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18 

Abstract: Land surface models range in complexity of terrestrial evapotranspiration, yet it is 19 

unknown how model complexity translates to accuracy of modeled evapotranspiration 20 

estimates. Here, we use the International Land Model Benchmarking system to assess ET 21 

estimates from three models of varying complexity driven by the same forcing datasets: an 22 

earth system model, a terrestrial biosphere model, and a stand-alone ET model. The 23 

performance assessment includes both temporal and spatial evaluation, and different plant 24 

functional types across China. Our results indicate that the most complex model, an earth 25 

system model, performed best against the benchmarking datasets and metrics. Terrestrial 26 
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biosphere model performed best in simulating inter-annual variability of ET, while earth 27 

system model performed best in simulating the seasonal cycle. The more complex models 28 

(earth system model and terrestrial biosphere model) perform better in forest, shrub and crop 29 

ecosystems, while the simpler model (stand-alone ET model) perform better in grass 30 

ecosystems. Our study demonstrates the impact of model complexity on ET estimates and 31 

highlights directions for future ET model improvements. 32 

Key words: Benchmarking, evapotranspiration model, model complexity 33 

1. Introduction 34 

Evapotranspiration (ET) is a key component of the global water budget and is crucial to 35 

agriculture and water management, the sustainability of ecosystems, and the water and carbon 36 

exchanges between land and atmosphere (Fisher et al., 2017). However, the estimation of 37 

large-scale ET from ground-based measurements alone remains challenging due to the sparse 38 

network of point observations and the high spatial and temporal variability of ET (Lu et al., 39 

2017). To address this limitation, various terrestrial ET models have been developed (Jiménez 40 

et al., 2011; McCabe et al., 2016; Mueller et al., 2011; Vinukollu et al., 2011).  41 

 42 

Terrestrial ET models play a vital role in diagnosing and predicting global water fluxes and in 43 

evaluating the impacts of changing climate (Mao et al., 2015). In recent years, a variety of 44 

physical process models have been developed to estimate the spatial distribution of 45 

evapotranspiration (ET) at various scales ranging from the stand scale to global. From 46 

empirical and semi-empirical method (i.e. Jackson model, Priestley-Taylor model) to 47 

physical processed method (i.e. Shuttleworth-Wallace model, Community Land Model), 48 
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much progress has been made incorporate more physical processes into ET simulations 49 

(Bonan et al., 2013; Jackson, 1985; Priestley and Taylor, 1972; Shuttleworth and Wallace, 50 

1985). In addition, some statistic and machine learning methods were used to improve ET 51 

models performance and accuracy (Adnan et al., 2020; Alizamir et al., 2020). As ET models 52 

become increasingly complex and the number of model parameters rapidly expands, there is a 53 

growing need for a comprehensive and multifaceted evaluation of the performance of models 54 

of different levels of complexity (Haughton et al., 2016; Hogue et al., 2006). In this study, 55 

“complexity” is defined in terms of the number of process-related variables and parameters 56 

and the hierarchy of model structure. In terrestrial ET models, for example, the 57 

Priestley-Taylor model (Priestley and Taylor, 1972)—a simplification of the 58 

Penman-Monteith equation (Monteith, 1965)—requires less forcing data and thus does not 59 

consider explicitly the impact of vapor pressure deficit (VPD) or canopy resistance. This 60 

method is convenient to use in the absence of detailed meteorological measurements. By 61 

contrast, the Penman-Monteith model and the Shuttleworth-Wallace model (Shuttleworth and 62 

Wallace, 1985) consider complex biogeochemical and biogeophysical land surface processes 63 

and therefore require more meteorological measurements and parameters (Fisher et al., 2011). 64 

Specifically, the Shuttleworth-Wallace model partitions ET into soil water evaporation and 65 

plant transpiration and contains more complexity estimation of ET processes.  66 

 67 

In recent decades, earth system models (ESM) which simulate biogeochemical processes on 68 

the land surface, which are fully coupled with physical climate simulations, have been 69 

developed rapidly and widely used (Bonan and Doney, 2018). Meanwhile, the estimation of 70 
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the physical-process variables of an ESM such as ET is becoming increasingly 71 

comprehensive and sophisticated. Compared to other terrestrial ET models, ESM require 72 

higher temporal-spatial resolution forcing data and physical parameters (Mueller et al., 2013). 73 

