27], but is formally different

because here the origin of the global coordinate system is at the corner of the plate and not at its center. Since
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Figure 6.26: Case of SS3. In-plane normalized displacement ûY including and discarding MZZF.

(90°)

(0°)

(90°)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

·10−2

−0.5

−0.25

0.25

0.5

σ̂XX

Z
/h

LLLPVD333 10×10

EEEPVD444 10×10

ZZZPVD333 10×10

Figure 6.27: Case of SS3. In-plane normalized Cauchy stress σ̂XX including and discarding MZZF.
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Figure 6.28: Case of SS3. Transverse normalized Cauchy stress σ̂ZZ including and discarding MZZF.
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Figure 6.29: Case of SS4. In-plane normalized displacement ûY including and discarding MZZF.
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Figure 6.30: Case of SS4. In-plane normalized Cauchy stress σ̂YY including and discarding MZZF.
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Figure 6.31: Case of SS4. Transverse normalized Cauchy stress σ̂ZZ including and discarding MZZF.

106



X

Y

XΔ S

fiber pattern
(piecewise linear)

Figure 6.32: Subdivision of the solid geometry to create a piecewise linear approximation of the curvilinear
fiber path within NX NASTRAN. Figure from Ref. [114].

it is assumed that the angle of the fibers is a function only of one coordinates, the fibers are parallel to each

other along the 0Y axis. This simple fiber pattern can be reproduced with solid elements in a commercial

software. Each layer of the 3D solid mesh is divided in vertical strips that extend from 0XS − 0∆XS/2 to

0XS + 0∆XS/2, where 0∆XS is the strip width and 0XS the position of the center of the strip on the 0X

axis. Then all elements belonging to a specific strip (S ) have a material reference system rotated by the

angle ϑk( 0XS) with respect the global reference system (see Fig. 6.32).

Test case description A simple supported square plate subject to bisinusoidal load on the bottom surface

(see Fig. 6.33) has been used as a benchmark. The plate has a soft core and two skins made of orthotropic

fibers. The core has a curvilinear fiber path < (0|45) > and the skins have a pattern < (30|10) > (see Fig.

6.34). The presence of a softer core with respect the skins will produce a significant Zig-Zag pattern of the

displacements that can not be well approximated by the classical Equivalent Single Layer theories, as will

be shown later.

The following dimensionless variables are introduced:

ûX = uX
Ek=1
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;
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(6.4)
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Figure 6.33: Test case geometry, materials and loads. Figure from Ref. [114].
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Figure 6.34: Fiber paths for all layers of the laminate. Figure from Ref. [114].
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Figure 6.35: Anazlyzed points.Figure from Ref. [114].

The displacements and stresses of a point at (0.5a,0.5a) and (0.75a,0.75a) are chosen as shown in

Fig. 6.35.

Finite element convergence The commercial software NX NASTRAN has been used to obtain a refer-

ence solution in order to validate and compare the axiomatic theories available in the GUF framework. Fig.

6.36 show the displacements and stress at point B along the thickness for two meshes made of parabolic

solids element of size 20× 20× 12 and 40× 40× 18. A large number of elements has been used to improve

the approximation of the curvilinear fiber path. In the following results the stress and displacement fields of

the finer mesh have been considered.

Also a mesh convergence using a layerwise theory have been used (Fig. 6.37). Althoguh a 6 × 6

mesh reached convergence, the finer mesh has been used (10× 10) for comparison with ESL theories.

Effect of including/discarding Murakami’s Zig-Zag function The addition of MZZF is an effective

method to improve the accuracy of the ESL theories. Fig. 6.38 shows the vertical displacements of point A

as a function of the applied load. It can be seen that the addition of the Zig-Zag term allows ESL model

to get an accuracy comparable with the more computational expensive and accurate cubic layerwise theory.

Numerical values are reported in Table 6.3. Note that ESL theory discarding MZZF uses a higher order of

expansion to keep the total number of degree of freedoms equal to the Zig-Zag model.

The presence of a softer core with respect to the skin produces a pronounced Zig-Zag form of the

displacement along the thickness (Fig. 6.39). Although ESL theories discarding MZZF, also of higher order,

can not reproduce this behavior, the addition of MZZF proved to solve this problem (Table 6.4).

Furthermore the stresses accuracy along the thickness significantly improves (Figs. 6.40-6.42). The
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Figure 6.36: Displacements and stresses of NX NASTRAN 3D solid meshes at point B.

Table 6.3: Normalized transverse displacement uZ/h at point A. Values plotted in Fig. 6.38.

P̂ NX NASTRAN EEEPVD444 ZZZPVD333 LLLPVD333

(40× 40× 18) (10× 10) (10× 10) (10× 10)

35 −0.1694 −0.1457 −0.1693 −0.1689

70 −0.3278 −0.2845 −0.3275 −0.3269

140 −0.5999 −0.5323 −0.5989 −0.5981

210 −0.8187 −0.7400 −0.8165 −0.8161

280 −0.9991 −0.9148 −0.9950 −0.9955

350 −1.1521 −1.0641 −1.1457 −1.1471
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Figure 6.37: Mesh convergence using the present third-order layerwise theory LLLPVD333 at point B.
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Figure 6.38: Transverse displacement uZ/h as a function of adimensional load P̂ = P · (a/h)4/Ek=1
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Figure 6.39: ûY displacement at point B: effect of discarding (theory EEEPVD444) and including (theory

ZZZPVD333) MZZF.
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Table 6.4: Normalized in-plane displacement ûY · 1000 along the laminate thickness at point B. Values
plotted in Fig. 6.39.

Z/h NX NASTRAN EEEPVD444 ZZZPVD333 LLLPVD333

(40× 40× 18) (10× 10) (10× 10) (10× 10)

−0.50 +2.212 +2.136 +2.215 +2.219

−0.25 +1.326 +1.329 +1.324 +1.329

+0.00 +0.814 +0.715 +0.843 +0.819

+0.25 +0.358 +0.101 +0.357 +0.365

+0.50 −0.548 −0.723 −0.552 −0.546

values of stresses at layer interfaces can be found in Tables 6.5-6.6. The transverse stress σZZ at the center

of the plate is continuous (as physically expected) along the thickness after application of the present stress

recovery procedure.
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Figure 6.40: σ̂ZZ at point A: effect of discarding (theory EEEPVD444) and including (theory ZZZPVD333)
MZZF.

Assessment of the present stress recovery procedure Hooke’s law provides accurate in-plane stresses,

but does not impose the interlaminar continuity of the transverse stresses. Using the algorithm developed

in section 5.3 the interlaminar continuity can be reestablished as seen in Figs. 6.43 and 6.44. Here the

SPKST is shown. It can be seen that CFHL provides acceptable results for layerwise theories because the

discontinuity is not much pronounced. It is of interest to note how the addition of MZZF improves the

transverse stress SXZ predicted by ESL also in case where CFHL is used (Fig. 6.44).
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Figure 6.41: σ̂XY at point B: effect of discarding (theory EEEPVD444) and including (theory ZZZPVD333)
MZZF.

< (30|10) >

< (0|45) >

< (30|10) >

−0.15 −0.1 −5 · 10−2 0 5 · 10−2 0.1 0.15 0.2
−0.5

−0.25

0.25

0.5

σ̂XX

u
Z
/h

NASTRAN 40×40×18 CHEXA20

LLLPVD333 10×10

ZZZPVD333 10×10

EEEPVD444 10×10

Figure 6.42: σ̂XX at point B: effect of discarding (theory EEEPVD444) and including (theory ZZZPVD333)
MZZF.

114



Table 6.5: Normalized in-plane Cauchy stress σ̂XY · 1000 along the laminate thickness at point B. Values
plotted in Fig. 6.41.

Z/h NX NASTRAN EEEPVD444 ZZZPVD333 LLLPVD333

(40× 40× 18) (10× 10) (10× 10) (10× 10)

−0.50 +27.653 +21.746 +27.670 +27.992

−0.25 +32.352 +25.566 +32.505 +32.659

−0.25 −1.8016 −3.3321 −1.6309 −1.6585

−0.00 +0.2786 −0.2062 +0.4282 +0.4195

+0.25 +2.2538 +2.0909 +2.2779 +2.3921

+0.25 +31.301 +30.711 +31.786 +31.842

+0.50 +36.580 +34.543 +37.243 +37.170

Table 6.6: Normalized transverse Cauchy stress σ̂ZZ · 1000 along the laminate thickness at point A. Values
plotted in Fig. 6.40.

