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ABSTRACT OF THE DISSERTATION

A variable kinematic model for large deflection of functionally graded variable-stiffness composite laminates

Enrico Santarpia

Doctor of Philosophy in Engineering Sciences (Structural Engineering)

University of California San Diego, 2020

San Diego State University, 2020

Professor Jyun-Shyan Chen, Chair

Professor Luciano Demasi, Co-Chair

Composite materials play an important role in the aerospace industry. They are increasingly used
in primary structures, and recent manufacturing technology advancements are making Variable Angle Tow
(VAT) composites a valuable option for the design of innovative airplanes. One of the challenges of the future
of aviation is to have aerodynamically efficient configurations, which often result in very flexible structures.
Thus, the large deformation analysis of VAT composites is a necessary phase of the design. A difficulty is
often represented by the higher degree of anisotropy of these structures, which needs to be taken into account
with the necessary computational flexibility and without a compromise on the accuracy of the evaluations,
especially on the determination of stress levels.

This dissertation introduces a finite-element based computational framework for the variable-
kinematic analysis of geometrically nonlinear variable-stiffness composite laminates. A unified approach
allows the analyst to master a virtually infinite number of types of elements. They are based on a compact

writing of the equations of motion so that each layer can be independently modeled with an axiomatic

xvi



approach, or effective equivalent single layer models, able to correctly take into account the zig-zag form of
the displacements, can be used. In particular, formulations originally developed for linear classical compos-
ites, are now introduced for the large displacement analysis of VAT laminates. The accurate prediction of
transverse stresses is achieved by a quasi-3D recovery procedure originally proposed and based on integration
of the Second-Piola Kirchhoff Stress Tensor. It is demonstrated that the level of accuracy is comparable to

the more computationally demanding three-dimensional finite element approaches.
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Chapter 1

Introduction

1.1 Motivation

Composite materials are widespread in aerospace applications due to their design flexibility and
capacity to form lightweight structures. They are commonly employed as laminates with straight fibers ori-
ented at a specific angle in each layer, Constant Stiffness Composite Laminate (CSCL). Recent advancement
in the manufacturing techniques allows the use of Variable Angle Tow (VAT) laminates [1-4]. The latter
are attractive because of the removal of the straight fibers constraint, dramatically increasing the design
space. Thus, more efficient structures can be achieved. Initial studies on VAT structures were done for their
ability to redistribute loads. For instance, a reduction of the stress concentration in the presence of holes was
observed [5]. One of the main issues of thin-walled structure is buckling. VAT laminates proved to be able
to increase the buckling load [6, 7] and improve the post-buckling behaviour [8, 9]. Recently, it was shown
the possibility to use VAT composites for primary structures like a wingbox [4] and how an improvement
in postbuckling behaviour can be obtained with respect to CSCL [10]. VAT composites can also be used to
improve the dynamic response of wing structures. The fiber orientation can be optimized to increase certain
frequency (e.g. bending and torsion) without affecting others [11]. Few studies have been done to asses
the advantage of VAT laminates to control aeroelastic instability and more needs to be done. Studies on
one- and two-dimensional wing models coupled with unsteady strip theory aerodynamics [12, 13] showed an
increase of both divergence and flutter speeds. An increase of flutter speed compared to straight fiber was
also found in case of a symmetric stacking sequence plate with supersonic flow [14]. A mass minimization
problem conducted on a high aspect ratio Common Research Model concluded that under aeroelastic stress
and flutter constraints the curvilinear fibers as well as using curvilinear stiffeners can reduce the mass up to

11% relative to un-steered composites [15]. Other studies show that VAT laminates potentially can increase



the flutter speed of a plate in supersonic flows but their effect was strongly dependent on the boundary
conditions [16].

As shown in this brief review, VAT composite are promising. However, their analysis in a multi-
disciplinary design and optimization framework requires a higher computational cost than CSCL. Thus,
it becomes essential to have a fast and accurate model at the same time. The finite element method
(FEM) proved to be a useful tool for structural analysis. It is based on the subdivision of the domain in
elements. They can be one-, two- or three-dimensional based on the particular geometry to be analyzed.
In practical applications, composite laminates are produced as plates and two-dimensional elements can
often accurately describe these three-dimensional continuous structures. A-priori assumptions (axiomatic
theories) of the variation of field variables (e.g. displacements) along the thickness are adopted. Simpler and
computationally cheaper axiomatic theories can capture the global behavior of the structure, but they can
fail to provide an accurate stress representation. This is especially true for thicker laminates with strong
anisotropy. The correct evaluation of the stress field is of fundamental importance to successfully apply the
failure criteria [17]. An erroneous estimation can cause safety issues. In these situations it becomes necessary
the adoption of high-order theories or even three-dimensional elements. Many authors have dealt with the
problem to reduce the computational burden associated with composite laminates. Some are based on the
use of a combination of different methods (global-local methods) and others are based on post-processing

operations to recover the actual stress field in specific areas [18-21].

1.2 Contribution of the present study

The objective of this study is to develop a flexible computational tool for geometrically nonlinear
static and dynamic analysis of composite laminates. The focus is on the accurate evaluation of the stress
field in the area of interest at low computational cost. This tool is based on the Generalized Unified
Formulation (GUF) [22] originally proposed for linear composite structures. GUF provides the flexibility
to model each spatial direction independently using several axiomatic models, like Equivalent Single Layer
(ESL) and layer-wise (LW) [23] ones. It has been extensively validated for linear analysis of CSCL [24-26]
and VAT [27-29] composites. When applied to FEM, it generates polymorphic elements giving the user a
virtually infinite element library. Different elements can be used and compared, giving the opportunity of
finding the more cost effective modeling strategy for a particular application. Among all theories, particular
attention is given to the Zig-Zag theory [30-33] based on the Murakami’s Zig-Zag function (MZZF) [34].
It will be demonstrated for the first time in this dissertation that MZZF is an effective alternative to the

more expensive LW theory also in nonlinear analysis. This is especially true if used in conjunction with a



dedicated stress recovery procedure. For this purpose a post-processing procedure based on the thickness
integration of the nonlinear equilibrium equations is developed to further enhance the stress accuracy of
computationally cheaper elements. It is also shown how all elements can be used simultaneously through
the use of a penalty formulation, making it a viable tool for global-local analysis.

The original contributions of this work are summarized below.

e The Generalized Unified Formulation is applied to the geometrically nonlinear static analysis of CSCL
and VAT laminates. The expressions of the kernels (formally invariant scalars and building block of

the notation) are derived for the first time for a total Lagrangian finite element formulation.

e The algorithm is further extended to dynamic analysis. Additional kernels expression are derived for

the inertial terms (mass matrix).

e The study of flapping wing systems and blades for wind and marine application can be more conve-
nient done in a frame of reference attached to the body. The nonlinear dynamic governing equation
are derived for a non-inertial reference system and the kernels associated with the additional terms

(apparent forces, dynamic stiffness matrix, gyroscopic damping matrix) are derived.

e Development of a point-wise stress recovery procedure for nonlinear analysis of VAT composites. The
method retains all the nonlinear terms of the governing equation written in terms of Second Piola-

Kirchhoff stress tensor.

e The effectiveness of Murakami’s Zig-Zag Function for the geometrical nonlinear analysis of VAT struc-
tures is presented for the first time. Results are compared with commercial codes or test cases found

in literature.

1.3 Outline

The dissertation is organized as follows:

e Chapter 2 is subdivided in three sections. First, the most commonly adopted displacement based
axiomatic theories are listed. Then, it is presented a literature review of the algorithms developed
to mitigate the additional computational cost that composites and laminates typically introduce in a
finite element analysis. The additional cost often is due to a complex three-dimensional stress field
that has to be accurately modeled to correctly apply failure criteria. Many of these algorithms are

based on the simultaneous usage of different axiomatic theories. Finally, the concepts of compact



notation, unified formulation and invariant kernels are introduced. The main characteristics of GUF

are explained together with its implementation in a finite element framework.

e In Chapter 3 GUF is extended to the geometrically nonlinear static analysis of laminates. Novel

expressions of the nonlinear invariant kernels are derived using a total Lagrangian formulation.

e Chapter 4 further extends the nonlinear finite element analysis to dynamic problems. The kernels of
the mass matrix are obtained. With in mind a possible application on the analysis of flapping wings
and wind turbines, the formulation is also presented by using a frame of reference attached to the body.
With this intent, the weak form is rewritten in a non-inertial reference frame. Additional contributions

to the stiffness and damping matrix are obtained and the associated kernels derived for the first time.

e Chapter 5 illustrates the variable angle tow modeling in the finite element formulation. This is done as
preparatory step for developing a stress recovery procedure for the large displacements and rotations

analysis of generic composite laminates.

e In Chapter 6 the tools introduced in the previous chapters are validated against data from literature
and commercial codes. The capability to have an infinite library of elements allows one to compare
different models. In particular, it is shown how Murakami’s Zig-Zag function can be successfully used
also in nonlinear analysis to improve the accuracy of ESL theories in term of transverse stresses. It
is shown that an accuracy comparable with LW theories is achieved. In addition, it is shown the
effectiveness of GUF in reducing the computational cost using high-order axiomatic theories only in

the area of interest.
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Chapter 2

Multi-model analysis and Unified

Formulation

In this chapter the most common axiomatic models for composite multilayered structures are de-
scribed. Follows a brief survey of algorithms used to minimize the computational cost that such composites
require in a Finite Element Analysis. Most of them are based on the usage of different element types
(multi-models) in different areas of the structure. Finally, the concept of unified formulation is introduced
together with a description of its practical implementation in a Finite Element framework. It is shown how
the particular form of the unified formulation used in this dissertation allows for simultaneous use of several

axiomatic models, making it a useful tool for multi-model analysis.

2.1 Axiomatic models

The most common methods for the structural analysis of composite laminates are based on the
so called axiomatic models. These methods rely on hypotheses on the shape of the solution without an
a-priori knowledge . Their accuracy is tested only a posteriori. These assumptions allow to reduce the three-
dimensional continuum elasticity problem to a two-dimensional one. They define how the field variables (e.g.
displacements) vary along the thickness of the plate (linearly, parabolic, or other type of description). There
are two main classes of axiomatic models: the Equivalent Single Layer (ESL) and the Layer-Wise (LW) ones.
The former hypothesizes the structure as a single lamina with smeared material property, whereas the latter
treats each layer independently. The ESL models are computationally inexpensive, but are not accurate for
thicker plates or when a strong anisotropy is present. Moreover, they do not provide a correct evaluation of

the transverse stresses. On the contrary, LW models are more accurate, but expensive, especially when the



number of layer increases. They resemble the original three-dimensional modeling so that they are referred
as quasi-3D models.
Consider a planar composite panel assumed to be on the z-y plane and the thickness is along the

vertical z direction (Fig. 2.1).

Z

X

Figure 2.1: Plate geometry and reference system

The layers are numbered from bottom to top and k indicates the identity of a generic layer (Fig.

2.2).

hki layer k Ztoka\

botkT T
J{ > T, Y

Figure 2.2: Thickness coordinate of a generic layer.

A list of the most common axiomatic model is presented. Then in the next sections it will be shown

how all these models can be included in one through the use of an unified formulation.

2.1.1 Equivalent Single Layer theories

The displacements variables are expresses as a Taylor expansion along the thickness direction from

the middle of the plate (2=0). The most general form is:

Ny
uz(mvyaz) = Zzzqszz(xvy)
=0

Ny

uy(x,y,z) = Zzngyz (z,y) (2.1)
=0

Nz
uz(xayvz) = ZZZ¢21 (x,y)
=0



where ¢z, ¢y, ¢, are the unknown coefficients that have to be found. n,, n,, n. are the orders of
the expansion for each coordinate direction. Depending on the number of terms retained, different theories

can be generated (see Fig. 2.3).
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Figure 2.3: Equivalent Single Layer theory. Displacement variables through the thickness.

Classical plate theory (CPT) In this theory the Kirchhoff’s hypothesis are applied. It is assumed that
straight lines perpendicular to the mid-surface remain straight and normal to it after deformation and that

the thickness of the plate does not change. Thus, Eq. 2.1 becomes:

Ou,
ux(m,y,z) = uxo(may)f‘zaxo
ou
— _ 20 2.2
uy($7y7z) uyo(m7y> z ay ( )
ux(z,y,2) = uz(z,y)

As a consequence of these assumptions the transverse shear and normal effects are neglected. This theory

can provide accurate results only for thin plates and with low levels of anisotropy.

First-order shear deformation theory (FSDT) The Kirchhoff hypothesis are relaxed. In particular,
straight lines perpendicular to the mid-surface do not remain as such during deformation. The resulting

axiomatic model becomes:

U (,9,2) = ugo(@,y) + 2up (2, y)
uy(,9,2) = uyo(®,y) + 2y (2,y) (2:3)
uz(x,y,z) = uzo(xay)

where u;1 and uy; have the meaning of rotation of a transverse normal about the y and x axis respectively.
These hypothesis allows a constant transverse shear to exist. Nonetheless a constant shear is not physically

possible for equilibrium consideration and a correction factor is often used.



High-order shear deformation theories (HSDT) Increasing the order of the polynomial, more ac-
curate and complex theories can be developed. The higher order coefficients do not present a classical
interpretation (e.g. rotations). These theories do not need a shear correction factor because they allow the

shear stresses to go to zero on the top and bottom of the plate. An example of higher order theory reported

below:
uw(a:, Y, Z) = u$0(x, y) + Zuwl(xa y) + Z2uw2(x; y)
uy(2,9,2) = uyo(3,y) + 2up (2,9) + 22uys(2,y) (2.4)
uz(x,y,z) = Uzo(x,y) +Zuz1($7y)

But many other options are available, as the commonly used third-order laminated plate theory of Reddy

[35].

2.1.2 Layerwise theories

The ESL theories can accurately predict the global behavior of the plate, especially if thin. But
they can not capture the three-dimensional state of stress with adequate accuracy. This issue is overcome

modeling each ply separately with an ESL theory (see Fig. 2.4). The most general expression is:

Ny

) Zto + Zbot
k — ~topy, ' “botk
ux(x,y,z) Z(z_

=0

Ty

Ztop, + 2
u;j(x,y,z) = Z (z — Zopk bOtk> 925 vi Zboty, < 2 < Ztop, (2.5)

¢

L

=0
Nz

Z (Z Ztopk + Zboty,

=0

ut(2,y,2) 5 (2, y)

where k denotes the ply number. The term (2i0p, + 2bot, )/2 has been added because the ESL theories use

as reference frame the middle plane of the corresponding layer instead of the entire plate.
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Figure 2.4: Layer-Wise displacement variables.

In case a first order shear deformation theory is used for the inplane displacement and a constant



value for the out-of-plane displacement at each layer Eq. 2.5 becomes:

Ztop, T+ Zbots
wios) = ko) + (2= 2L ol (0
) z + 2
u’;(xayﬂ Z) = UZ()(xay) + (Z - tOPk20tk> usl(l‘,y) Zl)ot;c S z S Ztopk (26)
u]zc(mvyaz) = ulzco(xvy)

In the practical modeling a Taylor expansion is not ideal to describe the thickness variation of a LW theory.
It makes the imposition of the inter-laminar continuity a cumbersome process. An axiomatic expansion
based on Legendre polynomial is far more convenient, because it allows for an effective application of the
interlaminar compatibility of the displacements (i.e., the displacements must be continuous functions in the

thickness direction). The expansion (Fig. 2.5) using the Legendre polynomial becomes:

uﬁ(x,y,z) = Z z+1 y)

ulgj(zay7z) = ZFz]fi-l ¢k l‘ y) (27)

ub(e,y,2) = Z Ve (2,)

where W;i, ]z;w 1/)’; are the unknowns and F} i1 are the known coefficients that depend on the

thickness through the Legendre polynomials. Their explicit expression is as follow:

ok _ pp+Pf
! 2
FF = PF-PF, i=2n, (2.8)
Py — P}
F (L+1 = T

where P; is the Legendre polynomial of order i. The Legendre polynomials are defined between —1

and 1, so a transformation of the thickness coordinate is needed before evaluating them:

2 op,, T Zbo
Go = o — Propy T Zous (2.9)

Ztop, — *boty Ztop, — *boty

The advantage resides on the fact that the first and last unknown terms in equation 2.7 represent the

displacement of the top and bottom surface of the layer respectively when equation 2.8 is adopted. Thus,



the compatibility condition between layer k and k 4 1 simply becomes:

k — k+1

xo wxnx

ko _ k41 2.10
Yo /ll)yny ( )
k _ k+1

20 - ¢an

Although the stress state is considerably improved with respect to the ESL theories, the continuity
of the transverse stresses is still not guaranteed. For this reason mixed theory can be used where also the
transverse stress variables are modeled with an axiomatic theory [36-39]. This kind of theories are called
mixed layer-wise theories and they guarantee continuity of the transverse stress, but in this dissertation only

displacement based axiomatic theory are considered.

2.1.3 Partially-layerwise theory

It is possible to combine all the theories listed. For example the inplane displacements can be

modeled with a LW theory and the out-of-plane displacement with an ESL one:

Ztop,, T Zbot
ui(z,y,z) = Ul;o(xvy) =+ <Z - CMZOIC) uil(i,y) Zboty, S < S Ztopk

Ztop, T Zboty
Wiz = o)+ (5= P ) s, <5 < s, 211
uz($7y7'z) = Uz0

Other options are available.

2.1.4 Zig-Zag theories

Zig-zag theories are ESL theories but are treated separately in this dissertation for their capability
to be as accurate as the more complex LW ones. One of the shortcoming of the classical ESL theories is their
incapability to take into account the discontinuity of the first displacements’ derivatives in the thickness
direction [26]. Zig-Zag theories have been developed to overcome this issue [30-33]. From an historical
perspective [40], this type of theories can be subdivided into 3 major categories: Lekhnitskii Multilayered
Theory (LMT) [41], Ambartsumian Multilayered Theory (AMT) [42-46], and Reissner Multilayered Theory
(RMT) [39, 47, 48].

The Zig-Zag models were applied to displacement-based formulations [49] but also postulated for
mixed variational statements. This is the case of Murakami [34] who adopted Reissner’s Mixed Variational

Theorem (RMVT) [39, 47]. This framework was the base of later work [50, 51] which indicated the effective-
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ness of considering the discontinuity of the first displacement derivative in the axiomatic modeling. Mixed
Zig-Zag theories were also proposed on the basis of Hu-Washizu [38] and Hellinger-Reissner principles [52].
The high numerical performance of these models has also been confirmed for the case of curvilinear fibers
[53] with particular reference to the calculation of the stress fields.

Recently, different Zig-Zag approaches emerged: the continuity of the transverse stresses is a priori
enforced without increasing the number of degrees of freedom [54, 55]. This is achieved by using a strain
enhancement able to obtain the interlaminar stress continuity while maintaining the value of strain energy.
A different approach is followed in Ref. [56], where the multilayered Zig-Zag theory is built by using C?
warping functions.

Zig-Zag models have also been used for geometrically nonlinear structural analysis due to the rel-
atively low computational cost with respect to layerwise models [57]. Ref. [48] used Murakami’s Zig-Zag
Function (MZZF) to enhance the in-plane displacements of an RMVT framework. The nonlinearity was
based on von-Kérmén strains. The moderately large displacement model has also been adopted in Ref. [58],
where cubic expansion for the displacement field was enriched with a Zig-Zag function for the analysis of
composite plates in the postbuckled region. Results showed that the Zig-Zag modeling was superior to the
FSDT especially when the laminate had drastically different transverse stiffness properties from ply to ply
and for low length-to-thickness aspect ratios. A linear Zig-Zag model [59] was used to formulate a first
order sublaminate theory with a Total Lagrangian Formulation (TLF). A Zig-Zag FSDT was proposed in
Ref. [60], where the von-Kdrmdan strain model was used to represent the geometric nonlinearity. A mixed
approach allowed the formulation to take into account the continuity of the stresses and boundary conditions.
Moreover, shear correction factor was not required.

More recently, Flores [61] introduced a Zig-Zag term to a FSDT for the large displacement analysis of
shells. Finally, a higher-order shear deformation Zig-Zag theory [62] was proposed for the aerothermoelastic
analysis of composite panels subjected to supersonic airflow under the assumption of moderately large
displacement field (von-Kédrmén sense).

In this dissertation the Murakammi’s Zig-Zag Function (MZZF) have been used to augment the

axiomatic displacement field. Its expression is the following:

(2.12)

2 0 0
MZZF:  (—1)Fg = (—1) ( 5 Plopy T2 tk>

ztOPk — Zboty, Ztopk — Zboty,

where (i, is a thickness non-dimensional coordinate and its value is between —1 and 1. This function is added
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to the ESL displacement variables (see Fig. 2.5). For example:

um(xvya Z)
uy('xaya Z)

fu’Z(‘r’ y? Z)

umO(x7 y) + Zuxl(wv y) + Zzux2($7 y) + (_]—)kgkumg (1'7 y)

Uy0(33> y) + Zuyl(xv y) + 22uy2(xa y) + (_l)kfkuyg (z,y)

uzO(xa y) + Zuzl(‘ra y) + (_1)k§ku2¢ (.’E, y)

N4
/TN

N e

Murakami’s function Zig-Zag

(2.13)

Figure 2.5: Equivalent Single Layer theory enhancement of the displacement variables with Murakami’s

Zig-Zag function.

2.2 Global-local methods

The objective of the global-local methods is to maximize the solution accuracy given a certain

amount of computational resources. In absence of analytical solutions, the only way this can be done is

through numerical methods that are able to locally increase their resolution. This locality is usually enough

because either only specific areas of the structure have a complex stress field or the designer is only interested

in getting data from a specific part of it. During the years several different algorithms have been developed

for this purpose and researchers proposed different definitions of the term global-local analysis. Here some

examples:

Global/local stress analysis methodology is defined as a procedure to determine local, detailed

stress states for specific structural regions using information obtained from an independent global

stress analysis [63].

Global-local analysis refers to a solution procedure where the entire structure is modeled in two

steps. In the first step, a global model is analyzed and in the next step the area of interest, called

the local model, is analyzed using relevant data from the global solution [64].

Global-local analysis refers to a special case of the more general multiple model analysis; the
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Single-Models

Global-local

Multi-Models

hp-refinement

—{ Sublaminate grouping ‘
4{ Lagrange multipliers ‘

—‘ Simultaneous

{ Transition elements ‘

4{ Mesh superposition ‘

—{ Node-dependent kinematic ‘

{ Generalized Unified Formulation ‘

Figure 2.6: Global-local analysis algorithms for Finite Element methods

former term is typically used when there exist a typical subregion of interest that occupies a

small portion of the computational domain [35].

In computational structural mechanics, the term global-local analysis refers to a variety of hier-

archical modeling strategies used to study structural response phenomena covering a wide range

of length scales [65].

In this dissertation the term global-local analysis refers to a generic numerical method that allows to

obtain different level of accuracy in different part of the structural domain. The global-local method utilized

in FEM can be classified in single-model and multi-model methods. Fig. 2.6 shows a list of method used for

global-local analysis.
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2.2.1 Single-model methods

The first class of method relies on one mathematical model and the localization is done either
refining the mesh in the area of interest (h-refinement) [66] or increasing the degree of the basis functions
(p-refinement) [67]. Also a combination of the two have been used (hp-refinement) [68]. These methods do

not change the kinematic theory and for this reason are called single-models.

2.2.2 Multi-model methods

Multi-model methods for global-local analysis can be subdivided in sequential and simultaneous.
There is a wide variety of simultaneous models e.g. transition elements, sublaminate grouping and others.

Here a description of the methods is provided.

Sequential These methods rely on the use of a simple model to obtain an approximate solution on the en-
tire domain (global region), immediately followed by a new simulation with a more refined model considering
only the zone of interest (local region). The results of the first simulation are used as boundary condition
for the latter [63, 69]. These methods have the shortcoming that there is no feedback from the local region
to the global one and consequently equilibrium is not guaranteed. To solve this issue iterative methods were

introduce, where a loop between the solution is performed [70-73].