Although more complicated ET models can provide more details involved in 74 

atmosphere-terrestrial water exchange, they are also potentially prone to greater uncertainties 75 

propagated from other related processes (Orth et al., 2015). There remains a lack of 76 

knowledge on the optimal complexity of ET models on the regional scale. 77 

 78 

Model benchmarking has emerged as an effective approach to evaluate model performance 79 

relative to multiple observational constraints as well as other models (Collier et al. 2018). 80 

Most recently, the International Land Model Benchmarking (ILAMB) System (Collier et al., 81 

2018; Luo et al., 2012; Stofferahn et al., 2019), the ESM Evaluation Tool (Eyring et al., 2016), 82 

the Program for Climate Model Diagnosis and Intercomparison Metrics Package (Gleckler et 83 

al., 2016) and other benchmarking system were created to explore land surface model 84 

intercomparison and facilitate internationally accepted benchmarks (Schwalm et al., 2013).  85 

 86 

The aim of this paper is to leverage the ILAMB benchmarking tool to assess the performance 87 

among three terrestrial ET models with various levels of complexity at the regional scale 88 

(Polhamus et al., 2013). Taking China as an example research area, these objectives are 89 

accomplished by evaluating the performance of three ET models of varying levels of 90 

complexity for: 1) inter-annual and seasonal variation; 2) spatial variation; and, 3) different 91 

plant functional types (PFT). To facilitate the comparison, we used the same forcing datasets 92 



5 

 

for each of the three ET models, in order to limit the uncertainty of the forcing data (Badgley 93 

et al., 2015) and focus on the effect of model complexity.  94 

  95 
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2. Methodology  96 

2.1 ILAMB Description 97 

As land surface models become increasingly complex and observational data volumes rapidly 98 

expand, there is a growing need for comprehensive and multifaceted evaluation of model 99 

fidelity. Building on past model evaluation work (Randerson et al., 2009), Luo et al. (2012) 100 

and Collier et al. (2018) developed an extensible model benchmarking package in support of 101 

the goals of the International Land Model Benchmarking (ILAMB) activity. The ILAMB 102 

benchmarking system compares model estimates against the best-available observations and 103 

observation-based extrapolations, including atmosphere CO2 concentrations, surface fluxes, 104 

hydrology, soil carbon and nutrient biogeochemistry, ecosystem processes and states, and 105 

vegetation dynamics.  106 

To evaluate the differences between reference and model datasets, a variety of statistical 107 

approaches have been adopted, including calculations of bias, root-mean-square error 108 

(RMSE), phase, amplitude, spatial distribution, Taylor diagrams and scores, functional 109 

relationship metrics, and perturbation and sensitivity tests. Bias is calculated as follows: 110 

������� = 	
����� −  	������ (1) 111 

The variable x is spatial domain which represents the areas created by cell boundaries or the 112 

areas connected with data sites. 	
����� is the mean value over time of a modelled dataset. 113 

	������ is the mean value over time of a reference dataset. We then nondimensionalized the 114 

biases into a relative error using the centralized RMS (Root Mean Square) of the reference 115 

dataset following equation (2): 116 

crms��� =  � �
����� � �v���� , �� − v�������" d ��

��   �2� 117 
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The variable t is the temporal domain which is defined by the beginning and end of studied 118 

period. The relative error in bias is: 119 

ε%&'(��� =  |bias���|/crms��� �3� 120 

The bias score as a function of space is: 121 

s%&'(��� =  e�ε0123�4� �4� 122 

And the scalar score 123 

S%&'( =  s%7'(888888��� �5� 124 

that is, the spatially integrated bias score. RMSE over the period of the reference dataset is 125 

estimated as follows: 126 

RMSE��� =  � �
����� � �v
��� , �� − v���� , ���" d ��

��  �6� 127 

To score the RMSE, we use the methods similar to Eq. (2-5). Please refer to Collier et al. 128 