Z/h NX NASTRAN EEEPVD444 ZZZPVD333 LLLPVD333

(40× 40× 18) (10× 10) (10× 10) (10× 10)

−0.50 +876.6 +881.5 +874.6 +875.3

−0.25 +173.6 +70.19 +174.21 +167.16

−0.25 +174.1 +70.19 +174.21 +167.16

−0.00 −29.99 −56.38 −39.61 −35.45

+0.25 −224.8 −154.0 −226.1 −232.8

+0.25 −226.2 −154.0 −226.1 −232.8

+0.50 +0.351 −2.517 −18.99 −16.97
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ŜZZ

Z
/h

LLLPVD333 (CFHL)

LLLPVD333 (Q3D)

0 0.2 0.4 0.6
−0.5

−0.25

0.25

0.5
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Figure 6.43: Stress ŜZZ obtained by CFHL and present recovery procedure at B.
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Figure 6.44: Stress ŜZX obtained by CFHL and present recovery procedure at B.
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6.2 Dynamics

The following test cases are presented:

� Plunging motion of a cantilever plate: first benchmark problem to validate the implementation of FEM

equations in a non-inertial reference frame.

� Flap rotation of a rectangular plate: second benchmark problem for validation of kinematically pre-

scribed boundary condition in a non-inertial reference frame. In this case additional term are activated

(e.g. gyroscopic damping and dynamic stiffness).

� Clamped plate under uniform step function load : the time variation of the transverse stresses obtained

with different axiomatic theories are compared with data from literature. Successively, the solution of

the ESL theories are improved by a multi-model analysis or the stress recovery procedure.

6.2.1 Plunging motion of a cantilever plate

This benchmark problem [105] is used to test the correct implementation of the dynamic algorithm

in a moving reference frame. Due to a lack of rotation only the additional arrays coming from a rigid body

translation (defined in paragraph 4.3.3) are considered. The model consists of a rectangular plate with an

imposed sinusoidal motion at the root as shown in Fig. 6.45. The motion represent the only source of

deformation, not external loads are applied. The plate is made of steel (Table 6.7) and it oscillates at a

L

w

X

Y

Tip

Root

z(t) = A [1− cos(2πft)]

TipX

Figure 6.45: Geometry of plunging plate [105]. Nodes at root are kinematically constrained.

frequency f=1.78 Hz with a semi-amplitude A=0.0175 m. The plate has been discretized using six elements

Table 6.7: Dimensions and material property for plunging motion.

Data Symbol Value

length L 0.3 m

width w 0.1 m

thickness h 0.001 m

Young’s modulus E 210 GPa

Poisson’s ratio ν 0.3

density ρ 7800 kg/m3
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along the span and two along the chord (twenty-four triangular elements). The same time step size found

in the reference has been used (∆t = 0.001 s).

The total vertical displacements, combination of the rigid motion and elastic deformation, is plotted

against time (see Fig. 6.45). There is a perfect match with the reference data, also with a parabolic ESL

theory. A low order theory was enough to capture the deformations because the plate analyzed is a thin

isotropic lamina.
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Figure 6.46: Time variation of transverse tip displacements of a pure plunging cantilever plate.

6.2.2 Flap rotation of a rectangular plate

This benchmark problem [105] has the objective to test the implementation of the remaining arrays

linked to the rotational motion (e.g. centrifugal forces) that were not activated in the previous test. For this

reason, the equations are solved in a rotating reference frame.

The model consists of a rectangular plate with an imposed sinusoidal rotation in a 5× 5 mm square

area at the root (blue square in Fig. 6.47). The motion represents the only source of deformation, no external

loads are applied. The plate is made of aluminum (Table 6.8) and it oscillates at a frequency f=5 Hz with

L
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X

Y

Tip

Root TipX

θY(t) = A [1− cos(2πft)]

Figure 6.47: Geometry of flapping plate [105]. Nodes at root are kinematicaly constraint.
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a semi-amplitude A=17 deg around the Y axis. The simulation have been performed with a mesh of sixteen

Table 6.8: Dimensions and material property for flap rotation.

Data Symbol Value

length L 80 mm

width w 27 mm

thickness h 0.2 mm

Young’s modulus E 70 GPa

Poisson’s ratio ν 0.3

density ρ 2700 kg/m3

elements along the span and four along the chord and a the time step size ∆t = 0.00015 s.

The total vertical displacement (Z direction) due to both rigid motion and elastic deformation is

plotted against time (see Fig. 6.47). The results compare well with the available data.
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Figure 6.48: Time variation of transverse tip displacements for a flapping rectangular plate.

6.2.3 Clamped plate under uniform step function load

This problem, taken from literature [115], is used as a benchmark to test the capability of the stress

recovery procedure for dynamic loads and the effectiveness of GUF for global-local analysis. Let’s consider

a square symmetric laminate [0/90]s with all four edges clamped with an applied pressure load on the top

surface. This load is applied at the initial time t=0 instantaneously and kept constant during the duration

of the simulation. Thanks to the symmetry present only a quarter of the plate is modeled (see Fig.6.49).

The material properties and the plate dimensions are listed in Table 6.9.

A 5× 5 mesh of quartic triangular elements have been used to model the quarter-plate laminate. It

is of interest to compare the performance of the ESL, Zig-Zag and LW theories in term of displacement and
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Figure 6.49: Geometry of plate and applied load.[115].

Table 6.9: Geometry and material property from Ref. [115].

Data Symbol Value

Length L 220 mm

Thickness h 3.43 mm

Young modulus E1 43.34 GPa

E2 12.73 GPa

E3 43.34 GPa

Shear modulus G12 4.46 GPa

G13 4.46 GPa

G23 4.46 GPa

Poisson’s ratios ν12 0.3

ν13 0.3

ν23 0.3

density ρ 1800 kg/m3
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stress field. For this purpose parabolic expansion have been chosen for all models.

Displacements The transverse displacement at the center of the plate (Fig.6.50) shows how the Zig-

Zag theory outperform the ESL one; in fact it is capable to provide an accuracy comparable to the more

computational expensive layerwise theory. The current ESL-based element is introducing a lag on the

response. This error will amplify during the stress evaluation phase.
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Figure 6.50: Time variation of transverse displacement uZ at point (0,0).

Inplane stresses In Ref. [115] the stress tensor components are evaluated at point A of coordinate

(−3/56L, 3/56L,Z). Their values are compared with the stresses in correspondence of the closest node to

that point.

All axiomatic theories provide an accurate estimate of the inplane stresses also with CFHL (Fig.

6.51). More specifically the Zig-Zag and LW theories perfectly match with the reference data. Instead the

ESL presents a small lag, directly derived from the phase-lag in the displacement field.

Transverse Stresses: present stress recovery procedure and global-local analysis The time vari-

ation of the shear transverse stress SZY at thickness coordinate Z/h = 0.44 is shown in Fig. 6.52, Fig. 6.53

and Fig. 6.55. If the stress is computed by means of CFHL (Fig. 6.52), expected results are obtained. ESL

theory provides a wrong solution with stress peaks more then three time the reference value. The Zig-Zag

correction with MZZF reduces drammatically the error, but it still inaccurate. On the contrary, the layerwise

theory produces a reasonable good match with the reference data. However, if the stress recovery procedure
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Figure 6.51: Time variation of transverse shear stress SXX at point A and thickness coordinate
Z/h = 0.4583. A mesh 5x5 is used.
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Figure 6.52: Time variation of transverse shear stress SZY at point A and thickness coordinate Z/h = 0.44.
A mesh 5x5 is used. Stress obtained using Hooke’s law.
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is performed (Fig. 6.53), ESL, Zig-Zag and layerwise reach similar accuracy. In particular, the curve of the

Zig-Zag model is indistinguishable from the layerwise one.
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Figure 6.53: Time variation of transverse shear stress SZY at point A at thickness coordinate Z/h = 0.44.
A mesh 5x5 is used. Stress computed through integration of equilibrium equations.

As an additional test, the ESL mesh is modified. The elements sharing the node analyzed are

replaced with parabolic layerwise elements (Fig. 6.54 for mesh visualization). The outcome is a global-local

analysis where the global response is still described by an ESL theory, and the local stress field in proximity

of the center of the plate is modeled by a LW one. This alteration has a strong positive effect at the cost

of very few additional degree of freedoms (Fig. 6.55). In fact, the global-local model reaches an accuracy in

terms of stress comparable with the Zig-Zag model. The discrepancy with the full LW one could be explained

with the fact that, as seen in Fig. 6.50, a full ESL element mesh is not able to capture the temporal variation

of the displacement field. As a matter of fact, it introduces a lag. The substitution of few elements in a very

limited area does not affect the deformation response. This initial error on the displacements can affect the

final stress computation of the layerwise element used for local analysis.