Sublaminate grouping In the sublaminate grouping method the local zone is composed by selected plies
of the laminates. These plies are well resolved using three-dimensional solid elements or higher order plate
theories. This method was introduced by Wang [74] and it relays on the Saint-Venant’s principle. The idea is
that the interlaminar stresses between two layer are not affected if the force distribution of other layers acting
on the layer of interest is substituted with a statically equivalent force. The idea is to use an ESL theory
to model the layers not of interest. Later Jones [75] applied this technique by adopting three-dimensional
elements, whereas Pagano [76] employed two-dimensional elements. Sun [77] proposed this technique to

study delamination of thick laminates.

Transition elements Another way is to have different element types for different areas of the structure
and join them together with special transition elements [78-81]. The disadvantage is that there should be a

transition element for every element combination.

Lagrange multipliers Another solution is to augment the weak form of the elasticity problem to enforce

the compatibility of the displacements between the global and local zone where different discretization or/and
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mathematical models are used. This operation is done through Lagrange multipliers. The advantage is that
transitional elements are not necessary. Aminpour [82] applied this technique for the study of plates with
hole and a composite laminate fuselage panel. Carrera [83] used Lagrange multipliers for beam elements

together with the unified formulation for variable kinematic.

Mesh superposition Fish [84] introduced the s-Finite element method. It consists of an additional mesh
superimposed to the existing one. The new mesh can be finer or having higher polynomial order elements
allowing to more accurately capture higher gradient. This method can be seen as a generalization of the
h-, p- and hp- methods. It has been applied to the study of multilayered plates [85]. The continuity of the
displacement field between the two meshes is ensured through the use of homogeneous boundary conditions

of the superimposed mesh.

Arlequine In this method the laminate is subdivided in overlapping domains that can be modeled inde-
pendently with different finite element and kinematic theories. The weak statement is formed by weighting
the potential energies associated with each domain an additional gluing term through Lagrange multiplier.
Ben Dhia [86] introduced the method and used it for global-local analysis of plates [87]; Biscani [88] imple-
mented it in the context of a unified formulation where both ESL and LW theories were used simultaneously

for the analysis of square thick plates.

Node-dependent kinematics The node-dependent kinematics has been used in the framework of the
Carrera Unified formulation [89, 90]. This method focuses the attention on the finite element nodes and
not on the element itself. Each node can be modeled with a different axiomatic theory. The elements that
have nodes with different theory are practically transition elements, but the compatibility is automatically

ensured thanks to the shape function property and no special modeling is necessary [91-93].

2.3 Unified formulations

In the traditional FEM a two-dimensional plate element is built upon a single axiomatic theory
(see section 2.1). As a consequence codes have limited element libraries (only few axiomatic theories are
available). If an additional element is needed, heavy and time consuming modification of the code may be
required with the risk of introducing bugs. The Unified Formulations (UFs) enable to create polymorphic
elements capable to change the underlying axiomatic model by user request. This is achieved by means of a
compact notation that makes use of indicial notation. Practically, a code that uses an Unified Formulation

has an infinite number of elements in its library, each one associated with an axiomatic model. This feature
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makes the UF an ideal tool for multi-model analysis with the objective to reduce the number of degree of
freedom of the problem.

In this dissertation the Generalized Unified Formulation (GUF) is used. It is a direct extension of
Carrera Unified Formulation (CUF) [89, 90, 94]. In the latter all displacement components are described
using the same expansion in the thickness direction of order A/. The displacement field for a layer k is as

follow:

ub(z,y,2) = FO’fu (zk)u’;% (z,y)
CUF: ub(z,y,2) =Fk (Myup (2,y) aw=t1Lb 1=2,....N (2.14)

uf(z,y,2) =FF ()b (z,9)

Zag,

where uﬁau 7“5% ,u’j% are the unknown function depending only on the in-plane coordinates. These
are the functions discretized using the two-dimensional Finite Element approximation. Instead F(’ju are
the thickness functions. They contain the thickness coordinate (z) dependence in the displacement field
decomposition. The symbol ¢ and b are used for the first and last term of the expansion (instead of 1 and
N +1), because if Legendre polynomials are used the first and last unknown coefficient of the expansion are
the displacements at the top and bottom of the layer respectively. If an ESL theory, the layer identification
k can be dropped from Eq.2.14.

On the contrary, the Generalized Unified Formulation permits an independent modeling of each
displacement component, allowing a greater number of axiomatic theories. The bigger design space has the

potential to reduce the total number of dofs necessary to obtain a more accurate solution at less computational

cost. The displacement field for a layer k becomes:

uk = tEF Mk, (vy) o, =t Lb 1=2,.. . N,

GUF : u’yC = yF(’juy (zk)u’;%y (z,y) oy, =t,mb m=2,...,N, (2.15)

ub = FE Rk, (ry) . =tnb n=2,...,N,

z Qu 20y,
where N, N, N, are the order of expansion in each directions. To note that different thickness
functions can be used for different directions. Also in this case the unknown functions depend on the in-plane
coordinates and discretized using two dimensional shape functions.
To explain how the equivalent GUF notation is adopted in the practice, an example is now intro-

duced. Let’s take the z displacement and assume we have a parabolic expansion in the thickness direction,
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as reported in the following equations:

Up = Ugo + 2Uz1 + 22Ugs + 25Ugs (2.16)

The thickness function are introduced. In this particular case:

CF, =1 Th,=z TFy=:2 %[ =23 (2.17)

and Eq. 2.16 can be rewritten as:

Uy = TFp(2)Ugy + “F2(2)uz, + “F3(2) Uz + TFp(2) Uz (2.18)

then the expansion coefficient are renamed using the GUF convention:

Ug, = Ug0; Uzs = Ug2

(2.19)
Ugy, = Ugl; Ug, = Ug3
and Eq. 2.16 is rewritten as
Uy = TF(2)ug, + TF2(2)Ugy + TF3(2)Ugy + TFp(2)ug, (2.20)
or using Einstein’s notation:
ub = FF g, o, =t1b 1=2,... N, (2.21)

Finally, the FEM approximation is applied to the two-dimensional unknown functions. The value

at each point (z,y) can be obtained as an interpolation of the nodal value of the element it belongs to:

Uy, (2,y) = "Ni(z,y)*Uy, (2.22)

where ¢ and *N; are the local node number of the element and the associated shape function. The final

GUF approximation of the displacement component becomes:
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or using Einstein’s notation again:

Uy = “Fa, (2)°N; “"U%M (2.24)
2.3.1 Thickness functions
The expression of the thickness function depends on the axiomatic theory used. If layer-wise:
k 2
*FFo= PF-PF, 1=2... NF (2.25)
:ch _ POk — lelC
b 2
For an ESL theory a Taylor expansion is used and the thickness functions are:
rthk = 1
a:Fvlk = -1 = 27"”'/\/’751 (226)
TE, bk = N

The Zig-Zag theory are build from the ESL with the addition of the Murakami’s zig-zag function.

So the notation becomes:

thk = 1
zFlk = 1 =2 .. 7'/\/11‘2 +1 (2.27)
FYo= ()G

where (—=1)" ¢, is MZZF defined in Eq. 2.12.

2.3.2 Model classification

An acronym is used to identify the kinematic theory used for a specific element:

Dy, Dy, Du, VDA, N N,

ug Puy ug/Vuy

where D,; and ./\/uj are the kinematic theory (E: ESL, L: LW and Z for Zig-Zag) and the order of the
polynomial used for the j direction. PVD stands for Principle of Virtual Displacements and it indicates that

the displacements are the only unknown, as opposed to mixed formulations like RMVT. The stress field is
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reconstructed through Hooke’s law or using ad-hoc post-processing procedure.

For example the theory 1zePVDs3o4 is :

Py + Pf Py — Pf
b = 2k (P = Rl + (P — Py +
uéj = Uyo + 2Uy1 + 22uyo + (—1)kauy3 (2.28)
_ 2 3 4
Uz —uzO+Zuzl+Z uz?"'z uz3+z Uz4

2.3.3 Finite element implementation

The application of the Finite Element method to GUF follows the same steps used for a classical
axiomatic theory. First the weak form of the governing equation is derived. This can be obtained through
the principle of the virtual displacements [35, 95], that states that the internal and external virtual work are
equal

where the symbol § indicate a virtual variation. The expression for the internal work for linear

analysis and a multilayered plate is:

NL NL
Wiy = / SeijoidV =Y / Sefofdvh =" oWk, (2.30)
v k=17 V"* k=1

where €;; and o0;; are the component of the strain and stress tensor. V' is the volume occupied by
the body and NL is the total number of layers. The virtual internal work can be written in vector form

using Voigt’s notation:

NL
Win, :/ selodV = Z/ (5ek)Todek (2.31)
v P A

where € and o are the strain and stress vector

€ = |[€xx €yy Vay VzzVyz 6zz]T (232)

0 = [0y Oy Oy Oz Oy O'ZZ]T (2.33)

The external work due to the traction forces F' is

Weat = / suTFdA (2.34)
A
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where A is the surface where the forces are applied. The equilibrium equation is expressed as a function

of the displacements and consequently as a function of the in-plane unknown of the unified formulation

( le(lu,;’ z]jauy , uf%z) through the strain-displacement relationships
€hn uf o Fy, U, o
€5y Uy g, Yy
P I B P B R )
Vo ug . +uk, “Fy,, e, T FN Ul .
752 ulljyz + u’;y nguy,zuga”y + ZF(l;uz uchO‘Uzvy
e, uf T
and Hooke’s law
ol = Cke (2.36)

Finally the FEM approximation is introduced. The plate is divided in elements and the displacement

values at each point can be derived as interpolation of the nodal values.

k _ TN xTTk
uwaux - Nl Uaumi
k — YN.YUk 2.
uyauy - NZ Uauyi ( 37)
k _ ZN.2TTk
uzauz - Nl Uauzi

Substituting the expression of the stress (Eq. 2.36), strains (Eq. 2.35) and the displacements
discretization (Eq. 2.37) in (Eq. 2.31) the discretized expression of the internal virtual work can be found.

The contribution for a single ply is:

k — 77k ko, Buz IJ 27k k kovu, Buy 1J yTTk

Wiy = 0°Ug,  Kuguy ™" "Ug, 5 +0Uz,, [ Kugu, Us,, o+
zy7k kauy Bu, IJ 277k k kawy Bug 1T yrrg

o Uauzl Kumuz UﬁuZJ + 5Uyauy1 Kuy“m Uﬁu$J+

ko, Bu, IJ
k k k
ovUk, Ky vuk 46Uk

Oy

kow, Bu, 1J

oy 1 Ky ZUEHZFL (2.38)
kove, Bu, I keve, Bu, 1J

5ZU§UZ1KuSu§ﬁ ’ xU[’fcu,J“‘(snguzIKu?uy ! yUguyJ+

+ o+ o+ o+

z17k ko, Bu IJ 271k
5 Uauzl Kuzuzz z UﬁuZJ

Terms like K. fff{ff, Pus 17 are scalars and they are called the kernels of the Generalized Unified For-

mulation. Although they are functions of the axiomatic theory, material properties and geometry of the

structure their expression is formally invariant and they are the building blocks of the formulation. Full
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expression can be found in Appendix A. Only six of them are independent because of the symmetry property
of the elastic stiffness matrix. From this scalar invariant it is possible to build the stiffness matrix of the
multilayered plate (see Fig. 2.7).

Eq. 2.38 can be written more conveniently in matrix form:

T T T
owh, = (oU%) Kb, UL+ (oUb) Ki, UL+ (sUE) KK, UL+
T T T
k k k k k k k k k
n <6Uy) KuyuIUm—f—(&Uy) Kuyquy—i—(éUy) K , Uty (2.39)
T T T
+ (oUf) KE, UL+ (sUY) KE, UL+ (sUF) Kb, U
and after assembling:
T
T
owk, = | sut K" Eogk vt | = (oU") KU (2.40)
Y Uy Ug Uy Uy UyUz Yy
sU?l Ki. Ki. Ki. ||U:

K" is the layer stiffness matrix.
Similar procedure is done for the virtual work of the external forces and the linear system of equation

for a single lamina is as follows:

k k k k k
k k k k o k
k k k k k
KU‘ZU‘I K“zuy Kuzuz UZ Fz

The multilayered finite element stiffness is obtained through a thickness assembly procedure of Eq.
2.41. Particular attention has to be taken during this process since it depends on the combination of the
selected theories. Fig. 2.8 shows the actual implementation for the term K, ,,. In case of ESL theories
the layers are merged in one and consequently the layer stiffness terms are summed. For LW the layers are
kept separate and there is no superposition of the matrices with the consequence of a greater number of dofs
necessary. The interlayer displacement compatibility is imposed by applying Eq. 2.10. This results in the
superimposition of the bottom right corner of the upper layer matrix with the top left corner of the bottom
layer one (second case of Fig. 2.8). A combination of the two previous operations is obtained in case and

ESL and LW theories are used simultaneously.

A scalar kernel, instead of a 3x3 matrix kernel (CUF), derives from the hypothesis of indepen-
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Assembled matrix

_ e
Kuxuy =U Kuxuy

M

e
Icuxuy

Matrix at multilayer and element level

~ S
Matrix at layer and element level @

ey k
Uy Uy Matrix at layer and nodal level
\ eKk] J
Ug Uy
Kernels J
o 7Ky Buy 1
Uz Uy

Figure 2.7: Elastic stiffness matrix construction. From invariant kernels to assembled structure. Example

shown for one kernel.
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Figure 2.8: Example of thickness assembly for the term K, of the stiffness matrix. Different
combinations of axiomatic model (ESL and LW) for in-plane displacements (u,, u,) are shown. On the left
the assembled matrix and on the right the corresponding axiomatic model used for each component.
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dently model the components of the displacement vector. This provides the flexibility to assemble stiffness
contribution of "mixed” terms that are modeled with different theories. This fact implies that assembled
kernels (Kuwuy, Kuyuz) can be rectangular and of different sizes. Fig. 2.9 shows a simple example of matrix

structure in case there are two nodes and different theories.

2.3.4 In-plane assembly

Elements based on the GUF are polymorphic because an infinite number of kinematics can be
associated to them. These characteristic make the elements useful for a global-local analysis (see Fig. 2.10).
In the current formulation each finite element can have a different kinematic model assigned in the
local element reference system. This produces incompatibility between elements. A node can be described by
different kinematic theory depending which element is considered belonging to. This issue is solved through

a weak imposition of the interelement compatibility using a penalty method.
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I J I J 1 J

Figure 2.9: Assembled stiffness matrix of a two layer plate using the axiomatic theory ggPVDs3o3. Only
two nodes I,J are shown. Blue and orange squares represent the stiffness of the top and bottom layer
respectively
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Figure 2.10: Application of GUF for global-local analysis. Different color corresponds to different

kinematic theories.
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Chapter 3

Geometrically Nonlinear Static

Analysis of Anisotropic Laminates

3.1 Governing equations

In this chapter it is described the procedure to solve a geometrically nonlinear problem for a
anisotropic laminate with variable thickness using a variable axiomatic plate model with the Finite Ele-
ment Method. The first step is to find a suitable form of the governing equations that allows an easy
application of the numerical algorithm. This form is called weak form. It can be derived from the differential
expression of the equilibrium equation using the Weighted Residual Method and an integration by parts.
The resulting equation is still difficult to solve because of the nonlinearity. Then a linearization is performed

and the solution is obtained incrementally.

3.1.1 Strong form of the boundary value problem

The equations that it is intended to solve are the ones of static elasticity of a general body subjected
to both Dirichlet and Neumann boundary conditions. The elastic body during the deformation is supposed
to occupy a region V' of the three-dimensional space with boundary I' (see Fig. 3.1). A left subscript 0 is
used to indicate the initial configuration. The body is subjected to both conservative volume forces (b),
surface forces (h) acting on part of the boundary (I') and it is constrained on the remaining part of the
boundary (I'y) where a displacement field is given (g). Defined a fixed Cartesian reference frame, it is
possible to identify each point on the solid by its position at the initial undeformed configuration (X) and

at the deformed (current) one (x), after a displacement field u is applied.
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[ =I,UT,
Ty, =0
V cR3
I cR3

z3

Figure 3.1: Solid domain at initial undeformed configuration and after deformation occurs.

x=X+u (3.1)

The most natural way to define the equilibrium is to express it in the deformed configuration using
the Cauchy stress tensor o;;. The associated system of differential equations (strong form) is shown in Box

3.2.

— Strong form at current configuration

Given b; : V =R, g; : I'y, = R, hy : Ty, = R, find uw; : V— R, such that

0ji;(X)+bi(x) = 0 in Vv
u;(x) = gi(x) on Ty, (3.2)
n;(x)oji(x) = hi(x) on Ty,

This form turns out to be difficult to deal with using the current variable axiomatic theory due to
the continuous update of the current reference systems during the incremental algorithm. As a matter of
fact it is not possible to apply a rotation matriz to a quantity which components along a certain direction
are described by polynomials of different order. Other methods can be used like a least-square solution,
but it will degrade the performance. This issue can be avoided if the equilibrium is expressed in the initial
undeformed configuration (oV') using the Second Piola-Kirchhoff stress tensor S (SPKST) and the Green-
Lagrange strain tensor E (GLST) [96]. The strong form in the undeformed configuration is shown in Box

3.3 (see Appendix B for derivation). Here G is the deformation gradient and J its determinant.

3.1.2 Weak form of the boundary value problem

The strong form of the boundary value problem (Eq. 3.3) is not easily solved. There are other forms
that can be used to solve it: such as the weighted residual forms or the weak forms (virtual work) and the

variational forms (energy principles). Since we allow the forces to be non-conservative, it is not possible to
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~— Strong form at undeformed configuration N

Given b; : oV =R, g;: 'y, = R, oili s ol'n, = R, find u; : oV — R, such that

(Gip(X)Sp; (X)) ; + Jb:i(X) = Tp(X)i@(X)  in oV
ui(X) = §i(X) on ol (3.3)
sz(X)SkJ(X) 0nj (X) = OiLi(X) on OFhi

obtain a potential energy for the system and consequently it is not possible to use an energy principle like the
principle of minimum potential energy. In the Finite Element Method the weak form is often used. In order
to rewrite the system of equations (Eq. 3.3) in the corresponding weak form it is necessary to introduce the

trial functions (u;) and the weighting functions (du;) defined as follows:

u; € .5; S; = {ul | u; € Hl, U; = gi on orgi} (34)

ou; € W; W, = {(5’(1,1 ‘ ou; € Hl, ou; = 0 on (]ng} (35)

where H' is the space of functions with square-integrable derivatives.
The first step is to multiply the equilibrium equation 3.3 by the weighting functions and integrate

over the domain

— / 5’&2 (GipSpj) j doV = / 5U,ij doV (36)
oV ’ oV

This form corresponds to the weighted residual form. To obtain the weak form an integration by

part is used:

/ ou; (GipSpj)J doV = —/ 5Ui7jGipSpj doV +/ (5UiG7;pSpj)’j dgV (37)
oV oV oV

Using Gauss theorem on the last term of the right-hand side of the equation 3.7:

/ 5’[1,1 (GipSpj) j doV = — / (5ui7jGipS’pj doV/ (5UiGipSpj (47 dor (38)
oV ’ oV ol

Since du; = 0 on I'g, by definition of weighting function (see Eq. 3.4) it is possible to write the

following:
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/ Sui (GipSpj) / 5u7,j01psmdov+z / 5u;GipSpj onj d o (3.9)

Fh,

Using the Neumann boundary condition (see Eq. 3.3) in Eq. 3.9:

/ 5ui (GipSpj) j doV = —/ 5u¢,jGipSpj doV + Z/ 5’UJZ Oili doF (310)
oV ’ oV i ol'n,;

Substituting Eq. 3.10 in Eq. 3.6

oV oV i ol

Using the following relations du; ; = 6Gj;:

/ 5GijGipSpjd oV = / ou; Jb;doV + Z/ ou; oiLi dol (3.12)
oV oV i oln;

The left-hand side of Eq. 3.12 can be rewritten as a function of the Green-Lagrange strain and

Second-Piola Kirchhoff stress tensor. Introducing the variation of the Green-Lagrange strain:

1
OEp; = 3 (6GipGij + GipdGij) (3.13)

it is possible to show that using the symmetry of the stress tensor, the product of the strain variation

with the stress is:

1

SFpsSp = 5 (6GuGi+ Glp(SGU) Sy 6GIPG” Sy + 5GU GinSp; (3.14)
1

= SGWGlpSJp + §G13G1pSpJ = §5GijGipSpj + §5GijGipSpj (315)

= 6G;GipSy; (3.16)

Substituting Eq. 3.14 in Eq. 3.12 the weak form is obtained. The statement is as follows:

— Weak form undeformed configuration N\

Given bz oV — R, gz : Qng — R, O}AL,' : OF}” — R, find u; € Si7 such that for all 511,,' e W;

/ 6EijS¢jd0V e / 6u1jbzd0V+Z/ ou; O}Alidor (317)
oV oV i ol
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This form is equivalent to the work of virtual displacements. The left hand side represents the

virtual internal work and the right-hand side the work of the external forces.

3.1.3 Essential boundary condition

The weak form (Eq. 3.17) does not include the essential boundary conditions. There are different
methods to enforce them, e.g. direct substitution method, penalty method, Lagrange multiplier, Nitche’s
method. In this work the penalty method has been chosen for its simplicity and for not increasing the
number of unknown variables. In this method the energy of the system is modified due to the constraint.

The energy contribution of the constraint is:

Ug = 1 / (=) (g dor? (3.18)

where 1 is a diagonal matrix with the penalty factors.

Y, 0 0
Y= 0 ¢, 0 (3.19)
0 0 4.

The variation of the potential energy is taken:

o = a5 [ wee -] -

= ;AFQ §(u_g)T¢(u—g)d0I‘9 _’_%/ (u_g)T/llJ(S(u_g)do]_—‘g _

ol (3.20)
1 T 1 T
= 7/ du 1/J(u—g)d01"g+f/ (u—g) YPdud I’ =
2 J o 2 J o
= sulp(u—g)d 9 = sulypudT9 — / sulypgd 9
ol ol'9 ol

This variation is then added to the weak form (Box 3.21).

3.1.4 Interelement compatibility

The weak form derived (Eq. 3.21) is applicable to a standard FEM in which a single axiomatic
theory is chosen for all elements and all displacement direction. An additional issue arises if this condition
is removed and different elements are allowed to have different theories and order of expansions. Foreseeing
this issue, the weak form is augmented with additional terms to take into account the inter-element dis-

placement compatibility. In doing so we imagine that the continuum solid to be splits into pieces. Each
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~— Weak form undeformed configuration

Given b; : oV = R, §i : oy, = R, ohs

oV ol

Ouiiiu dOng

9i

s ol'n, = R, find u; € 5;, such that for all du, € W;

Z/ 5UioilidoF+Z/ ouiiigi d o'y, +
i oln i 7ol

/ Su; Thid oV
DV
(3.21)

=
ole
@@@w

Figure 3.2: Solid is subdivided into elements.
attached to the new generated faces.

piece corresponding to a future finite element.

surfaces are kept together using again a penal

D

Elements are connected through a distribution of springs

The division generates new internal surfaces (I'y). Then the

ty method, that can be imagined as a distribution of springs

connecting the new generated surfaces (see Fig. 3.2).