(2018) for more details. ILAMB evaluates the phase shift of the annual cycle of data sets that 129 

have intra-annual variability by comparing the timing of the maximum value in a year, c(v) 130 

within each. Then, we approximate the phase shift from the reference to model data sets by 131 

subtracting their respective c(v),  132 

θ��� = arg max� @c
��� , ��A −  arg max� @c���� , ��A �7� 133 

As the units for phase shift are consistent across all variables, no normalization is needed and 134 

we can remap the shift to the unit interval by 135 

sCD'(���� =  �
" �1 + cos � "πθ�4�

HIJ ��  �8� 136 

And the scalar score is: 137 

SCD'(� =  sCD'(�88888888��� �9� 138 
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The score for the inter-annual variability is calculated by removing the annual cycle from 139 

both the reference and the model, 140 

iav������ =  � �
����� � �v���� , �� − c���� , ���" dt��

��  �10� 141 

iav
����� = � �
����� � �v
��� , �� − c
��� , ���" dt��

��  �11� 142 

ε&'O��� = �iav
���x� − iav�������/iav������ �12� 143 

and then computing a score as a function of space, 144 

s&'O��� =  e�ε12P�4� �13� 145 

The scalar score is estimated by: 146 

S&'O =  s7'O88888��� �14� 147 

To score the spatial distribution of the time averaged variable by generating a Taylor diagram 148 

(Taylor, 2001), we estimate the normalized standard deviation, 149 

Q =  (���O�ORST�4��
(���O�OUV��4��  �15� 150 

and the spatial correlation R of the period mean values 	
����� and 	������, and then 151 

assigning a score by the following relationship 152 

S�&(� =  "��WX�
�YW Z

σ
�[ �16� 153 

Where the main idea is that we penalize the sore when R and σdeviate from a value of 1. 154 

The overall score for a given variable and data product is a composite of the suite of metrics 155 

defined above. We use a weighted sum, 156 

S�O��'\\ =  ]0123W"]UR3VW]^_23VW]12PW]T13`
�W"W�W�W�  �17� 157 

Where the RMSE score is doubled to emphasize its importance. In addition, we show the 158 

relative score (i.e., Z score), indicating which models or model versions perform better with 159 
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respect to others contained in the overall analysis. More details of the underlying metrics are 160 

available in Collier et al. (2018). 161 

2.2 Data Sets 162 

To quantify and explain uncertainties and scale mismatches between reference datasets and 163 

model datasets, the ILAMB system developed a two-element rubric to weight each dataset 164 

(Table 1). The first weight of the datasets indicates the presence of quantitative uncertainty in 165 

the measurements themselves. A second weight reflects spatial and temporal coverage of the 166 

datasets. The reference datasets in ILAMB include in-situ observations (FLUXNET data), 167 

observation-satellite-meteorological ensemble data (FLUXCOM), multi ET product ensemble 168 

data, and remotely sensed data. As the aim of the ILAMB system is to evaluate model 169 

performance at the regional and decadal scales, users can give more weight to global products 170 

which have longer time series. The weights are combined multiplicatively to assign a total 171 

weight to each dataset. The weight for a given variable is then normalized relative to the sum 172 

of the weights of all the datasets for that variable (Eq. (18)). 173 

 174 

In this study, we used four datasets to benchmark ET: FLUXNET, FLUXCOM, DOLCE, and 175 

GLEAM. Note that the FLUXCOM product was not used in inter-annual variability 176 

evaluation because it is known to poorly represent inter-annual variability (Jung et al. 2018). 177 

We assign the certainty weight and the scale weight as 3 and 5, respectively, for both the 178 

FLUXCOM and GLEAM datasets according to Collier et al. (2018). In addition, we assign 179 

the same weight for the FLUXNET and DOLCE dataset in order to more objective 180 

assessment (Table 1). For example, the normalized total weight of the FLUXNET dataset for 181 
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the ET variable is estimated as: 182 

wbcdefghgh =  H×J
H×JWH×JWH×JWH×J ≈ 25% �18� 183 

 184 

Table 1. References and weighting of evapotranspiration (ET) data sets used to blend the 185 

overall score. 186 

Reference datasets Certainty Scale Source 

FLUXNET 3 5 Pastorello et al. (2017) 

FLUXCOM 3 5 Jung et al. (2019) 

DOLCE 3 5 Hobeichi et al. (2018)  

GLEAM 3 5 Martens et al. (2018) 