A similar argument can be done also for the transverse normal stress SZZ evaluated at the same

thickness location (Figs. 6.56, 6.57, 6.58). Although, in this case, the Zig-Zag theory provides a poor

estimation of the stress if CFHL is used (Fig. 6.56). As for SZY the proposed stress recovery procedure

improves both ESL and Zig-Zag stress field. If the same multi-model used for SZY (Fig. 6.54) is also used

for SZZ , a solution closer to the LW is achieved (Fig. 6.58). Although larger oscillations are present.

It is interesting to note that if the stress recovery procedure is applied to the multi-model mesh, the

stress is not any better than the one obtained with the stress recovery applied on the full ESL mesh (Fig.
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Figure 6.54: Application of GUF for global-local analysis. Elements sharing the node analyzed are modeled
with a layerwise theory.
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Figure 6.55: Time variation of transverse shear stress SZY at point A and thickness coordinate Z/h = 0.44.
A mesh 5x5 is used. Stress obtained using Hooke’s law. Effect of using an layerwise theory in element of
interest.
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Figure 6.56: Time variation of transverse shear stress SZZ at point A and thickness coordinate
Z/h = 0.45946. A mesh 5x5 is used. Stress obtained using Hooke’s law.
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Figure 6.57: Time variation of transverse shear stress SZZ at point A and thickness coordinate
Z/h = 0.45946. A mesh 5x5 is used. Stress computed through integration of equilibrium equations.
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Figure 6.58: Time variation of transverse shear stress SZZ at point A and thickness coordinate
Z/h = 0.45946. A mesh 5x5 is used. Stress obtained using Hooke’s law. Multimodal.

6.59). On the other hand, if the thickness location is changed to a lower thickness coordinate Z/h = −0.45946

the multi-model combined with the stress recovery provide a normal transverse stress time history comparable

with the full layerwise model (Fig. 6.60). This suggests a strong dependence on the local accuracy of the

model along the thickness direction. An explanation could be represented by the presence of steeper gradients

near the top surface, where the load is applied.

Indipendent displacement component modeling An unique feature of GUF is that it allows to in-

dipendently model the displacement components in the element reference system. It becomes possible to

perform studies decoupling the inplane and out-of-plane displacement modeling. Figs. 6.61, 6.62, 6.63 and

6.64 show the relative importance of displacement component for the evaluation of the transverse stresses. If

CFHL is used, the transverse displacement axiomatic model seems to not have any effect on the transverse

shear stress evaluation, whereas the inplane displacements do. The opposite situation occurs if the normal

transverse stress is considered (Fig. 6.63), where the discrepancy seems to be all attributed to the transverse

displacement. In case the stress recovery procedure is applied, all models provide a very similar solution

(Figs. 6.62, 6.64).

Order of expansion effect A Zig-Zag theory seems to improves the shear transverse stress predicted

by the ESL, but it does not affect the normal transverse stress that are still inaccurate (Fig. 6.65). This

is somewhat expected: in certain situations a layerwise model represents the best options for accurate

evaluation of the stress levels in the structure.
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Figure 6.59: Time variation of transverse shear stress SZZ at point A and thickness coordinate
Z/h = 0.45946. A mesh 5x5 is used. Stress computed through integration of equilibrium equations.
Global-local effect.
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Figure 6.60: Time variation of transverse shear stress SZZ at point A and thickness coordinate
Z/h = −0.45946. A mesh 5x5 is used. Stress computed through integration of equilibrium equations.
Global-local effect.
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Figure 6.61: Time variation of transverse shear stress SZY at point A and thickness coordinate Z/h = 0.44.
A mesh 5× 5 is used. Partial layerwise theories. Stress obtained using Hooke’s law.
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Figure 6.62: Time variation of transverse shear stress SZY at point A and thickness coordinate Z/h = 0.44.
Partial layerwise theories. Stress computed through integration of equilibrium equations.
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Figure 6.63: Time variation of transverse shear stress SZZ at point A and thickness coordinate
Z/h = 0.45946. Partial layerwise theories. Stress obtained using Hooke’s law.
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Figure 6.64: Time variation of transverse shear stress SZZ at point A and thickness coordinate
Z/h = 0.45946. A mesh 5x5 is used. Partial layerwise theories. Stress computed through integration of
equilibrium equations.
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Figure 6.65: Time variation of transverse shear stress SZZ at point A and thickness coordinate
Z/h = 0.45946. A mesh 5x5 is used. Effect of polynomial order of expansion. Stress obtained using
Hooke’s law.
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Chapter 7

Conclusions

This dissertation introduces a new framework for the study of multilayered Variable Angle Tow

composite plates in the geometrically nonlinear regime for both static and dynamic analysis. It is based on

a variable-kinematic finite element approach. This architecture can encompass several axiomatic theories

under an invariant expression written by using an indicial notation. The present approach encompasses a

great number of theories including Equivalent Single Layer, Zig-Zag and layerwise ones. Moreover it allows

for an independent modeling of the displacement components in the element reference system extending

the collection of axiomatic theories to mixed ones and partially-layerwise theories. The final results is a

polymorphic element that in combination with a weak imposition of the inter-element compatibility via

penalty method provides an additional alternative to the multi-model class of methods.

The proposed computational architecture presents the following features:

� It allows a simple comparison of different models for Variable Angle Tow composites and use them

simultaneously for global-local analysis purpose.

� It can include Murakami’s Zig-Zag function, and this is highly beneficial also for the geometrically

nonlinear static and dynamic analyses, as proven in this study for the first time. This information can

be used for aeroelastic applications, where the correct prediction of the aerodynamic load is tightly

connected to the accuracy of the deformation. Using a Zig-Zag theory over a layerwise one can provide

practically the same results in most of the applications, but with the advantage of taking a fraction of

the computational resources.

� In aerospace industry VAT laminates are becoming more common thanks to the advancement of the

manufacturing technology. Moreover, there is a push in both European and American aerospace

agencies to introduce aerodynamically efficient new configurations (such as the Truss-Braced Wings)
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which result in aircraft with more flexible wings, where both geometric nonlienarities and aeroelastic

tailoring (i.e., high variability of stiffness properties) become crucial since the very beginning of the

design phase. The proposed computational technology can be effectively applied in the early design

process, by using the zig-zag models, but can also be useful later for more detailed studies, where

a more refined investigation is pursued and layerwise models can be a valuable tool in the hands of

engineers.

� CSCL and VAT laminates can provide an improved efficiency also in rotor design and flapping wing

systems. For this purpose, the governing equation for dynamic analysis are expressed in a non-inertial

reference frame to improve the robustness of the algorithm for moving body. The proposed FEM

approach was tested with benchmark problems found in literature. The present approach, formulated

for single body, can be easily extended to multi-body dynamics.

� It is of paramount importance to be able to accurately predict the stress field, in fact most of the failure

criteria are based on it. This requirement should be satisfied with reasonable computational resources.

Calculations based on the constitutive relations (Hooke’s law) are usually ineffective in predicting the

shear and normal transverse stresses, that are a main cause for laminate failure mechanism, especially

if a lower order model is used e.g. ESL. The present framework satisfies this need of effectiveness

through its capability for multi-model analysis and the application of Murakami’s Zig-Zag function.

A new stress recovery procedure tailored to improve the predictions of the second Piola-Kirchhoff

stress tensor is proposed. This algorithm can be used to reconstruct the three-dimensional stress field

from the displacement solution of two dimensional axiomatic theory. It can also be used for large

displacements and rotations as opposed to typical stress recovery techniques that are restricted to

moderate rotations. Several numerical tests proved the effectiveness of this post-processing technique.

Future work

In the near future the structural model is going to be used for multi-fidelity fluid-structure interaction

simulation for aerospace and marine applications. In particular, for rotor blade analysis. For this purpose,

the formulation will be extended to multi-body analysis.

Another line of research will be on VAT optimization. It will be necessary to compute the sensitivity

matrix analytically from the expression of the nonlinear kernels.
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Appendix A

Kernels for linear analysis

The internal virtual work of a layer has been shown in section 2.3 to be:

δW k
I = δxUkαux iK

k αuxβux ij
ux ux

xUkβux j + δxUkαux iK
k αuxβuy ij
ux uy

yUkβuy j+

+ δxUkαux iK
k αuxβuz ij
ux uz

zUkβuz j + δyUkαuy iK
k αuyβux ij
uy ux

xUkβux j+

+ δyUkαuy iK
k αuyβuy ij
uy uy

zUkβuy j + δyUkαuy iK
k αuyβuz ij
uy uz

zUkβuz j+

+ δzUkαuz iK
k αuzβux ij
uz ux

xUkβux j + δzUkαuz iK
k αuzβuy ij
uz uy

xUkβuy j+

+ δzUkαuz iK
k αuzβuz ij
uz uz

yUkβuz j

(A.1)

K
k αuxβux ij
ux ux , K

k αuyβuy ij
ux uy , K

k αuxβuz ij
ux uz , K

k αuyβux ij
uy ux , K

k αuyβuy ij
uy uy , K

k αuyβuz ij
uy uz , K

k αuzβux ij
uz ux , K

k αuzβuy ij
uz uy , and

locK
k αuzβuz ij
uz uz are the kernels of the Generalized Unified Formulation. These kernels are invariant with

respect to the adopted theory. It should be noted that the kernel are obtained in the local (element)

coordinate system. In fact, equation A.1 was written working in the local (element) coordinate system.