The energy associated to the springs connecting each pair of faces is:

TL
Ucomp = Z
f=1

ur — ur
OIf f< )

f
UC(IO)MP

where

UcOup (3.22)
o) v(ar ) —ur ) doly (3.23)
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Y=10 v 0 (3.24)
0 0 7

Note that the surface Ff(+) and I‘f(,) are supposed to be equal. The variation of the energy is:

f) 1 T
5Uc(10MP = 0 l2/r (Urfm - Urfm) V(Urfm - urfu)dorf] =
oL f

1
T T
/Orf 5urf(+)'y(upf<+) — UFf(i))doFf - 5/ 511rf(7>’)’(111“f(+> - up‘f(ﬂ)dol“er

ol'y

1
2
1 T 1 T
T35 . (ur ) —ur ) ydur ., dol'y — 2/ . (ur i, —ur ) ydur  dol'y =
ol'y :

oL f

_ T T
= /oFf 5urf<+>7urf<+> dol'y — /oFf 6ul“f<+> yur dol's+

A T
* forf 6uFf<—>7uFf<*> dol’y — foFf 6uFf(—)7uFf(+> dol's
(3.25)
Adding this contribution to the weak form, the final expression for the variable kinematic plate is

obtained:

— Weak form for the variable kinematic plate theory in the undeformed configuration —————————

Given b; : oV — R, ?]z : ()ng — R, ()}ALi : ()Fhi — R, find u; € SZ'7 such that for all du; € W;

OV or
[ —

Internal work

5ui¢z‘iuidorgi - / 5uiwiigid01—‘gz‘ =
0

94 Fyi

homogeneous part of Non-homogeneous part of
essential b.c. essential b.c.

oV i oln;
—_— ————

Volume forces

(3.26)

Surface forces

External work

nyg

B ZZ/F (5“7?Ff<+> - 5“1‘1}(,)) Yii (Uil"f(ﬂ 7Ui1"‘f(7>> doly
f=170lr

%

Interelement compatibility

The weak form derived has the same expression of the equation that it would have been obtained
if the principle of the virtual displacements (PVD) had been used. It states that the internal work due to

the virtual displacements (virtual work) is equal to the external virtual work with the addition of energy
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constraints to impose the boundary condition.

OWint + 6Ug + dUcomp = 6Wexr (3.27)
where
OWint = / 0E;jSi;doV (3.28)
oV

WexT = / ou; Jb; dogV + Z/ ou; Oili dor (329)

oV i ol'n,;
oUg = / dushiiuid oLy, — / duithiigi dol'y, (3.30)

oTy, r,,

ny nf
(f) _
i f=170ls i f=17oly
7Lf

ng
- ZZ/ OuiT () Yiithir ,(, dol'y = ZZ/ Ouir, , Viitit () dol'y
i f=170olf i f=17 0ol

(3.31)

3.1.5 Linearization for load stepping algorithm

During the linearization process the left sub- and super- scripts on a field variable refer to the
configuration in which that variable has measured and occurred respectively. Thus, for example, ééWtot
indicates that the total virtual work §Wi is calculated at the pseudo-time ¢ and is referred to the initial
configuration. This is a static analysis. Thus, from a formal point of view, time ¢ is not adopted. However,
the solution strategy requires the conceptual subdivisions in steps, which are easily identified by the “time”
t. For that reason, even when the quantities contain reference to the variable ¢, the reader needs to assume
that a nonlinear static solution of the structural problem is sought.

The nonlinear equation provided by the weak form (see Eq. 3.26) has to be linearized using a load step
algorithm in order to be solved with the Finite Element Method. In the present capability Newton-Raphson
technique has been implemented. Assuming that the solution corresponding to a load level identified by the
pseudo-time ¢t is known, the algorithm needs to be able to identify the response to a load level corresponding
to an incremented pseudo-time t + At, where At is the pseudo-time increment. Following this logic, the

weak form (see Eq. 3.27) is written at pseudo-time ¢ + At as follows:

t+Aé5WTOT = t+Aé(5W1NT — t+A85WEXT + t+A(§(5UG + t+Aé5UCOMp =0 (3.32)
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In the practice [97] an incremental decomposition of the variables is adopted as shown below for the generic

quantity [
unknown known unknown
H_ASD = 0 + HA0 (3.33)

Using the approach described in Eq. 3.33 for the cases of displacement wu;, strain Fj;;, and stress S;;

components, the following relations can be written:
t+Aéui = 6’&1 + OA’UJZ‘
t+A8Eij = BEij + OAEZ‘J‘ (334)

A
o+ SSij = 651‘]' + oASij

The GLST is a nonlinear function of the displacements as described in the following expression:

1 1
Ei; = 3 (Gkinj — 51']‘) = 3 (UW‘ +uj 4 + uk7iuk7j) (3.35)

where G is the deformation gradient and is explicitly defined below:
0Gij = 0ij + i (3.36)

The symbol §;; is Kronecker’s delta and the subscript “,” is used to indicate differentiation.
The expression for the increment (AE;; of the GLST (see Egs. 3.34 and 3.35) can be derived by

subtracting the strains at time ¢ from the ones at ¢ + At:

1
0AE;; = (oAuzgj + oAu;,; + Buk,iOAuk,j + gAuy,; éuk,j) + B 0Auy, ; gAuy, (3.37)

1
2
The increment (AE;; is conveniently decomposed as follows:

0AE;; = gAey; + oAny (3.38)

where term (Ae;; is a linear function of the displacement increments, whereas ¢An;; is a nonlinear function
of the displacement increments. Their explicit expressions are reported below:

oA, =

]

(OAui,j + oAu,,; + touk,i 0Auy ; + gAuy,; 6“197,7') (3.39)

— DN =

0AN;; = 5 0Auy; oAuy (3.40)

[\]
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To apply PVD the variations ¢ gAe;; and 6 0An;; need to be calculated from Egs. 3.39 and 3.40, as reported

in the following relations:
1
50A€i]’ = 5 (5 OAum + 4 oAUjJ‘ =+ éu;m 1) oAu;w' +4 oAu;m éu;@j) (341)

1
1) OAnij = 5 (5 OA’U,]CJ‘ OAukJ— + QA’LLkJ' 1) OAukJ—) (342)

To obtain an equation that is a function of the displacements only, the SPKST increments are

related to the GLST increments through the Classical Form of Hooke’s Law (CFHL):
0ASij = 0Cijrs 0AE,s (3.43)

where (s are Hooke’s coefficients and are the ones usually adopted for linear analysis, provided that the
material can be assumed to behave in a linear manner even in the presence of large displacements [95].
Substituting Eqgs. 3.34, 3.41, 3.42, and 3.43 into the expression for the internal virtual work (see Eq. 3.27)

the following result is obtained:

t+Aé(5WINT = / 1) OAeij éSijdoV +/ ) OAni]’ BSZJ d0V+
oV oV

(3.44)

+ / 50Aeij00ijr50AErstV+/ 0 0An;; 0Cijrs 0AE;dogV
oV oV

In the practical solution process, the terms representing higher order infinitesimal quantities are neglected.

The order of dependence with respect to the displacement increments can be directly deduced from Eq. 3.44:

t+Aé5WINT = / 50A€ij BSZJ doV (N OAUO)
OV

+ /60A€z’j00ijrs0A€rsd0V + /50Amj65ijdov (N OAUI)
oV oV

(3.45)

+ / 0 0Ae;5 0Cijrs 0ANrs doV (~ 0Au2)
ov

+ / 0 0AN;; 0Cijrs 0ANrs d oV (~ oAu?)
oV

The constant and linear terms appearing in Eq. 3.45 are boxed for convenience of the reader. Discarding the

higher order terms and substituting Eq. 3.45 into the PVD statement (Eqs. 3.27 and 3.32), the following
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approximation for the PVD is obtained:

PHASSWER A+ AW B+ UG + T Ucomp = — TSRS + A Wk (3.46)

where the definitions reported below have been used:

t+A(§5WICI§I’Il‘ = /V 1) ()Aeij OCijrs 0AersdoV
0
t+A55WIc1&% — /V 0 0An;; BSijd oV
0
t+A(§6WIC1;BI% — /V ) OAeij BS”d OV
0
t+Aé5WEXT = /F‘SOAW t+Aéili dOFh+/V du; Jbid OVJFZ(SOAUPL' t+A(§ pi
oln 0 p

AU = /r 0 g Auithy; gAuyd oLy, +/F 8§ oAuithy; fuid oLy, — /r 0 gAuitpiigid oLy,
0 g,inf ol'g; ns ol'g;
t+At
Sscone = 3030 [ Foluir, o vodunr dly+ 3030 [ Foduir, i buir, o dy+
- — f - _ f
% fnfl % fnfl
+ ZZ/ 50A“Z'Ff<—>%iOA“iFfHde +ZZ/ 50A“iff<—>7“'éuif,f<—>drf*
i f=17Ts i f=1"Ts
ny ng
- ZZ/ OoAuir ) Vi pAUir L'y 722/ 50A“““f<+>%iéuiffv)drf*
i =117 i f=1'Ts
nf ng
- ZZ/ doAuir, ,viioAuir,,dly 722/ 8 oAuir (vii gt ., dT's
i =YLy i f=1"Ts

(3.47)
Eq. 3.46 is the linear relation that has to be solved at each pseudo-time step ¢ to obtain the solution at

t + At. The solution is numerically obtained by using the finite element discretization in the framework of

GUF.

3.2 Variable axiomatic thickness expansion

The general idea is to represent the governing equations with the displacement arrays written in
indicial form, allowing the user to master a virtually infinite number of theories. Each displacement com-
ponent had its own independent indicial representation allowing a different structural theory for each finite
element coordinate direction.

To show how the GUF is extended to the large displacement model, let X,Y,Z be a coordinate
system located at finite element level (at this stage we assume that the reference undeformed geometry is

considered). The X — Y plane is coincident with the plate’s mid-plane and Z is the thickness coordinate.
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The incremental displacement gAw; (see Eq. 3.34) within GUF framework and at layer level is the following:

oAUk (XY, Z%) = §FE (Z%)oAuk,, (XY) aue=11Lb | =2,... Ny
0Auy (XY, Z%) = TF), (ZF)oAuy,, (XY) au,=tmb m=2,... Ny (3.48)

0Aul (XY, ZF) = gF,fuZ (Z%) OAug%Z (X,Y) au,=t,nb n=2,...,Ny,

where t, b, and [, m, n are indices adopted for the axiomatic expansion in the thickness direction. Including
more terms is equivalent of having accurate higher-order theories, but the number of degrees of freedom
and related computational cost are increased. More in detail, N, Ny, , and N, are the orders of the
layerwise theories used for the different displacement components. For instance, A,, = 3 means that the
displacement in the Y direction and layer k is expressed with a cubic expansion obtained by combining
Legendre polynomials (terms of the type ¢ Folfuy (2)).

The in-plane expressions of the displacements (terms OAu’)“(%X (X,Y), OAu’}“,a“y(X, Y), and
OAUIE%Z (X,Y) in Eq. 3.48) are unknown functions at this stage. Within the typical finite element
discretization, these unknowns are further expressed in terms of shape functions and nodal (unknown)

incremental displacements as follows:

oAk, = SNI(X,Y) 0AUK,, ; T=1,2,...M,
oAuf,, = INI(X,Y) 0AUY,, ; T=1,2,...M, (3.49)

OAu%auz = OZNI(Xa Y) OAUéauZ] I = 1, 2, ..M,

where ¥N;, ¥N;, and ZN; are shape functions used for the displacements in the X, Y, and Z directions,
respectively. Subscript I indicates the identity of the node (local numbering) and the summation convention
is applied. M, is the number of element nodes. As it is realized by inspection of Eq. 3.49, the formulation
is formally independent of the type of finite element (i.e., quadrilater with 9 nodes or triangular with 15

nodes).

3.3 Finite element discretization and solution of the system

The linearized system of governing equations (see Eq. 3.46) is rewritten by using FEM and GUF

notation (Egs. 3.48 and 3.49). The resulting set of equations for a generic finite element is the following:

({Kr + {Knry + (Ksp) 0AU = ((Kr + (Ksp) 0AU = " Frxr — {Finr — (Fsp (3.50)
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where (Ky,, (Knr, are the linear and nonlinear parts of the tangent stiffness matriz (K, respectively. The
quantity H'ASFEXT is the external force vector and éFINT represents the internal forces. (AU contains the
unknown nodal displacements. In the GUF architecture different axiomatic theories and number of degrees
of freedoms per finite element are allowed, so it is not generally possible to assemble the element stiffness
and force arrays using the typical standard procedure (which usually involves transformations from local to
global coordinate systems and then additions of portions of the stiffness matrices of the single elements to
get the stiffness matrix at structural level). In the present approach as have been shown in the previous
sections of this chapter the displacement compatibility of elements sharing the same node is imposed weakly
by using the penalty method, which, from a physical perspective, could be interpreted as a set of distributed
springs along the thickness. This compatibility imposition generates an additional stiffness matrix {Kgsp and

force vector SFSP. Box 3.51 show the connection between the weak form and the FEM arrays.

~— Linearized weak form for load stepping algorithm \

/ 0 0Aei; 0Cijrs 0AersdoV + / § oA §Si doV +/ 0 gAuithy; gAug dol'y, +
oV oV ol'g;

Stiffness matrix (linear) Stiffness matrix (nonlinear) Spring stiffness (b.c.)
§0AU (K1, AU 3 oAU (K oAU 5 0AU tKsp oAU

nf

ZZ/F, (50A“iff<+> _50A“““_f<—>> i (0Auiff<+> - OA“““fH) dol'y =
i f=1"1r

Spring stiffness (inter-element)
30AU [Ksp oAU

0

= /F(SOAUi t+A5iLi d0Fh+/V5U7jbzd0V+Z‘SOAUP1 t+A(t) pif/v(s erij BSUdOV—
ol'n 0 P

External forces Internal forces

SoAU AR 5 0AU {FinT
0
t
[ sotusjuidar, + / § o Auitpisgid oT',
ol'g; olg;
Spring forces (b.c.) Spring forces (b.c. nonhomog.)
5§ oAU [Fsp §0AU {Fsp
nf
t t
E E / (5 oAU ) = 50Auirf(,)) Yii (OUiFfH) - o?%rf(,)) dol'y
i f=1"Ts ‘
Spring forces (inter-element)
§0AU [Fsp
(3.51)
~ J
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The explicit expression of the finite element equation (see Eq. 3.50) is reported below:

Kruxuy + (KsPuxux  (KTuxuy + (KsPuxuy  6KTuxuz + (KsPuxuz oAUy A FexT x — (Fint x — (Fspx
CKruyux + KsPuyux  (KTuyuy + KsPuyuy  (KTuyuz + CKSPuyuz oAUy | = | "AFgxry — Finty — {Fspy
0KTuzuy +0KsPuzux  (KTuzuy T 6KsPuzux  0KTuzuz + (Kspuzux AUz A Fexrz — (Fivrz — (Fspz
(3.52)
where, for example, it is
(AUy = [OAU§1 o 0AUL, L oauh,, | (3.53)

0AU% ; is the vector containing the nodal displacements relative to node I of the element.
The system is solved iteratevely through Newton-Raphson iterations until a user-selected conver-
gence criterium is satisfied. In the following paragraphs, the GUF kernels of each term of the discretized

linearized system of equations will be derived for the first time.

3.3.1 Kernels of linear stiffness matrix

The linear stiffness matrix (K, is built from the first term on the LHS of Eq. 3.46:
AW = / 0 0Ae;j 0Cijrs 0Aersd oV (3.54)
oV

The array representation of the linear part gAe;; of the GLST (see Eq. 3.39) can be expressed in matrix
form using Voigt notation:

OAe = BL OAu (355)

where the following definitions have been used:
OAe = [erxx eryy 20A€XY QOAGXZ QOABYZ OAezz]T (356)

oAu = [OAuX OAUY OAUZ]T (357)
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EGxx 00x
{Gxy 00y
6G xx 00y +Gxy 00x
0Gxz 00x +Gxx 007
6Gxy 00z +Gxz 00y

¢
0Gxz 00z

EGyx 00x
LGyy 00y
6Gyx 00y +Gyy 00x
6Gyz 00x +Gyx 00z
6Gyy 00z+Gyz o0y

¢
0Gyz 00z

EGzx 00x

LGy 00y
EGzx 00y + §G zv 00x
0Gzz 00x + §G zx 00z
0Gzv 002+ §G 2z 00y

¢
0Gzz 00z

(3.58)

The expression for the deformation gradient within the GUF formalism can be found in Appendix C. The
displacement increments can be expressed as a function of the nodal displacements of the element. Thus,

the strains can be expressed as a function of the unknowns (at finite element level) as follows:

er = BBL OAU (359)

where
oAU = (AUT oAUT oAUT, 1" (3.60)
BL=§BL . B .. (B} 3.1

The index J =1,..., M, is the identity of the local element node.
Introducing the GUF notation (see Eqs. 3.48 and 3.49) we can rewrite gAe (see Eq. 3.55) for an

element as follows:

t pBux t pPuyJ t pBug
OBL11 OBL12 OBL13

Bux J Buy J Bu,J
oBr5 T 0BrY 0BL%

Bur Buy J BuyJ 0AUxp, 7

e 0B 0BLs 0B *

oAe = oBL oAU, = oAUyguyj (362)

Bux J Buy J Bu, J
0BT 0BL 0BL'G

0AUzg,,

t pPuxd ¢t pPuyd ¢ pBuyJ
oBrs1 0BLs2 0BLs3

t ﬁ”x‘] t 5”}/‘] t ﬁuzJ
OBL61 OBL62 OBL63

The components of the GUF linear strain-displacement matrix BBi are defined in D. gBi is conveniently
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written in a more compact form, as reported below:
J uxJ wy J wyd
oBi = | By iBlY T 4BLY (3.63)
where the following definitions are used:
tBuxJ t pPuxd t pBuxd t pBuxd t pPuxd t pPuxd t pBux I 1T
oBLg" :[OBLf; oBrsy oBrsy oBriy oBrsy o0Breg " ¢=1,23 (3.64)

L 5q

The linear part oAe of the incremental strains (see Eq. 3.62) are explicitly written by the means of Eq. 3.63

and explicitly indicating the nodal contributions:

0AUxg,
oAe = BBi oAUy = BB%"IXJ BB%*ZYJ BB%L?)ZJ OAUYBHYJ (365)
0AUzg,,

Next, the linear stiffness matrix contribution is obtained. To reach that goal, Eq. 3.54 can be rewritten

through Eq. 3.59 in the following form:
AW L = 6 oAUT (/Ov 'BLT C 3Bgdov) oAU = 6,AUT LKV (AU, (3.66)
where the linear stiffness matriz has been defined as
PKY = /OV tBLT C {BY doV (3.67)

Examples of kernels of the linear stiffness matrixz are reported below:

LR / By ey v (3.68)
[0}
Q5 By IJ au, I T ~ B, J
e Pl / T ey aw (3.60)
0

The explicit details and examples of fully expanded kernels are discussed in E.
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3.3.2 Kernels of the nonlinear stiffness matrix

The nonlinear stiffness matrix §Kxyi, is obtained from HAééWﬁ\tI% (see its definition in Eq. 3.47):
ROWRE = /ov 80An;; S5 doV (3.70)
Using Eq. 3.40 for the definition of oA, it is possible to obtain the following relation:
HALWRE = /V 8 0Aup,; 6Sij 0Auy, ; doV (3.71)
0

Introducing the GUF relations (see Egs. 3.48 and 3.49), it can be shown that Eq. 3.71 leads to the stiffness

matrix at nodal level. The matrix relating nodes I and J is:

= [ oBAL i By a0V 372
0
where ) )
$Fs.. ONix 0 0
%Fﬂux N gy 0 0
0F By, 0N 0 0
0 Fs., oNix 0
oBRL, = 0 YFs., YNy 0 (3.73)
0 0FBuy , 0N 0
0 0 GFs,, GNsx
0 0 ZOF,BuZ o7y
L 0 0 3 Buy Ny |
and
'S 0 0
oT=| 0 S o (3.74)
0 0 S
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The kernels of the nonlinear stiffness matrix can be expressed in compact form introducing the following

notation for the nonlinear strain-displacement matrix:

0T 0 0
0By, = 0 oTor? o (3.75)
0 0 oTha?
where
B'U/
oTyx” = [6F sy ONsx  §Fpu, 0Nsy 0 Fpuy , 0Ns I
B'U/ J
oy = [%NFs., oNix  0Fs., oNiy  §Fa, oNsI"
f (3.76)
B'U/
0Ty’ = Fs., ONsx  GFs., ANoy  §Fs., , 6Ns I

Using Eqgs. 3.72-3.76, it is deduced that the the nonzero kernels generating the nonlinear stiffness matrix are

the following;:

tK;iZiquX :/ OT%XIT oS ()Tﬁu doV (3.77)
oV

SN :/ oI5 T is o Th doV (3.78)
oV

tK;izuﬁzufZ :/ OTauZIT tS OTBuZ dOV (379)
oV

3.3.3 Internal forces

The unbalanced load is the difference between the vector of external forces and the array containing
the internal forces. In this section how to determine the internal forces is discussed.

The internal force vector generates from “FA{6WEE (see Eq. 3.47):
t+At5WIC§I% = / 50A€ij tOSZJ doV (380)
oV

here the SPKST is known and the variation of the linear part of the GLST can be expressed in matrix

form (see Eq. 3.65) to obtain at finite element level an expression involving the internal forces:

/ 50Ae SS d()V = (50AUT SFINT (381)
0V
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where the internal force array {Fint is partitioned to separate the contributions of each finite element node

as follows:

SFINT = [(t)FITNTl .- 'SFE\ITI s SFITNT Mn]T (3~82)

The force array at nodal level has the expression reported below:
'F :/ tBIT S dv (3.83)
oLr INTI oL o 0 .
oV
where {B7 can be deduced from equations 3.63 and 3.64.

3.3.4 External forces

The external force vector due to the surface traction and point loads is derived from the external

virtual work t+A§5WEXT appearing in Eq. 3.47:

R Waxr = " RGOWER + T RGOWERT + T ROWERY (3.84)
where
AWK = [ 8 Au; AR doA
0 EXT — 0 v o/t do
ol'n
ROWERE = D 00 Au A f (3.85)
p

t+A55W§tX3T:/ ou; Jbyd gV
oV

Distributed surface loads and concentrated forces are taken into account by 2L We L and AW,
respectively. The body forces are not considered in this dissertation. Moreover the load stiffness correction

matrix has been neglected.

Concentrated Loads

The case of structure subjected to concentrated loads is now analyzed. In this formulation the types
of theories and orders of expansion are in general different if different finite elements are considered. This
requires a special attention in the formulation of the concentrated loads, since the finite element quantities
need to be referred to a local element coordinate system. The methodology adopted here to write the finite
element equations is a TLF. This means that the integrals and geometry transformations are evaluated at
the initial geometry. So far we indicated with X, Y, Z the coordinates of a generic point at element level in

the undeformed continuum. We need now to introduce (see Figure 3.3) the coordinates X', ), and Z which
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X.Y. Z: Global Coordinate System
X, Y, Z: Element Coordinate System
The angle ¥ is known

Figure 3.3: Global and local coordinate systems (undeformed geometry) [98].

identify the initial position of that point but referred to a global coordinate frame (i.e., the frame is the same
for the entire structure made of a collection of finite elements).