 187 

The in-situ data used in this study were obtained from 12 FLUXNET sites in China (Figure 1): 188 

the Changbaishan temperate broad-leaved mixed forest (CN-Cha), Changling grassland 189 

(CN-Cng), Dangxiong alpine meadow (CN-Dan), Dinghushan subtropical evergreen 190 

broad-leaved forests (CN-Din), Duolun grassland (CN-Du2), Haibei alpine shrub wetland 191 

(CN-Ha2), Haibei alpine meadow (CN-Ha2), Qianyanzhou evergreen needleleaf forests 192 

(CN-Qia), Siziwang Grazed grassland (CN-Sw2), Yucheng cropland (YC), NeiMeng 193 

temperate grassland (NM), Xishuangbanna evergreen broadleaf forest (XSBN). Eddy 194 

covariance flux data of the 12 sites were extracted from the Tier 1 Subset product 195 

(FLUXNET2015 Dataset), which was downloaded directly from the FLUXNET website 196 

(http://FLUXNET.fluxdata.org/) and from ChinaFLUX (http://www.chinaflux.org/). Detailed 197 

descriptions are available in Table 2. 198 
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To assess the performance among three levels of complexity terrestrial ET models in different 199 

plant functional types (PFT), we used vegetation classification data (Figure 1) provided by 200 

Environmental and Ecological Science Data Center for West China, National Natural Science 201 

Foundation of China (http://westdc.westgis.ac.cn). The datasets are based on the results of 202 

vegetation field investigation from 1949 to 2000, satellite images, soil data and 203 

meteorological data.  204 

 
205 

Figure 1. Locations of the 12 ChinaFLUX sites and distribution of plant functional type and 206 

climate zones. 207 

Table 2. The list of ChinaFLUX sites used in this study. 208 

Site ID PFT Lat (°N) Lon(°W) Data period References 
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CN-Cha MF 42.4 128.1 2005-2014 Guan et al. (2006) 

CN-Cng GRA 44.59 123.51 2007-2010 - 

CN-Dan GRA 30.50 91.07 2004-2008 Shi et al. (2006) 

CN-Din EBF 23.17 112.54 2003-2005 Zhang et al. (2010) 

CN-Du2 GRA 42.05 116.28 2006-2008 Chen et al. (2009) 

CN-Ha2 WET 37.61 101.33 2003-2005 - 

CN-HaM GRA 37.37 101.18 2002-2004 Kato et al. (2006) 

CN-Qia ENF 26.74 115.06 2003-2005 Yu et al. (2006) 

CN-Sw2 GRA 41.79 111.9 2010-2012 - 

YC Crop 36.83 116.57 2003-2010 Yu et al. (2006) 

NM Grass 43.33 116.24 2004 Yu et al. (2006) 

XSBN EBF 21.93 101.27 2003-2010 Yu et al. (2006) 

 
209 

2.3 ET Model Descriptions 210 

To limit the uncertainty of the forcing data and focus on the effect of different model 211 

complexity, we used the same meteorology datasets from 1980 to 2010 (GSWP3, 212 

https://www.isimip.org/gettingstarted/details/4/) and satellite remote sensing datasets 213 

(Normalized Difference Vegetation Index (NDVI) GIMMS product, 214 

https://glam1.gsfc.nasa.gov/) to run the three models. The simplest ET model is the Priestley 215 

Taylor-Jet Propulsion Laboratory (PT-JPL) model which is developed from Priestley-Taylor 216 

model (Fisher et al., 2008; Priestley and Taylor, 1972). The PT-JPL model incorporates a 217 

variety of data sources from meteorological data (i.e., net radiation (Rn), air temperature, 218 
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vapor pressure) and satellite observations (NDVI, visible spectrum reflectance, near-infrared 219 

spectrum reflectance). We use the Shuttleworth-Wallace-Hu (SWH) model as a representative 220 

of intermediate complex models (Hu et al., 2013; Hu et al., 2017), which is developed based 221 

on the Shuttleworth-Wallace model and coupled light use efficiency model (Shuttleworth and 222 

Wallace, 1985). Meteorological data (i.e., air temperature, precipitation, relative humidity, 223 

wind speed, and Rn) and satellite products (i.e., NDVI) are the forcing data for the SWH 224 

model. We used the version 1 of the Energy Exascale Earth System Model (E3SM) Land 225 