Their explicit expression are:

K
k αuxβux ij
ux ux =

∫
Ω

Z
k αuxβux
11 ux ux

xNi,x
xNj,xdxdy +

∫
Ω

Z
k αuxβux
16 ux ux

xNi,x
xNj,ydxdy

+

∫
Ω

Z
k αuxβux
16 ux ux

xNi,y
xNj,xdxdy +

∫
Ω

Z
k αuxβux
66 ux ux

xNi,y
xNj,ydxdy

+

∫
Ω

Z
k αux,z βux,z
55 ux ux

xNi
xNjdxdy

(A.2)
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K
k αuxβuy ij
ux uy =

∫
Ω

Z
k αuxβuy
12 ux uy

xNi,x
yNj,ydxdy +

∫
Ω

Z
k αuxβuy
16 ux uy

xNi,x
yNj,xdxdy

+

∫
Ω

Z
k αuxβuy
26 ux uy

xNi,y
yNj,ydxdy +

∫
Ω

Z
k αuxβuy
66 ux uy

xNi,y
yNj,xdxdy

+

∫
Ω

Z
k αux,z βuy,z
45 ux uy

xNi
yNjdxdy

(A.3)

K
k αuxβuz ij
ux uz =

∫
Ω

Z
k αuxβuz,z
13 ux uz

xNi,x
zNjdxdy +

∫
Ω

Z
k αuxβuz,z
36 ux uz

xNi,y
zNjdxdy

+

∫
Ω

Z
k αux,z βuz
55 ux uz

xNi
zNj,xdxdy +

∫
Ω

Z
k αux,z βuz
45 ux uz

xNi
zNj,ydxdy

(A.4)

K
k αuyβux ij
uy ux =

∫
Ω

Z
k αuyβux
12 uy ux

yNi,y
xNj,xdxdy +

∫
Ω

Z
k αuyβux
26 uy ux

yNi,y
xNj,ydxdy+

+

∫
Ω

Z
k αuyβux
16 uy ux

yNi,x
xNj,xdxdy +

∫
Ω

Z
k αuyβux
66 uy ux

yNi,x
xNj,ydxdy

+

∫
Ω

Z
k αuy,z βux,z
45 uy ux

yNi
xNjdxdy

(A.5)

K
k αuyβuy ij
uy uy =

∫
Ω

Z
k αuyβuy
22 uy uy

yNi,y
yNj,ydxdy +

∫
IΩ

Z
k αuyβuy
26 uy uy

yNi,y
yNj,xdxdy

+

∫
Ω

Z
k αuyβuy
26 uy uy

yNi,x
yNj,ydxdy +

∫
IΩ

Z
k αuyβuy
66 uy uy

yNi,x
yNj,xdxdy

+

∫
Ω

Z
k αuy,z βuy,z
44 uy uy

yNi
yNjdxdy

(A.6)

K
k αuyβuz ij
uy uz =

∫
Ω

Z
k αuyβuz,z
23 uy uz

yNi,y
zNjdxdy +

∫
Ω

Z
k αuyβuz,z
36 uy uz

yNi,x
zNjdxdy

+

∫
Ω

Z
k αuy,z βuz
45 uy uz

yNi
zNj,xdxdy +

∫
Ω

Z
k αuy,z βuz
44 uy uz

yNi
zNj,ydxdy

(A.7)
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K
k αuzβux ij
uz ux =

∫
Ω

Z
k αuzβux,z
55 uz ux

zNi,x
xNjdxdy +

∫
Ω

Z
k αuzβux,z
45 uz ux

zNi,y
xNjdxdy+

+

∫
Ω

Z
k αuz,z βux
13 uz ux

zNi
xNj,xdxdy +

∫
Ω

Z
k αuz,z βux
36 uz ux

zNi
xNj,ydxdy

(A.8)

K
k αuzβuy ij
uz uy =

∫
Ω

Z
k αuzβuy,z
45 uz uy

zNi,x
yNjdxdy +

∫
Ω

Z
k αuzβuy,z
44 uz uy

zNi,y
yNjdxdy+

+

∫
Ω

Z
k αuz,z βuy
23 uz uy

zNi
yNj,ydxdy +

∫
Ω

Z
k αuz,z βuy
36 uz uy

zNi
yNj,xdxdy

(A.9)

K
k αuzβuz ij
uz uz =

∫
Ω

Z
k αuzβuz
55 uz uz

zNi,x
zNj,xdxdy +

∫
Ω

Z
k αuzβuz
45 uz uz

zNi,x
zNj,ydxdy

+

∫
Ω

Z
k αuzβuz
45 uz uz

zNi,y
zNj,xdxdy +

∫
Ω

Z
k αuzβuz
44 uz uz

zNi,y
zNj,ydxdy

+

∫
Ω

Z
k αuz,z βuz,z
33 uz uz

zNi
zNjdxdy

(A.10)

where the integration along the thickness is done separately and contained in the Z terms. Here some

examples:

Z
k αuz,z βuz,z
33 uz uz

=

∫ ztopk

zbotk

C̄k33
zF kαuz ,z

zF kβuz ,zdz
k

Z
k αuxβuy
26 ux uy

=

∫ ztopk

zbotk

C̄k26
xF kαux

yF kβuy dzk

Z
k αuzβuy,z
45 uz uy

=

∫ ztopk

zbotk

C̄k45
zF kαuz

yF kβuy,zdz
k

(A.11)

These integrals are solved numerically using Gauss quadrature and assembled to form the global

stiffness matrix.
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Appendix B

Strong forms

In this appendix it will be shown the derivation of the strong form of the governing equation in the

undeformed configuration.

Let’s start from the statement in the current configuration:

Given bi : V → R, ρ : V → R, ĝi : Γgi → R, ĥi : Γhi → R, ¯̇u : V → R, σ̄ij : V → R, find
ui : V → R, such that 

σji,j(X, t) + bi(X, t) = ρ(X)üi(X, t) in Ω

ui(X, t) = ĝi(X, t) on Γgi
nj(X, t)σji(X, t) = ĥi(X, t) on Γhi
u̇i(X, 0) = ¯̇u in Ω

σij(X, 0) = σ̄ij in Ω

(B.1)

Strong form current configuration

B.1 Equilibrium equation

The governing equations is

∂σji
∂xj

+ bi = ρüi i = 1, 2, 3 (B.2)

where σji are the components of the CST σ. The coordinate xj is considered in the deformed continuum.

The generic component σji of CST can be related to SPKST as follows:

σji = J−1GjlSlmGim i, j, l,m = 1, 2, 3 (B.3)
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where Gjl and Gim are the components of the deformation gradient tensor, whereas J is its determinant.

Substituting Eq. B.3 into Eq. B.2 and calculating the derivatives by using the chain rule, the following

formula is obtained:

∂σji
∂xj

=
∂

∂xj

(
J−1GjlSlmGim

)
= SlmGim

∂
(
J−1Gjl

)
∂xj

+ J−1Gjl
∂ (SlmGim)

∂xj
= −bi + ρüi (B.4)

Using the property [95] reported below,

∂
(
J−1Gjl

)
∂xj

= 0 (B.5)

Eq B.4 is simplified as follows:

∂σji
∂xj

= J−1Gjl
∂ (SlmGim)

∂xj
= −bi + ρüi (B.6)

The definition of deformation gradient tensor and chain rule of differentiation implied the following relations:

Gjl =
∂xj
∂Xl

∂ (•)
∂Xl

=
∂ (•)
∂xj

∂xj
∂Xl

(B.7)

Equation B.7 can be used to rewrite Eq. B.6 as reported below:

J−1Gjl
∂ (SlmGim)

∂xj
= J−1 ∂xj

∂Xl

∂ (SlmGim)

∂xj
= J−1 ∂ (GimSlm)

∂Xl
= −bi + ρüi (B.8)

Notice that Xl is referred to the element coordinate system in the undeformed continuum.

Using the fact that l is a repeated dummy index in RHS of Eq. B.8, it is possible to express Eq.