Let now 8a§j be the generic coeflicient of the transformation matrix that relates the global to local
coordinate systems (centered on node 1 in the local numbering of the element, see Fig. 3.3) at layer level in

the undeformed configuration. For example, it is

0k _ 0:k 0; 0
0012 = o1 ® €2 = 1 ® €2 = (a12 (3.86)

where (#; is the unit vector in the local X direction and e, is the unit vector in the global ) direction.
Consider now a force applied to a position defined by local coordinates X, Y, and Z* (it is now
necessary to identify the layer in which the force is applied to properly calculate the equivalent forces) on
a triangular finite element. The algorithm usually employed to solve the nonlinear equations adopts the
concept of load step to gradually apply the external loads to the structure. Thus, to take into account this
fact, concentrated forces are written as products between a load factor ‘*2*\ and nominal load which has
components g ng, 0 f;fy, and g f;’fz in the global coordinate system (undeformed state). For simplicity it is
shown the case in which the loads are not “follower” forces. That is, the directions and magnitudes do not

change while the structure deforms. The first operation is to express the force by using the local coordinate
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system on the element. This is easily achieved by setting

t+At ok A k sk k  rk k. rk
of % =" (8&11 of% + 0ats ofy + oaks sz)
t+A
* é ]16/ = AN (8”’51 Offz + 8“152 0f§ + 8“153 Ofg) (3.87)

t+At :
TALPE — HEALN (Oak o f% + Qaky o % + Oaks o fE)

Since the coordinate transformations of Eq. 3.87 are done in the undeformed configuration, the related
matrices are computed only once at the beginning of the simulation (this would not be true in a corotational
[99-101] approach). Now the nodal forces (not yet expressed consistently to the actual degrees of freedom
at this stage) can be found by using an energetic approach based on the concept of the virtual work of the

applied generic force, as reported below:

AW ="TA fk (X,Y,Z%) §oAuk (X,Y,Z%) +
HALFE (XY, Z8) doAul (X,Y,ZF) + (3.88)

ALY (XY, ZF) SoAul (XY, Z7)

The finite element discretization and GUF expansion imply the writing reported below:

0Auk (X,Y,2%) = FFY (2%) oBuk,, (X,Y)

(3.89)
= dNI(X,Y) §Fy, (ZF) 0AUX,,
thus,
k kY _ X X ok k k
SoAuk (X,Y,Z%) = N/ (X,Y) § .. (Z%) 50AUX%X I (3.90)
similar expressions can be obtained for the other virtual displacements:
SoAuy (X,Y,Z%) = N1 (X,Y) §Fy, (Z%) 60AUY., 1 (3.91)
SoAuy (X,Y,2%) = N1 (X,Y) §F, (Z*) 60AUzq, 1 (3.92)

Substituting Eqgs. 3.90, 3.91, and 3.92 into the expression of the external concentrated force virtual work
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(see Eq. (3.88)) the obtained result is the following;:

TROWEE = TR SNT Y EL, 60AUR,,
A XFACW 5 OAU{%W , (3.93)
AL AN REE 50AUS,.
An alternative expression for the virtual work produced by the external load can be written in terms of finite
element equivalent forces as reported below:

tHAbstrrct 2 _ tHAL ok k t+AL ok k
00WgxT = "o 1 00AUa, 1+ "0fVa,, 1 008Uy, 1

Ty

(3.94)

t+AE k
T 0  Zan, 1 008Uz, 1

Direct comparison of Eqs. 3.93 and 3.94 leads to the nodal forces written in a form consistent with the

actual degrees of freedom:

t+At ok _ t+At pk X X 1k

OfXauXI - 0J X ONI OFaux
t+At rk _t+At kY Y k

OfYauY I — 0/Y O NI 0 FauY (395)
t+At ok _ t+At pk Z Z 1k

0 ZauZ I — 0JZ 0 NI 0 FauZ

The local forces expressed as a function of the global components (see Eq. 3.87) can be substituted into Eq.

3.95. The result is the represented by the finite element consistent nodal forces:

t+AL ok _ t+AEy (O k gk | Ok ok, 0.k pk\ X zpk
OfXauX 1= A (oan ofx + 0ai20fy + 0ays sz) o N1 OFauX

N _ t+Aty (0 k ¢k 0k ¢k | 0k k) Yn ypk
ofYau, 1= A (0a310f% + 0a320fy + 0a330/%) o N1 Fa, (3.96)
t+At

k _ t+Aty (0 k ¢k 0k ¢k 0k k) Z k
0fZan, 1 = A (045 0fx% + 0az2 0fy + 0asz0fz) 6 NidFa,,

Expansion of the indices of Eq. 3.96 and assembling in the thickness direction lead to the nodal forces

equivalent to the external loadings.

Distributed load

. . C . . t+AL -~ .
Now we consider the case we have an arbitrary load distribution oh(X,Y) applied on the surface
(Z*) of the layer of an element. This load distribution can have a component normal to the surface (pressure)

and a tangential component (shear).
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The surface forces are written as products between a load factor t+4t) and nominal load which has

components iLX, fLy, and hz in the global coordinate system.

The force is expressed in the local coordinate system of the element at time step ¢t + At as follow:

t+ AL~ N ~ ~ ~

ohx = A (Sabiha + Qalohy + Sakshz )
t+AL; tLAL 5 . .

hy = )\(ga’;lhx+8a§2hy+8a’§3hg> (3.97)
t+AtL ~ N ~ ~ ~

ohz = A (Sakiha + Qalohy + Sakshz )

The external work contribution (see Eq. 3.85) is:

t+ AL~

A
AWk, = SoAu” " ghd oIy, =
ol'n
t+AL - t+AL - t+AL -
= / doAux  ghxdol's + / doAuy  ghy dol'y + 00Auz  ghzdoly
ol'n ol'n ol'n
(3.98)
At o At o At o At >
where " Coh = [ohx by | ohz]”
Using GUF to express the variation of the displacement increments:
t+AL -
Al sSWEL, = §0AUR, 1 / ) SN (XY FE (Z9) T o d Tt
0l h
k Y Y ok fey AL
+ 50AUyauY I/ o NI (X,Y) Fauy (Z%) ohy dol'n+ (3.99)
ol'n
k z Z pk ky LTAL,
+ 60AUZauZI/ SN (X,Y) OF%Z(Z ) ohz doly,
ol'n

The equivalent nodal forces can be found comparing the above expression (eq. 3.99) with the

following:
A
t+ é&W]thlT = 50AU§%X ra ])C(aux T+ 50AU}’3%Y , HASfI)C’auY -+ 5100,
A
+ 50AU§MZ ot 5f]§auz I
The equivalent nodal forces then can be recognized:
t+At ok _ b's X ok Ry HHAL
0fXau 1 = o NI (X.Y) g Fy, (Z%)  ohx(X,Y)doDy
X OFh X
t+At -
e, = / YNL(XY) Y FE (25 Sy (X, Y)d ol (3.101)
ol'n
t+AL g _ z Z ok Ky THALS
0/ 2o, 1 = ONI(X,Y) §Fy, (Z2%)  ohz(X,Y)dols
ol'n
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3.3.5 Boundary conditions

The essential boundary conditions are imposed weakly by using the penalty method [27, 102]. This
can be physically interpreted as placing a distribution of translational springs along the thickness. When
a boundary condition is imposed (for example the structure is externally “fixed”), one end of the spring
connects to the ground and a zero displacement is prescribed. When the springs are used to impose Dirichlet
boundary condition, also a point spring can be used in cases the rotational dofs are set free (e.g. hinges).

The springs modify the linear system to solve as shown in Eq. (3.50), introducing an additional
contribution to the tangent stiffness matrix and residual ({Ksp and {Fgp, respectively). To highlight the
main concepts, we start the discussion by showing how the kernels of the spring stiffness matrix are derived.

Let’s recall the contribution to the linearized weak form of the boundary condition (see Eq.3.47):
t+Aé5UG = / 5 QAW?/%@‘ OAuid Ong + / 5 OAu“/m éuqd Ong — / 5 OA’UJIL@ZJuQZd Qng (3102)
olg; ol'g, ol'g;

In the current implementation the essential boundary conditions are applied directly at the element nodes

(not the element sides). Then Eq. 3.102 is rewritten:

Ztopy,
AU = ZZ/Z 8 oAUl (X1, V1, Z) this o Aul(Xp, V1, Z)dZ+
boty,
Ziopy,
> / 8 oA (X1, V1, ) sy Gl (X, 1, Z)dZ - (3.103)

— ZZ/ " oAU (X1, V1, Z) i gF (X1, Y1, 2)dZ

where I are the ID of the nodes to be constrained.
The first term on the right-hand side is the contribution to the tangent stiffness matrix, the second

and third terms are the contribution to the internal force vector.

Stiffness

The first term on the right-hand side of Eq. 3.103 generates an additional stiffness matrix to be

added to the tangent stiffness.

Ziop,

AL Uit — ZZ / 8 o AUR(Xp, V1, Z) hii o AUF(Xp, Y1, Z2)dZ (3.104)

Zbotk

For simplicity let’s consider only a single node I connected to the ground and a single layer. Then

Eq. 3.104 can be expanded as
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Zyoty, Zyoty,
k k

Ztopk Ztopk
/ 5 oAUl Yy Al dZ = / 5 oAuk, Yrx Ay, dZ + /

Ztopy,
§ oAUy, hyy oAk, dZ+

Zbotk,

Ztopk k
+ / 50Au21 "/JZZ OAUZIdZ

Zpot,,

(3.105)

where (Auf = (Au¥(X;,Y;, Z) has been used. The resulting contribution to the stiffness matrix has to

be expressed in the local reference system of the element that has the node I. Thus, a transformation is

necessary to express the global displacements (X', Y, Z£) in the element reference systems (X,Y, Z):

kE _ 0.k k 0k k. 0.k k
0Auy, = pai; oAuk, + gas 0Auy, + gasy oAuy,

ko _ 0.k k k ko4 0,k k
oAUy, = ga12 0AUY, + a5z 08Uy, + gazz 0AUy,

0 (3.106)

k _ 0,k k 0,k k 0 k k
OAUZI = 0413 OAUX, + 0023 OAUYI + 0033 OAUZI

The finite element discretization and GUF expansion applied at the local displacements results in

the following expressions:

and the virtual displacements

60Au§1
8 oAUy,

60Au21

X 1k k
0 Faux OAUXauX 1

YEE oAUE,. (3.107)
gF(fuZ OAUgauZ I
é(F(])qu(SOAUf(auX I

(3.108)

Y ok k
0 Fauy 4 OAUYauY I

Z 1k k
0 Fauz(SOAUZauZ I

Substituting Eq. 3.106-3.108 in Eq. 3.103 it is possible to recognize the kernels of the boundary condition

contribution to the tangent stiffness matrix:

t+At kstiff __
O(SUGI -

Sp Ug Uy

k ks Bua T k k ke Buy T T k
00AUx,, 1 K S 0AUxq, 1 +00AUx,, 1 Kspaﬁjf;‘y 0AUyq, 1t

(3.109)

i 50AU§<%X | KkowaBu-11 oAUéauz ; + other terms

SP Ugp Uz

where for example:

51



Ziopy

ko Bux IT
éKSPuf{uXX {(8‘111) ¢Xx+(oa12) ¢yy+(oa13) wZZ}/ §F§ux §F§uXdZ (3.110)

Zbot}C

These terms are components of the spring stiffness matrix (Kgp. From a computational point of view it is
also relevant to point out that the springs’ kernels, generating the related matrix, are constant during the

solution of the nonlinear set of equations, with relevant advantages in terms of CPU time. This means
oKsp = 0Ksp (3.111)

Internal forces

The last two terms on the left-hand side of Eq. 3.103 generates an additional force contribution to

be added to the internal force vector.

Ztopy,
AL e — ZZ / 8 o AuR Xy, V1, Z) by bk (Xp, V1, Z2)dZ (3.112)
Zbofk
t+AL h Frov k
tALsUgenhom. ZZ/ § oAui (X1, Y1, Z) i g5 (X1, V1, Z)dZ (3.113)
Zbotk

Also in this case a generic node I and layer is considered. The procedure follows the same
steps performed for the stiffness matrix. The virtual displacements are manipulated as before. The term
tuF(Xy, Y1, Z) represent the displacement at the beginning of the current load step. Its value can be obtained
as a sum of all the incremental displacements of the previous converged iterations. And since in the total
Lagrangian formulation the reference configuration is the initial one, the value of the thickness functions
and rotation matrix do not change. These allows to treat the cumulative displacements as the incremental
displacements. Then, it is possible to express it in terms of local variables:

ok _ 0k bk 0.k t.k o 0.k ¢k
olUx, = 0411 oUXx, T 04321 oUy,; + 0431 0Uz,

ok _ 0k ok 0.k tk o 0.k ¢k
oy, = 0012 0Ux, T 0022 Uy, T 0032 Uz, (3.114)
ok _ 0k bk 0.k ¢k o 0.k t k
oz, = 0013 oUX, T 0033 gUy, + 033 0Uz,

and apply the finitie element discretization and GUF expansion as in Eq. 3.107:
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t,k _ Xpk trrk
0Ux; = 0 Fa, o0Uxay, 1

tok _ Ypk trrk

oy, = oFa,, oUva,, 1 (3.115)
t,k _ Zpk trrk

oz, = 0Fa,, 0UZa,, 1

The final results shows, as expected, that the contribution to the internal force due to the spring is

computed as the product of the spring stiffness by the cumulative displacements:

t+At 1 k kaueBuzII tyrk k ko Buy Il tyrk
OéUé?o o= 6OAUXauX I ngulil OUonuX I + 60AUXauX I nguwuyy OUYauY I+ (3 116)
k kovye BuzIT k
+ 50AUX(1UXI KSgumiz éUZauZI+"'
After assembly:
oFsp = (Ksp oU (3.117)

Since the stiffness matrix of the springs is constant, the spring force vector at a generic load step is:

PP = JK,, (U (3.118)

The non-homogeneous contribution is not shown, because in this dissertation only homogeneous

boundary condition have been used, although the derivation is straightforward.

3.3.6 Inter-element compatibility

The compatibility of the displacements [86-88, 103] between adjacent nodes of different elements is
imposed weakly by using the penalty method as done for the essential boundary conditions. The springs
modify the linear system to solve as shown in Eq. (3.50), introducing an additional contribution to the
spring stiffness matrix and spring force vector already computed for the boundary condition ([Ksp and
tFgp, respectively). The construction of the stiffness matrix follows the same steps used for the essential
boundary condition. For this reason an alternative procedure is shown based on the derivative of the potential
energy.

To highlight the main concepts, we start the discussion by showing how the kernels of the spring
stiffness matrix are derived when there is a point spring connecting node J of element ¢ and node L of
element d. The identity of the connected layer is k.

First, the total potential energy V¥ is written considering the displacements (at generic locations of
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elements ¢ and d respectively) expressed in global coordinates:

t+A5Vk _ <t+Aéukc _ t+Aéuk d)T,Yk (t+A(t)ukc _ t+Aéuk d) (3.119)

N | =

where ¥ is a diagonal matrix containing the value of the spring stiffness (penalty constants) in each direction
(global frame).

Second, an incremental decomposition, as shown in Eq. 3.34, is done for the node displacements:

t+A0tukc —_ éukc + OAukc
(3.120)

t+A8ukd — 5ukd_|_ oAukd

Third, the incremental displacement of layer k is written from global coordinate system to local element
frame (both systems referred to the undeformed geometry) through a rotation matrix. For the node J of

element ¢ we have:

ke _ 0,kc kc 0, kc kc 0,kc kc
0AukG = gaif oAukS + gasy oAuyG + paz’ oAuzg

0, kc kc 0,kc kc 0, kc kc
0013 0AUuXY + pass oAuyG + gass oAuzg (3.121)

OAU];}LC]
0AutG = Jafs oAukS + fabs oAulG + Jafs oAub
Notice that the incremental displacements are referred to the undeformed configuration. Thus, the transfor-

mation matrix does not change with time.

Fourth, the incremental displacement is written using the GUF formalism (see Egs. 3.48 and 3.49).

For node J of element ¢ we have the following relations:

ke _ Xpkc kc

0AuxG = o Fu, OAUX%XJ
ke _ Ypkece kc

OAUYJ = OFOZuy OAUY(XUYJ (3122)
ke _ Zpkc kc

0Auzy = gFy.;, OAUZauZJ

substituting Eq. 3.122 into Eq. 3.121, the incremental displacements in the global coordinate system are
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obtained:

k: Xrke ch kc kc
0AukS =0aif §FLEe OAUXa JJr asy o Fy, OAU Yty J

Qlqy

kec Zrkce kc
+Qa51 GFL OAUZ%ZJ

oA’U,yJ = ch oAUk J+ OGIQCQCE)/F]CC OAUk;uYJ

Qo 5

(3.123)

0. kecZrkec
+0a33 0Fa. OAUZa 4
ke _ 0, kecXpkec kc ch kc kc
0AuzG =pajs 0 Fa., 0AUXS,., o + abs §FL OAU Yy J

kc Zrkece
+0a55 §FL 0A 4

Similar operations and relations can be performed for element d and on the generic node L. The details are
omitted for brevity.

Fifth, it is observed that the total potential energy H'ASV’“ reported in Eq. 3.119 ca be conceptually
written in terms of 3 distinct contributions. In particular, the first one depends only on the unknown
incremental displacements and is indicated with t+A tVAt At- The second contribution is a “mixed” term
and is indicated with the symbol t+A8VAt,t. The last energy contribution depends only on the cumulative

t+At
Otht .

displacement at pseudo-time t and is indicated with In mathematical terms, the conceptual

subdivision earlier mentioned is expressed as
t+Atyk _ t+AL t+At t+Atyk
oV = VAt at Tt VAt ¢+ 0V (3.124)

Sizth, the second derivatives of the potential energy (see Eq. 3.124 and the mathematical derivations
presented in Appendix F) with respect to the incremental nodal displacement unknowns evaluated at time ¢ of
the three energy contribution are performed. Since the rotation matrix relating global and local coordinates
is evaluated at the reference undeformed geometry, it is also known and not dependent on the displacements.
Thus, only “T2*Va,_a¢ gives nonzero values of the kernels of the spring contribution to the tangent stiffness
matrix. Also in this case the springs’ kernels, generating the related matrix, are constant during the solution
of the nonlinear set of equations.

Since the stiffness matrix of the springs is constant (consequence of the TLF), the spring force vector

at a generic load step is (see Eq. F.13):

A Fsp = (Ksp T U (3.125)

55



3.4 Acknowledgments

Chapter 3 is in part a edited reprint of :

e 7 Large displacement models for composites based on Murakami’s Zig-Zag Function, Green-Lagrange
Strain Tensor, and Generalized Unified Formulation”, Thin-Walled Structures, 2020 and co-authored

by Luciano Demasi. The author of this dissertation is the primary investigator and author of this

paper.

56



Chapter 4

Dynamics

4.1 Governing equations

The geometrically nonlinear formulation developed in the previous chapter is applied to dynamical

systems. As for the static case, the starting point are the governing equations in strong form.

4.1.1 Strong form of the boundary value problem

The problem statement for dynamical system is an extension of the nonlinear static one (Eq. 3.2)
with the addition of the inertial forces and the initial conditions. It can be expressed in the current (see
Box. 4.1) or undeformed configuration (see Box. 4.2). where p is the density, 1; is the initial velocity field,

S'ij the initial state of stress and ¢ is the time variable.

~— Strong form current configuration

Givenb; : V=R, p:V R, g :T, - R h:Tp, >R, 4:V = R, G5 :V — R, find
u; : V. — R, such that
0jij(x,t) +b,(X,t) = p(x)i;(x,t) in V
u;(x,t) = g(x,t) on Ty,
nj(x,t)o;i(x, t) = hi(x,t) on T, (4.1)
L.Li(X,O) = ’l_l,z in V
O'ij(X,O) = 04 in V
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~— Strong form undeformed configuration N

Given b; : oV = R, p: oV =R, §; : oI'y, = R, OBZ‘Z oln, —>R,ﬂ:V—>R,6U:V—>R7ﬁnd
u; : oV — R, such that
(Gip(X, )55 (X, 1), + Thi(X, 1) Tp(X)in(X,t) in oV
Uj (X7 t) = g?(Xv t) on OFg,y
GikSkj (Xa t) 0ny (Xa t) = th( 7t) on OFhi (42)
’lli(X,O) = ’llz in ()V
Slj(X,O) Sij in OV

4.1.2 Weak form of the boundary value problem

The derivation of the weak form follows the same steps already shown for the static case (see
paragraph 3.1.2). The definition of the space of the weighting function remains as defined in Eq. 3.4 for the
static analysis. Instead the space of the trial functions (u;) is now time dependent. The differential equation
is multiplied by the weighting functions and integrated over the domain in the undeformed configuration at
time ¢ = 0:

/ oui ((GipSps) ; + Tbi — Tpii) doV =0 (43)
oV

Follows an integration by part, application of the divergence theorem and the natural boundary condition

with the following results:

oV oV oV i ol'n,

Introducing the relations between the variation of strain and the variation of the displacement, the weak

form for the dynamical system is obtained:

/ 5Eijsijdovz/ 6uijbid0V—/ §ui._7puid0V+Z/ Sui ohy doT (4.5)
oV oV oV i Yo

Th,;

The complete statement of the weak form is shown in Box 4.6. Eq. 4.6 can be interpreted using the principle

of virtual displacements:

IWINT + 0WkIN = 6WexT (4.7)

the additional term is the virtual work of the inertial forces:

5WKIN = / 5u“7puz d OV (48)
OV
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~— Weak form undeformed configuration

Given b; : oV =R, p: oV = R, g; : o'y, = R, oi”bi : ol'n, = R, find u; € 5;, such that for all
ou; € W;

oV oV oV i ol

Internal work Inertial work

External work

4.1.3 Imposition of time-dependent boundary conditions and interelement com-

patibility

In the dynamic case the boundary conditions and the displacement compatibility between elements

are imposed weakly. The weak form is augmented with the variation of the potential energy as shown in

section 3.1.3 and 3.1.4. The resulting weak form for a geometrically nonlinear dynamical system in a inertial

reference frame is shown in Box 4.9.

— Weak form for the variable kinematic plate theory in the undeformed configuration —————————

Given b; : oV =R, p: oV =R, g : oI'g, = R, szi : ol'n, = R, find u; € S;, such that for all

ou; € W;
/ 5Eij5ijd0V +/ 5iniiuid0]~—‘gi - / 5uiwiigid()]-—‘gi =
oV olg; olg;
—_— ————
Internal work homogeneous part of Non-homogeneous part of
essential b.c. essential b.c.

oV i OFhi J oV

Volume forces

Surface forces Inertial work

External work

nyg

7ZZ/F (éu”fm *5“iFf<,>)%'z‘ (Uirfm 7Ui1“f(7)) doly
f=17ol's

%

Interelement compatibility

4.2

Finite element discretization

The spacial discretization is obtained by means of the finite element approximation and axiomatic

plate models expressed in GUF notation. But, unlike the static case, the weak form is not yet fully discretized

because it is still a continuous function of time. The finite element matrices and vector are unchanged with
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respect to the static case. The only new term is the mass matrix (M) obtained by the discretization of the
inertial contribution (see paragraph 4.2.1).

For time integration purpose it is convenient to recast the finite element equation in residual form:
R=MU + FINT(U) + KspU — FgxT+Fsp =0 (410)

This residual equation should be satisfied at every time instant. The internal force vector is a nonlinear
function of the displacement field. Its linearization will be performed for convenience during the time

discretization phase.

4.2.1 Kernels of the mass matrix

The mass matrix is computed through discretization of Eq. 4.8, reported here for convenience

AL WrN = / Sui T p Ak d oV (4.11)
OV

Its kernels are obtained after expressing the virtual displacements (du;) and accelerations (i;) as a function

of the GUF unknown. For example the X components for a layer k are:

00Uk (XY, ZF) = §FE, (ZF)ENI(X,Y) 00Uk, ;1 ux=t1b 1=2,.. Ny T=1,2,... M,
(4.12)

0iik (X, Y, 2%, ) = §FE, (Z%)§NI(X,Y) oUk,, (8) =110 1=2,.. Ny I=1,2,...M,
(4.13)

And then substituting Eq. 4.12 and Eq. 4.13 in Eq. 4.11 the virtual work as a function of the nodal variables

is found:
t+A55WKIN = 05U§(0¢7¢XI |:/ jPS{NI S(FSUX S{F(;CMX S{NJ dOV] OUA];([}U’X J"‘
oV
o0Vt [ R dov} s s+ (4.14)
(]V

U, | [ 0Nt BFL,, EF,, 8N duv] o,
oV
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The mass matrix is identified:

HA Wk = oUTMU =
k 07 %y Bux IJ ok
= 0Uxa, 1 [oMux)ﬂx * } oUxp, g+
(4.15)
u ﬂu 1J F
OaUllﬁauyl |:8M'3Y){1Y Y :| OU}@BUY Jt
k 04 7%uzyBuygld ke
06UZauZI [OMUWZAZ “ } OUZﬁuZJ
where
ux Bux1J
sl = [ Ted S, KL Ny 4oV
oV
uy Buy 1J
Y o A / TN YFEYEE YN doV (4.16)
oV
u Bu 1J
Opgosgfestd /VjpgNI ZEEZFE AN, AoV
0

are its kernels. The mass matrix is block diagonal and only three kernels exist for this matrix.

4.3 Non-inertial reference frame

The equations derived so far are valid for an inertial reference frame. For the study of rotors or
flapping wing is often convenient to derive the equations in a reference frame that moves synchronously with
the elastic body (corotational) [104, 105]. The weak form can be expressed in this moving reference frame
with the addition of the apparent forces.