Model (ELMv1) as a representative of the most complex ET model, which was branched 226 

from the version 4.5 of the Community Land Model (CLM4.5; Oleson et al. (2013)) with a 227 

specific version tag 4_5_71 (Cai et al., 2019). The forcing fields include surface air 228 

temperature, precipitation, wind speed, relative humidity, surface pressure, incoming solar 229 

radiation, and incoming longwave radiation. (Figure 2) 230 



14 

 

 231 

Figure 2. Evapotranspiration models: Priestley Taylor-Jet Propulsion Laboratory (PT-JPL) 232 

model, Shuttleworth-Wallace-Hu (SWH) model, and Energy Exascale Earth System Model 233 

Land Model (ELM). 
 

234 

  235 
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3. Results236 

3.1 Overall performance 237 

In ILAMB, compared with the reference datasets, we found a strong performance gradient 238 

among the three ET models. The most complicated model, ELM (overall absolute score: 0.71) 239 

perform best compared with reference datasets. The intermediate complexity model, with an 240 

overall score of SWH (0.67) is 0.04 lower than the ELM model. And the performance of the 241 

simplest model, PT-JPL (overall absolute score: 0.63) was lowest relative to the other 242 

models . 243 

244 

3.2 Inter-annual variability and seasonal cycle simulation performance 245 

Compared with the inter-annual variability of reference ET dataset, the results (Figure 3) 246 

showed that 1) the simulation of inter-annual variability of the three ET models (ELM, SWH, 247 

PT-JPL) is better in eastern China than in western China; 2) the three ET models perform 248 

poor in some special geographical regions such as Qinghai-Tibet plateau and southwest 249 

mountains region; 3) the overall performance of inter-annual variability can be sorted in order 250 

of: SWH (mean score = 0.75) > ELM (mean score = 0.73) > PT-JPL (mean score = 0.70). 251 

252 

For the different climate region in China (Figure 3d), ELM model had the lowest score in 253 

simulating the inter-annual variability of ET in the plateau and mountain climate region 254 

(mean score = 0.47). There is a need to improve the ET inter-annual variability simulation of 255 

the three terrestrial ET models in the temperate continental climate region (mean score: ELM 256 

= 0.62, SWH = 0.68, JPL = 0.56). All three ET models perform equally well in the temperate 257 
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monsoon climate region (mean score: ELM = 0.88, SWH = 0.89, JPL = 0.88). In the 258 

subtropical monsoon climate region, PT-JPL model had the worst performance of ET 259 

inter-annual variability simulation (mean score = 0.77). 260 

 261 

 262 

Figure 3. The spatial distribution of inter-annual variability (IAV) score of three models: (a) 263 

ELM, (b) SWH and (c) PT-JPL and (d) the inter-annual variability score in different climate 264 

change: plateau and mountain climate (PM), temperate continental climate (TC), temperate 265 

monsoon climate (TM), subtropical monsoon climate (SM). 266 

 267 

In terms of seasonal cycle score, which compares the timing of the maximum ET of the 268 

annual cycle between reference dataset and model dataset, ELM and PT-JPL (mean 269 
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score=0.91, 0.90) performs better than SWH model (mean score=0.78). In northwestern and 270 

southwestern of China, the simulation of seasonal cycle of the three ET models had lower 271 

scores especially the SWH model (Figure 4).  272 

 273 

In different climate region of China (Figure 4d), the three ET models had the worst 274 

performance in temperate continental climate region especially SWH model (mean score: 275 

ELM = 0.86, SWH = 0.69, JPL = 0.84). In the monsoon climate region, the three ET models 276 

perform better than plateau and mountain climate region and temperate continental climate 277 

region. The ELM model performs well in different climate region of China. 278 

 279 

 280 
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Figure 4. The spatial distribution of seasonal cycle (SC) score of three models: (a) ELM, (b) 281 

SWH and (c) PT-JPL and (d) the seasonal cycle score in different climate change. 282 