B.8 in the following equivalent form:

∂ (GimSjm)

∂Xj
= −J bi + J ρüi (B.9)

Finally, using the symmetry properties of SPKST, Eq. B.9 is simplified as

∂ (GimSmj)

∂Xj
= −J bi + J ρüi i, j = 1, 2, 3 (B.10)

Which represents the governing equations written in terms of SPKST.
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B.2 Neumann boundary condition

The natural boundary condition is (Eq.B.1):

njσji = ĥi (B.11)

or in vector form:

n · σ = ĥ (B.12)

Recall the relation between the Cauchy and SPKST:

σ =
1

det(G)
G · S ·GT (B.13)

and the relation that exist between the normals in the deformed (n) and undeformed configuration (N).

n =
G−T ·N√

N ·
(
GT ·G

)−1

·N
(B.14)

The mapping of the traction force is obtained as follow:

hds = HdS (B.15)

where H is the traction force mapped in the undeformed configuration, ds and dS are the surface area in

the current and undeformed configuration respectively. Eq. B.15 can be rewritten as:

h = HdS/ds (B.16)

The relations between the areas is given by Nelson’s formula:

nds = det(G)G−T ·NdS (B.17)

Solving Eq.B.17 for the area ratio:

dS

ds
=

1

det(G)

√
N ·

(
GT ·G

)−1

·N
(B.18)
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Substituting Eq. B.18 in Eq. B.16:

h = H
1

det(G)

√
N ·

(
GT ·G

)−1

·N
(B.19)

Putting everything together

n · σ =
G−T ·N√

N ·
(
GT ·G

)−1

·N
· 1

det(G)
G · S ·GT = H

1

det(G)

√
N ·

(
GT ·G

)−1

·N
= ĥ (B.20)

Simplifying:

G−T ·N ·G · S ·GT = H (B.21)

Now it is convenient to rewrite this epression in indicial form

G−1
kj NkGjpSpqGiq = Hi (B.22)

NkG
−1
kj GjpSpqGiq = Hi (B.23)

NkδkpSpqGiq = Hi (B.24)

NkSkqGiq = Hi (B.25)

Finally using the symmetry of the SPKST, the expression of the Neumann boundary condition is found

GiqSkqNk = Hi (B.26)

G · S ·N = H (B.27)
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Appendix C

Deformation gradient written with

GUF notation

In the formulation it is necessary to compute the deformation gradient at the converged iteration:

t
0Gij = δij + t

0ui,j (C.1)

or

t
0G = I + t

0∇u (C.2)

The displacement gradient is defined as

t
0uX,X = X

0 FαuX
X
0NI,X

t

0
UXαuX I

t
0uX,Y = X

0 FαuX
X
0NI,Y

t

0
UXαuX I

t
0uX,Z = X

0 FαuX,Z
X
0NI

t

0
UXαuX I

t
0uY,X = Y

0FαuY
Y
0NI,X

t

0
UY αuY I

t
0uY,Y = Y

0FαuY
Y
0NI,Y

t

0
UY αuY I

t
0uY,Z = Y

0 FαuY,Z
Y
0NI

t

0
UY αuY I

t
0uZ,X = Z

0FαuZ
Z
0NI,X

t

0
UZαuZ I

t
0uZ,Y = Z

0FαuZ
Z
0NI,Y

t

0
UZαuZ I

t
0uZ,Z = Z

0 FαuZ,Z
Z
0NI

t

0
UZαuZ I

(C.3)
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Substituting equation C.3 into equation C.1 the expression for the deformation gradient is obtained as

reported below:

t
0GXX = 1 + X

0 FαuX
X
0NI,X

t

0
UXαuX I

t
0GXY = X

0 FαuX
X
0NI,Y

t

0
UXαuX I

t
0GXZ = X

0 FαuX,Z
X
0NI

t

0
UXαuX I

t
0GYX = Y

0FαuY
Y
0NI,X

t

0
UY αuY I

t
0GYY = 1 + Y

0FαuY
Y
0NI,Y

t

0
UY αuY I

t
0GYZ = Y

0 FαuY,Z
Y
0NI

t

0
UY αuY I

t
0GZX = Z

0FαuZ
Z
0NI,X

t

0
UZαuZ I

t
0GZY = Z

0FαuZ
Z
0NI,Y

t

0
UZαuZ I

t
0GZZ = 1 + Z

0 FαuZ,Z
Z
0NI

t

0
UZαuZ I

(C.4)
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Appendix D

Strain-displacement matrix

The contribution to the linear strain displacement matrix due to node J is:

t
0B

βuX J

L 11 = t
0GXX

X
0 FβuX

X
0NJ,X

t
0B

βuY J

L 12 = t
0GYX

Y
0 FβuY

Y
0NJ,X

t
0B

βuZ J

L 13 = t
0GZX

Z
0 FβuZ

Z
0NJ,X

t
0B

βuX J

L 21 = t
0GXY

X
0 FβuX

X
0NJ,Y

t
0B

βuY J

L 22 = t
0GYY

Y
0 FβuY

Y
0NJ,Y

t
0B

βuZ J

L 23 = t
0GZY

Z
0 FβuZ

Z
0NJ,Y

(D.1)

t
0B

βuX J

L 31 = t
0GXX

X
0 FβuX

X
0NJ,Y + t

0GXY
X
0 FβuX

X
0NJ,X

t
0B

βuY J

L 32 = t
0GYX

Y
0 FβuY

Y
0NJ,Y + t

0GYY
Y
0 FβuY

Y
0NJ,X

t
0B

βuZ J

L 33 = t
0GZX

Z
0 FβuZ

Z
0NJ,Y + t

0GZY
Z
0 FβuZ

Z
0NJ,X

t
0B

βuX J

L 41 = t
0GXZ

X
0 FβuX

X
0NJ,X + t

0GXX
X
0 FβuX,Z

X
0NJ

t
0B

βuY J

L 42 = t
0GYZ

Y
0 FβuY

Y
0NJ,X + t

0GYX
Y
0 FβuY,Z

Y
0NJ

t
0B

βuZ J

L 43 = t
0GZZ

Z
0 FβuZ

Z
0NJ,X + t

0GZX
Z
0 FβuZ,Z

Z
0NJ

(D.2)
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t
0B

βuX J

L 51 = t
0GXY

X
0 FβuX,Z

X
0NJ + t

0GXZ
X
0 FβuX

X
0NJ,Y

t
0B

βuY J

L 52 = t
0GYY

Y
0 FβuY,Z

Y
0NJ + t

0GYZ
Y
0 FβuY

Y
0NJ,Y

t
0B

βuZ J

L 53 = t
0GZY

Z
0 FβuZ,Z

Z
0NJ + t

0GZZ
Z
0 FβuZ

Z
0NJ,Y

t
0B

βuX J

L 61 = t
0GXZ

X
0 FβuX,Z

X
0NJ

t
0B

βuY J

L 62 = t
0GYZ

Y
0 FβuY,Z

Y
0NJ

t
0B

βuZ J

L 63 = t
0GZZ

Z
0 FβuZ,Z

Z
0NJ

(D.3)
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Appendix E

Kernels of the linear part of the

elastic stiffness matrix

First, the following auxiliary quantity is defined:

g =
[
t
0GXX

t
0GXY

t
0GXZ

t
0GYX

t
0GYY

t
0GYZ

t
0GZX

t
0GZY

t
0GZZ

]
(E.1)

Products of components of the array g are indicated with a compact notation as follows:

grs = gr · gs (E.2)

where, for example, it is

g25 = t
0GXY · t0GYY (E.3)

Next, let’s consider one of the thickness integrals involving the Hooke coefficients, thickness functions, and

deformation gradients:

t
0Z̃

αuX βuX g11

11uXuX
=

∫
Z

C̃11
t
0GXX

t
0GXX

X
0 FαuX

X
0 FβuX dZ (E.4)

where Eq. E.2 has been used in the superscript appearing on the LHS.
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To make the notation more compact, the left sub and superscript (t and 0, respectively) are omitted.