With the presence of multiple frames it is necessary to introduce new quantities and notations.
The transformation matrix between two coordinate system is indicated as T,g. This matrix transform the

component of a vector from the reference system (5 to «

aV = TozB BV (417)

where the subscript indicates the reference system in which the vector components are projected. The letter
I and G are used for identify the inertial and the global/body reference system respectively. Then T ;g
project the components of an array from the global/body coordinate system to the inertial one.

The vector w is the angular velocity of the moving frame with respect to the inertial one. And
is the matrix associated with the cross product operation wx. The time derivative of the transformation

matrix is
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In the following paragraph arrays that are expressed in the inertial coordinate systems (I) have a tilde on

top of them, e.g. (o).

4.3.1 Position, velocity and acceleration of a point

The position of a point in an inertial reference frame can be expressed as:

F=T,+% =7, +Tox (4.19)

where T, is the origin of the moving frame and X is the position of the point measured from this origin (see

Fig. 4.1). The velocity obtained from the time derivative of Eq. 4.19 is:

deformed config-

uration at time t

reference config-

uration at time t

reference configu-

ration at time zero

Figure 4.1: Reference systems and position of a point P during deformation.

F =1, + Trox + Trox =t + QTiax + Tiox (4.20)
And in the same way the acceleration is:

r = 'I~"o + ﬁT[Gx + ﬁT[GX + ﬁTlgk + Tlgk + Tiax
= T+ QTrox + QOTox + QT o% + QT ox + Trok (4.21)

= 'f"o + ﬁT[Gx + ﬁﬁT;Gx + 2ﬁT1GX + Tiax

Using the relation 3.1 in Eq. 4.21:

Fo= f‘o + ﬁTmX + ﬁT[Gu + ﬁﬁT[GX + ﬁﬁT[Gu + 2ﬁT]G]:1 + Ticu (4.22)
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The governing equations are referred to the body reference frame (G), for this reason the components of the

acceleration are projected in such reference:

P o= Tior =, + QX + Qu+ QOX + QQu + 2Qu + i (4.23)
where :
Q=T..QT ¢ (4.24)

4.3.2 Weak form modifications

To express the weak form (Eq. 4.9) in a relative reference frame it suffices to include an appropriate
expression for the acceleration in the inertia contribution. The virtual work of the inertial forces in the

inertial reference frame is:

SWKIN = / TpoxTxd vV (4.25)
oV
and the virtual displacements of the position vector (Eq. 4.19) is

5t = Tieou (4.26)

where 6r, = 0 has been used. This is due to the fact that the rigid motion of the body is predetermined
as well the position of the origin of the attached reference system (f,). Substituting the expression of the
variation of the position (Eq. 4.26) and the acceleration (Eq. 4.23) in the variation of the inertial virtual

work (Eq. 4.25):

Wkin = / J pou” (f‘o + QX + QQX) doV + / T psut (Q + QQ) udV +
OV (]V

+ / Jpoul (2Q)udV + / Tpoulid,V (4.27)
oV oV
or in indicial notation

OWKIN = / Jpéul |:7.".oi + Qinj + Qi;DQPij} doV + / Jpéuz (Q” + Qipﬂp]) Uj doV +
OV ov

OV ov

After substitution of Eq. 4.28 in Eq. 4.9, the weak form of the elastic body deforming in a non-inertial

reference frame is obtained (see Box 4.29).
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— Weak form of undeformed configuration in body coordinate system

Given b; : oV =R, p: oV =R, g : o'y, = R, oilz' : ol'n, = R, find u; € S;, such that for all
ou; € W;

/ 5Eijpj doV + / Jpou;ti; d oV +/ J pou; (Qinpjuj + Qinijj) doV +
oV oV oV

Virtual work of Virtual work of inertia Virtual work of
internal forces in body coord. syst. centrifugal forces

/ ‘Y[J(SUV’CO7 dOV + + / jpc?uz (Qijuj + Q”Xj) dov + / jpéuZQQ”uj dOV +
JoV oV J oV

Virtual work of Virtual work of Virtual work of
rigid body translation Euler forces Coriolis forces
/ ouithiiuidol'g, — — / duipiigid oLy, +

olg; olg;
homogeneous part of Non-homogeneous part of
essential b.c. essential b.c.

nf
+ E g / <5Uil“f(+) —5Uirf(_)) Yii (Uirf(+> _UiFf(_)) dol'y =
i f=170ly
Interelement compatibility constraint

= / ou; Jb; dV—|—Z/ duiohi d ol
oV i oln;
—_——

Virtual work of
body forces

Virtual work of
surface forces

(4.29)
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4.3.3 Finite element discretization

The virtual work of inertial forces (Eq. 4.28) written in a moving frame provides several FEM arrays
when discretized, in addition to the mass matrix. Here the expression for each array are derived. The virtual

work is decomposed as follows:

SWkin = Wt + 6Wrr + 6Wer + dWry + 6Wer (4.30)
where
Wrr = / J pou;ite, doV
()V
6WCF = / jpéuiQinm-Xj d ()V + / jp(SUiQinijj dov
OV OV
6WEU = / JpéuZQ”uj d0V+/ JpéulﬁwX] d()V
OV ov
(SWCR = / jpéuﬂﬂijuj d 0V
ov
5WM = / jpéuluz doV
oV

The nodal unknown are expressed in the undeformed element coordinate systems (E) that move rigidly with
the global/body systems. Then another constant transformation T¢g is implicity used since the expression

are formally invariant. The virtual work is then decomposed at element level

SWkin = Y dWiy (4.31)

Translation forces

The first contribution is due to the rigid translation of the body identified by the motion of the body

reference frame origin (r,). The corresponding virtual work term (see Eq. 4.30) at element level is:

HALWER = T pbuiity, doV (4.32)
oVe

Once the virtual displacements are spatially discretize Eq. 4.32 is rewritten as:

HALWeR = 00URa, 1 [ TpoaN1 o Fa, o, dov} +

oVe

oéU{i%,,I[ L TeoNI G EG,, fodeV} + (4.33)

0

00U%a, 1 { TpNt §Fy, 7o, dov}
Ve

0
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In this form it is possible to recognize the equivalent nodal forces generated by the apparent force due to

rigid translation of the body Frg:

t+At e _ k t+AL Oux I k t+ AL 2 Ouy T k t+AL pOuy I
00Wir = 00Uxa, 1 oFrRux T 000va, 1 0F 1Ry T 00Uz0, 1 0F TR u, = (4.34)
= UTFy
Its kernels are:
AL pQux L Xar Xpk
OFTu}; = ijNI OFOtuX Tojd()V
oVe
t+AL 2 Quy I Y Yk o o
OFTuYy = ijN[ OFa'u,Y ’I“oj doV (435)
oVe
t+At g Quy z Tk
OFTuZ = ijNI OFauZ Tojdov
oVe

Centrifugal forces

The centrifugal acceleration in a finite element formulation generates both an additional stiffness

matrix and an apparent force vector. Its contribution to the virtual work is:

t+A(§5W(P31~S“ﬁH' = T poui (ipShy;) uj doV (4.36)
oVe

t+A8(SWé£‘0rce = Jpéul (Qinijj) doV (437)
oVe

Performing the spatial discretization of both terms:

HASWERT = 06U%,, ., TpdN1 5 Fx,  QpQp §FY, 5Ny dov} oUxks,, s+
LSo Ve
00U, 1 , Tpd N1 5 Fx,  Qp2oFa, o Ny doV} oUys,, s+ (4.38)
LSo Ve
Uasyr | [ ToENG SES, OO FFE, N oV | o0k, st
LSV e
t+A85W51§0rce = 05U§(o¢uxl [ jPS(NI S(Folfux lequdeOv} +
oVe
00U a,, 1 [ L TpoNT o Fa, 2y X;d OV} + (4.39)
Ve

00Uz, 1 [ Tp§N1 §Fy, Q3p9qujd0V}

oVe
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The stiffness and force kernels of the apparent centrifugal force due to the rotation of the body can be

identified:

HALWey = OUTForp + 0UTKerU =

_ k AL Oux ] k t+ AL Ouy T k t+ AL g L
= 00Uxa, 1 oFcrux T 00Uva, 1" "0FcFuy T 00Uza, 17 "0F cru, T

k 0 7-%ux BuxIJ ke k 0 7.-%u x Buy 1J ke
+ OaUXauXI{OKCFuqu oUxp, g+ 00Uxa, 1 [0KcFusuy | 0Uvp,, st

k 0 1-Qux Buy I Tk k 0 1.-Quy Bux IJ ke
+ 00Uxa, 1 { Kcruxuy } 0Uzp,, 7+ 00Uya, 1 [OKCFquuXX ] oUxp, g+ (4.40)

CFuyuy uy 1 CFuyuz

A
k 0 7-%uy Buy IJ k k 0 7-%uy Buy, IJ k
+ 00Uya, 1 [OK My Uy } oUyp,, s+ 00Uy, [OK Yuy ] Uzg, 0t

Qo Buy IJ - k 0 1-Quy Buy IJ ke
Ko, :|0UXBHXJ+ 00UZa, 1 [OK fuzts :|0UYBuYJ+

k 0
+ 00Uza, 1 [o CFuzux CFuzuy
0 auZBuZIJ ke
[OK oUzs, 7

I CFuzuz

z
+ 05U§auz
For example:
Qoo I
HASFCF)ZX = v JTpoNr ()J(F(];u,x Q1pQp; X doV (4.41)
0 e

8Kaux Bux IJ _ jp 8(NI S(F(icux leQpl OXFO]f OXNJ dOV (442)

CFuxux oVe ux

FEuler forces

As the centrifugal force also the Euler force provides an additional stiffness matrix and an apparent

force vector. Its contribution to the virtual work is:

t+A8(5WEISJtiH = jpéuiQijuj doV (443)
oVe

t+A(t)(5WE[fjorce = jpéuiQinj d 0V (444)
oVe

Performing the spatial discretization of both terms:

AW = §UTKpyU =
= 05U§<auxl o TpXN; é(Folqu 2% é(F(qu Ny dOV:| OUfwuxﬁ‘
Lo . (4.45)
00U%a, 1 . TpoNr 9By, 2o, oNg doV] oUvs, s+
05U§(0¢uxl jpé(N[ 8(F§“X ng gFO]fuZ gNJ doV:| OUé/BuZJ + ...
LJoVe
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t+A86WE[fJorce _ 5UTFEU _
= 06U§{auxl [ TpiNi é(Fo]qu Q1 X dov} +
oVe

00U a,, 1 [ TpoNr o Fa, Q2jxjdov} +

oVe

OéUéauZI |: ngNI (?FOIZCUZ Q3jX]‘ doV:|

oVe

The relative kernels can be identified, e.g.:

At pQux D Xnr Xk O v
oF B ux = JpoNr OFauX Q1;X;doV
oVe
0 7-Cux Bux IJ X Xk :
0K ECuxuy = Tpo N1 OFoqu QuX;doV
oVe

Coriolis forces

(4.46)

(4.47)

(4.48)

The Coriolis acceleration provides an additional damping matrix added, if present, to the structural

ones. The virtual work contribution is:

t+A(t)($WéR = jp5u12 [Qij’l.l,j d()V
oVe

(4.49)

GUPF as well the spatial discretization are applied to both the virtual displacement and the velocity. e.g.

00k (XY, Z) = §FE, (ZF)ENH(X,Y) 00U%,, ((XY) aue=1t,1,b 1=2,... Nk

0tk (X,Y, Z%) = §FE, (ZMENI(X,Y) oUk, (XY) aux=t01b 1=2,... ,NF  T=172, ..

The explicit expression for the semi-discretized form of Eq. 4.49 is

HALSWER = 00U%a, 1 |2 Tpa N1 o Fx,  QuiFy, ngJdov] oUkp, 1+

L oVe

00U%, 1|2 [ TpdNi §FY, QuaiFy  §N, dOV} oUys,, 1+

L oVe

06U, 1|2 [ TodN XFE OuyEFE gNJdOV} oUks s+,

L oVe
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(4.50)

M,
(4.51)

(4.52)



It is possible to recognize the damping matrix:

HALWER = dUTDerU =
k 0 ~Qux Bux IJ ke k 0 £ Qux Buy IJ ke
= 0Uxa, 1 {()Dux)ﬂx * } oUxp, 7+ 00Uxa, 1 [()Dux)fw v } oUyg,, s+
k 0 ~Quy Buy IJ k k 0 ~Quy Bux IJ k
00Uxa, 1 {oDux)viz z } 0Uzs,, 7+ 00Uyq, 1 [oDuny X ] oUxg, g+

(4.53)

k 0 NXuy Buy 1J Tk k 0 yOuy Bug IJ ke
000 a1 [0Duyiy oUys, 7+ 00Uya, 1 |0Duyvuz oUzs,, 1+

Quy Buy IJ

k 0 QuyBux IJ rk k 0 Tk
05UZauZI 0Duztix ] oUxp, g+ 05UZ%ZI [ODuzuy } oUyg,, s+

+ o+ o+ o+

k 0 Quy BuyIJd Tk
05UZauZI [ODuzuz OUZBuZJ

where for example the kernel of the matrix relating the «,, term of the polynomial/Legendre function for
the « displacement of the node I and the o, for the y velocity function of node J is

Aoy 5 Buy 1J
CRuxuy

oD =2 Tpo Nt o Fy,  Q2gFy, oNjdoV (4.54)

oVe
Residual equation

The choice of a moving frame attached to the body alter the expression of the semidiscrete residual
equation (see Eq. 4.10). It modifies the effective stiffness, damping matrices and the external force vector.

At a generic instant the residual is:

R = MU + Day r(Q)U + Kpyn(Q, Q)U + Fixyp(U) — Fexr + Frr(io) + Fru(2) + Fop(2) = 0

(4.55)
where Dagyr is the gyroscopic damping matriz (Eq. 4.53) and Kpyy is the dynamic stiffness matriz:
Dcyr = Dcr
(4.56)
Kpyn = Kcr + Kgu

4.4 Time integration algorithm

Up to this point the weak form has been discretized in space through the use of a finite element
method. The resulting semidiscrete equation has been derived for both inertial (see Eq. 4.10) and body
(see Eq. 4.55) reference systems. These equations now have to be discretized in time and solved with a
time integration algorithm. In structural dynamic the most common is the Newmark S-method [106]. Its
characteristics like stability, accuracy and numerical dissipation are controlled by two free parameters. In

many application it is useful to have some numerical dissipation to remove the high-frequency content from
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the solution. This is possible with the Newmark method, but at the cost of loosing the quadratic convergence
rate. Several other methods were developed to mantain second order accuracy and dissipate high-frequency
modes like the HHT-or method [107] and Bossak-Newmark method [108]. The integration algorithm adopted
in this dissertation is the generalized a-method [109]. This method encompass many family of methods,
including the few just cited. This section will provide an overview of the procedure to derived the discretized
equation of motion and its practical implementation in a software used to generate the results that will be

shown in the next chapters.

4.4.1 Generalized a-method

For the analysis of the method is convenient to use the semidiscretized finite element equation derived

from the weak form in residual form:

R = MU + DU + Fixp(U) — Fgxr = 0 (4.57)

This residual should be satisfied always, but in a numerical method only the satisfaction at discrete times are
requested. In general the solution a time step t is known and we are looking for the value of the displacement

field at time ¢ + At that satisfy the residual equation:

t+AtR — Mt+Atﬂ + t+AtFEXT o t+AtFINT(t+AtU) -0 (458)

In the generalized a-method intermediate values inside the time step are considered and a modified version

of the residual has to be satisfied:

HAR =M U+DU+ YFiyr — ' Fgxp =0 (4.59)

where oy and o, are parameter used to interpolate the displacement solution:

“ruU = (l—af)tU-i-afH_AtU = 75IJ—I—OéfAU
U = (1—af)tﬁ+05ft+AtU = tﬁ—FOquJ
(4.60)
amJ = (1—ap)'U+a, ™20 = U+a,AU
YFpxr = (1—ap)'Fexr +a; ™ Fpxr = ‘Fexr +a;AFpxr
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The Newmark approximation [106] is also used:

(4.61)

AL Z U AU+ AP K; - 6) 4+ ]

t+AL_- t t+AL .-

U= U+At[( )Ty U}

where 5 and  are parameters that regulate how much the acceleration at the end of the time steps
affect the displacement and velocity values. Rearranging it is possible to express the velocity and acceleration

at the end of the time step (t + At) as a function of their initial values (¢) and the displacement increments:

t+At_- £ e
U= ﬁAtAU+ (1—ﬁ) U+ At (1—25> U (4.62)
t+AL - 1 1\ ¢

with AU = 741U — tU. Substituting the Newmark approximation in Eq. 4.60 the velocities and accelera-

tions at the intermediate times are known as a function of the incremental displacements:

YU = 'U+asAU
g = (1-—a;L)¢ A1 L)t RIRN
U ( o ﬁ) U +ay t( 25) U+6At U
o _ 1_l g Oy 4 A
v ( 26) U~ 5ac U+ jamAy

And then substituting Eq. 4.63 in Eq. 4.59 the residual expression for the generalized a-method can be

found:

AR —

MAU DAU AR (U 1—a) Pyt — (1 — LR
ﬁAtQ +5A +ay Nt (U) + ( ay) 'Fint — ( af) 'Fext+

—Qf t+AtFEXT + |:<1 - 25) M +O¢fAt <]. - %) D:| ttj + |:ﬁAtM+ < af;) D:| tU =0
(4.63)

Since the equation is nonlinear an iterative algorithm should be used to solve a series of linearized systems.
If we use Newton-Raphson to drive the residual to zero:

b t+AtRi

_ t+Atpt
P (e

) AU (4.64)
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— t+AtUi+1 _ t+AtUi

where i is the iteration counter and AU**! The resulting linearized equation:

O agy i 4 (677 afy i i p
pac™M T BfAtD T KTAN} AU = <_ BAR f)’fAtD) AU ey (7 e = i)~
—(1—af) (! ) = (1= 22 Mt aat(1- L) D] T — |- 22 M4 (1-a,;2 ) D] T
(1 —ay) ("Fexr INT) K 25) + oy t( 25) ] U [ AL + afﬁ U
(4.65)

This equation can be used for both an inertial and a moving reference system and the actual arrays expressions
depend on which is chosen. The complete expressions are shown in table 4.1. The material stiffness matrices
Kj, and Ky, the spring stiffness matrix Kgp, the internal Fiy1 and external force vector Fgxt have been

derived in chapter 3 because unchanged with respect the static case.

Table 4.1: Finite element arrays for time integration algorithm used in Eq. 4.65. The terms in the last two
columns are the arrays as computed in the previous sections.

Array Symbols (Eq.4.65) | Inertial coord. sys. | Body coord. sys.

tangent stiffness matrix Kran Ki + Ky + Ksp Ky + Kni, + Ksp + Kpyn
damping matrix D 0 Deyr

mass matrix M M M

external force vector Fexr Fexr Fext - Frr - Fru - For
internal force vector FinT Fint 4+ Fsp Fint + Fsp

4.4.2 Predictor

The convergence, number of iteration, of the Newton-Raphson method can be accelerated with a
good initial guess of the final solution. These guessed values are based only on the current converged state

(t) of the systems and they are called predictors. In the current dissertation the following expression are

used:
t+At t iy At?
UP = "U+ A¢ U+(1725)7 U (4.66)
AP = U + (1 —4)AtTU (4.67)
AL — (4.68)
Then Newmark approximation (see Eq. 4.61) can be rewritten as:
.. 1
CHALET (ALY _ AL 4.69
ALy = tHALP g (t+AtU _ t+AtUp> (4.70)

BAt
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From this new expression the linearized residual (Eq. 4.65) can be recasted as follows:

Ym afy i i i QOm Qagry i
BAtQM + @D + oKy (t+AtU 1 _ Ay ) _ <_ﬂAt2M _ ﬂAtD> (t+AtU _ t+AtUP)

+(1 — o) ("Fext — "Finr)
(4.71)
From a purely implementation point of view it is convenient to compute and store the terms of the residual
that are not updated during the Newton-Raphson iterations at the beginning of the time step. These terms

are collected in the following arrays:

tratRe = (2 v ST ) AP DAY - (1 - af)D U — (1 — ap) MU

( At BAL o (-ap) (1= &m) (4.72)
+ (1 —ay) ("Fexr — "Fixr)
Qm afy
K =——M+——D 4.73
KIN BAL + BAL (4.73)
And the equation to be solve at each iteration is:

[KKIN + afKiTAN] AU = —Kkix A Uk +ay (HAtFiEXT - H_AtF%NT) + HHAIRP (4~74)

The iteration is stopped when the displacement increment and/or the residual norm are below certain

tolerance value set by the user.
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Chapter 5

Variable Angle Tow fiber model and

stress recovery procedure

5.1 Variable Angle Tow

In a finite element method the modeling of the fiber’s path comes down to the correct evaluation of
the material coefficients and their in-plane derivatives at the Gauss points. This information is then used
for the numerical integration over the domain to compute the elastic stiffness of the structure and for the

correct evaluation of the transverse stresses through a recovery procedure.

5.1.1 Path definition

In the proposed formulation it is possible to define a different fiber’s path for each layer. In accor-
dance with the plate model the fiber path is defined on a plane parallel to the element X-Y plane. Moreover
the fiber pattern associated with each layer is generated by translation of a single fiber called fundamen-
tal curve (see Fig. 5.1). The problem of describing the pattern is then shifted to the description of this

fundamental curve. Its definition requires the introduction of multiple coordinate systems:

e global coordinate system (X,),Z)

local element coordinate system (X,Y,Z)

local layer coordinate system ()?k,f/k,fk)

material coordinate systems (X%, V¥, Zk)

fundamental curve coordinate system (&%,n*)
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)

Figure 5.1: Allowed curvilinear pattern. It is generated by translation of a single fiber, fundamental curve,
(in red).

The pattern for each layer is build in their layer coordinate systems ()/(\' k,}/}k). It is generated from the
translation of the fundamental curve along the X* axis. However the actual paths needs to be known
through the point-wise definition of the angle 9% between the element X-axis and the fibers’ tangent (see
Fig. 5.2). The stiffness matrix is build in the element reference system and consequently also the material

coefficients have to be expressed in such reference.

> Y
Yk A g
9k
M-
Xvk
1 x| 2

Figure 5.2: Layer coordinate systems and angles.

The spatial variation of the angle ¥* is provided by the user as input. Successively the equation of
the fundamental fiber is approximated as a combination of Legendre polynomials whose coefficients can be

determined through a collocation method.

Wk (uk) =al P} (uk) + al P} (,uk) +..=alPk (uk) t=0,1,..,T (5.1)

Legendre polynomials are function of the parameter u* restricted in the interval [-1,1]. The mapping between
this variable and the physical ones is obtained through the introduction of a new coordinate system (£¥,n")

as shown in Fig. 5.3.
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YEp YFp " A
1 Vi 1B
;k
3 3 &
2 vk 2 A

Figure 5.3: Fundamental curve coordinate system. (£%n%)

The coordinate relations between the layer coordinate system and the auxiliary one are:

~ Sk Sk ~
)’5 k _ Xn]?ax + Xmin Xmax — Xrﬁin k
= 3
2 2
vk vk vk vk
i} k_ Ymax + Ymin Ymax — Ymin k
2 2
or equivalently
Y k Yk
gk:_{{n};ax—i—{{rzin_‘_ =7 2 = )’Ek
Xniax - Xmin Xniax - Xmin
vk vk
nk _ _Ymax + Ymin 2 i}k
vk vk vk vk
erax - Ymin Ynfax - Ymin

where X k.. Xk

eration. The coordinate n¥, as p*, is defined in the interval [-1,1]. Tt is assumed:

then

Thus, the transformation in Eq. 5.2 becomes:

i}k _ ?rr]fax + ?n]ﬁn + i}n{fax B S}n’fm k _ ?nfax + ?rr]fin + ﬂ
2 2 2 F
where
2
Yméx - Ymin

(5.3)

vk Uk - . . . . -
s Xipass Yoo Y E  are the minimum and maximum coordinate values of the element in consid-

(5.7)

Expression 5.6 allows to perform the derivatives of the material properties using the path approxi-
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mation in Eq. 5.1:

o) _ ,00)

oY k ouk

8(D)/6‘)A( ¥ = 0 by construction (see Fig. 5.3).