 283 

3.3 Spatial variability performance  284 

Taylor diagrams (Taylor, 2001) were used to analyze the spatial distribution of the time 285 

averaged ET. Taylor diagrams are particularly useful in evaluating multiple aspects of 286 

complex data series, since each graph shows a statistical summary of how well patterns 287 

match each other in terms of their correlation (r), their root mean square error (RMSE), and 288 

the normalized standard deviation (SD). The radial distance from the origin represents the 289 

amplitude of the ET variation (SD), normalized by the reference value (SD=1). The azimuthal 290 

angle of a particular point indicates its correlation to the reference. And the distance between 291 

a point and the reference shows the mean absolute difference between those datasets (RMSE). 292 

We used 31 year- averaged ET values of three models to assess spatial variability 293 

performance based on Taylor diagrams. As shown in Figure 5, the results indicated that 1) the 294 

correlation between ELM (r=0.96) and reference datasets is stronger than those of SWH 295 

(r=0.91) and PT-JPL (r=0.72); 2) even though the three model have different correlation, the 296 

standard deviation of three models has shown the similar distance relative to benchmark 297 

(SDELM=1.19, SDSWH=0.81, SDPT-JPL=1.20); 3) the ELM model has the smallest RMSE (0.32) 298 

when compared with SWH (0.41) and PT-JPL (0.79). On the whole, the most complex model, 299 

ELM which is closest to the benchmark has a good performance on spatial variability 300 

simulation. 301 
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 302 

Figure 5. Taylor diagram showing correlation coefficient, RMSE, and standard deviation of 303 

spatial variability performance for the three ET models. 304 

 305 

3.4 Model performance in different plant functional types 306 

In different plant functional types (PFT), the three levels of complexity terrestrial ET models 307 

have different performance relative to the reference datasets. The most complicated ET model, 308 

ELM, shows the best performance in DNF, ENF, MF, DBF, and Crop (overall score = 0.75, 309 

0.69, 0.70, 0.72, 0.71) but performs worst in Grass (overall score = 0.61). The best 310 

performance of the intermediate complexity model, SWH is achieved in EBF and Shrub 311 

(overall score = 0.72, 0.69). And the simplest model, PT-JPL have the best performance in 312 

Grass (overall score =0.71). Both of SWH and PT-JPL models has poor performance in forest 313 
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ecosystems. Additionally, the relative score revealed that PT-JPL model perform worse in 314 

ENF, DBF, and EBF compared to the other models. (Figure 6) 
315 

 316 

 317 

Figure 6. Overall score of ELM, SWH, PT-JPL model evapotranspiration estimates in 318 

different plant functional types
 

319 

  320 
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4. Discussion 321 

4.1 Overall performance of the three levels of complexity terrestrial ET models  322 

Our findings suggest that the performance of terrestrial ET models is related to some extent, 323 

but not entirely, to model complexity. The results showed that model complexity is positively 324 

correlated with ILAMB overall scores. As the ET models become increasingly complex, they 325 

contain an increasing number of biophysical, biochemical and biogeography descriptions. 326 

Several reports have shown that adding complexity to a land surface model may improve 327 

performance. Leplastrier (2002) investigated the performance of five modes of a land surface 328 

model, the Chameleon Surface Model (CHASM) and they found that the performance of 329 

more complex modes of CHASM is superior to more simple modes. Medici et al. (2012) 330 

analyzed three hydro-chemical models varying different level of complexity and the results 331 

presented that increased model complexity can improve performance if sufficient data are 332 

available for model testing. Our results support these earlier conclusions, though notable 333 

exceptions exist. However, there remains a lack of comparisons of different complexity ET 334 

models and exploration of the differences in their mechanisms. In future work on ET model 335 

evaluation, large ensembles of models of different complexity are needed in order to compare 336 

and improve ET modeling, in addition to the incorporation of more observed ET datasets as 337 

benchmark datasets in the ILAMB system. 338 

 339 

4.2 Temporal and spatial simulation performance  340 

Given that direct model evaluation is possible only with contemporary in-situ observations, it 341 

is difficult to assess the models' capacities to capture spatial variation at large scale. Khosa et 342 
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al. (2019) evaluated and calibrated surface, empirical and satellite-based models performance 343 

including inter-annual variation and seasonal cycle performance compared with in situ ET 344 

measurement in South Africa. Ma et al. (2019a) validated a 31-year ET product by using 345 

plot-scale eddy covariance measurement and basin-scale water-balance-derived 346 

evapotranspiration rates and quantified the spatial and temporal variability of ET in China. 347 