An example of kernel is reported below:

K
αuX βuY IJ

L uXuY
=

∫
0A

[
Z̃
αuX βuY g14

11uXuY
X
0NI,X

Y
0NJ,X + Z̃

αuX βuY g14

12uXuY
X
0NI,Y

Y
0NJ,X

+ Z̃
αuX βuY g15

12uXuY
X
0NI,X

Y
0NJ,Y + Z̃

αuX,ZβuY g34

13uXuY
X
0NI

Y
0NJ,X

+ Z̃
αuX βuY,Z g16

13uXuY
X
0NI,X

Y
0NJ + Z̃

αuX βuY g41

16uXuY
X
0NI,Y

Y
0NJ,X

+ Z̃
αuX βuY g42

16uXuY
X
0NI,X

Y
0NJ,X + Z̃

αuX βuY g14

16uXuY
X
0NI,X

Y
0NJ,Y

+ Z̃
αuX βuY g15

16uXuY
X
0NI,X

Y
0NJ,X + Z̃

αuX βuY g25

22uXuY
X
0NI,Y

Y
0NJ,Y

+ Z̃
αuX,ZβuY g35

23uXuY
X
0NI

Y
0NJ,Y + Z̃

αuX βuY,Z g26

23uXuY
X
0NI,Y

Y
0NJ

+ Z̃
αuX βuY g15

26uXuY
X
0NI,Y

Y
0NJ,Y + Z̃

αuX βuY g25

26uXuY
X
0NI,X

Y
0NJ,Y

+ Z̃
αuX βuY g24

26uXuY
X
0NI,Y

Y
0NJ,Y + Z̃

αuX βuY g25

26uXuY
X
0NI,Y

Y
0NJ,X

+ Z̃
αuX,ZβuY,Z g36

33uXuY
X
0NI

Y
0NJ + Z̃

αuX βuY,Z g16

36uXuY
X
0NI,Y

Y
0NJ

+ Z̃
αuX βuY,Z g16

36uXuY
X
0NI,X

Y
0NJ + Z̃

αuX,ZβuY g43

36uXuY
X
0NI

Y
0NJ,Y

+ Z̃
αuX,ZβuY g53

36uXuY
X
0NI

Y
0NJ,X + Z̃

αuX,ZβuY,Z g25

44uXuY
X
0NI

Y
0NJ

+ Z̃
αuX,ZβuY g26

44uXuY
X
0NI

Y
0NJ,Y + Z̃

αuX βuY,Z g35

44uXuY
X
0NI,Y

Y
0NJ

+ Z̃
αuX βuY g36

44uXuY
X
0NI,Y

Y
0NJ,Y + Z̃

αuX βuY,Z g35

45uXuY
X
0NI,X

Y
0NJ

+ Z̃
αuX βuY g36

45uXuY
X
0NI,X

Y
0NJ,Y + Z̃

αuX,ZβuY,Z g15

45uXuY
X
0NI

Y
0NJ

+ Z̃
αuX,ZβuY g16

45uXuY
X
0NI

Y
0NJ,Y + Z̃

αuX,ZβuY g26

45uXuY
X
0NI

Y
0NJ,X

+ Z̃
αuX,ZβuY,Z g24

45uXuY
X
0NI

Y
0NJ + Z̃

αuX βuY g36

45uXuY
X
0NI,Y

Y
0NJ,X

+ Z̃
αuX βuY,Z g34

45uXuY
X
0NI,Y

Y
0NJ + Z̃

αuX βuY g36

55uXuY
X
0NI,X

Y
0NJ,X

+ Z̃
αuX βuY,Z g34

55uXuY
X
0NI,X

Y
0NJ + Z̃

αuX,ZβuY g16

55uXuY
X
0NI

Y
0NJ,X

+ Z̃
αuX,ZβuY,Z g14

55uXuY
X
0NI

Y
0NJ + Z̃

αuX βuY g14

66uXuY
X
0NI,Y

Y
0NJ,Y

+ Z̃
αuX βuY g15

66uXuY
X
0NI,Y

Y
0NJ,X + Z̃

αuX βuY g24

66uXuY
X
0NI,X

Y
0NJ,Y

+ Z̃
αuX βuY g25

66uXuY
X
0NI,X

Y
0NJ,X

]
d 0A

(E.5)
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For linear static case the deformation gradient is the identity matrix and equation E.5 becomes:

K
αuX βuY IJ

L uXuY
=

∫
0A

[ Z̃
αuX βuY
12uXuY

X
0NI,X

Y
0NJ,Y + Z̃

αuX βuY
16uXuY

X
0NI,X

Y
0NJ,X+

+ Z̃
αuX βuY
26uXuY

X
0NI,Y

Y
0NJ,Y + Z̃

αuX,ZβuY,Z
45uXuY

X
0NI

Y
0NJ

+ Z̃
αuX βuY
66uXuY

X
0NI,Y

Y
0NJ,X

]
d 0A

(E.6)

Similar derivations can be used for the other kernels.
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Appendix F

Penalty method and kernels of the

spring stiffness matrix

Equation 3.119 is explicitly written by assuming that the spring connects two points located within

layer k. The first point is on element c node J and the second point is on the same layer and is on element

d, node L. We have the following relation deduced from Eq. 3.119:

t+∆t
0Vk =

1

2

(
t+∆t

0u
k c
J − t+∆t

0u
k d
L

)T
γk
(
t+∆t

0u
k c
J − t+∆t

0u
k d
L

)
(F.1)

or

t+∆t
0Vk =

1

2
t+∆t

0u
k c T
J γk t+∆t

0u
k c
J −

1

2
t+∆t

0u
k c T
J γk t+∆t

0u
k d
L

− 1

2
t+∆t

0u
k d T
L γk t+∆t

0u
k c
J +

1

2
t+∆t

0u
k d T
L γk t+∆t

0u
k d
L

(F.2)

which is simplified by taking into account the fact that γk is symmetric as follows:

t+∆t
0Vk =

1

2
t+∆t

0u
k c T
J γk t+∆t

0u
k c
J −

t+∆t
0u

k c T
J γk t+∆t

0u
k d
L

+
1

2
t+∆t

0u
k d T
L γk t+∆t

0u
k d
L

(F.3)

Equation 3.120 is now substituted into equation F.3:

t+∆t
0Vk =

1

2

(
t
0u

k c T
J + 0∆uk c TJ

)
γk

(
t
0u

k c
J + 0∆uk cJ

)
−
(
t
0u

k c T
J + 0∆uk c TJ

)
γk

(
t
0u

k d
L + 0∆uk dL

)
+

1

2

(
t
0u

k d T
L + 0∆uk d TL

)
γk

(
t
0u

k d
L + 0∆uk dL

)
(F.4)
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or

t+∆t
0Vk = t+∆t

0Vk∆t−∆t + t+∆t
0Vk∆t−t + t+∆t

0Vkt−t (F.5)

where the following definitions have been used:

t+∆t
0Vk∆t−∆t =

1

2
0∆uk c TJ γk 0∆uk cJ − 0∆uk c TJ γk 0∆uk dL

+
1

2
0∆uk d TL γk 0∆uk dL

t+∆t
0Vk∆t−t = 0∆uk c TJ γk t

0u
k c
J − 0∆uk d TL γk t

0u
k c
J

− 0∆uk c TJ γk t
0u

k d
L + 0∆uk d TL γk t

0u
k d
L

t+∆t
0Vkt−t =

1

2
t
0u

k c T
J γk t

0u
k c
J − t

0u
k c T
J γk t

0u
k d
L

+
1

2
t
0u

k d T
L γk t

0u
k d
L

(F.6)

The spring contribution to the tangent stiffness matrix depends on the second derivatives of the potential

energy expression (see Eq. F.6) with respect to the incremental nodal displacement unknowns (which need to

be set equal to zero after the derivative is calculated, within the linearized approach). It is also observed that

all the terms of the type similar to 0∆uk c TJ have linear dependency on the incremental nodal displacements

(actual finite element degree of freedom). This can be see for example from the explicit formula of 0∆uk c TJ

written in global coordinate system:

0∆uk c TJ =

[
0∆uk cXJ 0∆uk cYJ 0∆uk cZJ

]T
(F.7)

where for example it is (see Eq. 3.123)

0∆uk cXJ = 0
0a
k c
11

X
0 F

k c
αuX

0∆Uk cXαuX J
+ 0

0a
k c
21

Y
0F

k c
αuY

0∆Uk cY αuY J

+ 0
0a
k c
31

Z
0F

k c
αuZ

0∆Uk cZαuZ J

(F.8)

From all of this reasoning it is realized that the tangent stiffness matrix contribution due to the springs

is generated only from t+∆t
0Vk∆t−∆t (see Eq. F.6). Of course, this term needs to be written explicitly as

a function of the finite element unknowns following the procedure which led to Eq. F.8. It should also

be observed that the transformation coefficients (for example 0
0a
k c
31 ) between coordinate systems does not

depend on the finite element unknowns since everything is referred to the initial geometry (TLF).

To show how a generic contribution of the spring matrix (which needs to be added to the tangent
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stiffness matrix) is obtained, let us consider term t
0K

k cαuX βuY JJ
spuXuY , which is the “self contribution” node J of

element c generates. By definition, it is the derived as follows:

t
0K

k cαuX βuY JJ
spuXuY =

∂2
(
t+∆t

0Vk
)

∂ 0∆Uk cβuX J
∂ 0∆Uk cβuY J

∣∣∣∣∣
0∆U=0

(F.9)

which is written, by taking into account the discussion previously made, as follows:

t
0K

k cαuX βuY JJ

SPuXuY
=

∂2
(
t+∆t

0Vk∆t−∆t

)
∂ 0∆Uk cβuX J

∂ 0∆Uk cβuY J

∣∣∣∣∣
0∆U=0

(F.10)

Similar methodology can be followed for the the “coupled” terms. It should also be noted that the tangent

stiffness matrix is not written in the global coordinate system: the terms are obtained in the element

coordinate system referred to the undeformed configuration.