5.1.2 Material coefficients

(5.8)

If the strain are small the constitutive relations developed for linear analysis can be used also for

large displacement and large rotation analysis. The material is suppose to be orthotropic in the material

reference frame and the stress-strain relation in terms of SPK ST and GLST is

- 1k - 1k - 1k
Sxx Ci1 Ciz Cis 0 0 Cis Exx
Syy Cia Cy Cyx 0 0 Coag Eyy
Sxy Cis Ca Cos 0 0 Cas 2Exy
= (5.9)
SXZ 0 0 0 655 645 0 2Ex 7
Syz 0 0 0 Cus Cua O 2Fy 7
Szz Ciz Ca3 Cs 0 0 Cs Ezz
62 are the material coefficient (C’lkj) rotated in the element reference frame:
1 — vk.ok k k 1 — ok ok
Ch = 221@31}32 Efy Oy = = +A1;23U31 Efy O3, = Z1k3U31 E3,
vk vk, + v vk, + vk 1 — ok,0k
Ck: _ 21732 31 Ek: Ck: _ 32 12931 Ek Ck _ 12Y21 Ek
18~ 7 Ak 1 3= 7 AR D22 33= T Ak 33
054 = Gl§3 C§5 = Glf3 Cg(i = Glfz (5'10)

k_ k  k k k k k k. k
A¥ =1 — v33035 — U521 — V3V — 2051 U35075
k k k
B3y g A r _ Ess oy
V3o = I Va3 Vg1 = o V12 U3l = Ek Vi3
22 11 11

where EY, | EY, EY. G%,, G%;, G55, vF,, vE, vk, are the the elastic moduli and Poisson’s ratios.
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The rotation of the fourth-order stiffness tensor can be shown to be:

Ciy = Cécﬁ + 201298129052 + 5%9052 + 40129512906?6

Cip = CﬁC’ﬁ + 5%9052 + 012931290{{1 + 01293129052 - 40129812906?6

Cig = 0?93196’:{“1 — cf;sﬁCfQ + C@S%Cﬁ — 0198?9052 + 20193?96%“6 — 20?93,96’&

Ci3 = c5Cls + s5C5y

Cop = C§C§2 + 201293129052 + séCﬁ + 401293129056

Cos = cosyCty + chs9Cly — cosiCly — cs9Ch, + 2¢559Cl — 2c955C;

Cas = c5C33 + s5CTy (5.11)
Co = ¢5Chs — 2¢555C8s + s5C8s + c555CT — 2¢555C15 + 55505,

— k k

_ 2.k 2 vk
Cs5 = c3C55 + 5501
6’“ — 20k 2 ok
44 = CyCyy + 5yCss
cr = ck Ck
45 = —CyS9lgy + CySyCLis
—k
_ ik
C33 =C3;5

where ¢y = cos9*, sy = sin 9¥.

5.2 Stress derivatives

During the proposed stress recovery procedure, as shown in the next section, it is necessary to

perform the derivatives of the SPKST.

—k —k
Shy = CLEF+CE%
: ) (5.12)
s = CLE*+CES
For example the Y derivative of the inplane stress Syy is compute as follow:
Sikfy,y = Cf2E§(X,Y + C@ZE{C/Y,Y + 0562E§(Y,Y + é§3E§Z,Y+ (5.13)

Cloy Exx + Cloy By + Clg y2EXy + Cls v EY 5
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where C_'fj are the material coefficient already rotated in the local element reference systems. To demonstrate

the procedure the derivative of C¥, with respect to Y is chosen. Using Eq. 5.11

oCT,
oY

— (dteosy

+ (2(COS )2 sin 9*

0 cos ¥
oY

O sin 9F
oY

+ 4(sin 9*)3

O sin 9F
oY

+ 2(sin 9*)2 cos ¥*

) Chy+

0 cos ¥*
)4

) (€4 + 5, - ach)

(5.14)

The derivatives of the trigonometric functions with respect the in-plane coordinate are computed:

0 cos ¥k

0X

9 cos ¥k
oY

O sin 9F
19,4

O sin v*
oY

V(cos 9%) - i
@(cos IF) - iy
V(sind*) - i

V(sin9%) - iy

O cos 9F ~k
— i
0XFk

O cos 9F &
— i
o0Xk

O sin 9% &
— i
oX*k

O sin 9% -k
— i
oX*k

i
D)
-1

- io

-1
-ig
-1

g

(5.15)

ke k
where (i;,1,) are the unit versor of the layer coordinate systems and (i;,iz) are the ones of the

element coordinate system (see Fig. 5.2).

'il
D)
-1y

-9

Using the following angular relationships

ﬁk
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cos ¢F
sin ¢F
— sin ¢

cos ¢F

+ ¢F

(5.16)

(5.17)



and the trigonometric identities Eq. 5.15 can be rewritten as:

O cos ¥k k@cosﬁ . kasin@“ . Ocos? &
X = 0s ¢ — sin ¢ oxh cos ¢ — ok sin ¢
O cos ¥ k@cosﬁ k@smﬁk i, Ocost &
Y = cos ¢ B ing XK sin ¢” + ook 10} 519
O sin ¥* B sin qsk@sin@k‘ ¢kacos19k cos ¢ — Osind sin o ’
ox OXF Xk oYk
asgr;ﬁk _ sin o agi;fk gzskacosﬁ’c sin ¢ + 821;19 0s ¢

where the fact that d¢F /OX* = 0 has been used. The fiber is rigidly translated along the X* then

¥ is constant along that directions and Eq. 5.18 is simplified:

d cosV* dcos ¥ L
X = — ok sin ¢
O cos ¥k O cos ¥F &
Y = —— COS ¢
9 sin OF B O sin 9 sin " (5.19)
0X - _W
- 9k
Jsind B Osin ¢ cos ¢
oY Y k

The angle ¥ is known as a function of the parameter p* and it will be simpler to compute the

derivative with respect to that parameter. This can be done using Eq. 5.8 in Eq. 5.19:
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9 Caojfﬁk = —-F 0 Cac;jkﬁk singf = Fsin* gii sin ¢*
9 05;19’“ = Facaoiskﬁk cos¢® = —Fsin ﬂgik cos ¢F (5.20)
335;1(19’“ = —FW singt? = —F cosﬂg z sin ¢¥ .
9 S(;I}l/’l?k = W cospf = F cos 9" gz: cos ¢F
The angle derivative is calculated through Eq. 5.1:
gzz = afﬁ (5.21)

and the final expression of the trigonometric function derivatives as a function of the known Legendre



polynomial coefficient are obtained:

d cos ¥ dPF
3% = F'sin (afPtk) af d,utk sin ¢F
9 cos V" dpPf
o8 = —Fsin (a,’fPtk) af —L cos ¢*
" o2
S;r)l( = —Fcos (afPtk) ak d/j“ sin ¥
J sin ¥ dPF
a7 = F cos (aiC Pt’“) af W cos ¢k

Eq. 5.22 allows to compute the derivative of the material coefficient (Eq. 5.14) from the knowledge
of u* and consequently of Yk using Eq. 5.6.

In conclusion, it is now possible to compute the derivatives of the SPKST (Eq. 5.12) once the
GLST is computed through kinematic relationship from the displacement solution and the user input fiber

equation given by Eq. 5.1.

5.3 The proposed stress recovery procedure

PVD-based theories have only displacements as primary unknowns. This means that the stress field
caused by the nonlinear deformation of the structure has to be computed successively during a post-processing
phase. The stresses can be computed by using CFHL (Eq. (3.43)). This method provides excellent in-plane
SPKST stress components, but the transverse stresses are not accurately calculated and the interlaminar
continuity violated. The Cauchy Stress Tensor (CST), directly obtained from SPKST, are also inaccurate.

The same problem have been encountered also in linear analysis. It has been shown that the

integration of equilibrium equations

ok, ook, 50595
8%; N 6£ 6%

02y _ 00w _ Do (5.23)
0z ox 8%

80'52 _ 80'];2 aO'yz
0z  ox Jy

along the thickness improves the results. Suppose the value of the stress is needed at a point (z,y)
of the plate. The inplane stresses are computed using the Hooke’s formula and the transverse stresses as

follows:
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z b k 8ka
J’;x(a_c,gj,z) = O—Izcm(i'vgazo)/zo g;z - 8; dz

z (dok ok
Z,7, 70) —/ — Yy (5.24)
o ox oy

z k o k
U’;Z(f,l_hz) = O—’zcz(s_cang()) 7/ a(;—;z N ;:ZZ> dz

Zo

where zg is a point where the stresses are known. At the start of the integration usually this point

is at the top (k = n;) or bottom (k = 1) of the plate. If the stress at the bottom of the plate is known

the stress integration starts from k = 1 up to the layer where the stress is wanted. The intermediate layers

will use the stress at the top (bottom) of the lower (current) layer as starting point, where the stress have

been already computed. The first two equations are independent and they can be solved separately. The

transverse shear stresses obtained should then be substituted in the third equation to obtain the correct

expression of the normal transverse stress. Although, previous numerical results have shown that using the

transverse shear stresses obtained from Hooke’s law does not affect the accuracy of the normal transverse
stress [28]. This fact will be used later also in the nonlinear case.

This problem for nonlinear analysis has been studied by few authors [18-21] and tackled with
different strategies, often for higher-order theories and von-Kérmaéan strain model. Here a dedicated procedure
is proposed. It is based on the integration of the equilibrium equations written in terms of SPKST [98].
The procedure is tailored to take into account the variability of stiffness coefficients as prescribed by VAT
laminates.

Starting point is represented by the equilibrium equations [96, 110] written in the undeformed

configuration

9 (G, 5k.)

mm~myg

=0 i,j=1,2 2

If the coordinates X7, X, X3 are replaced with X, Y, Z and ¢, j, and m take the values of X, Y, and Z,

respectively Eq. (5.25) becomes

0X oY 0z n
0X oY 9z
0X oY 9z n
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As opposed to the linear case all three equations are coupled and they have to be solved simultaneously. In
this dissertation the following assumption is made: only the derivatives of the transverse stress with respect to
Z are considered unknowns. The remaining terms are accurately computed with the CF H L. This hypothesis
allows to use an integration method similar to the one used for linear analysis. All terms with the derivative
of the stresses with respect to Z are kept on the left-hand side and all others are moved on the right-hand

side.

BY T X B oY
07 0X oY
07 0X oY
As an example the first equilibrium relation of Eq. (5.26) is rewritten as
G)%XS?(Z,Z +G§YS§€/Z,Z +G)]€<ZS§Z,Z =— 8%« G)kcx,x — S§y G)kof,y - S%y G)]z'xx

—S%y GRx, — Gxx Skx » — Gl S¥x
— Glix S%y, —Giy Sby, —S%, Ghz (5.28)
— 8%z Gix, — Sz Gz, — vz Gy,
— 8%z Gz, —GXz Six  — Gz Shy,

To simplify the notation, the deformation gradient is expressed as a function of the position vector R:

G"= Ry RY R, (5.29)
where
X+ u’%
R = | yub (5.30)
Z +ub,
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Using the rule of differentiation of product the equilibrium equations take the form reported below:

~k
d(GFS™)
T = *S§<XRZ€XX - S;C(X,XRTCX - S{C’YRTCYY - S@Y,YRfCY - S?(Y,YRZCX - S?(Y,XRZCY (5 31)
_QS;C(YR,ICXY - S?{Z,XRfCZ - S?(ZRfCXZ - Sxkfz,YRch - Slk/ZRfCYZ
where
ok ok ok 17T
S - [SXZ SYZ Szz] (532)

Eq. (5.31) is the nonlinear counterpart of Eq. 5.23. It is integrated along the thickness of the element
starting from either the top or bottom surface. The values of the transverse stresses at a coordinate Z is

obtained as follow: LH
oA
§k _ (Gk>*1 (Gkgk)zo +/Zj B(G:?;)dZ (5.33)

In this case Zj is the coordinate of the layer where the stress is known. Usually this happens at the top or
bottom of the laminate. In case it is of interest the stress field in an internal layer the same procedure used
for the linear case (Eq. 5.24) should be followed. The stresses in the right-hand side of Eq. (5.31) are known

and computed by using CFHL (SH ). The main steps of the method are shown in Fig. 5.4.

[ Boundary condition at Zy ]

(%),
!

Thickness integration

- - 7 9(G8")
6= (c5), + [ 57

}

Transverse stresses at Z
s —g! (G§)
z

!

SPKST is updated
SEx SBy SH
si=| sk Sty S
Sy SRt s
v

Cauchy stress tensor
o_upd — J*lcsupdGT

dz

Figure 5.4: Stress integration algorithm. G is known everywhere and computed from the solution vector.
S is the SPKST computed by CFHL.

As it can be seen from Eq. 5.31, it is necessary to compute the in-plane derivatives of SPKST and
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particular attention should be paid if the material coefficients are not constant in the element coordinate
systems as for VAT composites [28]. This issue has been dealt with in section 5.2 (see Eq. 5.12).
In this work the acronym Q3D will be used to indicate that the transverse stresses have been

computed with this procedure.

5.3.1 Dynamic extension

In dynamical problems the stress recovery algorithm is formally unchanged. Eq. 5.33 still holds.

The main difference is the introduction of the inertial forces in the governing equation (Eq. 5.25):

im*~mj

0X;

o(Gk Sk

g =prif 0,5 =1,2,3 (5.34)
The additional term is known since both the density distribution and the acceleration field are

available. The density is given as input and the acceleration field is computed during the solution process

from the displacement field. The inertial contribution modifies only the right-hand side of Eq. 5.31:

~k

d(G*S") .
T = _S;C(XRZCXX - S?(X,XRTCX - S?”YR{CYY - S)k/Y,YRfCY - S?(Y,YRfX - S,];(Y,XRZC 5 35)

_2S§(YR,]€XY - S?(Z,XR{CZ - S§(ZR{€XZ - S{C’Z,YR{CZ - Sfsz{fYZ + pFuk
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Chapter 6

Numerical examples

In this chapter the multi-theory and multi-fidelity model for nonlinear static and dynamic analysis
of composite laminates is tested on a series of benchmark problems from literature or direct comparison with
commercial codes.

In static analysis the stress and displacement fields are considered at specific in-plane global coordi-
nates (X, )) of the plate. At such points, the variation of their components along the thickness (Z) direction
is visualized. This allows us to check if the models adopted provide a solution that satisfies the physical
constraints, e.g. continuity of transverse stress at lamina interface.

In dynamic analysis, from the point of view of an aerolastic design it is of great interested to
evaluate the displacement correctly, because they change the boundary condition of the aerodynamic solver
and consequently the effective loads applied to the structure. The stress are checked monitoring a material
particle locate at specific points (X, Y, Z) during time.

In this dissertation only the quartic triangular element is used. It proved to perform well in linear

analysis and to be locking free.

6.1 Static analysis

The following test are performed:

e Clamped, antisymmetric cross-ply laminated square plate under uniform load: a preliminary validation
of the nonlinear algorithm. The capability to capture the stress-stiffening along with the LW models

are checked. LW will be used as reference solution for other less refined theories (ESL, ZZ).

e Cantilever composite plate subjected to a tip load: this is a problem where very large displacements

and rotation comes into play. Here the performance of different axiomatic models in presence of
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geometrically nonlinear are compared as well as the stress recovery procedure.

o Thick three-layered simply supported plate with bottom surface pressure: In case of sandwich plates
the core and skins have different material properties making predominant the Zig-Zag form of the

displacement field.

o Thick three-layered VAT simply supported plate with bottom surface pressure: same problem as be-
fore but with inclusion of VAT composites. Both the curvilinear fiber path definition and the stress

integration algorithm for anisotropic materials are tested.

6.1.1 Clamped, antisymmetric cross-ply laminated square plate under uniform

load

This test involves the large displacement bending of a clamped square plate with a antisymmetric

cross-ply laminate (0/90/0/90/0/90) subjected to uniform load of 1800 psi. The material properties are the

following:
E2:106pSi %:40 %:1 G12:G13:1%'E2
(6.1)
Gos =3 E» Vig =13 = Va3 = +

The plate has an edge length of 12 in and a thickness of 0.3 in. In Fig. 6.1 the deflection (expressed in inches)
of the six-layered laminate together with at two-layer (0/90) case are compared against result obtained by
Reddy [57] who used a first order shear deformation theory (FSDT). Also the in-plane Cauchy stresses at
the middle of the plate (see Fig. 6.2) are compared with NASTRAN (results obtained with CHEXA solid
elements). The stresses are calculated in the undeformed global coordinate system indicated with X, ), Z.

The correlation is excellent.

6.1.2 Cantilevered composite plate subjected to a tip load

This test case has been adapted from Ref. [111], the geometry, constraints and material properties

are shown in Fig. 6.3 (see also Refs. [112, 113]). Two laminations schemes [111] are analyzed:
e Stacking Sequence # 1 (SS 1): -45/45/-45/45
e Stacking Sequence # 2 (SS 2): 30/-60/-60/30

The plate is subject to very large displacements of about eighty times the thickness. Using various layerwise
theories indicated as 1,,1,PVDgs2, Li.PVD3s33, and 11,1, PVDyy4 for the parabolic, cubic, and fourth-order

cases, respectively, it was verified that the convergence of the SPKST was, as expected, slower than the
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Figure 6.1: Load-deflection curve for clamped anisymmetric cross-ply laminated square plates under
uniform load [57]. The displacements are expressed in inches.

0.5 —e I I I 0.5 I I I I I
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90°
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—05 \ \ \ —05 \ \ \ \ \
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gax 10° Txy

Figure 6.2: Cauchy stress (expressed in psi) oxy and oxy evaluated in the middle of the plate.
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Figure 6.3: Cantilever plate strip subjected to end shear loading [111]. Figure from [98].

displacements. Figs. 6.4 and 6.5 present the convergence! for the SPKST component Syz. With an
appropriate in-plane approximation, all layerwise theories considered provide a good accuracy. The symbols
“Q3D” is used in this work to indicate that the proposed post-processing SPKST stress recovery procedure
is applied. Based on these data a mesh 16 x4 will be used for all following results shown for this benchmark
problem. And the fourth-order theory 11, PVDy44 it will be used as a reference for the other axiomatic

models.

2.5
(—45)

—=— Ref.[111]
N 0 H —— LLLPVD444 8x2 (Q3D)
—— 1. PVDyy4 16 x4 (QSD)

(+45°)
—2.5
(—45°)
,5 | | | |
-9 -8 -7 —6 -5 1

Figure 6.4: SPKST component Syz at point B: convergence test with respect to the mesh

IKulikov’s results for the stresses have been extracted from Ref. [111] by using the software WebPlotDigitizer and this is
the reason why the curves are not always perfectly smooth.
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(—45°) —— 1L PVDasy 16 x4 (Q3D)
_5 | | | | | |

! ! ! ! !
-1 -09 -0.8 -0.7 —-0.6 —0.5 —04 —-0.3 —0.2 —-0.1 O 0.1 0.2 0.3
Syg

Figure 6.5: SPKST component Syz at point B: convergence test with respect to the order of expansion
along the thickness.

Displacements The displacements of the plate tip (point A) provided by the ESL and ZZ theories are
compared in Figs. 6.6 and 6.7, indicating the excellence performance in capturing displacements at global
level also by low order theories. As we will show later, the case of thick plate needs an accurate formulation

to correctly represents three-dimensional effects and the Zig-Zag models built by using MZZF achieve that.

Stress field: layerwise models The state of stress along the plate thickness can be obtained using both
the CFHL and the stress integration algorithm. On this regard, Fig. 6.8 compare the SPKST component Szz
at point C indicating the superior performance of the proposed recovery procedure with respect to CFHL.
In this case, the layerwise approach provides a satisfactory performance even by applying the constitutive
equations (see Fig. 6.8). However, it is anticipated that for ESL theories the recovery procedure is necessary
to correctly reproduce these stresses. The excellent correlation with publish data is also confirmed for the
(30/-60/-60/30) stacking sequence, as documented in Figs. 6.9 and 6.10.

SPKST results are summarized in Fig. 6.11. These results are relative to points B and C' (whose
locations are depicted in Fig. 6.3). Since results presenting transverse components of SPKST are not
very abundant in the literature, Tables 6.1 and 6.2 report numerical values of these stresses and could be
used to compare other theories. The present results are also validated using ABAQUS element C3D20R.
In particular, the SPKST (the transverse components of SPKST are evaluated using the proposed stress
recovery procedure) is transformed into the Cauchy Stress Tensor referred to the undeformed geometry. The

excellent correlation and the relevant stress values are reported in Figs. 6.12 and 6.13.
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Figure 6.6: Case of SS1. Transverse displacement point A.
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Figure 6.7: Case of SS1. Axial displacement point A.
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Figure 6.8: SPKST component Szz at point C: evaluation using the present stress recovery procedure and
CFHL.

1072
5 T T
—=— Ref.[111] (B)
(+30%) —e—Ref.[111] (C)
. ——1L.PVDa2o (CFHL) (B) | |
. +LLLPVD222 (CFHL) (C)
(—60°)
N 0
(=60°)
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Figure 6.9: SPKST component Syy at points B and C using CFHL.
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Figure 6.10: SPKST component Szz at point C' using the proposed stress recovery procedure.

Table 6.1: Kulikov’s test case [111]: present evaluations of SPKST components Sxy
points B and C with 1,,;1,PVDy44 theory. Lamination scheme (-45/45/-45/45).

and Syz calculated at

Location Point B Point C

(Layer) Z Sxx Sxz Sxx Sxz
1bot —h/2 | +1961.43 | +0.00 +4805.72 | +0.00
1top —h/4 | +929.13 +7.69 +2104.43 | +24.60
gbot —h/4 | +1089.47 | +7.69 +2531.63 | +24.60
otop -0 +57.10 +10.33 | —144.25 +34.26
3bot +0 —98.01 +10.33 | —569.17 | +34.26
3top +h/4 | —1122.42 | 47.57 —3223.81 | +24.40
4bot +h/4 | —970.79 +7.57 —2794.50 | +24.40
4top +h/2 | —1996.80 | —0.15 —5429.63 | —0.01
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Figure 6.11: Distribution of the SPKST stresses. Lamination scheme (-45/45/-45/45).
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Table 6.2: Kulikov’s test case [111]: present evaluations of SPKST components Syz and Szz calculated at
points B and C with 1,,;,PVDy44 theory. Lamination scheme (-45/45/-45/45).

Location Point B Point C

(Layer) Z Syz Szz Syz Szz
1bot —h/2 | 4+0.00 | —0.00 | —0.00 | —0.00
1top —h/4 | +0.22 | —3.29 | —4.01 | —21.35
gbot —h/4 | +0.22 | —3.29 | —4.01 | —21.35
2top -0 +0.21 | —4.58 | +0.90 | —30.48

3bot +0 +0.21 | —4.58 | +0.90 | —30.48
3top +h/4 | —0.84 | —3.27 | +1.41 | —22.59
4bot +h/4 | —0.84 | —3.27 | +1.41 | —22.59
4top +h/2 | +0.04 | 40.43 | +0.12 | +0.75

1072
5 T

(+45°)

2.5
(—45°)

N 0

—a— ABAQUS C3D20R 128 x16x 12

—— 1 ..PVDyys (+45°)

—-2.5
(—45°)

|

_5 | | | | | |
—500 —400 —300 —200 —-100 O 100 200 300 400 500
Oyy

Figure 6.12: Cauchy stress component oyy at point C using the proposed stress recovery procedure for the
transverse components of SPKST.
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Figure 6.13: Cauchy stress component oyz at point C' using the proposed stress recovery procedure for the
transverse components of SPKST.

Stress field: ESL models The SPKST component Syz calculated at point B (see Fig. 6.3) is calculated
with both CFHL and the present integration of the equilibrium equations in Fig. 6.14. Qualitative behavior
and quantitative values are incorrect when Hooke’s approach is used to calculate the stresses, and this is
particularly the case when low-order theories are adopted. On the other hand, the use of the proposed stress
recovery procedure is quite effective. Similar conclusions can be deduced from an analogous result relative to
SS2 (see Fig. 6.15). SPKST can be converted to CST to allow a comparison with the commercial software
ABAQUS. Results (see Fig. 6.16) indicate the excellent correlation of Zig-Zag theories with respect to the
reference solution obtained with ABAQUS. Cubic Zig-Zag theory is able to provide stress values comparable
to the ones obtained with the high-order layerwise approach (see Figs. 6.17 and 6.18). It is also observed

that the largest error occurs in correspondence of the first 2 layers (this finding is a case dependent property).