However, we still lack a quantitative assessment of ET model performance distribution for 348 

inter annual variability and seasonal cycle. In this study, we leveraged the ILAMB system to 349 

enable improved testing of multiple terrestrial ET models, which used a wide variety of 350 

regional-scale gridded observations, site specific observations, and integrative observations to 351 

allow a more robust model benchmarking framework.  352 

 353 

As shown in Figure 3, SWH performs best in terms of inter-annual variability simulation. 354 

And the simulation of inter-annual variability of the three ET models (ELM, SWH, PT-JPL) 355 

is poor in the northwest of China (temperate continental climate region). In the northwest arid 356 

region, temperature and precipitation experienced a sharp increasing in the past 50 years 357 

(Yang et al., 2018). The precipitation trend changed in 1987, and since then has been in a 358 

state of high volatility. Temperature experienced a “sharp” increase in 1997; since then, it has 359 

remained highly volatile, and the increasing trend slowed (Chen et al., 2015; Wang et al., 360 

2017). Meanwhile，whether reanalysis climate product or interpolation climate data is 361 

effected by in situ measurements which is less distributed in the northwest of China. These 362 

may be one of the reasons for the poor inter-annual variability simulation performance in the 363 

northwest of China.  364 
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In some ecosystems that occupy particular eco-geographical locations and have special 365 

biogeochemical cycling, such as the Qinghai-Tibet Plateau (plateau and mountain climate 366 

region), the ELM model had the poorest performance for inter-annual variability. The 367 

atypical conditions in these regions could have affected the ELM soil thermal conductivity 368 

scheme (Farouki’s scheme, Bonan et al. (2013)). Wang et al. (2014) found that the Farouki’s 369 

scheme underestimated the upward shortwave radiation and overestimated the upward 370 

longwave and net radiation in Qinghai-Tibet Plateau. Several reports have shown that energy 371 

conditions are influential factors limiting ET in the entire Qinghai-Tibet Plateau especially at 372 

upper elevation (Ma et al., 2019b; Mingyue et al., 2019). Hence, reducing the uncertainty of 373 

soil thermal conductivity scheme may help improve the performance of the ET model in 374 

Qinghai-Tibet Plateau.  375 

In terms of seasonal cycle simulation, ELM performed better than PT-JPL and the SWH 376 

model. In the northwest and southwest of China, the simulation of seasonal cycle of the three 377 

ET models had lower scores, especially SWH model. This is possibly due to the special 378 

geographical environment, in particular aridity of the northwest region and the southwest 379 

region (Yunnan Plateau). The lack of parameter localization for these regions is potentially 380 

responsible for the poor model performance. 381 

382 

In term of the spatial distribution simulation, ELM and SWH models have higher correlation 383 

coefficients with the reference dataset (0.96, 0.91, respectively), which is higher than the 384 

coefficient for PT-JPL model (0.72). On the other hand, ELM and the SWH model showed 385 

the smaller RMSE in comparison with the benchmark data. Considering the evidence above, 386 



24 

 

we found that the more complex models (ELM, SWH) perform better for the ET spatial 387 

distribution than the simpler model (PT-JPL). A possible explanation for these results may be 388 

some key parameters of terrestrial ET model are space-time scale dependent and relate to 389 

traits in specific environmental (Chaney et al., 2016; Peaucelle et al., 2019). For the more 390 

complex models (ELM, SWH), the variations of key parameters are considered in the 391 

physical-process simulation in different PFT. It is therefore likely that the more complex 392 

models simulate spatial distribution better in China, due to their ability to better consider the 393 

variations and diveristy in the ecosystem characteristics. 394 

 395 

4.3 Model performance in different plant functional types 396 

The most complex ET model, ELM shows the best performance in most forest ecosystem 397 