In the present formulation actually a thickness distribution of springs is used to enforce the compati-

bility at layer level. The formulation of the related matrix is very similar. The only difference is that integrals

of the products of thickness functions appear [27]. For example, in the case of a thickness distribution of

springs, after the differentiation of the potential energy it is possible to show that

t
0K

k cαuX βuX JJ

SPuXuX
=

∂2
(
t+∆t

0Vk∆t−∆t

)
∂ 0∆Uk cβuX J

∂ 0∆Uk cβuX J

∣∣∣∣∣
0∆U=0

(F.11)

t
0K

k cαuX βuX JJ

SPuXuX
=
[(

0
0a
k c
11

)2
γkX+

(
0
0a
k c
12

)2
γkY+

(
0
0a
k c
13

)2
γkZ

]∫
Z

X
0 F

k c
αuX

X
0 F

k c
βuX

dZ (F.12)

Notice that the spring stiffness matrix is actually independent of the time step. Thus, the following relation-

ship holds:

t
0K

k
SP = 0

0K
k
SP (F.13)

Similar formula holds also at multilayered element and structural levels.
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[48] E. Carrera and Kröplin. “Zig-Zag and interlaminar equlibra effects in large-deflection and postbuck-
ling analysis of multilayered plates”. In: Mechanics of Composite Materials and Structures 4 (1997),
pp. 69–94.

[49] J. D. Rodrigues, C. Roque, A. J. M. Ferreira, E. Carrera, and M. Cinefra. “Radial basis functions-
finite differences collocation and a Unified Formulation for bending, vibration abd buckling analysis
of laminated plates, according to Murakami’s zig-zag theory”. In: Composite Structures 93 (2011),
pp. 1613–1620.

[50] E. Carrera. “C0 Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stress
continuity”. In: Int. J. Numer. Methods Eng. 39 (1996), pp. 1797–1820.

[51] L. Demasi. “∞6 Mixed plate theories based on the generalized unified formulation. Part IV: zig-zag
theories”. In: Composite Structures 87 (2009), pp. 195–205.

[52] R. M. J. Groh and P. Weaver. “On displacement-based and mixed variational equivalent single layer
theories for modelling highly heterogeneous laminated beams”. In: Int. J. Solids Structures 59 (2015),
pp. 147–170.

[53] M. Patni, S. Minera, R. M. J. Groh, A. Pirrera, and P. M. Weaver. “On the accuracy of localised 3D
stress fields in tow-steered laminated composite structures”. In: Composite Structures (Oct. 2019). in
press.

[54] H. B. Coda. “Continuous inter-laminar stress for regulr and inverse geometrically nonlinear dynamic
and static analyses of laminated plates and shells”. In: Composite Structures 132 (2015), pp. 406–422.

[55] H. Coda, R. Paccola, and R. Carrazedo. “Zig-Zag effect without degrees of freedom in linear and non
linear analysis of laminated plates and shells”. In: Composite Structures (2017).

[56] A. Loredo, M. D’Ottavio, P. Vidal, and O. Polit. “A family of higher-order single layer plate models
meetin C0

z−requirements ofr arbitrary laminates”. In: Composite Structures 225 (2019).

[57] J.N.Reddy. Mechanics of laminated composite plates and shells. Theory and analysis. CRC Press,
2004.

[58] A. T. Baranski and S. B. Biggers. “Postbucklig Analysis of Laminated Composite Plates sing a Higher-
Order Zig-Zag Theory”. In: Mechanics of Advanced Materials and Structures 7 (2000), pp. 285–314.

[59] D. Eby and R. C. Averill. “Zigzag Sublaminate Model for Nonlinear Analysis of Laminated Panels”.
In: Journal of Aerospace Enringeering 13 (2000), pp. 100–109.

[60] M. E. Fares and M. K. Elmarghany. “A refined zigzag nonlinear first-order shear deformation theory
of composite laminated plates”. In: Composite Structures 82 (2008), pp. 71–83.

[61] F. G. Flores. “Implementation of the refined zigzag theory in shell elements with large displacements
and rotations”. In: Composite Structures 118 (2014), pp. 560–570.

[62] F. Xie, Y. Qu, W. Zhang, Z. Png, and G. Meng. “Nonlinear aerothermoelastic analysis of composite
laminated panels using a general higher-order shear deformation theory”. In: Int. J. of Mechanical
Sciences 150 (2019), pp. 226–237.

[63] N. F. J. Knight, J. Ransom, O. Griffin, and D. Thompson. “Global/local methods reseatch using a
common structural analysis framework”. In: Finite Elements in Analysis and Design 9 (1991), pp. 91,
112.

154



[64] S. Voleti, N. Chandra, and J. Miller. “Global-local analysis of large-scale composite structures using
finite element methods”. In: Computers and Structures 58.3 (1996), pp. 453, 464.

[65] A. Noor, W. Burton, and J. Peters. “Hierarchical adaptive modeling of structural sandwiches and
multilayered composite panels”. In: Applied Numerical Mathematics 14 (1994), pp. 69, 90.

[66] I. Babuska, W. Henshaw, J. Flaherty, J. Hopcroft, and T. Tezduyar. Modeling, mesh generation, and
adaptive numerical methods for partial differential equations. Springer, 1995.

[67] I. Babuska, B. Szabo, and I. Katz. “The p-Version of the Finite Element Method”. In: Journal on
Numerical Analysis 18.3 (1981), pp. 515, 545.

[68] I. Babuska and M. Dorr. “Error estimates for the combined h and p versions of the finite element
method”. In: Numerische Mathematik 37 (1981), pp. 257, 277.

[69] D. Thompson and O. Griffin. “2D to 3D global/local finite element analysis of cross-ply composite
laminates”. In: Journal of Reinforced Plastics and Composites 9 (1990), pp. 492, 502.

[70] K. Mao and C. Sun. “A refined global-local finite element analysis method”. In: International Journal
for Numerical Methods in Engineering 32 (1991), pp. 29, 43.

[71] J. Whitcomb. “Iterative global/local finite element analysis”. In: Computers and Structures 40.4
(1991), pp. 1027, 1031.

[72] J. Whitcomb and K. Woo. “Application of iterative global/local finite element analysis. Part 1: Linear
analysis”. In: Communications in Numerical Methods in Engineering 9 (1993), pp. 745, 756.

[73] J. Whitcomb and K. Woo. “Application of iterative global/local finite-element analysis. Part 2: geo-
metrically non-linear analysis”. In: Communications in Numerical Methods in Engineering 9 (1993),
pp. 757, 766.

[74] A. Wang and F. Crossman. “Calculation of edge stresses in multi-layer laminates by sub-structuring”.
In: Journal of Composite Materials 12 (1978), pp. 76, 83.

[75] R. Jones, R. Callinan, K. Teh, and K. Brown. “Analysis of multi-layer laminates using three-
dimensional super-elements”. In: International Journal for Numerical Methods in Engineering 20
(1983), pp. 583, 587.

[76] N. Pagano and S. Soni. “Global-local laminate variational model”. In: International Journal of Solids
Structures 3 (1983), pp. 207, 228.

[77] C. Sun and W. Liao. “Analysis of thick section composite laminates using effective moduli”. In:
Journal of Composite Materials 24 (Sept. 1990), pp. 977, 993.

[78] K. Bathe and S. Bolourchi. “A geometric and material nonlinear plate and shell element”. In: Com-
puters and Structures 11 (1980), pp. 23, 48.

[79] K. Surana. “Transition finite elements for three-dimensional stress analysis”. In: International Journal
for Numerical Methods in Engineering 15 (1980), pp. 991–1020.

[80] K. Surana. “Geometrically non-linear formulation for the three dimensional solid-shell transition finite
elements”. In: Computers and Structures 15.5 (1982), pp. 549, 566.

155



[81] C. Davila. “Solid-to-shell transition elements for the computation of interlaminar stresses”. In: Com-
puting Systems in Engineering 5.2 (1994), pp. 193, 202.

[82] M. Aminpour, S. McCleary, and J. Ransom. “A global/local analysis method for treating details
in structural design”. In: Third NASA Advanced Composites Technology Conference. Vol. 1. 1993,
pp. 967, 986.

[83] E. Carrera, A. Pagani, and M. Petrolo. “Use of Lagrange multipliers to combine 1D variable kinematic
finite elements”. In: Computers and Structures 129 (2013), pp. 194, 206.

[84] J. Fish. “The s-version of the finite element method”. In: Computers and Structures 43.3 (1992),
pp. 539, 547.