6.1.3 Thick three-layered simply supported plate with bottom surface pressure

The simply supported three-layered structure is presented in Fig. 6.19. Two lamination schemes,
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Figure 6.14: SPKST component Syz at point B: case of SS1. Comparison of calculation of the stresses
with constitutive laws and with the present stress recovery procedure.
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Figure 6.15: SPKST component Syz at point B: case of SS2. Comparison of calculation of the stresses
with constitutive laws and with the present stress recovery procedure.
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Figure 6.16: Cauchy stress component gy at point C using the proposed stress recovery procedure for the
transverse components of SPKST. SS1 is used.
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Figure 6.17: SPKST component Syz at point B: case of SS1. Comparison of 5 Zig-Zag theories against
literature and quasi-exact reference solution (Part I).
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Figure 6.18: SPKST component Syz at point B: case of SS1. Comparison of 5 Zig-Zag theories against
literature and quasi-exact reference solution (Part IT).
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Figure 6.19: Multilayered plate subjected to a bottom surface conservative distributed load. Figure from
[98]
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named SS3 and SS54 are analyzed. All the results are written in dimensionless form as follows:

O - B
v a)? yo a)? z= Uz )1
ZPPh(}) ZPPh(}) 2PPh(3)
~ ozx ~ ozy ~ 0zZ
OZx = Zpy (@) () 02y = Zpy (@) () 0zz = Zpy (6.2)
S Oxx S _ oy S Oxy
B e O O

k =1 identifies the bottom layer identity; uy is calculated at X = a/2,Y = 0; Uz, oxx, Oyy and ozz are

calculated at X = a/2,Y = b/2.

Lamination SS3 The reference solution is obtained by comparison with commercial codes ABAQUS
and NASTRAN against the quasi-exact solution represented by a cubic layerwise theory (see Figs. 6.20,
6.21, 6.22). This is needed to create a benchmark reference case adopted later to compare various Zig-Zag

theories. It can be noticed that the present quasi-exact is particularly correlated with the results obtained

by NASTRAN.
0.5 T T T
—— LLLPVD333 10x10
—eo— ABAQUS 20x20x8 C3D20
—— NASTRAN 20x20x8 CHEXA20
0.25

=

~

N

—0.25

—-0.5
0

Oxx 1072

Figure 6.20: Case of SS3. In-plane normalized Cauchy stress oy x.

The Zig-Zag theories with different orders of expansions for the various displacement variables show
an excellent agreement with the quasi-exact theory, as presented in Figs. 6.23, 6.24, and 6.25. The
convenience of adding MZZF is obvious if theories with the same degrees of freedom are compared. The

concept is shown in Figs. 6.26, 6.27, and 6.28 where a Zig-Zag theory with cubic expansion for all the
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Figure 6.21: Case of SS3. Transverse normalized Cauchy stress oz z.

0.5

—— LLLPVD333 10x10
—e— ABAQUS 20x20x8 (C3D20)
—— NASTRAN 20x20x8 (CHEXA20)

0.25

=

~ 0°
S (0)

—0.25
(90°)
_05 | | | | | |
-1 0 1 2 3 4 5 6 7 8 9
ﬂy 1073

Figure 6.22: Case of SS3. In-plane normalized displacement uy.
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Figure 6.23: Case of SS3. In-plane normalized displacement 4y .
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Figure 6.24: Case of SS3. In-plane normalized Cauchy stress o x-

102



0.5

/L"\ T T

T
—— LLLPVDggg 10x 10
(90°) —— ZZZPVD442 10x10
—— ZzzPVD332 10x 10

0.25 '\ ZZZPVDggg 10x10 [

Z/h
V4

—0.25 \‘
(90°) T

—0.5 ! ! ! ! ! \5
—0.4 —0.2 0 0.2 0.4 0.6 0.8 1

Ozz

Figure 6.25: Case of SS3. Transverse normalized Cauchy stress 7z z.

displacements (indicated with 7zzzPVDss3) and a fourth-order ESL theory (indicated with grrPVDy444) are

compared, indicating the undoubt advantage of adding MZZF also for the large displacement analysis case.

Lamination SS4 The results obtained including and discarding MZZF are also confirmed when generic

lamination schemes are considered, like SS4 (see Figures 6.29, 6.30, and 6.31).

6.1.4 Thick three-layered VAT simply supported plate with bottom surface

pressure

The capability of GUF for geometrical nonlinear VAT laminates is evaluated by the results with a

model made of solid elements obtained with the commercial software NX NASTRAN.

Notation used for the fiber pattern The path of any fiber of layer £ is defined by the angle between
the fiber itself and the °X axis

2T - Ty)

9 (0X) = -

% — 2|+ T8 (6.3)

where T} is the value of the angle in the middle of the plate and TF its value on the edges (°X = 0 and
X% = a). Eq. (6.3) is equivalent to the expression available in the literature [27], but is formally different

because here the origin of the global coordinate system is at the corner of the plate and not at its center. Since
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Figure 6.26: Case of SS3. In-plane normalized displacement @y including and discarding MZZF.
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Figure 6.27: Case of SS3. In-plane normalized Cauchy stress oxx including and discarding MZZF.
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Figure 6.28: Case of SS3. Transverse normalized Cauchy stress 0z z including and discarding MZZF.
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Figure 6.29: Case of SS4. In-plane normalized displacement @y including and discarding MZZF.
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Figure 6.30: Case of SS4. In-plane normalized Cauchy stress oyy including and discarding MZZF.
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Figure 6.31: Case of SS4. Transverse normalized Cauchy stress 0z z including and discarding MZZF.
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Figure 6.32: Subdivision of the solid geometry to create a piecewise linear approximation of the curvilinear
fiber path within NX NASTRAN. Figure from Ref. [114].

it is assumed that the angle of the fibers is a function only of one coordinates, the fibers are parallel to each
other along the %) axis. This simple fiber pattern can be reproduced with solid elements in a commercial
software. Each layer of the 3D solid mesh is divided in vertical strips that extend from °Xs — AXg/2 to
%5 + °AXs/2, where "AXg is the strip width and “Xg the position of the center of the strip on the X
axis. Then all elements belonging to a specific strip (S) have a material reference system rotated by the

angle ¥*(%Xg) with respect the global reference system (see Fig. 6.32).

Test case description A simple supported square plate subject to bisinusoidal load on the bottom surface
(see Fig. 6.33) has been used as a benchmark. The plate has a soft core and two skins made of orthotropic
fibers. The core has a curvilinear fiber path < (0/45) > and the skins have a pattern < (30|10) > (see Fig.
6.34). The presence of a softer core with respect the skins will produce a significant Zig-Zag pattern of the
displacements that can not be well approximated by the classical Equivalent Single Layer theories, as will
be shown later.

The following dimensionless variables are introduced:

- E55t _ E55! _ 100E55"
Gx=ux o s W SuwonSoy Uz =uzg s g

Ph () Ph (5) Ph (5)
~ _ O0zx ~ _  o0zy ~  0zZ
TEm A T (64

L 6.4
~ _  Oxx ~ _ Ooyy ~ o OxYy
eyt e Y gy
- S - S s S
Szxzig Szyziz Szzziz
() P () P (5)
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Figure 6.33: Test case geometry, materials and loads. Figure from Ref. [114].
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Figure 6.34: Fiber paths for all layers of the laminate. Figure from Ref. [114].
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Figure 6.35: Anazlyzed points.Figure from Ref. [114].

The displacements and stresses of a point at (0.5a,0.5a) and (0.75a,0.75a) are chosen as shown in

Fig. 6.35.

Finite element convergence The commercial software NX NASTRAN has been used to obtain a refer-
ence solution in order to validate and compare the axiomatic theories available in the GUF framework. Fig.
6.36 show the displacements and stress at point B along the thickness for two meshes made of parabolic
solids element of size 20 x 20 x 12 and 40 x 40 x 18. A large number of elements has been used to improve
the approximation of the curvilinear fiber path. In the following results the stress and displacement fields of
the finer mesh have been considered.

Also a mesh convergence using a layerwise theory have been used (Fig. 6.37). Althoguh a 6 x 6

mesh reached convergence, the finer mesh has been used (10 x 10) for comparison with ESL theories.

Effect of including/discarding Murakami’s Zig-Zag function The addition of MZZF is an effective
method to improve the accuracy of the ESL theories. Fig. 6.38 shows the vertical displacements of point A
as a function of the applied load. It can be seen that the addition of the Zig-Zag term allows ESL model
to get an accuracy comparable with the more computational expensive and accurate cubic layerwise theory.
Numerical values are reported in Table 6.3. Note that ESL theory discarding MZZF uses a higher order of
expansion to keep the total number of degree of freedoms equal to the Zig-Zag model.

The presence of a softer core with respect to the skin produces a pronounced Zig-Zag form of the
displacement along the thickness (Fig. 6.39). Although ESL theories discarding MZZF, also of higher order,
can not reproduce this behavior, the addition of MZZF proved to solve this problem (Table 6.4).

Furthermore the stresses accuracy along the thickness significantly improves (Figs. 6.40-6.42). The
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Figure 6.36: Displacements and stresses of NX NASTRAN 3D solid meshes at point B.

Table 6.3: Normalized transverse displacement uz/h at point A. Values plotted in Fig. 6.38.

P NX NASTRAN  pePVDus  222PVDsss  11nPVDsss
(40 x 40 x 18) (10 x 10) (10 x 10) (10 x 10)
35  —0.1694 —0.1457 —0.1693 —0.1689
70 —0.3278 —0.2845 —0.3275 —0.3269
140  —0.5999 —0.5323 —0.5989 —0.5981
210 —0.8187 —0.7400 —0.8165 —0.8161
280 —0.9991 —0.9148 —0.9950 ~0.9955
350 —1.1521 —1.0641 —1.1457 —1.1471
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Figure 6.37: Mesh convergence using the present third-order layerwise theory 11,1, PVD333 at point B.
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Figure 6.38: Transverse displacement uz/h as a function of adimensional load P = P - (a/h)*/E45!
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Figure 6.39: @y displacement at point B: effect of discarding (theory ggrPVDy444) and including (theory
222PVD333) MZZF.
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Table 6.4: Normalized in-plane displacement @y - 1000 along the laminate thickness at point B. Values

plotted in Fig. 6.39.

Z/h  NX NASTRAN  grgPVDsys z22PVDsss [ PVDsss
(40 x 40 x 18) (10 x 10) (10 x 10) (10 x 10)
—0.50 +2.212 +2.136 +2.215 +2.219
—-0.25 +1.326 +1.329 +1.324 +1.329
+0.00 +0.814 +0.715 +0.843 +0.819
+0.25  +0.358 +0.101 +0.357 +0.365
+0.50 —0.548 —0.723 —0.552 —0.546

values of stresses at layer interfaces can be found in Tables 6.5-6.6. The transverse stress o0z z at the center

of the plate is continuous (as physically expected) along the thickness after application of the present stress

recovery procedure.

0.5

0.25 ——

Ug/h

—0.25

< (30[10) >

—a— NASTRAN 40x40x 18 CHEXA20

LLLPVD333 10x10
ZzzPVDggg 10x 10
—— P VD444 10x10

< (0]45) >

-0.5
-0.4

Ozz

Figure 6.40: 6zz at point A: effect of discarding (theory ggrPVDy44) and including (theory 777PVD333)

MZZF.

ssessment o € present stress recover roceaure ooke’'s law I‘OVi €S accura e in- ane stresses
A t of th t st y d Hooke’s law provid te in-plane st ,

but does not impose the interlaminar continuity of the transverse stresses. Using the algorithm developed

in section 5.3 the interlaminar continuity can be reestablished as seen in Figs. 6.43 and 6.44. Here the

SPKST is shown. It can be seen that CFHL provides acceptable results for layerwise theories because the

discontinuity is not much pronounced. It is of interest to note how the addition of MZZF improves the

transverse stress Syz predicted by ESL also in case where CFHL is used (Fig. 6.44).
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Figure 6.41: 61y at point B: effect of discarding (theory ggrPVD444) and including (theory zzzPVDss3)
MZZF.
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Figure 6.42: 6yx at point B: effect of discarding (theory ggrPVDy44) and including (theory zzzPVDss3)
MZZF.
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Table 6.5: Normalized in-plane Cauchy stress dxy - 1000 along the laminate thickness at point B. Values
plotted in Fig. 6.41.

Z/h NX NASTRAN  gpgPVDyss zzzPVDsss rrpPVDsss

(40 x 40 x 18) (10 x 10) (10 x 10) (10 x 10)
—0.50 +27.653 +21.746 +27.670 +27.992
—0.25 +32.352 +25.566 +32.505 +32.659
—-0.25 —1.8016 —3.3321 —1.6309 —1.6585
—0.00 +0.2786 —0.2062 +0.4282 +0.4195
+0.25  +2.2538 +2.0909 +2.2779 +2.3921
+0.25  +31.301 +30.711 +31.786 +31.842
+0.50  +36.580 +34.543 +37.243 +37.170

Table 6.6: Normalized transverse Cauchy stress 6z z - 1000 along the laminate thickness at point A. Values
plotted in Fig. 6.40.

Z/h NX NASTRAN EEEPVD444 ZZZpVDggg LLLPVD333

(40 x 40 x 18) (10 x 10) (10 x 10) (10 x 10)
—0.50 +876.6 +881.5 +874.6 +875.3
—-0.25 +173.6 +70.19 +174.21 +167.16
—0.25 +174.1 +70.19 +174.21 +167.16
—0.00 —29.99 —56.38 —39.61 —35.45
+0.25 —224.8 ~154.0 —226.1 —232.8
+0.25 —226.2 ~154.0 —226.1 —232.8
+0.50  +0.351 —2.517 ~18.99 ~16.97
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Figure 6.43: Stress Sz obtained by CFHL and present recovery procedure at B.
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Figure 6.44: Stress Sz obtained by CFHL and present recovery procedure at B.

117




6.2 Dynamics

The following test cases are presented:

e Plunging motion of a cantilever plate: first benchmark problem to validate the implementation of FEM

equations in a non-inertial reference frame.

e Flap rotation of a rectangular plate: second benchmark problem for validation of kinematically pre-
scribed boundary condition in a non-inertial reference frame. In this case additional term are activated

(e.g. gyroscopic damping and dynamic stiffness).

o Clamped plate under uniform step function load: the time variation of the transverse stresses obtained
with different axiomatic theories are compared with data from literature. Successively, the solution of

the ESL theories are improved by a multi-model analysis or the stress recovery procedure.

6.2.1 Plunging motion of a cantilever plate

This benchmark problem [105] is used to test the correct implementation of the dynamic algorithm
in a moving reference frame. Due to a lack of rotation only the additional arrays coming from a rigid body
translation (defined in paragraph 4.3.3) are considered. The model consists of a rectangular plate with an
imposed sinusoidal motion at the root as shown in Fig. 6.45. The motion represent the only source of

deformation, not external loads are applied. The plate is made of steel (Table 6.7) and it oscillates at a

y L ~
'z(t) = A1 — cos(2m ft)]
w Root ; ®
| A Tip
X Tip .

Figure 6.45: Geometry of plunging plate [105]. Nodes at root are kinematically constrained.

frequency f=1.78 Hz with a semi-amplitude A=0.0175 m. The plate has been discretized using six elements

Table 6.7: Dimensions and material property for plunging motion.

Data Symbol  Value
length L 0.3 m
width w 0.1 m
thickness h 0.001 m
Young’s modulus E 210 GPa
Poisson’s ratio v 0.3

density P 7800 kg/m3
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along the span and two along the chord (twenty-four triangular elements). The same time step size found
in the reference has been used (At = 0.001 s).

The total vertical displacements, combination of the rigid motion and elastic deformation, is plotted
against time (see Fig. 6.45). There is a perfect match with the reference data, also with a parabolic ESL
theory. A low order theory was enough to capture the deformations because the plate analyzed is a thin

isotropic lamina.

2.5 T T T T T

—0— gpePVDags 6x2
—— Ref. [105]

I I I

|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

tof

Figure 6.46: Time variation of transverse tip displacements of a pure plunging cantilever plate.

6.2.2 Flap rotation of a rectangular plate

This benchmark problem [105] has the objective to test the implementation of the remaining arrays
linked to the rotational motion (e.g. centrifugal forces) that were not activated in the previous test. For this
reason, the equations are solved in a rotating reference frame.

The model consists of a rectangular plate with an imposed sinusoidal rotation in a 5 X 5 mm square
area at the root (blue square in Fig. 6.47). The motion represents the only source of deformation, no external

loads are applied. The plate is made of aluminum (Table 6.8) and it oscillates at a frequency f=5 Hz with

. Oy(t) = Al — cos(2m ft)]

w e L
| Root X Tip

X Tip

Figure 6.47: Geometry of flapping plate [105]. Nodes at root are kinematicaly constraint.
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a semi-amplitude A=17 deg around the ) axis. The simulation have been performed with a mesh of sixteen

Table 6.8: Dimensions and material property for flap rotation.

Data Symbol  Value
length L 80 mm
width w 27 mm
thickness h 0.2 mm
Young’s modulus E 70 GPa
Poisson’s ratio v 0.3

density P 2700 kg/m3

elements along the span and four along the chord and a the time step size At = 0.00015 s.
The total vertical displacement (Z direction) due to both rigid motion and elastic deformation is

plotted against time (see Fig. 6.47). The results compare well with the available data.

0.6 il T I T T

—— EEEPVD333 16 x4
—a— Ref. [105]

| | | | | | I I I

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t-f

Figure 6.48: Time variation of transverse tip displacements for a flapping rectangular plate.

6.2.3 Clamped plate under uniform step function load

This problem, taken from literature [115], is used as a benchmark to test the capability of the stress
recovery procedure for dynamic loads and the effectiveness of GUF for global-local analysis. Let’s consider
a square symmetric laminate [0/90]s with all four edges clamped with an applied pressure load on the top
surface. This load is applied at the initial time t=0 instantaneously and kept constant during the duration
of the simulation. Thanks to the symmetry present only a quarter of the plate is modeled (see Fig.6.49).
The material properties and the plate dimensions are listed in Table 6.9.

A 5 x 5 mesh of quartic triangular elements have been used to model the quarter-plate laminate. It

is of interest to compare the performance of the ESL, Zig-Zag and LW theories in term of displacement and
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! X time
Figure 6.49: Geometry of plate and applied load.[115].
Table 6.9: Geometry and material property from Ref. [115].
Data Symbol  Value
Length L 220 mm
Thickness h 3.43 mm

Young modulus FEy 43.34 GPa
Es 12.73 GPa
E; 43.34 GPa

Shear modulus G1a 4.46 GPa
Gi3 4.46 GPa
Gos 4.46 GPa

Poisson’s ratios V19 0.3
V13 0.3
Va3 0.3
density p 1800 kg/m?
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stress field. For this purpose parabolic expansion have been chosen for all models.

Displacements The transverse displacement at the center of the plate (Fig.6.50) shows how the Zig-
Zag theory outperform the ESL one; in fact it is capable to provide an accuracy comparable to the more
computational expensive layerwise theory. The current ESL-based element is introducing a lag on the

response. This error will amplify during the stress evaluation phase.

1070

—— ggePVDa2

—o— 777PVDag
LLLPVDa2s

—+— Ref. [115]

\ \ \ \ \ \ \ \ \ \ \ \
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3

Time [s] 1073

Figure 6.50: Time variation of transverse displacement uz at point (0,0).

Inplane stresses In Ref. [115] the stress tensor components are evaluated at point A of coordinate
(—=3/56L,3/56L,Z). Their values are compared with the stresses in correspondence of the closest node to
that point.

All axiomatic theories provide an accurate estimate of the inplane stresses also with CFHL (Fig.
6.51). More specifically the Zig-Zag and LW theories perfectly match with the reference data. Instead the

ESL presents a small lag, directly derived from the phase-lag in the displacement field.

Transverse Stresses: present stress recovery procedure and global-local analysis The time vari-
ation of the shear transverse stress Szy at thickness coordinate Z/h = 0.44 is shown in Fig. 6.52, Fig. 6.53
and Fig. 6.55. If the stress is computed by means of CFHL (Fig. 6.52), expected results are obtained. ESL
theory provides a wrong solution with stress peaks more then three time the reference value. The Zig-Zag
correction with MZZF reduces drammatically the error, but it still inaccurate. On the contrary, the layerwise

theory produces a reasonable good match with the reference data. However, if the stress recovery procedure
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Figure 6.51: Time variation of transverse shear stress Syx at point A and thickness coordinate
Z/h = 0.4583. A mesh 5x5 is used.
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Figure 6.52: Time variation of transverse shear stress Szy at point A and thickness coordinate Z/h = 0.44.
A mesh 5x5 is used. Stress obtained using Hooke’s law.
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is performed (Fig. 6.53), ESL, Zig-Zag and layerwise reach similar accuracy. In particular, the curve of the

Zig-Zag model is indistinguishable from the layerwise one.
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Figure 6.53: Time variation of transverse shear stress Szy at point A at thickness coordinate Z/h = 0.44.
A mesh 5x5 is used. Stress computed through integration of equilibrium equations.

As an additional test, the ESL mesh is modified. The elements sharing the node analyzed are
replaced with parabolic layerwise elements (Fig. 6.54 for mesh visualization). The outcome is a global-local
analysis where the global response is still described by an ESL theory, and the local stress field in proximity
of the center of the plate is modeled by a LW one. This alteration has a strong positive effect at the cost
of very few additional degree of freedoms (Fig. 6.55). In fact, the global-local model reaches an accuracy in
terms of stress comparable with the Zig-Zag model. The discrepancy with the full LW one could be explained
with the fact that, as seen in Fig. 6.50, a full ESL element mesh is not able to capture the temporal variation
of the displacement field. As a matter of fact, it introduces a lag. The substitution of few elements in a very
limited area does not affect the deformation response. This initial error on the displacements can affect the
final stress computation of the layerwise element used for local analysis.

A similar argument can be done also for the transverse normal stress Szz evaluated at the same
thickness location (Figs. 6.56, 6.57, 6.58). Although, in this case, the Zig-Zag theory provides a poor
estimation of the stress if CFHL is used (Fig. 6.56). As for Szy the proposed stress recovery procedure
improves both ESL and Zig-Zag stress field. If the same multi-model used for Szy (Fig. 6.54) is also used
for Szz, a solution closer to the LW is achieved (Fig. 6.58). Although larger oscillations are present.

It is interesting to note that if the stress recovery procedure is applied to the multi-model mesh, the

stress is not any better than the one obtained with the stress recovery applied on the full ESL mesh (Fig.
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Figure 6.54: Application of GUF for global-local analysis. Elements sharing the node analyzed are modeled
with a layerwise theory.
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Figure 6.55: Time variation of transverse shear stress Szy at point A and thickness coordinate Z/h = 0.44.
A mesh 5x5 is used. Stress obtained using Hooke’s law. Effect of using an layerwise theory in element of
interest.
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Figure 6.56: Time variation of transverse shear stress Szz at point A and thickness coordinate
Z/h = 0.45946. A mesh 5x5 is used. Stress obtained using Hooke’s law.
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Figure 6.57: Time variation of transverse shear stress Szz at point A and thickness coordinate
Z/h = 0.45946. A mesh 5x5 is used. Stress computed through integration of equilibrium equations.
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Figure 6.58: Time variation of transverse shear stress Szz at point A and thickness coordinate
Z/h = 0.45946. A mesh 5x5 is used. Stress obtained using Hooke’s law. Multimodal.

6.59). On the other hand, if the thickness location is changed to a lower thickness coordinate Z/h = —0.45946
the multi-model combined with the stress recovery provide a normal transverse stress time history comparable
with the full layerwise model (Fig. 6.60). This suggests a strong dependence on the local accuracy of the
model along the thickness direction. An explanation could be represented by the presence of steeper gradients

near the top surface, where the load is applied.