(DNF, ENF, MF, DBF) and Crops. The best performance of the intermediate complexity 398 

model, SWH is achieved in EBF and Shrubs. And the simplest model, PT-JPL have the best 399 

performance in Grass.  400 

 401 

ELM and SWH model coupled exchanges of energy, water, and carbon and incorporated 402 

photosynthesis process simulation. Plant stomata function as a controlling interface to 403 

regulate plant water loss and carbon dioxide uptake, and play a crucial role in ET and carbon 404 

exchange (Miner et al., 2017; Shan et al., 2019). Specifically, stomatal resistance is one of the 405 

largest drivers of ET under the situation that the canopy is fully coupled to the surrounding 406 

boundary layer, and therefore it provides links between ET and photosynthesis (De Kauwe et 407 

al., 2015; Shan et al., 2019). Both the ELM and SWH models incorporate Ball-Berry model 408 
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(Ball et al., 1987) to calculate stomatal resistance. SWH used a light use efficiency model 409 

(Running et al., 2004) to estimate the photosynthesis rate, which is a key parameter in the 410 

Ball-Berry model, while the photosynthesis rate in ELM is based on biochemical models 411 

(Collatz et al., 1992; Farquhar et al., 1980). ET integrates biochemical and biophysical land 412 

surface processes between the Earth’s surface and atmosphere (Jung et al., 2010; Zhang et al., 413 

2016). Coupling biochemical and biophysical processes in terrestrial ET models is thus 414 

expected to lead to improved performance. This improved process representation could 415 

explain why the ELM model performs better in particular in forest ecosystems, which have a 416 

more complex canopy structure.  417 

 418 

Even though the PT-JPL model is developed using a semi-empirical satellite-based ET model, 419 

it performs best in grass ecosystems. This result may be explained by the fact that PT-JPL 420 

model performed better in water-limited regions, where remotely sensed information on 421 

dynamic vegetation responses to changes in water availability aid in the prediction of ET 422 

(Ershadi et al., 2014).  423 

  424 
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5. Conclusion 425 

We evaluated three terrestrial ET models of different complexity in the ILAMB 426 

benchmarking system in China. Our results indicate that more complex models outperform 427 

simple models on the whole, as complex models marked highest ILAMB scores, though 428 

some exceptions exist. In terms of temporal simulation performance, the SWH model 429 

performed best for inter-annual variability simulation and ELM performed best for seasonal 430 

cycle simulation. For some special geographical environment regions, such as the 431 

Qinghai-Tibet Plateau and northwest region, models need to improve their ability to capture 432 

inter-annual variability and the seasonal cycle of ET. From the point of view of spatial 433 

distribution simulation, ELM and the SWH model are more closely related to the reference 434 

datasets, while the PT-JPL model performed poorly for the spatial distribution simulation of 435 

ET. In different PFT, the more complex models (ELM, SWH) performed better in forest, 436 

shrub and crop ecosystems and the simpler model (PT-JPL) performed better in grass 437 

ecosystems. We suggest that the performance difference may be due to different 438 

parameterizations and the simulation of important physical processes such as canopy 439 

resistance. This study provided a thorough evaluation of terrestrial ET models of different 440 

complexity by leveraging the strength of the ILAMB system. The approach will help guide 441 

efforts to understand the influence of model complexity on model performance and provide 442 

guidance on future directions of improving terrestrial ET models. 443 
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Appendix A. List of abbreviations and acronyms 617 

DBF deciduous broadleaf forest  

DNF deciduous needleleaf forest 

DOLCE 
Derived Optimal Linear 

Combination Evapotranspiration 

E3SM Energy Exascale Earth System Model  

EBF evergreen broadleaf forest  

ELM Energy Exascale Earth System Model Land Model  

ENF evergreen needleleaf forest 

ESMs earth system models 

ET evapotranspiration 

GLEAM Global Land Evaporation Amsterdam Model 

GSWP3 Global Soil Wetness Project Phase 3  

IAV inter-annual variability 

ILAMB International Land Model Benchmarking 

MF mixed forest 

NDVI Normalized Difference Vegetation Index 

PFT plant functional types 

PM plateau and mountain climate 

PT-JPL Priestley Taylor-Jet Propulsion Laboratory 

r correlation 

RMSE root mean square error 

Rn net radiation 

SC seasonal cycle 
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SD standard deviation 

SM subtropical monsoon climate 

SWH Shuttleworth Wallace Hu 

TC temperate continental climate 

TM temperate monsoon climate 
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