[85] J. Fish and S. Markolefas. “The s-version of the finite element method for multilayer laminates”. In:
International Journal for Numerical Methods in Engineering 33 (1992), pp. 1081, 1105.

[86] H. Ben Dhia. “Multiscale mechanical problems: the Arlequin method”. In: Comptes Rendus de
l’academie des Sciences Series IIB Mechanics Physics Astronomy 326 (1998), pp. 899–904.

[87] H. Ben Dhia and G. Rateau. “The Arlequin method as a flexible engineering tool”. In: International
Jounral for Numerical Methods in Engineering 62 (2005), pp. 1442–1462.

[88] F. Biscani, G. Giunta, S. Belouettar, E. Carrera, and H. Hu. “Variable kinematic beam elements
coupled via Arlequin method”. In: Composite Structures 93 (2011), pp. 697–708.

[89] E. Carrera and L. Demasi. “Classical and advanced multilayered plate elements based upon PVD
and RMVT. Part 1: Derivation of finite element matrices”. In: International Journal for Numerical
Methods in Engineering 55 (2002), pp. 191, 231.

[90] E. Carrera and L. Demasi. “Classical and advanced multilayered plate elements based upon PVD
and RMVT. Part 2: Numerical implementations”. In: International Journal for Numerical Methods
in Engineering 55 (2002), pp. 253, 291.

[91] E. Zappino, G. Li, A. Pagani, and E. Carrera. “Global-local analysis of laminated plates by node-
dependent finite elements with variable ESL/LW capabilities”. In: Composites Structures 172 (2017),
pp. 1, 14.

[92] E. Carrera, A. Pagani, and S. Valvano. “Multilayered plate elements accounting for refined theories
andnode-dependent kinematics”. In: Composites Part B 114 (2017), pp. 189, 210.

[93] G. Li, E. Carrera, M. Cinefra, A. de Miguel, P. A., and E. Zappino. “An adaptable refinement approach
for shell finite element models based onnode-dependent kinematics”. In: Composite Structures 210
(2019), pp. 1, 19.

[94] E. Carrera, M. Cinefra, E. Zappino, and M. Petrolo. Finite element analysis of structures through
Unified Formulation. John Wiley and Sons Ltd, 2014.

[95] T. Belytschko, W. K. Liu, B. Moran, and K. I. Elkhodary. Nonlinear finite elements for continua and
structures. Wiley, 2014.

[96] L. E. Malvern. Introduction to the mechanics of a continuous medium. Prentice-Hall, 1969.

[97] J. K. Bathe, E. Ramm, and E. L. Wilson. “Finite element formulations for large deformation dynamic
analysis”. In: International Journal for Numerical Methods in Engineering 9 (1975), pp. 353–386.

156



[98] E. Santarpia and L. Demasi. “Large displacement models for composites based on Murakami’s Zig-
Zag Function, Green-Lagrange Strain Tensor, and Generalized Unified Formulation”. In: Thin-Walled
Structures 150 (May 2020), pp. 1, 18.

[99] G. Wempner. “Finite elements, finite rotations and small strains of flexible shells”. In: International
Journal of Solid Structures 5 (1969), pp. 117–153.

[100] T. Belytschko and B. J. Hsieh. “Non-linear transient finite element analysis with convected co-
ordinates”. In: International Journal for Numerical Methods in Engineering 7 (1973), pp. 255–271.

[101] C. Rankin and F. Brogan. “An element independent corotational procedure for the treatment of large
rotations”. In: ASME J. Pressure Vessel Technology 108 (1986), pp. 165–174.

[102] C. Felippa. “Error Analysis of Penalty Function Techniques for Constraint Definition in Linear Alge-
braic System”. In: International Journal for Numerical Methods in Engineering 11 (1977), pp. 709–
728.

[103] H. Ben Dhia. “Numerical modelling of multiscale problems: the Arlequin method”. In: In: CD Pro-
ceedings ECCM’99, Munchen; 1999. 1995.

[104] A. Barut, M. Das, and E. Madenci. “Nonlinear deformations of flapping on a micro air vehicle”. In:
47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
Newport, Rhode Island, 2006.

[105] S. Chimakurthi. “A computational aeroelasticity framework for analyzing flapping wings”. PhD thesis.
The University of Michigan, 2009.

[106] N. Newmark. “A method of computation for structural dynamics”. In: Journal of the Engineering
Mechanics Division,ASCE 85 (1959), pp. 67–94.

[107] T. Hilbert H.M. abd Hugher and R. Taylor. “Improved numerical dissipation for time integration
algorithms in structural dynamics”. In: Earthquake Eng. and Struct. Dynamics 5 (1977), pp. 283–
292.

[108] W. Wood, M. Bossak, and O. Zienkiewicz. “An alpha modification of Newmark’s method”. In: Inter-
national Journal for Numerical Methods in Engineering 15 (1980), pp. 1562–1566.

[109] J. Chung and G. Hulbert. “A time integration algorithm for structural dynamics with improved
numerical dissipation: the generalized-alpha method”. In: Journal of Applied Mechanics 60.2 (1993),
pp. 371–375.

[110] J.N.Reddy. Theory and Analysis of Elastic Plates and Shells. CRC Press, 2007.

[111] S. V. P. Gennady M. Kulikov. “Finite rotation exact geometry solid-shell element for laminated com-
posite structures through extended SaS formulation and 3D analytical integration”. In: International
Journal of Numerical Methods in Engineering (2019), pp. 1–27.

[112] M. Patni, S. Minera, C. Bisagni, P. M. Weaver, and A. Pirrera. “Geometrically nonlinear finite element
model for predicting failure in composite structures”. In: Composite Structures (Oct. 2019). in press.

[113] G. S. Payette and J. N. Reddy. “A new twelve-parameter spectral/hp shell finite element for large de-
formation analysis of composite shells”. In: Comput. Methods Appl. Mech. Engrg. 278 (2014), pp. 664–
704.

157



[114] E. Santarpia and L. Demasi. “Computational Architecture Based on Murakami’sZig-Zag function
for the Geometrically NonlinearAnalysis of Variable Angle Tow Laminates”. In: AIAA Scitech 2020
Forum. AIAA. Orlando, FL, Jan. 2020.

[115] K. Lee, H. Park, and S. Lee. “A post-processing scheme to evaluate transverse stresses for compos-
ite panels under dynamic loads”. In: Computer Modeling in Engineering and Sciences 32.3 (2008),
pp. 113–122.

158


	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Motivation
	Contribution of the present study
	Outline
	Acknowledgments

	Multi-model analysis and Unified Formulation
	Axiomatic models
	Equivalent Single Layer theories
	Layerwise theories
	Partially-layerwise theory
	Zig-Zag theories

	Global-local methods
	Single-model methods
	Multi-model methods

	Unified formulations
	Thickness functions
	Model classification
	Finite element implementation
	In-plane assembly

	Acknowledgments

	Geometrically Nonlinear Static Analysis of Anisotropic Laminates
	Governing equations
	Strong form of the boundary value problem
	Weak form of the boundary value problem
	Essential boundary condition
	Interelement compatibility
	Linearization for load stepping algorithm

	Variable axiomatic thickness expansion
	Finite element discretization and solution of the system
	Kernels of linear stiffness matrix
	Kernels of the nonlinear stiffness matrix
	Internal forces
	External forces
	Boundary conditions
	Inter-element compatibility

	Acknowledgments

	Dynamics
	Governing equations
	Strong form of the boundary value problem
	Weak form of the boundary value problem
	Imposition of time-dependent boundary conditions and interelement compatibility

	Finite element discretization
	Kernels of the mass matrix

	Non-inertial reference frame
	Position, velocity and acceleration of a point
	Weak form modifications
	Finite element discretization

	Time integration algorithm
	Generalized -method
	Predictor


	Variable Angle Tow fiber model and stress recovery procedure
	Variable Angle Tow
	Path definition
	Material coefficients

	Stress derivatives
	The proposed stress recovery procedure
	Dynamic extension

	Acknowledgments

	Numerical examples
	Static analysis
	Clamped, antisymmetric cross-ply laminated square plate under uniform load
	Cantilevered composite plate subjected to a tip load
	Thick three-layered simply supported plate with bottom surface pressure 
	Thick three-layered VAT simply supported plate with bottom surface pressure

	Dynamics
	Plunging motion of a cantilever plate
	Flap rotation of a rectangular plate
	Clamped plate under uniform step function load

	Acknowledgments

	Conclusions
	Kernels for linear analysis
	Strong forms
	Equilibrium equation
	Neumann boundary condition

	Deformation gradient written with GUF notation
	Strain-displacement matrix
	Kernels of the linear part of the elastic stiffness matrix 
	Penalty method and kernels of the spring stiffness matrix