Indipendent displacement component modeling An unique feature of GUF is that it allows to in-
dipendently model the displacement components in the element reference system. It becomes possible to
perform studies decoupling the inplane and out-of-plane displacement modeling. Figs. 6.61, 6.62, 6.63 and
6.64 show the relative importance of displacement component for the evaluation of the transverse stresses. If
CFHL is used, the transverse displacement axiomatic model seems to not have any effect on the transverse
shear stress evaluation, whereas the inplane displacements do. The opposite situation occurs if the normal
transverse stress is considered (Fig. 6.63), where the discrepancy seems to be all attributed to the transverse
displacement. In case the stress recovery procedure is applied, all models provide a very similar solution

(Figs. 6.62, 6.64).

Order of expansion effect A Zig-Zag theory seems to improves the shear transverse stress predicted
by the ESL, but it does not affect the normal transverse stress that are still inaccurate (Fig. 6.65). This
is somewhat expected: in certain situations a layerwise model represents the best options for accurate

evaluation of the stress levels in the structure.

127



T T T T T
Oi‘ —— EEEPVD222 (QSD) |
—— LLLPVD222 (Q3D)

—200 | —+— gEE-LLLP VD22 (Q3D) |
—400
=~
o —600
0800
W
o
—1,000
—1,200
—1,400 |
_17600 | i L | i | | 1 | | il | | Hl
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3
Time [s] 1073

Figure 6.59: Time variation of transverse shear stress Szz at point A and thickness coordinate
Z/h = 0.45946. A mesh 5x5 is used. Stress computed through integration of equilibrium equations.
Global-local effect.
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Figure 6.60: Time variation of transverse shear stress Szz at point A and thickness coordinate
Z/h = —0.45946. A mesh 5x5 is used. Stress computed through integration of equilibrium equations.
Global-local effect.
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Figure 6.61: Time variation of transverse shear stress Szy at point A and thickness coordinate Z/h = 0.44.
A mesh 5 x 5 is used. Partial layerwise theories. Stress obtained using Hooke’s law.
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Figure 6.62: Time variation of transverse shear stress Szy at point A and thickness coordinate Z/h = 0.44.
Partial layerwise theories. Stress computed through integration of equilibrium equations.
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Figure 6.63: Time variation of transverse shear stress Szz at point A and thickness coordinate
Z/h = 0.45946. Partial layerwise theories. Stress obtained using Hooke’s law.

Om T T T T T
—&— 777,PVDa2; (Q3D)
~900 ——1..PVDa2 (Q3D) | |
—+—1LzPVD22; (Q3D)
—+—22.PVD22; (Q3D)
—400 ——Ref. [115] n

—600

ng [Pa]

—800

~1,000

| | | | | | | | | | | |
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3

—1,200
Time [s] 1073
Figure 6.64: Time variation of transverse shear stress Szz at point A and thickness coordinate

Z/h = 0.45946. A mesh 5x5 is used. Partial layerwise theories. Stress computed through integration of
equilibrium equations.
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Figure 6.65: Time variation of transverse shear stress Szz at point A and thickness coordinate
Z/h = 0.45946. A mesh 5x5 is used. Effect of polynomial order of expansion. Stress obtained using
Hooke’s law.
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Chapter 7

Conclusions

This dissertation introduces a new framework for the study of multilayered Variable Angle Tow
composite plates in the geometrically nonlinear regime for both static and dynamic analysis. It is based on
a variable-kinematic finite element approach. This architecture can encompass several axiomatic theories
under an invariant expression written by using an indicial notation. The present approach encompasses a
great number of theories including Equivalent Single Layer, Zig-Zag and layerwise ones. Moreover it allows
for an independent modeling of the displacement components in the element reference system extending
the collection of axiomatic theories to mixed ones and partially-layerwise theories. The final results is a
polymorphic element that in combination with a weak imposition of the inter-element compatibility via
penalty method provides an additional alternative to the multi-model class of methods.

The proposed computational architecture presents the following features:

e It allows a simple comparison of different models for Variable Angle Tow composites and use them

simultaneously for global-local analysis purpose.

e It can include Murakami’s Zig-Zag function, and this is highly beneficial also for the geometrically
nonlinear static and dynamic analyses, as proven in this study for the first time. This information can
be used for aeroelastic applications, where the correct prediction of the aerodynamic load is tightly
connected to the accuracy of the deformation. Using a Zig-Zag theory over a layerwise one can provide
practically the same results in most of the applications, but with the advantage of taking a fraction of

the computational resources.

e In aerospace industry VAT laminates are becoming more common thanks to the advancement of the
manufacturing technology. Moreover, there is a push in both European and American aerospace

agencies to introduce aerodynamically efficient new configurations (such as the Truss-Braced Wings)
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which result in aircraft with more flexible wings, where both geometric nonlienarities and aeroelastic
tailoring (i.e., high variability of stiffness properties) become crucial since the very beginning of the
design phase. The proposed computational technology can be effectively applied in the early design
process, by using the zig-zag models, but can also be useful later for more detailed studies, where
a more refined investigation is pursued and layerwise models can be a valuable tool in the hands of

engineers.

e CSCL and VAT laminates can provide an improved efficiency also in rotor design and flapping wing
systems. For this purpose, the governing equation for dynamic analysis are expressed in a non-inertial
reference frame to improve the robustness of the algorithm for moving body. The proposed FEM
approach was tested with benchmark problems found in literature. The present approach, formulated

for single body, can be easily extended to multi-body dynamics.

e It is of paramount importance to be able to accurately predict the stress field, in fact most of the failure
criteria are based on it. This requirement should be satisfied with reasonable computational resources.
Calculations based on the constitutive relations (Hooke’s law) are usually ineffective in predicting the
shear and normal transverse stresses, that are a main cause for laminate failure mechanism, especially
if a lower order model is used e.g. ESL. The present framework satisfies this need of effectiveness
through its capability for multi-model analysis and the application of Murakami’s Zig-Zag function.
A new stress recovery procedure tailored to improve the predictions of the second Piola-Kirchhoff
stress tensor is proposed. This algorithm can be used to reconstruct the three-dimensional stress field
from the displacement solution of two dimensional axiomatic theory. It can also be used for large
displacements and rotations as opposed to typical stress recovery techniques that are restricted to

moderate rotations. Several numerical tests proved the effectiveness of this post-processing technique.

Future work

In the near future the structural model is going to be used for multi-fidelity fluid-structure interaction
simulation for aerospace and marine applications. In particular, for rotor blade analysis. For this purpose,
the formulation will be extended to multi-body analysis.

Another line of research will be on VAT optimization. It will be necessary to compute the sensitivity

matrix analytically from the expression of the nonlinear kernels.
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Appendix A

Kernels for linear analysis

The internal virtual work of a layer has been shown in section 2.3 to be:
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IOCKS:XJ; Puzii are the kernels of the Generalized Unified Formulation. These kernels are invariant with
respect to the adopted theory. It should be noted that the kernel are obtained in the local (element)
coordinate system. In fact, equation A.1 was written working in the local (element) coordinate system.

Their explicit expression are:
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where the integration along the thickness is done separately and contained in the Z terms.
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Here some

(A.11)

These integrals are solved numerically using Gauss quadrature and assembled to form the global

stiffness matrix.
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Appendix B

Strong forms

In this appendix it will be shown the derivation of the strong form of the governing equation in the

undeformed configuration.

Let’s start from the statement in the current configuration:

— Strong form current configuration

Givenbi:V%R,p:V%R,gi:Fw%R,Bithi%R,ﬂ:V%R,ﬁij:V%R,ﬁnd
u; : V. — R, such that

O‘ji’j(XJ)-i-bi(X,t) = p(X)ﬁi(X,t) in Q
ui (X, t) = §i(X,t) on Ty
nj(X,t)oi(X, ) = hi(X,t) on Ty, (B.1)
ﬂi(X, 0) = ’l; in Q
(Tij(X, 0) = 51] in Q
B.1 Equilibrium equation
The governing equations is
Joji L
bi =pi; 1=1,2,3 B.2

where o; are the components of the CST o. The coordinate x; is considered in the deformed continuum.

The generic component o;; of CST can be related to SPKST as follows:

Oji = j_lGlelmGinL iajv lam = 17 27 3 (BS)
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where Gj; and Gy, are the components of the deformation gradient tensor, whereas J is its determinant.
Substituting Eq. B.3 into Eq. B.2 and calculating the derivatives by using the chain rule, the following

formula is obtained:

doji _ 9 (., 0(IT'Gy) o1 O (SimGim) )
= a_ G S’rnGi’rn = S’rnGlmi G . _bl i B'4
ox, o (TGS ) 1 oz, +J G oz, + pil (B.4)
Using the property [95] reported below,
0 (TG
o7 "'aq) -0 (B.5)
(91']‘
Eq B.4 is simplified as follows:
8Uji -1 0 (SlmGim) .
g9t _ Y \RImim) . B.
axj J G]l 8mj bz + pu; ( 6)

The definition of deformation gradient tensor and chain rule of differentiation implied the following relations:

Oz d(e) _ O(e) Ou;
L, = frng _— B.
Gt = 5%, X, Ox; 0X, (B.7)
Equation B.7 can be used to rewrite Eq. B.6 as reported below:
_ 0 (SlmGim) _10x; 0 (Slmsz) 10 (Gimslm) .
1. _ 1945 — P2 TmEIm) — i B.8
TG T U0x, T o I, +ou (BE)

Notice that X; is referred to the element coordinate system in the undeformed continuum.
Using the fact that [ is a repeated dummy index in RHS of Eq. B.8, it is possible to express Eq.

B.8 in the following equivalent form:

0 (GimSjm)

Finally, using the symmetry properties of SPKST, Eq. B.9 is simplified as

0 (GimSmj)

— _Th: i i.i=1.2 B.1
e Jbi + Tpii; i, =1,2,3 (B.10)

Which represents the governing equations written in terms of SPKST.
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B.2 Neumann boundary condition
The natural boundary condition is (Eq.B.1):
n;o4; = }ALZ (Bll)
or in vector form:
n-oc=h (B.12)
Recall the relation between the Cauchy and SPKST:

_ 1 T
el (B.13)

and the relation that exist between the normals in the deformed (n) and undeformed configuration (N).

-7
-N
n= G - (B.14)
\/ N-(G"-G) N
The mapping of the traction force is obtained as follow:
hds = HdS (B.15)

where H is the traction force mapped in the undeformed configuration, ds and dS are the surface area in

the current and undeformed configuration respectively. Eq. B.15 can be rewritten as:
h =HdS/ds (B.16)
The relations between the areas is given by Nelson’s formula:
nds = det(G)G~7 - NdS (B.17)

Solving Eq.B.17 for the area ratio:

ds 1
s det(G)\/N- (GT-G)71~N

(B.18)
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Substituting Eq. B.18 in Eq. B.16:

1
h=H -
det(G)\/N~ (GT : G) ‘N
Putting everything together

G T.N 1

nia:\/N.<GT_G)_1.N'det(G) =h

G-S-G

T_ g 1
det(G)\/N- (GT~G)_1~N

Simplifying:
G " N-G-S-G'=H

Now it is convenient to rewrite this epression in indicial form
—1 o ]
G NieGjpSpeGiq = Hi

NkG,;;Gjpququ = H;
NiOpSpyGiq = H;

Nk:Sk:qqu = Hi

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)
(B.24)

(B.25)

Finally using the symmetry of the SPKST, the expression of the Neumann boundary condition is found

GiqSkqNy = H;

G-S-N=H
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Appendix C

Deformation gradient written with

GUF notation

In the formulation it is necessary to compute the deformation gradient at the converged iteration:
0Gij = 0ij + Ui (C.1)

or

{G=1I+ {Vu (C.2)

The displacement gradient is defined as

Jux x = 8‘Faux &N x SUX%XI
fuxy = 0Fau, N1y Uxau,r
S’LLX,Z = OXVFQ,U’X,Z 8(N[ OUXO‘“XI
éuY7X = (})/FOéuY KNI,X SUY(XUYI
fuvy = §Fau, NIy Uva,,r (C.3)
SUY,Z = (S;Fauyvz B)/N[ SUYO‘“YI
Juzx = (?F%Z Nrx SUZ%ZI

¢ z z ¢
ouzy = §Fa,, Nty Uza,,r

¢ _z z ¢
ouzz = o ta Nr Uza,,1

ug z 0
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Substituting equation C.3 into equation C.1 the expression for the deformation gradient is obtained as

reported below:

SGXX = 1 + é(Faux g(NI,X éUXOﬂuXI
oGxy = 0 Fey oNLy  (Uxan, 1
0Gxz = 0 Faug, ONT (Uxauyr
Gyx = 0Fa,, INr x SUY%YI
oGyy = 1 + 0 Fa., N1y éUYauYI (C.4)
oGyz = S Fouy, ONI (Uvau,r
0Gzx = §Fa., Ny x SUZQ,LZI
Gy = §Fauz Ny SUZ%ZI
0Gzz = 1 + §Fa,,, &N JUzau,1
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Appendix D

Strain-displacement matrix

The contribution to the linear strain displacement matrix due to node .J is:

t pPuxd _
oBrsi =

Buy J
OBL 32

Buyd
OBL 33

OBL41 -

1 ﬁuy
BL42 -

t pBugd
(]BL43 -

t pPuxd
OBL 11

t Buy
BL 12

t pPuz
oBL1%

t Bux
BL 21

OBL 22

Buyd

OBL 23

t X X
0Gxx o Fp. 0Nsx

Y Y
=6Gyx o Fs,, 0Nsx

t zZ Z
=0Gzx §Fp,, oNix

=0Gxy 5 Fp, Ny

OGYY 0 Fﬂuy oNJ,Y

t A A
0Gzy §Fp., Ny

LG xx S(FBUX §Nyy + §Gxy ())(Fﬁux

6Gyx § Fp,, oNsy + 6Gyy§ Fs.,,

0Gzx §Fs., ¢Noy + 6Gav §Fp,,

0Gxz 8 Fpuy 0Nsx +6Gxx 0 Fpuy

= 0Gyz 8 Fp, 0N1x +6Gyx b Fp,,,,

t Z z t Z
0Gzz§ Fﬁuz oNsx + 0Gzx § Fﬁuzvz
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t pPux
oBrs1

OBL 52

Buyd

OBL 53

Bux
OBL 61

t Buy
BL62

t ﬂuz
OBL 63

J

= 0Gxv §{ Fouy , 0N+ 6Gxz§ Fouy §Nsy

=4Gyy ¢ Fp.,, 0N

ONs + 6Gyz o Fs,, oNiy

0Gay § Fp.,, §Ng+6Gzz6Fp,, Ny

t X X
0Gxz0 Fauy , 0Ns

= 0Gyz§ Fpuy, 0N

0Gzz§Fp., , §Ns
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Appendix E

Kernels of the linear part of the

elastic stiffness matrix

First, the following auxiliary quantity is defined:
g=[6Gxx (Gxy (Gxz (Gvx Gyy (Gvz (Gzx (Gzv Gzz] (E.1)

Products of components of the array g are indicated with a compact notation as follows:

9rs = Gr " Js (E?)
where, for example, it is
925 = (Gxv - {Gyy (E:3)

Next, let’s consider one of the thickness integrals involving the Hooke coefficients, thickness functions, and

deformation gradients:

11uxux

Zux Puxrt /Zéu 6Gxx 6Gxx 0 Fau, 0 Fp. 42 (E.4)

where Eq. E.2 has been used in the superscript appearing on the LHS.
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To make the notation more compact, the left sub and superscript (¢ and 0, respectively) are omitted.

An example of kernel is reported below:
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Quy Buy I 50y Buy 914 X Y 50y Buy 914 X v
Luxay =) L1ty oN1.x oNix + Ziogyuy 0Nty oNix
0
50y Buy 915 X v S0uy 7 Buy 934 x v
+ 12uxuy oNt.x 0Ny + Zi3uyuy 0Nt oNix
S0ux Buy 7916 x v 50 5 Buy ga1 X Y
+ Zi3uxuy oNix oNs + Ziguyuy 0Nty oNix
50y y Buy ga2 X Y 50y Buy 914 X Y
+ Z16uxuy oN1.x oNix + Zigisuy oNr,x o Ny
50y Buy 915 X v 50y Buy 925 b'e v
+ Zi6uxuy oN1.x o Nix + Zooisuy 0Ny oNsy
"O‘uxwzﬁuygBS XN N + Za“XB“YZgZG XN YN
+ 23ux uy olVr olNay 23ux uy o Vry oVJ
5y Buy 915 X Y 50y Buy 925 X v
+ Zo6uxuy 0Ny oNvy + Zogisuy oN1,x oNsy
50y Buy 924 X Y u x Buy 925 X v
+ Zosuxuy ONLY SNy + Zogasius 0Nty oNix
’*a'u.xyzﬂuy1zg36 XN YN auxﬂuy z 916 XN YN
+ 33uxuy oV oI T L3suxuy oVry Vs
ZauxﬁuyyngG XN YN + Zaux Zﬁuygz;s XN YN
+ 36uxuy 0 17X 0 J 36uxuy 0 1 0 J7Y
ZauxﬁzﬁuygSS XN N Z Qu e, Z:BuyngS XN YN E5
+ 36uxuy o Nt oNux + Zysuyuy oNr Ny (E.5)
Naux,zﬁquZG XN YN + ZauX,Buyzg’% XN YN
+ ddux uy oNT o NVIY T Laduxuy oVry oV
7 5 ﬁuy 936 X 5% 5 ,Buyzg&) X Y
+ sduxuy ONLY SNIY + Zisuscuy oNr,x o Ny
O‘uxﬁuygsﬁ X Y Qu Zﬁuyzglo b'e Y
+ Zasuscuy oNrx oNay +Z45uXuY oNr 0N
5% x Zﬁuyglﬁ b'e 5% x Zﬁuyg% b'e Y
+ Zysunuy ONI ONIY + Zysusay oNr oNyx
"’auxyzﬂuyyzgml X Y Oluxﬂuyggﬁ X Y
+ 45uxuy oNt 0Ny 25y 0Ny 0Ny x
SQuy Puy 5934 x v 50y Buy 936 X Y
+ 45uxuy 0 NI7Y 0 NJ + Z55’LLx’u,y 0 vaX 0 NJvX
Zauxﬁuyyzg34 XN YN + Zaux Z,@uyglﬁ XN YN
+ 55uxuy 0 I7X 0 J 55uxuy 0 I 0 J7X
S50ux zPuy 7914 x Y 50y Buy 914 X v
+ Z55uyuy o Nt 0Nyt Zegiuyuy 0Nty oNiy
5y Buy 915 X v 50y Buy 924 X v
+ Z66uxuy o NIy oNx + Zegusuy oNrx o Ny
50y y Buy 925 X Yy
+ Ze6usuy oN1,x oNsx |doA



For linear static case the deformation gradient is the identity matrix and equation E.5 becomes:

ux Buy IT vy Buy
K - [ Z12uxuy
0A

L UxuUy
7 %u x /Buy
+ Z26uxuy
~7Cu x Buy
+ Zﬁﬁuxuy

X y
0N x oNsy +

Fux Buy

16ux uy

5Quy zBuy, 7

X Y
oNLY oNuy + Zysuuy

X y
oNry N x

Similar derivations can be used for the other kernels.
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Appendix F

Penalty method and kernels of the

spring stiffness matrix

Equation 3.119 is explicitly written by assuming that the spring connects two points located within
layer k. The first point is on element ¢ node J and the second point is on the same layer and is on element

d, node L. We have the following relation deduced from Eq. 3.119:

t+A(t)th _ (t+Aéu§c AL kd)T,Yk (t+A8u§c _t4AL kd) (F.1)

oL our

N | =

or

t+Atyk _ ~t+AL ke T ok t+HAL ke t+At keT ok t+At  kd
oV = oy~ Y oy — oy~ Y oL

— N =

t+AL kdT ok AL ke AL kd T ok t+AL kd
- our” " ¥ ouy” + 5 Tour our

2

N = N =

DO

which is simplified by taking into account the fact that v* is symmetric as follows:

t+Atysk _ T t+ At ke T k t+At ke  t+At. keT k t+At  kd
oV = oy~ Y oy — oy~ ¥ ourL

t+AE kdT k t+AL kd
+ our” " our,

N = N =
—~
2
w
S—

Equation 3.120 is now substituted into equation F.3:

Atk Lt ke T keT\ ~k (tyik k
V= (ouJC + 0Auj© )’Y (0ch+ OAUJC)

DN =

({5 oAb T) o (Gt o) (F.0

5 (T4 0AuEIT) o (G o du)

N | =
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or

t+AéVk HAtVN o t+Athf t+t+AtV (F.5)
where the following definitions have been used:
t+Atv 1 Au ch k: Auk:c_ Auch k Aukd
At—At — 50 0 0 YU ooRUurg
+ % oAubdT Ak Aukd
N L AT

(F.6)

keT k t..kd kdT ~k t,kd
— oAUt 4Y jui® 4+ oAuitt 4" guf

1
t+Aty ok _ tokeT A~k tike tokeT ok tikd
oVi—t =3 oWy YT oouy — oUy RARNLYS
+1 kdT ~k ty.kd
B )uL YT oour

The spring contribution to the tangent stiffness matrix depends on the second derivatives of the potential
energy expression (see Eq. F.6) with respect to the incremental nodal displacement unknowns (which need to
be set equal to zero after the derivative is calculated, within the linearized approach). It is also observed that
all the terms of the type similar to oAuf}C T have linear dependency on the incremental nodal displacements
(actual finite element degree of freedom). This can be see for example from the explicit formula of ()Au’Cc T

written in global coordinate system:

oAuSeT = (Auke gAuks  gAuks (F.7)
where for example it is (see Eq. 3.123)

ke _0 kcXpkc kc ch kc
0AulSG = 0aif {FYS oAU, s+ 0a5f §Fa OAUY% J
(F.8)

kc Zrkc kc
0“31 by OAU Zavu,J

From all of this reasoning it is realized that the tangent stiffness matrix contribution due to the springs
is generated only from t+AtVAt s (see Eq. F.6). Of course, this term needs to be written explicitly as
a function of the finite element unknowns following the procedure which led to Eq. F.8. It should also
be observed that the transformation coefficients (for example Jak¢) between coordinate systems does not
depend on the finite element unknowns since everything is referred to the initial geometry (TLF).

To show how a generic contribution of the spring matrix (which needs to be added to the tangent
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. . . . . kcay JJ . . . .
stiffness matrix) is obtained, let us consider term éK spu )}',’jf Y77 which is the “self contribution” node J of

element ¢ generates. By definition, it is the derived as follows:

ke oy Buy I _ i F.9
07 mpay ~00AUEC 9 0AUk® (-9)
0 BuxJ 0 Buy J 0AU=0
which is written, by taking into account the discussion previously made, as follows:
t+ALyk
thclluX Buy JJ 62 ( OVAtht) (F 10)
0" SPuxuy - kc kc :
0 OAUBuXJ 0 OAUBWJ LAU—0

Similar methodology can be followed for the the “coupled” terms. It should also be noted that the tangent
stiffness matrix is not written in the global coordinate system: the terms are obtained in the element
coordinate system referred to the undeformed configuration.

In the present formulation actually a thickness distribution of springs is used to enforce the compati-
bility at layer level. The formulation of the related matrix is very similar. The only difference is that integrals
of the products of thickness functions appear [27]. For example, in the case of a thickness distribution of

springs, after the differentiation of the potential energy it is possible to show that

t+At
thCO‘uxBuX JJ_ 0 ( ngtht) (F 11)
0"*SPuxu - k k :
xux GOAUBHCXJ 60AUﬁuCXJ JAU—0
kcayy BuyJJ key2 _k ke\2 _k kc\2 & Xpke Xk
0K spunin :[(galf) v+ (0ais)” 13+ (0als) Vz}/z ofa, ofs,. 42 (F.12)

Notice that the spring stiffness matrix is actually independent of the time step. Thus, the following relation-
ship holds:
k k
oKsp = 0Ksp (F.13)

Similar formula holds also at multilayered element and structural levels.
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